WO2018036340A1 - 一种接触状态监测装置 - Google Patents

一种接触状态监测装置 Download PDF

Info

Publication number
WO2018036340A1
WO2018036340A1 PCT/CN2017/094909 CN2017094909W WO2018036340A1 WO 2018036340 A1 WO2018036340 A1 WO 2018036340A1 CN 2017094909 W CN2017094909 W CN 2017094909W WO 2018036340 A1 WO2018036340 A1 WO 2018036340A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact state
state monitoring
monitoring device
fiber
package
Prior art date
Application number
PCT/CN2017/094909
Other languages
English (en)
French (fr)
Inventor
凌建明
赵鸿铎
吴荻非
杨戈
杜浩
Original Assignee
同济大学
上海同科交通科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同济大学, 上海同科交通科技有限公司 filed Critical 同济大学
Publication of WO2018036340A1 publication Critical patent/WO2018036340A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/268Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light using optical fibres

Definitions

  • the present invention relates to the field of engineering, and in particular to a contact state monitoring device.
  • Cement concrete pavement has the advantages of high strength, small daily maintenance, long service life and convenient materials. It is absolutely dominant in China's airports and is also widely used in the road field. However, once structural damage occurs in the cement pavement, such as cracking of the plate and penetration of cracks, it will be difficult to repair, and it is often necessary to replace the entire pavement panel. Even with fast-setting and early-strength cement, the entire construction time takes at least 8 to 10 hours. For airports with large passenger traffic, especially in key areas, it is still unable to meet the requirements for rapid repair of the road surface.
  • Prefabricated concrete paving technology is an ideal rapid repair technology, which completes the pouring and curing of concrete in advance in the prefabrication plant, significantly reducing on-site construction time.
  • the cost of quick-setting early strength cement in the market is more than 10 times that of ordinary Portland cement. If prefabricated lifting technology is used, material cost can be greatly saved. Therefore, prefabricated hoisting technology has gradually become an important technical means in the field of rapid repair of airports in China.
  • the assembly-type construction technology is convenient and cheap, but in the hoisting process, there is inevitably a certain contact failure between the bottom of the hoisting plate and the original base surface.
  • the existing treatment methods are mostly grouting or laying the bottom of the plate. The method, but lacks a means to determine the contact condition of the bottom of the board in real time, that is, it is impossible to judge the effectiveness of the grouting or the leveling of the bottom of the board. Therefore, a technique is needed to monitor the contact state of the bottom of the board with the base layer to evaluate the assembly. Construction quality.
  • a first aspect of the present invention provides a contact state monitoring apparatus including a package, the package being in the shape of a disk, and a sensing fiber disposed in the package.
  • the material of the package is an elastic encapsulation material.
  • the material of the package has a compressive strength of ⁇ 30 MPa.
  • the material of the package is selected from the group consisting of one or more of silica gel and rubber.
  • the upper surface of the package is provided with one or more protrusions.
  • the lower surface of the package is provided with one or more grooves.
  • the locations of the projections and grooves are matched.
  • the package is disc shaped.
  • the sensing fibers are evenly arranged within the package.
  • the sensing fiber is a single mode fiber.
  • the sensing fiber is in a spiral arrangement
  • the coverage of the optical fiber core material in the sensing fiber is 8 to 10 mm/mm 2 .
  • the tensile strength of the sensing fiber is typically > 30N.
  • the attenuation of the sensing fiber is typically ⁇ 0.22 db/Km (1550 MHz).
  • a second aspect of the present invention provides a bottom surface contact state monitoring system including at least one of the contact state monitoring devices, wherein both ends of the sensing fiber are led out through an optical fiber lead-out line.
  • a BOTDA demodulation device is further included, and both ends of the sensing fiber are led out through the fiber lead wire and connected to the BOTDA demodulating device.
  • the bottom surface contact state monitoring system includes a plurality of contact state monitoring devices, and at least a portion of the sensing fibers in the contact state monitoring device are sequentially connected in series.
  • the contact state monitoring device is distributed on the bottom surface of the sample to be tested.
  • the contact state monitoring device is evenly distributed on the bottom surface of the sample to be tested.
  • the bottom surface contact state monitoring system is a cement concrete slab bottom surface contact state monitoring system.
  • a third aspect of the invention provides the use of the contact state monitoring device and/or the bottom surface contact state monitoring system for monitoring the contact state of the bottom surface of a cement concrete slab.
  • a fourth aspect of the present invention provides a bottom surface contact state monitoring method, including the following steps:
  • the method further comprises: distributing the bottom surface contact state monitoring system on a bottom surface of the standard sample, and obtaining a compression amount of the contact state monitoring device and a Brillouin frequency shift of the optical fiber core material through a calibration experiment The standard function relationship of values.
  • the sample to be tested is a cement concrete slab.
  • the present invention provides a new type of real-time, distributed monitoring for the needs of fabricated cement concrete paving technology through BOTDA (Brillouin Optical Time Domain Analysis Technology).
  • BOTDA Bacillouin Optical Time Domain Analysis Technology
  • BOTDA-based fabricated cement concrete bottom contact condition monitoring device BOTDA-based fabricated cement concrete bottom contact condition monitoring device.
  • Fig. 1 is a schematic view showing the structure of a contact state monitoring device of the present invention.
  • Figure 2 is a perspective view showing the contact state monitoring device of the present invention.
  • Figure 3 is a cross-sectional view showing the contact state monitoring device of the present invention.
  • Figure 4 shows the structure of the bottom contact state monitoring system.
  • Figure 5 shows an example of plate bottom contact measurements for different times in Example 2.
  • an aspect of the present invention provides a contact state monitoring device, which includes a package member 1.
  • the package member 1 has a disk shape, and the package member 1 is provided with a sensing fiber 2.
  • the package 1 may generally be an elastic packaging material.
  • the elastic encapsulating material generally refers to a material that is suitable for encapsulating an optical fiber and that is deformed by force and capable of returning to its approximate initial shape and size after the external force is withdrawn.
  • the elastic encapsulating material may be a combination of one or more of, but not limited to, silicone, rubber.
  • the material of the package 1 can generally have a high compressive strength, so that the sensing fiber 2 inside the package 1 can be better protected, and the package 1 can be made more durable.
  • the compressive strength of the material of the package 1 can generally be ⁇ 30 MPa.
  • the upper surface of the package 1 may be provided with one or more protrusions 3, and the lower surface of the package 1 may be provided with one or more grooves 4.
  • the design of the protrusions and the grooves mainly serves to increase the length of the fiber pulling.
  • the positions of the protrusions 3 and the grooves 4 are matched, for example, the position of the protrusions 3 on the upper surface can be compared with the lower surface.
  • the positions of the grooves 4 correspond one-to-one, and the protrusions 3 can at least partially fall toward the grooves 4 when subjected to an external force.
  • the package 1 may be in various disc shapes, for example, a square disk, a disk, etc., in an embodiment of the invention, the package 1 may be in the shape of a disk, the protrusions 3 and/or grooves 4 is a circle concentric with the disk, and the circular protrusion 3 and/or the groove 4 are divided into a plurality of sectors. A person skilled in the art can adjust the size of the package as needed.
  • the package 1 may have a diameter of 250 ⁇ 3 mm, and the protrusion 3 and/or the groove 4 have a radius of 100 ⁇ 1 mm and a thickness of 3 ⁇ 0.5mm, the curvature of each sector-shaped protrusion 3 and/or groove 4 may be 90 ⁇ 3°, and the thickness of the package (not counting the protrusion 3 and the groove 4 part) may be 2 ⁇ 0.5mm .
  • the sensing fiber 2 can be evenly arranged in the package 1.
  • the coverage of the optical fiber core material of the entire sensing fiber 2 (in the vertical projection of the disk surface, the ratio of the length of the optical fiber (core material) to the projected area of the disk surface) may be 8 to 10 mm/mm 2 .
  • the sensing fiber 2 may be in a spiral arrangement, and the sensing fiber 2 may also be arranged in two dimensions.
  • the spiral arrangement may generally be a curvilinear arrangement that rotates radially outward from a point, typically two of the sensing fibers 2 are arranged in the same plane.
  • the spirally arranged optical fiber may have an outermost diameter of 240 ⁇ 2 mm, an innermost diameter of 60 ⁇ 2 mm, and a spacing of 10.2 ⁇ 2 mm per turn.
  • the sensing fiber 2 is a single mode fiber, and the single mode fiber generally refers to an optical fiber that can only transmit one mode of light.
  • the sensing fiber 2 is usually a tight-packed fiber, Ensure the coordinated deformation of the fiber.
  • the diameter of the fiber core material in the sensing fiber 2 may generally be 9 ⁇ 0.5 ⁇ m.
  • the sensing fiber 2 generally needs to have a certain tensile strength to ensure that the fiber is not damaged or broken when it is stretched, and the tensile strength of the sensing fiber 2 is usually ⁇ 30N.
  • the attenuation of the sensing fiber 2 is usually ⁇ 0.22 db/Km (1550 MHz) to ensure the smooth operation of the BOTDA.
  • the outer layer of the sensing fiber 2 is usually provided with a sheath, and the sheath may be selected from various fiber sheaths in the art, such as a polyethylene sheath, a polyvinyl chloride sheath, a polyvinylidene fluoride, a HYTREL, etc. a combination of one or more of them.
  • a person skilled in the art can adjust the diameter of the fiber provided with the sheath and the length of the optical fiber disposed in the package as needed to ensure spatial resolution during measurement.
  • the diameter of the fiber provided with the sheath can be 0.6. ⁇ 0.9mm.
  • another aspect of the present invention provides a bottom surface contact state monitoring system including one or more of the contact state monitoring devices, wherein both ends of the sensing fiber are led out through the fiber lead wires.
  • the system may further include a BOTDA demodulation device 6, and both ends of the sensing fiber 2 are led out through the fiber lead-out line 5 and connected to the BOTDA demodulating device 6.
  • the BOTDA demodulation device 6 can select various Brillouin distributed optical fiber demodulators in the field, which can detect the Brillouin frequency shift value of the connected fiber, for example, can be produced by Shanghai Bayan Sensing Technology Co., Ltd. FT430-04 demodulator, NEUBRESCOPE demodulator from Japan Guangna Co., Ltd., etc.
  • the bottom surface contact state monitoring system may generally include a plurality of contact state monitoring devices, and the sensing fibers 2 in the plurality of contact state monitoring devices may all be connected in series to form one loop, or may be in multiple contact states.
  • the monitoring devices are divided into groups, and the sensing fibers 2 of each group are connected in series, each forming a loop.
  • the contact state monitoring devices can usually be connected by connecting the optical fibers 7 through the transition section to form a loop.
  • a person skilled in the art can adjust the parameters of the transition fiber according to the need, and the parameters of the transition fiber connecting the fiber 7 can be substantially the same as that of the sensing fiber 2.
  • the contact state monitoring devices usually need to maintain a certain length of the transition segment to connect the fiber 7 Thus, the measurement can ensure a certain spatial resolution.
  • the transition section connecting optical fibers 7 between the contact state monitoring devices can be ⁇ 5 meters.
  • the bottom contact state monitoring system provided by the invention can be generally used for monitoring the bottom surface contact state, more specifically, for monitoring the bottom surface contact state of the cement concrete slab.
  • the contact state monitoring device is usually distributed on the sample to be tested. Bottom surface.
  • Another aspect of the present invention provides the use of the contact state monitoring device and/or the bottom surface contact state monitoring system for monitoring the contact state of the bottom surface, and more particularly for the use in monitoring the contact state of the bottom surface of the cement concrete slab.
  • Another aspect of the present invention provides a method for monitoring a bottom surface contact state, comprising: distributing the bottom surface contact state monitoring system on a bottom surface of a sample to be tested.
  • the bottom surface contact condition monitoring system is distributed, it is generally possible to distribute the contact state monitoring device evenly on the bottom surface of the sample to be tested.
  • the sample to be tested is a cement concrete slab.
  • the bottom surface contact state monitoring method provided by the invention further comprises: measuring contact state monitoring caused by the sample to be tested The Brillouin frequency shift value of the fiber core material in the sensing fiber in the device.
  • the Brillouin frequency shift value can usually be measured by the BOTDA demodulating device 6, and those skilled in the art can adjust the parameters of the BOTDA demodulating device 6 as needed to obtain the desired experimental result.
  • the bottom surface contact state monitoring method provided by the invention further comprises: determining the contact state monitoring caused by the sample to be tested according to the standard function relationship between the compression amount of the contact state monitoring device and the Brillouin frequency shift value of the fiber core material in the sensing fiber; The amount of compression of the device.
  • the standard function relationship can be obtained by a calibration experiment.
  • the method for obtaining the standard function relationship includes: distributing the bottom surface contact state monitoring system on the bottom surface of the standard sample, and obtaining the contact state through the calibration experiment.
  • the amount of compression of the monitoring device specifically refers to the amount of vertical compression deformation caused by the external force of the contact state monitoring device.
  • the bottom surface contact state monitoring method provided by the present invention further comprises: determining a bottom contact state of the sample to be tested according to the compression amount of the contact state monitoring state caused by the sample to be tested.
  • the contact state monitoring device provided by the invention can be used for monitoring the contact state of the bottom plate during the construction and operation of the prefabricated concrete slab. According to the research experience and data of the inventor's accumulated road and airport functions for many years, combined with the indoor measurement, the results show that The designed monitoring device produces a Brillouin frequency shift of up to 6.5 MHz with full compression (compression of 3 mm), and the measured Brillouin frequency shift value is positively correlated with the amount of compression of the monitoring device. Accordingly, the contact state monitoring device provided by the present invention can meet the monitoring requirements of the bottom contact state.
  • the invention combines distributed optical fiber sensing technology and airport engineering to realize distributed and real-time monitoring of the bottom contact state of the assembled concrete slab construction and operation process, and improves the detection efficiency;
  • the device adopts an elastic packaging material (for example, silica gel) to ensure The durability and pressure resistance of the sensing structure reduce the temperature interference;
  • the optical fiber of the device improves the bending resistance of the optical fiber while ensuring synergistic deformation with the package structure;
  • the optical fiber in the device is evenly distributed (for example, using a spiral shape) Mode layout), increased fiber density and improved spatial resolution;
  • the designed monitoring device has high sensitivity and can be applied to the monitoring of small voids.
  • the detection method of the parameters used in the present invention is as follows:
  • the compressive strength of the package was tested using a compression test using a 250 mm diameter indenter. If the package is still damaged when the pressure in the vertical direction of the package reaches 30KPa, the compressive strength is considered to meet the requirements;
  • the contact state monitoring device information used in the embodiment is as follows: the overall structure of the package is a disk shape, and the diameter is 250mm, the internal sensing fiber is spirally laid, tightly packed with the package structure, and both ends of the internal sensing fiber are derived along the tangential direction.
  • the sensing fiber adopts single-mode tight-package fiber, the fiber type is G675A1, the sheath adopts HYTREL, and the total diameter (including the sheath) is 0.9mm. After the fiber is laid, it is packaged by liquid silicone and solidified to form a package.
  • the overall structure is “upper convex”.
  • the concave type is 3mm in the upper part and 3mm in the lower part.
  • the intermediate layer is 2 mm thick for packaging the sensing fiber.
  • the sensing fiber is spirally laid, the outer ring diameter is 240mm, the inner ring diameter is 60mm, a total of 9 turns, each interval is about 10.2mm, about 4.3m long.
  • the transition section connecting fiber is a single-mode tight-packed fiber with the same diameter of 0.9mm.
  • the layout method adopts circular winding, the winding diameter is 10cm, and the winding is 16 times, and the total length is about 5m.
  • the BOTDA demodulation device uses the FT430-04 demodulator manufactured by Shanghai Baian Sensing Technology Co., Ltd.
  • the package structure is deformed during the pressing process, the upper convex is depressed after being pressed, and the lower concave corresponding to the middle layer is packaged.
  • the sensing fiber is twisted and twisted, and the sensing fiber of the rest of the middle layer is limited in displacement, resulting in tensile deformation of the sensing fiber.
  • the monitoring of tensile deformation is based on the BOTDA sensing principle: pulsed light (pump light) and continuous light (probe light) are injected into the fiber from both ends, wherein the pump light frequency is higher.
  • pulsed light pulsed light
  • continuous light probe light
  • the two optical frequency differences are the same as the Brillouin frequency shift of a certain region in the fiber, the region will generate a certain Brillouin stimulated scattering.
  • the frequency difference at the maximum scattering gain between cells in the fiber length range can be obtained, that is, the Brillouin frequency. shift.
  • the Brillouin frequency shift There is a linear relationship between the Brillouin frequency shift and the axial strain and temperature change of the strained fiber (core material), namely:
  • strain influence coefficient and the temperature influence coefficient are respectively, and the strain influence coefficient and the temperature influence coefficient in the examples are 0.05 MHz/ ⁇ and 1.22 MHz/°C, respectively.
  • the temperature change is negligible, so the axial strain of the fiber can be detected through the relationship, and the spatial positioning is performed by OTDR (optical time domain reflection) technology.
  • the theoretical space of the BOTDA demodulation device used has a maximum resolution of 0.4 m and a strain resolution of 100 ⁇ .
  • the optical fiber core material in the sensing fiber under different compression quantities of the contact state monitoring device is obtained.
  • the Brillouin frequency shift measured by BOTDA is shown in Table 1. The results show that the design can convert the vertical contact state into the axial stretch of the fiber. The tensile deformation meets the measurement requirements of the BOTDA device, and the specific contact state. See Table 1 for the standard relationship between the amount of compression of the monitoring device and the Brillouin frequency shift value.
  • the auxiliary road of Zhouhai Road section of Pudong Outer Ring Road is cement concrete pavement. Two cement concrete slabs have been seriously damaged. The assembled cement concrete slabs are used for repair and repair. The gap between the bottom of the prefabricated slab and the base layer is 1 ⁇ 3cm. Filled by CA mortar grouting.
  • the BOTDA-based fabricated cement concrete bottom contact state monitoring system is used to monitor the contact state of one of the plates. According to the layout shown in Figure 4, the 1/4 area is laid. The length of the sensing fiber inside the single monitoring device is 5-7m, the length of the connecting fiber is 5m, and 18 monitoring devices are attached. The device spacing is about 0.5m, and the plurality of monitoring devices are connected in series by connecting the optical fibers in the transition section, pasted on the bottom of the assembled concrete slab, and finally exported through the fiber lead-out line and connected to the BOTDA demodulator, and the light lead-out line is made of metal ⁇ .
  • the fiber is installed, the fiber type is G652D, the sheath is from the inside to the outside, including the strap, the wire stranding and the PE outer sheath.
  • the total diameter of the fiber (including the sheath) is 3mm, and the length of the fiber at both ends is 25m.
  • the real-time and distributed monitoring of the contact state of the bottom of the grouting process was carried out.
  • the preliminary monitoring results are shown in Fig. 5.
  • Fig. 5 three sets of monitoring results are respectively given, wherein the distance along the fiber indicates the distance from the monitoring starting point along the path of the sensing fiber in the monitoring system. It can be seen that the contact state monitoring device and the bottom surface contact state monitoring system provided by the invention avoid the disadvantages of high cost or convenient convenience of the conventional detection mode, and realize real-time and distributed monitoring of the contact state of the assembled concrete slab bottom.
  • the present invention effectively overcomes various shortcomings in the prior art and has high industrial utilization value.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

一种接触状态监测装置,涉及工程领域,包括封装件(1),封装件(1)为盘状,封装件(1)内设有传感光纤(2)。针对现有的几种压力测量技术的缺点,接触状态监测装置通过BOTDA(布里渊光时域分析技术),针对装配式水泥混凝土铺面技术的需要,提供了一种新型的、能够实时、分布式监测的基于BOTDA的装配式水泥混凝土板底接触状态监测装置。

Description

一种接触状态监测装置 技术领域
本发明涉及工程领域,特别是涉及一种接触状态监测装置。
背景技术
水泥混凝土铺面具有强度高、日常养护量小、使用年限长、取材方便等优点,在我国机场中占绝对主导地位,也大量应用于道路领域中。但水泥道面一旦出现结构性破损,如板块碎裂、贯穿裂缝等,将很难修复,常需更换整块道面板。即使采用快凝早强水泥,整个施工时间也至少需要8到10个小时,对于客流量大的机场,尤其是在关键部位的道面更换来说,依然无法满足道面快速修复的要求。
装配式混凝土铺面技术是一种理想的快速修复技术,它将混凝土的浇筑、养护环节提前在预制厂内完成,显著减少了现场施工时间。另一方面,市场上较好的快凝早强水泥成本为普通硅酸盐水泥成本的10倍以上,若利用预制吊装技术,可大大节省了材料费用。因此,预制吊装技术逐渐成为是我国机场快速修复领域的一个重要技术手段。
装配式施工技术固然便捷和廉价,但是在吊装过程中,吊装板底部与原有基层表面不可避免的会存在一定接触不良,现有的处理方式多采用注浆方式或铺设板底整平层的方式,但缺乏一种能够实时判别板底接触状况的手段,即无法判断注浆或板底整平层的有效性,因此需要一种技术能够监测板底与基层的接触状态,用以评价装配式施工质量。
国际与国内目前对于板底接触状态成熟的的实时监测技术目前还较为缺乏,仅在一些试验和测试中有所尝试,其方法包括压力板法、压力传感器法和压力敏感膜法等,但压力板法和压力敏感膜法需在测量后取出查看,不适用于装配式施工,而目前的压力传感器包括压电力传感器(单点)以及TEKSCAN压力传感器(二维)等,价格较为昂贵,难以进行分布式测量,且装配和测量难度较大,故也不适用于水泥混凝土板底接触状态的监测。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种接触状态监测装置,用于解决现有技术中的问题。
为实现上述目的及其他相关目的,本发明第一方面提供一种接触状态监测装置,包括封装件,所述封装件为盘状,所述封装件内设有传感光纤。
在本发明一些实施方式中,所述封装件的材料为弹性封装材料。
在本发明一些实施方式中,所述封装件的材料的抗压强度≥30MPa。
在本发明一些实施方式中,所述封装件的材料选自硅胶、橡胶中的一种或多种的组合。
在本发明一些实施方式中,所述封装件的上表面设有一个或多个凸起。
在本发明一些实施方式中,所述封装件的下表面设有一个或多个凹槽。
在本发明一些实施方式中,所述凸起和凹槽的位置相配合。
在本发明一些实施方式中,所述封装件为圆盘状。
在本发明一些实施方式中,所述传感光纤在封装件内均匀排布。
在本发明一些实施方式中,所述传感光纤为单模光纤。
在本发明一些实施方式中,所述传感光纤为螺线型排布;
在本发明一些实施方式中,所述传感光纤中光纤芯材的覆盖率为8~10mm/mm2
在本发明一些实施方式中,所述传感光纤的抗拉强度通常≥30N。
在本发明一些实施方式中,所述传感光纤的衰减通常≤0.22db/Km(1550MHz)。
本发明第二方面提供一种底面接触状态监测系统,包括至少一个所述接触状态监测装置,传感光纤的两端通过光纤引出线引出。
在本发明一些实施方式中,还包括BOTDA解调装置,传感光纤的两端通过光纤引出线引出并与BOTDA解调装置相连。
在本发明一些实施方式中,所述底面接触状态监测系统包括多个接触状态监测装置,至少一部分的所述接触状态监测装置中的传感光纤依次串联。
在本发明一些实施方式中,所述接触状态监测装置分布于待测样品的底面。
在本发明一些实施方式中,所述接触状态监测装置均匀分布于待测样品的底面。
在本发明一些实施方式中,所述底面接触状态监测系统为水泥混凝土板底面接触状态监测系统。
本发明第三方面提供所述接触状态监测装置和/或底面接触状态监测系统在水泥混凝土板底面接触状态监测中的用途。
本发明第四方面提供一种底面接触状态监测方法,包括如下步骤:
1)将所述底面接触状态监测系统分布于待测样品的底面;
2)测量由待测样品所引起的接触状态监测装置内光纤芯材的布里渊频移值;
3)根据接触状态监测装置的压缩量和光纤芯材布里渊频移值的标准函数关系确定接触状态监测装置的压缩量;
4)根据待测样品所造成的接触状态监测装置的压缩量确定待测样品的板底接触状态。
在本发明一些实施方式中,所述方法还包括:将所述底面接触状态监测系统分布于标样的底面,通过标定实验获得接触状态监测装置的压缩量和光纤芯材的布里渊频移值的标准函数关系。
在本发明一些实施方式中,所述待测样品为水泥混凝土板。
针对现有的几种压力测量技术的缺点,本发明通过BOTDA(布里渊光时域分析技术),针对装配式水泥混凝土铺面技术的需要,提供了一种新型的、能够实时、分布式监测的基于BOTDA的装配式水泥混凝土板底接触状态监测装置。
附图说明
图1显示为本发明接触状态监测装置结构示意图。
图2显示为本发明接触状态监测装置透视图。
图3显示为本发明接触状态监测装置剖面图。
图4显示为底面接触状态监测系统结构示意图。
图5显示为实施例2中不同时间板底接触测量值实例。
元件标号说明
1                 封装件
2                 传感光纤
3                 凸起
4                 凹槽
5                 光纤引出线
6                 BOTDA解调装置
7                 过渡段连接光纤
具体实施方式
以下由特定的具体实施例说明本发明的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本发明的其他优点及功效。
请参阅图1至图4。须知,本说明书所附图式所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容 得能涵盖的范围内。同时,本说明书中所引用的如“上”、“下”、“左”、“右”、“中间”及“一”等的用语,亦仅为便于叙述的明了,而非用以限定本发明可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本发明可实施的范畴。
如图1-3所示,本发明一方面提供一种接触状态监测装置,包括封装件1,所述封装件1为盘状,所述封装件1内设有传感光纤2。
本发明所提供的接触状态监测装置中,封装件1通常可以为弹性封装材料。所述弹性封装材料通常指在适用于封装光纤的,且受力会发生变形、在撤出外力后能够回复其近似初始形状和尺寸的材料。例如,所述弹性封装材料可以是包括但不限于硅胶、橡胶中的一种或多种的组合。所述封装件1的材料通常可以具有较高的抗压强度,从而可以对封装件1内部的传感光纤2形成较好的保护,也可以使封装件1更加耐用。所述封装件1的材料的抗压强度通常可以≥30MPa。
本发明所提供的接触状态监测装置中,所述封装件1的上表面可以设有一个或多个凸起3,所述封装件1的下表面可以设有一个或多个凹槽4。凸起和凹槽的设计主要是起到增大光纤拉升长度的作用,通常来说,凸起3和凹槽4的位置相配合,例如,上表面的凸起3的位置可以与下表面凹槽4的位置一一对应,凸起3受到外力作用时,可以至少部分地落向凹槽4。所述封装件1可以为各种盘状,例如,方盘、圆盘等,在本发明一实施方式中,所述封装件1可以为圆盘状,所述凸起3和/或凹槽4为与圆盘同心的圆形,所述圆形凸起3和/或凹槽4被分割为多个扇形。本领域技术人员可根据需要对封装件的尺寸进行调整,例如,所述封装件1的直径可以为250±3mm,所述凸起3和/或凹槽4的半径为100±1mm,厚度为3±0.5mm,每个扇形的凸起3和/或凹槽4的弧度可以为90±3°,封装件的厚度(不计入凸起3和凹槽4部分)可以为2±0.5mm。
本发明所提供的接触状态监测装置中,本领域技术人员可根据需要调整封装件内传感光纤的排布方式,通常来说,所述传感光纤2可以在封装件1内均匀排布,传感光纤2整体的光纤芯材的覆盖率(在盘面的竖直投影中,光纤(芯材)长度与盘面的投影面积的比值)可以为8~10mm/mm2。所述传感光纤2可以为螺线型排布,所述传感光纤2也可以为二维排布。所述螺线型排布通常可以是自一点向外放射状旋转的曲线型排布,所述二维通常所述传感光纤2排布在同一平面内。在本发明一实施方式中,所述螺旋形排布的光纤为最外圈直径可以为240±2mm,最内圈直径可以为60±2mm,每一圈的间距可以为10.2±2mm。
本发明所提供的接触状态监测装置中,所述传感光纤2为单模光纤,所述单模光纤(Single Mode Fiber)通常是指只能传送一种模式的光的光纤。所述传感光纤2通常采用紧包光纤,以 保证光纤的协调变形。所述传感光纤2中光纤芯材的直径通常可以为9±0.5μm。所述传感光纤2通常需要具有一定的抗拉强度,以保证光纤被拉伸时不会受损或断裂,传感光纤2的抗拉强度通常≥30N。所述传感光纤2的衰减通常≤0.22db/Km(1550MHz),以保证BOTDA的顺利运行。所述传感光纤2的外层通常设有护套,所述护套可选用本领域各种光纤护套,例如可以是聚乙烯护套、聚氯乙烯护套、聚偏氟乙烯、HYTREL等中的一种或多种的组合。本领域技术人员可根据需要调整设有护套的光纤的直径和封装件中所布设的光纤的长度,以保证测量时的空间分辨率,例如有,设有护套的光纤的直径可以为0.6~0.9mm。
如图4所示,本发明另一方面提供一种底面接触状态监测系统,包括一个或多个所述的接触状态监测装置,传感光纤的两端通过光纤引出线引出。所述系统还可以包括BOTDA解调装置6,传感光纤2的两端通过光纤引出线5引出并与BOTDA解调装置6相连。所述BOTDA解调装置6可选用本领域各种布里渊分布式光纤解调仪,其可以检测连入光纤的布里渊频移值,例如可以是上海拜安传感技术有限公司生产的FT430-04型解调仪,日本光纳株式会社的NEUBRESCOPE解调仪等。
本发明所提供的底面接触状态监测系统中,通常可以包括多个接触状态监测装置,多个接触状态监测装置中的传感光纤2可以全部依次串联,形成一个回路,也可以将多个接触状态监测装置分成若干组,每组的传感光纤2依次串联,各自形成回路。各接触状态监测装置之间通常可以通过过渡段连接光纤7进行连接,以形成回路。本领域技术人员可根据需要调整过渡段光纤的参数,过渡段连接光纤7的参数整体上可以与传感光纤2基本相同,各接触状态监测装置之间通常需要保持一定长度的过渡段连接光纤7,从而可以使测量保证一定的空间分辨率,例如,在本发明一实施方式中,各接触状态监测装置之间的过渡段连接光纤7可以≥5米。
本发明所提供的底面接触状态监测系统通常可以用于为底面接触状态监测,更具体可以用于水泥混凝土板底面接触状态监测,在使用时,所述接触状态监测装置通常分布于待测样品的底面。
本发明另一方面提供所述接触状态监测装置和/或底面接触状态监测系统在底面接触状态监测中的用途,更具体为在水泥混凝土板底面接触状态监测中的用途。
本发明另一方面提供一种底面接触状态监测方法,包括:将所述的底面接触状态监测系统分布于待测样品的底面。分布底面接触状态监测系统时,通常可以将接触状态监测装置平均地分布于待测样品的底面。在本发明一实施方式中,所述待测样品为水泥混凝土板。
本发明所提供的底面接触状态监测方法还包括:测量由待测样品所引起的接触状态监测 装置内传感光纤中光纤芯材的布里渊频移值。布里渊频移值通常可以通过BOTDA解调装置6进行测量,本领域技术人员可根据需要调整BOTDA解调装置6的参数,以获得理想的实验结果。
本发明所提供的底面接触状态监测方法还包括:根据接触状态监测装置的压缩量和传感光纤中光纤芯材的布里渊频移值的标准函数关系确定待测样品所造成的接触状态监测装置的压缩量。所述标准函数关系通常可以通过标定实验获得,例如,本发明一实施方式中,标准函数关系的获得方法包括:将所述底面接触状态监测系统分布于标样的底面,通过标定实验获得接触状态监测装置的压缩量和光纤芯材的布里渊频移值的标准函数关系。所述监测装置压缩量具体指接触状态监测装置由外力所引起的的竖向压缩变形量。
本发明所提供的底面接触状态监测方法还包括:根据待测样品所造成的接触状态监测状态的压缩量确定待测样品的板底接触状态。
本发明所提供的接触状态监测装置可以用于装配式混凝土板施工及运营过程中的板底接触状态监测,根据发明人多年累积道道路与机场功能的研究经验和数据,结合室内实测,结果表明设计的监测装置在完全压缩(压缩量3mm)的情况下,所产生的布里渊频移可达6.5MHz,而测量的布里渊频移值与监测装置压缩量呈正相关关系。据此,本发明所提供的接触状态监测装置能够满足板底接触状态监测需求。
本发明结合分布式光纤传感技术与机场工程,实现了装配式混凝土板施工及运营过程板底接触状态分布式和实时监测,提高了检测效率;装置采用弹性封装材料(例如,硅胶),保证了传感结构的耐久性、抗压性,减小了温度干扰;装置的光纤在保证其与封装结构协同变形的同时提高了光纤的抗折性能;装置内光纤均匀分布(例如,采用螺旋形方式布设),增大了光纤密度,提高了空间分辨率;所设计的监测装置,敏感性高,能够适用于微小脱空的监测。
本发明中所使用的参数的检测方法如下:
封装件的抗压强度的测试采用压缩试验进行,采用250mm直径的压头进行加压。若封装件竖直方向压力达到30KPa时封装件仍为破坏,则认为其抗压强度满足要求;
传感光纤抗拉强度、衰减参数等的测试参照GB/T 15972-2008《光纤试验方法规范》所给出的相关方法。
实施例1
实施例中所使用的接触状态监测装置信息如下:封装件整体结构为圆盘状,直径为 250mm,内部传感光纤采用螺旋形布设,与封装结构紧密固实,内部传感光纤两端均沿切线方向导出。传感光纤采用单模紧包光纤,光纤类型为G675A1,护套采用HYTREL,总直径(包括护套)为0.9mm,光纤铺设后采用液态硅胶封装、固化形成封装件,整体结构为“上凸下凹”型,上部凸起3mm,下部凹陷3mm,均为4个半径为100mm,角度为90°的扇形,且在平面尺寸上完全重合。上部凸起边缘采用30°倒角,下部凹陷边缘采用90°直角。中间层厚2mm用于封装传感光纤。传感光纤采用螺旋形布设,布设的外圈直径为240mm,内圈直径为60mm,共9圈,每一圈间隔约为10.2mm,约4.3m长。过渡段连接光纤为同为直径0.9mm的单模紧包光纤,布设方式采用圆形缠绕,缠绕直径为10cm,缠绕16圈,总长约为5m。BOTDA解调装置采用上海拜安传感技术有限公司生产的FT430-04型解调仪。
对于单个所述基于BOTDA的装配式水泥混凝土板底接触状态监测装置,监测装置受压过程中,封装结构在受压过程中发生变形,上部凸起受压后下陷,下方凹陷对应中间层中封装的传感光纤被裹挟下挠,中间层其余部分的传感光纤位移受限,从而导致传感光纤产生拉伸变形。
拉伸变形的监测基于BOTDA传感原理:将脉冲光(泵浦光)和连续光(探测光)从两端注入光纤,其中泵浦光频率更高。当两束光频差与光纤中某区域的布里渊频移相同时,该区域会产生一定的布里渊受激散射。而在实际测试过程中,通过两束入射激光频率连续调节,检测一端散射光(耦合光)的功率,能够获得光纤长度范围上各小区间上散射增益最大时的频率差,即布里渊频移。布里渊频移与传感光纤(芯材)的应变的轴向应变和温度变化存在一定线性关系,即:
Figure PCTCN2017094909-appb-000001
其中,vb(ε,T)——应变为ε,温度为T时的布里渊频移量
vb(0)——应变为0,温度为T0时的布里渊频移量
Figure PCTCN2017094909-appb-000002
分别为应变影响系数和温度影响系数,实施例中应变影响系数和温度影响系数分别为0.05MHz/με和1.22MHz/℃。
而对于单块板板底,温度变化可忽略不计,故可通过关系实现光纤轴向应变的检测,并通过OTDR(光时域反射)技术进行空间定位。所采用BOTDA解调设备理论空间最大分辨率为0.4m,应变分辨率为100με。
通过有限元模拟和标定试验,得出接触状态监测装置不同压缩量下传感光纤中光纤芯材 的BOTDA所测量的布里渊频移值如表1所示,结果表明该设计能够将竖向接触状态转换为光纤轴向拉伸,拉伸变形量满足BOTDA设备的测量需求,具体的接触状态监测装置的压缩量和布里渊频移值的标准关系参见表1。
表1接触状态监测装置不同压缩量下的应变及布里渊频移值
Figure PCTCN2017094909-appb-000003
实施例2
浦东外环线洲海路段辅道为水泥混凝土道面,有两块水泥混凝土板出现了严重的损坏,采用装配式水泥混凝土板来换装修复,预制板板底与基层间隙为1~3cm不等,通过CA砂浆注浆的方式进行填充。
使用所述的基于BOTDA的装配式水泥混凝土板底接触状态监测系统对其中一块板板底接触状态进行监测。依据图4所示的布设方式对其1/4区域进行布设,单个监测装置内部传感光纤长度为5-7m不等,过渡段连接光纤长度为5m,共粘贴18个监测装置,相邻监测装置间距约为0.5m,所述多个监测装置通过过渡段连接光纤进行串联后,粘贴于装配式混凝土板底,最后通过光纤引出线导出并连接于BOTDA解调仪,光线引出线采用金属铠装光纤,光纤类型采用G652D,护套由内到外分别为包带、钢丝绞合以及PE外护套,光纤总直径(包括护套)为3mm,两端引出光纤长度均为25m。对注浆过程中的板底接触状态进行了实时、分布式监测,初步监测结果如图5所示。图5中,分别给出了三组监测结果,其中,沿光纤距离表示监测系统中沿传感光纤路径方向距监测起点的距离。可见,本发明所提供的接触状态监测装置和底面接触状态监测系统避免了传统检测方式成本高或便捷性差得弊端,实现了装配式混凝土板底接触状态的实时、分布式监测。
综上所述,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技 术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (10)

  1. 一种接触状态监测装置,其特征在于,包括封装件(1),所述封装件(1)为盘状,所述封装件(1)内设有传感光纤(2)。
  2. 如权利要求1所述的一种接触状态监测装置,其特征在于,所述封装件(1)的材料为弹性封装材料;
    和/或,所述封装件(1)的材料的抗压强度≥30MPa;
    和/或,所述封装件(1)的上表面设有一个或多个凸起(3);
    和/或,所述封装件(1)的下表面设有一个或多个凹槽(4);
    和/或,所述封装件(1)为圆盘状。
  3. 如权利要求2所述的一种接触状态监测装置,其特征在于,所述封装件(1)的材料选自硅胶、橡胶中的一种或多种的组合;
    和/或,所述凸起(3)和凹槽(4)的位置相配合。
  4. 如权利要求1所述的一种接触状态监测装置,其特征在于,所述传感光纤(2)在封装件(1)内均匀排布;
    和/或,所述传感光纤(2)为单模光纤;
    和/或,所述传感光纤(2)为螺线型排布;
    和/或,所述传感光纤(2)的覆盖率为8~10mm/mm2
    和/或,所述传感光纤(2)的抗拉强度通常≥30N;
    和/或,所述传感光纤(2)的衰减通常≤0.22db/Km。
  5. 一种底面接触状态监测系统,其特征在于,包括至少一个如权利要求1-4任一权利要求所述的接触状态监测装置,传感光纤(2)的两端通过光纤引出线(5)引出。
  6. 如权利要求5所述的一种底面接触状态监测系统,其特征在于,还包括BOTDA解调装置(6),传感光纤(2)的两端通过光纤引出线(5)引出并与BOTDA解调装置(6)相连;
    和/或,所述底面接触状态监测系统包括多个接触状态监测装置,至少一部分的所述接触状态监测装置中的传感光纤(2)依次串联;
    和/或,所述接触状态监测装置分布于待测样品的底面;
    和/或,所述底面接触状态监测系统为水泥混凝土板底面接触状态监测系统。
  7. 如权利要求1-4任一权利要求所述的接触状态监测装置和/或如权利要求5-6任一权利要求所述的底面接触状态监测系统在水泥混凝土板底面接触状态监测中的用途。
  8. 一种底面接触状态监测方法,包括如下步骤:
    1)将权利要求5-6任一权利要求所述的底面接触状态监测系统分布于待测样品的底面;
    2)测量由待测样品所引起的接触状态监测装置内光纤芯材的布里渊频移值;
    3)根据接触状态监测装置的压缩量和光纤芯材布里渊频移值的标准函数关系确定接触状态监测装置的压缩量;
    4)根据待测样品所造成的接触状态监测装置的压缩量确定待测样品的板底接触状态。
  9. 如权利要求8所述的一种底面接触状态监测方法,其特征在于,所述方法还包括:将所述底面接触状态监测系统分布于标样的底面,通过标定实验获得接触状态监测装置的压缩量和光纤芯材的布里渊频移值的标准函数关系。
  10. 如权利要求8所述的一种底面接触状态监测方法,其特征在于,所述待测样品为水泥混凝土板。
PCT/CN2017/094909 2016-08-22 2017-07-28 一种接触状态监测装置 WO2018036340A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610704963.9 2016-08-22
CN201610704963.9A CN106338302B (zh) 2016-08-22 2016-08-22 一种接触状态监测装置

Publications (1)

Publication Number Publication Date
WO2018036340A1 true WO2018036340A1 (zh) 2018-03-01

Family

ID=57825420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/094909 WO2018036340A1 (zh) 2016-08-22 2017-07-28 一种接触状态监测装置

Country Status (2)

Country Link
CN (1) CN106338302B (zh)
WO (1) WO2018036340A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114812424A (zh) * 2022-05-13 2022-07-29 天津大学 一种天然冰场冰层可视化安全监测系统及方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106338302B (zh) * 2016-08-22 2019-03-12 同济大学 一种接触状态监测装置
CN111637993B (zh) * 2020-04-21 2024-10-01 同济大学 一种可拼装层间压力探测器件和路面层间压力监测结构
CN113008422B (zh) * 2020-12-18 2022-04-01 同济大学 一种预应力筋群锚固状态分布式监测结构和方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202547682U (zh) * 2012-03-31 2012-11-21 中国水电顾问集团华东勘测设计研究院 布里渊光时域解调仪的空间分辨率标定装置
CN102901593A (zh) * 2012-11-01 2013-01-30 中国科学院半导体研究所 一种基于双l型梁的光纤光栅土压力传感器
CN102928138A (zh) * 2012-10-29 2013-02-13 南阳理工学院 基于布里渊光时域反射式光纤传感和光纤光栅传感的底板应力监测装置和方法
CN103631064A (zh) * 2014-01-09 2014-03-12 四川省绵阳西南自动化研究所 一种光纤内应力调节拉伸装置
EP2128571B1 (en) * 2008-05-28 2014-07-23 Smartec SA Fiberoptic strain sensor with distributed strain coupling
CN203940886U (zh) * 2013-10-24 2014-11-12 河海大学 一种空间二维三向应力应变监测平台
CN204228306U (zh) * 2014-10-16 2015-03-25 中国人民解放军63653部队 双膜片光纤Bragg光栅土压力传感器
CN106338302A (zh) * 2016-08-22 2017-01-18 同济大学 一种接触状态监测装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10197297A (ja) * 1997-01-14 1998-07-31 Sumitomo Electric Ind Ltd 歪監視システム
CN101245990B (zh) * 2008-03-24 2010-07-21 哈尔滨工业大学 全尺度分布式与局部高精度共线的光纤传感方法
CN101275916B (zh) * 2008-04-25 2011-11-02 东南大学 分布式无滑移光纤应变传感器及其制造方法
CN101625230B (zh) * 2009-06-01 2010-10-06 南京大学 分布式光纤大变形测量传感器
CN101957244B (zh) * 2010-09-27 2013-04-10 苏州光格设备有限公司 高空间分辨力分布式光纤传感系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2128571B1 (en) * 2008-05-28 2014-07-23 Smartec SA Fiberoptic strain sensor with distributed strain coupling
CN202547682U (zh) * 2012-03-31 2012-11-21 中国水电顾问集团华东勘测设计研究院 布里渊光时域解调仪的空间分辨率标定装置
CN102928138A (zh) * 2012-10-29 2013-02-13 南阳理工学院 基于布里渊光时域反射式光纤传感和光纤光栅传感的底板应力监测装置和方法
CN102901593A (zh) * 2012-11-01 2013-01-30 中国科学院半导体研究所 一种基于双l型梁的光纤光栅土压力传感器
CN203940886U (zh) * 2013-10-24 2014-11-12 河海大学 一种空间二维三向应力应变监测平台
CN103631064A (zh) * 2014-01-09 2014-03-12 四川省绵阳西南自动化研究所 一种光纤内应力调节拉伸装置
CN204228306U (zh) * 2014-10-16 2015-03-25 中国人民解放军63653部队 双膜片光纤Bragg光栅土压力传感器
CN106338302A (zh) * 2016-08-22 2017-01-18 同济大学 一种接触状态监测装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114812424A (zh) * 2022-05-13 2022-07-29 天津大学 一种天然冰场冰层可视化安全监测系统及方法

Also Published As

Publication number Publication date
CN106338302A (zh) 2017-01-18
CN106338302B (zh) 2019-03-12

Similar Documents

Publication Publication Date Title
WO2018036340A1 (zh) 一种接触状态监测装置
CN103344193B (zh) 光纤混凝土冻融膨胀应变监测传感器
CN102278947A (zh) 用于沥青混凝土路面应变、裂纹测试的封装fbg传感器
US9823114B2 (en) Non-isotropic acoustic cable
Wu et al. Quantitative strain measurement and crack opening estimate in concrete structures based on OFDR technology
CN103411713B (zh) 大量程基于光纤光栅传感技术的钢筋锈蚀监测传感器
CN105866249A (zh) 一种埋藏式环状压电陶瓷传感器
CN115060186B (zh) 基于弱反射率光栅阵列的桥梁主梁安全监测系统及方法
CN208254423U (zh) 一种监测混凝土整体冻融膨胀应变传感器
CN103759665A (zh) 一种现浇x型桩桩身变形分布式测量装置及方法
CN105403161A (zh) 一种利用光纤传感器检测混凝土结构裂缝宽度的方法
CN106969862A (zh) 一种用于监测钢绞线预应力损失的装置
CN111637993B (zh) 一种可拼装层间压力探测器件和路面层间压力监测结构
CN102252956A (zh) 一种不干扰锈蚀界面的分布式光纤锈蚀传感器
CN203259173U (zh) 一种光纤桥梁拉索锈蚀监测传感器
CN103163142A (zh) 光纤测量装置
RU127913U1 (ru) Датчик веса автотранспортного средства (атс)
CN110696179A (zh) 混凝土传感光纤的铺设方法
CN209310749U (zh) 一种监测混凝土整体冻融膨胀应变传感器
CN104019928B (zh) 系列化垫层结构光纤微弯传感器
CN211877278U (zh) 一种可拼装层间压力探测器件和路面层间压力监测结构
CN109655982A (zh) 一种铠装应变监测光缆及覆土监测和应力校准方法
CN205593971U (zh) 一种埋藏式环状压电陶瓷传感器
KR101501120B1 (ko) 균열 검출 장치 및 방법
CN203365393U (zh) 声测换能器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17842763

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08/08/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17842763

Country of ref document: EP

Kind code of ref document: A1