WO2018034074A1 - Procedure simulator - Google Patents

Procedure simulator Download PDF

Info

Publication number
WO2018034074A1
WO2018034074A1 PCT/JP2017/024576 JP2017024576W WO2018034074A1 WO 2018034074 A1 WO2018034074 A1 WO 2018034074A1 JP 2017024576 W JP2017024576 W JP 2017024576W WO 2018034074 A1 WO2018034074 A1 WO 2018034074A1
Authority
WO
WIPO (PCT)
Prior art keywords
simulated
blood
subcutaneous tissue
simulator
femoral artery
Prior art date
Application number
PCT/JP2017/024576
Other languages
French (fr)
Japanese (ja)
Inventor
石森元文
小崎浩司
中村義博
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Priority to JP2018534293A priority Critical patent/JP7005500B2/en
Publication of WO2018034074A1 publication Critical patent/WO2018034074A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B19/00Teaching not covered by other main groups of this subclass
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • G09B23/30Anatomical models

Definitions

  • the present invention relates to a technique simulator for percutaneously puncturing a medical device into a simulated blood vessel.
  • PCPS Percutaneous cardiopulmonary support
  • a femoral artery and a femoral vein are cannulated.
  • a technique simulator in which a simulated blood vessel is embedded in a gel-like simulated subcutaneous tissue may be used.
  • a procedure simulator uses a gel-like simulated subcutaneous tissue, the simulated subcutaneous tissue may be damaged when the medical device is punctured and removed from the simulated blood vessel.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide a technique simulator capable of suppressing the damage of the simulated subcutaneous tissue when the medical device is punctured and removed from the simulated blood vessel.
  • a procedure simulator includes a container, a gel-like simulated subcutaneous tissue provided in the container, a simulated blood vessel embedded in the simulated subcutaneous tissue, and the simulated subcutaneous tissue. And a fiber layer provided on at least one of the surface layer portion and the simulated blood vessel.
  • the strength of the part of the simulated subcutaneous tissue that contacts the fiber layer can be improved, the damage of the simulated subcutaneous tissue can be suppressed when the medical device is punctured and removed from the simulated blood vessel.
  • a simulated skin covering the surface portion of the simulated subcutaneous tissue may be provided, and the fiber layer may be provided between the simulated blood vessel and the simulated skin.
  • the sensation of puncturing and removing the medical device from the simulated blood vessel can be approximated to an actual procedure.
  • the fiber layer may be embedded in the simulated subcutaneous tissue.
  • the fiber layer can be prevented from shifting with respect to the simulated subcutaneous tissue when the medical device is punctured and removed from the simulated blood vessel.
  • the simulated subcutaneous tissue may be impregnated in the fiber layer.
  • the fiber layer can be firmly bonded to the simulated subcutaneous tissue.
  • the fiber layer may be composed of a fiber having liquid absorbency.
  • the fiber layer can be more firmly bonded to the simulated subcutaneous tissue by absorbing the liquid in the simulated subcutaneous tissue into the fibers of the fiber layer.
  • simulated blood may circulate in the simulated blood vessel, and the fiber layer may be provided on the outer peripheral surface of the simulated blood vessel.
  • the simulated blood vessel may include a simulated femoral artery simulating a human femoral artery and a simulated femoral vein simulating a human femoral vein.
  • the technique simulator includes a blood circuit model through which simulated blood circulates, the blood circuit model including the simulated heart, the simulated femoral artery and the simulated femoral vein, and the simulated blood in the simulated heart.
  • a pump for sending the simulated blood in the simulated heart to the simulated femoral artery may be provided in the first flow path.
  • the first flow path has a simulated aorta imitating a human aorta
  • the third flow path has a simulated inferior vena cava imitating a human inferior vena cava
  • Each of the aorta and the simulated inferior vena cava may be made of a material having flexibility and transparency.
  • the strength of the portion of the simulated subcutaneous tissue that contacts the fiber layer can be improved, it is possible to suppress damage to the simulated subcutaneous tissue when the medical device is punctured and removed from the simulated blood vessel.
  • FIG. 5A is a first manufacturing explanatory diagram of the puncture model
  • FIG. 5B is a second manufacturing explanatory diagram of the puncture model
  • FIG. 6A is a third manufacturing explanatory diagram of the puncture model
  • FIG. 6B is a fourth manufacturing explanatory diagram of the puncture model.
  • FIG. 7A is a cross-sectional explanatory view showing a state where a predilator is inserted into a simulated blood vessel
  • FIG. 7B is a cross-sectional explanatory view showing a state where a cannula is inserted into the simulated blood vessel. It is explanatory drawing of the procedure of PCPS using the said procedure simulator.
  • 9A is a longitudinal sectional view of a puncture model having a fiber layer according to a modification
  • FIG. 9B is a transverse sectional view of the puncture model shown in FIG. 9A.
  • the procedure simulator 10 is used as training for a procedure in which a femoral artery and a femoral vein are cannulated in PCPS.
  • the procedure simulator 10 includes a blood circuit model 14 in which the simulated blood 12 circulates and a puncture model 16 provided in the blood circuit model 14.
  • the simulated blood 12 simulates human blood, and for example, water colored in red can be used.
  • the blood circuit model 14 includes a simulated heart 18, a simulated blood vessel 20, a first channel 22, a second channel 24, a third channel 26, a fourth channel 28, a storage unit 30, and a fifth channel 32. ing.
  • the simulated heart 18 imitates the human heart.
  • the simulated heart 18 is made of a resin material having flexibility and transparency.
  • resin material include elastomeric materials such as silicone rubber (silicone elastomer) and thermosetting polyurethane elastomer, gels such as silicone hydrogel, PVA hydrogel, and gelatin, silicone resin, epoxy resin, polyurethane, Examples thereof include thermosetting resins such as unsaturated polyesters, phenol resins and urea resins, and thermoplastic resins such as polymethyl methacrylate alone or in combination.
  • the simulated blood vessel 20 constitutes a part of the puncture model 16 and includes a simulated femoral artery 34 imitating the human femoral artery and a simulated femoral vein 36 imitating the human femoral vein.
  • the simulated femoral artery 34 and the simulated femoral vein 36 are juxtaposed in a state extending in one direction. Details of the simulated femoral artery 34 and the simulated femoral vein 36 will be described later.
  • the first flow path 22 guides the simulated blood 12 in the simulated heart 18 to the simulated femoral artery 34, and the first tube 38 connected to the simulated heart 18 and one end of the first tube 38 and the simulated femoral artery 34. And a simulated aorta 40 connecting the two.
  • the first tube 38 is provided with a pump 42 for reproducing the pulsation of the simulated heart 18. That is, the pump 42 sends the simulated blood 12 in the simulated heart 18 to the simulated femoral artery 34 via the simulated aorta 40.
  • the first tube 38 is made of a resin material having transparency. The same applies to the second tube 44, the third tube 50, the fourth tube 52, the fifth tube 54, and the sixth tube 58, which will be described later.
  • the simulated aorta 40 imitates the human aorta and is made of a resin material having flexibility and transparency. As such a resin material, for example, the same resin material as that of the simulated heart 18 described above can be used.
  • the simulated aorta 40 includes a simulated aortic arch 40a simulating a human aortic arch and a simulated abdominal aorta 40b simulating a human abdominal aorta.
  • the second flow path 24 is for guiding the simulated blood 12 in the simulated femoral artery 34 to the simulated femoral vein 36, and the second flow path 24 connects the other ends of the simulated femoral artery 34 and the simulated femoral vein 36 to each other. It has a tube 44.
  • the second tube 44 is a bifurcated tube formed in a substantially Y shape.
  • An occlusion member 46 is provided at the end of the second tube 44 opposite to the simulated femoral artery 34 and the simulated femoral vein 36.
  • the third flow path 26 is for guiding the simulated blood 12 in the simulated femoral vein 36 into the simulated heart 18 and has a simulated inferior vena cava 48 simulating the inferior vena cava of the human body.
  • the simulated inferior vena cava 48 is made of a resin material having flexibility and transparency. As such a resin material, for example, the same resin material as that of the simulated heart 18 described above can be used.
  • the fourth flow path 28 includes a third tube 50 that connects the simulated abdominal aorta 40b and the reservoir 30, a fourth tube 52 that connects the simulated aortic arch 40a and the third tube 50, a simulated inferior vena cava 48, and a second tube. And a fifth tube 54 connecting the four tubes 52.
  • a forceps 56 for blocking the flow of the simulated blood 12 is provided on the downstream side of the connection portion with the fourth tube 52 in the third tube 50.
  • the simulated blood 12 is stored in the storage unit 30.
  • the fifth flow path 32 includes a sixth tube 58 that guides the simulated blood 12 in the reservoir 30 to the simulated inferior vena cava 48.
  • the sixth tube 58 is provided with forceps 60 for blocking the circulation of the simulated blood 12.
  • the puncture model 16 includes a container 62, a simulated subcutaneous tissue 64, a simulated bone portion 66, a simulated femoral artery 34, a simulated femoral vein 36, a fiber layer 72, and a simulated skin 74.
  • the container 62 is a substantially rectangular parallelepiped box-shaped container opened on one side, and is made of a resin material such as polypropylene.
  • a plurality of first locking portions 76 for fixing the simulated skin 74 are provided on the outer surface of the container 62 (see FIGS. 4A to 5A).
  • the simulated subcutaneous tissue 64 is a gel-like member that imitates the thigh of a human body, and is filled in the container 62.
  • the simulated subcutaneous tissue 64 is, for example, made into a block shape by adding a hardening agent to a mixed solution of water, acrylamide, aluminum oxide or the like.
  • the simulated subcutaneous tissue 64 configured in this way can obtain a soft tissue feel like the thigh of a human body.
  • an echo image can be displayed on the screen using an ultrasonic inspection apparatus.
  • the simulated bone portion 66 is embedded in the simulated subcutaneous tissue 64, and includes a simulated upper anterior iliac spine 66a that imitates the upper anterior iliac spine of a human body, and a simulated pubic nodule 66b that simulates the pubic nodule of the human body ( (See FIG. 2).
  • the simulated anterior iliac spine 66a and the simulated pubic nodule 66b serve as landmarks for identifying the positions of the simulated femoral artery 34 and the simulated femoral vein 36.
  • Such a simulated bone part 66 can be manufactured using a 3D printer based on human body data, for example, with an epoxy resin or the like.
  • the simulated femoral artery 34 and the simulated femoral vein 36 extend along the longitudinal direction of the container 62 while being adjacent to each other.
  • the simulated femoral artery 34 and the simulated femoral vein 36 penetrate both sides in the longitudinal direction of the container 62 while being embedded in the simulated subcutaneous tissue 64.
  • the simulated femoral artery 34 and the simulated femoral vein 36 are located above the simulated bone portion 66 (on the simulated skin 74 side opposite to the bottom surface of the container 62) (see FIGS. 4A and 4B).
  • the simulated femoral artery 34 is located at a depth of about 150 mm from the outer surface of the simulated skin 74. However, the depth of the simulated femoral artery 34 from the outer surface of the simulated skin 74 can be arbitrarily changed.
  • the simulated femoral artery 34 is located above the simulated femoral vein 36 and on the side where the simulated upper anterior iliac spine 66a is located.
  • the inner diameter of the simulated femoral artery 34 is set smaller than the inner diameter of the simulated femoral vein 36.
  • the inner diameter of the simulated femoral artery 34 is preferably in the range of 6 mm to 8 mm, more preferably 7 mm.
  • the inner diameter of the simulated femoral vein 36 is preferably in the range of 9 mm to 11 mm, and more preferably 10 mm.
  • the simulated femoral artery 34 and the simulated femoral vein 36 can be approximated to the femoral artery and femoral vein of the patient in a cardiac arrested state.
  • the length of the simulated femoral artery 34 is shorter than the length of the simulated femoral vein 36.
  • the length of the simulated femoral artery 34 is preferably in the range of 70 mm to 90 mm, and more preferably 80 mm.
  • the length of the simulated femoral vein 36 is preferably in the range of 110 mm to 130 mm, and more preferably 120 mm. In this case, the simulated femoral artery 34 and the simulated femoral vein 36 can be effectively pulsated (pulsated).
  • the simulated femoral artery 34 and the simulated femoral vein 36 are made of, for example, a resin material such as silicon rubber, polyvinyl alcohol, or natural rubber.
  • the resin material constituting the simulated femoral artery 34 and the simulated femoral vein 36 preferably has a durometer hardness of 30A to 40A measured by type A based on JIS K 6253 standard, and more preferably 35A.
  • the simulated femoral artery 34 and the simulated femoral vein 36 can be suitably pulsated and sensed when a medical device (hereinafter simply referred to as medical device) such as a guide wire, predilator, dilator, and cannula is punctured. Can be approximated to the sense of puncturing the femoral artery and vein of the human body.
  • a medical device such as a guide wire, predilator, dilator, and cannula
  • the fiber layer 72 has an intermediate fiber portion 73 embedded above the simulated blood vessel 20 in the simulated subcutaneous tissue 64. That is, the intermediate fiber portion 73 is provided between the surface layer portion 64 a of the simulated subcutaneous tissue 64 and the simulated blood vessel 20.
  • the intermediate fiber portion 73 is a non-woven fabric composed of fibers having liquid absorbency (water absorption) such as polyester fibers.
  • the intermediate fiber portion 73 is firmly bonded to the simulated subcutaneous tissue 64 by being impregnated (filled) with the simulated subcutaneous tissue 64 therein.
  • the intermediate fiber part 73 may be comprised with the fiber which does not have a liquid absorptivity, and may be a woven fabric instead of a nonwoven fabric.
  • the simulated skin 74 is a sheet member made of, for example, silicon rubber.
  • the simulated skin 74 preferably has a tear strength of 30 kN / m or more as measured based on JIS K 6252 standard. In this case, the simulated skin 74 can be prevented from being torn when the medical device is punctured or removed.
  • a plurality of second locking portions 78 that can be locked to the first locking portions 76 provided on the container 62 are provided on the back surface of the simulated skin 74.
  • locking part 78 are comprised as a hook-and-loop fastener, for example.
  • the simulated skin 74 is in contact (adhesion) with the outer surface of the simulated subcutaneous tissue 64 in a state where a predetermined tension is applied.
  • the simulated skin 74 is preferably colored in a color corresponding to the color of the human skin in order to have reality.
  • the constituent material of the simulated skin 74 is not limited to silicon rubber and can be arbitrarily changed.
  • a simulated bone portion 66 is disposed in the container 62, and the simulated femoral artery 34 and the simulated femoral vein 36 are disposed so as to penetrate both longitudinal side walls of the container 62.
  • a hardening agent is mixed into the subcutaneous tissue molding material 80, and the subcutaneous tissue molding material 80 before being cured is put in a predetermined amount (for example, about 80% of the capacity in the container 62). Inject only (amount).
  • the simulated bone 66, the simulated femoral artery 34, and the simulated femoral vein 36 are completely hidden by the subcutaneous tissue molding material 80, and a predetermined space is formed above the subcutaneous tissue molding material 80 in the container 62. .
  • the fiber layer 72 is disposed in the space above the subcutaneous tissue molding material 80 in the container 62 (see FIG. 6A).
  • the subcutaneous tissue molding material 80 before being hardened to fill the space is further injected into the container 62.
  • the subcutaneous tissue molding material 80 enters the fiber layer 72, and the subcutaneous tissue molding material 80 in the container 62 is cured to form the simulated subcutaneous tissue 64.
  • the fiber layer 72 absorbs moisture in the subcutaneous tissue molding material 80, the fiber layer 72 is firmly bonded to the simulated subcutaneous tissue 64.
  • the simulated skin 74 is covered from above the simulated subcutaneous tissue 64, and the second locking portion 78 of the simulated skin 74 is locked to the first locking of the container 62 in a state where tension is applied to the simulated skin 74. Lock to the part 76. Thereby, the puncture model 16 is manufactured.
  • the pump system 100 used for the PCPS procedure includes a blood removal tube 102, a centrifugal pump 104, a drive motor 106, an artificial lung 108, a blood supply tube 110, and a controller 112.
  • the blood removal tube 102 guides the simulated blood 12 guided from the blood removal cannula 130 to the centrifugal pump 104.
  • the centrifugal pump 104 guides the simulated blood 12 guided from the blood removal tube 102 to the artificial lung 108.
  • the drive motor 106 is a motor for driving the centrifugal pump 104.
  • the artificial lung 108 is a membrane-type artificial lung, and performs gas exchange of the simulated blood 12 guided from the centrifugal pump 104 (excluding carbon dioxide in the simulated blood 12 and taking in oxygen).
  • the blood supply tube 110 guides the simulated blood 12 that has undergone gas exchange and is oxygenated to the blood supply cannula 128.
  • the controller 112 controls driving of the drive motor 106.
  • the pump 42 is driven with the forceps 56 blocking the flow of the simulated blood 12 in the third tube 50 and the forceps 60 blocking the flow of the simulated blood 12 in the sixth tube 58.
  • the simulated blood 12 in the simulated heart 18 circulates to the simulated heart 18 via the first tube 38, the simulated aorta 40, the simulated femoral artery 34, the second tube 44, the simulated femoral vein 36, and the simulated inferior vena cava 48.
  • the simulated blood 12 circulates in the blood circuit model 14, so that the simulated blood vessel 20 pulsates by the simulated blood 12.
  • the forceps 60 are operated to cause the simulated blood 12 in the reservoir 30 to enter the simulated heart 18 via the sixth tube 58. Supply.
  • the user inserts a blood cannula 128 into the simulated femoral artery 34 (cannulate the simulated femoral artery 34).
  • the user confirms the puncture site from the positions of the simulated anterior iliac spine 66a and the simulated pubic nodule 66b by touching the simulated skin 74 with fingers, and makes a small incision on the simulated skin 74 with a scalpel.
  • a guide wire 120 is percutaneously inserted into the simulated femoral artery 34 by the Seldinger method.
  • the pre-dilator 122 is inserted into the simulated femoral artery 34 through the guide wire 120.
  • the positional relationship between the simulated femoral artery 34 and the predilator 122 is confirmed using an echo image of the ultrasonic inspection device 124.
  • the predilator 122 is removed, and a blood cannula 128 into which the dilator 126 has been inserted is inserted into the simulated femoral artery 34 along the guide wire 120 as shown in FIG. 7B.
  • the positional relationship between the simulated femoral artery 34 and the dilator 126 is confirmed using an echo image of the ultrasonic inspection device 124. Thereafter, as shown in FIG. 8, the tip of the blood cannula 128 is placed at a predetermined position of the simulated abdominal aorta 40b, and the guide wire 120 and the dilator 126 are removed.
  • the user inserts a blood removal cannula 130 into the simulated femoral vein 36 (cannulate the simulated femoral vein 36).
  • a blood removal cannula 130 for the simulated femoral vein 36 is the same as the puncture procedure of the blood supply cannula 128 for the simulated femoral artery 34, and thus detailed description thereof is omitted.
  • the tip of the blood removal cannula 130 is placed at a predetermined position of the simulated inferior vena cava 48.
  • the blood pump 110 is connected to the hub 128a of the blood cannula 128 and the blood drain tube 102 is connected to the hub 130a of the blood cannula 130.
  • the centrifugal pump 104 is operated. Drive.
  • oxygen is supplied to the oxygenator 108.
  • the simulated blood 12 guided from the simulated inferior vena cava 48 to the blood removal cannula 130 is guided to the centrifugal pump 104 via the blood removal tube 102.
  • the simulated blood 12 derived from the centrifugal pump 104 is exchanged in the artificial lung 108 and then guided to the simulated abdominal aorta 40b via the blood supply tube 110 and the blood supply cannula 128.
  • the forceps 56 and 60 are operated to adjust the simulated blood 12 in the blood circuit model 14 to an appropriate amount.
  • the driving of the centrifugal pump 104 is stopped, and the supply of oxygen to the oxygenator 108 is stopped.
  • the blood cannula 128 is removed from the simulated femoral artery 34, and the blood removal cannula 130 is removed from the simulated femoral vein 36.
  • the intermediate fiber part 73 is provided between the surface layer part 64a of the simulated subcutaneous tissue 64 and the simulated blood vessel 20, the strength of the part of the simulated subcutaneous tissue 64 that contacts the intermediate fiber part 73 is improved. be able to. Thereby, damage of the simulated subcutaneous tissue 64 can be suppressed when the simulated blood vessel 20 is punctured and removed from the medical device.
  • the medical device when punctured and removed from the simulated blood vessel 20, a part of the simulated subcutaneous tissue 64 may adhere to the medical device.
  • the attached tissue attached to the medical device among the simulated subcutaneous tissue 64 can be peeled off by the intermediate fiber portion 73, the simulated subcutaneous tissue 64 is punctured and removed from the simulated blood vessel 20 by the medical device. Can be effectively suppressed.
  • the puncture model 16 of this embodiment includes the simulated skin 74 that covers the surface layer portion 64a of the simulated subcutaneous tissue 64, the sensation of puncturing and removing the medical device from the simulated blood vessel 20 can be approximated to an actual procedure. .
  • the intermediate fiber portion 73 is embedded in the simulated subcutaneous tissue 64, the intermediate fiber portion 73 can be prevented from shifting with respect to the simulated subcutaneous tissue 64 when the medical device 20 is punctured and removed from the simulated blood vessel 20.
  • the intermediate fiber portion 73 is impregnated with the simulated subcutaneous tissue 64, the intermediate fiber portion 73 can be firmly bonded to the simulated subcutaneous tissue 64. Furthermore, since the intermediate fiber part 73 is comprised with the fiber which has a liquid absorptivity, the liquid in the simulated subcutaneous tissue 64 can be absorbed by the fiber of the intermediate fiber part 73. FIG. Therefore, the intermediate fiber portion 73 can be more firmly bonded to the simulated subcutaneous tissue 64, and the simulated blood 12 can be prevented from leaking onto the simulated skin 74.
  • the simulated blood vessel 20 has the simulated femoral artery 34 and the simulated femoral vein 36, it is possible to experience a simulated experience of puncturing a medical device in the femoral artery and femoral vein of the human body.
  • the blood circuit model 14 includes a simulated heart 18, a first flow path 22, a simulated femoral artery 34, a second flow path 24, a simulated femoral vein 36, and a third flow path 26, and the first flow path.
  • a pump 42 for sending the simulated blood 12 in the simulated heart 18 to the simulated femoral artery 34 is provided.
  • the simulated aorta 40 in the first flow path 22 and the simulated inferior vena cava 48 in the third flow path 26 are made of a transparent resin material.
  • the simulated blood 12 sent from the pump 42 to the simulated aorta 40 may be collided with the simulated blood that looks like oxygenated blood sent from the blood cannula 128 to the simulated aorta 40. it can.
  • the collision between the blood sent to the aorta by self-pulsation and the oxygenated blood sent from the blood cannula to the aorta is reproduced by the blood circuit model 14 and the state can be visually recognized. it can. Therefore, it is possible to learn from the technique simulator 10 the principle of causing a difference in blood collection data of the left and right radial arteries when performing PCPS on the human body.
  • a central venous catheter can be inserted into the simulated inferior vena cava 48, and the distal end thereof can be positioned near the distal end of the blood removal cannula 130.
  • the simulated inferior vena cava 48 is flexible, negative pressure can be applied to the inferior vena cava 48 during PCPS.
  • PCPS computerized tomography
  • negative pressure in the inferior vena cava may cause the inferior vena cava to stick to the blood removal cannula, resulting in poor blood removal that reduces the amount of blood removed by the cannula.
  • the simulated inferior vena cava 48 when performing PCPS, can be set to a negative pressure and the simulated inferior vena cava 48 can be stuck to the cannula 130 for blood removal.
  • the phenomenon that the inferior vena cava sticks to the blood removal cannula during PCPS can be reproduced by the blood circuit model 14 and the state thereof can be visually recognized. Therefore, the principle of blood removal failure when PCPS is performed on the human body can be learned by the procedure simulator 10.
  • each of the simulated aorta 40 and the simulated inferior vena cava 48 is made of a material having flexibility and transparency. It is possible to reproduce various trouble events and visually recognize the phenomenon. Thereby, various trouble events that occur when performing PCPS on the human body can be learned by the procedure simulator 10.
  • the puncture model 16 may have a fiber layer 140 shown in FIGS. 9A and 9B instead of the fiber layer 72.
  • the fiber layer 140 has a first outer peripheral fiber portion 142, a second outer peripheral fiber portion 144, an intermediate fiber portion 73, and a surface fiber portion 148.
  • the first outer peripheral fiber portion 142 is provided so as to cover the entire outer peripheral surface of the portion of the simulated femoral artery 34 embedded in the simulated subcutaneous tissue 64.
  • the first outer peripheral fiber portion 142 is made of, for example, a fiber having liquid absorbency (water absorption) such as polyester fiber, and the simulated subcutaneous tissue 64 is filled in the first outer peripheral fiber portion 142 to the simulated subcutaneous tissue 64. It is tightly coupled.
  • the 1st outer periphery fiber part 142 may be comprised with the fiber which does not have a liquid absorptivity.
  • the first outer peripheral fiber portion 142 is formed by, for example, winding a non-woven fabric or a woven fabric made of the fibers around the outer peripheral surface of the simulated femoral artery 34 and bonding the same with an adhesive.
  • the second outer peripheral fiber portion 144 is provided so as to cover the entire outer peripheral surface of the portion of the simulated femoral vein 36 embedded in the simulated subcutaneous tissue 64. Since the 2nd outer periphery fiber part 144 is comprised similarly to the 1st outer periphery fiber part 142, the detailed description is abbreviate
  • the surface fiber portion 148 is disposed on the outer surface of the simulated subcutaneous tissue 64.
  • the surface fiber portion 148 is, for example, a nonwoven fabric composed of polyester fibers.
  • the surface fiber portion 148 may be composed of fibers other than polyester fibers, or may be a woven fabric instead of a nonwoven fabric.
  • the first outer peripheral fiber portion 142 is provided on the outer peripheral surface of the simulated femoral artery 34, the leakage of the simulated blood 12 between the simulated subcutaneous tissue 64 and the simulated femoral artery 34 is suppressed. Can do. Further, the strength of the portion of the simulated subcutaneous tissue 64 that contacts the first outer peripheral fiber portion 142 can be improved. Further, when the medical device punctures the simulated femoral artery 34, the attached tissue of the medical device can be peeled off by the first outer peripheral fiber portion 142.
  • the second outer peripheral fiber portion 144 is provided on the outer peripheral surface of the simulated femoral vein 36, it is possible to prevent the simulated blood 12 from leaking between the simulated subcutaneous tissue 64 and the simulated femoral vein 36. Moreover, the intensity
  • the surface fiber portion 148 is provided on the surface layer portion 64a of the simulated subcutaneous tissue 64, the strength of the portion of the simulated subcutaneous tissue 64 that is in contact with the surface fiber portion 148 can be improved.
  • the adherent tissue of the medical device can be peeled off by the surface fiber portion 148.
  • the fiber layer 140 is not limited to the configuration described above. In the fiber layer 140, at least one of the first outer peripheral fiber portion 142, the second outer peripheral fiber portion 144, the intermediate fiber portion 73, and the surface fiber portion 148 may be omitted.
  • the fiber layer 140 may include at least one of the first outer peripheral fiber portion 142 and the second outer peripheral fiber portion 144, and the intermediate fiber portion 73 and the surface fiber portion 148 may be omitted.
  • the fiber layer 140 may include at least one of the first outer peripheral fiber portion 142 and the second outer peripheral fiber portion 144 and the intermediate fiber portion 73, and the surface fiber portion 148 may be omitted.
  • the fiber layer 140 includes at least one of the first outer peripheral fiber portion 142 and the second outer peripheral fiber portion 144 and the surface fiber portion 148, and the intermediate fiber portion 73 may be omitted. Furthermore, for example, the fiber layer 140 may have a surface fiber portion 148, and at least one of the first outer peripheral fiber portion 142 and the second outer peripheral fiber portion 144 and the intermediate fiber portion 73 may be omitted.
  • the fiber layer 140 includes the surface fiber portion 148 and the intermediate fiber portion 73, and at least one of the first outer periphery fiber portion 142 and the second outer periphery fiber portion 144 may be omitted.
  • the procedure simulator according to the present invention is not limited to the above-described embodiment, and various configurations can be adopted without departing from the gist of the present invention.

Abstract

A procedure simulator (10) is provided with a gel-form simulated subcutaneous tissue (64) that is provided inside a container (62), a simulated blood vessel (20) that is embedded in the simulated subcutaneous tissue (64), and a fibrous layer (72) that is provided in at least either of the surface layer portion (64a) of the simulated subcutaneous tissue (64), or between the surface layer portion (64a) and the simulated blood vessel (20). The fibrous layer (72) is provided between the simulated blood vessel (20) and simulated skin (74).

Description

手技シミュレータProcedure simulator
 本発明は、模擬血管に医療機器を経皮的に穿刺する手技シミュレータに関する。 The present invention relates to a technique simulator for percutaneously puncturing a medical device into a simulated blood vessel.
 経皮的心肺補助法(PCPS:Percutaneous cardiopulmonary support)は、一般的に、遠心ポンプと人工肺とを用いた閉鎖回路の人工心肺装置により、大腿動脈及び大腿静脈経由で心肺補助を行うものである(例えば、特開2016-67383号公報参照)。このPCPSでは、大腿動脈及び大腿静脈にカニューレを穿刺する。 Percutaneous cardiopulmonary support (PCPS: Percutaneous cardiopulmonary support) is generally a cardiopulmonary support via a femoral artery and femoral vein using a closed-circuit cardiopulmonary apparatus using a centrifugal pump and an artificial lung. (See, for example, JP-A-2016-67383). In this PCPS, a femoral artery and a femoral vein are cannulated.
 ところで、カニューレ等の医療機器を血管に経皮的に穿刺する手技を習得するために、ゲル状の模擬皮下組織に模擬血管を埋設した手技シミュレータが用いられることがある。しかしながら、このような手技シミュレータでは、ゲル状の模擬皮下組織を用いているため、模擬血管に対する医療機器の穿刺及び抜去の際に、模擬皮下組織が破損するおそれがある。 By the way, in order to acquire a technique for percutaneously puncturing a blood vessel with a medical device such as a cannula, a technique simulator in which a simulated blood vessel is embedded in a gel-like simulated subcutaneous tissue may be used. However, since such a procedure simulator uses a gel-like simulated subcutaneous tissue, the simulated subcutaneous tissue may be damaged when the medical device is punctured and removed from the simulated blood vessel.
 本発明は、このような課題を考慮してなされたものであり、模擬血管に対する医療機器の穿刺及び抜去の際に模擬皮下組織の破損を抑制できる手技シミュレータを提供することを目的とする。 The present invention has been made in view of such problems, and an object of the present invention is to provide a technique simulator capable of suppressing the damage of the simulated subcutaneous tissue when the medical device is punctured and removed from the simulated blood vessel.
 上記目的を達成するために、本発明に係る手技シミュレータは、容器と、前記容器内に設けられたゲル状の模擬皮下組織と、前記模擬皮下組織に埋設された模擬血管と、前記模擬皮下組織の表層部及び前記表層部と前記模擬血管との間の少なくとも一方に設けられた繊維層と、を備えることを特徴とする。 In order to achieve the above object, a procedure simulator according to the present invention includes a container, a gel-like simulated subcutaneous tissue provided in the container, a simulated blood vessel embedded in the simulated subcutaneous tissue, and the simulated subcutaneous tissue. And a fiber layer provided on at least one of the surface layer portion and the simulated blood vessel.
 このような構成によれば、模擬皮下組織のうち繊維層に接触する部位の強度を向上させることができるため、模擬血管に対する医療機器の穿刺及び抜去の際に模擬皮下組織の破損を抑制できる。 According to such a configuration, since the strength of the part of the simulated subcutaneous tissue that contacts the fiber layer can be improved, the damage of the simulated subcutaneous tissue can be suppressed when the medical device is punctured and removed from the simulated blood vessel.
 上記の手技シミュレータにおいて、前記模擬皮下組織の前記表層部を覆う模擬皮膚を備え、前記繊維層は、前記模擬血管と前記模擬皮膚との間に設けられていてもよい。 In the above procedure simulator, a simulated skin covering the surface portion of the simulated subcutaneous tissue may be provided, and the fiber layer may be provided between the simulated blood vessel and the simulated skin.
 このような構成によれば、模擬血管に対する医療機器の穿刺及び抜去の感覚を実際の手技に近似させることができる。 According to such a configuration, the sensation of puncturing and removing the medical device from the simulated blood vessel can be approximated to an actual procedure.
 上記の手技シミュレータにおいて、前記繊維層は、前記模擬皮下組織に埋設されていてもよい。 In the above procedure simulator, the fiber layer may be embedded in the simulated subcutaneous tissue.
 このような構成によれば、模擬血管に対する医療機器の穿刺及び抜去の際に繊維層が模擬皮下組織に対してずれることを抑制できる。 According to such a configuration, the fiber layer can be prevented from shifting with respect to the simulated subcutaneous tissue when the medical device is punctured and removed from the simulated blood vessel.
 上記の手技シミュレータにおいて、前記繊維層内には、前記模擬皮下組織が含浸されていてもよい。 In the above procedure simulator, the simulated subcutaneous tissue may be impregnated in the fiber layer.
 このような構成によれば、繊維層を模擬皮下組織に対して強固に結合させることができる。 According to such a configuration, the fiber layer can be firmly bonded to the simulated subcutaneous tissue.
 上記の手技シミュレータにおいて、前記繊維層は、吸液性を有する繊維で構成されていてもよい。 In the above-described procedure simulator, the fiber layer may be composed of a fiber having liquid absorbency.
 このような構成によれば、模擬皮下組織中の液体を繊維層の繊維に吸収させることにより、繊維層を模擬皮下組織に対して一層強固に結合させることができる。 According to such a configuration, the fiber layer can be more firmly bonded to the simulated subcutaneous tissue by absorbing the liquid in the simulated subcutaneous tissue into the fibers of the fiber layer.
 上記の手技シミュレータにおいて、前記模擬血管内には、模擬血液が流通し、前記繊維層は、前記模擬血管の外周面に設けられていてもよい。 In the above procedure simulator, simulated blood may circulate in the simulated blood vessel, and the fiber layer may be provided on the outer peripheral surface of the simulated blood vessel.
 このような構成によれば、模擬血管に対する医療機器の穿刺及び抜去の際に模擬皮下組織及び模擬血管の間に模擬血液が漏出することを繊維層によって抑えることができる。 According to such a configuration, it is possible to suppress the simulated blood from leaking between the simulated subcutaneous tissue and the simulated blood vessel when the medical device is punctured and removed from the simulated blood vessel by the fiber layer.
 上記の手技シミュレータにおいて、前記模擬血管は、人体の大腿動脈を模した模擬大腿動脈と、人体の大腿静脈を模した模擬大腿静脈と、を有していてもよい。 In the above-described procedure simulator, the simulated blood vessel may include a simulated femoral artery simulating a human femoral artery and a simulated femoral vein simulating a human femoral vein.
 このような構成によれば、大腿動脈及び大腿静脈に医療機器を穿刺する手技を模擬体験することができる。 According to such a configuration, it is possible to experience a simulated experience of puncturing a medical device in the femoral artery and the femoral vein.
 上記の手技シミュレータにおいて、模擬血液が流通する血液回路モデルを備え、前記血液回路モデルは、模擬心臓と、前記模擬大腿動脈及び前記模擬大腿静脈と、前記模擬心臓内の前記模擬血液を前記模擬大腿動脈に導く第1流路と、前記模擬大腿動脈内の前記模擬血液を前記模擬大腿静脈に導く第2流路と、前記模擬大腿静脈内の前記模擬血液を前記模擬心臓内に導く第3流路と、を有し、前記第1流路には、前記模擬心臓内の前記模擬血液を前記模擬大腿動脈に送るポンプが設けられていてもよい。 The technique simulator includes a blood circuit model through which simulated blood circulates, the blood circuit model including the simulated heart, the simulated femoral artery and the simulated femoral vein, and the simulated blood in the simulated heart. A first flow path leading to the artery, a second flow path leading the simulated blood in the simulated femoral artery to the simulated femoral vein, and a third flow leading the simulated blood in the simulated femoral vein into the simulated heart A pump for sending the simulated blood in the simulated heart to the simulated femoral artery may be provided in the first flow path.
 このような構成によれば、人体に対してPCPSを行っている時の血液循環を血液回路モデルで再現することができる。 According to such a configuration, blood circulation when PCPS is performed on a human body can be reproduced with a blood circuit model.
 上記の手技シミュレータにおいて、前記第1流路は、人体の大動脈を模した模擬大動脈を有し、前記第3流路は、人体の下大静脈を模した模擬下大静脈を有し、前記模擬大動脈及び前記模擬下大静脈のそれぞれは、可撓性及び透明性を有する材料によって構成されていてもよい。 In the above-described procedure simulator, the first flow path has a simulated aorta imitating a human aorta, and the third flow path has a simulated inferior vena cava imitating a human inferior vena cava, Each of the aorta and the simulated inferior vena cava may be made of a material having flexibility and transparency.
 このような構成によれば、血液回路モデルによりPCPSを行っている際に発生する様々なトラブル事象を再現するとともにその現象を視認することができる。 According to such a configuration, various trouble events that occur when PCPS is performed using a blood circuit model can be reproduced and the phenomenon can be visually recognized.
 本発明によれば、模擬皮下組織のうち繊維層に接触する部位の強度を向上させることができるため、模擬血管に対する医療機器の穿刺及び抜去の際に模擬皮下組織の破損を抑制できる。 According to the present invention, since the strength of the portion of the simulated subcutaneous tissue that contacts the fiber layer can be improved, it is possible to suppress damage to the simulated subcutaneous tissue when the medical device is punctured and removed from the simulated blood vessel.
本発明の一実施形態に係る手技シミュレータの平面模式図である。It is a plane schematic diagram of a procedure simulator according to an embodiment of the present invention. 前記手技シミュレータを構成する穿刺モデルの平面図である。It is a top view of the puncture model which comprises the said procedure simulator. 前記穿刺モデルの斜視図である。It is a perspective view of the puncture model. 図4Aは図2のIVA-IVA線に沿った縦断面図であり、図4Bは図2のIVB-IVB線に沿った横断面図である。4A is a longitudinal sectional view taken along line IVA-IVA in FIG. 2, and FIG. 4B is a transverse sectional view taken along line IVB-IVB in FIG. 図5Aは前記穿刺モデルの第1の製造説明図であり、図5Bは前記穿刺モデルの第2の製造説明図である。FIG. 5A is a first manufacturing explanatory diagram of the puncture model, and FIG. 5B is a second manufacturing explanatory diagram of the puncture model. 図6Aは前記穿刺モデルの第3の製造説明図であり、図6Bは前記穿刺モデルの第4の製造説明図である。FIG. 6A is a third manufacturing explanatory diagram of the puncture model, and FIG. 6B is a fourth manufacturing explanatory diagram of the puncture model. 図7Aは、模擬血管にプレダイレータを挿入している状態を示す断面説明図であり、図7Bは模擬血管にカニューレを挿入している状態を示す断面説明図である。FIG. 7A is a cross-sectional explanatory view showing a state where a predilator is inserted into a simulated blood vessel, and FIG. 7B is a cross-sectional explanatory view showing a state where a cannula is inserted into the simulated blood vessel. 前記手技シミュレータを用いたPCPSの手技の説明図である。It is explanatory drawing of the procedure of PCPS using the said procedure simulator. 図9Aは変形例に係る繊維層を有する穿刺モデルの縦断面図であり、図9Bは図9Aに示す穿刺モデルの横断面図である。9A is a longitudinal sectional view of a puncture model having a fiber layer according to a modification, and FIG. 9B is a transverse sectional view of the puncture model shown in FIG. 9A.
 以下、本発明に係る手技シミュレータ10について好適な実施形態を挙げ、添付の図面を参照しながら説明する。なお、図4A、図4B、図7A、図7B、図9A及び図9Bでは、模擬血液12の図示を省略している。 Hereinafter, preferred embodiments of the procedure simulator 10 according to the present invention will be described with reference to the accompanying drawings. 4A, 4B, 7A, 7B, 9A, and 9B, the simulated blood 12 is not shown.
 本実施形態に係る手技シミュレータ10は、PCPSにおいて大腿動脈及び大腿静脈にカニューレを穿刺する手技のトレーニングとして利用される。 The procedure simulator 10 according to this embodiment is used as training for a procedure in which a femoral artery and a femoral vein are cannulated in PCPS.
 図1に示すように、手技シミュレータ10は、模擬血液12が流通する血液回路モデル14と、血液回路モデル14に設けられた穿刺モデル16とを備えている。模擬血液12は、人体の血液を模したものであって、例えば、水を赤色で着色したものを用いることができる。血液回路モデル14は、模擬心臓18、模擬血管20、第1流路22、第2流路24、第3流路26、第4流路28、貯留部30及び第5流路32を有している。 As shown in FIG. 1, the procedure simulator 10 includes a blood circuit model 14 in which the simulated blood 12 circulates and a puncture model 16 provided in the blood circuit model 14. The simulated blood 12 simulates human blood, and for example, water colored in red can be used. The blood circuit model 14 includes a simulated heart 18, a simulated blood vessel 20, a first channel 22, a second channel 24, a third channel 26, a fourth channel 28, a storage unit 30, and a fifth channel 32. ing.
 模擬心臓18は、人体の心臓を模したものである。模擬心臓18は、柔軟性及び透明性を有する樹脂材料によって構成されている。この種の樹脂材料としては、例えば、シリコーンゴム(シリコーンエラストマー)や熱硬化性のポリウレタンエラストマー等のエラストマー系材料、シリコーンハイドロゲルやPVAハイドロゲルやゼラチン等のゲル、シリコーン樹脂、エポキシ樹脂、ポリウレタン、不飽和ポリエステル、フェノール樹脂、ユリア樹脂等の熱硬化性樹脂、ポリメタクリル酸メチル等の熱可塑性樹脂を単独で、又は複数組み合わせたもの等が挙げられる。 The simulated heart 18 imitates the human heart. The simulated heart 18 is made of a resin material having flexibility and transparency. Examples of this type of resin material include elastomeric materials such as silicone rubber (silicone elastomer) and thermosetting polyurethane elastomer, gels such as silicone hydrogel, PVA hydrogel, and gelatin, silicone resin, epoxy resin, polyurethane, Examples thereof include thermosetting resins such as unsaturated polyesters, phenol resins and urea resins, and thermoplastic resins such as polymethyl methacrylate alone or in combination.
 模擬血管20は、穿刺モデル16の一部を構成し、人体の大腿動脈を模した模擬大腿動脈34と、人体の大腿静脈を模した模擬大腿静脈36とを含む。模擬大腿動脈34及び模擬大腿静脈36は、一方向に延在した状態で並設されている。なお、模擬大腿動脈34及び模擬大腿静脈36の詳細については後述する。 The simulated blood vessel 20 constitutes a part of the puncture model 16 and includes a simulated femoral artery 34 imitating the human femoral artery and a simulated femoral vein 36 imitating the human femoral vein. The simulated femoral artery 34 and the simulated femoral vein 36 are juxtaposed in a state extending in one direction. Details of the simulated femoral artery 34 and the simulated femoral vein 36 will be described later.
 第1流路22は、模擬心臓18内の模擬血液12を模擬大腿動脈34に導くものであって、模擬心臓18に連なる第1チューブ38と、第1チューブ38及び模擬大腿動脈34の一端部を連結する模擬大動脈40とを有する。第1チューブ38には、模擬心臓18の拍動を再現するためのポンプ42が設けられている。つまり、ポンプ42は、模擬心臓18内の模擬血液12を模擬大動脈40を介して模擬大腿動脈34に送る。第1チューブ38は、透明性を有する樹脂材料により構成されている。後述する第2チューブ44、第3チューブ50、第4チューブ52、第5チューブ54及び第6チューブ58のそれぞれについても同様である。 The first flow path 22 guides the simulated blood 12 in the simulated heart 18 to the simulated femoral artery 34, and the first tube 38 connected to the simulated heart 18 and one end of the first tube 38 and the simulated femoral artery 34. And a simulated aorta 40 connecting the two. The first tube 38 is provided with a pump 42 for reproducing the pulsation of the simulated heart 18. That is, the pump 42 sends the simulated blood 12 in the simulated heart 18 to the simulated femoral artery 34 via the simulated aorta 40. The first tube 38 is made of a resin material having transparency. The same applies to the second tube 44, the third tube 50, the fourth tube 52, the fifth tube 54, and the sixth tube 58, which will be described later.
 模擬大動脈40は、人体の大動脈を模したものであり、可撓性及び透明性を有する樹脂材料によって構成されている。このような樹脂材料としては、例えば、上述した模擬心臓18を構成する樹脂材料と同じものが挙げられる。模擬大動脈40は、人体の大動脈弓を模した模擬大動脈弓40aと、人体の腹大動脈を模した模擬腹大動脈40bを含む。 The simulated aorta 40 imitates the human aorta and is made of a resin material having flexibility and transparency. As such a resin material, for example, the same resin material as that of the simulated heart 18 described above can be used. The simulated aorta 40 includes a simulated aortic arch 40a simulating a human aortic arch and a simulated abdominal aorta 40b simulating a human abdominal aorta.
 第2流路24は、模擬大腿動脈34内の模擬血液12を模擬大腿静脈36に導くためのものであって、模擬大腿動脈34及び模擬大腿静脈36の他端部同士を互いに連結する第2チューブ44を有する。第2チューブ44は、略Y字状に形成された二股のチューブである。なお、第2チューブ44のうち模擬大腿動脈34及び模擬大腿静脈36とは反対側の端部には、閉塞部材46が設けられている。 The second flow path 24 is for guiding the simulated blood 12 in the simulated femoral artery 34 to the simulated femoral vein 36, and the second flow path 24 connects the other ends of the simulated femoral artery 34 and the simulated femoral vein 36 to each other. It has a tube 44. The second tube 44 is a bifurcated tube formed in a substantially Y shape. An occlusion member 46 is provided at the end of the second tube 44 opposite to the simulated femoral artery 34 and the simulated femoral vein 36.
 第3流路26は、模擬大腿静脈36内の模擬血液12を模擬心臓18内に導くためのものであって、人体の下大静脈を模した模擬下大静脈48を有する。また、模擬下大静脈48は、可撓性及び透明性を有する樹脂材料によって構成されている。このような樹脂材料としては、例えば、上述した模擬心臓18を構成する樹脂材料と同じものが挙げられる。 The third flow path 26 is for guiding the simulated blood 12 in the simulated femoral vein 36 into the simulated heart 18 and has a simulated inferior vena cava 48 simulating the inferior vena cava of the human body. The simulated inferior vena cava 48 is made of a resin material having flexibility and transparency. As such a resin material, for example, the same resin material as that of the simulated heart 18 described above can be used.
 第4流路28は、模擬腹大動脈40bと貯留部30とを連結する第3チューブ50と、模擬大動脈弓40a及び第3チューブ50を連結する第4チューブ52と、模擬下大静脈48及び第4チューブ52を連結する第5チューブ54とを有する。第3チューブ50のうち第4チューブ52との連結部よりも下流側には、模擬血液12の流通を遮断するための鉗子56が設けられる。 The fourth flow path 28 includes a third tube 50 that connects the simulated abdominal aorta 40b and the reservoir 30, a fourth tube 52 that connects the simulated aortic arch 40a and the third tube 50, a simulated inferior vena cava 48, and a second tube. And a fifth tube 54 connecting the four tubes 52. A forceps 56 for blocking the flow of the simulated blood 12 is provided on the downstream side of the connection portion with the fourth tube 52 in the third tube 50.
 貯留部30内には、模擬血液12が貯留されている。第5流路32は、貯留部30内の模擬血液12を模擬下大静脈48に導く第6チューブ58を有する。第6チューブ58には、模擬血液12の流通を遮断するための鉗子60が設けられる。 The simulated blood 12 is stored in the storage unit 30. The fifth flow path 32 includes a sixth tube 58 that guides the simulated blood 12 in the reservoir 30 to the simulated inferior vena cava 48. The sixth tube 58 is provided with forceps 60 for blocking the circulation of the simulated blood 12.
 図2~図4Bに示すように、穿刺モデル16は、容器62、模擬皮下組織64、模擬骨部66、模擬大腿動脈34、模擬大腿静脈36、繊維層72及び模擬皮膚74を有する。容器62は、片側が開口した略直方体形状の箱型の容器であって、ポリプロピレン等の樹脂材料により構成されている。容器62の外側面には、模擬皮膚74を固定するための複数の第1係止部76が設けられている(図4A~図5A参照)。 As shown in FIGS. 2 to 4B, the puncture model 16 includes a container 62, a simulated subcutaneous tissue 64, a simulated bone portion 66, a simulated femoral artery 34, a simulated femoral vein 36, a fiber layer 72, and a simulated skin 74. The container 62 is a substantially rectangular parallelepiped box-shaped container opened on one side, and is made of a resin material such as polypropylene. A plurality of first locking portions 76 for fixing the simulated skin 74 are provided on the outer surface of the container 62 (see FIGS. 4A to 5A).
 模擬皮下組織64は、人体の大腿部を模したゲル状部材であって、容器62内に充填されている。模擬皮下組織64は、例えば、水、アクリルアミド、酸化アルミニウム等の混合液に硬化剤を入れてブロック状にしたものである。このように構成された模擬皮下組織64は、人体の大腿部のように軟組織の感触を得ることができる。また、模擬皮下組織64は、酸化アルミニウムを含んでいるため、超音波検査装置を用いてエコー画像を画面に表示させることができる。 The simulated subcutaneous tissue 64 is a gel-like member that imitates the thigh of a human body, and is filled in the container 62. The simulated subcutaneous tissue 64 is, for example, made into a block shape by adding a hardening agent to a mixed solution of water, acrylamide, aluminum oxide or the like. The simulated subcutaneous tissue 64 configured in this way can obtain a soft tissue feel like the thigh of a human body. Moreover, since the simulated subcutaneous tissue 64 contains aluminum oxide, an echo image can be displayed on the screen using an ultrasonic inspection apparatus.
 模擬骨部66は、模擬皮下組織64に埋設されており、人体の上前腸骨棘を模した模擬上前腸骨棘66aと、人体の恥骨結節を模した模擬恥骨結節66bとを有する(図2参照)。模擬上前腸骨棘66a及び模擬恥骨結節66bは、模擬大腿動脈34及び模擬大腿静脈36の位置を特定する際の目印(ランドマーク)となるものである。このような模擬骨部66は、例えば、エポキシ樹脂等によって人体データに基づいて3Dプリンターを用いて製造することができる。 The simulated bone portion 66 is embedded in the simulated subcutaneous tissue 64, and includes a simulated upper anterior iliac spine 66a that imitates the upper anterior iliac spine of a human body, and a simulated pubic nodule 66b that simulates the pubic nodule of the human body ( (See FIG. 2). The simulated anterior iliac spine 66a and the simulated pubic nodule 66b serve as landmarks for identifying the positions of the simulated femoral artery 34 and the simulated femoral vein 36. Such a simulated bone part 66 can be manufactured using a 3D printer based on human body data, for example, with an epoxy resin or the like.
 模擬大腿動脈34及び模擬大腿静脈36は、互いに隣接した状態で容器62の長手方向に沿って延在している。模擬大腿動脈34及び模擬大腿静脈36は、模擬皮下組織64に埋設された状態で容器62の長手方向の両側部を貫通している。模擬大腿動脈34及び模擬大腿静脈36は、模擬骨部66よりも上方(容器62の底面とは反対に位置する模擬皮膚74側)に位置している(図4A及び図4B参照)。模擬大腿動脈34は、模擬皮膚74の外表面から約150mmの深さに位置している。ただし、模擬大腿動脈34の模擬皮膚74の外表面からの深さは、任意に変更可能である。 The simulated femoral artery 34 and the simulated femoral vein 36 extend along the longitudinal direction of the container 62 while being adjacent to each other. The simulated femoral artery 34 and the simulated femoral vein 36 penetrate both sides in the longitudinal direction of the container 62 while being embedded in the simulated subcutaneous tissue 64. The simulated femoral artery 34 and the simulated femoral vein 36 are located above the simulated bone portion 66 (on the simulated skin 74 side opposite to the bottom surface of the container 62) (see FIGS. 4A and 4B). The simulated femoral artery 34 is located at a depth of about 150 mm from the outer surface of the simulated skin 74. However, the depth of the simulated femoral artery 34 from the outer surface of the simulated skin 74 can be arbitrarily changed.
 模擬大腿動脈34は、模擬大腿静脈36よりも上方且つ模擬上前腸骨棘66aが位置する側に位置している。模擬大腿動脈34の内径は模擬大腿静脈36の内径よりも小さく設定されている。具体的には、模擬大腿動脈34の内径は、6mm~8mmの範囲が好ましく、7mmがより好ましい。模擬大腿静脈36の内径は、9mm~11mmの範囲が好ましく、10mmがより好ましい。この場合、模擬大腿動脈34及び模擬大腿静脈36を心停止した状態の患者の大腿動脈及び大腿静脈に近似させることができる。 The simulated femoral artery 34 is located above the simulated femoral vein 36 and on the side where the simulated upper anterior iliac spine 66a is located. The inner diameter of the simulated femoral artery 34 is set smaller than the inner diameter of the simulated femoral vein 36. Specifically, the inner diameter of the simulated femoral artery 34 is preferably in the range of 6 mm to 8 mm, more preferably 7 mm. The inner diameter of the simulated femoral vein 36 is preferably in the range of 9 mm to 11 mm, and more preferably 10 mm. In this case, the simulated femoral artery 34 and the simulated femoral vein 36 can be approximated to the femoral artery and femoral vein of the patient in a cardiac arrested state.
 模擬大腿動脈34の長さは、模擬大腿静脈36の長さよりも短い。具体的には、模擬大腿動脈34の長さは、70mm~90mmの範囲が好ましく、80mmがより好ましい。模擬大腿静脈36の長さは、110mm~130mmの範囲が好ましく、120mmがより好ましい。この場合、模擬大腿動脈34及び模擬大腿静脈36を効果的に脈動(拍動)させることができる。 The length of the simulated femoral artery 34 is shorter than the length of the simulated femoral vein 36. Specifically, the length of the simulated femoral artery 34 is preferably in the range of 70 mm to 90 mm, and more preferably 80 mm. The length of the simulated femoral vein 36 is preferably in the range of 110 mm to 130 mm, and more preferably 120 mm. In this case, the simulated femoral artery 34 and the simulated femoral vein 36 can be effectively pulsated (pulsated).
 模擬大腿動脈34及び模擬大腿静脈36は、例えば、シリコンゴム、ポリビニルアルコール、天然ゴム等の樹脂材料により構成されている。模擬大腿動脈34及び模擬大腿静脈36を構成する樹脂材料は、JIS K 6253規格に基づいてタイプAで測定したデュロメータ硬さが30A~40Aの範囲のものが好ましく、35Aのものがより好ましい。この場合、模擬大腿動脈34及び模擬大腿静脈36を好適に脈動させることができるとともにガイドワイヤ、プレダイレータ、ダイレータ及びカニューレ等の医療機器(以下、単に医療機器と称する。)を穿刺した際の感覚を人体の大腿動脈及び大腿静脈に穿刺した感覚に近似させることができる。 The simulated femoral artery 34 and the simulated femoral vein 36 are made of, for example, a resin material such as silicon rubber, polyvinyl alcohol, or natural rubber. The resin material constituting the simulated femoral artery 34 and the simulated femoral vein 36 preferably has a durometer hardness of 30A to 40A measured by type A based on JIS K 6253 standard, and more preferably 35A. In this case, the simulated femoral artery 34 and the simulated femoral vein 36 can be suitably pulsated and sensed when a medical device (hereinafter simply referred to as medical device) such as a guide wire, predilator, dilator, and cannula is punctured. Can be approximated to the sense of puncturing the femoral artery and vein of the human body.
 繊維層72は、模擬皮下組織64における模擬血管20の上方に埋設された中間繊維部73を有している。すなわち、中間繊維部73は、模擬皮下組織64の表層部64a及び模擬血管20の間に設けられている。 The fiber layer 72 has an intermediate fiber portion 73 embedded above the simulated blood vessel 20 in the simulated subcutaneous tissue 64. That is, the intermediate fiber portion 73 is provided between the surface layer portion 64 a of the simulated subcutaneous tissue 64 and the simulated blood vessel 20.
 中間繊維部73は、例えば、ポリエステル繊維等の吸液性(吸水性)を有する繊維によって構成された不織布である。中間繊維部73は、その内部に模擬皮下組織64が含浸(充填)されることによって模擬皮下組織64に対して強固に結合している。中間繊維部73は、吸液性を有しない繊維で構成されていてもよいし、不織布ではなく織布であってもよい。 The intermediate fiber portion 73 is a non-woven fabric composed of fibers having liquid absorbency (water absorption) such as polyester fibers. The intermediate fiber portion 73 is firmly bonded to the simulated subcutaneous tissue 64 by being impregnated (filled) with the simulated subcutaneous tissue 64 therein. The intermediate fiber part 73 may be comprised with the fiber which does not have a liquid absorptivity, and may be a woven fabric instead of a nonwoven fabric.
 模擬皮膚74は、例えば、シリコンゴムで構成されたシート部材である。模擬皮膚74は、JIS K 6252規格に基づいた測定で30kN/m以上の引裂強度を有するのが好ましい。この場合、医療機器の穿刺又は抜去時に模擬皮膚74が引き裂かれることを抑えることができる。 The simulated skin 74 is a sheet member made of, for example, silicon rubber. The simulated skin 74 preferably has a tear strength of 30 kN / m or more as measured based on JIS K 6252 standard. In this case, the simulated skin 74 can be prevented from being torn when the medical device is punctured or removed.
 模擬皮膚74の裏面には、容器62に設けられた第1係止部76に係止可能な複数の第2係止部78が設けられている。第1係止部76及び第2係止部78は、例えば、面ファスナーとして構成されている。模擬皮膚74は、所定のテンションが付与された状態で模擬皮下組織64の外表面に接触(密着)している。模擬皮膚74は、リアリティを持たせるために、人体の皮膚の色に対応した色に着色されているのが好ましい。模擬皮膚74の構成材料は、シリコンゴムに限定されず任意に変更可能である。 A plurality of second locking portions 78 that can be locked to the first locking portions 76 provided on the container 62 are provided on the back surface of the simulated skin 74. The 1st latching | locking part 76 and the 2nd latching | locking part 78 are comprised as a hook-and-loop fastener, for example. The simulated skin 74 is in contact (adhesion) with the outer surface of the simulated subcutaneous tissue 64 in a state where a predetermined tension is applied. The simulated skin 74 is preferably colored in a color corresponding to the color of the human skin in order to have reality. The constituent material of the simulated skin 74 is not limited to silicon rubber and can be arbitrarily changed.
 次に、穿刺モデル16の製造方法について説明する。 Next, a method for manufacturing the puncture model 16 will be described.
 まず、図5Aに示すように、容器62内に模擬骨部66を配設し、模擬大腿動脈34及び模擬大腿静脈36を容器62の長手方向の両側壁を貫通するように配設する。その後、図5Bに示すように、皮下組織成形材料80に硬化剤を混合し、硬化する前の皮下組織成形材料80を容器62内に所定量(例えば、容器62内の容量の8割程度の量)だけ注入する。これにより、模擬骨部66、模擬大腿動脈34及び模擬大腿静脈36が、皮下組織成形材料80によって完全に隠されるとともに、容器62における皮下組織成形材料80よりも上方に所定の空間が形成される。 First, as shown in FIG. 5A, a simulated bone portion 66 is disposed in the container 62, and the simulated femoral artery 34 and the simulated femoral vein 36 are disposed so as to penetrate both longitudinal side walls of the container 62. Thereafter, as shown in FIG. 5B, a hardening agent is mixed into the subcutaneous tissue molding material 80, and the subcutaneous tissue molding material 80 before being cured is put in a predetermined amount (for example, about 80% of the capacity in the container 62). Inject only (amount). As a result, the simulated bone 66, the simulated femoral artery 34, and the simulated femoral vein 36 are completely hidden by the subcutaneous tissue molding material 80, and a predetermined space is formed above the subcutaneous tissue molding material 80 in the container 62. .
 続いて、繊維層72を容器62内の皮下組織成形材料80の上の空間に配置する(図6A参照)。次いで、前記空間を満たすように硬化する前の皮下組織成形材料80を容器62内にさらに注入する。そして、皮下組織成形材料80が繊維層72内に入り込み、容器62内の皮下組織成形材料80が硬化することにより模擬皮下組織64が形成される。このとき、繊維層72は、皮下組織成形材料80中の水分を吸収するため、模擬皮下組織64に対して強固に結合する。 Subsequently, the fiber layer 72 is disposed in the space above the subcutaneous tissue molding material 80 in the container 62 (see FIG. 6A). Next, the subcutaneous tissue molding material 80 before being hardened to fill the space is further injected into the container 62. Then, the subcutaneous tissue molding material 80 enters the fiber layer 72, and the subcutaneous tissue molding material 80 in the container 62 is cured to form the simulated subcutaneous tissue 64. At this time, since the fiber layer 72 absorbs moisture in the subcutaneous tissue molding material 80, the fiber layer 72 is firmly bonded to the simulated subcutaneous tissue 64.
 その後、図6Bに示すように、模擬皮下組織64の上方から模擬皮膚74を被せ、模擬皮膚74にテンションを付与した状態で模擬皮膚74の第2係止部78を容器62の第1係止部76に係止する。これにより、穿刺モデル16が製造されるに至る。 Thereafter, as shown in FIG. 6B, the simulated skin 74 is covered from above the simulated subcutaneous tissue 64, and the second locking portion 78 of the simulated skin 74 is locked to the first locking of the container 62 in a state where tension is applied to the simulated skin 74. Lock to the part 76. Thereby, the puncture model 16 is manufactured.
 次に、上記のように構成された手技シミュレータ10を用いたPCPSの手技の手順について説明する。 Next, a procedure of a PCPS procedure using the procedure simulator 10 configured as described above will be described.
 まず、図8に示すように、PCPSの手技に用いられるポンプシステム100のセットアップを行う。ポンプシステム100は、脱血チューブ102、遠心ポンプ104、駆動モータ106、人工肺108、送血チューブ110及びコントローラ112を備えている。 First, as shown in FIG. 8, the pump system 100 used for the PCPS procedure is set up. The pump system 100 includes a blood removal tube 102, a centrifugal pump 104, a drive motor 106, an artificial lung 108, a blood supply tube 110, and a controller 112.
 脱血チューブ102は、脱血用のカニューレ130から導かれた模擬血液12を遠心ポンプ104に導くものである。遠心ポンプ104は、脱血チューブ102から導かれた模擬血液12を人工肺108に導く。駆動モータ106は、遠心ポンプ104を駆動させるためのモータである。人工肺108は、膜型人口肺であって、遠心ポンプ104から導かれた模擬血液12のガス交換(模擬血液12中の二酸化炭素を排除し酸素を取り込むこと)を行う。送血チューブ110は、ガス交換が行われて酸素化された模擬血液12を送血用のカニューレ128に導くものである。コントローラ112は、駆動モータ106を駆動制御する。 The blood removal tube 102 guides the simulated blood 12 guided from the blood removal cannula 130 to the centrifugal pump 104. The centrifugal pump 104 guides the simulated blood 12 guided from the blood removal tube 102 to the artificial lung 108. The drive motor 106 is a motor for driving the centrifugal pump 104. The artificial lung 108 is a membrane-type artificial lung, and performs gas exchange of the simulated blood 12 guided from the centrifugal pump 104 (excluding carbon dioxide in the simulated blood 12 and taking in oxygen). The blood supply tube 110 guides the simulated blood 12 that has undergone gas exchange and is oxygenated to the blood supply cannula 128. The controller 112 controls driving of the drive motor 106.
 次に、鉗子56によって第3チューブ50の模擬血液12の流通を遮断するとともに鉗子60によって第6チューブ58の模擬血液12の流通を遮断した状態でポンプ42を駆動させる。そうすると、模擬心臓18内の模擬血液12は、第1チューブ38、模擬大動脈40、模擬大腿動脈34、第2チューブ44、模擬大腿静脈36、模擬下大静脈48を介して模擬心臓18に循環する。このように、ポンプ42を駆動させると模擬血液12が血液回路モデル14内を循環するため、模擬血管20が模擬血液12によって脈動する。なお、後述するカニュレーションによって模擬血管20から模擬血液12が漏出した場合には、例えば、鉗子60を操作して貯留部30内の模擬血液12を第6チューブ58を介して模擬心臓18内に供給する。 Next, the pump 42 is driven with the forceps 56 blocking the flow of the simulated blood 12 in the third tube 50 and the forceps 60 blocking the flow of the simulated blood 12 in the sixth tube 58. Then, the simulated blood 12 in the simulated heart 18 circulates to the simulated heart 18 via the first tube 38, the simulated aorta 40, the simulated femoral artery 34, the second tube 44, the simulated femoral vein 36, and the simulated inferior vena cava 48. . As described above, when the pump 42 is driven, the simulated blood 12 circulates in the blood circuit model 14, so that the simulated blood vessel 20 pulsates by the simulated blood 12. When the simulated blood 12 leaks from the simulated blood vessel 20 due to cannulation described later, for example, the forceps 60 are operated to cause the simulated blood 12 in the reservoir 30 to enter the simulated heart 18 via the sixth tube 58. Supply.
 また、ユーザは、例えば、模擬大腿動脈34に送血用のカニューレ128を挿入する(模擬大腿動脈34に対するカニュレーションを行う)。具体的には、ユーザは、模擬皮膚74を手指で触ることにより模擬上前腸骨棘66a及び模擬恥骨結節66bの位置から穿刺部位を確認し、模擬皮膚74を切皮メスで小切開する。次いで、セルジンガー法によってガイドワイヤ120(図7A参照)を模擬大腿動脈34内に経皮的に挿入する。 Also, for example, the user inserts a blood cannula 128 into the simulated femoral artery 34 (cannulate the simulated femoral artery 34). Specifically, the user confirms the puncture site from the positions of the simulated anterior iliac spine 66a and the simulated pubic nodule 66b by touching the simulated skin 74 with fingers, and makes a small incision on the simulated skin 74 with a scalpel. Next, a guide wire 120 (see FIG. 7A) is percutaneously inserted into the simulated femoral artery 34 by the Seldinger method.
 その後、図7Aに示すように、ガイドワイヤ120を通して模擬大腿動脈34内にプレダイレータ122を挿入する。この際、ユーザの手技の習熟度によっては、超音波検査装置124のエコー画像を用いて模擬大腿動脈34とプレダイレータ122との位置関係を確認しながら行う。続いて、プレダイレータ122を抜去し、図7Bに示すように、ダイレータ126を挿入した送血用のカニューレ128をガイドワイヤ120に沿って模擬大腿動脈34内に挿入する。この際、ユーザの手技の習熟度によっては、超音波検査装置124のエコー画像を用いて模擬大腿動脈34とダイレータ126との位置関係を確認しながら行う。その後、図8に示すように、送血用のカニューレ128の先端を模擬腹大動脈40bの所定位置に留置し、ガイドワイヤ120及びダイレータ126を抜去する。 Thereafter, as shown in FIG. 7A, the pre-dilator 122 is inserted into the simulated femoral artery 34 through the guide wire 120. At this time, depending on the proficiency level of the user's technique, the positional relationship between the simulated femoral artery 34 and the predilator 122 is confirmed using an echo image of the ultrasonic inspection device 124. Subsequently, the predilator 122 is removed, and a blood cannula 128 into which the dilator 126 has been inserted is inserted into the simulated femoral artery 34 along the guide wire 120 as shown in FIG. 7B. At this time, depending on the skill level of the user's technique, the positional relationship between the simulated femoral artery 34 and the dilator 126 is confirmed using an echo image of the ultrasonic inspection device 124. Thereafter, as shown in FIG. 8, the tip of the blood cannula 128 is placed at a predetermined position of the simulated abdominal aorta 40b, and the guide wire 120 and the dilator 126 are removed.
 また、ユーザは、模擬大腿静脈36に脱血用のカニューレ130を挿入する(模擬大腿静脈36に対するカニュレーションを行う)。なお、模擬大腿静脈36に対する脱血用のカニューレ130の穿刺手順は、模擬大腿動脈34に対する送血用のカニューレ128の穿刺手順と同様であるため、その詳細な説明は省略する。脱血用のカニューレ130の先端は、模擬下大静脈48の所定位置に留置する。 In addition, the user inserts a blood removal cannula 130 into the simulated femoral vein 36 (cannulate the simulated femoral vein 36). Note that the puncture procedure of the blood removal cannula 130 for the simulated femoral vein 36 is the same as the puncture procedure of the blood supply cannula 128 for the simulated femoral artery 34, and thus detailed description thereof is omitted. The tip of the blood removal cannula 130 is placed at a predetermined position of the simulated inferior vena cava 48.
 その後、送血用のカニューレ128のハブ128aに送血チューブ110を接続するとともに脱血用のカニューレ130のハブ130aに脱血チューブ102を接続し、コントローラ112を操作することによって、遠心ポンプ104を駆動させる。なお、この際、人工肺108に酸素を供給する。これにより、模擬下大静脈48から脱血用のカニューレ130に導かれた模擬血液12は、脱血チューブ102を介して遠心ポンプ104に導かれる。そして、遠心ポンプ104から導出された模擬血液12は、人工肺108においてガス交換が行われた後、送血チューブ110及び送血用のカニューレ128を介して模擬腹大動脈40bに導かれる。 Thereafter, the blood pump 110 is connected to the hub 128a of the blood cannula 128 and the blood drain tube 102 is connected to the hub 130a of the blood cannula 130. By operating the controller 112, the centrifugal pump 104 is operated. Drive. At this time, oxygen is supplied to the oxygenator 108. As a result, the simulated blood 12 guided from the simulated inferior vena cava 48 to the blood removal cannula 130 is guided to the centrifugal pump 104 via the blood removal tube 102. The simulated blood 12 derived from the centrifugal pump 104 is exchanged in the artificial lung 108 and then guided to the simulated abdominal aorta 40b via the blood supply tube 110 and the blood supply cannula 128.
 この際、鉗子56、60を操作して、血液回路モデル14内の模擬血液12が適当な量になるように調整する。PCPSを終了する場合には、遠心ポンプ104の駆動を停止し、人工肺108への酸素の供給を停止する。また、送血用のカニューレ128を模擬大腿動脈34から抜去し、脱血用のカニューレ130を模擬大腿静脈36から抜去する。 At this time, the forceps 56 and 60 are operated to adjust the simulated blood 12 in the blood circuit model 14 to an appropriate amount. When the PCPS is terminated, the driving of the centrifugal pump 104 is stopped, and the supply of oxygen to the oxygenator 108 is stopped. Further, the blood cannula 128 is removed from the simulated femoral artery 34, and the blood removal cannula 130 is removed from the simulated femoral vein 36.
 本実施形態では、模擬皮下組織64の表層部64aと模擬血管20との間に中間繊維部73を設けているため、模擬皮下組織64のうち中間繊維部73に接触する部位の強度を向上させることができる。これにより、模擬血管20に対する医療機器の穿刺及び抜去の際に模擬皮下組織64の破損を抑制できる。 In this embodiment, since the intermediate fiber part 73 is provided between the surface layer part 64a of the simulated subcutaneous tissue 64 and the simulated blood vessel 20, the strength of the part of the simulated subcutaneous tissue 64 that contacts the intermediate fiber part 73 is improved. be able to. Thereby, damage of the simulated subcutaneous tissue 64 can be suppressed when the simulated blood vessel 20 is punctured and removed from the medical device.
 また、模擬血管20に対する医療機器の穿刺及び抜去の際、模擬皮下組織64の一部が医療機器に付着することがある。しかしながら、本実施形態では、模擬皮下組織64のうち医療機器に付着した付着組織を中間繊維部73によって剥離することができるため、模擬血管20に対する医療機器の穿刺及び抜去の際に模擬皮下組織64の破損を効果的に抑制できる。 In addition, when the medical device is punctured and removed from the simulated blood vessel 20, a part of the simulated subcutaneous tissue 64 may adhere to the medical device. However, in the present embodiment, since the attached tissue attached to the medical device among the simulated subcutaneous tissue 64 can be peeled off by the intermediate fiber portion 73, the simulated subcutaneous tissue 64 is punctured and removed from the simulated blood vessel 20 by the medical device. Can be effectively suppressed.
 本実施形態の穿刺モデル16は、模擬皮下組織64の表層部64aを覆う模擬皮膚74を備えているため、模擬血管20に対する医療機器の穿刺及び抜去の感覚を実際の手技に近似させることができる。 Since the puncture model 16 of this embodiment includes the simulated skin 74 that covers the surface layer portion 64a of the simulated subcutaneous tissue 64, the sensation of puncturing and removing the medical device from the simulated blood vessel 20 can be approximated to an actual procedure. .
 また、中間繊維部73は模擬皮下組織64に埋設されているため、模擬血管20に対する医療機器の穿刺及び抜去の際に中間繊維部73が模擬皮下組織64に対してずれることを抑制できる。 In addition, since the intermediate fiber portion 73 is embedded in the simulated subcutaneous tissue 64, the intermediate fiber portion 73 can be prevented from shifting with respect to the simulated subcutaneous tissue 64 when the medical device 20 is punctured and removed from the simulated blood vessel 20.
 さらに、中間繊維部73内には模擬皮下組織64が含浸されているため、中間繊維部73を模擬皮下組織64に対して強固に結合させることができる。さらにまた、中間繊維部73は吸液性を有する繊維で構成されているため、模擬皮下組織64中の液体を中間繊維部73の繊維に吸収させることができる。よって、中間繊維部73を模擬皮下組織64に対して一層強固に結合させることができるとともに、模擬皮膚74の上に、模擬血液12が漏出することを防ぐことができる。 Furthermore, since the intermediate fiber portion 73 is impregnated with the simulated subcutaneous tissue 64, the intermediate fiber portion 73 can be firmly bonded to the simulated subcutaneous tissue 64. Furthermore, since the intermediate fiber part 73 is comprised with the fiber which has a liquid absorptivity, the liquid in the simulated subcutaneous tissue 64 can be absorbed by the fiber of the intermediate fiber part 73. FIG. Therefore, the intermediate fiber portion 73 can be more firmly bonded to the simulated subcutaneous tissue 64, and the simulated blood 12 can be prevented from leaking onto the simulated skin 74.
 本実施形態では、模擬血管20が模擬大腿動脈34及び模擬大腿静脈36を有しているため、人体の大腿動脈及び大腿静脈に医療機器を穿刺する手技を模擬体験することができる。 In the present embodiment, since the simulated blood vessel 20 has the simulated femoral artery 34 and the simulated femoral vein 36, it is possible to experience a simulated experience of puncturing a medical device in the femoral artery and femoral vein of the human body.
 本実施形態において、血液回路モデル14は、模擬心臓18、第1流路22、模擬大腿動脈34、第2流路24、模擬大腿静脈36、第3流路26を有し、第1流路22には、模擬心臓18内の模擬血液12を模擬大腿動脈34に送るポンプ42が設けられている。また、第1流路22の模擬大動脈40及び第3流路26の模擬下大静脈48が透明性を有する樹脂材料で構成されている。これにより、人体に対してPCPSを行っている時の血液の流れを血液回路モデル14で再現するとともにその血液回路モデル14内の模擬血液12の流れを容易に視認することができる。これにより、血液回路モデル14内の模擬血液12の流れを視認しながら人体にPCPSを行っている際の血液循環(PCPSの原理)を学ぶことができる。 In the present embodiment, the blood circuit model 14 includes a simulated heart 18, a first flow path 22, a simulated femoral artery 34, a second flow path 24, a simulated femoral vein 36, and a third flow path 26, and the first flow path. 22, a pump 42 for sending the simulated blood 12 in the simulated heart 18 to the simulated femoral artery 34 is provided. The simulated aorta 40 in the first flow path 22 and the simulated inferior vena cava 48 in the third flow path 26 are made of a transparent resin material. Thereby, the blood flow when performing PCPS on the human body can be reproduced by the blood circuit model 14 and the flow of the simulated blood 12 in the blood circuit model 14 can be easily visually confirmed. Thereby, it is possible to learn blood circulation (PCPS principle) when performing PCPS on the human body while visually recognizing the flow of the simulated blood 12 in the blood circuit model 14.
 ところで、人体にPCPSを行っている際に、心臓に自己拍動がある場合、自己拍動によって大動脈に送られた血液と送血用のカニューレから大動脈に送られた酸素化された血液とが衝突する。この場合、酸素濃度の低い血液が脳に循環している可能性がある。このような症状は、通常、左右の橈骨動脈の採血データの差が目安になることが知られている。 By the way, when PCPS is performed on the human body, if the heart has self-pulsation, blood sent to the aorta by self-pulsation and oxygenated blood sent to the aorta from the blood-feeding cannula collide. In this case, blood with a low oxygen concentration may circulate in the brain. It is known that such a symptom is usually a difference between blood collection data of the left and right radial arteries.
 本実施形態では、ポンプ42から模擬大動脈40に送られた模擬血液12と、送血用のカニューレ128から模擬大動脈40に送られた酸素化された血液に見立てた模擬血液とを衝突させることができる。これにより、自己拍動によって大動脈に送られた血液と、送血用のカニューレから大動脈に送られた酸素化された血液との衝突を血液回路モデル14で再現するとともにその様子を視認することができる。よって、人体にPCPSを行っている際に左右の橈骨動脈の採血データに差が生じる原理等を手技シミュレータ10により学ぶことができる。 In the present embodiment, the simulated blood 12 sent from the pump 42 to the simulated aorta 40 may be collided with the simulated blood that looks like oxygenated blood sent from the blood cannula 128 to the simulated aorta 40. it can. As a result, the collision between the blood sent to the aorta by self-pulsation and the oxygenated blood sent from the blood cannula to the aorta is reproduced by the blood circuit model 14 and the state can be visually recognized. it can. Therefore, it is possible to learn from the technique simulator 10 the principle of causing a difference in blood collection data of the left and right radial arteries when performing PCPS on the human body.
 また、人体にPCPSを行っている際に中心静脈カテーテルの先端が脱血用のカニューレの先端の近傍に位置する場合、脱血用のカニューレの作用によって下大静脈内が陰圧になるため、薬物投与用の中心静脈カテーテルが挿入されている患者の中心静脈カテーテルのコックを開くと、血管内に気泡が浸入することがある。 In addition, when the tip of the central venous catheter is located in the vicinity of the tip of the cannula for blood removal when performing PCPS on the human body, because the inside of the inferior vena cava becomes negative pressure due to the action of the cannula for blood removal, Opening the cock of the patient's central venous catheter into which the central venous catheter for drug administration has been inserted may cause air bubbles to enter the blood vessel.
 本実施形態では、模擬下大静脈48に中心静脈カテーテルを挿入し、その先端を脱血用のカニューレ130の先端付近に位置させることができる。また、模擬下大静脈48が可撓性を有しているため、PCPSを行っている際に模擬下大静脈48に陰圧を作用させることができる。これにより、PCPSを行っている際に中心静脈カテーテルから模擬下大静脈48に気泡が浸入する現象を血液回路モデル14で再現するとともにその様子を視認することができる。よって、人体にPCPSを行っている際に中心静脈カテーテルから血管内に気泡が浸入する原理等を手技シミュレータ10により学ぶことができる。 In the present embodiment, a central venous catheter can be inserted into the simulated inferior vena cava 48, and the distal end thereof can be positioned near the distal end of the blood removal cannula 130. Further, since the simulated inferior vena cava 48 is flexible, negative pressure can be applied to the inferior vena cava 48 during PCPS. As a result, it is possible to reproduce the phenomenon of air bubbles entering from the central venous catheter into the simulated inferior vena cava 48 during the PCPS, and to visually recognize the phenomenon. Therefore, when performing PCPS on the human body, it is possible to learn from the technique simulator 10 the principle of bubbles invading into the blood vessel from the central venous catheter.
 さらに、人体にPCPSを行っている際に下大静脈が陰圧になることによって、脱血用のカニューレに下大静脈が張り付き、カニューレによる脱血量が減少する脱血不良が生じることがある。 Furthermore, when PCPS is performed on the human body, negative pressure in the inferior vena cava may cause the inferior vena cava to stick to the blood removal cannula, resulting in poor blood removal that reduces the amount of blood removed by the cannula. .
 本実施形態では、PCPSを行っている際に模擬下大静脈48を陰圧にし、模擬下大静脈48を脱血用のカニューレ130に張り付かせることができる。これにより、PCPSを行っている際に下大静脈が脱血用のカニューレに張り付く現象を血液回路モデル14で再現するとともにその様子を視認することができる。よって、人体にPCPSを行っている際の脱血不良の原理等を手技シミュレータ10により学ぶことができる。 In the present embodiment, when performing PCPS, the simulated inferior vena cava 48 can be set to a negative pressure and the simulated inferior vena cava 48 can be stuck to the cannula 130 for blood removal. As a result, the phenomenon that the inferior vena cava sticks to the blood removal cannula during PCPS can be reproduced by the blood circuit model 14 and the state thereof can be visually recognized. Therefore, the principle of blood removal failure when PCPS is performed on the human body can be learned by the procedure simulator 10.
 このように、本実施形態では、模擬大動脈40及び模擬下大静脈48のそれぞれが可撓性及び透明性を有する材料により構成されているため、血液回路モデル14によりPCPSを行っている際の様々なトラブル事象を再現するとともにその現象を視認するこができる。これにより、人体にPCPSを行っている際に発生する様々なトラブル事象を手技シミュレータ10により学ぶことができる。 As described above, in this embodiment, each of the simulated aorta 40 and the simulated inferior vena cava 48 is made of a material having flexibility and transparency. It is possible to reproduce various trouble events and visually recognize the phenomenon. Thereby, various trouble events that occur when performing PCPS on the human body can be learned by the procedure simulator 10.
 本実施形態は、上述した構成に限定されない。穿刺モデル16は、繊維層72に代えて図9A及び図9Bに示す繊維層140を有していてもよい。図9A及び図9Bに示すように、繊維層140は、第1外周繊維部142、第2外周繊維部144、中間繊維部73及び表面繊維部148を有している。 This embodiment is not limited to the configuration described above. The puncture model 16 may have a fiber layer 140 shown in FIGS. 9A and 9B instead of the fiber layer 72. As shown in FIGS. 9A and 9B, the fiber layer 140 has a first outer peripheral fiber portion 142, a second outer peripheral fiber portion 144, an intermediate fiber portion 73, and a surface fiber portion 148.
 第1外周繊維部142は、模擬大腿動脈34のうち模擬皮下組織64に埋設されている部分の外周面の全体を被覆するように設けられている。第1外周繊維部142は、例えば、ポリエステル繊維等の吸液性(吸水性)を有する繊維によって構成されており、その内部に模擬皮下組織64が充填されることによって模擬皮下組織64に対して強固に結合している。ただし、第1外周繊維部142は、吸液性を有しない繊維によって構成されていてもよい。第1外周繊維部142は、例えば、前記繊維で構成された不織布又は織布を模擬大腿動脈34の外周面に巻き付けて接着剤で接着することにより形成されている。 The first outer peripheral fiber portion 142 is provided so as to cover the entire outer peripheral surface of the portion of the simulated femoral artery 34 embedded in the simulated subcutaneous tissue 64. The first outer peripheral fiber portion 142 is made of, for example, a fiber having liquid absorbency (water absorption) such as polyester fiber, and the simulated subcutaneous tissue 64 is filled in the first outer peripheral fiber portion 142 to the simulated subcutaneous tissue 64. It is tightly coupled. However, the 1st outer periphery fiber part 142 may be comprised with the fiber which does not have a liquid absorptivity. The first outer peripheral fiber portion 142 is formed by, for example, winding a non-woven fabric or a woven fabric made of the fibers around the outer peripheral surface of the simulated femoral artery 34 and bonding the same with an adhesive.
 第2外周繊維部144は、模擬大腿静脈36のうち模擬皮下組織64に埋設されている部分の外周面の全体を被覆するように設けられている。第2外周繊維部144は、第1外周繊維部142と同様に構成されているため、その詳細な説明は省略する。 The second outer peripheral fiber portion 144 is provided so as to cover the entire outer peripheral surface of the portion of the simulated femoral vein 36 embedded in the simulated subcutaneous tissue 64. Since the 2nd outer periphery fiber part 144 is comprised similarly to the 1st outer periphery fiber part 142, the detailed description is abbreviate | omitted.
 表面繊維部148は、模擬皮下組織64における外表面に配設されている。表面繊維部148は、例えば、ポリエステル繊維によって構成された不織布である。ただし、表面繊維部148は、ポリエステル繊維以外の繊維で構成されていてもよいし、不織布ではなく織布であってもよい。 The surface fiber portion 148 is disposed on the outer surface of the simulated subcutaneous tissue 64. The surface fiber portion 148 is, for example, a nonwoven fabric composed of polyester fibers. However, the surface fiber portion 148 may be composed of fibers other than polyester fibers, or may be a woven fabric instead of a nonwoven fabric.
 このような構成によれば、模擬大腿動脈34の外周面に第1外周繊維部142を設けているため、模擬皮下組織64及び模擬大腿動脈34の間に模擬血液12が漏出することを抑えることができる。また、模擬皮下組織64のうち第1外周繊維部142に接触する部位の強度を向上させることができる。さらに、模擬大腿動脈34に対する医療機器の穿刺の際に、医療機器の付着組織を第1外周繊維部142によって剥離することができる。 According to such a configuration, since the first outer peripheral fiber portion 142 is provided on the outer peripheral surface of the simulated femoral artery 34, the leakage of the simulated blood 12 between the simulated subcutaneous tissue 64 and the simulated femoral artery 34 is suppressed. Can do. Further, the strength of the portion of the simulated subcutaneous tissue 64 that contacts the first outer peripheral fiber portion 142 can be improved. Further, when the medical device punctures the simulated femoral artery 34, the attached tissue of the medical device can be peeled off by the first outer peripheral fiber portion 142.
 さらにまた、模擬大腿静脈36の外周面に第2外周繊維部144を設けているため、模擬皮下組織64及び模擬大腿静脈36の間に模擬血液12が漏出することを抑えることができる。また、模擬皮下組織64のうち第2外周繊維部144に接触する部位の強度を向上させることができる。さらに、模擬大腿静脈36に対する医療機器の穿刺の際に、医療機器の付着組織を第2外周繊維部144によって剥離することができる。 Furthermore, since the second outer peripheral fiber portion 144 is provided on the outer peripheral surface of the simulated femoral vein 36, it is possible to prevent the simulated blood 12 from leaking between the simulated subcutaneous tissue 64 and the simulated femoral vein 36. Moreover, the intensity | strength of the site | part which contacts the 2nd outer periphery fiber part 144 among the simulated subcutaneous tissues 64 can be improved. Further, when the medical device punctures the simulated femoral vein 36, the attached tissue of the medical device can be peeled off by the second outer peripheral fiber portion 144.
 さらにまた、模擬皮下組織64の表層部64aに表面繊維部148を設けているため、模擬皮下組織64のうち表面繊維部148に接触している部位の強度を向上させることができる。また、模擬血管20に対する医療機器の抜去の際に、医療機器の付着組織を表面繊維部148によって剥離することができる。 Furthermore, since the surface fiber portion 148 is provided on the surface layer portion 64a of the simulated subcutaneous tissue 64, the strength of the portion of the simulated subcutaneous tissue 64 that is in contact with the surface fiber portion 148 can be improved. In addition, when the medical device is removed from the simulated blood vessel 20, the adherent tissue of the medical device can be peeled off by the surface fiber portion 148.
 繊維層140は、上述した構成に限定されない。繊維層140は、第1外周繊維部142、第2外周繊維部144、中間繊維部73及び表面繊維部148の少なくともいずれか1つが省略されていてもよい。 The fiber layer 140 is not limited to the configuration described above. In the fiber layer 140, at least one of the first outer peripheral fiber portion 142, the second outer peripheral fiber portion 144, the intermediate fiber portion 73, and the surface fiber portion 148 may be omitted.
 すなわち、例えば、繊維層140は、第1外周繊維部142及び第2外周繊維部144の少なくともいずれかを有し、中間繊維部73及び表面繊維部148が省略されていてもよい。また、例えば、繊維層140は、第1外周繊維部142及び第2外周繊維部144の少なくともいずれか並びに中間繊維部73を有し、表面繊維部148が省略されていてもよい。 That is, for example, the fiber layer 140 may include at least one of the first outer peripheral fiber portion 142 and the second outer peripheral fiber portion 144, and the intermediate fiber portion 73 and the surface fiber portion 148 may be omitted. For example, the fiber layer 140 may include at least one of the first outer peripheral fiber portion 142 and the second outer peripheral fiber portion 144 and the intermediate fiber portion 73, and the surface fiber portion 148 may be omitted.
 さらに、例えば、繊維層140は、第1外周繊維部142及び第2外周繊維部144の少なくともいずれか並びに表面繊維部148を有し、中間繊維部73が省略されていてもよい。さらにまた、例えば、繊維層140は、表面繊維部148を有し、第1外周繊維部142及び第2外周繊維部144の少なくともいずれか並びに中間繊維部73が省略されていてもよい。 Furthermore, for example, the fiber layer 140 includes at least one of the first outer peripheral fiber portion 142 and the second outer peripheral fiber portion 144 and the surface fiber portion 148, and the intermediate fiber portion 73 may be omitted. Furthermore, for example, the fiber layer 140 may have a surface fiber portion 148, and at least one of the first outer peripheral fiber portion 142 and the second outer peripheral fiber portion 144 and the intermediate fiber portion 73 may be omitted.
 また、例えば、繊維層140は、表面繊維部148及び中間繊維部73を有し、第1外周繊維部142及び第2外周繊維部144の少なくともいずれかが省略されていてもよい。 Further, for example, the fiber layer 140 includes the surface fiber portion 148 and the intermediate fiber portion 73, and at least one of the first outer periphery fiber portion 142 and the second outer periphery fiber portion 144 may be omitted.
 本発明に係る手技シミュレータは、上述の実施形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることはもちろんである。 The procedure simulator according to the present invention is not limited to the above-described embodiment, and various configurations can be adopted without departing from the gist of the present invention.

Claims (9)

  1.  容器(62)と、
     前記容器(62)内に設けられたゲル状の模擬皮下組織(64)と、
     前記模擬皮下組織(64)に埋設された模擬血管(20)と、
     前記模擬皮下組織(64)の表層部(64a)及び前記表層部(64a)と前記模擬血管(20)との間の少なくとも一方に設けられた繊維層(72、140)と、を備える、
     ことを特徴とする手技シミュレータ(10)。
    A container (62);
    A gel-like simulated subcutaneous tissue (64) provided in the container (62);
    A simulated blood vessel (20) embedded in the simulated subcutaneous tissue (64);
    A surface layer portion (64a) of the simulated subcutaneous tissue (64) and a fiber layer (72, 140) provided on at least one of the surface layer portion (64a) and the simulated blood vessel (20).
    A technique simulator (10) characterized by that.
  2.  請求項1記載の手技シミュレータ(10)において、
     前記模擬皮下組織(64)の前記表層部(64a)を覆う模擬皮膚(74)を備え、
     前記繊維層(72、140)は、前記模擬血管(20)と前記模擬皮膚(74)との間に設けられている、
     ことを特徴とする手技シミュレータ(10)。
    In the procedure simulator (10) according to claim 1,
    Simulated skin (74) covering the surface layer portion (64a) of the simulated subcutaneous tissue (64),
    The fiber layer (72, 140) is provided between the simulated blood vessel (20) and the simulated skin (74).
    A technique simulator (10) characterized by that.
  3.  請求項2記載の手技シミュレータ(10)において、
     前記繊維層(72、140)は、前記模擬皮下組織(64)に埋設されている、
     ことを特徴とする手技シミュレータ(10)。
    In the procedure simulator (10) according to claim 2,
    The fiber layers (72, 140) are embedded in the simulated subcutaneous tissue (64),
    A technique simulator (10) characterized by that.
  4.  請求項3記載の手技シミュレータ(10)において、
     前記繊維層(72、140)内には、前記模擬皮下組織(64)が含浸されている、
     ことを特徴とする手技シミュレータ(10)。
    In the procedure simulator (10) according to claim 3,
    The fiber layers (72, 140) are impregnated with the simulated subcutaneous tissue (64),
    A technique simulator (10) characterized by that.
  5.  請求項4記載の手技シミュレータ(10)において、
     前記繊維層(72、140)は、吸液性を有する繊維で構成されている、
     ことを特徴とする手技シミュレータ(10)。
    In the procedure simulator (10) according to claim 4,
    The fiber layer (72, 140) is composed of fibers having liquid absorbency,
    A technique simulator (10) characterized by that.
  6.  請求項3~5のいずれか1項に記載の手技シミュレータ(10)において、
     前記模擬血管(20)内には、模擬血液(12)が流通し、
     前記繊維層(140)は、前記模擬血管(20)の外周面に設けられている、
     ことを特徴とする手技シミュレータ(10)。
    In the procedure simulator (10) according to any one of claims 3 to 5,
    In the simulated blood vessel (20), simulated blood (12) circulates,
    The fiber layer (140) is provided on the outer peripheral surface of the simulated blood vessel (20).
    A technique simulator (10) characterized by that.
  7.  請求項1~6のいずれか1項に記載の手技シミュレータ(10)において、
     前記模擬血管(20)は、
     人体の大腿動脈を模した模擬大腿動脈(34)と、
     人体の大腿静脈を模した模擬大腿静脈(36)と、を有する、
     ことを特徴とする手技シミュレータ(10)。
    The procedure simulator (10) according to any one of claims 1 to 6,
    The simulated blood vessel (20)
    A simulated femoral artery (34) that mimics the human femoral artery;
    A simulated femoral vein (36) simulating the femoral vein of a human body,
    A technique simulator (10) characterized by that.
  8.  請求項7記載の手技シミュレータ(10)において、
     模擬血液(12)が流通する血液回路モデル(14)を備え、
     前記血液回路モデル(14)は、
     模擬心臓(18)と、
     前記模擬大腿動脈(34)及び前記模擬大腿静脈(36)と、
     前記模擬心臓(18)内の前記模擬血液(12)を前記模擬大腿動脈(34)に導く第1流路(22)と、
     前記模擬大腿動脈(34)内の前記模擬血液(12)を前記模擬大腿静脈(36)に導く第2流路(24)と、
     前記模擬大腿静脈(36)内の前記模擬血液(12)を前記模擬心臓(18)内に導く第3流路(26)と、を有し、
     前記第1流路(22)には、前記模擬心臓(18)内の前記模擬血液(12)を前記模擬大腿動脈(34)に送るポンプ(42)が設けられている、
     ことを特徴とする手技シミュレータ(10)。
    The procedure simulator (10) according to claim 7,
    A blood circuit model (14) through which simulated blood (12) circulates;
    The blood circuit model (14)
    Simulated heart (18),
    The simulated femoral artery (34) and the simulated femoral vein (36);
    A first flow path (22) for guiding the simulated blood (12) in the simulated heart (18) to the simulated femoral artery (34);
    A second flow path (24) for guiding the simulated blood (12) in the simulated femoral artery (34) to the simulated femoral vein (36);
    A third flow path (26) for guiding the simulated blood (12) in the simulated femoral vein (36) into the simulated heart (18);
    The first flow path (22) is provided with a pump (42) for sending the simulated blood (12) in the simulated heart (18) to the simulated femoral artery (34).
    A technique simulator (10) characterized by that.
  9.  請求項8記載の手技シミュレータ(10)において、
     前記第1流路(22)は、人体の大動脈を模した模擬大動脈(40)を有し、
     前記第3流路(26)は、人体の下大静脈を模した模擬下大静脈(48)を有し、
     前記模擬大動脈(40)及び前記模擬下大静脈(48)のそれぞれは、可撓性及び透明性を有する材料によって構成されている、
     ことを特徴とする手技シミュレータ(10)。
    The procedure simulator (10) according to claim 8,
    The first flow path (22) has a simulated aorta (40) simulating the aorta of a human body,
    The third flow path (26) has a simulated inferior vena cava (48) simulating the inferior vena cava of a human body,
    Each of the simulated aorta (40) and the simulated inferior vena cava (48) is made of a material having flexibility and transparency.
    A technique simulator (10) characterized by that.
PCT/JP2017/024576 2016-08-17 2017-07-05 Procedure simulator WO2018034074A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018534293A JP7005500B2 (en) 2016-08-17 2017-07-05 Procedure simulator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016159850 2016-08-17
JP2016-159850 2016-08-17

Publications (1)

Publication Number Publication Date
WO2018034074A1 true WO2018034074A1 (en) 2018-02-22

Family

ID=61197306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024576 WO2018034074A1 (en) 2016-08-17 2017-07-05 Procedure simulator

Country Status (2)

Country Link
JP (1) JP7005500B2 (en)
WO (1) WO2018034074A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020031474A1 (en) * 2018-08-07 2020-02-13 テルモ株式会社 Technique simulator
WO2020079779A1 (en) * 2018-10-17 2020-04-23 朝日インテック株式会社 Human body simulation device, method for controlling human body simulation device, and computer program
JP2021039224A (en) * 2019-09-03 2021-03-11 学校法人近畿大学 Model for puncture practice
JP2021536034A (en) * 2018-08-28 2021-12-23 レサシテック ゲーエムベーハー Resuscitation Phantom
JP7370030B2 (en) 2019-10-09 2023-10-27 学校法人自治医科大学 Simulated skin device, how to use the simulated skin device, suture evaluation method, and control device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012068505A (en) * 2010-09-24 2012-04-05 Terumo Corp Simulated human body and cardiac blood vessel model
JP2013190578A (en) * 2012-03-13 2013-09-26 Marui:Kk Simulator for puncture training
JP2014092683A (en) * 2012-11-02 2014-05-19 Fain-Biomedical Inc Catheter simulator
JP2014186281A (en) * 2013-03-25 2014-10-02 Marui:Kk Artificial blood vessel and method for molding artificial blood vessel
JP2016006477A (en) * 2014-05-26 2016-01-14 サンアロー株式会社 Organ model

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101743578B (en) * 2007-07-13 2013-02-13 皇家飞利浦电子股份有限公司 Phantom for ultrasound guided needle insertion and method for making the phantom
JP5839329B2 (en) * 2013-09-30 2016-01-06 大衛株式会社 Injection practice device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012068505A (en) * 2010-09-24 2012-04-05 Terumo Corp Simulated human body and cardiac blood vessel model
JP2013190578A (en) * 2012-03-13 2013-09-26 Marui:Kk Simulator for puncture training
JP2014092683A (en) * 2012-11-02 2014-05-19 Fain-Biomedical Inc Catheter simulator
JP2014186281A (en) * 2013-03-25 2014-10-02 Marui:Kk Artificial blood vessel and method for molding artificial blood vessel
JP2016006477A (en) * 2014-05-26 2016-01-14 サンアロー株式会社 Organ model

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020031474A1 (en) * 2018-08-07 2020-02-13 テルモ株式会社 Technique simulator
JPWO2020031474A1 (en) * 2018-08-07 2021-08-12 テルモ株式会社 Procedure simulator
US11417242B2 (en) 2018-08-07 2022-08-16 Terumo Kabushiki Kaisha Technique simulator
JP7280268B2 (en) 2018-08-07 2023-05-23 テルモ株式会社 Procedure simulator
JP2021536034A (en) * 2018-08-28 2021-12-23 レサシテック ゲーエムベーハー Resuscitation Phantom
JP7177246B2 (en) 2018-08-28 2022-11-22 レサシテック ゲーエムベーハー resuscitation phantom
WO2020079779A1 (en) * 2018-10-17 2020-04-23 朝日インテック株式会社 Human body simulation device, method for controlling human body simulation device, and computer program
JP2021039224A (en) * 2019-09-03 2021-03-11 学校法人近畿大学 Model for puncture practice
JP7032741B2 (en) 2019-09-03 2022-03-09 学校法人近畿大学 Model for puncture practice
JP7370030B2 (en) 2019-10-09 2023-10-27 学校法人自治医科大学 Simulated skin device, how to use the simulated skin device, suture evaluation method, and control device

Also Published As

Publication number Publication date
JPWO2018034074A1 (en) 2019-06-13
JP7005500B2 (en) 2022-01-21

Similar Documents

Publication Publication Date Title
JP7005500B2 (en) Procedure simulator
JP6438008B2 (en) Procedure simulator
US9959787B2 (en) Method for injecting a fluid into an artificial venous structure
JP6317885B2 (en) Training equipment
JP7178247B2 (en) Blood vessel model and organ simulator
JP2018028588A (en) Manipulation simulator
US20210327305A1 (en) System for validating and training invasive interventions
JP2016166932A (en) Living body tissue model and surgery simulation system
US20210272481A1 (en) Organ simulator
US20050181343A1 (en) Ultrasound guided vascular access training device
JP2019045602A (en) Manipulation simulator
US20210295742A1 (en) Extracorporeal membrane oxygenation simulator
CN116964656A (en) Catheter simulator and heart model for catheter simulator
JP2018136384A (en) Surgical procedure model and procedure simulator
KR102315323B1 (en) Smart arm model apparatus for intravenous injection training and its way to working
WO2021094428A1 (en) Device for medical training and method for medical training associated therewith
CN214705151U (en) Pericardiocentesis operation training system
WO2023223675A1 (en) Organ model for medical device
US20230136820A1 (en) MULTl-MATERIAL THREE-DIMENSIONAL PRINTED PORTION OF A HEART
Bentham et al. Ultrasound guidance
JP2019035916A (en) Human body model
JPS6036298B2 (en) Device for intracerebral cavity drug injection and cerebral cavity imaging

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018534293

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17841302

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17841302

Country of ref document: EP

Kind code of ref document: A1