WO2018033958A1 - Load application device - Google Patents

Load application device Download PDF

Info

Publication number
WO2018033958A1
WO2018033958A1 PCT/JP2016/073894 JP2016073894W WO2018033958A1 WO 2018033958 A1 WO2018033958 A1 WO 2018033958A1 JP 2016073894 W JP2016073894 W JP 2016073894W WO 2018033958 A1 WO2018033958 A1 WO 2018033958A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
vibration
applying device
weight
motorcycle
Prior art date
Application number
PCT/JP2016/073894
Other languages
French (fr)
Japanese (ja)
Inventor
英洋 小原
厚志 西河
昭 坂本
正吉 原島
和広 南
Original Assignee
カヤバ システム マシナリー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カヤバ システム マシナリー株式会社 filed Critical カヤバ システム マシナリー株式会社
Priority to PCT/JP2016/073894 priority Critical patent/WO2018033958A1/en
Publication of WO2018033958A1 publication Critical patent/WO2018033958A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles

Definitions

  • the present invention relates to a load application device.
  • a method in which the durability is tested by applying vibration to the motorcycle using a vibration tester.
  • a vibration tester for example, there is one that can test a two-wheeled vehicle by applying vibrations in the vertical direction and in the front-rear horizontal direction.
  • Such a vibration testing machine is designed to give vibration to a motorcycle with the axle of the motorcycle as an excitation point.
  • the vibration tester includes three actuators: an actuator that applies vertical vibration to the front wheel side axle, an actuator that applies horizontal vibration, and an actuator that applies vertical vibration to the rear wheel axle.
  • An actuator is provided.
  • the vibration testing machine configured in this manner, for example, as disclosed in JPH07140890 (A), applies vibration in the vertical direction and the horizontal direction to the vehicle body of the two-wheeled vehicle with three actuators, so that the two-wheeled vehicle actually travels. In this case, vibration close to that input from the road surface is given to the vehicle body.
  • a load application device is attached to the saddle post of the motorcycle instead of a person.
  • This load adding device is composed of a rod attached so as to be swingable by a saddle post and a weight attached to the tip of the rod, and the weight load is always maintained even if the posture is changed when the motorcycle is vibrated. Acts vertically on the saddle post.
  • a motorcycle passenger when riding over a step, a motorcycle passenger usually takes measures to prevent himself from being shocked by, for example, raising his / her waist from a saddle.
  • the load application device composed of the pendulum type weight as described above, if the vibration is applied to the two-wheeled vehicle over the step, the load of the weight is directly applied to the motorcycle body. Endurance test that takes into account the behavior of the passengers to ease That is, with the conventional load applying device, it is difficult to perform a durability test by applying a load close to a human model.
  • the present invention has been made to solve the above problems, and its object is to provide a load applying device that can apply a load that approximates a human model to a saddle riding vehicle.
  • the load applying device of the present invention includes a weight for applying a load to the saddle post, and a buffer member provided between the saddle post and the weight.
  • the load applying device 2 in one embodiment is used in a vibration testing machine T.
  • the vibration tester T is a test body
  • the axles 31 and 32 before and after the two-wheeled vehicle B as a saddle-ride vehicle are used as excitation points, and the axles 31 and 32 are shown in FIG.
  • a vibration exciter 1 is provided that vibrates in the vertical direction (Z-axis direction) that is the middle and up-down direction and in the horizontal direction (X-axis direction) that brings the axles 31 and 32 of the two-wheeled vehicle B in the left-right direction in FIG. .
  • the vibration tester T includes a load applying device 2 for applying a load to the saddle post 33 of the two-wheeled vehicle B in order to create a state in which a person is actually on the two-wheeled vehicle B, and as shown in FIG. And a controller C that controls the vibrator 1.
  • the vibration exciter 1 is moved to the gantry 3, the first oscillating unit 4 attached to the gantry 3 and applying vibration in the vertical direction and the horizontal direction with the axle 31 on the front wheel side of the motorcycle B as an oscillating point.
  • a second vibration unit 5 is provided which is attached so as to vibrate in the vertical and horizontal directions with the axle 32 on the rear wheel side of the motorcycle B as an excitation point.
  • the two-wheeled vehicle B which is a test body and a saddle riding vehicle, includes a body frame 34, a front fork 36 that is rotatably attached to a head pipe 35 provided at the front end of the body frame 34, and an axle provided at the front end of the front fork 36. 31 and an axle 32 provided on the rear side of the vehicle body frame 34.
  • the vibration test is performed with the front and rear wheels held on the axles 31 and 32 of the motorcycle B removed.
  • the vehicle body frame 34 includes a saddle post 33 that protrudes upward.
  • the load application device 2 is attached to the saddle post 33, and a load is applied to the motorcycle B.
  • the gantry 3 includes a plurality of elastic support portions 3a and a base 3b provided on the elastic support portions 3a.
  • the first vibration portion 4 and the second vibration portion 5 attached on the base 3b.
  • the elastic support portion 3a absorbs the vibration caused by the vibration caused by the above, so that no load is applied to the floor.
  • the first excitation unit 4 includes a table 41 fixedly attached to the base 3 b of the gantry 3, a first vertical axis actuator 42 that is attached to the table 41 in a vertical direction, and expands and contracts.
  • a first horizontal axis actuator 43 that is vertically mounted and swingably attached to the table 41, and a support column 44 that is provided on the table 41 in a vertical direction, a support column 44, and a first horizontal axis actuator 43.
  • a first conversion link 45 that is rotatably connected to each other, a connecting rod 46 that is rotatable to connect both the first vertical axis actuator 42 and the axle 31, and the first conversion link 45 and the axle 31.
  • the connecting rod 47 is configured to be rotatable at both sides and connect the two.
  • the first vertical axis actuator 42 and the first horizontal axis actuator 43 are telescopic hydraulic servo cylinders in this example, and are extended and contracted by supplying and discharging pressure oil from a hydraulic source (not shown). It has become.
  • the connecting rod 46 is rod-shaped and has one end hinged to the first vertical axis actuator 42 and the other end removably connected to the axle 31 by hinge coupling.
  • the axle 31 is vibrated in the vertical direction in FIG. 1 in the vertical direction through the connecting rod 46, and the vertical vibration is applied to the axle 31. Since the connecting rod 46 is rotatably connected to the axle 31 and the first vertical axis actuator 42, even if a horizontal vibration is applied to the axle 31, the first vertical axis actuator 42 is not affected by this vibration.
  • the axle 31 can be vibrated in the vertical direction.
  • the support column 44 stands on the table 41, and a substantially triangular first conversion link 45 is rotatably attached to the tip thereof.
  • the first conversion link 45 is connected to the support 44 by being hinged to the support 44 in the vicinity of one vertex of the first conversion link 45, and is only allowed to rotate with respect to the support 44 around the hinge connection point. It is attached.
  • the connecting rod 47 has a rod shape, and one end of the connecting rod 47 is hingedly connected to the vicinity of the remaining apex where the column 44 of the first conversion link 45 and the first horizontal axis actuator 43 are not connected.
  • the other end of the connecting rod 47 can be detachably connected to the axle 31 by hinge connection.
  • the first conversion link 45 has a triangular shape because it is advantageous in terms of strength, but may have a shape other than a triangular shape such as an L shape.
  • the first conversion link 45 converts the vertical expansion / contraction motion of the first horizontal axis actuator 43 into a reciprocation motion in the X-axis direction. Vibration is given by vibrating the axle 31 in the X-axis direction. Since the connecting rod 47 is rotatably connected to the axle 31 and the first conversion link 45, even if vertical vibration is applied to the axle 31, the first horizontal axis actuator 43 does not affect the axle. 31 can be vibrated in the horizontal direction.
  • the second vibration unit 5 is attached to the base 3b of the gantry 3 so as to be movable in the X-axis direction along the front and rear of the two-wheeled vehicle B, and is attached to the table 51 in a vertical direction so as to extend and contract.
  • 54 a second conversion link 55 that is rotatably connected to the column 54 and the second horizontal axis actuator 53, and a connecting rod that is rotatable to both the second vertical axis actuator 52 and the axle 32 and connects the two.
  • the table 51 is attached to the gantry 3 via a linear guide or the like, is allowed to move in the X-axis direction with respect to the gantry 3, and is mounted on the gantry 3. M can be driven in the X-axis direction. Furthermore, the table 51 can be fixed to the gantry 3 during the vibration test, and can be restricted from moving in the X-axis direction. Therefore, the position of the second excitation unit 5 relative to the gantry 3 is adjusted in the X-axis direction according to the distance between the excitation points of the two-wheeled vehicle B that is the test body, that is, the distance between the axles 31 and 32, and the second The vibration part 5 can be positioned at a position suitable for the motorcycle B.
  • the second excitation unit 5 can be positioned at an appropriate position, and the first excitation unit 4 and the second excitation unit 5 can be attached to the excitation points of the motorcycle B, respectively. Vibration test can be executed.
  • the second vertical axis actuator 52 and the second horizontal axis actuator 53 are telescopic hydraulic servo cylinders in this example, and are expanded and contracted by supplying and discharging pressure oil from a hydraulic source (not shown). It has become.
  • the connecting rod 56 has a rod shape, and one end thereof is hinge-coupled to the second vertical axis actuator 52, and the other end can be removably coupled to the axle 32 by hinge coupling.
  • the axle 32 When the second vertical axis actuator 52 expands and contracts, the axle 32 is vibrated in the vertical direction in FIG. 1 through the connecting rod 56 and the vertical vibration is applied to the axle 32. Since the connecting rod 56 is rotatably connected to the axle 32 and the second vertical axis actuator 52, even if a horizontal vibration is applied to the axle 32, the second vertical axis actuator 52 is not affected by this vibration. The axle 32 can be vibrated in the vertical direction.
  • the column 54 stands on the table 51, and a substantially triangular second conversion link 55 is rotatably attached to the tip thereof.
  • the second conversion link 55 is connected to the column 54 by being hinge-coupled to the column 54 in the vicinity of one vertex of the second conversion link 55, and is only allowed to rotate with respect to the column 54 around the hinge coupling point. It is attached.
  • the connecting rod 57 has a rod shape, and one end of the connecting rod 57 is hingedly connected to the vicinity of the remaining apex where the column 54 of the second conversion link 55 and the second horizontal axis actuator 53 are not connected.
  • the other end of the connecting rod 57 can be detachably connected to the axle 32 by hinge connection.
  • the second conversion link 55 and the support column 54 constitute a bell crank mechanism, and the expansion and contraction motion of the second horizontal axis actuator 53 is controlled by the X axis. It can be converted into a directional motion and transmitted to the axle 31 as an excitation point.
  • the second conversion link 55 has a triangular shape because it is advantageous in terms of strength, but may have a shape other than a triangular shape such as an L shape.
  • the second conversion link 55 converts the vertical expansion / contraction motion of the second horizontal axis actuator 53 into a reciprocation motion in the X-axis direction. Vibration is given by vibrating the axle 32 in the X-axis direction. Since the connecting rod 57 is rotatably connected to the axle 32 and the second conversion link 55, even if vertical vibration is applied to the axle 32, the second horizontal axis actuator 53 is not affected by this vibration. Thus, the axle 32 can be vibrated in the horizontal direction.
  • the actuators 42, 43, 52, 53 described above are not shown, but are slidably inserted into the cylinder and the cylinder so as to divide the cylinder into an extension side chamber and a pressure side chamber, and a cylinder.
  • a well-known hydraulic servo cylinder having an output rod inserted and coupled to the piston, and a direction switching valve for connecting one of the extension side chamber and the pressure side chamber to a pump capable of supplying pressure oil and the other communicating with the tank; has been.
  • Each actuator 42, 43, 52, 53 can be either a single rod type or a double rod type.
  • Each actuator 42, 43, 52, 53 can be extended by supplying pressure oil to the expansion side chamber, and can be contracted by supplying pressure oil to the compression side chamber.
  • each actuator 42, 43, 52, 53 communicates both chambers to the tank to stop the supply of pressure oil, etc., and realizes an unloading state that expands and contracts freely with little external force without exerting a load. It can be done.
  • the specific configurations of the actuators 42, 43, 52, and 53 are not limited to those described above, and other configurations can be adopted as long as the unloaded state can be realized.
  • the actuators 42, 43, 52, and 53 may be electrically or pneumatically driven actuators, and even in that case, consideration is given to realizing the unload state as described above.
  • the first conversion link 45 and the second conversion link 55 are installed in the same direction with respect to the columns 44 and 54, respectively. Accordingly, the first horizontal axis actuator 43 and the second horizontal axis actuator 53 in the first vibration unit 4 and the second vibration unit 5 are all one of both sides in the X-axis direction that is the driving direction of the columns 44 and 54. It is arranged on the side, that is, on the right side of the columns 44 and 54 in FIG. Note that the first horizontal axis actuator 43 and the second horizontal axis actuator 53 may be disposed on the left side in FIG.
  • the vertical axis actuators 42 and 52 have the same specifications. Further, the specifications of the horizontal axis actuators 43 and 53 are the same.
  • the lengths of the connecting rods 46 and 47 and the expansion and contraction movements of the horizontal axis actuators 43 and 53 of the conversion links 45 and 55 are determined by the X of the axles 31 and 32.
  • the lever ratio when converting to axial motion is equal.
  • the first conversion link 45 and the second conversion link 55 are installed in the same direction, and the first horizontal axis actuator 43 and the second horizontal axis actuator 53 are supported by the columns 44 and 54. It is arrange
  • the stroke amounts of the horizontal axis actuators 43 and 53 may be changed, and the stroke amounts of the horizontal axis actuators 43 and 53 are controlled.
  • a load can be applied to the two-wheeled vehicle B as a test body.
  • the two-wheeled vehicle B has X
  • the two-wheeled vehicle B can be moved up and down without applying a load in the axial direction.
  • the vibration testing machine T it is not necessary to monitor the load acting on the axles 31 and 32 and to perform load control for feeding back the load, and the controller C can control each actuator 42, 43, 52, It is sufficient to control the displacement of 53. Therefore, there is no need to switch the control from displacement control to load control to bumpless, and control is easy, and installation of a load cell, strain sensor, etc. is not necessary, which is advantageous in terms of cost.
  • the first horizontal axis actuator 43 and the second horizontal axis actuator 53 can be enjoyed when the first horizontal axis actuator 43 and the second horizontal axis actuator 53 are arranged on one side of both sides of the props 44 and 54 in the driving direction.
  • the arrangement of the actuator 53 is not limited to this.
  • a weight W for applying a load to the saddle post 33 of the two-wheeled vehicle B that is a straddle vehicle, and a buffer member D provided between the saddle post 33 and the weight W are provided.
  • the load applying device 2 includes a support frame 21 provided on the base 3b of the gantry 3 and a weight attached to the support frame 21 so as to be movable in the front-rear direction of the motorcycle B, that is, in the X-axis direction.
  • a housing 22 that accommodates W and the buffer member D, a mounting base 23 that is rotatably mounted on the saddle post 33, a support base 24 that is mounted on the mounting base 23 so as to be movable in the front-rear direction, and a support base 24 that are stacked.
  • the shock-absorbing member D and the weight W stacked on the shock-absorbing member D are provided.
  • the support frame 21 includes four vertical columns 21a provided on the left and right front and rear sides of the motorcycle B, four horizontal beams 21b spanned between the vertical columns 21a, and the motorcycle B. And a pair of guide beams 21c attached to be attached to the upper end of one vertical column 21a provided in front of and behind.
  • the housing 22 is provided on the left and right of the two-wheeled vehicle B, and is attached to a pair of L-shaped support plates 22 a when viewed from the front-rear direction of the two-wheeled vehicle B, and the upper ends of the support plates 22 a. And a lid 22b. And the lower end of each support plate 22a is connected via a linear guide 22c (refer to FIG. 1) to a guide beam 21c disposed below, and the housing 22 is the left-right direction of FIG. It can be moved back and forth.
  • the mounting base 23 is hinged to a gripping member 25 that grips the saddle post 33, and is allowed to rotate in the front-rear direction of the two-wheeled vehicle B, that is, around an axis that penetrates the paper surface in FIG.
  • a support base 24 is mounted on the mounting base 23 via a linear guide 26 provided along the front-rear direction of the motorcycle B.
  • the support base 24 is movable in the front-rear direction of the motorcycle B with respect to the mounting base 23 by a linear guide 26.
  • the support base 24 is mounted on the inside of each support plate 22a of the housing 22 so as to be movable in the vertical direction by a linear guide 27 provided along the vertical direction. Therefore, the support base 24 is allowed to move only in the vertical direction with respect to the housing 22.
  • the buffer member D is stacked above the support base 24.
  • the buffer member D includes a first elastic member D1 and a second elastic member D2 as elastic members. Both the first elastic member D1 and the second elastic member D2 are formed of a disc-shaped synthetic resin. Further, the first elastic member D1 and the second elastic member D2 have different damping characteristics, and in this example, the second elastic member D2 has a higher damping property than the first elastic member D1. And in the place shown in figure, the buffer member D is comprised so that the 2nd elastic member D2 piled up by the two 1st elastic members D1 may be pinched
  • the synthetic resin for forming the first elastic member D1 for example, rubber or urethane rubber may be used, and as the synthetic resin for forming the second elastic member D2, for example, low resilience such as soft urethane foam may be used. What shows a high attenuation
  • damping property should just be used.
  • two first elastic members D1 and two second elastic members D2 are provided, but the number of stacked layers is arbitrary.
  • the configuration of the buffer member D is not limited to this.
  • the buffer member D includes a spring or a hydraulic damper interposed between the weight W and the support base 24, or a configuration in which the spring and the hydraulic damper are arranged in series or in parallel. It is also possible to use a synthetic resin that exhibits a high damping property with a spring, or a synthetic resin and a hydraulic damper.
  • the weight W is provided by being laminated on the buffer member D. Specifically, the weight W is attached to the slider 28 which is mounted on the inner side of each support plate 22a of the housing 22 so as to be movable in the vertical direction by a linear guide 27 provided along the vertical direction. And a plurality of plates 29. That is, the weight W is only allowed to move in the vertical direction with respect to the housing 22.
  • the plate 29 can adjust the total weight of the weight W by adjusting the number of stacked layers.
  • the plate 29 is provided with a hole that allows a bolt 28a provided upright on the slider 28 to pass therethrough so that the plate 29 can be fixed to the slider 28 by a nut 28b that is screwed to the bolt 28a. It has become.
  • the housing 22 When performing a vibration test of the two-wheeled vehicle B, the housing 22 is moved back and forth with respect to the support frame 21 in accordance with the position of the saddle post 33 of the two-wheeled vehicle B, and is optimal for attaching the gripping member 25 to the saddle post 33. Move to position. Then, after the gripping member 25 is mounted on the saddle post 33, the housing 22 is fixed so as not to move with respect to the support frame 21. When the housing 22 is fixed to the support frame 21, various structures such as bolt fastening may be employed. After fixing the housing 22 in this way, a vibration test is performed by applying vibration from the vibrator 1 to the two-wheeled vehicle B.
  • the housing 22 is fixed to the support frame 21, but when the saddle post 33 of the motorcycle B is vibrated by the vibration exciter 1, the gripping member 25 is moved together with the saddle post 33 in the vertical direction and the horizontal direction (X-axis direction). And move in the front-rear direction of the motorcycle B to be displaced. Since the mounting base 23 is hinged to the gripping member 25, the rotational vibration of the saddle post 33 in the front-rear direction of the two-wheeled vehicle B is not transmitted to the mounting base 23. The mounting base 23 moves together with the holding member 25 in the vertical direction and the horizontal direction, but the support base 24 is movable relative to the mounting base 23 in the horizontal direction. The horizontal vibration of the mounting base 23 is not transmitted.
  • the support base 24 is allowed to move in the vertical direction by the housing 22, and the support base 24 vibrates in the vertical direction due to the vertical vibration of the mounting base 23.
  • the vibration in the vertical direction of the support base 24 is absorbed by the buffer member D and the transmission to the weight W is suppressed.
  • the weight W is also allowed to move in the vertical direction by the housing 22, it can vibrate in the vertical direction.
  • the load applying device 2 even if the motorcycle B is vibrated by the vibration exciter 1 and changes its posture, the weight W only moves in the vertical direction, and the saddle post 33 always moves downward vertically. Apply a facing load.
  • the shock absorbing member D absorbs the shock when the shock load that pushes up the two-wheeled vehicle B by the shaker 1 is applied.
  • the transmission of vibration from is reduced.
  • the conventional load applying device in which the weight is attached to the saddle post in a pendulum manner, when an impact load that pushes up on the two-wheeled vehicle B acts, acceleration acts on the weight W and pushes the saddle post downward by inertia. Impact load acts.
  • the buffer member D since the transmission of vibration from the two-wheeled vehicle B side to the weight W is suppressed by the buffer member D, the weight is applied even when an impact load that pushes up the two-wheeled vehicle B is applied.
  • the impact load that pushes down the motorcycle B due to the inertia of W is reduced. Therefore, according to the load applying device 2, when the person actually rides on the two-wheeled vehicle B and gets over the step, a load approximate to the load state applied to the two-wheeled vehicle B from the person is given to the two-wheeled vehicle B. However, according to the load application device 2, a load that approximates a human model can be applied to the two-wheeled vehicle B as the saddle riding vehicle.
  • the buffer member D is composed of an elastic member having different damping characteristics
  • the vibration is absorbed by the first elastic member D1 having a low damping property.
  • the vibration of the weight W after absorbing the vibration of the first elastic member D1 is suppressed by the second elastic member D2 having a high damping property. Can be prevented.
  • first elastic member D1 and the second elastic member D2 are formed of synthetic resin, installation between the weight W and the support base 24 is simple, and different resin materials and forming methods are used. By changing the above, it is possible to easily form elastic members having different damping characteristics.
  • the buffer member D is configured by laminating a plurality of first elastic members D1 and second elastic members D2 (elastic members), the number of stacked layers of the first elastic members D1 and the second elastic members D2 respectively. Can be adjusted. By adjusting the number of laminated elastic members, it is possible to tune the vibration transmission characteristics to the weight W and the vibration attenuation characteristics of the weight W when receiving an impact load that pushes up from the saddle post 33. Therefore, a load closer to a human model can be applied to the two-wheeled vehicle B that is a saddle-ride vehicle.
  • the load applying device 2 is mounted on the saddle post 33 so as to be rotatable in the front-rear direction of the motorcycle B, the support base 24 mounted on the mounting base 23 so as to be movable in the front-rear direction, and the support base 24 And a weight W stacked on the buffer member D.
  • the load application device 2 always applies the weight W downward to the saddle post 33 vertically even if the vibration is applied to the two-wheeled vehicle B in the vertical direction, the front-rear horizontal vibration and the front-rear rotational vibration.
  • a load that is more similar to the human model can be applied.
  • the load applying device 2 accommodates the weight W, the buffer member D, and the support base 24, and only allows the weight W and the support base 24 to move in the vertical direction, and is attached to the gantry 3. Therefore, the motorcycle B can be prevented from falling in the left-right direction. Since the housing 22 is movable in the front-rear direction of the two-wheeled vehicle B with respect to the gantry 3, the housing 22 is moved to an appropriate position corresponding to the two-wheeled vehicle B in which the position of the saddle post 33 is different, and a load is applied. The device 2 can be attached to the motorcycle B.
  • the controller C drives the stroke sensors S1, S2, S3, S4 for detecting the displacement of the actuators 42, 43, 52, 53 and the actuators 42, 43, 52, 53.
  • a control unit 61 for controlling, a distance calculation unit 62 for obtaining a linear distance LL between the axles 31 and 32 from the displacements of the actuators 42, 43, 52 and 53 detected by the stroke sensors S1, S2, S3 and S4;
  • a stop determination unit 63 that determines whether to stop driving the actuators 42, 43, 52, 53 based on the linear distance LL between the axles 31, 32 obtained by the unit 62.
  • the controller 61 monitors the displacements of the actuators 42, 43, 52, 53, and applies the vibrations to the two-wheeled vehicle B in accordance with the vibration data given to the two-wheeled vehicle B input in advance. Is controlled. Therefore, the controller C can drive and control the actuators 42, 43, 52, 53 to apply vibrations to the axles 31, 32 of the two-wheeled vehicle B so as to perform a vibration test.
  • the distance calculation unit 62 obtains a linear distance LL between the axles 31 and 32 from the displacements of the actuators 42, 43, 52, and 53 detected by the stroke sensors S1, S2, S3, and S4.
  • the axle 31 is allowed to be displaced in the Z-axis direction and the X-axis direction by vibrations from the first vertical-axis actuator 42 and the first horizontal-axis actuator 43, but in the Y-axis direction, which is a direction penetrating the paper surface in FIG. Since movement is restricted, it only moves in the ZX plane.
  • the axle 32 is allowed to move in the Z-axis direction and the X-axis direction by the excitation by the second vertical-axis actuator 52 and the second horizontal-axis actuator 53, but the movement in the Y-axis direction is restricted. Therefore, it only moves in the ZX plane.
  • the ZX coordinate on the ZX plane of the axle 31 is obtained from the displacement of the actuators 42 and 43 in the first excitation unit 4, and the ZX on the ZX plane of the axle 32 from the displacement of the actuators 52 and 53 in the second excitation unit 5. If the coordinates are obtained, the linear distance LL between the axles 31 and 32 can be obtained. In this way, the distance calculation unit 62 always obtains the distance between the excitation points, that is, the linear distance LL between the axles 31 and 32, based on the displacement of each actuator 42, 43, 52, 53 during the vibration test. .
  • the linear distance LL between the axles 31 and 32 of the two-wheeled vehicle B is set to the first vibration unit 4 and the second vibration unit 5. It changes from the distance (no load distance) of both when not receiving the load from.
  • the linear distance LL between the axles 31 and 32 becomes longer than the no-load distance LU
  • the two-wheeled vehicle B is subjected to a tensile load that separates the axles 31 and 32, and when the linear distance LL becomes shorter than the no-load distance LU, A compressive load that pulls the axles 31 and 32 acts on B.
  • the component When the stress acting on the components constituting the motorcycle B exceeds the allowable stress of each component due to the tensile load and the compressive load, the component is plastically deformed or broken in some cases.
  • the maximum quoted load and the maximum compressive load within a range where the parts are not damaged are determined, and the quoted load and the compressive load are uniquely determined by the distance between the excitation points.
  • the maximum length Lmax between the axles 31 and 32 on which the maximum tensile load allowable in the two-wheeled vehicle B acts and the minimum length Lmin of the distance between the axles 31 and 32 on which the maximum compressive load allowable in the two-wheeled vehicle B acts are It is obtained in advance from the design specifications of the components of the motorcycle B.
  • the actuators 42, 43, 52, and 53 are In the unloaded state, it is not necessary to apply an excessive load to the motorcycle B. That is, before the motorcycle B is damaged by plastic deformation or the like, the actuators 42, 43, 52, 53 can be freely expanded and contracted by an external force, and the motorcycle B is given a maximum allowable tensile load or a maximum allowable compressive load. What is necessary is just not to make the load which exceeds it act.
  • the controller C includes a stop determination unit 63.
  • the stop determination unit 63 outputs a stop signal to the control unit 61 when the difference ⁇ obtained by subtracting the no-load distance LU from the linear distance LL obtained by the distance calculation unit 62 is equal to or greater than a preset threshold ⁇ . To do.
  • the control unit 61 turns off the current supply to the actuators 42, 43, 52, and 53 so that the controller 61 is in an unloaded state that can be freely expanded and contracted by an external force.
  • the threshold value ⁇ is a value obtained by subtracting the safety margin from the value obtained by subtracting the no-load distance LU from the distance Lmax between the axles 31 and 32 on which the allowable maximum tensile load acts, and has a positive value.
  • the threshold value ⁇ is a value obtained by adding a safety margin to a value obtained by subtracting the no-load distance LU from the distance Lmin between the axles 31 and 32 on which the allowable maximum compressive load acts, and is a threshold value having a negative value.
  • the vibration test can be performed without damaging the two-wheeled vehicle B as the specimen, and the range that is less than the threshold value ⁇ and exceeds the threshold value ⁇ is The normal range.
  • the controller C adds the value obtained by subtracting the safety margin from the value obtained by subtracting the no-load distance from the distance between the axles 31 and 32 on which the allowable maximum tensile load acts. (Step F1). Further, a value obtained by adding the safety margin to the value obtained by subtracting the no-load distance from the distance between the axles 31 and 32 on which the allowable maximum compressive load acts is input to the controller C as the minus threshold value ⁇ (step F1).
  • Controller C raises to the vibration neutral position to perform a vibration test of the motorcycle B.
  • the vibration neutral position is a position where the vibration points are arranged at the center of the vibration stroke to be applied during the test when vibration is applied to the axles 31 and 32 that are the vibration points of the motorcycle B.
  • step F2 In order to perform the vibration test, in a state where the two-wheeled vehicle B is arranged at the vibration neutral position, no load is applied to the two-wheeled vehicle B in the vertical direction or the horizontal direction. Is a no-load distance. Therefore, the controller C recognizes the no-load distance LU from the ZX coordinates of the axles 31 and 32 at this time (step F2).
  • step F3 the controller C starts a vibration test, and always obtains a linear distance LL between the axles 31 and 32 during the test (step F3). Subsequently, the controller C obtains a difference ⁇ between the obtained linear distance LL between the axles 31 and 32 and the no-load distance LU (step F4). Further, the controller C determines whether the value of the difference ⁇ is greater than or equal to the threshold value ⁇ or less than the threshold value ⁇ (step F5). If it is determined in step F5 that the difference ⁇ is greater than or equal to the threshold value ⁇ or less than or equal to the threshold value ⁇ , the process proceeds to step F6. Otherwise, the process proceeds to step F7.
  • Step F6 since there is a possibility that the motorcycle B is damaged, the controller C sets the actuators 42, 43, 52, 53 in an unloaded state and applies the load from the actuators 42, 43, 52, 53 to the motorcycle B. remove.
  • step F7 since there is no possibility of damage to the motorcycle B, the controller C continues to control the actuators 42, 43, 52, 53 to continue the test, and the motorcycle B is vibrated to give vibration. .
  • vibration input can be performed with four axes in the vertical direction and the horizontal direction before and after the test body. Therefore, the test body can be arbitrarily excited in both the vertical direction and the horizontal direction. it can. Therefore, according to the vibration testing machine T, it is possible to accurately simulate and vibrate vibrations that may be actually input to the test body, and it is possible to execute vibration tests and fatigue tests with higher effectiveness.
  • a bicycle having a characteristic that the body frame 34 has high rigidity but low strength is used as a test body, it is possible to input vibrations in four axes. Can be given vibration.
  • the actuators 42, 43, 52, 53 are turned off and the vibration exciter 1 is unloaded. It does not cause a situation where a load that damages the specimen is applied.
  • a conventional vibration testing machine instead of an actuator that vibrates horizontally on the rear wheel side axle, the reaction force jig and the rear wheel side axle are connected by a link rod to restrain the horizontal movement, The motorcycle was vibrated so that an unexpected horizontal compression or tensile load was not applied to the motorcycle.
  • this vibration testing machine T even if the specimen is vibrated with four axes, a load exceeding the allowable load does not act on the specimen, so that the vibration test can be executed safely without damaging the specimen.
  • the vibrator 1 includes a gantry 3, a first oscillating unit 4 attached to the gantry 3 and oscillating one of the oscillating points, and a second oscillating the other.
  • the second vibration unit 5 is attached to the frame 3 so as to be movable in the front-rear direction of the test body. Therefore, the test body can be properly attached to the vibration tester T regardless of the total length of the test body, and the vibration test can be executed.
  • both the 1st vibration part 4 and the 2nd vibration part 5 May be attached so as to be movable in the front-rear direction of the specimen.
  • the first vertical axis actuator 42 and the first horizontal axis actuator 43 in the first excitation unit 4, the second vertical axis actuator 52 and the second horizontal axis in the second excitation unit 5 are used.
  • a shaft actuator 53 is provided upright in the vertical direction. Since all the actuators 42, 43, 52, 53 are set up in the vertical direction in this way, the length of the vibration tester T in the left-right direction in FIG.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

To provide a load application device capable of applying, to a saddle-ride type vehicle, a load that is approximately equivalent to the load from a human model. [Solution] A load application device (2) according to the present invention is provided with: a weight (W) that applies a load to a saddle post (33); and a shock absorber (D) that is provided between the saddle post (33) and the weight (W). This load application device (2) can apply, to a saddle-ride type vehicle (B), a load that is approximately equivalent to the load applied to the saddle-ride type vehicle (B) by a rider when the rider actually rides on the saddle-ride type vehicle (B) and rides over a step.

Description

荷重付加装置Load applying device
 本発明は、荷重付加装置に関する。 The present invention relates to a load application device.
 二輪車の耐久性能の試験では、二輪車に振動試験機により振動を与えて耐久性能を試験する方法がとられている。そして、振動試験機としては、たとえば、二輪車に鉛直方向および前後の水平方向の振動を与えて試験できるものがある。 In the durability test of a motorcycle, a method is used in which the durability is tested by applying vibration to the motorcycle using a vibration tester. As a vibration tester, for example, there is one that can test a two-wheeled vehicle by applying vibrations in the vertical direction and in the front-rear horizontal direction.
 このような振動試験機は、二輪車を対象として、二輪車の車軸を加振点として、振動を与えるようになっている。具体的には、振動試験機は、前輪側車軸に対して鉛直方向の振動を与えるアクチュエータおよび水平方向の振動を与えるアクチュエータと、後輪側車軸に対して鉛直方向の振動を与えるアクチュエータの三つのアクチュエータを備えている。 Such a vibration testing machine is designed to give vibration to a motorcycle with the axle of the motorcycle as an excitation point. Specifically, the vibration tester includes three actuators: an actuator that applies vertical vibration to the front wheel side axle, an actuator that applies horizontal vibration, and an actuator that applies vertical vibration to the rear wheel axle. An actuator is provided.
 このように構成された振動試験機は、たとえば、JPH07140890(A)に開示されているように、三つのアクチュエータで二輪車の車体に鉛直方向と水平方向の振動を与えるので、二輪車が実際に走行する際に路面から入力される振動に近い振動を車体へ与えられる。 The vibration testing machine configured in this manner, for example, as disclosed in JPH07140890 (A), applies vibration in the vertical direction and the horizontal direction to the vehicle body of the two-wheeled vehicle with three actuators, so that the two-wheeled vehicle actually travels. In this case, vibration close to that input from the road surface is given to the vehicle body.
 また、二輪車の耐久性能の試験では、二輪車に人が乗った状態と同等の条件での試験が求められているので、人の代わりに二輪車のサドルポストに荷重付加装置を取り付けて試験する。この荷重付加装置は、サドルポストによって揺動可能に取り付けたロッドと、ロッドの先端に取り付けた錘とで構成されており、二輪車が加振された際に姿勢を変えても錘の荷重が常にサドルポストに垂直に作用するようになっている。 Also, since the durability performance test of a motorcycle requires a test under the same conditions as a person riding on a motorcycle, a load application device is attached to the saddle post of the motorcycle instead of a person. This load adding device is composed of a rod attached so as to be swingable by a saddle post and a weight attached to the tip of the rod, and the weight load is always maintained even if the posture is changed when the motorcycle is vibrated. Acts vertically on the saddle post.
 ところで、二輪車の搭乗者は、段差を乗り越える場合、サドルから腰を浮かせるなど自らが衝撃を受けないように対処するのが普通である。これに対して、前述のような振り子式の錘で構成される荷重付加装置では、二輪車に段差を乗り越えるような振動を与えると、錘の荷重が直に二輪車の車体に加わってしまうため、衝撃を緩和する搭乗者の行動を加味した耐久試験ができない。つまり、従来の荷重付加装置では、人間モデルに近い荷重を与えて耐久試験を行うのは困難であった。 By the way, when riding over a step, a motorcycle passenger usually takes measures to prevent himself from being shocked by, for example, raising his / her waist from a saddle. On the other hand, in the load application device composed of the pendulum type weight as described above, if the vibration is applied to the two-wheeled vehicle over the step, the load of the weight is directly applied to the motorcycle body. Endurance test that takes into account the behavior of the passengers to ease That is, with the conventional load applying device, it is difficult to perform a durability test by applying a load close to a human model.
 そこで、本発明は、上記問題を解決するためになされたものであり、その目的とするところは、鞍乗車両へ人間モデルに近似する荷重を与えられる荷重付加装置の提供である。 Therefore, the present invention has been made to solve the above problems, and its object is to provide a load applying device that can apply a load that approximates a human model to a saddle riding vehicle.
 上記した目的を達成するため、本発明の荷重付加装置は、サドルポストに荷重を付加する錘と、サドルポストと錘との間に設けた緩衝部材とを備えている。 In order to achieve the above object, the load applying device of the present invention includes a weight for applying a load to the saddle post, and a buffer member provided between the saddle post and the weight.
一実施の形態における荷重付加装置が用いられた振動試験機の側面図である。It is a side view of a vibration testing machine in which the load application device in one embodiment was used. 一実施の形態における荷重付加装置が用いられた振動試験機の正面図である。It is a front view of a vibration testing machine in which the load application device in one embodiment was used. 一実施の形態における荷重付加装置の側面断面図である。It is side surface sectional drawing of the load addition apparatus in one Embodiment. 一実施の形態における荷重付加装置の正面図である。It is a front view of the load addition apparatus in one embodiment. 一実施の形態における荷重付加装置が用いられた振動試験機のコントローラの構成図である。It is a block diagram of the controller of the vibration testing machine in which the load application apparatus in one embodiment was used. 一実施の形態における荷重付加装置が用いられた振動試験機のコントローラの処理手順を示したフローチャートである。It is the flowchart which showed the process sequence of the controller of the vibration testing machine in which the load addition apparatus in one Embodiment was used.
 以下、図に示した実施の形態に基づき、本発明を説明する。一実施の形態における荷重付加装置2は振動試験機Tに用いられている。そして、振動試験機Tは、図1および図2に示すように、試験体であり鞍乗車両としての二輪車Bの前後の車軸31,32を加振点として、各車軸31,32を図1中上下方向となる鉛直方向(Z軸方向)と図1中左右方向となる二輪車Bの車軸31,32同士を遠近させる水平方向(X軸方向)へ加振する加振機1を備えている。また、振動試験機Tは、二輪車Bに実際に人が搭乗した状態を作り出すために、二輪車Bのサドルポスト33に荷重を付加する荷重付加装置2を備えるほか、図5に示すように、加振機1を制御するコントローラCとを備えている。 Hereinafter, the present invention will be described based on the embodiments shown in the drawings. The load applying device 2 in one embodiment is used in a vibration testing machine T. As shown in FIGS. 1 and 2, the vibration tester T is a test body, and the axles 31 and 32 before and after the two-wheeled vehicle B as a saddle-ride vehicle are used as excitation points, and the axles 31 and 32 are shown in FIG. A vibration exciter 1 is provided that vibrates in the vertical direction (Z-axis direction) that is the middle and up-down direction and in the horizontal direction (X-axis direction) that brings the axles 31 and 32 of the two-wheeled vehicle B in the left-right direction in FIG. . Further, the vibration tester T includes a load applying device 2 for applying a load to the saddle post 33 of the two-wheeled vehicle B in order to create a state in which a person is actually on the two-wheeled vehicle B, and as shown in FIG. And a controller C that controls the vibrator 1.
 以下、振動試験機Tの各部について詳細に説明する。加振機1は、架台3と、架台3に取り付けられて二輪車Bの前輪側の車軸31を加振点として鉛直方向および水平方向へ振動を与える第一加振部4と、架台3に移動可能に取り付けられて二輪車Bの後輪側の車軸32を加振点として鉛直方向および水平方向へ振動を与える第二加振部5とを備えている。 Hereinafter, each part of the vibration testing machine T will be described in detail. The vibration exciter 1 is moved to the gantry 3, the first oscillating unit 4 attached to the gantry 3 and applying vibration in the vertical direction and the horizontal direction with the axle 31 on the front wheel side of the motorcycle B as an oscillating point. A second vibration unit 5 is provided which is attached so as to vibrate in the vertical and horizontal directions with the axle 32 on the rear wheel side of the motorcycle B as an excitation point.
 試験体であり鞍乗車両である二輪車Bは、車体フレーム34と、車体フレーム34の前端に設けたヘッドパイプ35に回転自在に取り付けられたフロントフォーク36と、フロントフォーク36の先端に設けた車軸31と、車体フレーム34の後ろ側に設けた車軸32とを備えて構成されている。なお、二輪車Bの車軸31,32に保持される前輪および後輪は取り外された状態で振動試験を行われる。また、車体フレーム34は上方へ向けて突出するサドルポスト33を備えており、サドルポスト33には、荷重付加装置2が取り付けられており、二輪車Bに荷重が付加されている。 The two-wheeled vehicle B, which is a test body and a saddle riding vehicle, includes a body frame 34, a front fork 36 that is rotatably attached to a head pipe 35 provided at the front end of the body frame 34, and an axle provided at the front end of the front fork 36. 31 and an axle 32 provided on the rear side of the vehicle body frame 34. The vibration test is performed with the front and rear wheels held on the axles 31 and 32 of the motorcycle B removed. The vehicle body frame 34 includes a saddle post 33 that protrudes upward. The load application device 2 is attached to the saddle post 33, and a load is applied to the motorcycle B.
 架台3は、複数の弾性支持部3aと、弾性支持部3a上に設けたベース3bとを備えて構成されており、ベース3b上に取り付けられる第一加振部4および第二加振部5による加振による振動を弾性支持部3aで吸収して、床に負荷がかからないようになっている。 The gantry 3 includes a plurality of elastic support portions 3a and a base 3b provided on the elastic support portions 3a. The first vibration portion 4 and the second vibration portion 5 attached on the base 3b. The elastic support portion 3a absorbs the vibration caused by the vibration caused by the above, so that no load is applied to the floor.
 第一加振部4は、架台3におけるベース3bに固定的に取り付けられたテーブル41と、テーブル41に鉛直方向に立てて取り付けられて伸縮運動する第一鉛直軸アクチュエータ42と、同じくテーブル41に鉛直方向に立てられるとともにテーブル41に揺動可能に取り付けられて伸縮運動する第一水平軸アクチュエータ43と、テーブル41に鉛直方向に立てて設けた支柱44と、支柱44と第一水平軸アクチュエータ43とに回転可能に連結される第一変換リンク45と、第一鉛直軸アクチュエータ42と車軸31の双方に回転可能とされて両者を連結する連結ロッド46と、第一変換リンク45と車軸31の双方に回転可能とされて両者を連結する連結ロッド47とを備えて構成されている。 The first excitation unit 4 includes a table 41 fixedly attached to the base 3 b of the gantry 3, a first vertical axis actuator 42 that is attached to the table 41 in a vertical direction, and expands and contracts. A first horizontal axis actuator 43 that is vertically mounted and swingably attached to the table 41, and a support column 44 that is provided on the table 41 in a vertical direction, a support column 44, and a first horizontal axis actuator 43. A first conversion link 45 that is rotatably connected to each other, a connecting rod 46 that is rotatable to connect both the first vertical axis actuator 42 and the axle 31, and the first conversion link 45 and the axle 31. The connecting rod 47 is configured to be rotatable at both sides and connect the two.
 なお、第一鉛直軸アクチュエータ42および第一水平軸アクチュエータ43は、本例では、テレスコピック型の油圧サーボシリンダとされており、図外の油圧源からの圧油の給排により伸縮作動するようになっている。 The first vertical axis actuator 42 and the first horizontal axis actuator 43 are telescopic hydraulic servo cylinders in this example, and are extended and contracted by supplying and discharging pressure oil from a hydraulic source (not shown). It has become.
 連結ロッド46は、棒状であって、その一端が第一鉛直軸アクチュエータ42にヒンジ結合されるとともに、他端が車軸31にヒンジ結合にて取り外し可能に連結できるようになっている。 The connecting rod 46 is rod-shaped and has one end hinged to the first vertical axis actuator 42 and the other end removably connected to the axle 31 by hinge coupling.
 よって、第一鉛直軸アクチュエータ42が伸縮運動を呈すると、連結ロッド46を介して車軸31が図1中で上下方向となる鉛直方向に加振され、車軸31に鉛直方向の振動を与えられる。連結ロッド46が車軸31および第一鉛直軸アクチュエータ42に回転可能に連結されているので、車軸31に水平方向の振動が加えられても、この振動に影響されずに第一鉛直軸アクチュエータ42によって車軸31を鉛直方向へ加振できる。 Therefore, when the first vertical axis actuator 42 exhibits expansion and contraction, the axle 31 is vibrated in the vertical direction in FIG. 1 in the vertical direction through the connecting rod 46, and the vertical vibration is applied to the axle 31. Since the connecting rod 46 is rotatably connected to the axle 31 and the first vertical axis actuator 42, even if a horizontal vibration is applied to the axle 31, the first vertical axis actuator 42 is not affected by this vibration. The axle 31 can be vibrated in the vertical direction.
 支柱44は、テーブル41に起立しており、その先端には、略三角形状の第一変換リンク45が回転可能に取り付けられている。第一変換リンク45は、この場合、その一頂点の近傍を支柱44にヒンジ結合して支柱44に連結されていて、支柱44に対してヒンジ結合点を中心として回転のみが許容される態様で取り付けられている。 The support column 44 stands on the table 41, and a substantially triangular first conversion link 45 is rotatably attached to the tip thereof. In this case, the first conversion link 45 is connected to the support 44 by being hinged to the support 44 in the vicinity of one vertex of the first conversion link 45, and is only allowed to rotate with respect to the support 44 around the hinge connection point. It is attached.
 連結ロッド47は、棒状であって、その一端が、第一変換リンク45の支柱44および第一水平軸アクチュエータ43が連結されていない、残りの頂点の近傍にヒンジ結合されて連結されている。また、連結ロッド47の他端は、車軸31にヒンジ結合にて取り外し可能に連結できるようになっている。 The connecting rod 47 has a rod shape, and one end of the connecting rod 47 is hingedly connected to the vicinity of the remaining apex where the column 44 of the first conversion link 45 and the first horizontal axis actuator 43 are not connected. The other end of the connecting rod 47 can be detachably connected to the axle 31 by hinge connection.
 そして、加振点である車軸31を加振する水平方向を指すX軸と第一水平軸アクチュエータ43の伸縮運動の軸線とを含む面を基準面とすると、第一水平軸アクチュエータ43、第一変換リンク45および連結ロッド47のそれぞれが基準面上でのみ回転可能に連結されている。 Then, when a plane including the X axis indicating the horizontal direction for exciting the axle 31 as the excitation point and the axis of the expansion and contraction motion of the first horizontal axis actuator 43 is taken as a reference plane, the first horizontal axis actuator 43, the first Each of the conversion link 45 and the connecting rod 47 is rotatably connected only on the reference plane.
 第一水平軸アクチュエータ43を伸長させると、これによって第一変換リンク45が支柱44へのヒンジ結合点にて反時計回りに回転し連結ロッド47が左方へ押し出されるので、車軸31を図1中左方向へ駆動できる。反対に、第一水平軸アクチュエータ43を収縮させると、これによって第一変換リンク45が支柱44へのヒンジ結合点にて時計回りに回転し連結ロッド47が右方へ引っ張られるので、車軸31を図1中右方向へ駆動できる。つまり、この第一加振部4では、第一変換リンク45と支柱44とでベルクランク機構を構成し、第一水平軸アクチュエータ43の伸縮運動をX軸方向の運動へ変換して加振点である車軸31へ伝達できる。なお、第一変換リンク45は、強度面で有利なために三角形状とされているが、L字状等、三角形状以外の形状とされてもよい。 When the first horizontal axis actuator 43 is extended, this causes the first conversion link 45 to rotate counterclockwise at the hinge coupling point to the support column 44 and the connecting rod 47 to be pushed out to the left. Can drive in the middle left direction. On the contrary, when the first horizontal axis actuator 43 is contracted, the first conversion link 45 is rotated clockwise at the hinge coupling point to the support column 44 and the connecting rod 47 is pulled rightward. It can be driven rightward in FIG. That is, in the first vibration unit 4, the first conversion link 45 and the support column 44 constitute a bell crank mechanism, and the expansion and contraction motion of the first horizontal axis actuator 43 is converted into the motion in the X-axis direction. Can be transmitted to the axle 31. The first conversion link 45 has a triangular shape because it is advantageous in terms of strength, but may have a shape other than a triangular shape such as an L shape.
 よって、第一水平軸アクチュエータ43が伸縮運動を呈すると、第一変換リンク45によって第一水平軸アクチュエータ43の鉛直方向の伸縮運動がX軸方向の往復運動に変換され、連結ロッド47を介して車軸31をX軸方向へ加振して振動を与えられる。連結ロッド47が車軸31および第一変換リンク45に回転可能に連結されているので、車軸31に鉛直方向の振動が加えられても、この振動に影響されずに第一水平軸アクチュエータ43によって車軸31を水平方向へ加振できる。 Therefore, when the first horizontal axis actuator 43 exhibits an expansion / contraction motion, the first conversion link 45 converts the vertical expansion / contraction motion of the first horizontal axis actuator 43 into a reciprocation motion in the X-axis direction. Vibration is given by vibrating the axle 31 in the X-axis direction. Since the connecting rod 47 is rotatably connected to the axle 31 and the first conversion link 45, even if vertical vibration is applied to the axle 31, the first horizontal axis actuator 43 does not affect the axle. 31 can be vibrated in the horizontal direction.
 第二加振部5は、架台3のベース3bに対して二輪車Bの前後に沿うX軸方向に移動可能に取り付けられたテーブル51と、テーブル51に鉛直方向に立てて取り付けられて伸縮運動する第二鉛直軸アクチュエータ52と、同じくテーブル51に鉛直方向に立てられるとともにテーブル51に揺動可能に取り付けられて伸縮運動する第二水平軸アクチュエータ53と、テーブル51に鉛直方向に立てて設けた支柱54と、支柱54と第二水平軸アクチュエータ53とに回転可能に連結される第二変換リンク55と、第二鉛直軸アクチュエータ52と車軸32の双方に回転可能とされて両者を連結する連結ロッド56と、第二変換リンク55と車軸32の双方に回転可能とされて両者を連結する連結ロッド57とを備えて構成されている。 The second vibration unit 5 is attached to the base 3b of the gantry 3 so as to be movable in the X-axis direction along the front and rear of the two-wheeled vehicle B, and is attached to the table 51 in a vertical direction so as to extend and contract. A second vertical axis actuator 52, a second horizontal axis actuator 53 that is also vertically mounted on the table 51 and is swingably attached to the table 51, and expands and contracts, and a column that is provided on the table 51 in a vertical direction. 54, a second conversion link 55 that is rotatably connected to the column 54 and the second horizontal axis actuator 53, and a connecting rod that is rotatable to both the second vertical axis actuator 52 and the axle 32 and connects the two. 56 and a connecting rod 57 that is rotatable to both the second conversion link 55 and the axle 32 and connects the two.
 テーブル51は、詳しく図示はしないが、架台3に対してリニアガイド等を介して取り付けられており、架台3に対してX軸方向への移動が許容され、また、架台3に搭載されるモータMによってX軸方向へ駆動できるようになっている。さらに、テーブル51は、振動試験中は架台3に固定でき、X軸方向への移動を規制できるようになっている。よって、試験体である二輪車Bの加振点間の距離、つまり、車軸31,32間の距離に応じて第二加振部5の架台3に対する位置をX軸方向で調節して、第二加振部5を二輪車Bに適する位置に位置決めできる。よって、二輪車Bの全長によらずに、第二加振部5を適正位置に位置決めして、二輪車Bの加振点にそれぞれ第一加振部4と第二加振部5を取付でき、振動試験を実行できる。 Although not shown in detail, the table 51 is attached to the gantry 3 via a linear guide or the like, is allowed to move in the X-axis direction with respect to the gantry 3, and is mounted on the gantry 3. M can be driven in the X-axis direction. Furthermore, the table 51 can be fixed to the gantry 3 during the vibration test, and can be restricted from moving in the X-axis direction. Therefore, the position of the second excitation unit 5 relative to the gantry 3 is adjusted in the X-axis direction according to the distance between the excitation points of the two-wheeled vehicle B that is the test body, that is, the distance between the axles 31 and 32, and the second The vibration part 5 can be positioned at a position suitable for the motorcycle B. Therefore, regardless of the overall length of the motorcycle B, the second excitation unit 5 can be positioned at an appropriate position, and the first excitation unit 4 and the second excitation unit 5 can be attached to the excitation points of the motorcycle B, respectively. Vibration test can be executed.
 なお、第二鉛直軸アクチュエータ52および第二水平軸アクチュエータ53は、本例では、テレスコピック型の油圧サーボシリンダとされており、図外の油圧源からの圧油の給排により伸縮作動するようになっている。 Note that the second vertical axis actuator 52 and the second horizontal axis actuator 53 are telescopic hydraulic servo cylinders in this example, and are expanded and contracted by supplying and discharging pressure oil from a hydraulic source (not shown). It has become.
 連結ロッド56は、棒状であって、その一端が第二鉛直軸アクチュエータ52にヒンジ結合されるとともに、他端が車軸32にヒンジ結合にて取り外し可能に連結できるようになっている。 The connecting rod 56 has a rod shape, and one end thereof is hinge-coupled to the second vertical axis actuator 52, and the other end can be removably coupled to the axle 32 by hinge coupling.
 そして、第二鉛直軸アクチュエータ52が伸縮運動を呈すると、連結ロッド56を介して車軸32が図1中で上下方向となる鉛直方向に加振され、車軸32に鉛直方向の振動を与えられる。連結ロッド56が車軸32および第二鉛直軸アクチュエータ52に回転可能に連結されているので、車軸32に水平方向の振動が加えられても、この振動に影響されずに第二鉛直軸アクチュエータ52によって車軸32を鉛直方向へ加振できる。 When the second vertical axis actuator 52 expands and contracts, the axle 32 is vibrated in the vertical direction in FIG. 1 through the connecting rod 56 and the vertical vibration is applied to the axle 32. Since the connecting rod 56 is rotatably connected to the axle 32 and the second vertical axis actuator 52, even if a horizontal vibration is applied to the axle 32, the second vertical axis actuator 52 is not affected by this vibration. The axle 32 can be vibrated in the vertical direction.
 支柱54は、テーブル51に起立しており、その先端には、略三角形状の第二変換リンク55が回転可能に取り付けられている。第二変換リンク55は、この場合、その一頂点の近傍を支柱54にヒンジ結合して支柱54に連結されていて、支柱54に対してヒンジ結合点を中心として回転のみが許容される態様で取り付けられている。 The column 54 stands on the table 51, and a substantially triangular second conversion link 55 is rotatably attached to the tip thereof. In this case, the second conversion link 55 is connected to the column 54 by being hinge-coupled to the column 54 in the vicinity of one vertex of the second conversion link 55, and is only allowed to rotate with respect to the column 54 around the hinge coupling point. It is attached.
 連結ロッド57は、棒状であって、その一端が、第二変換リンク55の支柱54および第二水平軸アクチュエータ53が連結されていない、残りの頂点の近傍にヒンジ結合されて連結されている。また、連結ロッド57の他端は、車軸32にヒンジ結合にて取り外し可能に連結できるようになっている。 The connecting rod 57 has a rod shape, and one end of the connecting rod 57 is hingedly connected to the vicinity of the remaining apex where the column 54 of the second conversion link 55 and the second horizontal axis actuator 53 are not connected. The other end of the connecting rod 57 can be detachably connected to the axle 32 by hinge connection.
 そして、加振点である車軸32を加振する水平方向を指すX軸と第二水平軸アクチュエータ53の伸縮運動の軸線とを含む面を基準面とすると、第二水平軸アクチュエータ53、第二変換リンク55および連結ロッド57のそれぞれが基準面上でのみ回転可能に連結されている。 Then, assuming that a plane including the X axis indicating the horizontal direction for exciting the axle 32 that is the excitation point and the axis of expansion and contraction of the second horizontal axis actuator 53 is a reference plane, the second horizontal axis actuator 53, the second horizontal axis actuator 53, Each of the conversion link 55 and the connecting rod 57 is rotatably connected only on the reference plane.
 第一加振部4と同様にこの第二加振部5にあっても、第二変換リンク55と支柱54とでベルクランク機構を構成し、第二水平軸アクチュエータ53の伸縮運動をX軸方向の運動へ変換して加振点である車軸31へ伝達できる。なお、第二変換リンク55は、強度面で有利なために三角形状とされているが、L字状等、三角形状以外の形状とされてもよい。 Even in the second vibration unit 5 as in the first vibration unit 4, the second conversion link 55 and the support column 54 constitute a bell crank mechanism, and the expansion and contraction motion of the second horizontal axis actuator 53 is controlled by the X axis. It can be converted into a directional motion and transmitted to the axle 31 as an excitation point. The second conversion link 55 has a triangular shape because it is advantageous in terms of strength, but may have a shape other than a triangular shape such as an L shape.
 よって、第二水平軸アクチュエータ53が伸縮運動を呈すると、第二変換リンク55によって第二水平軸アクチュエータ53の鉛直方向の伸縮運動がX軸方向の往復運動に変換され、連結ロッド57を介して車軸32をX軸方向へ加振して振動を与えられる。なお、連結ロッド57が車軸32および第二変換リンク55に回転可能に連結されているので、車軸32に鉛直方向の振動が加えられても、この振動に影響されずに第二水平軸アクチュエータ53によって車軸32を水平方向へ加振できる。 Therefore, when the second horizontal axis actuator 53 exhibits an expansion / contraction motion, the second conversion link 55 converts the vertical expansion / contraction motion of the second horizontal axis actuator 53 into a reciprocation motion in the X-axis direction. Vibration is given by vibrating the axle 32 in the X-axis direction. Since the connecting rod 57 is rotatably connected to the axle 32 and the second conversion link 55, even if vertical vibration is applied to the axle 32, the second horizontal axis actuator 53 is not affected by this vibration. Thus, the axle 32 can be vibrated in the horizontal direction.
 また、前述した各アクチュエータ42,43,52,53は、図示はしないが、シリンダとシリンダ内に摺動自在に挿入されてシリンダ内を伸側室と圧側室とに区画するピストンと、シリンダ内に挿通されてピストンに連結される出力ロッドと、伸側室と圧側室の一方を圧油を供給可能なポンプへ接続するとともに他方をタンクに連通する方向切換弁とを備えた周知の油圧サーボシリンダとされている。各アクチュエータ42,43,52,53は、片ロッド型でも両ロッド型のいずれも採用可能である。各アクチュエータ42,43,52,53は、伸側室への圧油の供給で伸長作動でき、圧側室への圧油の供給により収縮作動できる。そのほか、各アクチュエータ42,43,52,53は、両室をタンクへ連通して圧油の供給を停止する等して荷重を発揮せず外力によってほとんど抵抗なくフリーで伸縮するアンロード状態を実現できるようになっている。なお、各アクチュエータ42,43,52,53の具体構成は、前述したところに限られず、アンロード状態を実現できれば、他の構成を採用できる。また、各アクチュエータ42,43,52,53は、電動或いは空気圧で駆動するアクチュエータとされてもよく、その場合でも、前記したようなアンロード状態を実現できるよう配慮される。 The actuators 42, 43, 52, 53 described above are not shown, but are slidably inserted into the cylinder and the cylinder so as to divide the cylinder into an extension side chamber and a pressure side chamber, and a cylinder. A well-known hydraulic servo cylinder having an output rod inserted and coupled to the piston, and a direction switching valve for connecting one of the extension side chamber and the pressure side chamber to a pump capable of supplying pressure oil and the other communicating with the tank; Has been. Each actuator 42, 43, 52, 53 can be either a single rod type or a double rod type. Each actuator 42, 43, 52, 53 can be extended by supplying pressure oil to the expansion side chamber, and can be contracted by supplying pressure oil to the compression side chamber. In addition, each actuator 42, 43, 52, 53 communicates both chambers to the tank to stop the supply of pressure oil, etc., and realizes an unloading state that expands and contracts freely with little external force without exerting a load. It can be done. The specific configurations of the actuators 42, 43, 52, and 53 are not limited to those described above, and other configurations can be adopted as long as the unloaded state can be realized. The actuators 42, 43, 52, and 53 may be electrically or pneumatically driven actuators, and even in that case, consideration is given to realizing the unload state as described above.
 そして、第一変換リンク45と第二変換リンク55は、それぞれ、支柱44,54に対して同じ向きに設置されている。これにより、第一加振部4および第二加振部5における第一水平軸アクチュエータ43および第二水平軸アクチュエータ53は、全て支柱44,54の駆動方向であるX軸方向の両側のうち一方側、つまり、図1中で支柱44,54の右側に配置される。なお、第一水平軸アクチュエータ43および第二水平軸アクチュエータ53は、支柱44,54の駆動方向両側のうち上記とは反対側の図1中左側に配置するようにしてもよい。 The first conversion link 45 and the second conversion link 55 are installed in the same direction with respect to the columns 44 and 54, respectively. Accordingly, the first horizontal axis actuator 43 and the second horizontal axis actuator 53 in the first vibration unit 4 and the second vibration unit 5 are all one of both sides in the X-axis direction that is the driving direction of the columns 44 and 54. It is arranged on the side, that is, on the right side of the columns 44 and 54 in FIG. Note that the first horizontal axis actuator 43 and the second horizontal axis actuator 53 may be disposed on the left side in FIG.
 また、各鉛直軸アクチュエータ42,52も同じ仕様のものを使用している。さらに、各水平軸アクチュエータ43,53の仕様は同じとされていて、連結ロッド46,47の長さ、各変換リンク45,55の水平軸アクチュエータ43,53の伸縮運動を車軸31,32のX軸方向の運動へ変換する際のレバー比が等しくなっている。 The vertical axis actuators 42 and 52 have the same specifications. Further, the specifications of the horizontal axis actuators 43 and 53 are the same. The lengths of the connecting rods 46 and 47 and the expansion and contraction movements of the horizontal axis actuators 43 and 53 of the conversion links 45 and 55 are determined by the X of the axles 31 and 32. The lever ratio when converting to axial motion is equal.
 そして、この振動試験機Tにあっては、第一変換リンク45と第二変換リンク55は、それぞれ同じ向きに設置され、第一水平軸アクチュエータ43および第二水平軸アクチュエータ53が支柱44,54の駆動方向両側のうち一方側に配置されている。そのため、二輪車Bを図1中右側へ同期させて移動させる場合、第一水平軸アクチュエータ43と第二水平軸アクチュエータ53を同じ量だけ収縮側にストロークさせればよい。反対に、図1中左側へ同期させて移動させる場合、第一水平軸アクチュエータ43と第二水平軸アクチュエータ53を同じ量だけ伸長側にストロークさせればよい。よって、各水平軸アクチュエータ43,53のストローク位置が同じ位置にある場合に車軸31,32のX軸方向の相対位置が変化しないように配慮されている。したがって、各水平軸アクチュエータ43,53がオフされてアンロード状態となり二輪車Bの重量で最収縮しても、車軸31,32のX軸方向の相対位置が変化しない。 In the vibration testing machine T, the first conversion link 45 and the second conversion link 55 are installed in the same direction, and the first horizontal axis actuator 43 and the second horizontal axis actuator 53 are supported by the columns 44 and 54. It is arrange | positioned at one side among the both sides of the drive direction. Therefore, when the motorcycle B is moved in synchronization with the right side in FIG. 1, the first horizontal axis actuator 43 and the second horizontal axis actuator 53 may be stroked to the contraction side by the same amount. On the contrary, when moving in synchronization with the left side in FIG. 1, the first horizontal axis actuator 43 and the second horizontal axis actuator 53 may be stroked to the extension side by the same amount. Therefore, when the stroke positions of the horizontal axis actuators 43 and 53 are at the same position, consideration is given so that the relative positions of the axles 31 and 32 in the X-axis direction do not change. Therefore, even if the horizontal axis actuators 43 and 53 are turned off and become unloaded, the relative positions of the axles 31 and 32 in the X-axis direction do not change even when the motorcycle B contracts most due to the weight.
 さらに、加振点である車軸31,32のX軸方向の距離を変えたい場合、各水平軸アクチュエータ43,53のストローク量を違えればよく、各水平軸アクチュエータ43,53のストローク量を制御して試験体である二輪車Bに荷重を作用できる。 Further, when it is desired to change the distance in the X-axis direction between the axles 31 and 32 that are the excitation points, the stroke amounts of the horizontal axis actuators 43 and 53 may be changed, and the stroke amounts of the horizontal axis actuators 43 and 53 are controlled. Thus, a load can be applied to the two-wheeled vehicle B as a test body.
 また、各鉛直軸アクチュエータ42,52を伸縮させて加振点である車軸31,32を鉛直方向へ駆動する場合、双方の水平軸アクチュエータ43,53を同期させて伸縮させると、二輪車BにX軸方向へ荷重を作用させずに二輪車Bを上下動できる。 Further, when the vertical axis actuators 42 and 52 are extended and contracted to drive the axles 31 and 32 which are the excitation points in the vertical direction, if both horizontal axis actuators 43 and 53 are extended and contracted in synchronization, the two-wheeled vehicle B has X The two-wheeled vehicle B can be moved up and down without applying a load in the axial direction.
 よって、鉛直軸アクチュエータ42,52および水平軸アクチュエータ43,53がオフされてアンロード状態となって最収縮状態しても、車軸31,32のZ軸方向およびX軸方向の相対位置が変化せず、無負荷で二輪車Bを最下方へ移動でき二輪車Bを傷めない。 Therefore, even if the vertical axis actuators 42 and 52 and the horizontal axis actuators 43 and 53 are turned off to be in the unloaded state and the most contracted state, the relative positions of the axles 31 and 32 in the Z axis direction and the X axis direction change. The two-wheeled vehicle B can be moved to the lowermost position with no load, and the two-wheeled vehicle B is not damaged.
 よって、この振動試験機Tによれば、車軸31,32に作用している荷重を監視し、これをフィードバックする荷重制御を実施する必要が無く、コントローラCは、各アクチュエータ42,43,52,53を変位制御すれば足りる。よって、制御を変位制御から荷重制御へバンプレスに切り換える必要もなく制御が容易で、ロードセルや歪センサ等の設置が不要となるからコスト面でも有利となる。 Therefore, according to the vibration testing machine T, it is not necessary to monitor the load acting on the axles 31 and 32 and to perform load control for feeding back the load, and the controller C can control each actuator 42, 43, 52, It is sufficient to control the displacement of 53. Therefore, there is no need to switch the control from displacement control to load control to bumpless, and control is easy, and installation of a load cell, strain sensor, etc. is not necessary, which is advantageous in terms of cost.
 さらに、全アクチュエータ42,43,52,53の油圧を全てオフしてアンロード状態として、全アクチュエータ42,43,52,53が最収縮状態とする場合、各アクチュエータ42,43,52,53同士が互いに押しあったり引きあったりしない。よって、本例の振動試験機Tにあっては、試験体である二輪車Bの着脱作業を安全に行える。また、失陥によって各アクチュエータ42,43,52,53が全てオフされても、各アクチュエータ42,43,52,53同士が相手の動きに干渉しないので二輪車Bを最下方へ速やかに移動できる。 Further, when all the hydraulic pressures of all the actuators 42, 43, 52, 53 are turned off to be in the unloaded state, and all the actuators 42, 43, 52, 53 are in the most contracted state, the actuators 42, 43, 52, 53 are connected to each other. Do not push or pull each other. Therefore, in the vibration testing machine T of this example, the attaching / detaching operation of the two-wheeled vehicle B which is a test body can be performed safely. Even if all the actuators 42, 43, 52, 53 are turned off due to a failure, the two-wheeled vehicle B can be quickly moved to the lowermost position because the actuators 42, 43, 52, 53 do not interfere with each other's movements.
 なお、第一水平軸アクチュエータ43および第二水平軸アクチュエータ53が支柱44,54の駆動方向両側のうち一方側に配置すると前述の利点を享受できるが、第一水平軸アクチュエータ43および第二水平軸アクチュエータ53の配置はこれに限られない。 The first horizontal axis actuator 43 and the second horizontal axis actuator 53 can be enjoyed when the first horizontal axis actuator 43 and the second horizontal axis actuator 53 are arranged on one side of both sides of the props 44 and 54 in the driving direction. The arrangement of the actuator 53 is not limited to this.
 次に、本発明の荷重付加装置2について説明する。図3に示すように、鞍乗車両である二輪車Bのサドルポスト33に荷重を付加する錘Wと、サドルポスト33と錘Wとの間に設けた緩衝部材Dとを備えている。 Next, the load applying device 2 of the present invention will be described. As shown in FIG. 3, a weight W for applying a load to the saddle post 33 of the two-wheeled vehicle B that is a straddle vehicle, and a buffer member D provided between the saddle post 33 and the weight W are provided.
 より詳細には、荷重付加装置2は、架台3のベース3b上に設けた支持フレーム21と、支持フレーム21に対して二輪車Bの前後方向、つまり、X軸方向へ移動可能に取り付けられて錘Wおよび緩衝部材Dを収容するハウジング22と、サドルポスト33に回転自在に装着される取付台23と、取付台23に前後方向に移動自在に装着される支持台24と、支持台24に積層される緩衝部材Dと、緩衝部材Dに積層される錘Wとを備えて構成されている。 More specifically, the load applying device 2 includes a support frame 21 provided on the base 3b of the gantry 3 and a weight attached to the support frame 21 so as to be movable in the front-rear direction of the motorcycle B, that is, in the X-axis direction. A housing 22 that accommodates W and the buffer member D, a mounting base 23 that is rotatably mounted on the saddle post 33, a support base 24 that is mounted on the mounting base 23 so as to be movable in the front-rear direction, and a support base 24 that are stacked. The shock-absorbing member D and the weight W stacked on the shock-absorbing member D are provided.
 支持フレーム21は、図1および図2に示すように、二輪車Bの左右の前後にそれぞれ設けた四つの縦支柱21aと、各縦支柱21aの中間に架け渡される四つの横梁21bと、二輪車Bの前後に設けた一つの縦支柱21aの上端に架け渡されて取り付けられた一対のガイド梁21cとを備えて構成されている。 As shown in FIGS. 1 and 2, the support frame 21 includes four vertical columns 21a provided on the left and right front and rear sides of the motorcycle B, four horizontal beams 21b spanned between the vertical columns 21a, and the motorcycle B. And a pair of guide beams 21c attached to be attached to the upper end of one vertical column 21a provided in front of and behind.
 ハウジング22は、図2および図4に示すように、二輪車Bの左右に設けられて二輪車Bの前後方向から見てL字状の一対の支持板22aと、支持板22a同士の上端に取り付けられる蓋22bとを備えている。そして、各支持板22aの下端がそれぞれ下方に配置されているガイド梁21cにリニアガイド22c(図1参照)を介して連結されており、ハウジング22は、図1中左右方向である二輪車Bの前後方向へ移動できるようになっている。 As shown in FIGS. 2 and 4, the housing 22 is provided on the left and right of the two-wheeled vehicle B, and is attached to a pair of L-shaped support plates 22 a when viewed from the front-rear direction of the two-wheeled vehicle B, and the upper ends of the support plates 22 a. And a lid 22b. And the lower end of each support plate 22a is connected via a linear guide 22c (refer to FIG. 1) to a guide beam 21c disposed below, and the housing 22 is the left-right direction of FIG. It can be moved back and forth.
 取付台23は、サドルポスト33を把持する把持部材25にヒンジ結合されていて、二輪車Bの前後方向への回転、つまり、図3中紙面貫く軸周りへの回転が許容されている。 The mounting base 23 is hinged to a gripping member 25 that grips the saddle post 33, and is allowed to rotate in the front-rear direction of the two-wheeled vehicle B, that is, around an axis that penetrates the paper surface in FIG.
 さらに、この取付台23上には、二輪車Bの前後方向に沿って設けたリニアガイド26を介して支持台24が取り付けられている。この支持台24は、リニアガイド26によって、取付台23に対して二輪車Bの前後方向に移動可能とされている。支持台24は、ハウジング22の各支持板22aの内側に鉛直方向に沿って設けたリニアガイド27によって鉛直方向へ移動自在に装着されている。よって、支持台24は、ハウジング22に対して鉛直方向の移動のみが許容されている。 Further, a support base 24 is mounted on the mounting base 23 via a linear guide 26 provided along the front-rear direction of the motorcycle B. The support base 24 is movable in the front-rear direction of the motorcycle B with respect to the mounting base 23 by a linear guide 26. The support base 24 is mounted on the inside of each support plate 22a of the housing 22 so as to be movable in the vertical direction by a linear guide 27 provided along the vertical direction. Therefore, the support base 24 is allowed to move only in the vertical direction with respect to the housing 22.
 そして、支持台24の上方には、緩衝部材Dが積層されている。緩衝部材Dは、本例では、弾性部材としての第一弾性部材D1と第二弾性部材D2とで構成されている。第一弾性部材D1および第二弾性部材D2は、ともに、円盤状の合成樹脂で形成されている。また、第一弾性部材D1と第二弾性部材D2は、異なる減衰特性を備えており、この例では、第一弾性部材D1より第二弾性部材D2の方が高い減衰性を備えている。そして、図示したところでは、二つの第一弾性部材D1で重ねた第二弾性部材D2を挟み込むようにして緩衝部材Dを構成している。 The buffer member D is stacked above the support base 24. In this example, the buffer member D includes a first elastic member D1 and a second elastic member D2 as elastic members. Both the first elastic member D1 and the second elastic member D2 are formed of a disc-shaped synthetic resin. Further, the first elastic member D1 and the second elastic member D2 have different damping characteristics, and in this example, the second elastic member D2 has a higher damping property than the first elastic member D1. And in the place shown in figure, the buffer member D is comprised so that the 2nd elastic member D2 piled up by the two 1st elastic members D1 may be pinched | interposed.
 第一弾性部材D1を形成する合成樹脂としては、たとえば、ゴムやウレタンゴム等を使用すればよく、第二弾性部材D2を形成する合成樹脂としては、たとえば、軟質のウレタンフォーム等の低反発で高い減衰性を発揮するものを使用すればよい。また、第一弾性部材D1と第二弾性部材D2は、本例では、それぞれ、二つずつ設けられているが、共に、積層枚数は任意である。また、緩衝部材Dの構成は、これに限られず、たとえば、錘Wと支持台24との間に介装されるばね或いは油圧ダンパ、或いはばねと油圧ダンパを直列あるいは並列に配置したもので構成してもよいし、ばねと高い減衰性を発揮する合成樹脂、或いは、合成樹脂と油圧ダンパの構成も可能である。 As the synthetic resin for forming the first elastic member D1, for example, rubber or urethane rubber may be used, and as the synthetic resin for forming the second elastic member D2, for example, low resilience such as soft urethane foam may be used. What shows a high attenuation | damping property should just be used. Further, in this example, two first elastic members D1 and two second elastic members D2 are provided, but the number of stacked layers is arbitrary. Further, the configuration of the buffer member D is not limited to this. For example, the buffer member D includes a spring or a hydraulic damper interposed between the weight W and the support base 24, or a configuration in which the spring and the hydraulic damper are arranged in series or in parallel. It is also possible to use a synthetic resin that exhibits a high damping property with a spring, or a synthetic resin and a hydraulic damper.
 錘Wは、緩衝部材Dに積層して設けられている。具体的には、錘Wは、ハウジング22の各支持板22aの内側に鉛直方向に沿って設けたリニアガイド27によって鉛直方向へ移動自在に装着されるスライダ28と、スライダ28に積層されて取り付けられる複数のプレート29とで構成されている。つまり、錘Wは、ハウジング22に対して鉛直方向の移動のみが許容されている。 The weight W is provided by being laminated on the buffer member D. Specifically, the weight W is attached to the slider 28 which is mounted on the inner side of each support plate 22a of the housing 22 so as to be movable in the vertical direction by a linear guide 27 provided along the vertical direction. And a plurality of plates 29. That is, the weight W is only allowed to move in the vertical direction with respect to the housing 22.
 プレート29は、積層枚数を調整して、錘Wの全体重量を調整できるようになっている。なお、プレート29には、スライダ28に立てて設けたボルト28aの挿通を許容する孔が設けられており、プレート29がボルト28aに螺着されるナット28bによりスライダ28にプレート29を固定できるようになっている。 The plate 29 can adjust the total weight of the weight W by adjusting the number of stacked layers. The plate 29 is provided with a hole that allows a bolt 28a provided upright on the slider 28 to pass therethrough so that the plate 29 can be fixed to the slider 28 by a nut 28b that is screwed to the bolt 28a. It has become.
 そして、二輪車Bの振動試験を行う際には、二輪車Bのサドルポスト33の位置に併せて、ハウジング22を支持フレーム21に対して前後させて把持部材25をサドルポスト33に取り付けるのに最適な位置に移動させる。そして、把持部材25をサドルポスト33に装着した後は、ハウジング22を支持フレーム21に対して動かないように固定する。ハウジング22の支持フレーム21への固定に際しては、ボルト締結等、種々の構造を採用すればよい。このようにハウジング22を固定した後で、加振機1から二輪車Bへ振動を与えて振動試験が実行される。 When performing a vibration test of the two-wheeled vehicle B, the housing 22 is moved back and forth with respect to the support frame 21 in accordance with the position of the saddle post 33 of the two-wheeled vehicle B, and is optimal for attaching the gripping member 25 to the saddle post 33. Move to position. Then, after the gripping member 25 is mounted on the saddle post 33, the housing 22 is fixed so as not to move with respect to the support frame 21. When the housing 22 is fixed to the support frame 21, various structures such as bolt fastening may be employed. After fixing the housing 22 in this way, a vibration test is performed by applying vibration from the vibrator 1 to the two-wheeled vehicle B.
 ハウジング22は、支持フレーム21に固定されるが、二輪車Bのサドルポスト33が加振機1によって振動されると、把持部材25は、サドルポスト33とともに、鉛直方向、水平方向(X軸方向)へ移動および二輪車Bの前後方向へ回転して変位する。取付台23は、把持部材25にヒンジ結合されているので、サドルポスト33の二輪車Bの前後方向への回転振動は取付台23には伝達されない。また、取付台23は、把持部材25とともに鉛直方向および水平方向についてはともに移動するが、支持台24が取付台23に対して水平方向に対して移動可能となっているので、支持台24には、取付台23の水平方向の振動は伝達されない。支持台24は、ハウジング22によって鉛直方向の移動が許容されており、取付台23の鉛直方向の振動により支持台24も鉛直方向に振動する。支持台24の鉛直方向の振動は、緩衝部材Dに吸収されて錘Wへの伝達が抑制されるが、錘Wもハウジング22によって鉛直方向の移動が許容されるので、鉛直方向へ振動できる。このように、荷重付加装置2は、二輪車Bが加振機1によって振動が与えられて姿勢を変えても、錘Wは鉛直方向のみに移動するのみであり、常にサドルポスト33に鉛直下方へ向く荷重を作用させる。錘Wは、リニアガイド27により鉛直方向への移動が許容されるので、サドルポスト33の鉛直方向への移動を許容しつつサドルポスト33に荷重を作用できる。また、錘Wは、サドルポスト33に対してリニアガイド26により前後方向への移動が許容されるので、サドルポスト33の前後方向への移動を許容しつつサドルポスト33に荷重を作用できる。 The housing 22 is fixed to the support frame 21, but when the saddle post 33 of the motorcycle B is vibrated by the vibration exciter 1, the gripping member 25 is moved together with the saddle post 33 in the vertical direction and the horizontal direction (X-axis direction). And move in the front-rear direction of the motorcycle B to be displaced. Since the mounting base 23 is hinged to the gripping member 25, the rotational vibration of the saddle post 33 in the front-rear direction of the two-wheeled vehicle B is not transmitted to the mounting base 23. The mounting base 23 moves together with the holding member 25 in the vertical direction and the horizontal direction, but the support base 24 is movable relative to the mounting base 23 in the horizontal direction. The horizontal vibration of the mounting base 23 is not transmitted. The support base 24 is allowed to move in the vertical direction by the housing 22, and the support base 24 vibrates in the vertical direction due to the vertical vibration of the mounting base 23. The vibration in the vertical direction of the support base 24 is absorbed by the buffer member D and the transmission to the weight W is suppressed. However, since the weight W is also allowed to move in the vertical direction by the housing 22, it can vibrate in the vertical direction. As described above, in the load applying device 2, even if the motorcycle B is vibrated by the vibration exciter 1 and changes its posture, the weight W only moves in the vertical direction, and the saddle post 33 always moves downward vertically. Apply a facing load. Since the weight W is allowed to move in the vertical direction by the linear guide 27, a load can be applied to the saddle post 33 while allowing the saddle post 33 to move in the vertical direction. Further, since the weight W is allowed to move in the front-rear direction with respect to the saddle post 33 by the linear guide 26, a load can be applied to the saddle post 33 while allowing the saddle post 33 to move in the front-rear direction.
 このように荷重付加装置2は構成されているので、二輪車Bに加振機1によって突上げるような衝撃荷重が与えられた際に、緩衝部材Dが衝撃を吸収するので、錘Wへ二輪車Bからの振動の伝達が緩和される。ここで、錘が振り子式にサドルポストに取り付けられる従来の荷重付加装置では、二輪車Bに突上げるような衝撃荷重が作用すると、錘Wに加速度が作用して慣性でサドルポストを下方に押下げる衝撃荷重が作用する。本実施の形態の荷重付加装置2にあっては、二輪車B側から錘Wへの振動の伝達が緩衝部材Dによって抑制されるため、二輪車Bに突上げるような衝撃荷重が与えられても錘Wの慣性による二輪車Bを押し下げる衝撃荷重が軽減される。したがって、荷重付加装置2によれば、実際に人が二輪車Bに乗って段差を乗り越える際に人から二輪車Bに付加される荷重状態に近似する荷重を二輪車Bに与えられる。しかるに、荷重付加装置2によれば、鞍乗車両としての二輪車Bへ人間モデルに近似する荷重を与えられる。 Since the load applying device 2 is configured as described above, the shock absorbing member D absorbs the shock when the shock load that pushes up the two-wheeled vehicle B by the shaker 1 is applied. The transmission of vibration from is reduced. Here, in the conventional load applying device in which the weight is attached to the saddle post in a pendulum manner, when an impact load that pushes up on the two-wheeled vehicle B acts, acceleration acts on the weight W and pushes the saddle post downward by inertia. Impact load acts. In the load application device 2 according to the present embodiment, since the transmission of vibration from the two-wheeled vehicle B side to the weight W is suppressed by the buffer member D, the weight is applied even when an impact load that pushes up the two-wheeled vehicle B is applied. The impact load that pushes down the motorcycle B due to the inertia of W is reduced. Therefore, according to the load applying device 2, when the person actually rides on the two-wheeled vehicle B and gets over the step, a load approximate to the load state applied to the two-wheeled vehicle B from the person is given to the two-wheeled vehicle B. However, according to the load application device 2, a load that approximates a human model can be applied to the two-wheeled vehicle B as the saddle riding vehicle.
 また、緩衝部材Dが減衰特性の異なる弾性部材で構成される場合には、加振機1から二輪車Bへ衝撃荷重を与えた際に、減衰性が低い第一弾性部材D1によって振動を吸収して、二輪車Bの振動を錘Wへの伝達を抑制しつつも、第一弾性部材D1の振動吸収後の錘Wの振動を減衰性が高い第二弾性部材D2によって抑えて、錘Wのばたつきを防止できる。 Further, when the buffer member D is composed of an elastic member having different damping characteristics, when the shock load is applied from the vibration exciter 1 to the two-wheeled vehicle B, the vibration is absorbed by the first elastic member D1 having a low damping property. Thus, while suppressing the vibration of the motorcycle B to the weight W, the vibration of the weight W after absorbing the vibration of the first elastic member D1 is suppressed by the second elastic member D2 having a high damping property. Can be prevented.
 また、第一弾性部材D1および第二弾性部材D2(弾性部材)は、合成樹脂で形成されているので、錘Wと支持台24との間への設置が簡単で、異なる樹脂材料や形成方法を変更すれば、減衰特性の異なる弾性部材を簡単に形成できる。 In addition, since the first elastic member D1 and the second elastic member D2 (elastic member) are formed of synthetic resin, installation between the weight W and the support base 24 is simple, and different resin materials and forming methods are used. By changing the above, it is possible to easily form elastic members having different damping characteristics.
 さらに、緩衝部材Dは、複数の第一弾性部材D1および第二弾性部材D2(弾性部材)が積層されて構成されているので、第一弾性部材D1および第二弾性部材D2のそれぞれの積層枚数の調整が可能となる。この弾性部材の積層枚数の調整により、サドルポスト33から突き上げるような衝撃荷重を受けた際の、錘Wへの振動伝達特性と錘Wの振動減衰特性をチューニングできる。そのため、より一層人間モデルに近い荷重を鞍乗車両である二輪車Bへ付加できる。 Furthermore, since the buffer member D is configured by laminating a plurality of first elastic members D1 and second elastic members D2 (elastic members), the number of stacked layers of the first elastic members D1 and the second elastic members D2 respectively. Can be adjusted. By adjusting the number of laminated elastic members, it is possible to tune the vibration transmission characteristics to the weight W and the vibration attenuation characteristics of the weight W when receiving an impact load that pushes up from the saddle post 33. Therefore, a load closer to a human model can be applied to the two-wheeled vehicle B that is a saddle-ride vehicle.
 また、荷重付加装置2がサドルポスト33に二輪車Bの前後方向へ回転可能に装着される取付台23と、取付台23に前後方向に移動可能に装着される支持台24と、支持台24上に積層される緩衝部材Dと、緩衝部材Dに積層される錘Wとを備えている。そのため、荷重付加装置2は、加振機1によって二輪車Bに、鉛直方向、前後の水平方向への振動および前後方向への回転振動が与えられても、常にサドルポスト33に鉛直下方へ錘Wの荷重を作用させて、より一層人間モデルに近似する荷重を与えられる。 In addition, the load applying device 2 is mounted on the saddle post 33 so as to be rotatable in the front-rear direction of the motorcycle B, the support base 24 mounted on the mounting base 23 so as to be movable in the front-rear direction, and the support base 24 And a weight W stacked on the buffer member D. For this reason, the load application device 2 always applies the weight W downward to the saddle post 33 vertically even if the vibration is applied to the two-wheeled vehicle B in the vertical direction, the front-rear horizontal vibration and the front-rear rotational vibration. A load that is more similar to the human model can be applied.
 さらに、本例では、荷重付加装置2が錘Wと緩衝部材Dと支持台24を収容して、錘Wと支持台24の鉛直方向の移動のみを許容して、架台3に取り付けられるハウジング22を備えているので、二輪車Bの左右方向への転倒も防止される。そして、ハウジング22が架台3に対して二輪車Bの前後方向へ移動可能とされているので、サドルポスト33の位置が異なる二輪車Bにも対応してハウジング22を適切な位置へ移動させて荷重付加装置2を二輪車Bへ取付できる。 Further, in this example, the load applying device 2 accommodates the weight W, the buffer member D, and the support base 24, and only allows the weight W and the support base 24 to move in the vertical direction, and is attached to the gantry 3. Therefore, the motorcycle B can be prevented from falling in the left-right direction. Since the housing 22 is movable in the front-rear direction of the two-wheeled vehicle B with respect to the gantry 3, the housing 22 is moved to an appropriate position corresponding to the two-wheeled vehicle B in which the position of the saddle post 33 is different, and a load is applied. The device 2 can be attached to the motorcycle B.
 つづいて、コントローラCは、図5に示すように、各アクチュエータ42,43,52,53の変位を検知するストロークセンサS1,S2,S3,S4と、各アクチュエータ42,43,52,53を駆動制御する制御部61と、ストロークセンサS1,S2,S3,S4で検知した各アクチュエータ42,43,52,53の変位から車軸31,32間の直線距離LLを求める距離演算部62と、距離演算部62で求めた車軸31,32間の直線距離LLに基づいて各アクチュエータ42,43,52,53の駆動を停止するか否かを判断する停止判断部63とを備えている。 Subsequently, as shown in FIG. 5, the controller C drives the stroke sensors S1, S2, S3, S4 for detecting the displacement of the actuators 42, 43, 52, 53 and the actuators 42, 43, 52, 53. A control unit 61 for controlling, a distance calculation unit 62 for obtaining a linear distance LL between the axles 31 and 32 from the displacements of the actuators 42, 43, 52 and 53 detected by the stroke sensors S1, S2, S3 and S4; A stop determination unit 63 that determines whether to stop driving the actuators 42, 43, 52, 53 based on the linear distance LL between the axles 31, 32 obtained by the unit 62.
 制御部61は、各アクチュエータ42,43,52,53の変位を監視し、予め入力される二輪車Bへ与える振動データ通りに二輪車Bに振動を与えるように、各アクチュエータ42,43,52,53を駆動制御する。よって、コントローラCは、各アクチュエータ42,43,52,53を駆動制御して、二輪車Bの車軸31,32に振動を与えて、振動試験を行なえるようになっている。 The controller 61 monitors the displacements of the actuators 42, 43, 52, 53, and applies the vibrations to the two-wheeled vehicle B in accordance with the vibration data given to the two-wheeled vehicle B input in advance. Is controlled. Therefore, the controller C can drive and control the actuators 42, 43, 52, 53 to apply vibrations to the axles 31, 32 of the two-wheeled vehicle B so as to perform a vibration test.
 距離演算部62は、ストロークセンサS1,S2,S3,S4で検知した各アクチュエータ42,43,52,53の変位から車軸31,32間の直線距離LLを求める。車軸31は、第一鉛直軸アクチュエータ42と第一水平軸アクチュエータ43による加振によって、Z軸方向とX軸方向の変位が許容されるが図1中紙面を貫く方向であるY軸方向への移動は規制されているので、ZX面内を移動するのみである。また、車軸32についても、第二鉛直軸アクチュエータ52と第二水平軸アクチュエータ53による加振によって、Z軸方向とX軸方向の変位が許容されるがY軸方向への移動は規制されているので、ZX面内を移動するのみである。第一加振部4における各アクチュエータ42,43の変位から車軸31のZX面上におけるZX座標を求め、第二加振部5における各アクチュエータ52,53の変位から車軸32のZX面上におけるZX座標を求めれば、車軸31,32間の直線距離LLを求められる。このようにして、距離演算部62は、振動試験中は、常に加振点間距離、つまり、車軸31,32間の直線距離LLを各アクチュエータ42,43,52,53の変位に基づいて求める。 The distance calculation unit 62 obtains a linear distance LL between the axles 31 and 32 from the displacements of the actuators 42, 43, 52, and 53 detected by the stroke sensors S1, S2, S3, and S4. The axle 31 is allowed to be displaced in the Z-axis direction and the X-axis direction by vibrations from the first vertical-axis actuator 42 and the first horizontal-axis actuator 43, but in the Y-axis direction, which is a direction penetrating the paper surface in FIG. Since movement is restricted, it only moves in the ZX plane. Also, the axle 32 is allowed to move in the Z-axis direction and the X-axis direction by the excitation by the second vertical-axis actuator 52 and the second horizontal-axis actuator 53, but the movement in the Y-axis direction is restricted. Therefore, it only moves in the ZX plane. The ZX coordinate on the ZX plane of the axle 31 is obtained from the displacement of the actuators 42 and 43 in the first excitation unit 4, and the ZX on the ZX plane of the axle 32 from the displacement of the actuators 52 and 53 in the second excitation unit 5. If the coordinates are obtained, the linear distance LL between the axles 31 and 32 can be obtained. In this way, the distance calculation unit 62 always obtains the distance between the excitation points, that is, the linear distance LL between the axles 31 and 32, based on the displacement of each actuator 42, 43, 52, 53 during the vibration test. .
 ここで、第一加振部4と第二加振部5からの荷重を受けると、二輪車Bの車軸31,32間の直線距離LLは、第一加振部4と第二加振部5からの荷重を受けていない場合の両者の距離(無負荷距離)から変化する。車軸31,32間の直線距離LLが無負荷距離LUより長くなると、二輪車Bには車軸31,32を離間させる引張荷重が作用し、前記直線距離LLが無負荷距離LUよりも短くなると、二輪車Bには車軸31,32を引き寄せる圧縮荷重が作用する。この引張荷重と圧縮荷重によって、二輪車Bを構成する部品に作用する応力が各部品の許容応力を超える状態となると、部品が塑性変形したり、場合によって破断したりする。二輪車Bの各構成部品の設計によって、部品が損傷しない範囲内での最大引用荷重と最大圧縮荷重は決定され、引用荷重と圧縮荷重は、加振点間距離によって一義的に求められる。つまり、二輪車Bで許容できる最大引張荷重が作用する車軸31,32間の最大長さLmaxと、二輪車Bで許容できる最大圧縮荷重が作用する車軸31,32間の距離の最小長さLminは、二輪車Bの構成部品の設計仕様から予め求められる。 Here, when receiving a load from the first vibration unit 4 and the second vibration unit 5, the linear distance LL between the axles 31 and 32 of the two-wheeled vehicle B is set to the first vibration unit 4 and the second vibration unit 5. It changes from the distance (no load distance) of both when not receiving the load from. When the linear distance LL between the axles 31 and 32 becomes longer than the no-load distance LU, the two-wheeled vehicle B is subjected to a tensile load that separates the axles 31 and 32, and when the linear distance LL becomes shorter than the no-load distance LU, A compressive load that pulls the axles 31 and 32 acts on B. When the stress acting on the components constituting the motorcycle B exceeds the allowable stress of each component due to the tensile load and the compressive load, the component is plastically deformed or broken in some cases. Depending on the design of each component of the motorcycle B, the maximum quoted load and the maximum compressive load within a range where the parts are not damaged are determined, and the quoted load and the compressive load are uniquely determined by the distance between the excitation points. That is, the maximum length Lmax between the axles 31 and 32 on which the maximum tensile load allowable in the two-wheeled vehicle B acts and the minimum length Lmin of the distance between the axles 31 and 32 on which the maximum compressive load allowable in the two-wheeled vehicle B acts are It is obtained in advance from the design specifications of the components of the motorcycle B.
 よって、振動試験中に車軸31,32間の直線距離LLを監視して、直線距離LLが最大長さLmax以上か最小長さLmin以下になる場合に、各アクチュエータ42,43,52,53をアンロード状態とすれば、二輪車Bに過剰な荷重を作用させずに済む。つまり、二輪車Bが塑性変形等の損傷を受ける前に、各アクチュエータ42,43,52,53が外力でフリーに伸縮できる状態として、二輪車Bにそれ以上の許容最大引張荷重或いは許容最大圧縮荷重を超える荷重を作用させないようにすればよい。 Therefore, when the linear distance LL between the axles 31 and 32 is monitored during the vibration test and the linear distance LL is greater than or equal to the maximum length Lmax or less than the minimum length Lmin, the actuators 42, 43, 52, and 53 are In the unloaded state, it is not necessary to apply an excessive load to the motorcycle B. That is, before the motorcycle B is damaged by plastic deformation or the like, the actuators 42, 43, 52, 53 can be freely expanded and contracted by an external force, and the motorcycle B is given a maximum allowable tensile load or a maximum allowable compressive load. What is necessary is just not to make the load which exceeds it act.
 そのため、コントローラCは、停止判断部63を備えている。停止判断部63は、距離演算部62が求めた直線距離LLから無負荷距離LUを差し引いた差εが予め設定される閾値α以上か或いは閾値β以下となると、制御部61へ停止信号を出力する。制御部61は、停止信号を受け取ると、各アクチュエータ42,43,52,53への電流供給をオフして外力でフリーに伸縮できるアンロード状態とする。 Therefore, the controller C includes a stop determination unit 63. The stop determination unit 63 outputs a stop signal to the control unit 61 when the difference ε obtained by subtracting the no-load distance LU from the linear distance LL obtained by the distance calculation unit 62 is equal to or greater than a preset threshold α. To do. When receiving the stop signal, the control unit 61 turns off the current supply to the actuators 42, 43, 52, and 53 so that the controller 61 is in an unloaded state that can be freely expanded and contracted by an external force.
 閾値αは、許容最大引張荷重が作用する車軸31,32間距離Lmaxから無負荷距離LUを差し引きした値から安全マージンを差し引きした値であり、プラスの値を持つ閾値である。また、閾値βは、許容最大圧縮荷重が作用する車軸31,32間距離Lminから無負荷距離LUを差し引きした値に安全マージンを加算した値であり、マイナスの値を持つ閾値である。閾値αと閾値βの設定で安全マージンを考慮すると、停止判断部63の停止信号で制御部61が各アクチュエータ42,43,52,53をアンロード状態とするまでの間に許容荷重以上の荷重が二輪車Bに負荷されるのを確実に防止できる。つまり、直線距離LLが閾値α未満であり閾値βを超える範囲内であれば、試験体である二輪車Bに損傷を与えずに振動試験を実行でき、閾値α未満であり閾値βを超える範囲は正常範囲としている。対して、直線距離LLが前記の正常範囲を逸脱すると、つまり、閾値α以上或いは閾値β以下となると、コントローラCは、各アクチュエータ42,43,52,53をアンロード状態として、試験体である二輪車Bの損傷を防止するのである。なお、閾値αと閾値βの設定に際して、安全マージンを考慮しない場合には、閾値α=Lmax-LUとなり、閾値β=Lmin―LUとなる。 The threshold value α is a value obtained by subtracting the safety margin from the value obtained by subtracting the no-load distance LU from the distance Lmax between the axles 31 and 32 on which the allowable maximum tensile load acts, and has a positive value. The threshold value β is a value obtained by adding a safety margin to a value obtained by subtracting the no-load distance LU from the distance Lmin between the axles 31 and 32 on which the allowable maximum compressive load acts, and is a threshold value having a negative value. When the safety margin is taken into account in setting the threshold value α and the threshold value β, a load that exceeds the allowable load until the control unit 61 unloads the actuators 42, 43, 52, and 53 by the stop signal of the stop determination unit 63. Can be reliably prevented from being applied to the motorcycle B. In other words, if the straight line distance LL is less than the threshold value α and within the range exceeding the threshold value β, the vibration test can be performed without damaging the two-wheeled vehicle B as the specimen, and the range that is less than the threshold value α and exceeds the threshold value β is The normal range. On the other hand, when the straight line distance LL deviates from the normal range, that is, when the threshold value α is equal to or greater than the threshold value α or equal to or less than the threshold value β, the controller C sets the actuators 42, 43, 52, and 53 to be unloaded. The motorcycle B is prevented from being damaged. Note that when the safety margin is not considered in setting the threshold α and the threshold β, the threshold α = Lmax−LU and the threshold β = Lmin−LU.
 具体的には、図6のフローチャートに示すように、コントローラCには、許容最大引張荷重が作用する車軸31,32間距離から無負荷距離を差し引きした値から安全マージンを差し引きした値をプラス側の閾値αとして入力する(ステップF1)。また、コントローラCに、許容最大圧縮荷重が作用する車軸31,32間距離から無負荷距離を差し引きした値に安全マージンを加算した値をマイナス側の閾値βとして入力しておく(ステップF1)。 Specifically, as shown in the flowchart of FIG. 6, the controller C adds the value obtained by subtracting the safety margin from the value obtained by subtracting the no-load distance from the distance between the axles 31 and 32 on which the allowable maximum tensile load acts. (Step F1). Further, a value obtained by adding the safety margin to the value obtained by subtracting the no-load distance from the distance between the axles 31 and 32 on which the allowable maximum compressive load acts is input to the controller C as the minus threshold value β (step F1).
 コントローラCは、二輪車Bの振動試験を行うため加振中立位置へ上昇させる。加振中立位置は、二輪車Bの加振点である車軸31,32に振動を与えるうえで、これら加振点を試験中で加える振動ストロークの中心に配置させる位置である。 Controller C raises to the vibration neutral position to perform a vibration test of the motorcycle B. The vibration neutral position is a position where the vibration points are arranged at the center of the vibration stroke to be applied during the test when vibration is applied to the axles 31 and 32 that are the vibration points of the motorcycle B.
 振動試験を行うために、加振中立位置に二輪車Bを配置した状態では、二輪車Bには鉛直方向にも水平方向にも荷重を作用させないようになっており、この時の車軸31,32間の距離が無負荷距離である。そこで、コントローラCは、この時の車軸31,32のZX座標から無負荷距離LUを認識する(ステップF2)。 In order to perform the vibration test, in a state where the two-wheeled vehicle B is arranged at the vibration neutral position, no load is applied to the two-wheeled vehicle B in the vertical direction or the horizontal direction. Is a no-load distance. Therefore, the controller C recognizes the no-load distance LU from the ZX coordinates of the axles 31 and 32 at this time (step F2).
 そして、コントローラCは、振動試験を開始し、試験中は常に、車軸31,32間の直線距離LLを求める(ステップF3)。つづいて、コントローラCは、求めた車軸31,32間の直線距離LLと無負荷距離LUとの差εを求める(ステップF4)。また、コントローラCは、差εの値が、閾値α以上となるか閾値β以下となるかを判断する(ステップF5)。そして、ステップF5の判断で、差εの値が、閾値α以上か、または、閾値β以下である場合、ステップF6へ移行し、そうでない場合、ステップF7へ移行する。ステップF6では、コントローラCは、二輪車Bの損傷の可能性があるので、各アクチュエータ42,43,52,53をアンロード状態として二輪車Bへの各アクチュエータ42,43,52,53からの荷重を取り除く。他方、ステップF7では、コントローラCは、二輪車Bの損傷の可能性がないので、試験を続行するべく各アクチュエータ42,43,52,53を制御し続け、二輪車Bを加振して振動を与える。 Then, the controller C starts a vibration test, and always obtains a linear distance LL between the axles 31 and 32 during the test (step F3). Subsequently, the controller C obtains a difference ε between the obtained linear distance LL between the axles 31 and 32 and the no-load distance LU (step F4). Further, the controller C determines whether the value of the difference ε is greater than or equal to the threshold value α or less than the threshold value β (step F5). If it is determined in step F5 that the difference ε is greater than or equal to the threshold value α or less than or equal to the threshold value β, the process proceeds to step F6. Otherwise, the process proceeds to step F7. In Step F6, since there is a possibility that the motorcycle B is damaged, the controller C sets the actuators 42, 43, 52, 53 in an unloaded state and applies the load from the actuators 42, 43, 52, 53 to the motorcycle B. remove. On the other hand, in step F7, since there is no possibility of damage to the motorcycle B, the controller C continues to control the actuators 42, 43, 52, 53 to continue the test, and the motorcycle B is vibrated to give vibration. .
 このように、振動試験機Tにあっては、試験体の前後に鉛直方向および水平方向の四軸で振動入力が可能であるから、試験体を鉛直方向および水平方向の双方へ任意に加振できる。よって、振動試験機Tによれば、試験体に実際に入力される可能性がある振動を正確に模擬して加振でき、より実効性の高い振動試験や疲労試験を実行できる。また、車体フレーム34の剛性は高いが強度は弱いという特徴を持つ自転車を試験体としても、四軸での振動入力が可能であるので、実走行時の振動を正確に再現して試験体に振動を与えられる。 As described above, in the vibration testing machine T, vibration input can be performed with four axes in the vertical direction and the horizontal direction before and after the test body. Therefore, the test body can be arbitrarily excited in both the vertical direction and the horizontal direction. it can. Therefore, according to the vibration testing machine T, it is possible to accurately simulate and vibrate vibrations that may be actually input to the test body, and it is possible to execute vibration tests and fatigue tests with higher effectiveness. In addition, even when a bicycle having a characteristic that the body frame 34 has high rigidity but low strength is used as a test body, it is possible to input vibrations in four axes. Can be given vibration.
 また、振動試験機Tでは、加振点間の距離が予め設定される正常範囲を逸脱すると、各アクチュエータ42,43,52,53をオフして加振機1をアンロード状態とするので、試験体が損傷を受けるような荷重が付加される事態を招かない。従来の振動試験機では、後輪側車軸に水平方向へ加振するアクチュエータの代わりに反力治具と後輪側車軸をリンク棒で連結して水平方向の動きを拘束しつつ、三軸で加振し、二輪車に予期せぬ水平方向の圧縮或いは引張荷重を作用させないようにしていた。これに対して、本振動試験機Tでは、試験体を4軸で加振しても、試験体に許容荷重を超える荷重が作用しないので、試験体を傷めず安全に振動試験を実行できる。 Further, in the vibration testing machine T, when the distance between the excitation points deviates from the preset normal range, the actuators 42, 43, 52, 53 are turned off and the vibration exciter 1 is unloaded. It does not cause a situation where a load that damages the specimen is applied. In a conventional vibration testing machine, instead of an actuator that vibrates horizontally on the rear wheel side axle, the reaction force jig and the rear wheel side axle are connected by a link rod to restrain the horizontal movement, The motorcycle was vibrated so that an unexpected horizontal compression or tensile load was not applied to the motorcycle. On the other hand, in this vibration testing machine T, even if the specimen is vibrated with four axes, a load exceeding the allowable load does not act on the specimen, so that the vibration test can be executed safely without damaging the specimen.
 さらに、本例の振動試験機Tでは、加振機1は、架台3と、架台3に取り付けられて加振点のうち一方を加振する第一加振部4と他方を加振する第二加振部5とを有し、第二加振部5が架台3に対して試験体の前後方向へ移動可能に取り付けられる。よって、試験体の全長によらず試験体を振動試験機Tに適正に取り付けでき振動試験を実行できる。なお、第二加振部5ではなく、第一加振部4を架台3に試験体の前後方向へ移動可能に取り付けてもよく、第一加振部4と第二加振部5の双方を試験体の前後方向へ移動可能に取り付けてもよい。 Further, in the vibration testing machine T of the present example, the vibrator 1 includes a gantry 3, a first oscillating unit 4 attached to the gantry 3 and oscillating one of the oscillating points, and a second oscillating the other. The second vibration unit 5 is attached to the frame 3 so as to be movable in the front-rear direction of the test body. Therefore, the test body can be properly attached to the vibration tester T regardless of the total length of the test body, and the vibration test can be executed. In addition, you may attach not the 2nd vibration part 5 but the 1st vibration part 4 to the mount frame 3 so that a movement to the front-back direction of a test body is possible, both the 1st vibration part 4 and the 2nd vibration part 5 May be attached so as to be movable in the front-rear direction of the specimen.
 また、本例の振動試験機Tでは、第一加振部4における第一鉛直軸アクチュエータ42および第一水平軸アクチュエータ43と、第二加振部5における第二鉛直軸アクチュエータ52と第二水平軸アクチュエータ53が鉛直方向に立てられて設けられている。全アクチュエータ42,43,52,53がこのように鉛直方向に立てられているので、振動試験機Tの図1中左右方向長さを短くでき、小型化できる。 Further, in the vibration testing machine T of this example, the first vertical axis actuator 42 and the first horizontal axis actuator 43 in the first excitation unit 4, the second vertical axis actuator 52 and the second horizontal axis in the second excitation unit 5 are used. A shaft actuator 53 is provided upright in the vertical direction. Since all the actuators 42, 43, 52, 53 are set up in the vertical direction in this way, the length of the vibration tester T in the left-right direction in FIG.
 以上、本発明の好ましい実施の形態を詳細に説明したが、特許請求の範囲から逸脱しない限り、改造、変形及び変更が可能である。 The preferred embodiments of the present invention have been described above in detail, but modifications, changes and modifications can be made without departing from the scope of the claims.

Claims (7)

  1.  荷重付加装置であって、
     鞍乗車両のサドルポストに荷重を付加する錘と、
     前記サドルポストと前記錘との間に設けた緩衝部材と
     を備えたことを特徴とする荷重付加装置。
    A load applying device,
    A weight for applying a load to the saddle post of the saddle riding vehicle;
    A load applying device comprising: a cushioning member provided between the saddle post and the weight.
  2.  請求項1に記載の荷重付加装置であって、
     前記緩衝部材は、減衰特性の異なる弾性部材を有する
     ことを特徴とする荷重付加装置。
    The load applying device according to claim 1,
    The shock-absorbing member includes elastic members having different damping characteristics.
  3.  請求項2に記載の荷重付加装置であって、
     前記弾性部材は、合成樹脂である
     ことを特徴とする荷重付加装置。
    The load applying device according to claim 2,
    The load applying device, wherein the elastic member is a synthetic resin.
  4.  請求項2に記載の荷重付加装置であって、
     前記緩衝部材は、複数の弾性部材が積層されて構成される
     ことを特徴とする荷重付加装置。
    The load applying device according to claim 2,
    The load applying device, wherein the buffer member is configured by laminating a plurality of elastic members.
  5.  請求項1に記載の荷重付加装置であって、
     前記サドルポストに前記鞍乗車両の前後方向へ回転可能に装着される取付台と、
     前記取付台に前後方向に移動可能に装着される支持台と、
     前記支持台上に積層される前記緩衝部材と、
     前記緩衝部材に積層される前記錘と
     を備えたことを特徴とする荷重付加装置。
    The load applying device according to claim 1,
    A mounting base mounted on the saddle post so as to be rotatable in the front-rear direction of the saddle riding vehicle;
    A support base mounted on the mounting base to be movable in the front-rear direction;
    The buffer member laminated on the support base;
    A load applying device comprising: the weight laminated on the buffer member.
  6.  請求項1に記載の荷重付加装置であって、
     前記錘の鉛直方向の移動を許容するリニアガイド
     を備えたことを特徴とする荷重付加装置。
    The load applying device according to claim 1,
    A load applying device comprising a linear guide that allows the vertical movement of the weight.
  7.  請求項5に記載の荷重付加装置であって、
     前記取付台に対して前記錘の前後方向の移動を許容するリニアガイドを
     を備えたことを特徴とする荷重付加装置。
    The load applying device according to claim 5,
    A load applying device comprising: a linear guide that allows the weight to move in the front-rear direction with respect to the mounting base.
PCT/JP2016/073894 2016-08-16 2016-08-16 Load application device WO2018033958A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/073894 WO2018033958A1 (en) 2016-08-16 2016-08-16 Load application device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/073894 WO2018033958A1 (en) 2016-08-16 2016-08-16 Load application device

Publications (1)

Publication Number Publication Date
WO2018033958A1 true WO2018033958A1 (en) 2018-02-22

Family

ID=61197436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073894 WO2018033958A1 (en) 2016-08-16 2016-08-16 Load application device

Country Status (1)

Country Link
WO (1) WO2018033958A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4424721Y1 (en) * 1964-12-19 1969-10-18
JPS544721Y2 (en) * 1974-11-18 1979-02-28
JPH0587693A (en) * 1991-06-14 1993-04-06 Honda Motor Co Ltd Applying construction of passenger load in load simulation apparatus for motorcycle
JPH0726663B2 (en) * 1989-11-14 1995-03-29 株式会社ブリヂストン Anti-vibration device for slight vibration
JP2003014047A (en) * 2001-06-27 2003-01-15 Mitsubishi Electric Corp Vibration-isolation device for compressor and refrigerating device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4424721Y1 (en) * 1964-12-19 1969-10-18
JPS544721Y2 (en) * 1974-11-18 1979-02-28
JPH0726663B2 (en) * 1989-11-14 1995-03-29 株式会社ブリヂストン Anti-vibration device for slight vibration
JPH0587693A (en) * 1991-06-14 1993-04-06 Honda Motor Co Ltd Applying construction of passenger load in load simulation apparatus for motorcycle
JP2003014047A (en) * 2001-06-27 2003-01-15 Mitsubishi Electric Corp Vibration-isolation device for compressor and refrigerating device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIDEHIRO OBARA: "Bicycle 4-Axis Vibration Tester", KYB TECHNICAL REVIEW, October 2015 (2015-10-01), pages 60 - 63 *

Similar Documents

Publication Publication Date Title
JP6197253B2 (en) Vibration testing machine
KR950007524B1 (en) Motor vehicle vibrating system and method of controlling
JP4390075B2 (en) Shock compression test equipment
US20060237885A1 (en) Active seat suspension
JP5623304B2 (en) Vibration test equipment
JPH07119791A (en) Mass spring rigging and control method
CN108291606A (en) Device for reducing the torsional oscillation in power drive system
Kowal et al. Energy recovering in active vibration isolation system—results of experimental research
JP6546454B2 (en) Load application device
US6733294B2 (en) Motorcycle cornering simulator
JP2000272320A (en) Active suspension system for vehicle
WO2018033958A1 (en) Load application device
JP2006184158A (en) Testing apparatus and testing process
WO2017022654A1 (en) Vibration test machine
WO2018033959A1 (en) Vibration test machine
JP2008279794A (en) Electric power steering device
TWI612284B (en) Load application device
JP2008087590A (en) Vehicle body supporting system
TW201807676A (en) Vibration testing machine capable of applying arbitrary vibrations on a test body in both the vertical direction and the horizontal direction
JP7148336B2 (en) vibration tester
JP5702637B2 (en) Excitation apparatus and excitation method
IT202000012553A1 (en) VEHICLE FITTED WITH A SUSPENSION AND AN ELECTROMECHANICAL ROTARY DEVICE FOR CONTROLLING SUCH SUSPENSION, AND METHOD OF ADJUSTING THE MOTION OF A VEHICLE SUSPENSION
JP2012202724A (en) Test device and test method
JP5689624B2 (en) Actuators mounted on railway vehicles
CN114046951B (en) Spacecraft explosion impact response spectrum vertical excitation simulation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16913487

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16913487

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP