WO2018034108A1 - Examination system and examination method - Google Patents

Examination system and examination method Download PDF

Info

Publication number
WO2018034108A1
WO2018034108A1 PCT/JP2017/026704 JP2017026704W WO2018034108A1 WO 2018034108 A1 WO2018034108 A1 WO 2018034108A1 JP 2017026704 W JP2017026704 W JP 2017026704W WO 2018034108 A1 WO2018034108 A1 WO 2018034108A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
reaction
inspection
pores
chip
Prior art date
Application number
PCT/JP2017/026704
Other languages
French (fr)
Japanese (ja)
Inventor
孝明 伊藤
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2018034108A1 publication Critical patent/WO2018034108A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • G01F23/292Light, e.g. infrared or ultraviolet
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals

Definitions

  • the present invention relates to a test system and a test method for detecting a test substance such as an antigen, an antibody, or deoxyribonucleic acid.
  • the binding phenomenon between a test substance and a capture substance is optically determined.
  • a method of detecting is known. In this method, a test substance is bound to a capture substance fixed at a predetermined position and emits fluorescence upon receiving excitation light, or a label that catalyzes a substrate reaction to generate color, fluorescence, or chemiluminescence. Is applied to the test substance, and light generated due to the label is detected.
  • a method of detecting a fluorescence generated from a fluorescent label by attaching a fluorescent label to a binding substance such as an antibody that specifically binds to the test substance, a binding of an antibody that specifically binds to the test substance
  • a binding substance such as an antibody that specifically binds to the test substance
  • a binding of an antibody that specifically binds to the test substance There are known methods for detecting color development, fluorescence, chemiluminescence, etc. generated from a chromogenic substrate, fluorescent substrate, or chemiluminescent substrate that reacts with this enzyme as a catalyst. Identification becomes possible.
  • Patent Documents 1 to 3 propose a method in which a liquid is efficiently brought into contact with a capture substance and a test substance is bound to the capture substance. By this method, the measurement time can be greatly shortened.
  • Japanese Patent Application Laid-Open No. 2003-294755 discloses a light guide member for detecting a liquid level at the time of light detection or by receiving a light-transmitting liquid level position recognizing sensor provided with a specimen container made of a transparent body. A method for performing the position control of is disclosed.
  • International Publication No. 2011/027851 discloses a liquid level in a flow path in a liquid feeding system that promotes a reaction by flowing a sample liquid in a micro flow path having a detection region on which a capture substance is fixed.
  • a configuration is disclosed in which the position is detected and the pump connected to the microchannel is controlled according to the liquid level position.
  • an object of the present invention is to provide an inspection system and an inspection method capable of suppressing noise in a detection signal and suppressing the amount of waste liquid.
  • the inspection system of the present invention is a plate-shaped inspection having pores penetrating from one surface to the other surface, and a trapping substance that specifically binds to a specific substance is immobilized on the inner wall surface of the pore.
  • Chips A container for storing liquid; In the container, a support member that horizontally supports the inspection chip; A liquid holding unit capable of holding liquid on the upper surface of the inspection chip; and A liquid supply unit for supplying liquid to the pores from the lower surface of the inspection chip; A liquid level detection unit for detecting the position of the liquid level in the liquid holding unit; In an inspection system including a control unit that is connected to the liquid supply unit and the liquid level detection unit and controls the liquid supply operation by the liquid supply unit according to the position of the liquid level detected by the liquid level detection unit.
  • the reaction liquid reference position which is the arrival position of the reaction liquid surface
  • the cleaning liquid is supplied to the pores as a liquid
  • the cleaning liquid reference position which is the arrival setting position of the cleaning liquid level in the process, is set above the reaction liquid reference position
  • the reaction liquid reference position is preferably within 25 mm from the upper surface of the inspection chip, and the cleaning liquid reference position is preferably within 50 mm from the upper surface of the inspection chip.
  • the liquid supply unit also performs a discharge operation for discharging the liquid supplied to the pores from the pores.
  • control unit performs the discharge operation after a preset time has elapsed after stopping the supply operation by the liquid supply unit.
  • the liquid supply unit can be constituted by a pump that depressurizes and pressurizes the liquid holding unit.
  • the liquid supply unit may be constituted by a pump that depressurizes and pressurizes the inside of the container.
  • the liquid holding unit has light permeability and the liquid level detection unit is an optical camera.
  • a photodetector that is disposed opposite to one surface or the other surface of the inspection chip and detects light emitted from the inspection chip.
  • the capture substance provided in the inspection chip is an antigen, an antibody, or deoxyribonucleic acid (DNA).
  • the inspection chip is made of one or more of Si, SiO 2 , Al, Al 2 O 3 , stainless steel, and a resin material.
  • the reaction solution can be any one of a sample solution used for testing, a labeled solution containing a labeled substance, and a testing solution.
  • a first reaction liquid which is a sample liquid to be used for inspection, is supplied to the pores, and a specific substance in the sample liquid is removed. Binds to the capture substance, discharges the sample liquid from the pores, Performing a first cleaning process;
  • a labeling solution containing a labeling substance that specifically binds to a specific substance which is a second reaction solution, is supplied to the pores to bind the labeling substance to the specific substance, and the labeling solution Are discharged from the pores, Perform a second cleaning process
  • a test solution that is a third reaction solution is supplied to the pores, This is an inspection method for detecting light emitted from the inspection chip in a state where the inspection solution is retained in the pores.
  • an enzyme label is used as a labeling substance
  • a reaction solution containing a substrate that reacts catalyzed by the enzyme label is used as a test solution
  • the substrate in the test solution is used as emitted light.
  • Light generated by catalysis by an enzyme label may be detected.
  • the substrate include a chromogenic substrate, a fluorescent substrate, and a chemiluminescent substrate, and these substrates are appropriately selected according to the type of enzyme label.
  • the light emitted from the inspection chip differs depending on the substrate, and the detected light is light absorption (coloration), fluorescence, or chemiluminescence.
  • a substance containing a fluorescent label is used as the labeling substance, the inspection chip is irradiated with excitation light that excites the fluorescent label, and the fluorescence generated from the fluorescent label by irradiation of the excitation light is emitted as the emitted light. It may be detected.
  • the reaction liquid reference position which is the arrival setting position of the liquid surface of the reaction liquid
  • the cleaning liquid reference position which is the arrival setting position of the cleaning liquid level
  • the controller supplies the reaction liquid as a liquid.
  • the reaction liquid fills the pores, so that various binding reactions can be performed in the entire area of the pores. Also, since the liquid level position of the cleaning liquid is detected and raised to the cleaning liquid reference position set above the liquid level position of the reaction liquid, the reaction liquid can be sufficiently cleaned and noise in the detection signal is suppressed. be able to. Further, since the liquid level position of the cleaning liquid is detected and the supply of the cleaning liquid is stopped at the cleaning liquid reference position, the amount of waste liquid can be suppressed without using an excessive amount of cleaning liquid.
  • FIG. 1 is a schematic configuration diagram of an inspection system according to a first embodiment of the present invention. It is a figure which shows an example of the control sequence of the liquid level of a reaction liquid, and liquid supply operation
  • FIG. 1 is a schematic configuration diagram of an inspection system according to the first embodiment of the present invention.
  • the inspection system 1 of the present embodiment has pores 11 penetrating from one surface 10a to the other surface 10b, and a trapping substance that specifically binds to a specific substance is immobilized on the inner wall surface of the pore 11.
  • Plate-shaped inspection chip 10 a container 12 for storing liquid, and a support member 14 that horizontally supports the inspection chip 10 and holds the liquid on the upper surface 10 a of the inspection chip 10 in the container 12.
  • the support member 14 also serves as a liquid holding unit that holds liquid on the upper surface 10a of the test chip 10, but the liquid holding unit may be separated from the support member.
  • support horizontally means that the test chip 10 is supported so that the lower surface 10 b of the test chip 10 is parallel to the surface of the liquid. However, the liquid surface and the lower surface 10 b of the test chip 10 are supported. If the angle formed by is in the range of ⁇ 10 °, it is allowed. Further, in the present specification, the vertical direction coincides with the vertical direction, and the vertically upward surface of the inspection chip 10 in use in which the inspection chip 10 is horizontally disposed is the upper surface 10a, and the vertically downward surface is the lower surface 10b.
  • the inspection system 1 further closes the space 15 surrounded by the upper surface 10a of the inspection chip 10 and the support member 14 as a liquid supply unit that supplies liquid to the pores 11 from the lower surface 10b of the inspection chip 10, and the space 15
  • a control unit 20 is provided for controlling the liquid supply operation by the pump 16 in accordance with the detected position of the liquid level.
  • the control unit 20 is provided separately from the pump 16 in this example, but may be provided so as to be integrated with the pump.
  • the inspection system 1 also includes a cleaning liquid discharge unit 21 for discharging the cleaning liquid drain.
  • the cleaning liquid discharge unit 21 is provided with a waste liquid container 21a.
  • the inspection chip 10 is once removed from the container 24 together with the support member 14, and the waste liquid container 21a Then, the cleaning liquid in the pores 11 and in the liquid holding part 14b of the support member 14 is discharged into the waste liquid container 21a.
  • the inspection system 1 further includes an optical signal measurement unit 22 including a photodetector 22a disposed in the dark room 23 and a lens 22b that collects light from the inspection chip 10.
  • the inspection chip 10 is disposed below the photodetector 22 a, and the photodetector 22 a detects light emitted from the inspection chip 10 from vertically above the inspection chip 10.
  • the optical signal measuring unit 22 is installed at a location different from the component for supplying the reaction liquid or the cleaning liquid to the test chip 10.
  • the photodetector 22a is provided in the optical signal measurement unit 22 provided in a place different from the container 12 as in this example. Further, in this example, the light is detected from above the inspection chip 10 vertically, but the inspection chip 10 is disposed above the photodetector to detect light from the lower surface side of the inspection chip 10. It may be configured as follows.
  • inspection chip 10 is a plate-shaped base material by which the several pore 11 is arranged in two dimensions.
  • the inspection chip 10 is made of one or more materials selected from Si (silicon), SiO 2 (silicon oxide), Al (aluminum), Al 2 O 3 (alumina), stainless steel, and a resin material. It is preferable.
  • the thickness of the inspection chip 10 is not particularly limited, but is preferably about 100 ⁇ m to 2000 ⁇ m.
  • the opening shape of the pores 11 of the inspection chip 10 is not particularly limited, and may be a circle, an ellipse, or a polygon.
  • the pores 11 are generally columnar and the cross-sectional shape does not change, but the cross-sectional shape may partially change or the cross-sectional size may change.
  • the equivalent circle diameter of the opening on at least one surface of the pore 11 is about 1 ⁇ m to 100 ⁇ m. More preferably, it is 3 ⁇ m to 50 ⁇ m, and particularly preferably 5 ⁇ m to 30 ⁇ m.
  • the equivalent circle diameter refers to the diameter of a circle having an area equivalent to the area of the opening region.
  • the planar shape of the inspection chip 10 is not particularly limited, but is preferably a rectangle such as a square or a rectangle, or a circle.
  • the support member 14 includes an inspection chip receiving portion 14 a corresponding to the outer shape of the inspection chip 10.
  • the inspection chip receiving portion 14a and the inspection chip 10 of the support member 14 may be provided with an engagement portion for engaging both or a fitting portion for fitting each other.
  • the support member 14 includes a liquid holding portion 14b that holds a liquid on the upper surface 10a of the inspection chip 10 and a flange portion 14c that is locked to a part of the container 12 in order to support the inspection chip 10 in the container 12. It has.
  • the support member 14 can be fixed to the container 12 by locking the flange 14 c to a part of the upper surface of the container 12.
  • the form of the support member 14 is not limited to this example.
  • the liquid holding unit may be configured separately from the support member.
  • a pedestal for placing the inspection chip is provided on a part of the container 12 and the pedestal is supported by the pedestal.
  • a cylindrical member capable of holding a liquid, which is installed so as to be pressed against the upper surface of the inspection chip, may be provided as the liquid holding member.
  • maintenance part 14b among the supporting members 14 has a light transmittance for confirmation of the liquid level position by the optical camera 18.
  • FIG. The support member 14 and the inspection chip 10 may be detachable so that the support member 14 may be reused, or after the support member 14 and the inspection chip 10 are once connected and used, they are discarded as they are. Also good.
  • inspection chip 10 may be integrally formed.
  • the test substance (target molecule) to be tested in this test system 1 is mainly a biological molecule, such as proteins such as antigens and antibodies, saccharides, peptides, DNA, ribonucleic acid (RNA), peptides Examples thereof include nucleic acids (peptide nucleic acid: PNA).
  • the capture substance that is specifically fixed to the inner wall surface of the pore 11 and specifically binds to a specific substance is a substance that specifically binds to these test substances.
  • the inspection flow of the inspection method using the inspection system 1 configured as described above includes a reaction process for supplying a reaction liquid as liquid to the pores and a cleaning process for supplying a cleaning liquid as liquid to the pores.
  • the space 15 When the space 15 is depressurized by the pump 16 in a state where the inspection chip 10 is horizontally supported so that the lower surface 10b comes into contact with the liquid in the container 12, the liquid enters the pores 11 from the lower surface 10b side of the inspection chip 10. Is sucked. Further, when the space 15 is pressurized in a state where the liquid is contained in the pores 11, the liquid is pushed out from the pores 11 of the inspection chip 10 and discharged. By the operation of the pump 16, supply (suction) and discharge of the liquid into the pores 11 are performed. In this example, the decompression operation of the space 15 by the pump 16 corresponds to a liquid supply operation, and the pressurization operation of the space 15 corresponds to a liquid discharge operation.
  • the reaction liquid reference position in the first reaction process is set as h 11
  • the cleaning liquid reference position in the first cleaning process performed subsequent to the first reaction process is set as h 12
  • the second reaction process performed thereafter is performed.
  • the reaction liquid reference position is h 21
  • the cleaning liquid reference position in the second cleaning process is h 22
  • h 11 h 21
  • h 12 h 22 need not be satisfied.
  • a control sequence can be made common, it is preferable that a plurality of reaction processes or a plurality of cleaning processes in one inspection flow have the same reaction liquid reference position and cleaning liquid reference position, respectively.
  • the reaction liquid reference position h 1 is preferably within 25 mm from the inspection chip upper surface position h 0 . If the liquid level of the reaction liquid exceeds the position h 0 , the reaction in the pores is efficiently performed. In addition, by setting the reaction liquid reference position h 1 within 25 mm from the inspection chip upper surface position h 0, the amount of the reaction liquid can be suppressed, and the range to be cleaned can also be suppressed.
  • the cleaning liquid reference position h 2 is preferably within 50 mm from the inspection chip upper surface position h 0 . However, as previously described, the cleaning liquid reference position h 2 is located above the reaction liquid reference position h 1.
  • the cleaning liquid reference position h 2 is above the reaction liquid reference position h 1 , the cleaning liquid can be supplied to a position higher than the position where the reaction liquid is supplied. Therefore, the effect of removing the residual liquid of the reaction liquid is high. Further, by within 50mm of the cleaning liquid reference position h 2 from the test chip surface position h 0, it is possible to suppress the liquid amount of the cleaning liquid. According to this configuration, it is possible to achieve both sufficient cleaning and reduction of the amount of waste liquid.
  • Control unit 20 in the reaction process, when supplying the reaction liquid into the pores 11 stops the supply operation by the pump 16 when the liquid surface of the reaction solution reached the reaction liquid reference position h 1 or more, the cleaning process
  • the pump 16 is controlled so that the supply operation is stopped when the level of the cleaning liquid reaches or exceeds the cleaning liquid reference position h 2 .
  • the position of the liquid surface of the reaction liquid and the cleaning liquid is monitored by the optical camera 18, and the liquid surface position information is constantly sent to the control unit 20.
  • the control unit 20 can be configured by a personal computer, for example.
  • a program that causes the computer to function as the control unit 20 is incorporated in the computer.
  • FIG. 2 An example of the control sequence of the pump 16 in the reaction process is shown in FIG. In FIG. 2, the time change of the liquid level position and the time change of the depressurization control by the pump are shown together.
  • the control unit 20 starts the pressure reducing operation of the space 15 by the pump 16.
  • the reaction liquid is supplied (suctioned) into the pores 11 from the lower surface 10b of the test chip 10, and the liquid surface position gradually rises. Comparing the liquid level of the reaction solution to be detected by the optical camera 18 and the reaction solution reference position h 1, at time t 1 the liquid level reaches the reaction solution reference position h 1, stops the pressure reducing operation by the pump 16 And switch to pressurization.
  • the reaction solution In the pressurizing operation, it may be detected by the optical camera 18 that the reaction solution is completely discharged from the pores 11, or the time required for discharging is measured in advance to determine the pressurizing operation time. May be. By repeating this decompression and pressurization three times, the reaction in the pores 11 can be further promoted.
  • Control unit 20 first starts the depressurization operation of the space 15 by the pump 16 at time t 0.
  • the reaction liquid is supplied into the pores 11 from the lower surface 10b of the test chip 10, and the liquid surface position gradually rises. Comparing the liquid level of the reaction solution to be detected by the optical camera 18 and the reaction solution reference position h 1, at time t 1 the liquid level reaches the reaction solution reference position h 1, stops the pressure reducing operation by the pump 16 To do.
  • the decompression operation is stopped, and after maintaining the space 15 to atmospheric pressure for a predetermined time t, the operation is switched to the pressurization operation.
  • liquid level decreases gradually from the reaction solution reference position h 1 to the inspection chip upper surface position h 0, it is maintained at a position h 0 by the surface tension.
  • the pressurizing operation it may be detected by the optical camera 18 that the reaction solution is completely discharged from the pores 11, or the time required for discharging is measured in advance to determine the pressurizing operation time. May be.
  • the time t maintained at atmospheric pressure during switching from the decompression operation to the pressurization operation may be appropriately set in advance, and is set to about 30 minutes as an example.
  • the reaction in the pores 11 can be further promoted by repeating this decompression, holding under atmospheric pressure, and pressurization three times.
  • the reaction liquid when the reaction liquid is discharged by pressurizing the space 15, the reaction liquid may not be completely discharged from the pores 11. Further, in each of the above examples, the depressurization to pressurization are repeated three times. However, the number of times is not particularly limited, and may be only once, or may be twice or four or more times. .
  • FIG. 4A shows the time change of the liquid surface position in the cleaning process
  • FIG. 4B shows the flow of the cleaning process.
  • the cleaning process starts from a state in which the cleaning liquid is stored in the container 12 and the inspection chip 10 is not immersed in the cleaning liquid above the cleaning liquid and the lower surface 10b.
  • the control unit 20 starts the pressure reducing operation of the space 15 by the pump 16 (S11).
  • the lower surface 10b of the inspection chip 10 is immersed in a cleaning liquid (S12).
  • the space 15 is kept in a state where the lower surface 10b of the test chip 10 is not in contact with the cleaning solution in the container 12 in this way.
  • the pressure of the reduced pressure is made smaller than the reduced pressure in the case of the reaction process (large in absolute value), and the liquid level is raised to the cleaning liquid reference position h 2 located above the reaction liquid reference position h 1 .
  • Comparing the liquid level position and the cleaning liquid reference position h 2 of the cleaning liquid is detected by the optical camera 18 at time t 11 the liquid level reaches the cleaning liquid reference position h 2, to stop the depressurization operation by the pump 16 (S13 ).
  • the test chip 10 is removed from the container 12 together with the support member 14, moved to the cleaning liquid discharger 21, and set on the waste liquid container 21a (S14).
  • to start the pressurization of the space 15 by the pump 16 to discharge the cleaning liquid has accumulated in the pores 11 of the test chip 10 and the liquid holding portion 14b in a waste container 21a (S15).
  • FIG. 4A shows a change in the liquid surface position when the steps S11 to S15 are repeated three times.
  • the negative pressure in the space 15 is maintained and moved to the cleaning liquid discharge unit 21.
  • the space 15 is opened to atmospheric pressure, and the pores 11 of the test chip 10 are opened. You may make it move the test
  • FIGS. 2 to 4A schematically show the sequence, and the change in the liquid surface position at the time of depressurization is not necessarily limited to that shown by a linear function as shown in FIGS. 2 to 4A. .
  • FIG. 5 is a schematic configuration diagram of an inspection system 2 according to the second embodiment of the present invention.
  • differences from the inspection system 1 according to the first embodiment will be mainly described, and the same components are denoted by the same reference numerals and detailed description thereof will be omitted.
  • the shape of the container 24 that holds the liquid and the pump 16 that is the liquid supply unit are connected to the container 24, and the waste liquid container 21 b of the cleaning liquid discharge unit 21 is connected to the pump 16. It differs from the structure of the said inspection system 1 by the point.
  • the pump 16 can switch the connection between the container 12 and the waste liquid container 21b by the switching valve 16a.
  • the pump 16 pressurizes and depressurizes the space 25 of the container 24 to supply liquid to the pores 11 of the inspection chip 10 and discharge liquid from the pores 11. Further, the cleaning liquid is discharged from the pores 11 of the test chip 10 by reducing the pressure inside the waste liquid container 21 b of the cleaning liquid discharger 21.
  • the container 24 has a shape that can form a space 25 closed by the lower surface 10b of the inspection chip 10 and the container 24.
  • the flange portion 14 c of the support member 14 can be locked to a part of the upper surface of the container 24, and can support the inspection chip 10 in the container 24.
  • the waste liquid container 21 b has substantially the same shape as the container 24.
  • the inspection chip 10 When the space 25 is pressurized by the pump 16 in a state where the inspection chip 10 is horizontally supported so that the lower surface 10b comes into contact with the liquid in the container 12, the inspection chip 10 enters the pores 11 from the lower surface 10b side of the inspection chip 10. Liquid is pushed up. Further, when the space 25 is depressurized while the liquid is in the pores 11, the liquid is sucked downward and discharged from the pores 11 of the inspection chip 10. By the operation of the pump 16, the liquid is supplied to and discharged from the pores 11.
  • the pressurization operation of the space 25 by the pump 16 corresponds to the liquid supply operation
  • the decompression operation of the space 25 corresponds to the liquid discharge operation.
  • the relationship between the inspection chip upper surface position h 0 , the reaction liquid reference position h 1 and the cleaning liquid reference position h 2 in the inspection system 2 is the same as that in the inspection system 1 of the first embodiment, and the same effect can be obtained. .
  • Control unit 20 first at time t 20, to start the pressurizing operation of the space 25 by the pump 16.
  • the reaction liquid is supplied into the pores 11 from the lower surface 10b of the test chip 10, and the liquid surface position gradually rises. Comparing the liquid level of the reaction solution to be detected by the optical camera 18 and the reaction solution reference position h 1, at time t 21 the liquid level reaches the reaction solution reference position h 1, the pressurizing operation by the pump 16 Stop and switch to decompression.
  • the reaction solution In the depressurization operation, it may be detected by the optical camera 18 that the reaction solution is completely discharged from the pores 11, or the time required for the discharge may be measured in advance to determine the depressurization operation time. Good. By repeating this pressurization and depressurization three times, the reaction in the pores 11 can be further promoted.
  • Control unit 20 first starts a pressurizing operation of the space 25 by the pump 16 at time t 20.
  • the reaction liquid is supplied into the pores 11 from the lower surface 10b of the test chip 10, and the liquid surface position gradually rises. Comparing the liquid level of the reaction solution to be detected by the optical camera 18 and the reaction solution reference position h 1, at time t 21 the liquid level reaches the reaction solution reference position h 1, the pressurizing operation by the pump 16 Stop.
  • the pressurizing operation is stopped, and after maintaining the space 25 to atmospheric pressure for a predetermined time t, the operation is switched to the depressurizing operation.
  • the depressurization operation it may be detected by the optical camera 18 that the reaction solution is completely discharged from the pores 11, or the time required for the discharge may be measured in advance to determine the depressurization operation time. Good.
  • the time t maintained at the atmospheric pressure during the switching from the pressurizing operation to the pressurizing operation may be appropriately set in advance, and is set to about 30 minutes as an example.
  • control sequence in the reaction process of the present embodiment is the same except that the decompression and pressurization are reversed from those in the first embodiment.
  • the cleaning process may be performed by reversing the timing of pressure reduction and pressurization in the first embodiment as in the case of the reaction process.
  • the cleaning liquid is supplied to the pores 11 and the liquid holding unit 14b, and after stopping the pressurizing operation of the pump 16, the inspection chip 10 is moved to the cleaning liquid discharging unit 21 while maintaining the liquid level position. , Drain the cleaning solution.
  • the space (the space of the liquid holding portion 14b of the support member 14) 15a of the upper surface 10a of the test chip 10 is closed, and the cleaning liquid is not discharged from the pores 11 of the test chip 10 due to natural fall. It is necessary to move the inspection chip 10 in a state.
  • the support member 14 is provided with a lid for closing the space 15a, and the space 15a can be switched between an open state and a closed state by opening and closing the lid.
  • the space 15a is opened when supplying the cleaning liquid, the pump is stopped after supplying the cleaning liquid, and the opening of the support member is covered to close the space 15a.
  • the space 25 is opened to atmospheric pressure, the inspection chip 10 is taken out of the container 12 together with the support member 14, and is set in the waste liquid container 21b.
  • the lid of the opening of the support member 14 is opened to open the space 15a to atmospheric pressure. At this time, a part of the cleaning liquid is discharged from the pores 11 and a part thereof is maintained in the pores 11.
  • the connection of the pump 16 is switched to the waste liquid container 21b side and the pressure inside the waste liquid container 21b is reduced, all the cleaning liquid in the pores 11 can be discharged.
  • the light emitted from the test chip and detected by the photodetector is, for example, fluorescence generated by excitation of a label attached to the test substance, or binding of an antibody that specifically binds to the test substance.
  • the substance is given the same label as above, and light is emitted from the label, or an enzyme is labeled on a binding substance such as an antibody that specifically binds to the test substance, and light emission by the reaction using this enzyme as a catalyst (in the following) , Or “chemiluminescence”)).
  • chemiluminescence if the test substance generates autofluorescence, no label is necessary, and autofluorescence may be detected.
  • the optical signal includes absorbance (colorimetric) in addition to fluorescence and chemiluminescence light.
  • FIG. 8 is a diagram showing an inspection flow
  • FIG. 9 is a diagram schematically showing reactions in the first to third reaction processes in the inspection flow.
  • the first reaction liquid in the first reaction process is a sample liquid used for the test.
  • Specific examples of the sample liquid include plasma or serum.
  • the sample liquid is put in the container 12, and the test chip 10 is set so that the lower surface 10b is immersed in the surface of the sample liquid in the container 12.
  • the space 15 is decompressed by the pump 16 to supply the sample liquid into the pores 11. Sucked into the pores 11, when the liquid level of the sample fluid to rise to the upper surface 10a side of the test chip 10 is detected by the optical camera 18, and reaches the reaction solution reference position h 1, return the space 15 to the atmospheric pressure, Hold for 30 minutes.
  • the space 15 is pressurized by the pump 16 to discharge the sample liquid in the pores 11 (S2).
  • the steps S1-S2 may be repeated a plurality of times.
  • the specific binding reaction between the specific substance in the sample liquid and the capture substance fixed to the inner wall in the pore 11 is promoted three times.
  • a first cleaning process is performed (S3).
  • the cleaning liquid is put into the container 12, and the inspection chip 10 is set so that the lower surface 10 b is immersed in the surface of the cleaning liquid in the container 12 while reducing the space 15 by the pump 16.
  • the cleaning liquid is sucked up in the pores 11, to detect the liquid level of the cleaning liquid rises to the upper surface 10a side of the test chip 10 in the optical camera 18, when it reaches the cleaning liquid reference position h 2, the pressure reducing operation by the pump 16 Stop temporarily.
  • the inspection chip 10 is removed together with the support member 14 from the container 12, moved to the cleaning liquid discharger 21, and set on the waste liquid container 21a.
  • the pump 16 is switched to a pressurizing operation to pressurize the space 15 and discharge the cleaning liquid in the pores 11.
  • Step S3 may be repeated a plurality of times.
  • the cleaning effect is increased by repeating three times.
  • the second reaction solution in the second reaction process is a labeling solution containing a labeling substance.
  • the labeling solution is put in the container 12, and the inspection chip 10 is set so that the lower surface 10b is immersed in the surface of the labeling solution in the container 12.
  • the space 15 is decompressed by the pump 16 to supply the labeling solution into the pores 11. Sucked into the pores 11, when the liquid level of the labeling solution to rise to the upper surface 10a side of the test chip 10 is detected by the optical camera 18, and reaches the reaction solution reference position h 1, return the space 15 to the atmospheric pressure, Hold for 30 minutes.
  • the space 15 is pressurized by the pump 16 to discharge the label solution in the pores 11 (S5).
  • Steps S4 to S5 may be repeated a plurality of times.
  • the binding reaction of the labeling substance to the specific substance specifically bonded to the capturing substance fixed to the inner wall in the pore 11 is promoted three times.
  • the second cleaning process is similar to the first cleaning process.
  • the third reaction solution in the third reaction process is a test solution.
  • the inspection solution is put in the container 12 and the inspection chip 10 is set so that the lower surface 10 b is immersed in the surface of the inspection solution in the container 12.
  • the space 15 is decompressed by the pump 16, and the inspection solution is supplied into the pores 11. It sucked into the pores 11, when the liquid surface of the test solution to rise to the upper surface 10a side of the test chip 10 is detected by the optical camera 18, and reaches the reaction solution reference position h 1, returning the space 15 to the atmospheric pressure . Even if the space 15 is returned to atmospheric pressure, the sample liquid remains in the pores 11.
  • the inspection chip 10 is removed from the container 12 with the inspection solution held in the pores 11 and set in the photodetector 22 a of the optical signal measurement unit 22.
  • the inspection solution kept in the pores 11 of the inspection chip 10
  • the light emitted from the inspection chip 10 is detected by the photodetector 22a (S9), and the inspection process ends.
  • FIG. 9 is a diagram schematically showing the reaction in each of the above reaction processes.
  • a trapping substance 30 such as an allergen is fixed to the inner wall surface 11a of the pore 11 of the test chip 10 (S0).
  • a specimen liquid containing a test substance for example, a specific IgE antibody that specifically binds to the allergen
  • the test substance 32 is captured by the capture substance 30. Specifically bind to.
  • a labeling solution containing the substance 35 is supplied to the pores 11 to bind the labeling substance 35 to the test substance 32.
  • Label F is an enzyme label that functions as a catalyst for chemiluminescent substrates such as luminol, lophine, lucigenin and oxalate.
  • a test solution containing a luminescent substrate that undergoes a luminescence reaction using the label F as a catalyst is supplied into the pores 11, and the label F Is used as a catalyst to cause a luminescence reaction.
  • a light signal from a luminescence reaction that reacts with the label F as a catalyst is detected by the photodetector 22a.
  • the specimen solution or the remaining solution of the labeling solution is washed, and the test substance 32 nonspecifically adsorbed in the pores 11 or Since the labeling substance is removed, noise in the measurement signal can be suppressed.
  • reaction liquid containing a luminol-based chemiluminescent substrate in which HRP functions as a catalyst is converted into an ALP (alkaline phosphatase) enzyme.
  • ALP alkaline phosphatase
  • the luminol reaction solution contains at least a luminol substrate and a hydrogen peroxide solution.
  • the enzyme label catalyzes the oxidation of luminol in the presence of hydrogen peroxide.
  • the reaction solution preferably contains a sensitizer that sensitizes chemiluminescence.
  • a color reaction (absorption) reaction or fluorescence may be detected using a reaction solution containing not only the chemiluminescent substrate but also a luminescent substrate or a fluorescent substrate.
  • the label F is not limited to the enzyme label as described above.
  • the fluorescence measurement may be performed without supplying the inspection solution into the pores 11 after the second cleaning process.
  • the fluorescence measurement may be performed in a state where the buffer solution is supplied into the pores 11 as a test solution and the pores 11 are filled with the buffer solution.
  • the inspection chip is irradiated with light having a wavelength for exciting the fluorescent label as excitation light, and fluorescence from the label excited by the excitation light is detected.
  • the optical signal measurement unit is provided with an excitation light irradiation unit.
  • the inspection system of the present invention by using the inspection system of the present invention, it is possible to detect noise with high accuracy while suppressing noise, and it is possible to suppress the amount of waste liquid generated.

Abstract

Provided is an examination system wherein a reaction liquid reference position in a reaction process in which pores are supplied with a reaction liquid is set above the upper surface of a test chip, a cleaning solution reference position in a cleaning process in which pores are supplied with a cleaning solution is set above the reaction liquid reference position, and a control unit carries out control such that during supply of the reaction liquid as a liquid, the supplying operation by a liquid supplying unit is stopped when the surface level of the reaction liquid becomes equal to or higher than the reaction liquid reference position and that during supply of the cleaning solution as the liquid, the supplying operation is stopped when the surface level of the cleaning solution becomes equal to or higher than the cleaning solution reference position.

Description

検査システムおよび検査方法Inspection system and inspection method
 本発明は、被検物質である抗原、抗体もしくはデオキシリボ核酸などを検出するための検査システムおよび検査方法に関する。 The present invention relates to a test system and a test method for detecting a test substance such as an antigen, an antibody, or deoxyribonucleic acid.
 生化学的な反応、例えば、酵素反応、核酸ハイブリダイゼーション、抗原-抗体反応などの特異的結合反応を検査する方法の一つとして、被検物質と捕捉物質との間の結合現象を光学的に検出する方法が知られている。この方法は、所定位置に固定されている捕捉物質に被検物質を結合させ、励起光を受けて蛍光を発する標識、あるいは基質の反応を触媒して発色、蛍光もしくは化学発光を生じさせる標識などをその被検物質に付与し、かかる標識に起因して生じる光を検出するものである。より具体的には、被検物質に特異的に結合する抗体などの結合物質に蛍光標識を付与し、蛍光標識から生じる蛍光を検出する方法、被検物質に特異的に結合する抗体などの結合物質に酵素を標識し、この酵素を触媒として反応する発色基質、蛍光基質、あるいは化学発光基質から生じる発色や蛍光、化学発光を検出する方法等が知られており、これらにより、被検物質の特定が可能となる。 As one of the methods for examining biochemical reactions, for example, specific binding reactions such as enzyme reactions, nucleic acid hybridizations, and antigen-antibody reactions, the binding phenomenon between a test substance and a capture substance is optically determined. A method of detecting is known. In this method, a test substance is bound to a capture substance fixed at a predetermined position and emits fluorescence upon receiving excitation light, or a label that catalyzes a substrate reaction to generate color, fluorescence, or chemiluminescence. Is applied to the test substance, and light generated due to the label is detected. More specifically, a method of detecting a fluorescence generated from a fluorescent label by attaching a fluorescent label to a binding substance such as an antibody that specifically binds to the test substance, a binding of an antibody that specifically binds to the test substance There are known methods for detecting color development, fluorescence, chemiluminescence, etc. generated from a chromogenic substrate, fluorescent substrate, or chemiluminescent substrate that reacts with this enzyme as a catalyst. Identification becomes possible.
 このような検査に用いられるバイオチップとしては、支持体に多数の貫通孔(細孔)が整列配置されてなる多孔性基板からなるデバイスの検討が進められている。
 そして、多孔性基板の細孔内に捕捉物質を固定化し、被検物質を含有する検体液を多孔性基板の裏面側から表面へと貫通孔を介してポンプで汲み上げ、循環させることにより、検体液が捕捉物質に効率的に接触されて、被検物質を捕捉物質に結合させる方法が特許文献1~3等に提案されている。この方法により、測定時間の大幅な短縮化を図ることができる。
As a biochip used for such an inspection, a device composed of a porous substrate in which a large number of through-holes (pores) are aligned on a support is being studied.
Then, the capture substance is fixed in the pores of the porous substrate, and the sample liquid containing the test substance is pumped from the back side to the surface of the porous substrate through the through hole and circulated, thereby allowing the sample to be circulated. Patent Documents 1 to 3 propose a method in which a liquid is efficiently brought into contact with a capture substance and a test substance is bound to the capture substance. By this method, the measurement time can be greatly shortened.
 米国特許第747056号明細書には、多孔性基板の下面に検体液中に先端が挿入されたピペットを接続し、上面にダイアフラムポンプを備え、圧力制御を行うことで検体液を細孔中に供給し、その液面を制御する方法が提案されている。 In U.S. Pat. No. 7,470,056, a pipette having a tip inserted into a sample liquid is connected to the lower surface of a porous substrate, a diaphragm pump is provided on the upper surface, and pressure control is performed to bring the sample liquid into the pores. A method of supplying and controlling the liquid level has been proposed.
 国際公開第2011/104584号には、多孔性基板からなる検査チップに対する検体液の反応工程、および非反応物質等を洗い流す洗浄工程を含む生体関連物質の検査方法において、検体液あるいは洗浄液等の流体をそれぞれに適した流動速度で流動させることができる流体移送装置および方法が提案されている。 International Publication No. 2011/104584 discloses a fluid such as a specimen liquid or a washing liquid in a method for examining a biological substance including a reaction process of a specimen liquid with respect to a test chip made of a porous substrate and a washing process of washing away non-reacted substances. Have been proposed that can flow at a flow rate suitable for each.
 国際公開第2006/013832号には、多孔性基板からなる検査チップに対する検体液の供給、洗浄液の供給等を自動処理可能とした生化学解析のための装置が開示されている。 International Publication No. 2006/013832 discloses an apparatus for biochemical analysis that can automatically supply a sample liquid, a cleaning liquid, and the like to a test chip made of a porous substrate.
 他方、特開2003-294755号公報には、透明体から構成された検体収容部と光透過式の液面位置認識センサを設けることで、光検出時における液面位置もしくは受光用の導光部材の位置制御を行う方法が開示されている。 On the other hand, Japanese Patent Application Laid-Open No. 2003-294755 discloses a light guide member for detecting a liquid level at the time of light detection or by receiving a light-transmitting liquid level position recognizing sensor provided with a specimen container made of a transparent body. A method for performing the position control of is disclosed.
 また、国際公開第2011/027851号には、捕捉物質が固定された検出領域を備えたマイクロ流路中に検体液を流動させることで反応を促進させる送液システムにおいて、流路内の液面位置を検出し、その液面位置に応じてマイクロ流路に接続されたポンプ制御を行う構成が開示されている。 In addition, International Publication No. 2011/027851 discloses a liquid level in a flow path in a liquid feeding system that promotes a reaction by flowing a sample liquid in a micro flow path having a detection region on which a capture substance is fixed. A configuration is disclosed in which the position is detected and the pump connected to the microchannel is controlled according to the liquid level position.
 米国特許第747056号明細書、国際公開第2011/104584号、国際公開第2006/013832号、特開2003-294755号公報、および国際公開第2011/027851号においては、液面レベルを調整することによる反応工程の最適化、あるいは検出の最適化が図られている。一方で、洗浄工程についてはあまり多くは記載されていない。 In U.S. Pat. No. 7,47056, International Publication No. 2011/104584, International Publication No. 2006/013832, International Publication No. 2003-294755, and International Publication No. 2011/027851, adjusting the liquid level The optimization of the reaction process or detection by means of the above is attempted. On the other hand, not much is described about the cleaning process.
 しかしながら、捕捉物質が固定されている細孔中に検体液を満たすことで反応させた後、検体液を洗浄することで、捕捉物質と反応していない残渣を除去する洗浄工程はノイズを抑制するために非常に重要な工程である。一方で、ノイズを生じさせる検体液の残渣は、十分に洗浄したいが、過剰な液量での洗浄を行うと多量の廃液が発生するという問題がある。
 現在はPOCT(Point of Care testing)が普及し、検査装置の小型化が進められる中で、廃液の処理は大きな課題のひとつになっている。
However, the cleaning process that removes residues that have not reacted with the capture substance by washing the sample liquid after reacting by filling the sample liquid in the pores where the capture substance is fixed suppresses noise. This is a very important process. On the other hand, the residue of the sample liquid that causes noise is desired to be sufficiently washed. However, there is a problem that a large amount of waste liquid is generated when washing with an excessive amount of liquid is performed.
Currently, with the spread of POCT (Point of Care testing) and the miniaturization of inspection devices, the treatment of waste liquid is one of the major issues.
 本発明は、上記事情に鑑み、検出信号におけるノイズを抑制すると共に、廃液量を抑制することが可能な検査システムおよび検査方法を提供することを目的とする。 In view of the above circumstances, an object of the present invention is to provide an inspection system and an inspection method capable of suppressing noise in a detection signal and suppressing the amount of waste liquid.
 本発明の検査システムは、一方の面から他方の面まで貫通した細孔を有し、細孔の内壁面に特定の物質と特異的に結合する捕捉物質が固定化されてなる板状の検査チップと、
 液体を貯留する容器と、
 上記容器中において、検査チップを水平に支持する支持部材と、
 検査チップの上面に液体を保持可能な液体保持部と、
 検査チップの下面から細孔に液体を供給する液体供給部と、
 液体保持部における液面の位置を検出する液面検出部と、
 液体供給部と液面検出部とに接続され、液面検出部により検出された液面の位置に応じて液体供給部による液体の供給動作を制御する制御部とを備えた検査システムにおいて、
 液体として反応液を細孔に供給する反応プロセスにおける、反応液の液面の到達設定位置である反応液基準位置が検査チップの上面より上に設定され、液体として洗浄液を細孔に供給する洗浄プロセスとにおける、洗浄液の液面の到達設定位置である洗浄液基準位置が、反応液基準位置よりも上に設定されており、
 制御部は、液体として反応液を供給する際には、反応液の液面が反応液基準位置以上になった時に液体供給部による供給動作を停止し、液体として洗浄液を供給する際には、洗浄液の液面が洗浄液基準位置以上になった時に供給動作を停止する検査システムである。
The inspection system of the present invention is a plate-shaped inspection having pores penetrating from one surface to the other surface, and a trapping substance that specifically binds to a specific substance is immobilized on the inner wall surface of the pore. Chips,
A container for storing liquid;
In the container, a support member that horizontally supports the inspection chip;
A liquid holding unit capable of holding liquid on the upper surface of the inspection chip; and
A liquid supply unit for supplying liquid to the pores from the lower surface of the inspection chip;
A liquid level detection unit for detecting the position of the liquid level in the liquid holding unit;
In an inspection system including a control unit that is connected to the liquid supply unit and the liquid level detection unit and controls the liquid supply operation by the liquid supply unit according to the position of the liquid level detected by the liquid level detection unit.
In the reaction process in which the reaction liquid is supplied to the pores as a liquid, the reaction liquid reference position, which is the arrival position of the reaction liquid surface, is set above the upper surface of the inspection chip, and the cleaning liquid is supplied to the pores as a liquid The cleaning liquid reference position, which is the arrival setting position of the cleaning liquid level in the process, is set above the reaction liquid reference position,
When supplying the reaction liquid as the liquid, the control unit stops the supply operation by the liquid supply unit when the liquid level of the reaction liquid becomes equal to or higher than the reaction liquid reference position, and when supplying the cleaning liquid as the liquid, This inspection system stops the supply operation when the level of the cleaning liquid reaches or exceeds the cleaning liquid reference position.
 本発明の検査システムにおいては、反応液基準位置は検査チップの上面から25mm以内、洗浄液基準位置は検査チップの上面から50mm以内とすることが好ましい。 In the inspection system of the present invention, the reaction liquid reference position is preferably within 25 mm from the upper surface of the inspection chip, and the cleaning liquid reference position is preferably within 50 mm from the upper surface of the inspection chip.
 本発明の検査システムにおいては、液体供給部は、細孔に供給した液体を細孔から排出させる排出動作も行うものであることが好ましい。 In the inspection system of the present invention, it is preferable that the liquid supply unit also performs a discharge operation for discharging the liquid supplied to the pores from the pores.
 本発明の検査システムにおいては、制御部は、液体供給部による供給動作を停止した後、予め設定された時間経過後に排出動作を実施させることが好ましい。 In the inspection system of the present invention, it is preferable that the control unit performs the discharge operation after a preset time has elapsed after stopping the supply operation by the liquid supply unit.
 本発明の検査システムにおいては、液体供給部を、液体保持部内を減圧および加圧するポンプから構成することができる。 In the inspection system of the present invention, the liquid supply unit can be constituted by a pump that depressurizes and pressurizes the liquid holding unit.
 本発明の検査システムにおいては、液体供給部を、容器内を減圧および加圧するポンプから構成してもよい。 In the inspection system of the present invention, the liquid supply unit may be constituted by a pump that depressurizes and pressurizes the inside of the container.
 本発明の検査システムにおいては、液体保持部が光透過性を有するものであり、液面検出部が光学カメラであることが好ましい。 In the inspection system of the present invention, it is preferable that the liquid holding unit has light permeability and the liquid level detection unit is an optical camera.
 本発明の検査システムにおいては、検査チップの一方の面または他方の面に対向して配置され、検査チップから出射される光を検出する光検出器を備えることが好ましい。 In the inspection system of the present invention, it is preferable to include a photodetector that is disposed opposite to one surface or the other surface of the inspection chip and detects light emitted from the inspection chip.
 本発明の検査システムにおいては、検査チップに備えられている捕捉物質が、抗原、抗体またはデオキシリボ核酸(deoxyribonucleic acid:DNA)であることが好ましい。 In the inspection system of the present invention, it is preferable that the capture substance provided in the inspection chip is an antigen, an antibody, or deoxyribonucleic acid (DNA).
 本発明の検査システムにおいては、検査チップがSi、SiO、Al、Al、ステンレス鋼および樹脂材料のうちの1つまたは2つ以上の材料からなることが好ましい。 In the inspection system of the present invention, it is preferable that the inspection chip is made of one or more of Si, SiO 2 , Al, Al 2 O 3 , stainless steel, and a resin material.
 本発明の検査システムにおいては、上記反応液を、検査に供される検体液、標識物質を含む標識溶液および検査用溶液のいずれかとすることができる。 In the test system of the present invention, the reaction solution can be any one of a sample solution used for testing, a labeled solution containing a labeled substance, and a testing solution.
 本発明の検査システムを用いた本発明の検査方法は、第1の反応プロセスとして、第1の反応液である、検査に供する検体液を細孔に供給して検体液中の特定の物質を捕捉物質に結合させ、検体液を細孔から排出し、
 第1の洗浄プロセスを実施し、
 第2の反応プロセスとして、第2の反応液である、特定の物質と特異的に結合する標識物質を含有する標識溶液を細孔に供給して標識物質を特定の物質に結合させ、標識溶液を細孔から排出し、
 第2の洗浄プロセスを実施し、
 第3の反応プロセスとして、第3の反応液である検査用溶液を細孔に供給し、
 細孔に検査用溶液を留めた状態で、検査チップから出射される光を検出する検査方法である。
In the inspection method of the present invention using the inspection system of the present invention, as a first reaction process, a first reaction liquid, which is a sample liquid to be used for inspection, is supplied to the pores, and a specific substance in the sample liquid is removed. Binds to the capture substance, discharges the sample liquid from the pores,
Performing a first cleaning process;
As a second reaction process, a labeling solution containing a labeling substance that specifically binds to a specific substance, which is a second reaction solution, is supplied to the pores to bind the labeling substance to the specific substance, and the labeling solution Are discharged from the pores,
Perform a second cleaning process,
As a third reaction process, a test solution that is a third reaction solution is supplied to the pores,
This is an inspection method for detecting light emitted from the inspection chip in a state where the inspection solution is retained in the pores.
 本発明の検査方法においては、標識物質として酵素標識を用い、検査用溶液として、酵素標識により触媒されて反応する基質を含む反応液を用い、出射される光として、検査用溶液中の基質が酵素標識により触媒されて生じる光を検出してもよい。
 なお、上記基質としては、発色基質、蛍光基質および化学発光基質などが挙げられ、これらの基質は酵素標識の種類に応じて適宜選択される。また、この基質に応じて、検査チップから出射される光は異なり、検出される光は、吸光(呈色)、蛍光または化学発光である。
In the inspection method of the present invention, an enzyme label is used as a labeling substance, a reaction solution containing a substrate that reacts catalyzed by the enzyme label is used as a test solution, and the substrate in the test solution is used as emitted light. Light generated by catalysis by an enzyme label may be detected.
Examples of the substrate include a chromogenic substrate, a fluorescent substrate, and a chemiluminescent substrate, and these substrates are appropriately selected according to the type of enzyme label. Further, the light emitted from the inspection chip differs depending on the substrate, and the detected light is light absorption (coloration), fluorescence, or chemiluminescence.
 本発明の検査方法においては、標識物質として蛍光標識を含む物質を用い、蛍光標識を励起させる励起光を検査チップに照射し、出射される光として、励起光の照射により蛍光標識から生じる蛍光を検出してもよい。 In the inspection method of the present invention, a substance containing a fluorescent label is used as the labeling substance, the inspection chip is irradiated with excitation light that excites the fluorescent label, and the fluorescence generated from the fluorescent label by irradiation of the excitation light is emitted as the emitted light. It may be detected.
 本発明の検査システムにおいては、液体として反応液を細孔に供給する反応プロセスにおける、反応液の液面の到達設定位置である反応液基準位置が検査チップの上面より上に設定され、液体として洗浄液を細孔に供給する洗浄プロセスとにおける、洗浄液の液面の到達設定位置である洗浄液基準位置が、反応液基準位置よりも上に設定されており、制御部は、液体として反応液を供給する際には、反応液の液面が反応液基準位置以上になった時に液体供給部による供給動作を停止し、液体として洗浄液を供給する際には、洗浄液の液面が洗浄液基準位置以上になった時に供給動作を停止する構成であるので、反応液は細孔を満たすので、細孔内の全域において各種結合反応をさせることができる。また、洗浄液の液面位置を検出して反応液の液面位置より上方に設定されている洗浄液基準位置まで上昇させるので、反応液の洗浄を十分行うことができ、検出信号におけるノイズを抑制することができる。また、洗浄液の液面位置を検出して洗浄液基準位置で洗浄液の供給を停止するので、必要以上の洗浄液を用いることなく、廃液量を抑制することができる。 In the inspection system of the present invention, in the reaction process of supplying the reaction liquid as a liquid to the pores, the reaction liquid reference position, which is the arrival setting position of the liquid surface of the reaction liquid, is set above the upper surface of the inspection chip, In the cleaning process for supplying cleaning liquid to the pores, the cleaning liquid reference position, which is the arrival setting position of the cleaning liquid level, is set above the reaction liquid reference position, and the controller supplies the reaction liquid as a liquid. When the liquid level of the reaction liquid becomes equal to or higher than the reaction liquid reference position, the supply operation by the liquid supply unit is stopped, and when the cleaning liquid is supplied as a liquid, the liquid level of the cleaning liquid is higher than the cleaning liquid reference position. Since the supply operation is stopped when it becomes, the reaction liquid fills the pores, so that various binding reactions can be performed in the entire area of the pores. Also, since the liquid level position of the cleaning liquid is detected and raised to the cleaning liquid reference position set above the liquid level position of the reaction liquid, the reaction liquid can be sufficiently cleaned and noise in the detection signal is suppressed. be able to. Further, since the liquid level position of the cleaning liquid is detected and the supply of the cleaning liquid is stopped at the cleaning liquid reference position, the amount of waste liquid can be suppressed without using an excessive amount of cleaning liquid.
本発明の第1の実施形態にかかる検査システムの概略構成図である。1 is a schematic configuration diagram of an inspection system according to a first embodiment of the present invention. 反応液の液面と液体供給動作の制御シーケンスの一例を示す図である。It is a figure which shows an example of the control sequence of the liquid level of a reaction liquid, and liquid supply operation | movement. 反応液の液面と液体供給動作の制御シーケンスの他の例を示す図である。It is a figure which shows the other example of the control sequence of the liquid level of a reaction liquid, and liquid supply operation | movement. 洗浄液の液面と液体供給動作の制御シーケンスの一例を示す図である。It is a figure which shows an example of the control sequence of the liquid level of a washing | cleaning liquid, and liquid supply operation | movement. 洗浄プロセスのフローを示す図である。It is a figure which shows the flow of a washing | cleaning process. 本発明の第2の実施形態にかかる検査システムの概略構成図である。It is a schematic block diagram of the test | inspection system concerning the 2nd Embodiment of this invention. 反応液の液面と液体供給動作の制御シーケンスの一例を示す図である。It is a figure which shows an example of the control sequence of the liquid level of a reaction liquid, and liquid supply operation | movement. 反応液の液面と液体供給動作の制御シーケンスの他の例を示す図である。It is a figure which shows the other example of the control sequence of the liquid level of a reaction liquid, and liquid supply operation | movement. 検査工程のフローを示す図である。It is a figure which shows the flow of an inspection process. 反応プロセスにおける各種結合反応の過程を示す模式図である。It is a schematic diagram which shows the process of the various coupling reactions in a reaction process.
 以下、図面を参照して本発明の実施形態を詳細に説明する。なお、本明細書において「~」とは、その前後に記載される数値を下限値および上限値として含む意味で使用される。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the present specification, “to” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
 図1は本発明の第1の実施形態にかかる検査システムの概略構成図である。
 本実施形態の検査システム1は、一方の面10aから他方の面10bまで貫通した細孔11を有し、細孔11の内壁面に特定の物質と特異的に結合する捕捉物質が固定化されてなる板状の検査チップ10と、液体を貯留する容器12と、容器12中において、検査チップ10を水平に支持すると共に、検査チップ10の上面10aに液体を保持する支持部材14とを備えている。支持部材14は、検査チップ10の上面10a上に液体を保持する液体保持部を兼ねているが、液体保持部は支持部材とは別体としてもよい。
FIG. 1 is a schematic configuration diagram of an inspection system according to the first embodiment of the present invention.
The inspection system 1 of the present embodiment has pores 11 penetrating from one surface 10a to the other surface 10b, and a trapping substance that specifically binds to a specific substance is immobilized on the inner wall surface of the pore 11. Plate-shaped inspection chip 10, a container 12 for storing liquid, and a support member 14 that horizontally supports the inspection chip 10 and holds the liquid on the upper surface 10 a of the inspection chip 10 in the container 12. ing. The support member 14 also serves as a liquid holding unit that holds liquid on the upper surface 10a of the test chip 10, but the liquid holding unit may be separated from the support member.
 なお、ここで「水平に支持する」とは、検査チップ10の下面10bが液体の表面と平行となるように検査チップ10を支持することをいうが、液体の表面と検査チップ10の下面10bのなす角度が±10°の範囲であれば許容されるものとする。
 また、本明細書中において上下方向は鉛直方向に一致し、検査チップ10が水平配置される使用時における検査チップ10の鉛直上向きの面を上面10a、鉛直下向きの面を下面10bとする。
Here, “support horizontally” means that the test chip 10 is supported so that the lower surface 10 b of the test chip 10 is parallel to the surface of the liquid. However, the liquid surface and the lower surface 10 b of the test chip 10 are supported. If the angle formed by is in the range of ± 10 °, it is allowed.
Further, in the present specification, the vertical direction coincides with the vertical direction, and the vertically upward surface of the inspection chip 10 in use in which the inspection chip 10 is horizontally disposed is the upper surface 10a, and the vertically downward surface is the lower surface 10b.
 本検査システム1は、さらに、検査チップ10の下面10bから細孔11に液体を供給する液体供給部として、検査チップ10の上面10aおよび支持部材14で囲われた空間15を閉じて、その空間15を減加圧するポンプ16、液体保持部を兼ねる支持部材14における液面の位置を検出する液面検出部としての光学カメラ18、およびポンプ16と光学カメラ18とに接続され、光学カメラ18により検出された液面の位置に応じてポンプ16による液体の供給動作を制御する制御部20を備えている。なお、制御部20は本例ではポンプ16と別に設けられているが、ポンプと一体となるように設けられていてもよい。 The inspection system 1 further closes the space 15 surrounded by the upper surface 10a of the inspection chip 10 and the support member 14 as a liquid supply unit that supplies liquid to the pores 11 from the lower surface 10b of the inspection chip 10, and the space 15 The pump 16 that depressurizes 15, the optical camera 18 as a liquid level detection unit that detects the position of the liquid level in the support member 14 that also serves as a liquid holding unit, and the pump 16 and the optical camera 18 are connected to the optical camera 18. A control unit 20 is provided for controlling the liquid supply operation by the pump 16 in accordance with the detected position of the liquid level. The control unit 20 is provided separately from the pump 16 in this example, but may be provided so as to be integrated with the pump.
 また、本検査システム1は、洗浄液の排液を排出するための洗浄液排出部21を備えている。洗浄液排出部21には廃液容器21aが備えられており、細孔11中に供給された洗浄液を排出する際には、一旦、容器24から検査チップ10を支持部材14ごと取り外し、廃液容器21a上にセットして、細孔11中および支持部材14の液体保持部14b中の洗浄液を廃液容器21a中に排出する。 The inspection system 1 also includes a cleaning liquid discharge unit 21 for discharging the cleaning liquid drain. The cleaning liquid discharge unit 21 is provided with a waste liquid container 21a. When the cleaning liquid supplied into the pores 11 is discharged, the inspection chip 10 is once removed from the container 24 together with the support member 14, and the waste liquid container 21a Then, the cleaning liquid in the pores 11 and in the liquid holding part 14b of the support member 14 is discharged into the waste liquid container 21a.
 さらに、本検査システム1は、暗室23内に配置された光検出器22aおよび検査チップ10からの光を集光するレンズ22bから構成される光信号測定部22を備えている。光信号測定部22において、検査チップ10は光検出器22aの下方に配置され、光検出器22aは検査チップ10から出射される光を、検査チップ10の鉛直上方から検出する。検査チップ10からの光検出を行う際には、検査チップ10は支持部材14ごと容器12から外部に取り出されて、光信号測定部22にセットされる。このように、本例においては、光信号測定部22は、反応液あるいは洗浄液を検査チップ10に供給するための構成要素とは別の場所に設置されている。なお、光検出器22aを、容器12の下方に備え、容器12を介して光検出を行うことも可能であるが、容器12や容器12中の溶液による光の散乱等のノイズまで検出してしまうので、光検出器22aは、本例のように容器12とは別の場所に設けられた光信号測定部22に備えることが好ましい。また、本例においては、検査チップ10の鉛直上方から光を検出するよう構成されているが、検査チップ10を光検出器の上方に配置して、検査チップ10の下面側から光を検出するように構成されていてもよい。 The inspection system 1 further includes an optical signal measurement unit 22 including a photodetector 22a disposed in the dark room 23 and a lens 22b that collects light from the inspection chip 10. In the optical signal measuring unit 22, the inspection chip 10 is disposed below the photodetector 22 a, and the photodetector 22 a detects light emitted from the inspection chip 10 from vertically above the inspection chip 10. When performing light detection from the inspection chip 10, the inspection chip 10 is taken out of the container 12 together with the support member 14 and set in the optical signal measurement unit 22. Thus, in this example, the optical signal measuring unit 22 is installed at a location different from the component for supplying the reaction liquid or the cleaning liquid to the test chip 10. It is also possible to provide a photodetector 22a below the container 12 and perform light detection via the container 12, but detect even noise such as light scattering by the container 12 or the solution in the container 12. Therefore, it is preferable that the photodetector 22a is provided in the optical signal measurement unit 22 provided in a place different from the container 12 as in this example. Further, in this example, the light is detected from above the inspection chip 10 vertically, but the inspection chip 10 is disposed above the photodetector to detect light from the lower surface side of the inspection chip 10. It may be configured as follows.
 本実施形態において、検査チップ10は、複数の細孔11が二次元状に配列されてなる板状基材である。検査チップ10は、Si(シリコン)、SiO(シリコン酸化物)、Al(アルミニウム)、Al(アルミナ)、ステンレス鋼および樹脂材料のいずれか1種もしくは2種以上の材料から構成されていることが好ましい。 In this embodiment, the test | inspection chip 10 is a plate-shaped base material by which the several pore 11 is arranged in two dimensions. The inspection chip 10 is made of one or more materials selected from Si (silicon), SiO 2 (silicon oxide), Al (aluminum), Al 2 O 3 (alumina), stainless steel, and a resin material. It is preferable.
 検査チップ10の厚さには、特に制限はないが、100μm~2000μm程度が好ましい。 The thickness of the inspection chip 10 is not particularly limited, but is preferably about 100 μm to 2000 μm.
 検査チップ10の細孔11の開口形状は、特に制限されず、円形、楕円形あるいは多角形であってもよい。細孔11は、柱状で断面形状が変化しないものが一般的であるが、一部断面形状が変化したり、断面の大きさが変化したりしても構わない。
 なお、細孔11の少なくとも一方の面における開口の円相当直径が1μm~100μm程度であることが好ましい。より好ましくは3μm~50μmであり、特に好ましくは5μm~30μmである。なお、円相当直径とは、開口領域の面積と同等の面積を有する円の直径をいう。
The opening shape of the pores 11 of the inspection chip 10 is not particularly limited, and may be a circle, an ellipse, or a polygon. The pores 11 are generally columnar and the cross-sectional shape does not change, but the cross-sectional shape may partially change or the cross-sectional size may change.
It is preferable that the equivalent circle diameter of the opening on at least one surface of the pore 11 is about 1 μm to 100 μm. More preferably, it is 3 μm to 50 μm, and particularly preferably 5 μm to 30 μm. The equivalent circle diameter refers to the diameter of a circle having an area equivalent to the area of the opening region.
 検査チップ10の平面形状は特に限定されないが、正方形、長方形などの矩形あるいは円形が好ましい。 The planar shape of the inspection chip 10 is not particularly limited, but is preferably a rectangle such as a square or a rectangle, or a circle.
 支持部材14は、検査チップ10の外形に応じた検査チップ受容部14aを備えている。支持部材14の検査チップ受容部14aおよび検査チップ10に、両者を係合するための係合部あるいは互いに嵌め合せるための嵌合部等を備えていればよい。
 さらに、支持部材14は検査チップ10の上面10a上に液体を保持する液体保持部14bと、検査チップ10を容器12中において支持するために、容器12の一部に係止される鍔部14cを備えている。この鍔部14cを容器12の上面の一部に係止することによって支持部材14を容器12に対して固定することができる。
The support member 14 includes an inspection chip receiving portion 14 a corresponding to the outer shape of the inspection chip 10. The inspection chip receiving portion 14a and the inspection chip 10 of the support member 14 may be provided with an engagement portion for engaging both or a fitting portion for fitting each other.
Further, the support member 14 includes a liquid holding portion 14b that holds a liquid on the upper surface 10a of the inspection chip 10 and a flange portion 14c that is locked to a part of the container 12 in order to support the inspection chip 10 in the container 12. It has. The support member 14 can be fixed to the container 12 by locking the flange 14 c to a part of the upper surface of the container 12.
 支持部材14の形態は本例に限るものではない。既述の通り、液体保持部は支持部材とは別体として構成されていてもよく、例えば、容器12の一部に検査チップを載置するための台座を設けてその台座を検査チップを支持する支持部材とし、検査チップの上面に対して押し付けられるようにして設置される、液体を保持可能な筒状部材を液体保持部材として設けてもよい。 The form of the support member 14 is not limited to this example. As described above, the liquid holding unit may be configured separately from the support member. For example, a pedestal for placing the inspection chip is provided on a part of the container 12 and the pedestal is supported by the pedestal. A cylindrical member capable of holding a liquid, which is installed so as to be pressed against the upper surface of the inspection chip, may be provided as the liquid holding member.
 なお、支持部材14のうち特に液体保持部14bは、光学カメラ18による液面位置の確認のため、光透過性を有するものであることが好ましい。支持部材14と検査チップ10は、脱着自在として、支持部材14を再利用するようにしてもよいし、支持部材14と検査チップ10を一旦接続して使用した後は、そのまま破棄するようにしてもよい。また、支持部材14と検査チップ10は一体的に形成されていてもよい。 In addition, it is preferable that especially the liquid holding | maintenance part 14b among the supporting members 14 has a light transmittance for confirmation of the liquid level position by the optical camera 18. FIG. The support member 14 and the inspection chip 10 may be detachable so that the support member 14 may be reused, or after the support member 14 and the inspection chip 10 are once connected and used, they are discarded as they are. Also good. Moreover, the support member 14 and the test | inspection chip 10 may be integrally formed.
 本検査システム1において検査対象とされる被検物質(標的分子)は、主として、生体由来分子であり、抗原および抗体などのタンパク質、糖類、ペプチド、DNA、リボ核酸(ribonucleic acid:RNA)、ペプチド核酸(peptide nucleic acid:PNA)などである。そして、細孔11の内壁面に固定されている、特定の物質と特異的に結合する捕捉物質としては、これらの被検物質と特異的に結合する物質である。 The test substance (target molecule) to be tested in this test system 1 is mainly a biological molecule, such as proteins such as antigens and antibodies, saccharides, peptides, DNA, ribonucleic acid (RNA), peptides Examples thereof include nucleic acids (peptide nucleic acid: PNA). The capture substance that is specifically fixed to the inner wall surface of the pore 11 and specifically binds to a specific substance is a substance that specifically binds to these test substances.
 上記構成の検査システム1を用いた検査方法の検査フローには、液体として反応液を細孔に供給する反応プロセスと、液体として洗浄液を細孔に供給する洗浄プロセスがある。 The inspection flow of the inspection method using the inspection system 1 configured as described above includes a reaction process for supplying a reaction liquid as liquid to the pores and a cleaning process for supplying a cleaning liquid as liquid to the pores.
 検査チップ10が容器12中の液体に下面10bが接触するように水平に支持された状態で、ポンプ16により空間15が減圧されると、検査チップ10の下面10b側から細孔11中に液体が吸引される。また、細孔11中に液体が入っている状態で、空間15が加圧されると、検査チップ10の細孔11中から液体が下方に押し出され排出される。このポンプ16の動作により、細孔11内への液体の供給(吸引)および排出が行われる。本例では、ポンプ16による空間15の減圧動作が液体の供給動作に相当し、空間15の加圧動作が液体の排出動作に相当する。 When the space 15 is depressurized by the pump 16 in a state where the inspection chip 10 is horizontally supported so that the lower surface 10b comes into contact with the liquid in the container 12, the liquid enters the pores 11 from the lower surface 10b side of the inspection chip 10. Is sucked. Further, when the space 15 is pressurized in a state where the liquid is contained in the pores 11, the liquid is pushed out from the pores 11 of the inspection chip 10 and discharged. By the operation of the pump 16, supply (suction) and discharge of the liquid into the pores 11 are performed. In this example, the decompression operation of the space 15 by the pump 16 corresponds to a liquid supply operation, and the pressurization operation of the space 15 corresponds to a liquid discharge operation.
 本検査システム1においては、反応プロセスにおける、反応液の液面の到達設定位置である反応液基準位置hが検査チップ10の上面10aの位置hより上に設定され、洗浄プロセスにおける、洗浄液の液面の到達設定位置である洗浄液基準位置hが反応液基準位置hより上に設定されている。すなわち、検査チップ上面位置h<反応液基準位置h<洗浄液基準位置hと設定されている。
 なお、一つの検査フローにおいて、複数回の異なる反応プロセス、洗浄プロセスを有する場合には、連続して行われる反応プロセスと洗浄プロセスにおける反応液基準位置と洗浄液基準位置との関係が上記を満たせばよい。すなわち、複数の反応プロセス間における、反応液基準位置は必ずしも一致していなくてもよい。
In this inspection system 1, in the reaction process, it is reached set position of the liquid surface of the reaction liquid reaction mixture reference position h 1 is set above the position h 0 of the upper surface 10a of the test chip 10, in the cleaning process, the cleaning liquid The cleaning liquid reference position h 2, which is the arrival setting position of the liquid level, is set above the reaction liquid reference position h 1 . That is, the inspection chip upper surface position h 0 <reaction liquid reference position h 1 <cleaning liquid reference position h 2 is set.
In the case of having a plurality of different reaction processes and cleaning processes in one inspection flow, the relationship between the reaction process performed continuously and the reaction liquid reference position in the cleaning process and the cleaning liquid reference position satisfy the above. Good. That is, the reaction liquid reference positions among a plurality of reaction processes do not necessarily coincide.
 例えば、第1の反応プロセスにおける反応液基準位置をh11、第1の反応プロセスに引き続き行われる第1の洗浄プロセスにおける洗浄液基準位置をh12とし、その後に実施される第2の反応プロセスにおける反応液基準位置をh21、第2の洗浄プロセスにおける洗浄液基準位置をh22としたとき、h<h11<h12、h<h21<h22を満たせばよく、h11=h21、h12=h22である必要はない。尤も、制御シーケンスを共通にできることから、一つの検査フローにおける複数の反応プロセス、または複数の洗浄プロセスはそれぞれ同一の反応液基準位置、洗浄液基準位置とすることが好ましい。 For example, the reaction liquid reference position in the first reaction process is set as h 11 , the cleaning liquid reference position in the first cleaning process performed subsequent to the first reaction process is set as h 12, and the second reaction process performed thereafter is performed. When the reaction liquid reference position is h 21 and the cleaning liquid reference position in the second cleaning process is h 22 , h 0 <h 11 <h 12 , h 0 <h 21 <h 22 may be satisfied, and h 11 = h 21 , h 12 = h 22 need not be satisfied. However, since a control sequence can be made common, it is preferable that a plurality of reaction processes or a plurality of cleaning processes in one inspection flow have the same reaction liquid reference position and cleaning liquid reference position, respectively.
 なお、反応液基準位置hは検査チップ上面位置hから25mm以内とすることが好ましい。反応液の液面が位置hを超えれば細孔中のける反応は効率的になされる。また、反応液基準位置hを検査チップ上面位置hから25mm以内とすることにより、反応液の液量を抑制することができると共に、洗浄すべき範囲も抑制することができる。
 そして、洗浄液基準位置hは検査チップ上面位置hから50mm以内とすることが好ましい。但し、既述の通り、洗浄液基準位置hは反応液基準位置hよりも上方に位置する。洗浄液基準位置hが反応液基準位置hよりも上方にあれば、洗浄液を反応液が供給された位置よりも上方まで供給することができるため、反応液の残液の除去効果が高い。また、洗浄液基準位置hを検査チップ上面位置hから50mm以内とすることにより、洗浄液の液量を抑制することができる。本構成によれば、十分な洗浄と廃液量の抑制を両立することができる。
The reaction liquid reference position h 1 is preferably within 25 mm from the inspection chip upper surface position h 0 . If the liquid level of the reaction liquid exceeds the position h 0 , the reaction in the pores is efficiently performed. In addition, by setting the reaction liquid reference position h 1 within 25 mm from the inspection chip upper surface position h 0, the amount of the reaction liquid can be suppressed, and the range to be cleaned can also be suppressed.
The cleaning liquid reference position h 2 is preferably within 50 mm from the inspection chip upper surface position h 0 . However, as previously described, the cleaning liquid reference position h 2 is located above the reaction liquid reference position h 1. If the cleaning liquid reference position h 2 is above the reaction liquid reference position h 1 , the cleaning liquid can be supplied to a position higher than the position where the reaction liquid is supplied. Therefore, the effect of removing the residual liquid of the reaction liquid is high. Further, by within 50mm of the cleaning liquid reference position h 2 from the test chip surface position h 0, it is possible to suppress the liquid amount of the cleaning liquid. According to this configuration, it is possible to achieve both sufficient cleaning and reduction of the amount of waste liquid.
 制御部20は、反応プロセスにおいて、細孔11に反応液を供給する際には、反応液の液面が反応液基準位置h以上になった時にポンプ16による供給動作を停止し、洗浄プロセスにおいて、細孔11に液体として洗浄液を供給する際には、洗浄液の液面が洗浄液基準位置h以上になった時に供給動作を停止するようにポンプ16を制御する。反応液および洗浄液の液面の位置は光学カメラ18によりモニタされており、その液面位置情報は制御部20に常時送られている。 Control unit 20, in the reaction process, when supplying the reaction liquid into the pores 11 stops the supply operation by the pump 16 when the liquid surface of the reaction solution reached the reaction liquid reference position h 1 or more, the cleaning process When supplying the cleaning liquid as the liquid to the pores 11, the pump 16 is controlled so that the supply operation is stopped when the level of the cleaning liquid reaches or exceeds the cleaning liquid reference position h 2 . The position of the liquid surface of the reaction liquid and the cleaning liquid is monitored by the optical camera 18, and the liquid surface position information is constantly sent to the control unit 20.
 制御部20は、例えばパーソナルコンピュータにより構成することができる。コンピュータには、そのコンピュータを制御部20として機能させるプログラムが組み込まれている。 The control unit 20 can be configured by a personal computer, for example. A program that causes the computer to function as the control unit 20 is incorporated in the computer.
 反応プロセスにおけるポンプ16の制御シーケンスの一例を図2に示す。図2には、液面位置の時間変化とポンプによる減加圧制御の時間変化を併せて示している。
 制御部20は、まず時刻tにおいて、ポンプ16による空間15の減圧動作を開始する。空間15が減圧されると、検査チップ10の下面10bから細孔11中に反応液が供給(吸引)され、液面位置は徐々に上昇する。光学カメラ18により検出される反応液の液面位置と反応液基準位置hとを比較し、液面位置が反応液基準位置hになった時刻tで、ポンプ16による減圧動作を停止し、加圧動作に切り換える。加圧動作は細孔11中から反応液が完全に排出されるのを光学カメラ18で検出してもよいし、予め排出に必要な時間を測定しておき、加圧動作時間を定めておいてもよい。この減圧加圧を3回繰り返すことにより、細孔11中における反応をさらに促進させることができる。
An example of the control sequence of the pump 16 in the reaction process is shown in FIG. In FIG. 2, the time change of the liquid level position and the time change of the depressurization control by the pump are shown together.
First, at time t 0 , the control unit 20 starts the pressure reducing operation of the space 15 by the pump 16. When the space 15 is depressurized, the reaction liquid is supplied (suctioned) into the pores 11 from the lower surface 10b of the test chip 10, and the liquid surface position gradually rises. Comparing the liquid level of the reaction solution to be detected by the optical camera 18 and the reaction solution reference position h 1, at time t 1 the liquid level reaches the reaction solution reference position h 1, stops the pressure reducing operation by the pump 16 And switch to pressurization. In the pressurizing operation, it may be detected by the optical camera 18 that the reaction solution is completely discharged from the pores 11, or the time required for discharging is measured in advance to determine the pressurizing operation time. May be. By repeating this decompression and pressurization three times, the reaction in the pores 11 can be further promoted.
 反応プロセスにおけるポンプ16の制御シーケンスの他の一例を図3に示す。図3においても、液面位置の時間変化とポンプによる減加圧制御の時間変化を併せて示している。
 制御部20は、まず時刻tにおいてポンプ16による空間15の減圧動作を開始する。空間15が減圧されると、検査チップ10の下面10bから細孔11中に反応液が供給され、液面位置は徐々に上昇する。光学カメラ18により検出される反応液の液面位置と反応液基準位置hとを比較し、液面位置が反応液基準位置hになった時刻tで、ポンプ16による減圧動作を停止する。本例においては、減圧動作を停止し、空間15を大気圧に戻した状態で一定時間t維持した後、加圧動作に切り換える。大気圧に戻した状態では、液面は反応液基準位置hから検査チップ上面位置hまで徐々に低下し、表面張力により位置hで維持される。加圧動作は細孔11中から反応液が完全に排出されるのを光学カメラ18で検出してもよいし、予め排出に必要な時間を測定しておき、加圧動作時間を定めておいてもよい。減圧動作から加圧動作に切り換える間の大気圧で維持する時間tは、予め適宜設定すればよく、一例として、30分程度とする。この減圧、大気圧下での保持、加圧を3回繰り返すことにより、細孔11中における反応をさらに促進させることができる。
Another example of the control sequence of the pump 16 in the reaction process is shown in FIG. Also in FIG. 3, the time change of the liquid level position and the time change of the depressurization control by the pump are shown together.
Control unit 20 first starts the depressurization operation of the space 15 by the pump 16 at time t 0. When the space 15 is depressurized, the reaction liquid is supplied into the pores 11 from the lower surface 10b of the test chip 10, and the liquid surface position gradually rises. Comparing the liquid level of the reaction solution to be detected by the optical camera 18 and the reaction solution reference position h 1, at time t 1 the liquid level reaches the reaction solution reference position h 1, stops the pressure reducing operation by the pump 16 To do. In this example, the decompression operation is stopped, and after maintaining the space 15 to atmospheric pressure for a predetermined time t, the operation is switched to the pressurization operation. In the state returning to atmospheric pressure, liquid level decreases gradually from the reaction solution reference position h 1 to the inspection chip upper surface position h 0, it is maintained at a position h 0 by the surface tension. In the pressurizing operation, it may be detected by the optical camera 18 that the reaction solution is completely discharged from the pores 11, or the time required for discharging is measured in advance to determine the pressurizing operation time. May be. The time t maintained at atmospheric pressure during switching from the decompression operation to the pressurization operation may be appropriately set in advance, and is set to about 30 minutes as an example. The reaction in the pores 11 can be further promoted by repeating this decompression, holding under atmospheric pressure, and pressurization three times.
 なお、上記各シーケンスにおいて、空間15の加圧による反応液の排出の際には、反応液は細孔11中から完全に排出されていなくても構わない。また、上記各例では、いずれも減圧~加圧を3回繰り返すとしたが、この回数には特に制限はなく、1回のみであってもよいし、2回、あるいは4回以上としてもよい。 In each of the above sequences, when the reaction liquid is discharged by pressurizing the space 15, the reaction liquid may not be completely discharged from the pores 11. Further, in each of the above examples, the depressurization to pressurization are repeated three times. However, the number of times is not particularly limited, and may be only once, or may be twice or four or more times. .
 洗浄プロセスにおける液面位置の時間変化を図4Aに示し、洗浄プロセスのフローを図4Bに示す。
 洗浄プロセスは、容器12に洗浄液が貯留された状態で、かつ検査チップ10が洗浄液の上方に下面10bが洗浄液に浸されていない状態から開始する。制御部20は、この状態でポンプ16による空間15の減圧動作を開始する(S11)。その後、検査チップ10の下面10bを洗浄液に浸す(S12)。洗浄液の吸引時に細孔11中に残っている反応液の洗浄液への拡散を最小化するために、このように検査チップ10の下面10bを容器12中の洗浄液に接触させていない状態で空間15の減圧動作を開始し、その後に検査チップ10の下面10bを洗浄液に浸すことが好ましい。なお、検査チップ10の下面10bを洗浄液に浸した際には、検査チップ10の下面10bに付着している反応液は微量ながら洗浄液中に拡散する。しかしながら、拡散する反応液は全体量に対して極微量であるため、問題にはならない。ポンプ16による空間15の減圧動作がなされている状態で検査チップ10の下面10bが洗浄液に浸された時刻t10において検査チップ10の下面10bから細孔11中への洗浄液の供給が開始され、液面位置は徐々に上昇する。このとき、減圧の圧力を反応プロセスの場合の減圧圧力よりも小さく(絶対値では大きく)しておき、液面を反応液基準位置hより上方に位置する洗浄液基準位置hまで上昇させる。光学カメラ18により検出される洗浄液の液面位置と洗浄液基準位置hとを比較し、液面位置が洗浄液基準位置hになった時刻t11で、ポンプ16による減圧動作を停止する(S13)。空間15の負圧を保ち、液面位置をほぼ維持したまま、検査チップ10を支持部材14ごと容器12から取り外し、洗浄液排出部21に移動し、廃液容器21a上にセットする(S14)。そして、時刻t12に、ポンプ16による空間15の加圧を開始し、検査チップ10の細孔11中および液体保持部14bに溜められている洗浄液を廃液容器21a中に排出させる(S15)。
FIG. 4A shows the time change of the liquid surface position in the cleaning process, and FIG. 4B shows the flow of the cleaning process.
The cleaning process starts from a state in which the cleaning liquid is stored in the container 12 and the inspection chip 10 is not immersed in the cleaning liquid above the cleaning liquid and the lower surface 10b. In this state, the control unit 20 starts the pressure reducing operation of the space 15 by the pump 16 (S11). Thereafter, the lower surface 10b of the inspection chip 10 is immersed in a cleaning liquid (S12). In order to minimize the diffusion of the reaction solution remaining in the pores 11 into the cleaning solution when the cleaning solution is sucked, the space 15 is kept in a state where the lower surface 10b of the test chip 10 is not in contact with the cleaning solution in the container 12 in this way. It is preferable to start the decompression operation and then immerse the lower surface 10b of the inspection chip 10 in the cleaning liquid. In addition, when the lower surface 10b of the test chip 10 is immersed in the cleaning liquid, the reaction liquid adhering to the lower surface 10b of the test chip 10 diffuses into the cleaning liquid with a small amount. However, since the diffusion reaction solution is extremely small with respect to the total amount, it does not matter. Supply of the cleaning liquid at a time t 10 that the lower surface 10b is immersed in the cleaning solution of the test chip 10 in a state that vacuum operation of the space 15 by the pump 16 is made from the lower surface 10b of the test chip 10 into the pores 11 is started, The liquid level gradually rises. At this time, the pressure of the reduced pressure is made smaller than the reduced pressure in the case of the reaction process (large in absolute value), and the liquid level is raised to the cleaning liquid reference position h 2 located above the reaction liquid reference position h 1 . Comparing the liquid level position and the cleaning liquid reference position h 2 of the cleaning liquid is detected by the optical camera 18 at time t 11 the liquid level reaches the cleaning liquid reference position h 2, to stop the depressurization operation by the pump 16 (S13 ). While maintaining the negative pressure in the space 15 and substantially maintaining the liquid level position, the test chip 10 is removed from the container 12 together with the support member 14, moved to the cleaning liquid discharger 21, and set on the waste liquid container 21a (S14). At time t 12, to start the pressurization of the space 15 by the pump 16 to discharge the cleaning liquid has accumulated in the pores 11 of the test chip 10 and the liquid holding portion 14b in a waste container 21a (S15).
 1回のみの洗浄であれば(S16;No)以上で終了であり、さらに、洗浄を繰り返す場合には(S16;Yes)、検査チップ10を容器12上に移動し(S17)、S11~S15のステップを繰り返す。この減圧による洗浄液の供給、負圧を維持して洗浄液の液面を維持しての移動、および加圧による廃液容器21aへの洗浄液の排出を繰り返すことにより、細孔11中に残留する反応液の残液をより精度よく洗浄除去することができる。図4Aは、S11~S15のステップを3回繰り返した場合の液面位置の変化を示している。なお、上記においては、細孔11への洗浄液供給後、空間15の負圧を保ち洗浄液排出部21に移動することとしているが、空間15を大気圧に開放し、検査チップ10の細孔11中に洗浄液を保持させた状態で、検査チップ10を洗浄液排出部21に移動するようにしてもよい。 If the cleaning is performed only once (S16; No), the process is completed. If the cleaning is repeated (S16; Yes), the test chip 10 is moved onto the container 12 (S17), and S11 to S15. Repeat the steps. By repeating the supply of the cleaning liquid by this decompression, the movement of maintaining the liquid level of the cleaning liquid by maintaining the negative pressure, and the discharge of the cleaning liquid to the waste liquid container 21a by the pressurization, the reaction liquid remaining in the pores 11 is repeated. The remaining liquid can be cleaned and removed with higher accuracy. FIG. 4A shows a change in the liquid surface position when the steps S11 to S15 are repeated three times. In the above description, after supplying the cleaning liquid to the pores 11, the negative pressure in the space 15 is maintained and moved to the cleaning liquid discharge unit 21. However, the space 15 is opened to atmospheric pressure, and the pores 11 of the test chip 10 are opened. You may make it move the test | inspection chip 10 to the washing | cleaning liquid discharge part 21 in the state holding the washing | cleaning liquid in it.
 なお、図2~4Aは、シーケンスを模式的に表すものであり、減加圧時における液面位置の変化は、必ずしも図2~図4Aに示されるような一次関数で示されるものに限らない。 2 to 4A schematically show the sequence, and the change in the liquid surface position at the time of depressurization is not necessarily limited to that shown by a linear function as shown in FIGS. 2 to 4A. .
 図5は、本発明の第2の実施形態にかかる検査システム2の概略構成図である。以下においては、第1の実施形態の検査システム1と異なる点を主に説明し、共通する構成については同一の符号を付して詳細な説明を省略する。 FIG. 5 is a schematic configuration diagram of an inspection system 2 according to the second embodiment of the present invention. In the following, differences from the inspection system 1 according to the first embodiment will be mainly described, and the same components are denoted by the same reference numerals and detailed description thereof will be omitted.
 本実施形態の検査システム2は、液体を保持する容器24の形状、および液体供給部であるポンプ16が容器24に接続されており、洗浄液排出部21の廃液容器21bがポンプ16に接続されている点で、上記検査システム1の構成と異なる。ポンプ16は切替バルブ16aにより容器12および廃液容器21bとの間で接続を切り替えることが可能となっている。本検査システム2においては、ポンプ16は容器24の空間25を加減圧することにより検査チップ10の細孔11への液体の供給及び細孔11からの液体の排出を行う。また、洗浄液排出部21の廃液容器21b内部空間を減圧することにより検査チップ10の細孔11からの洗浄液の排出を行う。 In the inspection system 2 of the present embodiment, the shape of the container 24 that holds the liquid and the pump 16 that is the liquid supply unit are connected to the container 24, and the waste liquid container 21 b of the cleaning liquid discharge unit 21 is connected to the pump 16. It differs from the structure of the said inspection system 1 by the point. The pump 16 can switch the connection between the container 12 and the waste liquid container 21b by the switching valve 16a. In the inspection system 2, the pump 16 pressurizes and depressurizes the space 25 of the container 24 to supply liquid to the pores 11 of the inspection chip 10 and discharge liquid from the pores 11. Further, the cleaning liquid is discharged from the pores 11 of the test chip 10 by reducing the pressure inside the waste liquid container 21 b of the cleaning liquid discharger 21.
 容器24は、検査チップ10の下面10bと容器24により閉じた空間25を構成できる形状を有している。支持部材14の鍔部14cは容器24の上面の一部に係止可能とされて、容器24中に検査チップ10を支持することができる。なお、廃液容器21bも容器24とほぼ同様の形状を有している。 The container 24 has a shape that can form a space 25 closed by the lower surface 10b of the inspection chip 10 and the container 24. The flange portion 14 c of the support member 14 can be locked to a part of the upper surface of the container 24, and can support the inspection chip 10 in the container 24. Note that the waste liquid container 21 b has substantially the same shape as the container 24.
 検査チップ10が容器12中の液体に下面10bが接触するように水平に支持された状態で、ポンプ16により空間25が加圧されると、検査チップ10の下面10b側から細孔11中に液体が押し上げられる。また、細孔11中に液体が入っている状態で、空間25が減圧されると、検査チップ10の細孔11中から液体が下方に吸引されて排出される。このポンプ16の動作により、細孔11内への液体の供給および排出が行われる。本例では、ポンプ16による空間25の加圧動作が液体の供給動作に相当し、空間25の減圧動作が液体の排出動作に相当する。 When the space 25 is pressurized by the pump 16 in a state where the inspection chip 10 is horizontally supported so that the lower surface 10b comes into contact with the liquid in the container 12, the inspection chip 10 enters the pores 11 from the lower surface 10b side of the inspection chip 10. Liquid is pushed up. Further, when the space 25 is depressurized while the liquid is in the pores 11, the liquid is sucked downward and discharged from the pores 11 of the inspection chip 10. By the operation of the pump 16, the liquid is supplied to and discharged from the pores 11. In this example, the pressurization operation of the space 25 by the pump 16 corresponds to the liquid supply operation, and the decompression operation of the space 25 corresponds to the liquid discharge operation.
 本検査システム2における、検査チップ上面位置h、反応液基準位置hおよび洗浄液基準位置hの関係は第1の実施形態の検査システム1と同様であり、同様の効果を得ることができる。 The relationship between the inspection chip upper surface position h 0 , the reaction liquid reference position h 1 and the cleaning liquid reference position h 2 in the inspection system 2 is the same as that in the inspection system 1 of the first embodiment, and the same effect can be obtained. .
 反応プロセスにおけるポンプ16の制御シーケンスの一例を図6に示す。図6には、液面位置の時間変化とポンプによる減加圧制御の時間変化を併せて示している。
 制御部20は、まず時刻t20において、ポンプ16による空間25の加圧動作を開始する。空間25が加圧されると、検査チップ10の下面10bから細孔11中に反応液が供給され、液面位置は徐々に上昇する。光学カメラ18により検出される反応液の液面位置と反応液基準位置hとを比較し、液面位置が反応液基準位置hになった時刻t21で、ポンプ16による加圧動作を停止し、減圧動作に切り換える。減圧動作は細孔11中から反応液が完全に排出されるのを光学カメラ18で検出してもよいし、予め排出に必要な時間を測定しておき、減圧動作時間を定めておいてもよい。この加圧減圧を3回繰り返すことにより、細孔11中における反応をさらに促進させることができる。
An example of the control sequence of the pump 16 in the reaction process is shown in FIG. In FIG. 6, the time change of the liquid level position and the time change of the depressurization control by the pump are shown together.
Control unit 20 first at time t 20, to start the pressurizing operation of the space 25 by the pump 16. When the space 25 is pressurized, the reaction liquid is supplied into the pores 11 from the lower surface 10b of the test chip 10, and the liquid surface position gradually rises. Comparing the liquid level of the reaction solution to be detected by the optical camera 18 and the reaction solution reference position h 1, at time t 21 the liquid level reaches the reaction solution reference position h 1, the pressurizing operation by the pump 16 Stop and switch to decompression. In the depressurization operation, it may be detected by the optical camera 18 that the reaction solution is completely discharged from the pores 11, or the time required for the discharge may be measured in advance to determine the depressurization operation time. Good. By repeating this pressurization and depressurization three times, the reaction in the pores 11 can be further promoted.
 反応プロセスにおけるポンプ16の制御シーケンスの他の一例を図7に示す。図7においても、液面位置の時間変化とポンプによる減加圧制御の時間変化を併せて示している。
 制御部20は、まず時刻t20においてポンプ16による空間25の加圧動作を開始する。空間25が加圧されると、検査チップ10の下面10bから細孔11中に反応液が供給され、液面位置は徐々に上昇する。光学カメラ18により検出される反応液の液面位置と反応液基準位置hとを比較し、液面位置が反応液基準位置hになった時刻t21で、ポンプ16による加圧動作を停止する。本例においては、加圧動作を停止し、空間25を大気圧に戻した状態で一定時間t維持した後、減圧動作に切り換える。減圧動作は細孔11中から反応液が完全に排出されるのを光学カメラ18で検出してもよいし、予め排出に必要な時間を測定しておき、減圧動作時間を定めておいてもよい。加圧動作から加圧動作に切り換える間の大気圧で維持する時間tは、予め適宜設定すればよく、一例として、30分程度とする。この加圧、大気圧下での保持、減圧を3回繰り返すことにより、細孔11中における反応をさらに促進させることができる。
Another example of the control sequence of the pump 16 in the reaction process is shown in FIG. Also in FIG. 7, the time change of the liquid level position and the time change of the depressurization control by the pump are shown together.
Control unit 20 first starts a pressurizing operation of the space 25 by the pump 16 at time t 20. When the space 25 is pressurized, the reaction liquid is supplied into the pores 11 from the lower surface 10b of the test chip 10, and the liquid surface position gradually rises. Comparing the liquid level of the reaction solution to be detected by the optical camera 18 and the reaction solution reference position h 1, at time t 21 the liquid level reaches the reaction solution reference position h 1, the pressurizing operation by the pump 16 Stop. In this example, the pressurizing operation is stopped, and after maintaining the space 25 to atmospheric pressure for a predetermined time t, the operation is switched to the depressurizing operation. In the depressurization operation, it may be detected by the optical camera 18 that the reaction solution is completely discharged from the pores 11, or the time required for the discharge may be measured in advance to determine the depressurization operation time. Good. The time t maintained at the atmospheric pressure during the switching from the pressurizing operation to the pressurizing operation may be appropriately set in advance, and is set to about 30 minutes as an example. By repeating this pressurization, holding under atmospheric pressure, and decompression three times, the reaction in the pores 11 can be further promoted.
 上記の通り、本実施形態の反応プロセスにおける制御シーケンスは、減圧、加圧が第1の実施形態の場合と逆になるだけで他は、同一である。 As described above, the control sequence in the reaction process of the present embodiment is the same except that the decompression and pressurization are reversed from those in the first embodiment.
 洗浄プロセスは、反応プロセスの場合と同様に第1の実施形態における減圧および加圧のタイミングを逆にすればよい。洗浄プロセスにおいては、洗浄液を細孔11および液体保持部14bに供給し、ポンプ16の加圧動作を停止した後、液面位置を保った状態で、洗浄液排出部21に検査チップ10を移動させ、洗浄液を排出する。このとき、加圧動作停止後に検査チップ10の上面10aの空間(支持部材14の液体保持部14bの空間)15aを閉じて、洗浄液が検査チップ10の細孔11から自然落下による排出がなされない状態で検査チップ10を移動させる必要がある。例えば、支持部材14に空間15aを閉じるための蓋を備え、蓋を開閉することにより、空間15aを開放状態と閉状態で切り替え可能としておく。洗浄液供給時には空間15aを開放しておき、洗浄液の供給後にポンプを停止し、支持部材の開口部に蓋をして空間15aを閉じる。その後、空間25を大気圧に開放し、検査チップ10を支持部材14ごと、容器12から取り出し、廃液容器21bにセットする。検査チップ10を廃液容器21bにセットした後、支持部材14かの開口部の蓋を開き、空間15aを大気圧に開放する。このとき、細孔11から洗浄液は一部排出され、一部は細孔11中に維持される。ここで、ポンプ16の接続を廃液容器21b側に切り換えて、廃液容器21b内を減圧すれば、細孔11中の洗浄液を全て排出させることができる。 The cleaning process may be performed by reversing the timing of pressure reduction and pressurization in the first embodiment as in the case of the reaction process. In the cleaning process, the cleaning liquid is supplied to the pores 11 and the liquid holding unit 14b, and after stopping the pressurizing operation of the pump 16, the inspection chip 10 is moved to the cleaning liquid discharging unit 21 while maintaining the liquid level position. , Drain the cleaning solution. At this time, after the pressurization operation is stopped, the space (the space of the liquid holding portion 14b of the support member 14) 15a of the upper surface 10a of the test chip 10 is closed, and the cleaning liquid is not discharged from the pores 11 of the test chip 10 due to natural fall. It is necessary to move the inspection chip 10 in a state. For example, the support member 14 is provided with a lid for closing the space 15a, and the space 15a can be switched between an open state and a closed state by opening and closing the lid. The space 15a is opened when supplying the cleaning liquid, the pump is stopped after supplying the cleaning liquid, and the opening of the support member is covered to close the space 15a. Thereafter, the space 25 is opened to atmospheric pressure, the inspection chip 10 is taken out of the container 12 together with the support member 14, and is set in the waste liquid container 21b. After the inspection chip 10 is set in the waste liquid container 21b, the lid of the opening of the support member 14 is opened to open the space 15a to atmospheric pressure. At this time, a part of the cleaning liquid is discharged from the pores 11 and a part thereof is maintained in the pores 11. Here, if the connection of the pump 16 is switched to the waste liquid container 21b side and the pressure inside the waste liquid container 21b is reduced, all the cleaning liquid in the pores 11 can be discharged.
 次に、本発明の検査システムにおける検査方法について説明する。
 本発明において検査チップから出射され、光検出器により検出される光は、例えば、被検物質に付与された標識が励起されて生じる蛍光、もしくは被検物質に特異的に結合する抗体などの結合物質に、上記と同様の標識を付与し、標識から生じる光、あるいは被検物質に特異的に結合する抗体などの結合物質に酵素を標識し、この酵素を触媒とする反応による発光(以下において、「化学発光」という。)など、標識に起因する光信号である。なお、被検物質が自家蛍光を生じるものであれば、標識は不要であり、自家蛍光を検出すればよい。また、ここで光信号とは、蛍光、化学発光光のほか、吸光度(比色)を含むものとする。
Next, an inspection method in the inspection system of the present invention will be described.
In the present invention, the light emitted from the test chip and detected by the photodetector is, for example, fluorescence generated by excitation of a label attached to the test substance, or binding of an antibody that specifically binds to the test substance. The substance is given the same label as above, and light is emitted from the label, or an enzyme is labeled on a binding substance such as an antibody that specifically binds to the test substance, and light emission by the reaction using this enzyme as a catalyst (in the following) , Or “chemiluminescence”)). In addition, if the test substance generates autofluorescence, no label is necessary, and autofluorescence may be detected. Here, the optical signal includes absorbance (colorimetric) in addition to fluorescence and chemiluminescence light.
 以下、図8および図9を参照して、図1に示した第1の実施形態の検査システムを用いた検査方法の一例を説明する。図8は検査フローを示す図であり、図9はその検査フローにおける、第1~第3の反応プロセスにおける反応を模式的に示す図である。 Hereinafter, an example of an inspection method using the inspection system of the first embodiment shown in FIG. 1 will be described with reference to FIGS. 8 and 9. FIG. 8 is a diagram showing an inspection flow, and FIG. 9 is a diagram schematically showing reactions in the first to third reaction processes in the inspection flow.
 まず、第1の反応プロセスを実施する(S1)。第1の反応プロセスにおける第1の反応液は、検査に供する検体液である。検体液の具体例としては、血漿、または血清が挙げられる。
 検体液を容器12に入れ、検査チップ10を容器12中の検体液の表面に下面10bが浸されるようにセットする。その後、ポンプ16により空間15を減圧して、細孔11内に検体液を供給する。細孔11中に吸い上げられ、検査チップ10の上面10a側に上昇する検体液の液面を光学カメラ18で検出して、反応液基準位置hに到達したら、空間15を大気圧に戻し、30分保持する。その後、ポンプ16により空間15を加圧して細孔11中の検体液を排出する(S2)。
 S1-S2の工程は、複数回繰り返してもよい。ここでは、例えば、3回繰り返し、検体液中の特定の物質と細孔11中の内壁に固定されている捕捉物質との特異的な結合反応を促進させる。
First, the first reaction process is performed (S1). The first reaction liquid in the first reaction process is a sample liquid used for the test. Specific examples of the sample liquid include plasma or serum.
The sample liquid is put in the container 12, and the test chip 10 is set so that the lower surface 10b is immersed in the surface of the sample liquid in the container 12. Thereafter, the space 15 is decompressed by the pump 16 to supply the sample liquid into the pores 11. Sucked into the pores 11, when the liquid level of the sample fluid to rise to the upper surface 10a side of the test chip 10 is detected by the optical camera 18, and reaches the reaction solution reference position h 1, return the space 15 to the atmospheric pressure, Hold for 30 minutes. Thereafter, the space 15 is pressurized by the pump 16 to discharge the sample liquid in the pores 11 (S2).
The steps S1-S2 may be repeated a plurality of times. Here, for example, the specific binding reaction between the specific substance in the sample liquid and the capture substance fixed to the inner wall in the pore 11 is promoted three times.
 次に、第1の洗浄プロセスを実施する(S3)。洗浄液を容器12に入れ、ポンプ16により空間15を減圧しつつ、検査チップ10を容器12中の洗浄液の表面に下面10bが浸されるようにセットする。これにより洗浄液が細孔11中に吸い上げられ、検査チップ10の上面10a側に上昇する洗浄液の液面を光学カメラ18で検出して、洗浄液基準位置hに到達したら、ポンプ16による減圧動作を一旦停止する。その後、検査チップ10を支持部材14ごと容器12から取り外し、洗浄液排出部21に移動し、廃液容器21a上にセットする。ポンプ16を加圧動作に切り換えて、空間15を加圧して細孔11中の洗浄液を排出する。洗浄液は検体液が供給された位置よりも上方まで供給されるので、十分洗浄を行うことができ、かつ、洗浄液の液面を不必要に高い位置まで上昇させないので、廃液量を抑制することができる。
 工程S3は、複数回繰り返してもよい。ここでは、例えば、3回繰り返して洗浄効果を高める。
Next, a first cleaning process is performed (S3). The cleaning liquid is put into the container 12, and the inspection chip 10 is set so that the lower surface 10 b is immersed in the surface of the cleaning liquid in the container 12 while reducing the space 15 by the pump 16. Thus the cleaning liquid is sucked up in the pores 11, to detect the liquid level of the cleaning liquid rises to the upper surface 10a side of the test chip 10 in the optical camera 18, when it reaches the cleaning liquid reference position h 2, the pressure reducing operation by the pump 16 Stop temporarily. Thereafter, the inspection chip 10 is removed together with the support member 14 from the container 12, moved to the cleaning liquid discharger 21, and set on the waste liquid container 21a. The pump 16 is switched to a pressurizing operation to pressurize the space 15 and discharge the cleaning liquid in the pores 11. Since the cleaning liquid is supplied to a position above the position where the sample liquid is supplied, the cleaning liquid can be sufficiently washed, and the liquid level of the cleaning liquid is not raised to an unnecessarily high position, so that the amount of waste liquid can be suppressed. it can.
Step S3 may be repeated a plurality of times. Here, for example, the cleaning effect is increased by repeating three times.
 次に、第2の反応プロセスを実施する(S4)。第2の反応プロセスにおける第2の反応液は、標識物質を含む標識溶液である。
 標識溶液を容器12に入れ、検査チップ10を容器12中の標識溶液の表面に下面10bが浸されるようにセットする。その後、ポンプ16により空間15を減圧して、細孔11内に標識溶液を供給する。細孔11中に吸い上げられ、検査チップ10の上面10a側に上昇する標識溶液の液面を光学カメラ18で検出して、反応液基準位置hに到達したら、空間15を大気圧に戻し、30分保持する。その後、ポンプ16により空間15を加圧して細孔11中の標識溶液を排出する(S5)。
 S4-S5の工程は、複数回繰り返してもよい。ここでは、例えば、3回繰り返し、細孔11中の内壁に固定されている捕捉物質との特異的な結合した特定の物質への標識物質の結合反応を促進させる。
Next, a second reaction process is performed (S4). The second reaction solution in the second reaction process is a labeling solution containing a labeling substance.
The labeling solution is put in the container 12, and the inspection chip 10 is set so that the lower surface 10b is immersed in the surface of the labeling solution in the container 12. Thereafter, the space 15 is decompressed by the pump 16 to supply the labeling solution into the pores 11. Sucked into the pores 11, when the liquid level of the labeling solution to rise to the upper surface 10a side of the test chip 10 is detected by the optical camera 18, and reaches the reaction solution reference position h 1, return the space 15 to the atmospheric pressure, Hold for 30 minutes. Thereafter, the space 15 is pressurized by the pump 16 to discharge the label solution in the pores 11 (S5).
Steps S4 to S5 may be repeated a plurality of times. Here, for example, the binding reaction of the labeling substance to the specific substance specifically bonded to the capturing substance fixed to the inner wall in the pore 11 is promoted three times.
 次に、第2の洗浄プロセスを実施する(S6)。第2の洗浄プロセスは第1の洗浄プロセスと同様である。 Next, a second cleaning process is performed (S6). The second cleaning process is similar to the first cleaning process.
 続いて、第3の反応プロセスを実施する(S7)。第3の反応プロセスにおける第3の反応液は、検査用溶液である。
 検査用溶液を容器12に入れ、検査チップ10を容器12中の検査用溶液の表面に下面10bが浸されるようにセットする。その後、ポンプ16により空間15を減圧して、細孔11内に検査用溶液を供給する。細孔11中に吸い上げられ、検査チップ10の上面10a側に上昇する検査用溶液の液面を光学カメラ18で検出して、反応液基準位置hに到達したら、空間15を大気圧に戻す。空間15を大気圧に戻しても検体液は細孔11内に留まる。
Subsequently, a third reaction process is performed (S7). The third reaction solution in the third reaction process is a test solution.
The inspection solution is put in the container 12 and the inspection chip 10 is set so that the lower surface 10 b is immersed in the surface of the inspection solution in the container 12. Thereafter, the space 15 is decompressed by the pump 16, and the inspection solution is supplied into the pores 11. It sucked into the pores 11, when the liquid surface of the test solution to rise to the upper surface 10a side of the test chip 10 is detected by the optical camera 18, and reaches the reaction solution reference position h 1, returning the space 15 to the atmospheric pressure . Even if the space 15 is returned to atmospheric pressure, the sample liquid remains in the pores 11.
 その後、検査チップ10を、細孔11中に検査用溶液を保持させた状態で容器12から取り外し、光信号測定部22の光検出器22aにセットする。この際、図1に一部破線で示すように検査チップ10を回転させ上下面を反転させて光検出器22aの下方にセットすることが好ましい。
 大気圧下において、検査チップ10の細孔11中に検査用溶液を留めた状態で、光検出器22aにより検査チップ10から出射される光を検出し(S9)、検査工程は終了となる。
Thereafter, the inspection chip 10 is removed from the container 12 with the inspection solution held in the pores 11 and set in the photodetector 22 a of the optical signal measurement unit 22. At this time, it is preferable to set the inspection chip 10 below the photodetector 22a by rotating the inspection chip 10 so that the upper and lower surfaces are reversed as shown in part by broken lines in FIG.
Under atmospheric pressure, with the inspection solution kept in the pores 11 of the inspection chip 10, the light emitted from the inspection chip 10 is detected by the photodetector 22a (S9), and the inspection process ends.
 図9は上記各反応プロセスにおける反応を模式的に示す図である。
 検査チップ10の細孔11の内壁面11aにはアレルゲンなどの捕捉物質30が固定されている(S0)。第1の反応プロセス(S1)では、細孔11に被検物質(例えば、上記アレルゲンと特異的に結合する特異的IgE抗体)を含む検体液を供給して、被検物質32を捕捉物質30に特異的に結合させる。
FIG. 9 is a diagram schematically showing the reaction in each of the above reaction processes.
A trapping substance 30 such as an allergen is fixed to the inner wall surface 11a of the pore 11 of the test chip 10 (S0). In the first reaction process (S 1), a specimen liquid containing a test substance (for example, a specific IgE antibody that specifically binds to the allergen) is supplied to the pores 11, and the test substance 32 is captured by the capture substance 30. Specifically bind to.
 次に、検体液を排出し洗浄した後、第2の反応プロセス(S4)では、被検物質32と特異的に結合する物質33(例えば、二次抗体)に標識Fが付与されてなる標識物質35を含む標識溶液を細孔11に供給して、標識物質35を被検物質32に結合させる。
 標識Fは、例えば、ルミノール、ロフィン、ルシゲニンおよびシュウ酸エステルなどの化学発光基質に対して触媒として機能する酵素標識である。
Next, after the sample liquid is discharged and washed, in the second reaction process (S4), a label formed by adding a label F to a substance 33 (for example, a secondary antibody) that specifically binds to the test substance 32. A labeling solution containing the substance 35 is supplied to the pores 11 to bind the labeling substance 35 to the test substance 32.
Label F is an enzyme label that functions as a catalyst for chemiluminescent substrates such as luminol, lophine, lucigenin and oxalate.
 そして、標識溶液を排出し洗浄した後、第3の反応プロセス(S7)では、細孔11内に、例えば、標識Fを触媒として発光反応する発光基質を含む検査用溶液を供給し、標識Fを触媒として発光反応させる。この検査用溶液を細孔11内に充填させた状態で、その標識Fを触媒として反応する発光反応からの光信号を光検出器22aにより検出する。 Then, after discharging and washing the label solution, in the third reaction process (S7), for example, a test solution containing a luminescent substrate that undergoes a luminescence reaction using the label F as a catalyst is supplied into the pores 11, and the label F Is used as a catalyst to cause a luminescence reaction. In a state where the inspection solution is filled in the pores 11, a light signal from a luminescence reaction that reacts with the label F as a catalyst is detected by the photodetector 22a.
 なお、第1の反応プロセスおよび第2の反応プロセスの後に実施される洗浄プロセスでは、検体液あるいは標識溶液の残液を洗浄し、細孔11中に非特異吸着している被検物質32や標識物質を除去するので、測定信号におけるノイズを抑制することができる。 In the cleaning process performed after the first reaction process and the second reaction process, the specimen solution or the remaining solution of the labeling solution is washed, and the test substance 32 nonspecifically adsorbed in the pores 11 or Since the labeling substance is removed, noise in the measurement signal can be suppressed.
 上記において、HRP(西洋わさびペルオキシダーゼ)酵素が標識として用いられる場合には、HRPが触媒として機能するルミノール系の化学発光基質を含有する反応液(ルミノール反応液)を、ALP(アルカリホスファターゼ)酵素が用いられる場合にはジオキセタン系化学発光基質を含有する反応液を用いることが好ましい。 In the above, when HRP (horseradish peroxidase) enzyme is used as a label, a reaction liquid (luminol reaction liquid) containing a luminol-based chemiluminescent substrate in which HRP functions as a catalyst is converted into an ALP (alkaline phosphatase) enzyme. When used, it is preferable to use a reaction solution containing a dioxetane chemiluminescent substrate.
 ルミノール反応液には、少なくともルミノール基質と過酸化水素水が含まれる。酵素標識は、過酸化水素水存在下において、ルミノールの酸化を触媒するものである。反応液中には、化学発光を増感する増感剤を含むことが好ましい。 The luminol reaction solution contains at least a luminol substrate and a hydrogen peroxide solution. The enzyme label catalyzes the oxidation of luminol in the presence of hydrogen peroxide. The reaction solution preferably contains a sensitizer that sensitizes chemiluminescence.
 なお、酵素標識を用いた光検出においては、上記の化学発光基質のみならず、発光基質あるいは蛍光基質を含む反応液を用い、呈色(吸光)反応や、蛍光を検出してもよい。 In light detection using an enzyme label, a color reaction (absorption) reaction or fluorescence may be detected using a reaction solution containing not only the chemiluminescent substrate but also a luminescent substrate or a fluorescent substrate.
 本発明において、標識Fは、上記のような酵素標識に限るものではない。
 標識Fが蛍光色素、量子ドットなどの蛍光標識である場合には、上記第2の洗浄プロセスの後、検査用溶液を細孔11中に供給することなく蛍光測定を行ってもよい。あるいは、バッファ溶液を検査用溶液として細孔11内に供給し、細孔11内をバッファ溶液で満たした状態で、蛍光測定を行ってもよい。蛍光測定は、蛍光標識を励起する波長の光を励起光として検査チップに照射し、その励起光により励起された標識からの蛍光を検出する。なお、蛍光標識の検出の際には、光信号測定部に励起光照射部が備えられている。
In the present invention, the label F is not limited to the enzyme label as described above.
When the label F is a fluorescent label such as a fluorescent dye or a quantum dot, the fluorescence measurement may be performed without supplying the inspection solution into the pores 11 after the second cleaning process. Alternatively, the fluorescence measurement may be performed in a state where the buffer solution is supplied into the pores 11 as a test solution and the pores 11 are filled with the buffer solution. In the fluorescence measurement, the inspection chip is irradiated with light having a wavelength for exciting the fluorescent label as excitation light, and fluorescence from the label excited by the excitation light is detected. When detecting a fluorescent label, the optical signal measurement unit is provided with an excitation light irradiation unit.
 いずれの検出方法であっても、本発明の検査システムを用いることにより、ノイズを抑制して高精度な光検出が可能であり、生じる廃液量を抑制することが可能である。 Regardless of the detection method, by using the inspection system of the present invention, it is possible to detect noise with high accuracy while suppressing noise, and it is possible to suppress the amount of waste liquid generated.
 1、2 検査システム
 10 検査チップ
 10a 検査チップの上面
 10b 検査チップの下面
 11 細孔
 12 容器
 14 支持部材(検査チップ支持部)
 14a 検査チップ受容部
 14b 液体保持部
 14c 鍔部
 15 空間
 16 ポンプ(液体供給部)
 16a 切り替えバルブ
 18 光学カメラ(液面検出部)
 20 制御部
 21 洗浄液排出部
 21a、21b 廃液容器
 22 光信号測定部
 23 暗室
 22a 光検出器
 24 容器
 25 容器内の空間
 30 捕捉物質
 32 被検物質
 33 物質
 35 標識物質
 F  標識
DESCRIPTION OF SYMBOLS 1, 2 Inspection system 10 Inspection chip 10a Upper surface of inspection chip 10b Lower surface of inspection chip 11 Pore 12 Container 14 Support member (inspection chip support part)
14a Inspection chip receiving part 14b Liquid holding part 14c Gutter part 15 Space 16 Pump (liquid supply part)
16a switching valve 18 optical camera (liquid level detector)
20 Control part 21 Cleaning liquid discharge part 21a, 21b Waste liquid container 22 Optical signal measurement part 23 Dark room 22a Photodetector 24 Container 25 Space in container 30 Captured substance 32 Test substance 33 Substance 35 Labeled substance F Labeled

Claims (14)

  1.  一方の面から他方の面まで貫通した細孔を有し、該細孔の内壁面に特定の物質と特異的に結合する捕捉物質が固定化されてなる板状の検査チップと、
     液体を貯留する容器と、
     前記容器中において、前記検査チップを水平に支持する支持部材と、
     前記検査チップの上面に液体を保持可能な液体保持部と、
     前記検査チップの下面から前記細孔に前記液体を供給する液体供給部と、
     前記液体保持部における液面の位置を検出する液面検出部と、
     前記液体供給部と前記液面検出部とに接続され、前記液面検出部により検出された前記液面の位置に応じて前記液体供給部による前記液体の供給動作を制御する制御部とを備えた検査システムにおいて、
     前記液体として反応液を前記細孔に供給する反応プロセスにおける、前記反応液の液面の到達設定位置である反応液基準位置が前記検査チップの前記上面より上に設定され、前記液体として洗浄液を前記細孔に供給する洗浄プロセスとにおける、前記洗浄液の液面の到達設定位置である洗浄液基準位置が、前記反応液基準位置よりも上に設定されており、
     前記制御部は、前記液体として前記反応液を供給する際には、該反応液の液面が前記反応液基準位置以上になった時に前記液体供給部による供給動作を停止し、前記液体として前記洗浄液を供給する際には、該洗浄液の液面が前記洗浄液基準位置以上になった時に供給動作を停止する検査システム。
    A plate-shaped test chip having a pore penetrating from one surface to the other surface, and having a trapping substance that specifically binds to a specific substance immobilized on the inner wall surface of the pore;
    A container for storing liquid;
    In the container, a support member that horizontally supports the inspection chip;
    A liquid holding unit capable of holding a liquid on the upper surface of the inspection chip;
    A liquid supply unit for supplying the liquid to the pores from the lower surface of the inspection chip;
    A liquid level detection unit for detecting the position of the liquid level in the liquid holding unit;
    A control unit connected to the liquid supply unit and the liquid level detection unit and configured to control the liquid supply operation by the liquid supply unit according to the position of the liquid level detected by the liquid level detection unit; In the inspection system
    In the reaction process of supplying the reaction liquid as the liquid to the pores, the reaction liquid reference position, which is the arrival setting position of the liquid surface of the reaction liquid, is set above the upper surface of the inspection chip, and the cleaning liquid is used as the liquid. The cleaning liquid reference position, which is the arrival setting position of the liquid level of the cleaning liquid in the cleaning process supplied to the pores, is set above the reaction liquid reference position,
    When supplying the reaction liquid as the liquid, the control unit stops the supply operation by the liquid supply unit when the liquid level of the reaction liquid becomes equal to or higher than the reaction liquid reference position, and the liquid as the liquid An inspection system that, when supplying a cleaning liquid, stops the supply operation when the level of the cleaning liquid reaches or exceeds the cleaning liquid reference position.
  2.  前記反応液基準位置は前記検査チップの前記上面から25mm以内、前記洗浄液基準位置は前記検査チップの前記上面から50mm以内である請求項1に記載の検査システム。 The inspection system according to claim 1, wherein the reaction liquid reference position is within 25 mm from the upper surface of the inspection chip, and the cleaning liquid reference position is within 50 mm from the upper surface of the inspection chip.
  3.  前記液体供給部は、前記細孔に供給した前記液体を前記細孔から排出させる排出動作も行う請求項1または2に記載の検査システム。 3. The inspection system according to claim 1, wherein the liquid supply unit also performs a discharge operation for discharging the liquid supplied to the pores from the pores.
  4.  前記制御部は、前記液体供給部による前記供給動作を停止した後、予め設定された時間経過後に前記排出動作を実施させる請求項3に記載の検査システム。 4. The inspection system according to claim 3, wherein the controller performs the discharge operation after a preset time has elapsed after stopping the supply operation by the liquid supply unit.
  5.  前記液体供給部が、前記液体保持部内を減圧および加圧するポンプからなる請求項1から4のいずれか1項に記載の検査システム。 5. The inspection system according to any one of claims 1 to 4, wherein the liquid supply unit includes a pump that depressurizes and pressurizes the liquid holding unit.
  6.  前記液体供給部が、前記容器内を減圧および加圧するポンプからなる請求項1から4のいずれか1項に記載の検査システム。 The inspection system according to any one of claims 1 to 4, wherein the liquid supply unit includes a pump that depressurizes and pressurizes the inside of the container.
  7.  前記液体保持部が光透過性を有するものであり、
     前記液面検出部が光学カメラである請求項1から6のいずれか1項に記載の検査システム。
    The liquid holding part is light transmissive,
    The inspection system according to claim 1, wherein the liquid level detection unit is an optical camera.
  8.  前記捕捉物質が、抗原、抗体またはデオキシリボ核酸である請求項1から7のいずれか1項に記載の検査システム。 The inspection system according to any one of claims 1 to 7, wherein the capture substance is an antigen, an antibody, or deoxyribonucleic acid.
  9.  前記検査チップがSi、SiO、Al、Al、ステンレス鋼および樹脂材料のうちの1つまたは2つ以上の材料からなる請求項1から8のいずれか1項に記載の検査システム。 Inspection system according to any one of the one or of two or more materials according to claim 1 to 8 of the test chip is Si, SiO 2, Al, Al 2 O 3, stainless steel and resin material.
  10.  前記検査チップの前記一方の面または前記他方の面に対向して配置され、前記検査チップから出射される光を検出する光検出器を備えた請求項1から9のいずれか1項に記載の検査システム。 10. The detector according to claim 1, further comprising a photodetector that is disposed to face the one surface or the other surface of the inspection chip and detects light emitted from the inspection chip. Inspection system.
  11.  前記反応液が、検査に供される検体液、標識物質を含む標識溶液および検査用溶液のいずれかである請求項1から10のいずれか1項に記載の検査システム。 The test system according to any one of claims 1 to 10, wherein the reaction solution is any one of a sample solution to be used for a test, a label solution containing a labeling substance, and a test solution.
  12.  請求項10に記載の検査システムを用いた検査方法であって、
     第1の前記反応プロセスとして、第1の前記反応液である、検査に供する検体液を前記細孔に供給して該検体液中の前記特定の物質を前記捕捉物質に結合させ、前記検体液を前記細孔から排出し、
     第1の前記洗浄プロセスを実施し、
     第2の前記反応プロセスとして、第2の前記反応液である、前記特定の物質と特異的に結合する標識物質を含有する標識溶液を前記細孔に供給して前記標識物質を前記特定の物質に結合させ、前記標識溶液を前記細孔から排出し、
     第2の前記洗浄プロセスを実施し、
     第3の前記反応プロセスとして、第3の前記反応液である検査用溶液を前記細孔に供給し、
     前記細孔に前記検査用溶液を留めた状態で、前記検査チップから出射される光を検出する検査方法。
    An inspection method using the inspection system according to claim 10,
    As the first reaction process, the first reaction liquid, which is a specimen liquid to be used for testing, is supplied to the pores, and the specific substance in the specimen liquid is bound to the capture substance, and the specimen liquid Is discharged from the pores,
    Performing the first cleaning process;
    As the second reaction process, a labeling solution containing a labeling substance that specifically binds to the specific substance, which is the second reaction solution, is supplied to the pores, and the labeling substance is supplied to the specific substance. And discharging the labeling solution from the pores,
    Performing a second said cleaning process;
    As the third reaction process, a test solution that is the third reaction solution is supplied to the pores,
    An inspection method for detecting light emitted from the inspection chip in a state where the inspection solution is retained in the pores.
  13.  前記標識物質として酵素標識を用い、
     前記検査用溶液として、前記酵素標識により触媒されて反応する基質を含む反応液を用い、
     前記出射される光として、前記検査用溶液中の前記基質が前記酵素標識により触媒されて生じる光を検出する請求項12に記載の検査方法。
    Using an enzyme label as the labeling substance,
    As the test solution, a reaction solution containing a substrate that is catalyzed by the enzyme label and reacts,
    The test | inspection method of Claim 12 which detects the light produced when the said substrate in the said test solution is catalyzed by the said enzyme label as said emitted light.
  14.  前記標識物質として蛍光標識を含む物質を用い、
     該蛍光標識を励起させる励起光を前記検査チップに照射し、
     前記出射される光として、前記励起光の照射により前記標識物質から生じる蛍光を検出する請求項12に記載の検査方法。
    Using a substance containing a fluorescent label as the labeling substance,
    Irradiating the inspection chip with excitation light for exciting the fluorescent label;
    The inspection method according to claim 12, wherein fluorescence emitted from the labeling substance by irradiation with the excitation light is detected as the emitted light.
PCT/JP2017/026704 2016-08-16 2017-07-24 Examination system and examination method WO2018034108A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-159450 2016-08-16
JP2016159450 2016-08-16

Publications (1)

Publication Number Publication Date
WO2018034108A1 true WO2018034108A1 (en) 2018-02-22

Family

ID=61196529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026704 WO2018034108A1 (en) 2016-08-16 2017-07-24 Examination system and examination method

Country Status (1)

Country Link
WO (1) WO2018034108A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020157239A (en) * 2019-03-27 2020-10-01 ヤマト科学株式会社 Liquid level controller of reactor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0627111A (en) * 1992-07-09 1994-02-04 Olympus Optical Co Ltd Reaction vessel
JP2005148048A (en) * 2003-04-25 2005-06-09 Jsr Corp Biochip, biochip kit, and method for manufacturing and using the same
JP2006153889A (en) * 2001-03-21 2006-06-15 Olympus Corp Biochemical test method
WO2011027851A1 (en) * 2009-09-07 2011-03-10 コニカミノルタホールディングス株式会社 Liquid feeding system for microchip, sample detection device, and liquid feeding method for liquid feeding system for microchip

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0627111A (en) * 1992-07-09 1994-02-04 Olympus Optical Co Ltd Reaction vessel
JP2006153889A (en) * 2001-03-21 2006-06-15 Olympus Corp Biochemical test method
JP2005148048A (en) * 2003-04-25 2005-06-09 Jsr Corp Biochip, biochip kit, and method for manufacturing and using the same
WO2011027851A1 (en) * 2009-09-07 2011-03-10 コニカミノルタホールディングス株式会社 Liquid feeding system for microchip, sample detection device, and liquid feeding method for liquid feeding system for microchip

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020157239A (en) * 2019-03-27 2020-10-01 ヤマト科学株式会社 Liquid level controller of reactor

Similar Documents

Publication Publication Date Title
JP5089705B2 (en) Optical measuring device
CN110997147B (en) Automated analyzer and method for performing chemical, biochemical and/or immunochemical analyses
US20100203573A1 (en) Automated instrumentation and method for measurements of samples
JP2011013000A (en) Method for analyzing biochip, and system for automatic analysis of the same
JP2010133870A (en) Automatic analyzer and precision management method of automatic analyzer
WO2010058473A1 (en) Optical measurement device
EP1637869A1 (en) Method and apparatus for assay in utilizing attenuated total reflection, and sample immobilizing device
JP5155800B2 (en) Reaction method and reaction apparatus
WO2018034108A1 (en) Examination system and examination method
US20100003702A1 (en) Procedure And Device For Determining The Concentrations Of At Least Two Ligands
EP3175222A1 (en) Partially encapsulated waveguide based sensing chips, systems and methods of use
JP3152675B2 (en) Dispensing method
WO2015079998A1 (en) Biochip holder, method for manufacturing biochip holder, biochip retainer, and biochip-holder kit
JP2013024605A (en) Substrate for biochemical reaction, system for processing biochemical reaction, and method for draining liquid from the substrate
JP2007322394A (en) Dispensing device and automated analyzer
JP2011145276A (en) Cell for testing microbeads and method of analyzing microbeads
WO2018034109A1 (en) Inspection method and inspection device
KR20190000851A (en) Lap on a chip, method for manufacturing the same and method for testing using the same
JP6617374B2 (en) Liquid feeding method, liquid feeding device and analyzer
WO2017169717A1 (en) Inspection device, inspection apparatus, and inspection method
JP2017026481A (en) Inspection reagent and specimen measuring system
WO2017169716A1 (en) Inspection device, inspection apparatus, and inspection method
WO2017169715A1 (en) Inspection device, inspection apparatus and inspection method
JP4417215B2 (en) Biomolecular interaction measurement device
US20220026344A1 (en) Detection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17841336

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 17841336

Country of ref document: EP

Kind code of ref document: A1