WO2018033056A1 - 高炉煤气回收利用系统 - Google Patents

高炉煤气回收利用系统 Download PDF

Info

Publication number
WO2018033056A1
WO2018033056A1 PCT/CN2017/097461 CN2017097461W WO2018033056A1 WO 2018033056 A1 WO2018033056 A1 WO 2018033056A1 CN 2017097461 W CN2017097461 W CN 2017097461W WO 2018033056 A1 WO2018033056 A1 WO 2018033056A1
Authority
WO
WIPO (PCT)
Prior art keywords
blast furnace
evaporator
furnace gas
cycle power
gas
Prior art date
Application number
PCT/CN2017/097461
Other languages
English (en)
French (fr)
Inventor
铂森⋅斯蒂芬
Original Assignee
阿特拉斯·科普柯(上海)工艺设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阿特拉斯·科普柯(上海)工艺设备有限公司 filed Critical 阿特拉斯·科普柯(上海)工艺设备有限公司
Publication of WO2018033056A1 publication Critical patent/WO2018033056A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/06Making pig-iron in the blast furnace using top gas in the blast furnace process
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to the field of blast furnace gas recovery; in particular, the present invention relates to a blast furnace gas recovery and utilization system.
  • Blast furnace gas is a by-product produced in the blast furnace ironmaking process.
  • the main component of the blast furnace contains about 20-30% of the combustible component, the calorific value is low, and the dust content is large. Since blast furnace gas is the largest exhaust gas in metallurgical waste gas, in addition to direct combustion of self-use gas used in metallurgical enterprises, many ways to recycle blast furnace gas have also been developed.
  • the Top Gas Pressure Recovery Turbine is a blast furnace that uses the predetermined gas pressure energy and gas sensible heat to introduce the gas into the expansion turbine to perform external work.
  • the flat is connected with the generator, and the blast furnace gas pressure energy and part of the heat energy are converted into mechanical energy by the turbine to be converted into electric energy, thereby forming a blast furnace gas top pressure recovery turbine power generation device.
  • the blast furnace gas recovered by the residual pressure can also enter the gas-fired combined cycle power generation for combustion and power generation, such as the use method of the blast furnace gas circulation comprehensive utilization device disclosed in the patent document CN102703628A, which adopts the blast furnace gas discharged from the top of the blast furnace through the original
  • the blast furnace gas pipeline is filtered from the lower part into the dry bag type pulse dust removal device; the high pressure net blast furnace gas pipeline enters the TRT to reduce the temperature and pressure, and is exported from the low pressure blast furnace gas pipeline; some blast furnace gas is introduced into the blast furnace gas pipeline through the blast furnace hot blast furnace into the blast furnace hot blast stove device The heating process is completed, and the remaining part enters the gas-fired combined cycle power generation device to recover the residual heat residual pressure.
  • the object of the present invention is to provide a blast furnace gas recycling system, which fully utilizes the temperature and pressure of the blast furnace gas to improve the recovery efficiency of the blast furnace gas.
  • the blast furnace gas recycling system of the present invention comprises a dry bag type dust removing device, an organic Rankine cycle power generating device, a multistage compressor device and a gas steam combined cycle power generating device, and the organic Rankine cycle power generating device
  • a dry bag type dust removing device for removing a working fluid inlet of the evaporator is in communication with a working fluid outlet of the expansion turbine, a working fluid outlet of the evaporator and the expansion turbine
  • the working medium inlet is connected by a pipeline, and the generator is connected to the output end of the expansion turbine;
  • the dry bag type dust removing device, the evaporator, the multi-stage compressor device and the gas-steam combined cycle power generation device are sequentially connected by pipeline connection.
  • the multi-stage compressor device includes at least two compressors, and an interstage heat exchanger is disposed between each two compressors.
  • the working medium inlet of the interstage heat exchanger is in communication with the working medium inlet of the evaporator, and the working medium outlet of the interstage heat exchanger is in communication with the working medium outlet of the evaporator.
  • the blast furnace gas recycling and utilization system of the present invention heats up by using an evaporator of an organic Rankine cycle power generation device, maintains the pressure thereof, and performs supercharging temperature increase by a multi-stage compressor device, thereby greatly improving the gas-steam combined cycle power generation device
  • the efficiency of the heat exchange of the evaporator is simultaneously generated by the organic Rankine cycle power generation device, which further improves the utilization rate of the blast furnace gas.
  • the entire system does not contain moisture, which improves the efficiency of the overall system.
  • the blast furnace gas recycling and utilization system of the invention fully utilizes the temperature and pressure of the blast furnace gas, and improves the recycling efficiency of the blast furnace gas.
  • FIG. 1 is a schematic illustration of a blast furnace gas recovery and utilization system of the present invention.
  • a blast furnace gas recycling system of the present invention comprises a dry bag type dust removing device 1, an organic Rankine cycle power generating device 2, a multistage compressor device 3, and a gas steam combined cycle power generating device 4.
  • the organic Rankine cycle power generation device 2 includes an evaporator 21, an expansion turbine 22, and a generator 23, and a working fluid inlet of the evaporator 21 communicates with a working fluid outlet of the expansion turbine 22 through a pipe.
  • the working fluid outlet of the evaporator 21 is in communication with the working fluid inlet of the expansion turbine 22, and the generator 23 is connected to the output end of the expansion turbine 22.
  • the dry bag type dust removing device 1, the evaporator 21, the multistage compressor device 3, and the gas steam combined cycle power generating device 4 are sequentially connected by a pipe.
  • the gas-steam combined cycle power generation device 4 includes a gas-fired combined cycle unit 41 and a second generator 42 driven by the gas-steam combined cycle unit 41.
  • the multi-stage compressor device 3 pressurizes the gas that meets the required parameters into the gas turbine unit in the gas-fired combined cycle unit 41 for combustion, performs full combustion and generates high-temperature flue gas, drives the gas turbine to rotate and generates electricity, and then the discharged high-temperature flue gas enters the follow-up
  • the steam recovery device generates steam and enters the steam turbine to drive the second generator 42 to generate electricity.
  • the blast furnace gas flue gas passing through the gas-steam combined cycle power generation device 4 is subjected to purification treatment (not shown) and discharged to the atmosphere.
  • the gas-steam combined cycle power generation device 4 is configured as a known technique and will not be described herein.
  • the blast furnace gas having high temperature and high pressure with impurities is filtered by the dry bag type dust removing device 1, and the impurities contained therein are removed to enter the evaporator 21 of the organic Rankine cycle power generating device 2, and the blast furnace gas passes through After the temperature of the evaporator 21 is lowered, the pressure is maintained.
  • the blast furnace gas in this state enters the multi-stage compressor unit 3 and is pressurized, and then enters the gas-steam combined cycle power generation unit 4 to generate electricity.
  • the blast furnace gas after dust removal is subjected to heat exchange through the evaporator 21 of the organic Rankine cycle power generation device 2, and the blast furnace gas pressure is constant during the process, and the temperature is designed according to the design requirements of the organic Rankine cycle, and the multistage compressor should be satisfied at the same time.
  • the organic working fluid exchanged by the evaporator 21 is changed from the initial low-temperature liquid working medium to the high-temperature high-pressure organic working gas, enters the expansion turbine 22 for work, drives the generator 23 to generate electricity, and passes through the expansion turbine.
  • the high temperature and high pressure organic working fluid of 22 is changed into a low temperature liquid organic working medium, and enters the evaporator 21 to perform the heat exchange process again.
  • the outlet of the multi-stage compressor device 3 satisfies the pressure requirement of entering the gas-steam combined cycle power generation device 4, and the blast furnace gas temperature is also improved, and the high-temperature, high-pressure blast furnace gas can further improve the gas-steam combined cycle power generation device. 4 efficiency.
  • the second generator 42 of the gas-fired combined cycle power generation device 4 can also provide a driving power source for the multi-stage compressor device 3, which can further improve energy conversion efficiency and simultaneously reduce equipment investment.
  • the generator 23 of the organic Rankine cycle power generation unit 2 can also provide a driving power source for the multi-stage compressor unit 3, or for other uses.
  • the multi-stage compressor device 3 includes at least two compressors 31, and an interstage heat exchanger 32 is disposed between each two compressors 31, and the interstage heat exchanger 32 cools the gas discharged from the compressor 31.
  • the gas pressurized by the upper stage enters the interstage heat exchanger 32 for cooling, and then enters the next stage compressor for pressurization, thereby greatly improving the efficiency of the next stage compressor.
  • the working medium inlet of the interstage heat exchanger 32 is in communication with the working medium inlet of the evaporator 21, and the working medium outlet of the interstage heat exchanger 32 is in communication with the working medium outlet of the evaporator 21, so that the stage
  • the inter-heat exchanger 32 can exchange heat with the organic refrigerant circulating in the organic Rankine cycle power generation device 2 together with the evaporator 21 to improve heat exchange efficiency.
  • the heat exchanged by the interstage heat exchanger 32 causes the organic working fluid circulating in the organic Rankine cycle power generation device 2 to undergo a phase change, and the low temperature and low pressure liquid organic working fluid phase changes into a high temperature and high pressure gaseous organic working medium, and organic
  • the evaporator 21 in the Rankine cycle power generation device 2 has been merged from a low temperature and low pressure liquid organic working medium into a high temperature and high pressure gaseous organic working medium to jointly drive the expansion turbine 22, and the generator 23 is driven by the expansion turbine 22 Power generation.
  • the high-temperature and high-pressure blast furnace gas is subjected to a heat exchange process by using the organic Rankine cycle power generation device 2, and the temperature is lowered by the heat exchange blast furnace gas, but the pressure is not lowered.
  • the blast furnace gas in this state is at a very high compression efficiency for the multi-stage compressor device 3, and the overall efficiency of the compressor is improved.
  • the interstage heat exchanger 32 cools the blast furnace gas that has been heated, and after improving the overall efficiency of the compressor, the final stage of the compressor does not have an aftercooler.
  • the blast furnace gas compressed at the final stage of the compressor is again changed to a high temperature state, and the pressure also satisfies the inlet pressure of the gas-fired combined cycle power generation device 4. Force requirements.
  • the increase in the inlet temperature can greatly improve the efficiency of the gas-fired combined cycle power generation device 4.

Abstract

一种高炉煤气回收利用系统,该系统包括干式袋式除尘装置(1)、有机朗肯循环发电装置(2)、多级压缩机装置(3)和燃气蒸汽联合循环发电装置(4),所述有机朗肯循环发电装置(3)包括蒸发器(21)、膨胀透平机(22)和发电机(23),所述蒸发器(21)的工质入口与所述膨胀透平机(22)的工质出口通过管道连通,所述蒸发器(21)的工质出口与所述膨胀透平机(22)的工质入口通过管道连通,所述发电机(23)连接所述膨胀透平机(22)的输出端;所述干式袋式除尘装置(1)、蒸发器(21)、多级压缩机装置(3)和燃气蒸汽联合循环发电装置(4)通过管道依次连接。该高炉煤气回收利用系统,充分利用了高炉煤气的温度和压力,提高了高炉煤气的回收利用效率。

Description

高炉煤气回收利用系统 技术领域
本发明涉及高炉煤气回收领域;具体地说,本发明涉及一种高炉煤气回收利用系统。
背景技术
高炉煤气为高炉炼铁过程中产生的副产品,其主要成分中可燃成分含量约占20~30%左右,热值较低,且含尘量较大。由于高炉煤气是冶金废气中排放量最大的废气,除了用作冶金企业的自用燃气直接燃烧之外,也发展出许多回收利用高炉煤气的途径。
在这些途径中比较常见的,高炉煤气余压回收透平发电装置(Top Gas Pressure Recovery Turbine,TRT)是利用高炉预定煤气压力能和气体显热,把煤气导入膨胀透平对外做功,并将透平与发电机连接,通过透平机将高炉煤气压力能和部分热能转换为机械能再转化为电能,构成高炉煤气顶压回收透平发电装置。经过余压回收的高炉煤气还可以进入燃气蒸汽联合循环发电进行燃烧发电,如专利文献CN102703628A公开的一种高炉煤气循环综合利用装置的使用方法,该方法将高炉炉顶排出的高炉煤气,经原始高炉煤气管道由下部进入干法袋式脉冲除尘装置过滤;经高压净高炉煤气管道进入TRT降温降压,由低压高炉煤气管道导出;部分高炉煤气经高炉热风炉导入高炉煤气管道进入高炉热风炉装置,完成加热工艺,剩余部分进入燃气蒸汽联合循环发电装置回收余热余压。
但采用上述方法进行干法除尘以后,气体中剩余的颗粒会在TRT中的透平叶片上沉积,该沉积会对TRT设备造成极大的潜在隐患,会造成设备运行不稳定,降低了系统稳定性。因此多数TRT降压发电设备均要求在其前端加入额外的湿式除尘设备以保证TRT设备能定期清除气体中的杂质颗粒在叶片上的沉积。但是,由于湿式除尘设备的存在,会同时降低高炉煤气的温度和压力,这也会造成燃气蒸汽联合发电装置效率降低,使得高炉煤气的回收效率降低。
发明内容
本发明的目的在于提供一种高炉煤气回收利用系统,充分利用高炉煤气的温度和压力,提高高炉煤气的回收效率。
为实现上述目的,本发明的高炉煤气回收利用系统,包括干式袋式除尘装置、有机朗肯循环发电装置、多级压缩机装置和燃气蒸汽联合循环发电装置,所述有机朗肯循环发电装置包括蒸发器、膨胀透平机和发电机,所述蒸发器的工质入口与所述膨胀透平机的工质出口通过管道连通,所述蒸发器的工质出口与所述膨胀透平机的工质入口通过管道连通,所述发电机连接所述膨胀透平机的输出端;所述干式袋式除尘装置、蒸发器、多级压缩机装置和燃气蒸汽联合循环发电装置通过管道依次连接。
优选地,所述多级压缩机装置包括至少两个压缩机,每两个压缩机之间设置有级间换热器。
优选地,所述级间换热器的工质入口与所述蒸发器的工质入口连通,所述级间换热器的工质出口与所述蒸发器的工质出口连通。
本发明的高炉煤气回收利用系统,通过使用有机朗肯循环发电装置的蒸发器进行换热,保持其压力,并通过多级压缩机装置进行增压升温,极大的提高燃气蒸汽联合循环发电装置的效率,同时将蒸发器进行换热的能量通过有机朗肯循环发电装置进行发电,进一步提高了高炉煤气回收利用率。而且整个系统不含水分,提高了整体系统的效率。本发明的高炉煤气回收利用系统,充分利用了高炉煤气的温度和压力,提高了高炉煤气的回收利用效率。
附图说明
图1是本发明的高炉煤气回收利用系统的示意图。
具体实施方式
参见图1,本发明的高炉煤气回收利用系统,包括干式袋式除尘装置1、有机朗肯循环(Organic Rankine Cycle)发电装置2、多级压缩机装置3和燃气蒸汽联合循环发电装置4。
所述有机朗肯循环发电装置2包括蒸发器21、膨胀透平机22和发电机23,所述蒸发器21的工质入口与所述膨胀透平机22的工质出口通过管道连通,所述蒸发器21的工质出口与所述膨胀透平机22的工质入口通过管道连通,所述发电机23连接所述膨胀透平机22的输出端。
所述干式袋式除尘装置1、蒸发器21、多级压缩机装置3和燃气蒸汽联合循环发电装置4通过管道依次连接。
所述燃气蒸汽联合循环发电装置4包括燃气蒸汽联合循环机组41和由所述燃气蒸汽联合循环机组41驱动的第二发电机42构成,经过 多级压缩机装置3增压达到要求参数的煤气进入燃气蒸汽联合循环机组41中的燃气轮机机组进行燃烧,进行充分燃烧并产生高温烟气,推动燃气轮机转动进而发电,而后排出的高温烟气进入后续蒸汽回收装置,产生蒸汽后进入蒸汽轮机,带动第二发电机42旋转发电。经过所述燃气蒸汽联合循环发电装置4的高炉煤气烟气经过净化处理(未示出),排放到大气中。所述燃气蒸汽联合循环发电装置4构成为已知技术,这里不再赘述。
采用本发明的高炉煤气回收利用系统,高温高压带杂质的高炉煤气经过干法袋式除尘装置1的过滤,去除所含的杂质后进入有机朗肯循环发电装置2的蒸发器21,高炉煤气经过蒸发器21的降温后,压力维持不变,此状态下的高炉煤气进入多级压缩机装置3进行增压后,进入燃气蒸汽联合循环发电装置4进行发电。除尘后的高炉煤气,经过有机朗肯循环发电装置2的蒸发器21,进行换热,过程中高炉煤气压力不变,温度根据有机朗肯循环的设计需要进行设计,同时应满足多级压缩机装置3入口温度的限制。经过蒸发器21进行换热的有机工质,由初始的低温液态工质变为高温高压的有机工质气体,进入膨胀透平机22进行做功,驱动发电机23进行发电,同时经过膨胀透平机22的高温高压有机工质重新变为低温液态有机工质,进入蒸发器21再次进行换热过程。
在多级压缩机装置3的出口满足进入所述燃气蒸汽联合循环发电装置4的压力要求,同时高炉煤气温度也得到了提升,高温、高压的高炉煤气可以进一步提高所述燃气蒸汽联合循环发电装置4的效率。燃气蒸汽联合循环发电装置4的第二发电机42也可以为多级压缩机装置3提供驱动电源,可进一步提高能源转换效率,并同时减少设备投 入。同样,有机朗肯循环发电装置2的发电机23也可以为多级压缩机装置3提供驱动电源,或另作他用。
所述多级压缩机装置3包括至少两个压缩机31,每两个压缩机31之间设置有级间换热器32,级间换热器32对压缩机31排出的煤气进行降温。经过上一级加压的煤气进入级间换热器32进行降温,然后再进入下一级压缩机进行增压,从而大大提高下一级压缩机效率。所述级间换热器32的工质入口与所述蒸发器21的工质入口连通,所述级间换热器32的工质出口与所述蒸发器21的工质出口连通,使得级间换热器32能够与蒸发器21一起为有机朗肯循环发电装置2中循环的有机工质换热,提高换热效率。所述级间换热器32交换的热能会使有机朗肯循环发电装置2中循环的有机工质进行相变,由低温低压液体有机工质相变为高温高压的气态有机工质,与有机朗肯循环发电装置2中的蒸发器21中已经由低温低压液态有机工质相变为高温高压气态有机工质进行汇合,共同驱动膨胀透平机22,发电机23由膨胀透平机22驱动进行发电。
本发明的高炉煤气回收利用系统,通过使用有机朗肯循环发电装置2,将高温高压的高炉煤气进行换热过程,经过换热的高炉煤气进行了降温,但是其压力没有降低。在此状态下的高炉煤气,对多级压缩机装置3而言是处在非常高的压缩效率上,提高了压缩机的整体效率。同时,由于压缩机在压缩过程中会对高炉煤气进行升温,级间换热器32对已经升温的高炉煤气进行降温,提高压缩机的整体效率后,压缩机末级不带后冷却器,经过最后压缩机末级压缩的高炉煤气重新变为高温状态,同时压力也满足了燃气蒸汽联合循环发电装置4的入口压 力要求。入口温度的提高,可以极大的提高燃气蒸汽联合循环发电装置4的效率。
以上具体实施方式仅为本发明的示例性实施方式,不能用于限定本发明,本发明的保护范围由权利要求书限定。本领域技术人员可以在本发明的实质和保护范围内,对本发明做出各种修改或等同替换,这些修改或等同替换也应视为落在本发明的保护范围内。

Claims (3)

  1. 一种高炉煤气回收利用系统,其特征在于,包括干式袋式除尘装置、有机朗肯循环发电装置、多级压缩机装置和燃气蒸汽联合循环发电装置,
    所述有机朗肯循环发电装置包括蒸发器、膨胀透平机和发电机,所述蒸发器的工质入口与所述膨胀透平机的工质出口通过管道连通,所述蒸发器的工质出口与所述膨胀透平机的工质入口通过管道连通,所述发电机连接所述膨胀透平机的输出端;
    所述干式袋式除尘装置、蒸发器、多级压缩机装置和燃气蒸汽联合循环发电装置通过管道依次连接。
  2. 如权利要求1所述的高炉煤气回收利用系统,其特征在于,所述多级压缩机装置包括至少两个压缩机,每两个压缩机之间设置有级间换热器。
  3. 如权利要求2所述的高炉煤气回收利用系统,其特征在于,所述级间换热器的工质入口与所述蒸发器的工质入口连通,所述级间换热器的工质出口与所述蒸发器的工质出口连通。
PCT/CN2017/097461 2016-08-19 2017-08-15 高炉煤气回收利用系统 WO2018033056A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610697669.X 2016-08-19
CN201610697669.XA CN106048118B (zh) 2016-08-19 2016-08-19 高炉煤气回收利用系统

Publications (1)

Publication Number Publication Date
WO2018033056A1 true WO2018033056A1 (zh) 2018-02-22

Family

ID=57194894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/097461 WO2018033056A1 (zh) 2016-08-19 2017-08-15 高炉煤气回收利用系统

Country Status (2)

Country Link
CN (1) CN106048118B (zh)
WO (1) WO2018033056A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108343482A (zh) * 2018-04-18 2018-07-31 北京华清微拓节能技术股份公司 双转子膨胀机串联有机朗肯循环膨胀机的余热发电装置
CN109653821A (zh) * 2018-12-31 2019-04-19 浙能资本控股有限公司 立式烧结余热驱动水蒸汽和有机朗肯循环串联系统
CN113864000A (zh) * 2021-09-22 2021-12-31 鑫磊压缩机股份有限公司 一种朗肯循环发电系统
CN116949240A (zh) * 2023-09-14 2023-10-27 北京瑞达宏信科技有限公司 转炉一次烟气全干法除尘、能源全回收及co零排放系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106048118B (zh) * 2016-08-19 2018-02-27 阿特拉斯·科普柯(上海)工艺设备有限公司 高炉煤气回收利用系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102304595A (zh) * 2011-09-23 2012-01-04 中冶南方工程技术有限公司 高炉煤气余压透平发电系统
CN102703628A (zh) * 2012-06-13 2012-10-03 北京首钢国际工程技术有限公司 一种高炉煤气循环综合利用装置的使用方法
CN103161607A (zh) * 2013-03-04 2013-06-19 西安交通大学 一种基于内燃机余热利用的联合发电系统
CN203362239U (zh) * 2013-07-10 2013-12-25 北京奥福能源股份有限公司 一种高炉煤气trt发电与蒸汽锅炉联合发电设备
US20150192065A1 (en) * 2012-06-28 2015-07-09 Linde Aktiengesellschaft Process and apparatus for generating electric energy
CN106048118A (zh) * 2016-08-19 2016-10-26 阿特拉斯·科普柯(上海)工艺设备有限公司 高炉煤气回收利用系统
CN205893294U (zh) * 2016-08-19 2017-01-18 阿特拉斯·科普柯(上海)工艺设备有限公司 高炉煤气回收利用系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201390757Y (zh) * 2009-01-07 2010-01-27 陕西博尔透平机械有限公司 高炉煤气余压及热能循环利用系统
CN101614139A (zh) * 2009-07-31 2009-12-30 王世英 多循环发电热力系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102304595A (zh) * 2011-09-23 2012-01-04 中冶南方工程技术有限公司 高炉煤气余压透平发电系统
CN102703628A (zh) * 2012-06-13 2012-10-03 北京首钢国际工程技术有限公司 一种高炉煤气循环综合利用装置的使用方法
US20150192065A1 (en) * 2012-06-28 2015-07-09 Linde Aktiengesellschaft Process and apparatus for generating electric energy
CN103161607A (zh) * 2013-03-04 2013-06-19 西安交通大学 一种基于内燃机余热利用的联合发电系统
CN203362239U (zh) * 2013-07-10 2013-12-25 北京奥福能源股份有限公司 一种高炉煤气trt发电与蒸汽锅炉联合发电设备
CN106048118A (zh) * 2016-08-19 2016-10-26 阿特拉斯·科普柯(上海)工艺设备有限公司 高炉煤气回收利用系统
CN205893294U (zh) * 2016-08-19 2017-01-18 阿特拉斯·科普柯(上海)工艺设备有限公司 高炉煤气回收利用系统

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108343482A (zh) * 2018-04-18 2018-07-31 北京华清微拓节能技术股份公司 双转子膨胀机串联有机朗肯循环膨胀机的余热发电装置
CN109653821A (zh) * 2018-12-31 2019-04-19 浙能资本控股有限公司 立式烧结余热驱动水蒸汽和有机朗肯循环串联系统
CN113864000A (zh) * 2021-09-22 2021-12-31 鑫磊压缩机股份有限公司 一种朗肯循环发电系统
CN113864000B (zh) * 2021-09-22 2023-09-26 鑫磊压缩机股份有限公司 一种朗肯循环发电系统
CN116949240A (zh) * 2023-09-14 2023-10-27 北京瑞达宏信科技有限公司 转炉一次烟气全干法除尘、能源全回收及co零排放系统
CN116949240B (zh) * 2023-09-14 2024-03-19 北京瑞达宏信科技有限公司 转炉一次烟气全干法除尘、能源全回收及co零排放系统

Also Published As

Publication number Publication date
CN106048118A (zh) 2016-10-26
CN106048118B (zh) 2018-02-27

Similar Documents

Publication Publication Date Title
WO2018033056A1 (zh) 高炉煤气回收利用系统
US9677432B2 (en) Hybrid power generation system and method using supercritical CO2 cycle
ES2794776T3 (es) Sistemas y métodos para la producción de energía que utilizan ciclos de CO2 anidados
CN101270689B (zh) 煤气化增压联合循环发电系统的能量转化和回收方法
WO2015096414A1 (zh) 一种高压再热燃气-蒸汽联合循环发电系统及发电方法
CN103206317B (zh) 一种内燃发电机组余热梯级回收利用系统
JP5555276B2 (ja) ランキンサイクルエンジンを備えるガスタービンエンジン装置
CN102226604A (zh) 一种利用低品位余热产生蒸汽的高温蒸汽热泵系统
CN107420931B (zh) 燃煤超临界二氧化碳发电烟气能与工质能分质分级利用方法和系统
CN111305920B (zh) 一种汽驱空气储能调峰系统及方法
CN108843418A (zh) 一种双压高效燃气超临界二氧化碳联合循环发电系统
CN108798808B (zh) 一种用于高温烟气余热回收的co2循环热电联产系统
CN101126348A (zh) 煤联合循环发电系统能量回收方法及装置
CN109356721A (zh) 集成太阳能煤气化的超临界二氧化碳零排放发电系统
CN105443244A (zh) 燃气-蒸汽联合循环发电机组两级煤气加压系统
CN109854321B (zh) 一种纯氧燃烧超临界二氧化碳循环发电系统及方法
CN105443243A (zh) 燃气蒸汽联合循环系统
CN205782806U (zh) 一种新型煤基超临界二氧化碳锅炉装置
CN208380648U (zh) 一种带双压超临界二氧化碳余热锅炉的联合循环发电系统
CN202141033U (zh) 发电效率提高1%的吸收式热泵乏汽回收汽轮机发电系统
CN205893294U (zh) 高炉煤气回收利用系统
CN214307058U (zh) 一种具有双工质的高效超临界二氧化碳锅炉
CN209838541U (zh) 一种煤气化超临界二氧化碳发电装置
CN106246406A (zh) 一种采用闭式布列顿循环的汽车尾气余热发电装置
CN205578051U (zh) 一种带发电功能的供暖锅炉系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17841028

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17841028

Country of ref document: EP

Kind code of ref document: A1