WO2018036066A1 - 压感检测装置和压感笔 - Google Patents

压感检测装置和压感笔 Download PDF

Info

Publication number
WO2018036066A1
WO2018036066A1 PCT/CN2016/113402 CN2016113402W WO2018036066A1 WO 2018036066 A1 WO2018036066 A1 WO 2018036066A1 CN 2016113402 W CN2016113402 W CN 2016113402W WO 2018036066 A1 WO2018036066 A1 WO 2018036066A1
Authority
WO
WIPO (PCT)
Prior art keywords
detecting
resistor
elastic conductor
detecting resistor
pressure
Prior art date
Application number
PCT/CN2016/113402
Other languages
English (en)
French (fr)
Inventor
王俊凯
Original Assignee
广州视睿电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州视睿电子科技有限公司 filed Critical 广州视睿电子科技有限公司
Publication of WO2018036066A1 publication Critical patent/WO2018036066A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means

Definitions

  • the embodiments of the present invention relate to the field of intelligent input devices, and in particular, to a pressure sensing device and a pressure sensitive pen.
  • pressure sensors are often used in the pressure sensitive pen to realize the pressure detection, and then the thickness of the handwriting is determined according to the pressure, for example, a piezoelectric sensor, a pressure sensitive sensor or a piezoresistive sensor is used to detect the pressure of the writing.
  • a piezoelectric sensor when the piezoelectric material is subjected to pressure, a charge is generated on the surface thereof, and the amount of charge generated by the pressure material is proportional to the magnitude of the pressure, so that the pressure value can be converted into a related circuit through the relevant circuit.
  • the voltage value but needs to be in the working state all the time, the power consumption is large.
  • the pressure sensitive pen can detect the pressure in the prior art, there is a problem that the standby power consumption of the pressure detecting circuit is large, and if the special circuit is designed to be used when the pressure sensitive pen is temporarily not used, the pressure sensitive pen is turned off to reduce the power consumption. The manufacturing cost of the pressure sensitive pen will increase.
  • the present invention provides a pressure sensing device and a pressure sensitive pen to achieve a standby operation of the pressure sensitive pen while reducing manufacturing costs.
  • the present invention provides a pressure sensing device, including a detecting board, an elastic conductor, a power source, and a microcontroller;
  • the detecting board is provided with a first detecting resistor, a voltage dividing resistor and a power access point, and one end of the first detecting resistor is connected to one pole of the power source through the voltage dividing resistor, and the first detecting resistor is The other end is separately disposed from the power access point; the microcontroller is connected to one end of the first detecting resistor to detect a voltage value; and the power access point is connected to another pole of the power source;
  • One end of the elastic conductor is connected with a driving member, and the other end is separated from the detecting board;
  • the other end of the elastic conductor is in contact with the detecting board, and the first detecting resistor is connected to the power access point to form a loop, and the elastic conductor is subjected to force
  • the deformation changes the resistance between one end of the first detecting resistor and the power supply access point.
  • the detecting board is further provided with a second detecting resistor, and the power access point is connected to the other pole of the power source through the second detecting resistor, when the driving component is subjected to When the force is applied, the elastic conductor is deformed by force to change the resistance of the second detecting resistor to the loop.
  • the detecting board includes a plurality of the first detecting resistors.
  • the plurality of the first detecting resistors are arranged in a radial direction of a circle centered on the power supply access point.
  • the detecting board includes a plurality of sets of the first detecting resistor and the second detecting resistor.
  • the first detecting resistor and the second detecting resistor are linear carbon film resistors.
  • the elastic conductor is a conductive silica gel body.
  • the elastic conductor has a resistance of less than 100OHM.
  • the elastic conductor is tapered or hemispherical.
  • the present invention provides a pressure sensitive pen comprising any of the above pressure sensing devices.
  • the utility model has the beneficial effects that the elastic conductor is driven by using the driving component, and the other end of the elastic conductor is in contact with the detecting board, and the first detecting resistor and the power source access point are formed into a loop, and the elastic conductor is subjected to the force.
  • FIG. 1A is a schematic structural view of a pressure sensing device according to a first embodiment of the present invention
  • FIG. 1B is a schematic structural view of an elastic conductor before deformation in the first embodiment of the present invention
  • 1C is a schematic structural view showing an elastic conductor in the first embodiment of the present invention when deformation begins to occur;
  • 1D is a schematic structural view of an elastic conductor after deformation in the first embodiment of the present invention.
  • FIG. 1E is a schematic view showing an arrangement structure of a plurality of first detecting resistors according to Embodiment 1 of the present invention.
  • 1F is a schematic view showing an arrangement structure of a plurality of first detecting resistors in the first embodiment of the present invention
  • FIG. 2A is a schematic structural view of an elastic conductor before deformation in the second embodiment of the present invention.
  • 2B is a schematic structural view showing an elastic conductor in the second embodiment of the present invention when deformation begins to occur;
  • 2C is a schematic structural view of an elastic electric conductor after deformation in the second embodiment of the present invention.
  • 2D is a schematic view showing an arrangement structure of a plurality of sets of first detecting resistors and second detecting resistors in Embodiment 2 of the present invention
  • 2E is a schematic view showing the arrangement structure of a plurality of sets of first detecting resistors and second detecting resistors in the second embodiment of the present invention.
  • FIG. 1A is a schematic structural view of a pressure sensing device according to a first embodiment of the present invention
  • FIG. 1B is a schematic structural view of the elastic conductor before deformation according to the first embodiment of the present invention.
  • the device includes an elastic conductor 10, a detecting board 11, a microcontroller 12, and a power source 13.
  • the detecting board 11 is provided with a first detecting resistor 110 and a voltage dividing resistor (not shown in FIG. 1B).
  • the power supply access point 111, one end of the first detecting resistor 110 passes through the voltage dividing resistor and the electric One pole of the source 13 (not shown in FIG.
  • the other end of the first detecting resistor 110 (the right end in FIG. 1B) is disposed separately from the power access point 111; the microcontroller 12 (not shown in FIG. 1B) ) is connected to one end of the first detecting resistor 110 to detect a voltage value; the power source access point 111 is connected to the other pole of the power source 13; the elastic conductor 10 has one end connected to the driving member 14 and the other end separated from the detecting board 11; When the driving member 14 is stressed, the position of the elastic conductor 10 is changed, and the other end of the elastic conductor 10 is in contact with the detecting board 11, and the first detecting resistor 110 is connected to the power source access point 111 to form a loop, and the elastic conductor 10 is formed.
  • the force deformation changes the resistance between one end of the first detecting resistor 110 and the power source access point 111.
  • the elastic conductor 10 when the elastic conductor 10 is separated from the detecting board 11, the other end of the first detecting resistor 110 is separated from the power access point 111, that is, the entire circuit is disconnected.
  • the pressure sensing device is in a standby state, and its power consumption is very low because no current flows through the circuit.
  • FIG. 1C is a schematic structural view of an elastic conductor in the first embodiment of the present invention.
  • the elastic conductor 10 is driven by the driving member 14 to gradually approach the detecting board 11, when the elastic conductor 10 is just When the other end of the first detecting resistor 110 is short-circuited with the power supply access point 111, since the selected elastic conductor 10 has a small resistance value, it is equivalent to using a wire to make the loop conductive, and the microcontroller is at this time. 12 will receive a trigger signal, and the pressure sensing device changes from the standby state to the active state.
  • FIG. 1D is a schematic view showing the structure of an elastic conductor after deformation according to the first embodiment of the present invention.
  • the elastic conductor 10 is deformed. 1D, after the elastic conductor 10 is deformed by the pressing, the contact surface of the other end with the detecting plate 11 becomes larger, which is equivalent to gradually covering from the other end of the first detecting resistor 110 to one end of the first detecting resistor 110.
  • the resistance of the elastic conductor 10 is much smaller than the resistance of the first detecting resistor 110. At this time, the resistance of the first detecting resistor 110 to the loop is reduced, so the first detecting resistor 110 is at this time.
  • the voltage value at one end changes, and the voltage value received by the microcontroller 12 connected to one end of the first detecting resistor 110 changes accordingly, and the voltage value can be converted into a pressure value by using an analog-to-digital converter. In order to achieve the subsequent function of the pressure sense.
  • the elastic conductor 10 When the driving member 14 is unstressed, the elastic conductor 10 returns to its original appearance and position, at which time the pressure sensing device is again in the standby state.
  • the pressure sensing device provided in this embodiment does not need to design a special switch to wake up the detecting device, and the pressure to be detected is transmitted through the driving member 14 to cause the elastic conductor 10 to be displaced and deformed, thereby realizing the pressure sensing device. Wake up.
  • the detecting board 11 may include a plurality of the first detecting resistors 110.
  • the plurality of first detecting resistors 110 may be arranged in a radial direction along a circle centered on the power supply access point 111, and the elastic conductive body 10 is a circular contact surface when it contacts the detecting board 11 (see FIG. 1E).
  • the dotted line is round, so the above arrangement can be employed so that the microcontroller 12 can simultaneously detect multiple sets of voltage values. By averaging multiple sets of voltage values, the pressure accuracy can be optimized. Among them, the voltage values of other voltage values that are obviously deviated can be eliminated when the average value is obtained. These obviously deviated voltage values may be caused by faults in this detection line. Caused.
  • FIG. 1F is a schematic view showing the arrangement of a plurality of first detecting resistors according to the first embodiment of the present invention.
  • the plurality of first detecting resistors 110 may also be arranged in parallel, and the dotted circle in FIG. 1F represents The contact surface of the elastic conductor 10 and the detecting board 11 at a certain moment, but this arrangement causes the number of the first detecting resistors 110 to be relatively small, and the first detecting resistor 110 on both sides of the array is replaced by the elastic conductor 10 The area covered will be smaller, resulting in a larger resistance value in the access loop. Therefore, the number of the first detecting resistors 110 arranged in parallel is not too large, and is preferably three in the present embodiment.
  • the elastic conductor 10 may be an electrically conductive silicone body, or may be other
  • the structure made of a conductive elastic material or an elastic body coated with a flexible circuit board is only required to be electrically conductive and capable of being deformed.
  • the resistance of the elastic conductor 10 is ideally 0OHM, and in practice, it is less than 100OHM.
  • the elastic conductor 10 can be tapered (e.g., pyramid or cone) or hemispherical.
  • the pressure sensing device drives the elastic conductor by using the driving member, so that the other end of the elastic conductor is in contact with the detecting board, and the first detecting resistor and the power source access point are formed into a loop, and the elastic conductor is stressed. After the deformation occurs, the resistance between one end of the first detecting resistor and the power supply access point is changed, and the voltage value detected by the microcontroller connected to one end of the first detecting resistor changes with the resistance value. There will also be changes; when the driving member is not subjected to force, the other end of the elastic conductor will not contact the detecting board, the circuit will be disconnected, the power consumption will be reduced, and the microcontroller will be in a sleep state after receiving the circuit disconnection trigger signal. In order to reduce the power consumption, in addition, since it is not necessary to design a special switch control circuit, the pressure sense detecting device is realized to stand by at a low power consumption while reducing the manufacturing cost.
  • FIG. 2A is a schematic structural view of an elastic conductor before deformation in the second embodiment of the present invention; on the basis of the above embodiment, referring to FIG. 2A, the detection board 22 is except for the first detecting resistor 220.
  • a second detecting resistor 221 is further disposed, and the power access point (coincident with one end of the second detecting resistor 221) is connected to the other pole of the power source (not shown in FIG. 2A) through the second detecting resistor 221, when the driving member When the force is 20, the elastic conductor 21 is deformed by force to change the resistance of the second detecting resistor 221 to the loop.
  • the elastic conductor 21 and the detecting plate 22 are in a separated state, the first detecting resistor 220 and the second detecting resistor 221 are disconnected, and the circuit is disconnected. At this time, the pressure sensing device is disconnected. In the standby state, no current flows in the circuit, and the power consumption of the entire circuit is very low.
  • FIG. 2B is a schematic structural view of an elastic conductor in the second embodiment of the present invention.
  • the elastic conductor 21 is driven by the driving member 20 to gradually approach the detecting plate 22, when the elastic conductor 21 is just When the other end of the first detecting resistor 220 and one end of the second detecting resistor 221 are short-circuited, since the selected elastic conductor 21 can conduct electricity, and the resistance is much smaller than the first detecting resistor 220 and the second detecting resistor 221, thus Equivalent to using a wire to make the loop open.
  • the microcontroller 12 receives a trigger signal, and the pressure sensing device changes from the standby state to the working state.
  • the resistor connected in the circuit is mainly the first detecting resistor.
  • FIG. 2C is a schematic structural view of an elastic conductor after deformation in the second embodiment of the present invention.
  • the driving member 20 continues to drive the elastic conductor 21, and the elastic conductor 21 and the detecting plate 22 are deformed by extrusion.
  • the contact area between the elastic conductor 21 and the detecting plate 22 is increased, and gradually covers from one end of the first detecting resistor 220 to one end of the first detecting resistor 220, and also from the one end of the second detecting resistor 221 to the second.
  • the other end of the detecting resistor 221 is covered.
  • the resistance of the elastic conductor 21 is much smaller than the resistance of the first detecting resistor 220 and the second detecting resistor 221, the resistance values of the first detecting resistor 220 and the second detecting resistor 221 entering the loop are reduced, so this When the voltage value of one end of the first detecting resistor 220 changes, the voltage value received by the microcontroller (not shown in FIG. 2C) connected to one end of the first detecting resistor 220 changes correspondingly.
  • the analog-to-digital converter converts the voltage value into a pressure value to achieve the subsequent function of the pressure sense.
  • the first detection resistor 220 and the second detection resistor 221 are turned on by using the elastic conductor 21 in this embodiment.
  • the voltage value detected by the microcontroller changes more under the same pressure value.
  • the resistance of the first detecting resistor 110 in the first embodiment is 10k OHM.
  • the resistance values of the first detecting resistor 220 and the second detecting resistor 221 in the embodiment are both 5 k OHM.
  • Both the second detecting resistor 221 and the second detecting resistor 221 are covered by the elastic conductor 21, so that the resistance of the resistor in the access loop changes more.
  • two detection resistors are used, and a relatively large voltage value can be obtained at the microcontroller end, that is, the sensitivity of the pressure sensing system is improved. .
  • the pressure sensing device in this embodiment also does not need to additionally design a special switch to wake up the pressure sensing device, but causes the elastic conductor 21 to move and deform by using the pressure to be detected to drive the driving member 20, so that the detecting circuit When turned on, the wake-up of the pressure sensing device can be realized.
  • the detecting board 22 may include a plurality of sets of first detecting resistors 220 and second detecting resistors 221 , wherein each set of the first detecting resistor 220 and the second detecting resistor 221 is radially symmetric along a circle centered on a midpoint of a line segment formed by the other end of the first detecting resistor 220 and one end of the second detecting resistor 221.
  • the dotted circle in FIG. 2D represents the contact surface of the elastic conductor 21 and the detecting plate 22 at a certain time.
  • FIG. 2E is a schematic view showing an arrangement structure of a plurality of sets of first detecting resistors and second detecting resistors according to Embodiment 2 of the present invention.
  • each set of first detecting resistor 220 and second detecting resistor 221 may also be parallel.
  • the dotted circle in FIG. 2E represents the contact surface of the elastic conductor 21 and the detecting plate 22 at a certain time.
  • the resistance value in the access loop is caused. It will be larger than other groups. Therefore, the number of groups in the parallel arrangement cannot be too large, and in the present embodiment, it is preferable to be three groups.
  • first detecting resistor 220 and the second detecting resistor 221 in this embodiment are linear carbon film resistors, preferably high wear-resistant linear variable carbon film resistors, first detecting resistor 220 and second detecting resistor 221
  • the resistance is 200 to 50k OHM.
  • the pressure sensing device drives the elastic conductor by using the driving member, so that the other end of the elastic conductor is in contact with the detecting plate, and the first detecting resistor and the second detecting resistor are connected to form a loop, and the elastic conductor is stressed. After the deformation occurs, the resistance values of the first detecting resistor and the second detecting resistor are changed. As the resistance changes, the voltage detected by the microcontroller connected to one end of the first detecting resistor also occurs. The change, the structure using two sense resistors, improves the sensitivity of the pressure sensing system.
  • the pressure sense detecting device is realized to stand by at a low power consumption while reducing the manufacturing cost.
  • the embodiment provides a pressure sensitive pen comprising any of the pressure sensing devices of the above embodiments.
  • the above-mentioned pressure sensing device is provided with a pressure sensitive pen, and the corresponding position of the pen tip of the pressure sensitive pen is connected with the driving member of the pressure sensing device.
  • the pen tip is stressed, and the driving member transmits the pen tip to the force.
  • the elastic conductor and the elastic conductor are deformed by force. Based on the working principle of the pressure sensing device described above, the pressure sensing pen realizes pressure detection and feedback.
  • the pressure sensitive pen provided in this embodiment does not need to be opened by opening the switch of the pressure sensitive pen during use. Wake up the pressure sensitive pen and write the pen. By detecting the writing pressure, you can achieve the thickness of the stroke on the writing device.
  • the pressure sensitive pen in the present embodiment includes the aforementioned pressure sensitiveness detecting device, and the pressure sensitive pen corresponds to the advantageous effect of the pressure sensitive detecting device in the foregoing embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

一种压感检测装置和压感笔,其中,该装置包括检测板(11)、弹性导电体(10)、电源(13)和微控制器(12);检测板(11)设置有第一检测电阻(110)、分压电阻和电源接入点(111),第一检测电阻(110)的一端通过分压电阻与电源(13)的一极相连,第一检测电阻(110)的另一端与电源接入点(111)分离设置;微控制器(12)与第一检测电阻(110)的一端相连以检测电压值;电源接入点(111)与电源(13)的另一极相连;弹性导电体(10)的一端连接有驱动件(14),另一端与检测板(11)分离;当驱动件(14)受力时,弹性导电体(10)的另一端与检测板(11)接触,导通第一检测电阻(110)与电源接入点(111)形成回路,弹性导电体(10)受力发生形变改变第一检测电阻(110)的一端与电源接入点(111)之间的阻值。实现了压感检测装置在低功耗下待机,减少了制造成本。

Description

压感检测装置和压感笔 技术领域
本实用新型实施例涉及智能输入设备领域,尤其涉及压感检测装置和压感笔。
背景技术
随着科技的发展,人们对压感笔的要求不仅仅是能书写,还要求它能实现书写笔迹的粗细随着用户书写的力度不同而变化。
目前压感笔中多使用压力传感器实现压力检测,进而根据压力大小来决定笔迹的粗细,比如使用压电传感器、压容传感器或压阻传感器等来检测书写的压力大小。以采用压电传感器检测压力为例,由于压电材料受到压力时会在其表面产生电荷,压力材料受力所产生的电荷量与压力的大小成正比,因而通过相关电路可以把压力值转换为电压值,但是需要一直处在工作状态,功耗大。
虽然现有技术中压感笔能实现对压力的检测,但是存在压力检测电路待机功耗大的问题,如果设计专门的电路在压感笔暂时不用时,用来关闭压感笔以降低功耗,压感笔的制造成本会随之增加。
实用新型内容
有鉴于此,本实用新型提供了一种压感检测装置和压感笔,以实现压感笔在低功耗下待机的同时减少制造成本。
第一方面,本实用新型提供了一种压感检测装置,包括检测板、弹性导电体、电源和微控制器;
所述检测板设置有第一检测电阻、分压电阻和电源接入点,所述第一检测电阻的一端通过所述分压电阻与所述电源的一极相连,所述第一检测电阻的另一端与所述电源接入点分离设置;所述微控制器与所述第一检测电阻的一端相连以检测电压值;所述电源接入点与所述电源的另一极相连;
所述弹性导电体的一端连接有驱动件,另一端与所述检测板分离;
当所述驱动件受力时,所述弹性导电体的另一端与所述检测板接触,导通所述第一检测电阻与所述电源接入点形成回路,所述弹性导电体受力发生形变改变所述第一检测电阻的一端与所述电源接入点之间的阻值。
上述装置中,可选的是,所述检测板还设置有第二检测电阻,所述电源接入点通过所述第二检测电阻与所述电源的另一极相连,当所述驱动件受力时,所述弹性导电体受力发生形变改变所述第二检测电阻接入回路的阻值。
上述装置中,可选的是,所述检测板包括多个所述第一检测电阻。
上述装置中,可选的是,多个所述第一检测电阻沿着以所述电源接入点为圆心的圆的径向排列。
上述装置中,可选的是,所述检测板包括多组所述第一检测电阻和所述第二检测电阻。
上述装置中,可选的是,所述第一检测电阻和所述第二检测电阻为线性碳膜电阻。
上述装置中,可选的是,所述弹性导电体为导电硅胶体。
上述装置中,可选的是,所述弹性导电体的阻值小于100OHM。
上述装置中,可选的是,所述弹性导电体为锥形或半球形。
第二方面,本实用新型提供了一种压感笔,包括上述任一压感检测装置。
本实用新型的有益效果为,通过使用驱动件驱动弹性导电体,使弹性导电体的另一端与检测板接触,导通第一检测电阻与电源接入点形成回路,弹性导电体受力后发生形变,改变第一检测电阻的一端与所述电源接入点之间的阻值,随着该阻值的变化,与第一检测电阻的一端相连的微控制器所检测到的电压值也会发生变化;当驱动件不受力时,弹性导电体的另一端与检测板不接触,回路就会断开,功耗降低,微控制器接收回路断开触发信号后,会处于睡眠状态以降低功耗,另外,由于不需要设计专门的开关控制电路,所以实现了压感检测装置在低功耗下待机,也即实现了包括该压感检测装置的压感笔在低功耗下待机的同时减少了制造成本。
附图说明
图1A是本实用新型实施例一中的一种压感检测装置的结构示意图;
图1B是本实用新型实施例一中的一种弹性导电体发生形变前的结构示意图;
图1C是本实用新型实施例一中的一种弹性导电体开始发生形变时的结构示意图;
图1D是本实用新型实施例一中的一种弹性导电体发生形变后的结构示意图;
图1E是本实用新型实施例一中的一种多个第一检测电阻的排列结构示意图;
图1F是本实用新型实施例一中的一种多个第一检测电阻的排列结构示意图;
图2A是本实用新型实施例二中的一种弹性导电体发生形变前的结构示意图;
图2B是本实用新型实施例二中的一种弹性导电体开始发生形变时的结构示意图;
图2C是本实用新型实施例二中的一种弹性导电体发生形变后的结构示意图;
图2D是本实用新型实施例二中的一种多组第一检测电阻和第二检测电阻的排列结构示意图;
图2E是本实用新型实施例二中的一种多组第一检测电阻和第二检测电阻的排列结构示意图。
具体实施方式
下面结合附图和实施例对本实用新型作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本实用新型,而非对本实用新型的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本实用新型相关的部分而非全部结构。
实施例一
图1A是本实用新型实施例一中的一种压感检测装置的结构示意图,图1B是本实用新型实施例一中的一种弹性导电体发生形变前的结构示意图。参考图1A,该装置包括弹性导电体10、检测板11、微控制器12和电源13;参考图1B,其中,检测板11设置有第一检测电阻110、分压电阻(图1B中未示出)和电源接入点111,第一检测电阻110的一端(图1B中的左端)通过分压电阻与电 源13(图1B中未示出)的一极相连,第一检测电阻110的另一端(图1B中的右端)与电源接入点111分离设置;微控制器12(图1B中未示出)与第一检测电阻110的一端相连以检测电压值;电源接入点111与电源13的另一极相连;弹性导电体10的一端连接有驱动件14,另一端与检测板11分离;当驱动件14受力时,带动弹性导电体10的位置发生变化,弹性导电体10的另一端与检测板11接触,导通第一检测电阻110与电源接入点111形成回路,弹性导电体10受力发生形变改变第一检测电阻110的一端与电源接入点111之间的阻值。
示例性的,参考图1B,当弹性导电体10与检测板11分离时,第一检测电阻110的另一端与电源接入点111是分离的,也即是整个电路是断开的,此时该压感检测装置处于待机状态,由于电路中没有电流通过,其功耗是很低的。
图1C是本实用新型实施例一中的一种弹性导电体开始发生形变时的结构示意图,参考图1C,弹性导电体10受驱动件14带动与检测板11逐渐接近,当弹性导电体10刚开始短接第一检测电阻110的另一端与电源接入点111时,由于选用的弹性导电体10的阻值很小,这样就相当于使用一根导线使得回路导通,此时微控制器12会接收一个到触发信号,压感检测装置从待机状态变为工作状态。
图1D是本实用新型实施例一中的一种弹性导电体发生形变后的结构示意图,当驱动件14受力加大形成对弹性导电体10的挤压,弹性导电体10发生形变,参考图1D,弹性导电体10受到挤压发生形变后,另一端与检测板11的接触面变大,相当于逐渐的从第一检测电阻110的另一端向第一检测电阻110的一端进行覆盖,由于弹性导电体10的阻值远远小于第一检测电阻110的阻值,此时第一检测电阻110接入回路的阻值就会减少,所以此时第一检测电阻110 的一端的电压值就会发生变化,与第一检测电阻110的一端相连的微控制器12接收到的电压值就会发生相应的变化,通过使用模数转换器可以将电压值转化为压力值,从而实现压感的后续功能。
当驱动件14不受力时,弹性导电体10会恢复到原来的样子和位置,此时该压感检测装置重新处于待机状态。本实施例提供的压感检测装置,应用时不需要额外设计专门的开关来唤醒检测装置,将待检测的压力通过驱动件14使得弹性导电体10发生位移和形变,就可以实现压感检测装置的唤醒。
图1E是本实用新型实施例一中的一种多个第一检测电阻的排列结构示意图,参考图1E,在本实用新型实施例中,检测板11可以包括多个所述第一检测电阻110,多个第一检测电阻110可以沿着以电源接入点111为圆心的圆的径向排列,由于弹性导电体10与检测板11接触时是一个圆形的接触面(参见图1E中的虚线圆),所以可以采用上述排列方式,使得微控制器12可以同时检测到多组电压值。对多组电压值做平均处理,可以优化压力精度,其中,在获取平均值时可以剔除明显偏离的其他电压值的电压值,这些明显偏离的电压值,可能是由这条检测线路中出现故障导致的。
图1F是本实用新型实施例一中的一种多个第一检测电阻的排列结构示意图,参考图1F,多个第一检测电阻110也可以是平行排列的方式,图1F中的虚线圆代表某一时刻弹性导电体10与检测板11的接触面,但是这种排列方式,会使得第一检测电阻110的个数比较少,处于排列阵列两侧的第一检测电阻110被弹性导电体10覆盖的面积会小一点,导致其接入回路中的阻值比较大。因此,第一检测电阻110平行排列时的个数不能太多,在本实施例中优选为3个。
在本实用新型实施例中,弹性导电体10可以为导电硅胶体,也可以是其他 导电弹性材料制成的结构体,又或者是包覆有柔性电路板的弹性体,只要满足能够导电和能够发生形变。此外,弹性导电体10的阻值,理想情况下是0OHM,实际情况下,要小于100OHM。弹性导电体10可以为锥形(例如棱锥或圆锥)或半球形。
本实施例提供的压感检测装置,通过使用驱动件驱动弹性导电体,使弹性导电体的另一端与检测板接触,导通第一检测电阻与电源接入点形成回路,弹性导电体受力后发生形变,改变第一检测电阻的一端与所述电源接入点之间的阻值,随着该阻值的变化,与第一检测电阻的一端相连的微控制器所检测到的电压值也会发生变化;当驱动件不受力时,弹性导电体的另一端与检测板不接触,回路就会断开,功耗降低,微控制器接收回路断开触发信号后,会处于睡眠状态以降低功耗,另外,由于不需要设计专门的开关控制电路,所以实现了压感检测装置在低功耗下待机的同时减少了制造成本。
实施例二
图2A是本实用新型实施例二中的一种弹性导电体发生形变前的结构示意图;本实施例在上述实施例的基础上,参考图2A,在检测板22上除了第一检测电阻220外,还设置有第二检测电阻221,电源接入点(与第二检测电阻221的一端重合)通过第二检测电阻221与电源(图2A中未示出)的另一极相连,当驱动件20受力时,弹性导电体21受力发生形变改变第二检测电阻221接入回路的阻值。
参考图2A,弹性导电体21与检测板22处于分离状态时,第一检测电阻220和第二检测电阻221之间是断开的,电路是断开的,此时该压感检测装置 处于待机状态,电路中也不会有电流流过,整个电路的功耗是很低的。
图2B是本实用新型实施例二中的一种弹性导电体开始发生形变时的结构示意图,参考图2B,弹性导电体21受驱动件20驱动与检测板22逐渐接近,当弹性导电体21刚开始短接第一检测电阻220的另一端与第二检测电阻221的一端时,由于选用的弹性导电体21能够导电,并且阻值远小于第一检测电阻220和第二检测电阻221,这样就相当于使用一根导线使得回路导通,此时微控制器12会接收一个到触发信号,压感检测装置从待机状态变为工作状态,此时电路中接入的电阻主要是第一检测电阻220的整体和第二检测电阻221的整体。
图2C是本实用新型实施例二中的一种弹性导电体发生形变后的结构示意,参考图2C,驱动件20继续驱动弹性导电体21,弹性导电体21与检测板22挤压发生形变,弹性导电体21与检测板22的接触面积变大,逐渐的从第一检测电阻220的另一端向第一检测电阻220的一端进行覆盖,同时也会从第二检测电阻221的一端向第二检测电阻221的另一端进行覆盖。由于弹性导电体21的阻值远远小于第一检测电阻220和第二检测电阻221的阻值,此时第一检测电阻220和第二检测电阻221接入回路的阻值都会减少,所以此时第一检测电阻220的一端的电压值就会发生变化,与第一检测电阻220的一端相连的微控制器(图2C中未示出)接收到的电压值就会发生相应的变化,通过使用模数转换器可以将电压值转化为压力值,从而实现压感的后续功能。
与实施例一中只通过第一检测电阻110接入回路阻值的变化来反应压力的变化相比较,本实施例中通过采用弹性导电体21导通第一检测电阻220和第二检测电阻221的方式,使得在同样的压力值下,微控制器检测到的电压值的变化更大。示例性的,实施例一中的第一检测电阻110的阻值为10k OHM,本实 施例中的第一检测电阻220和第二检测电阻221的阻值均为5k OHM,在相同的弹性导电体21受到相同的压力作用而变形时,由于本实施例中的第一检测电阻220和第二检测电阻221均会被弹性导电体21覆盖,所以接入回路中的电阻的阻值变化会更大。这样在要检测的压力比较小时,本实施例中采用两个检测电阻的这种方案,在微控制器端也能得到相对较大的电压值的变化,也即提高了压感检测系统的灵敏度。
当驱动件20不受力时,弹性导电体21会恢复到原来的样子和位置,此时本实施例中的压感检测装置重新处于待机状态。本实施例中的压感检测装置,同样不需要额外设计专门的开关来唤醒压感检测装置,而是通过使用待检测的压力带动驱动件20使得弹性导电体21发生移动和形变,使得检测回路导通,就可以实现压感检测装置的唤醒。
图2D是本实用新型实施例二中的一种多组第一检测电阻和第二检测电阻的排列结构示意图,参考图2D检测板22可以包括多组第一检测电阻220和第二检测电阻221,其中,每一组第一检测电阻220和第二检测电阻221沿着以第一检测电阻220的另一端和第二检测电阻221的一端构成的线段的中点为圆心的圆的径向对称排列,图2D中的虚线圆代表某一时刻弹性导电体21与检测板22的接触面。
图2E是本实用新型实施例二中的一种多组第一检测电阻和第二检测电阻的排列结构示意图,参考图2E,每一组第一检测电阻220和第二检测电阻221也可以平行排列,图2E中的虚线圆代表某一时刻弹性导电体21与检测板22的接触面。这种排列方式,由于处于排列阵列两侧的第一检测电阻220和第二检测电阻221被弹性导电体21覆盖的面积会小一点,导致其接入回路中的阻值 相对于其他组会比较大。因此,平行排列时的组数不能太多,在本实施例中优选为3组。
可选的,在本实施例中的第一检测电阻220和第二检测电阻221为线性碳膜电阻,优选为高耐磨线性可变碳膜电阻,第一检测电阻220和第二检测电阻221的阻值为200~50k OHM。
本实施例提供的压感检测装置,通过使用驱动件驱动弹性导电体,使弹性导电体的另一端与检测板接触,导通第一检测电阻与第二检测电阻形成回路,弹性导电体受力后发生形变,改变第一检测电阻与第二检测电阻接入回路的阻值,随着该阻值的变化,与第一检测电阻的一端相连的微控制器所检测到的电压值也会发生变化,这种采用两个检测电阻的结构,提高了压感检测系统的灵敏度。当驱动件不受力时,弹性导电体的另一端与检测板不接触,回路就会断开,功耗降低,微控制器接收回路断开触发信号后,会处于睡眠状态以降低功耗,另外,由于不需要设计专门的开关控制电路,所以实现了压感检测装置在低功耗下待机的同时减少了制造成本。
实施例三
本实施例提供了一种压感笔,包括上述实施例中任一压感检测装置。
上述的压感检测装置设置压感笔中,压感笔的笔尖对应设置与压感检测装置的驱动件相连,在压感笔的书写过程中,笔尖受力,驱动件将笔尖受力传到弹性导电体,弹性导电体受力发生形变,基于前述的压感检测装置的工作原理,压感笔实现了压力检测和反馈。
本实施例提供的压感笔,在使用时不需要通过打开压感笔的开关的方式来 唤醒压感笔,提笔即可进行书写操作,通过检测书写压力的大小,可以在书写设备上实现笔画的粗细效果。
本实施例中的压感笔包括前述的压感检测装置,压感笔对应具备前述实施例中压感检测装置的有益效果。
注意,上述仅为本实用新型的较佳实施例及所运用技术原理。本领域技术人员会理解,本实用新型不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本实用新型的保护范围。因此,虽然通过以上实施例对本实用新型进行了较为详细的说明,但是本实用新型不仅仅限于以上实施例,在不脱离本实用新型构思的情况下,还可以包括更多其他等效实施例,而本实用新型的范围由所附的权利要求范围决定。

Claims (10)

  1. 一种压感检测装置,其特征在于,包括检测板、弹性导电体、电源和微控制器;
    所述检测板设置有第一检测电阻、分压电阻和电源接入点,所述第一检测电阻的一端通过所述分压电阻与所述电源的一极相连,所述第一检测电阻的另一端与所述电源接入点分离设置;所述微控制器与所述第一检测电阻的一端相连以检测电压值;所述电源接入点与所述电源的另一极相连;
    所述弹性导电体的一端连接有驱动件,另一端与所述检测板分离;
    当所述驱动件受力时,所述弹性导电体的另一端与所述检测板接触,导通所述第一检测电阻与所述电源接入点形成回路,所述弹性导电体受力发生形变改变所述第一检测电阻的一端与所述电源接入点之间的阻值。
  2. 根据权利要求1所述的压感检测装置,其特征在于,所述检测板还设置有第二检测电阻,所述电源接入点通过所述第二检测电阻与所述电源的另一极相连,当所述驱动件受力时,所述弹性导电体受力发生形变改变所述第二检测电阻接入回路的阻值。
  3. 根据权利要求1所述的压感检测装置,其特征在于,所述检测板包括多个所述第一检测电阻。
  4. 根据权利要求3所述的压感检测装置,其特征在于,多个所述第一检测电阻沿着以所述电源接入点为圆心的圆的径向排列。
  5. 根据权利要求2所述的压感检测装置,其特征在于,所述检测板包括多组所述第一检测电阻和所述第二检测电阻。
  6. 根据权利要求2所述的压感检测装置,其特征在于,所述第一检测电阻和所述第二检测电阻为线性碳膜电阻。
  7. 根据权利要求1所述的压感检测装置,其特征在于,所述弹性导电体为导电硅胶体。
  8. 根据权利要求1所述的压感检测装置,其特征在于,所述弹性导电体的阻值小于100 OHM。
  9. 根据权利要求1所述的压感检测装置,其特征在于,所述弹性导电体为锥形或半球形。
  10. 一种压感笔,其特征在于,包括权利要求1至9任一所述压感检测装置。
PCT/CN2016/113402 2016-08-26 2016-12-30 压感检测装置和压感笔 WO2018036066A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201620956091.0U CN206133509U (zh) 2016-08-26 2016-08-26 压感检测装置和压感笔
CN201620956091.0 2016-08-26

Publications (1)

Publication Number Publication Date
WO2018036066A1 true WO2018036066A1 (zh) 2018-03-01

Family

ID=58565090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/113402 WO2018036066A1 (zh) 2016-08-26 2016-12-30 压感检测装置和压感笔

Country Status (2)

Country Link
CN (1) CN206133509U (zh)
WO (1) WO2018036066A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109061337A (zh) * 2018-06-29 2018-12-21 深圳思必锐电子技术有限公司 低功耗产品检测方法
CN110703137A (zh) * 2019-10-22 2020-01-17 山东科技大学 一种智能化电气工程测量系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101866253A (zh) * 2009-04-20 2010-10-20 禾瑞亚科技股份有限公司 电阻式多点触控装置及方法
CN104281287A (zh) * 2013-07-09 2015-01-14 瑞鼎科技股份有限公司 触控笔及其操作方法
CN205318346U (zh) * 2015-12-26 2016-06-15 宸鸿科技(厦门)有限公司 具有压力感测的面板
CN205334401U (zh) * 2015-07-10 2016-06-22 宸鸿科技(厦门)有限公司 压力感测装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101866253A (zh) * 2009-04-20 2010-10-20 禾瑞亚科技股份有限公司 电阻式多点触控装置及方法
CN104281287A (zh) * 2013-07-09 2015-01-14 瑞鼎科技股份有限公司 触控笔及其操作方法
CN205334401U (zh) * 2015-07-10 2016-06-22 宸鸿科技(厦门)有限公司 压力感测装置
CN205318346U (zh) * 2015-12-26 2016-06-15 宸鸿科技(厦门)有限公司 具有压力感测的面板

Also Published As

Publication number Publication date
CN206133509U (zh) 2017-04-26

Similar Documents

Publication Publication Date Title
US8711011B2 (en) Systems and methods for implementing pressure sensitive keyboards
CN110908527B (zh) 用于电子设备的触笔
US10459537B2 (en) Encapsulated pressure sensor
US9342149B2 (en) Systems and methods for implementing haptics for pressure sensitive keyboards
US10303271B2 (en) Transmitter and transmitting method thereof
KR102016399B1 (ko) 단극 터치 센서 및 그 제조 방법
US8760273B2 (en) Apparatus and methods for mounting haptics actuation circuitry in keyboards
US9063588B2 (en) Grip-enabled touchscreen stylus
JP7443434B2 (ja) 感圧スタイラス
EP2372510A3 (en) Pointer detection apparatus and detection sensor
JP2007538339A (ja) 環状電位差式タッチセンサ
WO2013049816A1 (en) Hybrid capacitive force sensors
KR20230007982A (ko) 압전 소자 및 이를 이용한 압전 센서
CN106066712B (zh) 力量感测模块
US11983352B2 (en) Mechanical force redistribution sensor array embedded in a single support layer
CN104406627A (zh) 假肢手穿戴式柔性触觉传感器及其触觉检测系统
JP2018060548A (ja) 保持状態検出装置
WO2018036066A1 (zh) 压感检测装置和压感笔
CN108814769B (zh) 传感器、系统、压力检测电路、方法和电子皮肤
TWI564756B (zh) 觸控筆
TWI581132B (zh) 發信器及其發信方法
WO2022111283A1 (zh) 用于电子雾化的电池杆及电子雾化装置
CN111492334A (zh) 压力感应装置、压力感应方法及电子终端
CN101788858A (zh) 电容式触控板的接触检测方法及其触控笔
CN108613759B (zh) 一种触觉传感器皮肤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16914086

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 190719)

122 Ep: pct application non-entry in european phase

Ref document number: 16914086

Country of ref document: EP

Kind code of ref document: A1