WO2018033031A1 - 定位方法及装置 - Google Patents

定位方法及装置 Download PDF

Info

Publication number
WO2018033031A1
WO2018033031A1 PCT/CN2017/097248 CN2017097248W WO2018033031A1 WO 2018033031 A1 WO2018033031 A1 WO 2018033031A1 CN 2017097248 W CN2017097248 W CN 2017097248W WO 2018033031 A1 WO2018033031 A1 WO 2018033031A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
distance
sta2
information
measurement
Prior art date
Application number
PCT/CN2017/097248
Other languages
English (en)
French (fr)
Inventor
王铠尧
刘永俊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17841004.9A priority Critical patent/EP3492942A4/en
Publication of WO2018033031A1 publication Critical patent/WO2018033031A1/zh
Priority to US16/277,257 priority patent/US10785743B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/003Locating users or terminals or network equipment for network management purposes, e.g. mobility management locating network equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/10Position of receiver fixed by co-ordinating a plurality of position lines defined by path-difference measurements, e.g. omega or decca systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/76Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted
    • G01S13/765Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted with exchange of information between interrogator and responder
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/14Determining absolute distances from a plurality of spaced points of known location
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/02Systems for determining distance or velocity not using reflection or reradiation using radio waves
    • G01S11/08Systems for determining distance or velocity not using reflection or reradiation using radio waves using synchronised clocks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/0045Transmission from base station to mobile station
    • G01S5/0063Transmission from base station to mobile station of measured values, i.e. measurement on base station and position calculation on mobile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • the present disclosure relates to the field of wireless communication technologies, and in particular, to a positioning method and apparatus.
  • wireless communication technologies can be applied not only to communication but also to positioning technologies.
  • wireless terminals are used to locate terminals such as mobile phones to provide users with neighboring businesses based on the positioning results. Or tourist attractions information; as people's requirements for quality of life continue to improve, the requirements for positioning accuracy are also higher and higher, to more easily meet the positioning needs of daily life.
  • the method for implementing positioning by using a wireless communication technology may be: using a distance measurement method to obtain a distance between a node to be located and an anchor node having at least three known positions, according to the position information of the known anchor node and the node The distance between the nodes to obtain the location information of the node to be located.
  • a positioning method comprising:
  • the node to be located sends a first request to the first node, where the first request includes device information of the N second nodes, where N is a positive integer greater than or equal to 1;
  • the measurement information includes at least location information of the N second nodes and a distance between the first node and the N second nodes;
  • the node to be located uses the measurement information obtained by the first node in the process of measuring the distance with other nodes, thereby realizing the positioning of the node to be located, and reducing the number of times the node to be positioned performs distance measurement with other nodes to obtain measurement information. It can simplify the positioning process and improve positioning efficiency.
  • the frame format of the first request includes a class domain, a behavior domain, a length domain, and N address domains;
  • the class field is used to indicate whether the first request is a public behavior frame signal
  • the behavior field is used to indicate a frame signal type
  • the length field is used to store the number N of device information of the N second nodes
  • Each address field is used to store device information of one of the second nodes.
  • the information included in the first request can be completely transmitted with as little bandwidth as possible, thereby improving The success rate of the request to send, thereby improving the positioning efficiency.
  • the frame format of the measurement information includes a class domain, a behavior domain, a length domain, and N distance domains, where each distance domain includes an address domain and a distance sub- Domain and allowable error value fields;
  • the class field is used to indicate whether the measurement information is a public action frame signal.
  • the behavior field is used to indicate a frame signal type
  • the length field is used to store the number N of device information of the N second nodes
  • the distance sub-domain included in each of the distance domains is used to indicate a distance between the first node and any one of the at least one second node, and each address field is used to store one
  • the device information of the second node is used to indicate a maximum allowable measurement error value of the distance.
  • the measurement information By transmitting the measurement information in a frame format including a class domain, a behavior domain, a length domain, and N distance domains, information included in the measurement information can be completely transmitted under the premise of occupying as little bandwidth as possible, thereby improving measurement information.
  • the success rate of sending which in turn improves positioning efficiency.
  • the method further includes:
  • the measurement information includes M1, M3, (X STA1 , Y STA1 ), (X AP1 , Y AP1 ), (X AP3 , Y AP3 ), and obtains an L1 distance value;
  • obtaining the location information of the node to be located according to the measurement information and the measurement time information that is detected during the distance measurement by the first node includes:
  • STA1 is the first node
  • STA2 is the to-be-located node
  • AP1 and AP3 are the second node
  • M1 is the distance between STA1 and AP1
  • M3 is the distance between STA1 and AP3
  • (X) STA1 , Y STA1 ), (X AP1 , Y AP1 ), (X AP3 , Y AP3 ) are the location information of STA1, AP1, and AP3, respectively
  • L1 is the distance between STA2 and STA1
  • L2 is between STA2 and AP1.
  • Distance is the distance between STA2 and AP3.
  • the positioning method is performed by using the above positioning method, and only the distance measurement method is used to measure the distance between the node to be located and the first node or any second node located in the listening range, according to the distance and acquired to the first node. Measurement information, and measurement time information detected during the interception process of the distance measurement between the first node and the two second nodes located within the listening range of the node to be located, to achieve the purpose of positioning, The number of distance measurements with other nodes is reduced, the positioning process is simplified, and the positioning efficiency is improved.
  • Measuring time information detected according to the measurement information and the distance measurement performed by the first node And acquiring location information of the node to be located including:
  • the measurement information includes M1, M2, M3, (X AP1 , Y AP1 ), (X AP2 , Y AP2 ), (X AP3 , Y AP3 ), according to the M1.
  • D (STA2-STA1, STA2-AP1) L1-L2
  • D (STA2-STA1, STA2-AP2) L1-L3
  • D (STA2-STA1, STA2-AP3) L1-L4
  • D (STA2-AP2) L4-L3;
  • STA1 is the first node
  • STA2 is the node itself
  • AP1, AP2, and AP3 are the second node
  • M1 is the distance between STA1 and AP1
  • M2 is the distance between STA1 and AP2, M3
  • the distance between STA1 and AP3, (X AP1 , Y AP1 ), (X AP2 , Y AP2 ), (X AP3 , Y AP3 ) are the location information of AP1, AP2, and AP3, respectively
  • L1 is between STA2 and STA1.
  • the distance between L2 is the distance between STA2 and AP1
  • L3 is the distance between STA2 and AP2
  • L4 is the distance between STA2 and AP3.
  • the positioning method can achieve the positioning without using the location information of the first node. Since the location information of the first node also needs to be acquired according to the positioning method, it is inevitable that there is an error, and if the first The location information of a node is used only by using the measurement time information detected during the distance measurement by the first node and the measurement information acquired from the first node, so that the location information of the first node can be avoided. There is a larger error caused by the error, that is, the positioning method can improve the positioning accuracy on the basis of reducing the number of distance measurement with other nodes, simplifying the positioning process, and improving the positioning efficiency.
  • the first node is configured to store measurement information of the at least one first node.
  • the designated second node By storing the measurement information of the at least one first node by the designated second node, it can be ensured that when the positioning is performed, the measurement information required for the positioning of the to-be-located node is directly obtained from the designated second node, and the positioning is performed.
  • the position of the second node is fixed, so that the positioning efficiency can be further improved and the positioning error can be reduced.
  • the frame format of the first request includes a class domain, a behavior domain, a length domain, and N address pair domains;
  • the class field is used to indicate whether the first request is a public action frame signal.
  • the behavior field is used to indicate a frame signal type
  • the length field is used to store the number N of device information of the N second nodes
  • Each address pair field is used to store device information of the first node and device information of any of the N second nodes.
  • the information included in the first request can be completely transmitted with as little bandwidth as possible, thereby being able to Improve the success rate of request sending, thereby improving positioning efficiency.
  • the frame format of the measurement information includes a class domain, a behavior domain, a length domain, and N distance domains, where each distance domain includes an address pair domain and a distance.
  • the class field is used to indicate whether the measurement information is a public action frame signal.
  • the behavior field is used to indicate a frame signal type
  • the length field is used to store the number N of device information of the N second nodes
  • the address pair field included in each distance domain is used to store device information of the first node and device information of any second node of the N second nodes, where the distance sub-domain is used And storing a distance between the first node and the second node, where the allowable error value field is used to indicate a maximum allowable measurement error value of the distance stored in the distance subfield.
  • the measurement information By transmitting the measurement information in a frame format including a class domain, a behavior domain, a length domain, and N distance domains, information included in the measurement information can be completely transmitted under the premise of occupying as little bandwidth as possible, thereby improving measurement information.
  • the success rate of sending which in turn improves positioning efficiency.
  • the method before the sending the first request to the first node, the method further includes:
  • the to-be-located node monitors a distance measurement process between the first node and any one of the N second nodes to obtain the measurement time information.
  • the detecting of the distance measurement process between the first node and the second node includes:
  • the signal transceiving time information includes time information that the second node sends the measurement signal, and the second node receives the response signal Time information
  • the measurement time information is stored, and the measurement time information includes information about the signal transmission and reception time, reception time information of the measurement signal, and reception time information of the response signal.
  • the interception process of the first node is performed to obtain the measurement time information, and the positioning time information can be used according to the measurement time information to avoid positioning by performing multiple distance measurement processes, thereby achieving the purpose of simplifying the positioning process.
  • the to-be-located node intercepts a distance measurement process between the first node and any one of the N second nodes.
  • the method further includes:
  • the second request is further used to query whether to agree to return the measurement information; correspondingly, before the first node sends the first request to the first node
  • the method further includes:
  • the step of sending the first request to the first node is performed, where the reply information is used to indicate that the measurement information is agreed to be returned.
  • the positioning success can be improved. a few Rate, avoiding the waiting time being too long due to the inability or disapproval of the first node to return measurement information, further improving the positioning efficiency.
  • a positioning device comprising:
  • a sending module configured to send a first request to the first node, where the first request includes device information of N second nodes, where N is a positive integer greater than or equal to 1;
  • a receiving module configured to receive measurement information returned by the first node, where the measurement information includes at least location information of the N second nodes and a distance between the first node and the N second nodes ;
  • a positioning module configured to acquire location information of the node to be located according to the measurement information and measurement time information that is detected during the distance measurement by the first node.
  • the node to be located uses the measurement information obtained by the first node in the process of measuring the distance with other nodes, thereby realizing the positioning of the node to be located, and reducing the number of times the node to be positioned performs distance measurement with other nodes to obtain measurement information. It can simplify the positioning process and improve positioning efficiency.
  • the frame format of the first request includes a class domain, a behavior domain, a length domain, and N address domains;
  • the class field is used to indicate whether the first request is a public behavior frame signal
  • the behavior field is used to indicate a frame signal type
  • the length field is used to store the number N of device information of the N second nodes
  • Each address field is used to store device information of one of the second nodes.
  • the information included in the first request can be completely transmitted with as little bandwidth as possible, thereby improving The success rate of the request to send, thereby improving the positioning efficiency.
  • the frame format of the measurement information includes a class domain, a behavior domain, a length domain, and N distance domains, where each distance domain includes an address domain and a distance sub- Domain and allowable error value fields;
  • the class field is used to indicate whether the measurement information is a common behavior frame signal
  • the behavior field is used to indicate a frame signal type
  • the length field is used to store the number N of device information of the N second nodes
  • the distance sub-domain included in each of the distance domains is used to indicate a distance between the first node and any one of the at least one second node, and each address field is used to store one
  • the device information of the second node is used to indicate a maximum allowable measurement error value of the distance.
  • the measurement information By transmitting the measurement information in a frame format including a class domain, a behavior domain, a length domain, and N distance domains, information included in the measurement information can be completely transmitted under the premise of occupying as little bandwidth as possible, thereby improving measurement information.
  • the success rate of sending which in turn improves positioning efficiency.
  • the device further includes:
  • the positioning module is used for:
  • STA1 is the first node
  • STA2 is the to-be-located node
  • AP1 and AP3 are the second node
  • M1 is the distance between STA1 and AP1
  • M3 is the distance between STA1 and AP3
  • (X) STA1 , Y STA1 ), (X AP1 , Y AP1 ), (X AP3 , Y AP3 ) are the location information of STA1, AP1, and AP3, respectively
  • L1 is the distance between STA2 and STA1
  • L2 is between STA2 and AP1.
  • Distance is the distance between STA2 and AP3.
  • the positioning method is performed by using the above positioning method, and only the distance measurement method is used to measure the distance between the node to be located and the first node or any second node located in the listening range, according to the distance and acquired to the first node. Measurement information, and measurement time information detected during the interception process of the distance measurement between the first node and the two second nodes located within the listening range of the node to be located, to achieve the purpose of positioning, The number of distance measurements with other nodes is reduced, the positioning process is simplified, and the positioning efficiency is improved.
  • the positioning module is configured to:
  • the measurement information includes M1, M2, M3, (X AP1 , Y AP1 ), (X AP2 , Y AP2 ), (X AP3 , Y AP3 ), according to the M1.
  • STA1 is the first node
  • STA2 is the node itself
  • AP1, AP2, and AP3 are the second node
  • M1 is the distance between STA1 and AP1
  • M2 is the distance between STA1 and AP2, M3
  • the distance between STA1 and AP3, (X AP1 , Y AP1 ), (X AP2 , Y AP2 ), (X AP3 , Y AP3 ) are the location information of AP1, AP2, and AP3, respectively
  • L1 is between STA2 and STA1.
  • the distance between L2 is the distance between STA2 and AP1
  • L3 is the distance between STA2 and AP2
  • L4 is the distance between STA2 and AP3.
  • the positioning method can achieve the positioning without using the location information of the first node. Since the location information of the first node also needs to be acquired according to the positioning method, it is inevitable that there is an error, and if the first The location information of a node is used only by using the measurement time information detected during the distance measurement by the first node and the measurement information acquired from the first node, so that the location information of the first node can be avoided. There is a larger error caused by the error, that is, the positioning method can improve the positioning accuracy on the basis of reducing the number of distance measurement with other nodes, simplifying the positioning process, and improving the positioning efficiency.
  • the first node is configured to store measurement information of the at least one first node.
  • the designated second node By storing the measurement information of the at least one first node by the designated second node, it can be ensured that when the positioning is performed, the measurement information required for the positioning of the to-be-located node is directly obtained from the designated second node, and the positioning is performed.
  • the position of the second node is fixed, so that the positioning efficiency can be further improved and the positioning error can be reduced.
  • the frame format of the first request includes a class domain, a row Domain, length field, and N address to domain;
  • the class field is used to indicate whether the first request is a public behavior frame signal
  • the behavior field is used to indicate a frame signal type
  • the length field is used to store the number N of device information of the N second nodes
  • Each address pair field is used to store device information of the first node and device information of any of the N second nodes.
  • the information included in the first request can be completely transmitted with as little bandwidth as possible, thereby being able to Improve the success rate of request sending, thereby improving positioning efficiency.
  • the frame format of the measurement information includes a class domain, a behavior domain, a length domain, and N distance domains, where each distance domain includes an address pair domain and a distance.
  • the class field is used to indicate whether the measurement information is a common behavior frame signal
  • the behavior field is used to indicate a frame signal type
  • the length field is used to store the number N of device information of the N second nodes
  • the address pair field included in each distance domain is used to store device information of the first node and device information of any second node of the N second nodes, where the distance sub-domain is used And storing a distance between the first node and the second node, where the allowable error value field is used to indicate a maximum allowable measurement error value of the distance stored in the distance subfield.
  • the measurement information By transmitting the measurement information in a frame format including a class domain, a behavior domain, a length domain, and N distance domains, information included in the measurement information can be completely transmitted under the premise of occupying as little bandwidth as possible, thereby improving measurement information.
  • the success rate of sending which in turn improves positioning efficiency.
  • the device further includes:
  • a listening module configured to listen to a distance measurement process between the first node and any one of the N second nodes, to obtain the measurement time information, where the listening module is configured Used for:
  • the signal transceiving time information includes time information that the second node sends the measurement signal, and the second node receives the response signal Time information
  • the measurement time information is stored, and the measurement time information includes information about the signal transmission and reception time, reception time information of the measurement signal, and reception time information of the response signal.
  • the interception process of the first node is performed to obtain the measurement time information, and the positioning time information can be used according to the measurement time information to avoid positioning by performing multiple distance measurement processes, thereby achieving the purpose of simplifying the positioning process.
  • the sending module is further configured to send a second request to the first node, where the second request is used to at least query a distance measurement time;
  • the receiving module is further configured to receive a distance measurement time returned by the first node
  • the listening module is further configured to execute, according to the distance measurement time, the first node and the N second sections The step of the distance measurement process between any of the second nodes to listen.
  • the second request is further used to query whether to agree to return the measurement information; correspondingly, the sending module is further configured to: when receiving the reply information, And performing the step of sending a first request to the first node, where the reply information is used to indicate that the measurement information is agreed to be returned.
  • the positioning success can be improved.
  • the probability is that the waiting time is too long because the first node cannot or does not agree to return the measurement information, thereby further improving the positioning efficiency.
  • FIG. 1 is a schematic diagram of a positioning system according to an embodiment of the present disclosure
  • FIG. 2A is a flowchart of a positioning method according to an embodiment of the present disclosure
  • 2B is a schematic diagram of a distance measurement method according to an embodiment of the present disclosure.
  • 2C is a schematic diagram of interception of distance measurement provided by an embodiment of the present disclosure.
  • 2D is a schematic diagram of a request frame format provided by an embodiment of the present disclosure.
  • 2E is a schematic diagram of a report frame format according to an embodiment of the present disclosure
  • 2F is a schematic diagram of a positioning implementation environment provided by an embodiment of the present disclosure.
  • 2G is a schematic diagram of another positioning implementation environment provided by an embodiment of the present disclosure.
  • 2H is a schematic diagram of another request frame format provided by an embodiment of the present disclosure.
  • 2I is a schematic diagram of another report frame format provided by an embodiment of the present disclosure.
  • FIG. 3 is a block diagram of a positioning device according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a node device 400 according to an embodiment of the present disclosure.
  • the positioning system includes a plurality of first nodes and a plurality of second nodes, where the second node refers to a node with a known location.
  • a node whose location is known means that the node location is stored in the own node, or is stored in another node that manages the location information of the plurality of second nodes, and may be the first A node provides a network access service, such as an access point (AP), etc.; the first node may be a node with unknown location, such as a mobile terminal such as a mobile phone, or a node with a known location, the first node The positioning may be performed according to location information of the plurality of second nodes or measurement information of other first nodes. It should be noted that any first node may be used as a cooperative node to assist the other first nodes, that is, the node to be located, after performing distance measurement or positioning completion with at least one second node.
  • AP access point
  • the second node uses the location information of the second node to implement the positioning of the to-be-located node, and the first node serves as an assisting node to assist the to-be-located node to achieve positioning, specifically
  • the assistance method is: the to-be-positioned node listens to the distance measurement of the first node and the at least one second node, such as a Fine Timing Measurement (FTM) process, to obtain information required for positioning, thereby implementing the to-be-determined The positioning of the bit node.
  • FTM Fine Timing Measurement
  • the second node that is known in any position may be used as a cooperative node to assist the positioning node to perform positioning, that is, the measurement information acquired by the first node after the distance measurement is reported to the node.
  • the collaboration node manages the measurement information of the at least one first node by the cooperation node, and acquires measurement information for positioning when the node to be located performs positioning.
  • the positioning method can be applied to any scene that needs to be located.
  • the terminal starts when the terminal detects the triggering operation of the query option by the user.
  • the positioning function obtains the current location information of the terminal by using the positioning method provided by the disclosure, so as to obtain the restaurant information around the user according to the location information.
  • FIG. 2A is a flowchart of a positioning method according to an embodiment of the present disclosure. Referring to FIG. 2A, the method includes:
  • the to-be-located node listens to a distance measurement process between the first node and any one of the N second nodes, and obtains measurement time information.
  • the node to be located is a node whose location is unknown, such as a mobile terminal such as a mobile phone, and the N second nodes are nodes located in the listening range of the node to be located, and N is a positive integer greater than or equal to 1;
  • the bit node listens to the distance measurement process between the first node and any of the second nodes, and the node to be located listens to the data transmission channel between the first node and any second node.
  • interaction information is received, and information such as the reception time of the interaction information is recorded.
  • the method for the to-be-located node to listen to the distance measurement process between the first node and the second node includes steps 201a to 201f:
  • the to-be-located node receives the measurement signal sent by the second node.
  • the measurement signal may be different according to the distance measurement method.
  • the positioning method provided by the present disclosure is specifically described by taking the distance measurement method (Fine Timing Measurement, FTM) as an example.
  • the FTM is a method of performing a distance measurement operation by an Initiating STA and a Responding STA to calculate the distance between the two by a time stamp.
  • the Initiating STA needs to measure between the Responding STA and the Responding STA.
  • the FTM request frame signal is sent to the Responding STA, and the FTM request frame signal is used to indicate to the Responding STA to use the FTM method to measure the distance between the Initiating STA and the Responding STA.
  • the Responding STA receives the frame signal.
  • the ACK frame signal is used to indicate that the Responding STA has received a request initiated by the Initiating STA, and the Responding STA sends an FTM_1 frame signal to the Initiating STA at time t1, where the FTM_1 frame signal is used to indicate that the Responding STA agrees to measure the Initiating STA.
  • the listening mode is enabled, so that the to-be-located node is always in the listening state, so as to obtain measurement time information during the distance measurement process between other nodes, as shown in FIG. 2C.
  • the node listens to be located the distance measurement process, at time t 1, the second node transmits a frame FTM signal to the first node, the node to be positioned at The FTM frame signal is received by the second node and the data transmission channel of the first node, and the FTM signal is a measurement signal.
  • the timing of turning on the listening mode may be started when the node to be located detects the opening operation of the positioning function, and for the application (Application, APP) having the positioning permission using the node to be located,
  • the startup mode may be started when the triggering operation of the search option in the APP is detected, or may be started when the startup operation of the APP is detected, and the APP may be a take-out APP, a taxi app, etc., and the interception mode of the embodiment of the present disclosure
  • the specific opening timing or opening mode is not limited.
  • the to-be-located node stores the receiving time information of the measurement signal and the device information of the second node.
  • the device information of the second node may be the media access control (MAC) address information of the second node, or may be other device information that can uniquely identify the second node, which is not limited by the embodiment of the disclosure.
  • the FTM frame signal carries the device information of the second node, and the to-be-located node stores the device information of the second node and the receiving time information of the FTM frame signal.
  • the to-be-located node receives the response signal sent by the first node.
  • the response signal is a signal used by the first node to respond to the measurement signal after receiving the measurement signal.
  • the first node sends an ACK frame signal at time t3 after receiving the FTM frame signal.
  • the ACK frame signal is the response signal, and the to-be-located node receives the ACK frame signal in the second node and the data transmission channel of the first node.
  • the to-be-located node stores the receiving time information of the response signal and the device information of the first node.
  • the to-be-located node After receiving the response signal, the to-be-located node stores the reception time t c2 of the response signal, and stores the device information of the first node and the reception time of the response signal.
  • the device information of the second node is the same as the device information of the first node, and the device information of the second node and the device information of the first node may be the same type of information, or may be different types of information. The embodiment does not specifically limit this.
  • the to-be-located node receives the signal sending and receiving time information sent by the second node to the to-be-located node, where the signal sending and receiving time information includes time information that the second node sends the measurement signal, and the second node receives the response signal. Time information.
  • the second node After receiving the response signal sent by the first node, the second node sends, to the to-be-located node, the sending time information of the second node to the measurement signal and the receiving time information of the second node to the response signal, such as 2C, the second node to the node to be located and the first node transmits the time information t 1 and t 4, which is to be located node to the second node receives the signal transmitting time information transmitting node to be located,
  • the signal transceiver time information includes time information of the second node transmitting the measurement signal and time information of the second node receiving the response signal.
  • the to-be-located node stores the measurement time information, where the measurement time information includes time information of sending and receiving the signal, The reception time information of the measurement signal and the reception time information of the response signal.
  • the to-be-located node stores the signal transmission and reception time information received in step 201e in association with the reception time information of the measurement signal and the reception time information of the response signal.
  • the first node When the receiving time of the to-be-positioned node is t c1 and the receiving time of the response signal is t c2 , the first node receives the time information that the second node sends at time t 5 is t 1 and t At 4 o'clock, the distance L between the first node and the second node is obtained according to the formula (1), so that the first node can send the distance to the node to be located during the positioning of the node to be located. L, in turn, enables the node to be located to calculate a distance difference between the distance between the first node and the node to be located and the distance between the second node and the node to be located according to the following formula (2).
  • step 201 is a listening process in which the to-be-located node performs distance measurement on the first node and any second node
  • the foregoing step 201 is an optional step in the positioning process of the to-be-located node, that is, only
  • the information obtained by the above-mentioned step 201 needs to be stored correspondingly, and the information can be obtained from the corresponding storage space when the node to be located performs positioning. That is, the foregoing step 201 may be performed when the node to be located needs to be located, or the node to be located may not be located yet, and the first node performs the process of performing the distance measurement, that is, the above step 201 is performed by the embodiment of the present disclosure.
  • the specific implementation time is not limited.
  • the interception process of the first node is performed to obtain the measurement time information, so that the to-be-positioned node can perform positioning according to the measurement time information, thereby avoiding the positioning by performing multiple distance measurement processes, thereby achieving the purpose of simplifying the positioning process. .
  • the first node may provide positioning assistance for other nodes to be located, that is, the first node may serve as a collaboration node.
  • the positioning node is located, the information to be located is provided to the node to be located, so that the node to be positioned can use the information to achieve positioning without performing the distance measurement operation multiple times.
  • the to-be-located node sends a first request to the first node, where the first request includes device information of the N second nodes, where the N is a positive integer greater than or equal to 1.
  • the to-be-located node After detecting the distance measurement process between the first node and the N second nodes, the to-be-located node sends a first request to the first node, where the first request is used to obtain measurement information from the first node, where The measurement information refers to distance information and the like obtained by the first node in the process of performing distance measurement with the N second nodes.
  • the first node sends the first request to obtain the measurement information, and the first node can return the corresponding measurement information according to the first request, so that the node to be located can perform positioning according to the measurement information.
  • the frame format of the first request includes a class domain, a behavior domain, a length domain, and N address domains; wherein the domain is used to indicate whether the first request is a public action (public action) a frame signal; the behavior field is used to indicate a frame signal type; the length field is used to store the number N of device information of the N second nodes, that is, the number of second nodes; each address field is used for storing Device information of one of the second nodes.
  • FIG. 2D is a schematic diagram of a request frame format according to an embodiment of the present disclosure.
  • a location corresponding to a Category is a class domain, and a value of the location is 4, indicating that the first request frame signal is a public action frame signal.
  • the position corresponding to the public action is the behavior field.
  • the value of the behavior field is the first preset value, it indicates that the frame signal is the FTM distance measurement request frame signal, and when the value of the behavior field is the second preset value,
  • the frame signal is an FTM distance measurement report frame signal, wherein the first preset value and the second preset value may be set to any two different values, for example, the first preset value may be 34, the second The preset value can be 35, of course, the first preset value
  • the second preset value may be set to other values, which is not limited by the embodiment of the present disclosure.
  • the location corresponding to the length is the length field
  • the location corresponding to the address is the address field
  • the value of the length field is used to indicate the number of device information included in the first request, that is, the address included in the frame signal of the first request.
  • the number of the domain, the address field is used to indicate the device information of the node corresponding to the measurement information requested by the first request.
  • the frame signal to be sent by the node to be located to the first node has a class field value of 4, a behavior field value of 34, and a length field value of 2, the values of the two address fields are respectively two second nodes.
  • the MAC address indicates that the frame signal is used to request measurement information between the first node and the two second nodes to the first node.
  • the information included in the first request can be completely transmitted with as little bandwidth as possible, thereby improving The success rate of the request to send, thereby improving the positioning efficiency.
  • the class domain, the behavior domain, and the length domain respectively occupy 1 byte, and each address domain occupies 6 bytes respectively; by setting each frame format in the frame format The number of bytes occupied by the domain can further reduce the bandwidth occupation of the frame signal while ensuring that the information can be completely transmitted.
  • the number of bytes occupied by the address field may be adjusted according to the type of the device information stored in the address field.
  • the number of bytes occupied by each domain is not specifically limited in the embodiment of the present disclosure.
  • the first node receives the first request.
  • the first node sends measurement information to the to-be-located node, where the measurement information includes at least location information of the N second nodes and a distance between the first node and the N second nodes.
  • the first node After receiving the first request sent by the to-be-located node, the first node acquires measurement information corresponding to the device information according to the device information in the request address domain, and returns the measurement information to the to-be-located node.
  • the measurement information may include location information of the first node and location information of the first node, in addition to the location information of the N second nodes and the distance between the first node and the N second nodes.
  • the obtaining method may be: acquiring the location information of the first node according to the distance between the at least three second nodes and the location information of the at least three second nodes; or acquiring by using other methods, such as the disclosure
  • the positioning method provided by the embodiment is not specifically limited in the embodiment of the present disclosure.
  • the process of obtaining the distance between the first node and the N second nodes may be implemented by using the FTM distance measurement method in step 201, or may be obtained by using other distance measurement methods, which is not specifically limited in the embodiment of the present disclosure.
  • the location information of the at least one second node may be acquired and stored in the first node during the distance measurement process between the first node and the at least one second node, or may be the first one sent by the node to be located. After the request is obtained by the first node to the second node, or may be acquired at other times, the specific time of obtaining the location information of the at least one second node is not limited in the embodiment of the present disclosure.
  • a frame format for transmitting a distance between the first node and at least one second node to a node to be located includes a class domain, a behavior domain, a length domain, and N distance domains, where each The distance domain includes an address domain, a distance subfield, and an allowable error value field; wherein the domain is used to indicate whether the measurement information is a common behavior frame signal; the behavior field is used to indicate a frame signal type; the length field is used for storing The number N of device information of the N second nodes; the distance sub-domain included in each distance domain is used to indicate distance information between the first node and any second node of the N second nodes Each address field is used to store device information of the second node, and the allowable error value field is used to indicate a maximum allowable measurement error value of the distance.
  • FIG. 2E is a schematic diagram of a report frame format provided by an embodiment of the present disclosure.
  • a bit corresponding to a Category is shown in FIG. 2E.
  • the location of the public action is the behavior domain.
  • the definition of the domain and the behavior domain is the same as the definition of the domain and behavior domain in the frame signal corresponding to the first request in step 204. .
  • the position corresponding to the Range Entry Count is the length field
  • the position corresponding to the Range Entry is the distance field, which is used to indicate the number of distances included in the measurement information, that is, the distance included in the frame signal corresponding to the measurement information.
  • the number of domains as shown in FIG. 2E, each of the distance domains includes Address, Range, and Max Range Error, and the location corresponding to the address is an address field, and is used to store device information corresponding to the device information included in the first request.
  • the position corresponding to the range is a distance sub-field, which is used to indicate the distance between the first node and the second node corresponding to the device information, and the position corresponding to the Max Range Error is an allowable error value field.
  • the frame signal sent by the first node to the node to be located has a class field value of 4, a behavior field value of 35, and a length field value of 2, the values of the two address fields are respectively two second nodes.
  • the MAC address indicates that the frame signal is used to return measurement information between the first node and the two second nodes to the to-be-located node.
  • the measurement information By transmitting the measurement information in a frame format including a class domain, a behavior domain, a length domain, and N distance domains, information included in the measurement information can be completely transmitted under the premise of occupying as little bandwidth as possible, thereby improving measurement information.
  • the success rate of sending which in turn improves positioning efficiency.
  • the class field, the behavior field, and the length field respectively occupy 1 byte, and each distance sub-domain occupies 9 bytes, of which 6 bytes are nodes. Device information, 2 nodes are distances, and 1 node is an allowable error value.
  • the number of bytes occupied by each field in the frame format it is possible to further reduce the bandwidth occupation of the frame signal while ensuring that the information can be completely transmitted.
  • the number of bytes occupied by each field in the report frame may be different from the corresponding number of bytes. The embodiment of the present disclosure does not specifically limit this.
  • the to-be-located node receives measurement information returned by the first node, where the measurement information includes at least location information of the N second nodes and a distance between the first node and the N second nodes.
  • the to-be-located node acquires location information of the to-be-located node according to the measurement information and measurement time information that is detected during the distance measurement performed by the first node.
  • the location of the node to be located is obtained according to the measurement information and the measurement time information detected during the distance measurement by the first node.
  • the method of information is also different, and can be divided into the following two cases:
  • N 2
  • the node to be located can only hear the first node and the two second nodes.
  • STA1 is the first node
  • STA2 is the to-be-located node
  • AP1, AP2, and AP3 are the second node
  • M1 is the distance between STA1 and AP1
  • M3 is The distance between STA1 and AP3
  • L1 is the distance between STA2 and STA1
  • L2 is the distance between STA2 and AP1
  • L3 is the distance between STA2 and AP3.
  • STA1 Obtaining the distance measurement process between the AP3 and the AP3 (ie, the AP2 is located outside the listening range of the STA2), according to the measurement information and the measurement time information detected during the distance measurement by the first node.
  • the method for the location information of the node to be located may be:
  • the measurement information includes at least M1, M3, (X STA1 , Y STA1 ), (X AP1 , Y AP1 ), (X AP3 , Y AP3 ), the L1 distance is obtained. Values; (X STA1 , Y STA1 ), (X AP1 , Y AP1 ), (X AP3 , Y AP3 ) are location information of STA1, AP1, and AP3, respectively.
  • the method for obtaining the distance difference in the step 201 to the step 203 is the same as the method for obtaining the distance difference in the step 203, and is not described here.
  • the distance measurement method is used to measure the distance between the node to be located and any second node located in the listening range. Obtaining according to the distance and the measurement information acquired to the first node, and the interception process of measuring the distance between the first node and two second nodes located within the listening range of the node to be located The measurement time information obtained achieves the purpose of positioning the node to be located, reduces the number of distance measurement between the node to be located and other nodes, simplifies the positioning process, and improves the positioning efficiency.
  • N 3
  • the node to be located can detect the first node and at least three second nodes.
  • STA1 is the first node
  • STA2 is the to-be-located node
  • AP1, AP2, and AP3 are the second node
  • M1 is the distance between STA1 and AP1
  • M2 is The distance between STA1 and AP2
  • M3 is the distance between STA1 and AP3
  • L1 is the distance between STA2 and STA1
  • L2 is the distance between STA2 and AP1
  • L3 is the distance between STA2 and AP2
  • L4 is the distance between STA2 and AP2.
  • the method for obtaining the location information of the node to be located may be:
  • the positioning method can realize the positioning of the node to be located without using the location information of the first node. Since the location information of the first node also needs to be acquired according to the positioning method, it is inevitable that there is an error. And if the location information of the first node is not used, only the measurement time information that is detected by the to-be-located node during the distance measurement by the first node, and the measurement information acquired from the first node are used. Locating the node to be located can avoid a larger error caused by using the position information of the first node, that is, the distance between the node to be located and other nodes can be reduced by the above positioning method. On the basis of the number of measurements, simplifying the positioning process, and improving the positioning efficiency, the positioning accuracy is improved.
  • the first node is configured to store measurement information of the at least one first node.
  • the first node may be a node with a known location, such as The AP node may also be a node with an unknown location, which is not specifically limited in this embodiment of the present disclosure.
  • the first node is configured to store the measurement information of the at least one first node, and when receiving the first request sent by the node to be located, return the measurement information required by the node to be located to the to-be-located node; that is,
  • the positioning method corresponding to the above two cases may be replaced by the following method.
  • STA1 performs distance measurement with AP1, AP2, and AP3. After the STA1 is located, STA1 obtains the distance between STA1 and AP1, AP2 and AP3, and the location information of STA1. The device information of the STA1, the AP1, the AP2, and the AP3 is reported to the first node, and the information reported by the STA1 is stored by the first node.
  • the specific storage format is as shown in Table 1:
  • RangeMax range error MAC(STA1)&MAC(AP1) Range1 Error1 MAC(STA1)&MAC(AP2) Range2 Error2 MAC(STA1)&MAC(AP3) Range3 Error3
  • the address corresponding to the address pair is used to store the device information of the pair of nodes.
  • the MAC address of the pair of nodes is used as an example for description, and the location corresponding to the range is used for storing the corresponding one of the address pair.
  • the position corresponding to the Max range error is used to store the corresponding allowable error value.
  • the to-be-located node performs interception when the first node other than the first node performs distance measurement, acquires and stores measurement time information, and sends a first request to the first node after completing the measurement information reporting,
  • the frame format of the first request includes a class domain, a behavior domain, a length domain, and at least one address-to-domain; wherein the domain is used to indicate whether the first request is a public action frame signal; the behavior field is used to indicate a frame signal a length field for storing the number N of device information of the N second nodes; each address pair field is used to store device information of the first node and any second node of the N second nodes Device information, used to indicate the distance between two nodes corresponding to the two device information.
  • 2H is a schematic diagram of another request frame format provided by an embodiment of the present disclosure.
  • the definition of the domain and the behavior field is the same as that in step 204, and is not described herein.
  • the position corresponding to the length is the length field.
  • the address corresponding to the address pair is an address-to-domain, where the length field is used to store the number N of device information of the N second nodes, that is, the number of device information pairs included in the first request, that is, the number The number of address-to-domains included in a requested frame signal.
  • the number of bytes occupied by the domain, the behavior domain, and the length domain may be 1, and the number of bytes occupied by the address pair domain may be 12, that is, the number of bytes occupied by each address is 6.
  • the number of bytes occupied by each domain may be other values, which is not specifically limited in the embodiment of the present disclosure.
  • the first node After receiving the first request, the first node returns corresponding measurement information to the to-be-located node according to the address-to-domain value in the first request, where the frame format of the measurement information includes a class domain, a behavior domain, a length field and at least one distance domain, the distance domain includes an address pair domain, a distance subfield, and an allowable error value field; wherein the class domain is used to indicate whether the measurement information is a public action frame signal; the behavior domain is used for Indicates a frame signal type; the length field is used to store the number N of device information of the N second nodes, that is, the number of distances included in the measurement signal; the address pair included in each distance domain The domain is configured to store device information of the first node and device information of any second node of the N second nodes, where the distance subdomain is used to store a distance between the first node and the second node, where The allowable error value field is used to indicate the maximum allowable measurement error value for the distance stored in the distance subfield.
  • 2I is a schematic diagram of another report frame format provided by an embodiment of the present disclosure, where the report frame is used to send a distance between the first node and at least one second node to a node to be located, the domain and the behavior domain
  • the definition is the same as that in step 204, and is not described here.
  • the position corresponding to the Range Entry Count is the length field
  • the position corresponding to the Range Entry is the distance subfield, which is used to indicate that the measurement signal is included.
  • the number of distances that is, the number of distance fields included in the frame signal for indicating the measurement information.
  • the number of bytes occupied by the domain, the behavior domain, and the length domain may be 1, and the number of bytes in each distance domain may be 15, including a 12-byte address pair, and 2 words.
  • the distance of the section and the allowable error value of 1 byte may be other values, which is not specifically limited in the embodiment of the present disclosure.
  • the method for acquiring the location information of the node to be located according to the measurement information acquired from the first node and the measurement time information obtained during the interception process of the distance measurement of the first node, and the second case
  • the method for obtaining the location information of the node to be located is the same, and is not described here.
  • the positioning node By storing the measurement information of the at least one first node by the first node, it can be ensured that when the positioning node performs positioning, the measurement information required for positioning the node to be located is directly obtained from the first node, and the positioning is performed.
  • the positioning efficiency can be further improved, and the positioning error can be reduced.
  • the to-be-located node before the node to be located performs the interception, that is, before performing step 201 to step 203, the to-be-located node sends a second request to the first node, the second request. At least for querying the distance measurement time; receiving the distance measurement time returned by the first node; and performing the step of listening to the first node for distance measurement according to the distance measurement time.
  • the to-be-located node is always in the listening state, resulting in a large energy consumption, that is, By querying the distance measurement time, it is possible to reduce the energy consumed by the first node not performing the distance measurement for a long time, and the node to be located is always in the listening state.
  • the second request is further used to query whether to agree to return the measurement information; correspondingly, before sending the first request to the first node, when the reply information is received, performing the first The step of the node sending the first request, the reply message is used to indicate that the measurement information is agreed to be returned. That is, the second request is used to query the first node whether to agree to assist the to-be-located node to perform positioning, and if yes, perform the step of sending a first request to the first node, and if not, continue to The step of the other first node transmitting the second request.
  • the step of sending the first request to the first node is performed, which can improve the positioning success.
  • the probability is that the waiting time is too long because the first node cannot or does not agree to return the measurement information, thereby further improving the positioning efficiency.
  • the node to be located obtains the measurement information from the first node, and uses the measurement information obtained by the first node in the process of measuring the distance with other nodes, thereby realizing the positioning of the node to be located itself, and reducing
  • the distance between the node to be located and other nodes to obtain the measurement information can simplify the positioning process and improve the positioning efficiency.
  • the first node can avoid that the to-be-located node is always in the listening state, resulting in a large energy consumption, that is, by querying the distance measurement time, the first node can be reduced for a long time without distance measurement, and The energy that the to-be-targeted node is always in the listening state.
  • FIG. 3 is a block diagram of a positioning apparatus according to an embodiment of the present disclosure.
  • the apparatus includes a software transmitting module 301, a receiving module 302, and a positioning module 303.
  • the sending module 301 is configured to send a first request to the first node, where the first request includes device information of the N second nodes, where the N is a positive integer greater than or equal to 1;
  • the receiving module 302 is configured to receive measurement information returned by the first node, where the measurement information includes at least location information of the N second nodes and between the first node and the N second nodes. distance;
  • the locating module 303 is configured to acquire location information of the to-be-located node according to the measurement information and the measurement time information that is detected during the distance measurement by the first node.
  • the frame format of the first request includes a class domain, a behavior domain, a length domain, and N address domains;
  • the class field is used to indicate whether the first request is a public behavior frame signal
  • the behavior field is used to indicate a frame signal type
  • the length field is used to store the number N of device information of the N second nodes
  • Each address field is used to store device information of one of the second nodes.
  • the frame format of the measurement information includes a class domain, a behavior domain, a length domain, and N distance domains, where each distance domain includes an address domain, a distance subdomain, and an allowable Error value field
  • the class field is used to indicate whether the measurement information is a common behavior frame signal
  • the behavior field is used to indicate a frame signal type
  • the length field is used to store the number N of device information of the N second nodes
  • the distance sub-domain included in each of the distance domains is used to indicate a distance between the first node and any one of the N second nodes, and each address field is used to store one
  • the device information of the second node is used to indicate a maximum allowable measurement error value of the distance.
  • the device further includes:
  • the positioning module 303 is configured to:
  • STA1 is the first node
  • STA2 is the to-be-located node
  • AP1 and AP3 are the second node
  • M1 is the distance between STA1 and AP1
  • M3 is the distance between STA1 and AP3
  • (X) STA1 , Y STA1 ), (X AP1 , Y AP1 ), (X AP3 , Y AP3 ) are the location information of STA1, AP1, and AP3, respectively
  • L1 is the distance between STA2 and STA1
  • L2 is between STA2 and AP1.
  • Distance is the distance between STA2 and AP3.
  • the positioning module 303 is configured to:
  • the measurement information includes M1, M2, M3, (X AP1 , Y AP1 ), (X AP2 , Y AP2 ), (X AP3 , Y AP3 ), according to the M1.
  • STA1 is the first node
  • STA2 is the node itself
  • AP1, AP2, and AP3 are the second node
  • M1 is the distance between STA1 and AP1
  • M2 is the distance between STA1 and AP2, M3
  • the distance between STA1 and AP3, (X AP1 , Y AP1 ), (X AP2 , Y AP2 ), (X AP3 , Y AP3 ) are the location information of AP1, AP2, and AP3, respectively
  • L1 is between STA2 and STA1.
  • the distance between L2 is the distance between STA2 and AP1
  • L3 is the distance between STA2 and AP2
  • L4 is the distance between STA2 and AP3.
  • the first node is configured to store measurement information of the at least one first node.
  • the frame format of the first request includes a class domain, a behavior domain, a length domain, and N address pair domains;
  • the class field is used to indicate whether the first request is a public behavior frame signal
  • the behavior field is used to indicate a frame signal type
  • the length field is used to store the number N of device information of the N second nodes
  • Each address pair field is used to store device information of the first node and device information of any of the N second nodes.
  • the frame format of the measurement information includes a class domain, a behavior domain, a length domain, and N distance domains, where each distance domain includes an address pair domain, a distance subdomain, and Allowable error range;
  • the class field is used to indicate whether the measurement information is a common behavior frame signal
  • the behavior field is used to indicate a frame signal type
  • the length field is used to store the number N of device information of the N second nodes
  • the address pair field included in each distance domain is used to store device information of the first node and device information of any second node of the N second nodes, where the distance sub-domain is used And storing a distance between the first node and the second node, where the allowable error value field is used to indicate a maximum allowable measurement error value of the distance stored in the distance subfield.
  • the device further includes:
  • a listening module configured to listen to a distance measurement process between the first node and any one of the N second nodes, to obtain the measurement time information, where the listening module is configured Used for:
  • the measurement time information is stored, and the measurement time information includes information about the signal transmission and reception time, reception time information of the measurement signal, and reception time information of the response signal.
  • the sending module 301 is further configured to send a second request to the first node, where the second request is used to at least query a distance measurement time;
  • the receiving module 302 is further configured to receive a distance measurement time returned by the first node
  • the listening module is further configured to perform a step of listening to a distance measurement process between the first node and any one of the N second nodes according to the distance measurement time.
  • the second request is further used to query whether to agree to return the measurement information; correspondingly, the sending module 301 is further configured to: when receiving the reply information, execute the Describe a step of transmitting a first request to the first node, the reply information being used to indicate consent to return the measurement information.
  • the positioning device provided by the foregoing embodiment is used for positioning, only the division of the above functional modules is illustrated. In an actual application, the function distribution may be completed by different functional modules, that is, the device. The internal structure is divided into different functional modules to perform all or part of the functions described above.
  • the positioning device and the positioning method embodiment are provided in the same concept, and the specific implementation process is described in detail in the method embodiment, and details are not described herein again.
  • the node device 400 includes:
  • the node device 400 may include an RF (Radio Frequency) circuit 110, a memory 120 including one or more computer readable storage media, an input unit 130, a display unit 140, a sensor 150, an audio circuit 160, and a WiFi (Wireless Fidelity,
  • the Wireless Fidelity module 170 includes a processor 180 having one or more processing cores, and a power supply 190 and the like. It will be understood by those skilled in the art that the terminal structure shown in FIG. 4 does not constitute a limitation to the terminal, and may include more or less components than those illustrated, or a combination of certain components, or different component arrangements. among them:
  • the RF circuit 110 can be used for transmitting and receiving information or during a call, and receiving and transmitting signals. Specifically, after receiving downlink information of the base station, the downlink information is processed by one or more processors 180. In addition, the data related to the uplink is sent to the base station. .
  • the RF circuit 110 includes, but is not limited to, an antenna, at least one amplifier, a tuner, one or more oscillators, a Subscriber Identity Module (SIM) card, a transceiver, a coupler, an LNA (Low Noise Amplifier). , duplexer, etc.
  • SIM Subscriber Identity Module
  • the RF circuit 110 can also communicate with the network and other devices via wireless communication, which can be implemented by the WiFi module 170.
  • the memory 120 can be used to store software programs and modules, and the processor 180 executes various functional applications and data processing by running software programs and modules stored in the memory 120.
  • the memory 120 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function (such as a sound playing function, an image playing function, etc.), and the like; the storage data area may be stored according to The data created by the use of the node device 400 (such as measurement time information, audio data, phone book, etc.) and the like.
  • memory 120 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device. Accordingly, memory 120 may also include a memory controller to provide access to memory 120 by processor 180 and input unit 130.
  • the input unit 130 can be used to receive input digital or character information, as well as generate and user settings and function control Related keyboard, mouse, joystick, optical or trackball signal inputs.
  • input unit 130 can include touch-sensitive surface 131 as well as other input devices 132.
  • Touch-sensitive surface 131 also referred to as a touch display or trackpad, can collect touch operations on or near the user (such as a user using a finger, stylus, etc., on any suitable object or accessory on touch-sensitive surface 131 or The operation near the touch-sensitive surface 131) and driving the corresponding connecting device according to a preset program.
  • the touch-sensitive surface 131 can include two portions of a touch detection device and a touch controller.
  • the touch detection device detects the touch orientation of the user, and detects a signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts the touch information into contact coordinates, and sends the touch information.
  • the processor 180 is provided and can receive commands from the processor 180 and execute them.
  • the touch-sensitive surface 131 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the input unit 130 can also include other input devices 132.
  • other input devices 132 may include, but are not limited to, one or more of a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, joysticks, and the like.
  • Display unit 140 can be used to display information entered by the user or information provided to the user and various graphical user interfaces of node device 400, which can be composed of graphics, text, icons, video, and any combination thereof.
  • the display unit 140 may include a display panel 141.
  • the display panel 141 may be configured in the form of an LCD (Liquid Crystal Display), an OLED (Organic Light-Emitting Diode), or the like.
  • the touch-sensitive surface 131 may cover the display panel 141, and when the touch-sensitive surface 131 detects a touch operation thereon or nearby, it is transmitted to the processor 180 to determine the type of the touch event, and then the processor 180 according to the touch event The type provides a corresponding visual output on display panel 141.
  • touch-sensitive surface 131 and display panel 141 are implemented as two separate components to implement input and input functions, in some embodiments, touch-sensitive surface 131 can be integrated with display panel 141 for input. And output function.
  • Node device 400 may also include at least one type of sensor 150, such as a light sensor, motion sensor, and other sensors.
  • the light sensor may include an ambient light sensor and a proximity sensor, wherein the ambient light sensor may adjust the brightness of the display panel 141 according to the brightness of the ambient light, and the proximity sensor may close the display panel 141 when the node device 400 moves to the ear. And / or backlight.
  • the gravity acceleration sensor can detect the magnitude of acceleration in all directions (usually three axes). When it is stationary, it can detect the magnitude and direction of gravity.
  • gesture of the mobile phone such as horizontal and vertical screen switching, related Game, magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tapping), etc.; as for the gyroscope, barometer, hygrometer, thermometer, infrared sensor and other sensors that can be configured by the node device 400, here No longer.
  • Audio circuit 160, speaker 161, and microphone 162 may provide an audio interface between the user and node device 400.
  • the audio circuit 160 can transmit the converted electrical data of the received audio data to the speaker 161 for conversion to the sound signal output by the speaker 161; on the other hand, the microphone 162 converts the collected sound signal into an electrical signal by the audio circuit 160. After receiving, it is converted into audio data, and then processed by the audio data output processor 180, transmitted to the terminal, for example, via the RF circuit 110, or outputted to the memory 120 for further processing.
  • the audio circuit 160 may also include an earbud jack to provide communication of the peripheral earphones with the node device 400.
  • WiFi is a short-range wireless transmission technology
  • the node device 400 can help a user to send and receive emails, browse web pages, and access streaming media through the WiFi module 170, which provides wireless broadband Internet access for users, and the WiFi module 170 is provided by the present disclosure. Must be formed in the node device.
  • the processor 180 is a control center of the node device 400 that connects various portions of the entire handset with various interfaces and lines, by running or executing software programs and/or modules stored in the memory 120, and by calling stored in the memory 120.
  • the internal data performs various functions and processing data of the node device 400, thereby performing overall monitoring of the mobile phone.
  • the processor 180 may include one or more processing cores; preferably, the processor 180 may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, a user interface, an application, and the like.
  • the modem processor primarily handles wireless communications. It can be understood that the above modem processor may not be integrated into the processor 180.
  • the node device 400 further includes a power source 190 (such as a battery) for supplying power to the various components.
  • a power source 190 such as a battery
  • the power source can be logically connected to the processor 180 through the power management system to manage functions such as charging, discharging, and power management through the power management system.
  • Power supply 190 may also include any one or more of a DC or AC power source, a recharging system, a power failure detection circuit, a power converter or inverter, a power status indicator, and the like.
  • the node device 400 may further include a camera, a Bluetooth module, and the like, and details are not described herein.
  • the display unit of the terminal is a touch screen display
  • the terminal further includes a memory, and one or more programs, wherein one or more programs are stored in the memory and configured to be processed by one or more Execution.
  • the one or more programs include instructions for performing the following operations:
  • the measurement information includes at least the location information of the first node acquired by the first node in performing the distance measurement, and the at least two second nodes Location information and a distance between the first node and the at least two second nodes;
  • a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.

Abstract

一种定位方法及装置,属于无线通信技术领域。定位方法包括:待定位节点(STA2)向第一节点(STA1)发送第一请求(202),第一请求包括N个第二节点(AP1,AP2,AP3)的设备信息,N为大于或等于1的正整数;接收第一节点(STA1)返回的测量信息(205),测量信息至少包括N个第二节点(AP1,AP2,AP3)的位置信息以及第一节点(STA1)与N个第二节点(AP1,AP2,AP3)之间的距离;根据测量信息、以及在第一节点(STA1)进行距离测量的过程中侦听到的测量时间信息,获取待定位节点(STA2)的位置信息(206)。通过利用第一节点(STA1)在与其他节点进行距离测量的过程中得到的测量信息,实现对待定位节点(STA2)自身的定位,减少了待定位节点(STA2)与其他节点进行距离测量以得到测量信息的次数,能够简化定位过程,提高定位效率。

Description

定位方法及装置
本申请要求于2016年08月15日提交中国专利局、申请号为201610674329.5、发明名称为“定位方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及无线通信技术领域,特别涉及一种定位方法及装置。
背景技术
随着无线通信技术的普及和发展,无线通信技术不仅能够应用于通讯方面,还能够应用于定位技术中,例如,通过无线通信技术对手机等终端进行定位,以根据定位结果向用户提供周边商户或旅游景点信息;随着人们对生活质量的要求不断提高,对定位精度的要求也越来越高,以更加方便的满足日常生活中的定位需求。
在相关技术中,采用无线通信技术实现定位的方法可以为:采用距离测量方法获取待定位节点与至少三个位置已知的锚节点之间的距离,根据已知锚节点的位置信息和节点之间的距离,获取该待定位节点的位置信息。
在实现本公开的过程中,发明人发现现有技术至少存在以下问题:
对任一待定位节点进行定位,都需要获取该待定位节点与至少三个锚节点之间的距离,定位过程中所需进行的距离测量次数多,过程繁琐,导致定位效率低。
发明内容
为了解决现有技术的问题,本公开实施例提供了一种定位方法及装置。所述技术方案如下:
一方面,提供了一种定位方法,所述方法包括:
待定位节点向第一节点发送第一请求,所述第一请求包括N个第二节点的设备信息,所述N为大于或等于1的正整数;
接收所述第一节点返回的测量信息,所述测量信息至少包括所述N个第二节点的位置信息以及所述第一节点与所述N个第二节点之间的距离;
根据所述测量信息、以及在所述第一节点进行距离测量的过程中侦听到的测量时间信息,获取所述待定位节点的位置信息。
待定位节点利用第一节点在与其他节点进行距离测量的过程中得到的测量信息,实现对该待定位节点自身的定位,减少了该待定位节点与其他节点进行距离测量以得到测量信息的次数,能够简化定位过程,提高定位效率。
在本公开的第一方面的第一种可能实现方式中,所述第一请求的帧格式包括类域、行为域、长度域及N个地址域;
其中,所述类域用于指示所述第一请求是否为公共行为帧信号;
所述行为域用于指示帧信号类型;
所述长度域用于存储所述N个第二节点的设备信息的数目N;
每个地址域用于存储一个所述第二节点的设备信息。
通过使用包括类域、行为域、长度域及N个地址域的帧格式发送该第一请求,能够在尽可能少的占用带宽的前提下完整发送该第一请求所包括的信息,从而能够提高请求发送的成功率,进而提高定位效率。
在本公开的第一方面的第二种可能实现方式中,所述测量信息的帧格式包括类域、行为域、长度域及N个距离域,所述每个距离域包括地址域、距离子域和允许误差值域;
其中,所述类域用于指示所述测量信息是否为public action帧信号;
所述行为域用于指示帧信号类型;
所述长度域用于存储所述N个第二节点的设备信息的数目N;
所述每个距离域所包括的所述距离子域用于指示所述第一节点与所述至少一个第二节点中任一第二节点之间的距离,每个地址域用于存储一个所述第二节点的设备信息,所述允许误差值域用于指示所述距离的最大允许测量误差值。
通过使用包括类域、行为域、长度域及N个距离域的帧格式发送该测量信息,能够在尽可能少的占用带宽的前提下完整发送该测量信息所包括的信息,从而能够提高测量信息发送的成功率,进而提高定位效率。
在本公开的第一方面的第三种可能实现方式中,所述根据所述测量信息、以及在所述第一节点进行距离测量的过程中侦听到的测量时间信息,获取所述待定位节点的位置信息之前,所述方法还包括:
当所述N为2时,所述测量信息包括M1、M3、(XSTA1,YSTA1)、(XAP1,YAP1)、(XAP3,YAP3)时,获取L1距离值;
相应地,根据所述测量信息、以及在所述第一节点进行距离测量的过程中侦听到的测量时间信息,获取所述待定位节点的位置信息包括:
根据所述M1、所述M3及所述测量时间信息,分别获取D(STA2-STA1,STA2-AP1)=L1-L2和D(STA2-STA1,STA2-AP3)=L1-L3;
根据所述D(STA2-STA1,STA2-AP1)和D(STA2-STA1,STA2-AP3)及所获取到的所述L1距离值,获取所述L2距离值和所述L3距离值;
根据所述L1距离值、所述L2距离值和所述L3距离值以及(XSTA1,YSTA1)、(XAP1,YAP1)、(XAP3,YAP3),获取所述待定位节点的位置信息;
其中,STA1为所述第一节点,STA2为所述待定位节点,AP1和AP3为所述第二节点,M1为STA1与AP1之间的距离,M3为STA1与AP3之间的距离,(XSTA1,YSTA1)、(XAP1,YAP1)、(XAP3,YAP3)分别为STA1、AP1、AP3的位置信息,L1为STA2与STA1之间的距离,L2为STA2与AP1之间的距离,L3为STA2与AP3之间的距离。
通过上述定位方法进行定位,只需采用距离测量方法测量一次待定位节点与第一节点或位于侦听范围内的任一第二节点之间的距离,根据该距离和向该第一节点获取到的测量信息、以及在对该第一节点与位于该待定位节点侦听范围内的两个第二节点之间的距离测量的侦听过程中侦听到的测量时间信息,实现定位的目的,减少了与其他节点之间进行距离测量的次数,简化了定位过程,提高定位效率。
根据所述测量信息、以及在所述第一节点进行距离测量的过程中侦听到的测量时间信 息,获取所述待定位节点的位置信息,包括:
当所述N为3时,所述测量信息中包括M1、M2、M3、(XAP1,YAP1)、(XAP2,YAP2)、(XAP3,YAP3)时,根据所述M1、所述M2、所述M3及所述测量时间信息,分别获取D(STA2-STA1,STA2-AP1)=L1-L2、D(STA2-STA1,STA2-AP2)=L1-L3和D(STA2-STA1,STA2-AP3)=L1-L4;
在本公开的第一方面的第四种可能实现方式中,根据所述D(STA2-STA1,STA2-AP1)=L1-L2、D(STA2-STA1,STA2-AP2)=L1-L3和D(STA2-STA1,STA2-AP3)=L1-L4,分别获取D(STA2-AP2,STA2-AP1)=L3-L2、D(STA2-AP3,STA2-AP1)=L4-L2和D(STA2-AP3,STA2-AP2)=L4-L3;
根据所述D(STA2-AP2,STA2-AP1)、所述D(STA2-AP3,STA2-AP1)、所述D(STA2-AP3,STA2-AP2)、(XAP1,YAP1)、(XAP2,YAP2)、(XAP3,YAP3),获取所述待定位节点的位置信息;
其中,STA1为所述第一节点,STA2为所述节点自身,AP1、AP2和AP3为所述第二节点,M1为STA1与AP1之间的距离,M2为STA1与AP2之间的距离,M3为STA1与AP3之间的距离,(XAP1,YAP1)、(XAP2,YAP2)、(XAP3,YAP3)分别为AP1、AP2、AP3的位置信息,L1为STA2与STA1之间的距离,L2为STA2与AP1之间的距离,L3为STA2与AP2之间的距离,L4为STA2与AP3之间的距离。
通过上述定位方法,能够实现在不使用该第一节点的位置信息的基础上实现定位,由于该第一节点的位置信息也需要根据定位方法进行获取,所以难免存在误差,而如果不使用该第一节点的位置信息,只使用在该第一节点进行距离测量的过程中侦听到的测量时间信息、以及从该第一节点获取到的测量信息进行定位,能够避免使用第一节点的位置信息存在误差的基础上造成的更大误差,也即是,通过上述定位方法能够在减少与其他节点之间进行距离测量的次数、简化定位过程、提高定位效率的基础上,提高定位精度。
在本公开的第一方面的第五种可能实现方式中,所述第一节点用于存储至少一个第一节点的测量信息。
通过由该指定第二节点对至少一个第一节点的测量信息进行存储,能够确保在进行定位时,直接从该指定第二节点获取该待定位节点定位所需的测量信息实现定位,由于该指定第二节点位置固定,所以能够进一步提高定位效率,减小定位误差。
在本公开的第一方面的第六种可能实现方式中,所述第一请求的帧格式包括类域、行为域、长度域及N个地址对域;
其中,所述类域用于指示所述第一请求是否为public action帧信号;
所述行为域用于指示帧信号类型;
所述长度域用于存储所述N个第二节点的设备信息的数目N;
每个地址对域用于存储所述第一节点的设备信息和所述N个第二节点中任一第二节点的设备信息。
通过使用包括类域、行为域、长度域及至少一个地址对域的帧格式发送该第一请求,能够在尽可能少的占用带宽的前提下完整发送该第一请求所包括的信息,从而能够提高请求发送的成功率,进而提高定位效率。
在本公开的第一方面的第七种可能实现方式中,所述测量信息的帧格式包括类域、行为域、长度域及N个距离域,所述每个距离域包括地址对域、距离子域和允许误差值域;
其中,所述类域用于指示所述测量信息是否为public action帧信号;
所述行为域用于指示帧信号类型;
所述长度域用于存储所述N个第二节点的设备信息的数目N;
所述每个距离域所包括的所述地址对域用于存储所述第一节点的设备信息和所述N个第二节点中任一第二节点的设备信息,所述距离子域用于存储所述第一节点与所述第二节点之间的距离,所述允许误差值域用于指示所述距离子域中所存储距离的最大允许测量误差值。
通过使用包括类域、行为域、长度域及N个距离域的帧格式发送该测量信息,能够在尽可能少的占用带宽的前提下完整发送该测量信息所包括的信息,从而能够提高测量信息发送的成功率,进而提高定位效率。
在本公开的第一方面的第八种可能实现方式中,所述待定位节点向第一节点发送第一请求之前,所述方法还包括:
所述待定位节点对所述第一节点与所述N个第二节点中任一第二节点之间的距离测量过程进行侦听,得到所述测量时间信息;其中,所述待定位节点对所述第一节点与所述第二节点之间的距离测量过程进行侦听包括:
接收所述第二节点发送的测量信号;
存储所述测量信号的接收时间信息及所述第二节点的设备信息;
接收所述第一节点发送的应答信号;
存储所述应答信号的接收时间信息及所述第一节点的设备信息;
接收所述第二节点向所述待定位节点发送的信号收发时间信息,所述信号收发时间信息包括所述第二节点发送所述测量信号的时间信息和所述第二节点接收所述应答信号的时间信息;
存储所述测量时间信息,所述测量时间信息包括将所述信号收发时间信息、所述测量信号的接收时间信息及所述应答信号的接收时间信息。
通过对该第一节点的距离测量过程进行侦听,获取测量时间信息,能够根据该测量时间信息进行定位,避免通过进行多次距离测量过程进行定位,达到简化定位过程的目的。
在本公开的第一方面的第九种可能实现方式中,所述待定位节点对所述第一节点与所述N个第二节点中任一第二节点之间的距离测量过程进行侦听之前,所述方法还包括:
向所述第一节点发送第二请求,所述第二请求至少用于询问距离测量时间;
接收所述第一节点返回的距离测量时间;
根据所述距离测量时间,执行对所述第一节点与所述N个第二节点中任一第二节点之间的距离测量过程进行侦听的步骤。
通过向该第一节点询问距离测量时间,并根据该第一节点返回的距离测量时间进入侦听状态,能够避免一直处于侦听状态导致能耗较大的情况。
在本公开的第一方面的第十种可能实现方式中,所述第二请求还用于询问是否同意返回所述测量信息;相应地,所述待定位节点向第一节点发送第一请求之前,所述方法还包括:
所述待定位节点在接收到回复信息时,执行所述向第一节点发送第一请求的步骤,所述回复信息用于指示同意返回所述测量信息。
通过向该第一节点询问是否同意返回该测量信息,在接收到用于指示同意返回该测量信息的回复信息时,再执行向该第一节点发送该第一请求的步骤,能够提高定位成功的几 率,避免由于该第一节点无法或不同意返回测量信息导致等待时间过长,进一步提高定位效率。
另一方面,提供了一种定位装置,所述装置包括:
发送模块,用于向第一节点发送第一请求,所述第一请求包括N个第二节点的设备信息,所述N为大于或等于1的正整数;
接收模块,用于接收所述第一节点返回的测量信息,所述测量信息至少包括所述N个第二节点的位置信息以及所述第一节点与所述N个第二节点之间的距离;
定位模块,用于根据所述测量信息、以及在所述第一节点进行距离测量的过程中侦听到的测量时间信息,获取所述待定位节点的位置信息。
待定位节点利用第一节点在与其他节点进行距离测量的过程中得到的测量信息,实现对该待定位节点自身的定位,减少了该待定位节点与其他节点进行距离测量以得到测量信息的次数,能够简化定位过程,提高定位效率。
在本公开的第二方面的第一种可能实现方式中,所述第一请求的帧格式包括类域、行为域、长度域及N个地址域;
其中,所述类域用于指示所述第一请求是否为公共行为帧信号;
所述行为域用于指示帧信号类型;
所述长度域用于存储所述N个第二节点的设备信息的数目N;
每个地址域用于存储一个所述第二节点的设备信息。
通过使用包括类域、行为域、长度域及N个地址域的帧格式发送该第一请求,能够在尽可能少的占用带宽的前提下完整发送该第一请求所包括的信息,从而能够提高请求发送的成功率,进而提高定位效率。
在本公开的第二方面的第二种可能实现方式中,所述测量信息的帧格式包括类域、行为域、长度域及N个距离域,所述每个距离域包括地址域、距离子域和允许误差值域;
其中,所述类域用于指示所述测量信息是否为公共行为帧信号;
所述行为域用于指示帧信号类型;
所述长度域用于存储所述N个第二节点的设备信息的数目N;
所述每个距离域所包括的所述距离子域用于指示所述第一节点与所述至少一个第二节点中任一第二节点之间的距离,每个地址域用于存储一个所述第二节点的设备信息,所述允许误差值域用于指示所述距离的最大允许测量误差值。
通过使用包括类域、行为域、长度域及N个距离域的帧格式发送该测量信息,能够在尽可能少的占用带宽的前提下完整发送该测量信息所包括的信息,从而能够提高测量信息发送的成功率,进而提高定位效率。
在本公开的第二方面的第三种可能实现方式中,所述装置还包括:
获取模块,用于当所述N为2时,所述测量信息包括M1、M3、(XSTA1,YSTA1)、(XAP1,YAP1)、(XAP3,YAP3)时,获取L1距离值;
相应地,所述定位模块用于:
根据所述M1、所述M3及所述测量时间信息,分别获取D(STA2-STA1,STA2-AP1)=L1-L2和D(STA2-STA1,STA2-AP3)=L1-L3;
根据所述D(STA2-STA1,STA2-AP1)和D(STA2-STA1,STA2-AP3)及所获取到的所述L1距离值,获取所述L2距离值和所述L3距离值;
根据所述L1距离值、所述L2距离值和所述L3距离值以及(XSTA1,YSTA1)、(XAP1,YAP1)、(XAP3,YAP3),获取所述待定位节点的位置信息;
其中,STA1为所述第一节点,STA2为所述待定位节点,AP1和AP3为所述第二节点,M1为STA1与AP1之间的距离,M3为STA1与AP3之间的距离,(XSTA1,YSTA1)、(XAP1,YAP1)、(XAP3,YAP3)分别为STA1、AP1、AP3的位置信息,L1为STA2与STA1之间的距离,L2为STA2与AP1之间的距离,L3为STA2与AP3之间的距离。
通过上述定位方法进行定位,只需采用距离测量方法测量一次待定位节点与第一节点或位于侦听范围内的任一第二节点之间的距离,根据该距离和向该第一节点获取到的测量信息、以及在对该第一节点与位于该待定位节点侦听范围内的两个第二节点之间的距离测量的侦听过程中侦听到的测量时间信息,实现定位的目的,减少了与其他节点之间进行距离测量的次数,简化了定位过程,提高定位效率。
在本公开的第二方面的第四种可能实现方式中,所述定位模块用于:
当所述N为3时,所述测量信息中包括M1、M2、M3、(XAP1,YAP1)、(XAP2,YAP2)、(XAP3,YAP3)时,根据所述M1、所述M2、所述M3及所述测量时间信息,分别获取D(STA2-STA1,STA2-AP1)=L1-L2、D(STA2-STA1,STA2-AP2)=L1-L3和D(STA2-STA1,STA2-AP3)=L1-L4;
根据所述D(STA2-STA1,STA2-AP1)=L1-L2、D(STA2-STA1,STA2-AP2)=L1-L3和D(STA2-STA1,STA2-AP3)=L1-L4,分别获取D(STA2-AP2,STA2-AP1)=L3-L2、D(STA2-AP3,STA2-AP1)=L4-L2和D(STA2-AP3,STA2-AP2)=L4-L3;
根据所述D(STA2-AP2,STA2-AP1)、所述D(STA2-AP3,STA2-AP1)、所述D(STA2-AP3,STA2-AP2)、(XAP1,YAP1)、(XAP2,YAP2)、(XAP3,YAP3),获取所述待定位节点的位置信息;
其中,STA1为所述第一节点,STA2为所述节点自身,AP1、AP2和AP3为所述第二节点,M1为STA1与AP1之间的距离,M2为STA1与AP2之间的距离,M3为STA1与AP3之间的距离,(XAP1,YAP1)、(XAP2,YAP2)、(XAP3,YAP3)分别为AP1、AP2、AP3的位置信息,L1为STA2与STA1之间的距离,L2为STA2与AP1之间的距离,L3为STA2与AP2之间的距离,L4为STA2与AP3之间的距离。
通过上述定位方法,能够实现在不使用该第一节点的位置信息的基础上实现定位,由于该第一节点的位置信息也需要根据定位方法进行获取,所以难免存在误差,而如果不使用该第一节点的位置信息,只使用在该第一节点进行距离测量的过程中侦听到的测量时间信息、以及从该第一节点获取到的测量信息进行定位,能够避免使用第一节点的位置信息存在误差的基础上造成的更大误差,也即是,通过上述定位方法能够在减少与其他节点之间进行距离测量的次数、简化定位过程、提高定位效率的基础上,提高定位精度。
在本公开的第二方面的第五种可能实现方式中,所述第一节点用于存储至少一个第一节点的测量信息。
通过由该指定第二节点对至少一个第一节点的测量信息进行存储,能够确保在进行定位时,直接从该指定第二节点获取该待定位节点定位所需的测量信息实现定位,由于该指定第二节点位置固定,所以能够进一步提高定位效率,减小定位误差。
在本公开的第二方面的第六种可能实现方式中,所述第一请求的帧格式包括类域、行 为域、长度域及N个地址对域;
其中,所述类域用于指示所述第一请求是否为公共行为帧信号;
所述行为域用于指示帧信号类型;
所述长度域用于存储所述N个第二节点的设备信息的数目N;
每个地址对域用于存储所述第一节点的设备信息和所述N个第二节点中任一第二节点的设备信息。
通过使用包括类域、行为域、长度域及至少一个地址对域的帧格式发送该第一请求,能够在尽可能少的占用带宽的前提下完整发送该第一请求所包括的信息,从而能够提高请求发送的成功率,进而提高定位效率。
在本公开的第二方面的第七种可能实现方式中,所述测量信息的帧格式包括类域、行为域、长度域及N个距离域,所述每个距离域包括地址对域、距离子域和允许误差值域;
其中,所述类域用于指示所述测量信息是否为公共行为帧信号;
所述行为域用于指示帧信号类型;
所述长度域用于存储所述N个第二节点的设备信息的数目N;
所述每个距离域所包括的所述地址对域用于存储所述第一节点的设备信息和所述N个第二节点中任一第二节点的设备信息,所述距离子域用于存储所述第一节点与所述第二节点之间的距离,所述允许误差值域用于指示所述距离子域中所存储距离的最大允许测量误差值。
通过使用包括类域、行为域、长度域及N个距离域的帧格式发送该测量信息,能够在尽可能少的占用带宽的前提下完整发送该测量信息所包括的信息,从而能够提高测量信息发送的成功率,进而提高定位效率。
在本公开的第二方面的第八种可能实现方式中,所述装置还包括:
侦听模块,用于对所述第一节点与所述N个第二节点中任一第二节点之间的距离测量过程进行侦听,得到所述测量时间信息;其中,所述侦听模块用于:
接收所述第二节点发送的测量信号;
存储所述测量信号的接收时间信息及所述第二节点的设备信息;
接收所述第一节点发送的应答信号;
存储所述应答信号的接收时间信息及所述第一节点的设备信息;
接收所述第二节点向所述待定位节点发送的信号收发时间信息,所述信号收发时间信息包括所述第二节点发送所述测量信号的时间信息和所述第二节点接收所述应答信号的时间信息;
存储所述测量时间信息,所述测量时间信息包括将所述信号收发时间信息、所述测量信号的接收时间信息及所述应答信号的接收时间信息。
通过对该第一节点的距离测量过程进行侦听,获取测量时间信息,能够根据该测量时间信息进行定位,避免通过进行多次距离测量过程进行定位,达到简化定位过程的目的。
在本公开的第二方面的第九种可能实现方式中,所述发送模块还用于向所述第一节点发送第二请求,所述第二请求至少用于询问距离测量时间;
所述接收模块还用于接收所述第一节点返回的距离测量时间;
所述侦听模块还用于根据所述距离测量时间,执行对所述第一节点与所述N个第二节 点中任一第二节点之间的距离测量过程进行侦听的步骤。
通过向该第一节点询问距离测量时间,并根据该第一节点返回的距离测量时间进入侦听状态,能够避免一直处于侦听状态导致能耗较大的情况。
在本公开的第二方面的第十种可能实现方式中,所述第二请求还用于询问是否同意返回所述测量信息;相应地,所述发送模块还用于在接收到回复信息时,执行所述向第一节点发送第一请求的步骤,所述回复信息用于指示同意返回所述测量信息。
通过向该第一节点询问是否同意返回该测量信息,在接收到用于指示同意返回该测量信息的回复信息时,再执行向该第一节点发送该第一请求的步骤,能够提高定位成功的几率,避免由于该第一节点无法或不同意返回测量信息导致等待时间过长,进一步提高定位效率。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例提供的一种定位系统示意图;
图2A是本公开实施例提供的一种定位方法流程图;
图2B是本公开实施例提供的一种距离测量方法示意图;
图2C是本公开实施例提供的一种对距离测量的侦听示意图;
图2D是本公开实施例提供的一种请求帧格式示意图;
图2E是本公开实施例提供的一种报告帧格式示意图
图2F是本公开实施例提供的一种定位实施环境示意图;
图2G是本公开实施例提供的另一种定位实施环境示意图;
图2H是本公开实施例提供的另一种请求帧格式示意图;
图2I是本公开实施例提供的另一种报告帧格式示意图;
图3是本公开实施例提供的一种定位装置框图;
图4是本公开实施例提供的一种节点设备400的结构示意图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
图1是本公开实施例提供的一种定位系统示意图,如图1所示,该定位系统包括多个第一节点和多个第二节点,该第二节点是指位置已知的节点,该位置已知的节点是指节点位置存储于自身节点中,或存储于其他管理多个第二节点位置信的节点中,并且可以为第 一节点提供网络接入服务,如接入点(Access Point,AP)等;该第一节点可以是位置未知的节点,如手机等移动终端,也可以是位置已知的节点,该第一节点可以根据该多个第二节点的位置信息或其他第一节点的测量信息进行定位。需要说明的是,任一第一节点在与至少一个第二节点进行距离测量或者定位完成以后,可以作为协作节点,协助其他第一节点,即待定位节点进行定位。
在本公开实施例中,待定位节点在进行定位的过程中,该第二节点利用自身的位置信息实现该待定位节点的定位,该第一节点作为协助节点协助该待定位节点实现定位,具体协助方法为:该待定位节点对第一节点与至少一个第二节点的距离测量如精准时间测量(Fine Timing Measurement,FTM)过程进行侦听,以获取定位所需的信息,从而实现对该待定位节点的定位。需要说明的是,如图1所示的定位系统中,任一位置已知的第二节点可以作为协作节点协助待定位节点进行定位,即第一节点进行距离测量后获取的测量信息上报给该协作节点,由该协作节点管理该至少一个第一节点的测量信息,在待定位节点进行定位时,向该协作节点获取用于定位的测量信息。
对于本公开所提供的定位方法,可以应用在任一需要定位的场景中,例如,当用户需要查询该用户当前所在位置附近的餐饮店时,在终端检测到用户对查询选项的触发操作时,启动定位功能,使用本公开所提供的定位方法获取该终端当前的位置信息,以根据该位置信息获取该用户周围的餐饮店信息。
图2A是本公开实施例提供的一种定位方法流程图,参见图2A,该方法包括:
201、待定位节点对第一节点与N个第二节点中任一第二节点之间的距离测量过程进行侦听,得到测量时间信息。
该待定位节点为任一位置未知的节点,如手机等移动终端,该N个第二节点是指位于该待定位节点侦听范围内的节点,N为大于或等于1的正整数;该待定位节点对第一节点与任一第二节点之间的距离测量过程进行侦听,是指该待定位节点对该第一节点与任一第二节点之间的数据传输信道进行侦听,当有该第一节点与该第二节点的交互信息时,接收该交互信息,并记录交互信息的接收时间等信息。
具体地,该待定位节点对该第一节点与该第二节点之间的距离测量过程进行侦听的方法包括步骤201a至201f:
201a、待定位节点接收该第二节点发送的测量信号。
根据距离测量方法不同,该测量信号可以不同;在本公开实施例中,以该距离测量方法为精准时间测量方法(Fine Timing Measurement,FTM)为例,对本公开所提供的定位方法进行具体说明。
FTM是执行距离测量操作的发起方(Initiating STA)和应答方(Responding STA)通过时间戳计算两者之间的距离的方法,如图2B所示,Initiating STA在需要测量与Responding STA之间的距离时,向Responding STA发送FTM请求帧信号,该FTM请求帧信号用于指示向Responding STA请求使用FTM方法测量Initiating STA与Responding STA之间的距离,Responding STA在接收到该FTM请求帧信号后,回复ACK帧信号,该ACK帧信号用于指示该Responding STA收到了Initiating STA发起的请求,Responding STA在t1时刻向Initiating STA发送FTM_1帧信号,该FTM_1帧信号用于指示该Responding STA同意测量Initiating STA与Responding STA之间的距离,Initiating STA在t2时刻接收到该FTM_1帧信号,并 在t3时刻回复ACK帧信号,Responding STA在t4时刻接收到该ACK帧信号,并在t5时刻向Initiating STA发送包括t1和t4时间信息的FTM_2帧信号,以使得Initiating STA根据下述公式(1)计算Initiating STA与该Responding STA之间的距离,其中c表示光速,*表示乘法运算。
Figure PCTCN2017097248-appb-000001
待定位节点在需要获取自身位置信息时,则开启侦听模式,使得该待定位节点一直处于侦听状态,以获取其他节点间在进行距离测量过程中的测量时间信息,如图2C所示,在第一节点和第二节点之间进行距离测量时,该待定位节点对该距离测量过程进行侦听,在t1时刻,第二节点向第一节点发送FTM帧信号,该待定位节点在该第二节点和该第一节点的数据传输信道中接收该FTM帧信号,该FTM信号即为测量信号。
需要说明的是,关于开启该侦听模式的时机,可以是在待定位节点检测到对定位功能的开启操作时开启,对于具有使用该待定位节点的定位权限的应用程序(Application,APP),可以是在检测到对该APP中的搜索选项的触发操作时启动,或者是检测到该APP的启动操作时开启,该APP可以为外卖APP、打车APP等,本公开实施例对该侦听模式的具体开启时机或开启方式不作限定。
201b、该待定位节点存储该测量信号的接收时间信息及该第二节点的设备信息。
该第二节点的设备信息可以为该第二节点的媒体访问控制(Media Access Control,MAC)地址信息,也可以是其他能够唯一标识该第二节点的设备信息,本公开实施例对此不作限定。该FTM帧信号携带该第二节点的设备信息,待定位节点将该第二节点的设备信息与该FTM帧信号的接收时间信息进行对应存储。
201c、该待定位节点接收该第一节点发送的应答信号。
该应答信号是指该第一节点在接收到测量信号后用于响应该测量信号的信号,在图2C中,该第一节点在接收到FTM帧信号以后,在t3时刻发送ACK帧信号,该ACK帧信号即为该应答信号,该待定位节点在该第二节点和该第一节点的数据传输信道中接收该ACK帧信号。
201d、该待定位节点存储该应答信号的接收时间信息及该第一节点的设备信息。
该待定位节点在接收到该应答信号之后,存储该应答信号的接收时间tc2,并将该第一节点的设备信息与该应答信号的接收时间进行对应存储。该第二节点的设备信息与该第一节点的设备信息同理,该第二节点的设备信息与该第一节点的设备信息可以为同一类型的信息,也可以为不同类型的信息,本公开实施例对此不作具体限定。
201e、该待定位节点接收该第二节点向该待定位节点发送的信号收发时间信息,该信号收发时间信息包括该第二节点发送该测量信号的时间信息和该第二节点接收该应答信号的时间信息。
该第二节点在接收到该第一节点发送的应答信号以后,向该待定位节点发送该第二节点对该测量信号的发送时间信息和该第二节点对该应答信号的接收时间信息,如图2C所示,该第二节点向该待定位节点和该第一节点发送t1和t4的时间信息,该待定位节点接收该第二节点向该待定位节点发送的信号收发时间信息,该信号收发时间信息包括该第二节点发送该测量信号的时间信息和该第二节点接收该应答信号的时间信息。
201f、该待定位节点存储该测量时间信息,该测量时间信息包括将该信号收发时间信息、 该测量信号的接收时间信息及该应答信号的接收时间信息。
该待定位节点将在步骤201e中接收到的信号收发时间信息与测量信号的接收时间信息及该应答信号的接收时间信息进行对应存储。
当该待定位节点对该测量信号的接收时间为tc1,对该应答信号的接收时间为tc2,该第一节点接收到该第二节点在t5时刻发送的时间信息为t1和t4时,根据(1)式获取该第一节点和该第二节点之间的距离L,以使得该第一节点能够在该待定位节点进行定位的过程中,向该待定位节点发送该距离L,进而使得该待定位节点能够根据下述公式(2)计算该第一节点与该待定位节点之间的距离和该第二节点与该待定位节点之间的距离的距离差。
Figure PCTCN2017097248-appb-000002
需要说明的是,步骤201为该待定位节点对该第一节点与任一第二节点进行距离测量的侦听过程,上述步骤201在该待定位节点进行定位过程中的可选步骤,即只需将上述步骤201侦听得到的信息进行相应存储,在该待定位节点进行定位时从对应存储空间中获取这些信息即可。也就是,上述步骤201可以在待定位节点需要进行定位时执行,也可以该待定位节点还未进行定位,而该第一节点进行距离测量的过程中执行,即本公开实施例对上述步骤201的具体实施时间不作限定。
通过对该第一节点的距离测量过程进行侦听,获取测量时间信息,能够使得该待定位节点根据该测量时间信息进行定位,避免通过进行多次距离测量过程进行定位,达到简化定位过程的目的。
当该第一节点与至少一个第二节点完成距离测量或实现对该第一节点的定位后,该第一节点可以为其他待定位节点提供定位帮助,即该第一节点可以作为协作节点,在待定位节点定位时向待定位节点提供定位所需的信息,以使得该待定位节点能够使用该信息实现定位,而无需再多次执行距离测量操作。
202、该待定位节点向第一节点发送第一请求,该第一请求包括N个第二节点的设备信息,该N为大于或等于1的正整数。
该待定位节点在侦听到该第一节点与N个第二节点进行距离测量过程后,向该第一节点发送第一请求,该第一请求用于向该第一节点获取测量信息,该测量信息是指该第一节点在与该N个第二节点进行距离测量的过程中获取到的距离信息等。
通过向该第一节点发送用于获取测量信息的第一请求,能够使得该第一节点根据该第一请求返回对应的测量信息,进而能够实现该待定位节点根据该测量信息进行定位的目的。
在本公开另一实施例中,该第一请求的帧格式包括类域、行为域、长度域及N个地址域;其中,该类域用于指示该第一请求是否为公共行为(public action)帧信号;该行为域用于指示帧信号类型;该长度域用于存储所述N个第二节点的设备信息的数目N,也即是第二节点的数目;每个地址域用于存储一个所述第二节点的设备信息。
图2D是本公开实施例提供的一种请求帧格式示意图,在图2D中,Category对应的位置为类域,该位置的值为4时,表示该第一请求帧信号为public action帧信号。
public action对应的位置为行为域,当该行为域的值为第一预设数值时,表示该帧信号为FTM距离测量请求帧信号,当该行为域的值为第二预设数值时,表示该帧信号为FTM距离测量报告帧信号,其中,该第一预设数值和该第二预设数值可以设置为任意两个不同的数值,如该第一预设数值可以为34,该第二预设数值可以为35,当然,该第一预设数值 和该第二预设数值也可以设置为其他数值,本公开实施例对此不作限定。
Length对应的位置为长度域,Address对应的位置为地址域,该长度域的值用于指示该第一请求中包括的设备信息的数目,也即是该第一请求的帧信号中包括的地址域的个数,该地址域用于指示该第一请求所请求的测量信息对应的节点的设备信息。
例如,当该待定位节点向该第一节点发送的帧信号的类域值为4,行为域值为34,长度域的值为2,两个地址域的值分别为两个第二节点的MAC地址时,表示该帧信号用于向该第一节点请求该第一节点与该两个第二节点之间的测量信息。
通过使用包括类域、行为域、长度域及N个地址域的帧格式发送该第一请求,能够在尽可能少的占用带宽的前提下完整发送该第一请求所包括的信息,从而能够提高请求发送的成功率,进而提高定位效率。
需要说明的是,在图2D所提供的请求的帧格式中,类域、行为域和长度域分别占1个字节,每个地址域分别占6个字节;通过设置该帧格式中每个域所占字节数,能够在确保信息能够完整发送的前提下,进一步减少该帧信号对带宽的占用。当然,根据该地址域所存储的设备信息的类别不同,该地址域所占的字节数可以做相应调整,本公开实施例对每个域所占的字节数均不作具体限定。
203、该第一节点接收该第一请求。
204、该第一节点向该待定位节点发送测量信息,该测量信息至少包括该N个第二节点的位置信息以及该第一节点与该N个第二节点之间的距离。
该第一节点在接收到该待定位节点发送的第一请求后,根据该请求地址域中的设备信息,获取与该设备信息对应的测量信息,并向该待定位节点返回该测量信息。
该测量信息除了包括该N个第二节点的位置信息以及该第一节点与该N个第二节点之间的距离以外,还可以包括该第一节点的位置信息,该第一节点的位置信息的获取方法可以为:根据与至少三个第二节点之间的距离,及该至少三个第二节点的位置信息,获取该第一节点的位置信息;也可以采用其他方法获取,如本公开实施例所提供的定位方法,本公开实施例对此不作具体限定。
该第一节点与该N个第二节点之间的距离的获取过程可以采用步骤201中的FTM距离测量方法实现,也可以采用其他距离测量方法获取,本公开实施例对此不作具体限定。
该至少一个第二节点的位置信息可以在该第一节点与该至少一个第二节点进行距离测量过程中获取并存储于该第一节点,也可以是在接收到该待定位节点发送的第一请求后,由该第一节点向该第二节点获取,或者也可以在其他时间获取,本公开实施例对获取该至少一个第二节点的位置信息的具体时间不作限定。
在本公开另一实施例中,用于向待定位节点发送该第一节点与至少一个第二节点之间的距离的帧格式包括类域、行为域、长度域及N个距离域,该每个距离域包括地址域、距离子域和允许误差值域;其中,该类域用于指示该测量信息是否为公共行为帧信号;该行为域用于指示帧信号类型;该长度域用于存储该N个第二节点的设备信息的数目N;该每个距离域所包括的该距离子域用于指示该第一节点与该N个第二节点中任一第二节点之间的距离信息,每个地址域用于存储一个该第二节点的设备信息,该允许误差值域用于指示该距离的最大允许测量误差值。
图2E是本公开实施例提供的一种报告帧格式示意图,在图2E中,Category对应的位 置为类域,public action对应的位置为行为域,该类域和该行为域的定义与步骤204中第一请求对应的帧信号中的类域和行为域的定义同理,此处不作赘述。
Range Entry Count对应的位置为长度域,Range Entry对应的位置为距离域,该长度域用于指示该测量信息中所包括的距离的数目,也即是该测量信息对应的帧信号中包括的距离域的数目,如图2E所示,每个距离域包括Address、Range和Max Range Error,Address对应的位置为地址域,用于存储与该第一请求中所包括的设备信息对应的设备信息,Range对应的位置为距离子域,用于指示该第一节点与该设备信息对应的第二节点之间的距离,Max Range Error对应的位置为允许误差值域。
例如,当该第一节点向该待定位节点发送的帧信号的类域值为4,行为域值为35,长度域的值为2,两个地址域的值分别为两个第二节点的MAC地址时,表示该帧信号用于向该待定位节点返回该第一节点与该两个第二节点之间的测量信息。
通过使用包括类域、行为域、长度域及N个距离域的帧格式发送该测量信息,能够在尽可能少的占用带宽的前提下完整发送该测量信息所包括的信息,从而能够提高测量信息发送的成功率,进而提高定位效率。
需要说明的是,在图2E所提供的报告帧格式中,类域、行为域和长度域分别占1个字节,每个距离子域分别占9个字节,其中6个字节为节点的设备信息,2个节点为距离,1个节点为允许误差值。通过设置该帧格式中每个域所占字节数,能够在确保信息能够完整发送的前提下,进一步减少该帧信号对带宽的占用。当然,该报告帧中每个域所占的字节数可以与上述对应字节数不同,本公开实施例对此不作具体限定。
205、该待定位节点接收该第一节点返回的测量信息,该测量信息至少包括该N个第二节点的位置信息以及该第一节点与该N个第二节点之间的距离。
206、该待定位节点根据该测量信息、以及在该第一节点进行距离测量的过程中侦听到的测量时间信息,获取该待定位节点的位置信息。
当该待定位节点侦听范围内的第二节点的个数不同时,根据该测量信息、在该第一节点进行距离测量的过程中侦听到的测量时间信息,获取该待定位节点的位置信息的方法也不同,具体可以分为以下两种情况:
第一种情况、当该待定位节点的侦听范围内只存在两个第二节点,即N为2,也即是该待定位节点只能侦听到该第一节点与两个第二节点进行距离测量的过程时,如图2F所示,STA1为该第一节点,STA2为该待定位节点,AP1、AP2和AP3为该第二节点,M1为STA1与AP1之间的距离,M3为STA1与AP3之间的距离,L1为STA2与STA1之间的距离,L2为STA2与AP1之间的距离,L3为STA2与AP3之间的距离,当STA2只能侦听到STA1与AP1、STA1与AP3之间的距离测量过程时(即AP2位于该STA2的侦听范围之外),根据该测量信息、以及在该第一节点进行距离测量的过程中侦听到的测量时间信息,获取该待定位节点的位置信息的方法可以为:
在获取该待定位节点的位置信息之前,当该测量信息中至少包括M1、M3、(XSTA1,YSTA1)、(XAP1,YAP1)、(XAP3,YAP3)时,获取L1距离值;其中,(XSTA1,YSTA1)、(XAP1,YAP1)、(XAP3,YAP3)分别为STA1、AP1、AP3的位置信息。
根据该M1、该M3及该测量时间信息,分别获取D(STA2-STA1,STA2-AP1)=L1-L2和D(STA2-STA1,STA2-AP3)=L1-L3,该测量时间信息即为步骤201至步骤203中侦听到的时间信息, 获取该距离差的方法与步骤203中获取距离差的方法同理,此处不作赘述。
根据该D(STA2-STA1,STA2-AP1)和D(STA2-STA1,STA2-AP3)及所获取到的该L1,获取另外L2、L3两个节点间距;即当获取到的节点间距为L1时,根据D(STA2-STA1,STA2-AP1)=L1-L2和D(STA2-STA1,STA2-AP3)=L1-L3,获取L2和L3的值。
根据该L1、该L2和该L3以及(XSTA1,YSTA1)、(XAP1,YAP1)、(XAP3,YAP3),获取该待定位节点的位置信息;具体地,根据下述公式(3)获取STA2的位置信息(XSTA2,YSTA2),以实现对该STA2的定位目的。
Figure PCTCN2017097248-appb-000003
通过上述定位方法,在对该待定位节点进行定位的过程中,只需采用距离测量方法测量一次该待定位节点与第一节点或位于侦听范围内的任一第二节点之间的距离,根据该距离及向该第一节点获取到的测量信息、以及在对该第一节点与位于该待定位节点侦听范围内的两个第二节点之间的距离测量的侦听过程中侦听到的测量时间信息,实现对该待定位节点定位的目的,减少了该待定位节点与其他节点之间进行距离测量的次数,简化了定位过程,提高定位效率。
第二种情况、当该待定位节点的侦听范围内存在至少三个第二节点,即N为3,也即是该待定位节点能侦听到该第一节点与至少三个第二节点进行距离测量的过程时,如图2G所示,STA1为该第一节点,STA2为该待定位节点,AP1、AP2和AP3为该第二节点,M1为STA1与AP1之间的距离,M2为STA1与AP2之间的距离,M3为STA1与AP3之间的距离,L1为STA2与STA1之间的距离,L2为STA2与AP1之间的距离,L3为STA2与AP2之间的距离,L4为STA2与AP3之间的距离。当STA2能侦听到STA1与AP1、STA1与AP2、STA1与AP3之间的距离测量过程时,根据该测量信息、以及在该第一节点进行距离测量的过程中侦听到的测量时间信息,获取该待定位节点的位置信息的方法可以为:
根据该D(STA2-STA1,STA2-AP1)=L1-L2、D(STA2-STA1,STA2-AP2)=L1-L3和D(STA2-STA1,STA2-AP3)=L1-L4,分别获取D(STA2-AP2,STA2-AP1)=L3-L2、D(STA2-AP3,STA2-AP1)=L4-L2和D(STA2-AP3,STA2-AP2)=L4-L3,获取D(STA2-STA1,STA2-AP1)=L1-L2、D(STA2-STA1,STA2-AP2)=L1-L3和D(STA2-STA1,STA2-AP3)=L1-L4的方法与步骤203中获取距离差的方法同理,此处不作赘述;根据该D(STA2-AP2, STA2-AP1)、该D(STA2-AP3,STA2-AP1)、该D(STA2-AP3,STA2-AP2)、(XAP1,YAP1)、(XAP2,YAP2)、(XAP3,YAP3),获取该待定位节点的位置信息。
通过上述定位方法,能够实现在不使用该第一节点的位置信息的基础上,实现对该待定位节点的定位,由于该第一节点的位置信息也需要根据定位方法进行获取,所以难免存在误差,而如果不使用该第一节点的位置信息,只使用该待定位节点在该第一节点进行距离测量的过程中侦听到的测量时间信息、以及从该第一节点获取到的测量信息,对该待定位节点进行定位,能够避免使用第一节点的位置信息存在误差的基础上造成的更大误差,也即是,通过上述定位方法能够在减少该待定位节点与其他节点之间进行距离测量的次数、简化定位过程、提高定位效率的基础上,提高定位精度。
在本公开另一实施例中,该第一节点用于存储至少一个第一节点的测量信息。当该第一节点用于存储至少一个第一节点的测量信息时,该第一节点可以为位置已知的节点,如 AP节点,也可以为位置未知的节点,本公开实施例对此不作具体限定。该第一节点用于存储至少一个第一节点的测量信息,以在接收到待定位节点发送的第一请求时,向该待定位节点返回该待定位节点所需的测量信息;也即是,当该第一节点为用于存储至少一个第一节点的测量信息的节点时,上述两种情况对应的定位方法还可以用以下方法进行替代。
如图2G所示,STA1与AP1、AP2、AP3进行距离测量,实现对该STA1的定位以后,STA1将在该过程中获取到的STA1与AP1、AP2、AP3之间的距离、STA1的位置信息及STA1、AP1、AP2、AP3的设备信息向该第一节点上报,由该第一节点对该STA1所上报的信息进行存储,具体存储格式如表1所示:
表1
Address pair Range Max range error
MAC(STA1)&MAC(AP1) Range1 Error1
MAC(STA1)&MAC(AP2) Range2 Error2
MAC(STA1)&MAC(AP3) Range3 Error3
其中,Address pair对应的位置用于存储一对节点的设备信息,在本公开实施例中,以存储一对节点的MAC地址为例进行说明,Range对应的位置用于存储于Address pair对应的一对节点之间的距离,Max range error对应的位置用于存储对应的允许误差值。
该待定位节点在除该第一节点以外的其他第一节点进行距离测量时进行侦听,获取并存储测量时间信息,并在其完成测量信息上报之后,向该第一节点发送第一请求,该第一请求的帧格式包括类域、行为域、长度域及至少一个地址对域;其中,该类域用于指示该第一请求是否为public action帧信号;该行为域用于指示帧信号类型;该长度域用于存储该N个第二节点的设备信息的数目N;每个地址对域用于存储该第一节点的设备信息和该N个第二节点中任一第二节点的设备信息,用于指示获取该两个设备信息对应的两个节点之间的距离。
图2H是本公开实施例提供的另一种请求帧格式示意图,该类域和该行为域的定义与步骤204中同理,此处不作赘述;在图2H中,Length对应的位置为长度域,Address Pair对应的位置为地址对域,该长度域用于存储该N个第二节点的设备信息的数目N,即指示该第一请求中包括的设备信息对的数目,也即是该第一请求的帧信号中包括的地址对域的数目。
需要说明的是,该类域、行为域和长度域所占的字节数可以为1,地址对域所占的字节数可以为12,即每个地址所占的字节数为6,当然,如图2H所示的帧格式中,每个域所占的字节数可以为其他数值,本公开实施例对此不作具体限定。
该第一节点在接收到该第一请求后,根据该第一请求中的地址对域的值,向该待定位节点返回对应的测量信息,该测量信息的帧格式包括类域、行为域、长度域及至少一个距离域,该每个距离域包括地址对域、距离子域和允许误差值域;其中,该类域用于指示该测量信息是否为public action帧信号;该行为域用于指示帧信号类型;该长度域用于存储该N个第二节点的设备信息的数目N,即用于指示该测量信号中所包括的距离的数目;该每个距离域所包括的该地址对域用于存储该第一节点的设备信息和该N个第二节点中任一第二节点的设备信息,该距离子域用于存储该第一节点与该第二节点之间的距离,该允许误差值域用于指示该距离子域中所存储距离的最大允许测量误差值。
图2I是本公开实施例提供的另一种报告帧格式示意图,该报告帧用于向待定位节点发送该第一节点与至少一个第二节点之间的距离,该类域和该行为域的定义与步骤204中同理,此处不作赘述;在图2I中,Range Entry Count对应的位置为长度域,Range Entry对应的位置为距离子域,该长度域用于指示该测量信号中所包括的距离的数目,也即是用于指示该测量信息的帧信号中包括的距离域的数目。
需要说明的是,该类域、行为域和长度域所占的字节数可以为1,每个距离域所占的字节数可以为15,包括12个字节的地址对,2个字节的距离和1个字节的允许误差值,当然,如图2I所示的帧格式中,每个域所占的字节数可以为其他数值,本公开实施例对此不作具体限定。
该待定位节点根据从该第一节点获取到的测量信息、对第一节点进行距离测量的侦听过程中获取的测量时间信息,获取该待定位节点的位置信息的方法与第二种情况中获取该待定位节点的位置信息的方法同理,此处不再赘述。
通过由该第一节点对至少一个第一节点的测量信息进行存储,能够确保在该定位节点进行定位时,直接从该第一节点获取该待定位节点定位所需的测量信息实现定位,且当该第一节点的位置已知时,还能够进一步提高定位效率,减小定位误差。
在本公开又一实施例中,在该待定位节点进行侦听之前,也即是,在执行步骤201至步骤203之前,该待定位节点向该第一节点发送第二请求,该第二请求至少用于询问距离测量时间;接收该第一节点返回的距离测量时间;根据该距离测量时间,执行侦听该第一节点进行距离测量的步骤。
通过向该第一节点询问距离测量时间,并根据该第一节点返回的距离测量时间进入侦听状态,能够避免该待定位节点一直处于侦听状态导致能耗较大的情况,也即是,通过询问距离测量时间,能够减少该第一节点长时间未进行距离测量,而该待定位节点一直处于侦听状态所消耗的能量。
在本公开再一实施例中,该第二请求还用于询问是否同意返回该测量信息;相应地,该向第一节点发送第一请求之前,在接收到回复信息时,执行该向第一节点发送第一请求的步骤,该回复信息用于指示同意返回该测量信息。也即是,该第二请求用于向该第一节点询问是否同意协助该待定位节点进行定位,如果同意,则执行向该第一节点发送第一请求的步骤,如果不同意,则继续向其他第一节点发送该第二请求的步骤。
上述通过向第一节点询问是否同意返回该测量信息,在接收到用于指示同意返回该测量信息的回复信息时,再执行向该第一节点发送该第一请求的步骤,能够提高定位成功的几率,避免由于该第一节点无法或不同意返回测量信息导致等待时间过长,进一步提高定位效率。
本公开实施例提供的方法,待定位节点通过从第一节点获取测量信息,利用第一节点在与其他节点进行距离测量的过程中得到的测量信息,实现对该待定位节点自身的定位,减少了该待定位节点与其他节点进行距离测量以得到测量信息的次数,能够简化定位过程,提高定位效率;进一步地,通过向该第一节点询问距离测量时间,并根据该第一节点返回的距离测量时间进入侦听状态,能够避免该待定位节点一直处于侦听状态导致能耗较大的情况,也即是,通过询问距离测量时间,能够减少该第一节点长时间未进行距离测量,而该待定位节点一直处于侦听状态所消耗的能量。
图3是本公开实施例提供的一种定位装置框图。参照图3,该装置包括软件发送模块301,接收模块302和定位模块303。
发送模块301,用于向第一节点发送第一请求,所述第一请求包括N个第二节点的设备信息,所述N为大于或等于1的正整数;
接收模块302,用于接收所述第一节点返回的测量信息,所述测量信息至少包括所述N个第二节点的位置信息以及所述第一节点与所述N个第二节点之间的距离;
定位模块303,用于根据所述测量信息、以及在所述第一节点进行距离测量的过程中侦听到的测量时间信息,获取所述待定位节点的位置信息。
在本公开提供的第一种可能实现方式中,所述第一请求的帧格式包括类域、行为域、长度域及N个地址域;
其中,所述类域用于指示所述第一请求是否为公共行为帧信号;
所述行为域用于指示帧信号类型;
所述长度域用于存储所述N个第二节点的设备信息的数目N;
每个地址域用于存储一个所述第二节点的设备信息。
在本公开提供的第二种可能实现方式中,所述测量信息的帧格式包括类域、行为域、长度域及N个距离域,所述每个距离域包括地址域、距离子域和允许误差值域;
其中,所述类域用于指示所述测量信息是否为公共行为帧信号;
所述行为域用于指示帧信号类型;
所述长度域用于存储所述N个第二节点的设备信息的数目N;
所述每个距离域所包括的所述距离子域用于指示所述第一节点与所述N个第二节点中任一第二节点之间的距离,每个地址域用于存储一个所述第二节点的设备信息,所述允许误差值域用于指示所述距离的最大允许测量误差值。
在本公开提供的第三种可能实现方式中,所述装置还包括:
获取模块,用于当所述N为2时,所述测量信息包括M1、M3、(XSTA1,YSTA1)、(XAP1,YAP1)、(XAP3,YAP3)时,获取L1距离值;
相应地,所述定位模块303用于:
根据所述M1、所述M3及所述测量时间信息,分别获取D(STA2-STA1,STA2-AP1)=L1-L2和D(STA2-STA1,STA2-AP3)=L1-L3;
根据所述D(STA2-STA1,STA2-AP1)和D(STA2-STA1,STA2-AP3)及所获取到的所述L1距离值,获取所述L2距离值和所述L3距离值;
根据所述L1距离值、所述L2距离值和所述L3距离值以及(XSTA1,YSTA1)、(XAP1,YAP1)、(XAP3,YAP3),获取所述待定位节点的位置信息;
其中,STA1为所述第一节点,STA2为所述待定位节点,AP1和AP3为所述第二节点,M1为STA1与AP1之间的距离,M3为STA1与AP3之间的距离,(XSTA1,YSTA1)、(XAP1,YAP1)、(XAP3,YAP3)分别为STA1、AP1、AP3的位置信息,L1为STA2与STA1之间的距离,L2为STA2与AP1之间的距离,L3为STA2与AP3之间的距离。
在本公开提供的第四种可能实现方式中,所述定位模块303用于:
当所述N为3时,所述测量信息中包括M1、M2、M3、(XAP1,YAP1)、(XAP2,YAP2)、(XAP3,YAP3) 时,根据所述M1、所述M2、所述M3及所述测量时间信息,分别获取D(STA2-STA1,STA2-AP1)=L1-L2、D(STA2-STA1,STA2-AP2)=L1-L3和D(STA2-STA1,STA2-AP3)=L1-L4;
根据所述D(STA2-STA1,STA2-AP1)=L1-L2、D(STA2-STA1,STA2-AP2)=L1-L3和D(STA2-STA1,STA2-AP3)=L1-L4,分别获取D(STA2-AP2,STA2-AP1)=L3-L2、D(STA2-AP3,STA2-AP1)=L4-L2和D(STA2-AP3,STA2-AP2)=L4-L3;
根据所述D(STA2-AP2,STA2-AP1)、所述D(STA2-AP3,STA2-AP1)、所述D(STA2-AP3,STA2-AP2)、(XAP1,YAP1)、(XAP2,YAP2)、(XAP3,YAP3),获取所述待定位节点的位置信息;
其中,STA1为所述第一节点,STA2为所述节点自身,AP1、AP2和AP3为所述第二节点,M1为STA1与AP1之间的距离,M2为STA1与AP2之间的距离,M3为STA1与AP3之间的距离,(XAP1,YAP1)、(XAP2,YAP2)、(XAP3,YAP3)分别为AP1、AP2、AP3的位置信息,L1为STA2与STA1之间的距离,L2为STA2与AP1之间的距离,L3为STA2与AP2之间的距离,L4为STA2与AP3之间的距离。
在本公开提供的第五种可能实现方式中,所述第一节点用于存储至少一个第一节点的测量信息。
在本公开提供的第六种可能实现方式中,所述第一请求的帧格式包括类域、行为域、长度域及N个地址对域;
其中,所述类域用于指示所述第一请求是否为公共行为帧信号;
所述行为域用于指示帧信号类型;
所述长度域用于存储所述N个第二节点的设备信息的数目N;
每个地址对域用于存储所述第一节点的设备信息和所述N个第二节点中任一第二节点的设备信息。
在本公开提供的第七种可能实现方式中,所述测量信息的帧格式包括类域、行为域、长度域及N个距离域,所述每个距离域包括地址对域、距离子域和允许误差值域;
其中,所述类域用于指示所述测量信息是否为公共行为帧信号;
所述行为域用于指示帧信号类型;
所述长度域用于存储所述N个第二节点的设备信息的数目N;
所述每个距离域所包括的所述地址对域用于存储所述第一节点的设备信息和所述N个第二节点中任一第二节点的设备信息,所述距离子域用于存储所述第一节点与所述第二节点之间的距离,所述允许误差值域用于指示所述距离子域中所存储距离的最大允许测量误差值。
在本公开提供的第八种可能实现方式中,所述装置还包括:
侦听模块,用于对所述第一节点与所述N个第二节点中任一第二节点之间的距离测量过程进行侦听,得到所述测量时间信息;其中,所述侦听模块用于:
接收所述第二节点发送的测量信号;
存储所述测量信号的接收时间信息及所述第二节点的设备信息;
接收所述第一节点发送的应答信号;
存储所述应答信号的接收时间信息及所述第一节点的设备信息;
接收所述第二节点向所述待定位节点发送的信号收发时间信息,所述信号收发时间信息包括所述第二节点发送所述测量信号的时间信息和所述第二节点接收所述应答信号的时 间信息;
存储所述测量时间信息,所述测量时间信息包括将所述信号收发时间信息、所述测量信号的接收时间信息及所述应答信号的接收时间信息。
在本公开提供的第九种可能实现方式中,所述发送模块301还用于向所述第一节点发送第二请求,所述第二请求至少用于询问距离测量时间;
所述接收模块302还用于接收所述第一节点返回的距离测量时间;
所述侦听模块还用于根据所述距离测量时间,执行对所述第一节点与所述N个第二节点中任一第二节点之间的距离测量过程进行侦听的步骤。
在本公开提供的第十种可能实现方式中,所述第二请求还用于询问是否同意返回所述测量信息;相应地,所述发送模块301还用于在接收到回复信息时,执行所述向第一节点发送第一请求的步骤,所述回复信息用于指示同意返回所述测量信息。
需要说明的是:上述实施例提供的定位装置在进行定位时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将设备的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的定位装置与定位方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
本实施例提供了一种节点设备,该节点设备可以用于执行上述各个实施例中提供的定位方法。参见图4,该节点设备400包括:
节点设备400可以包括RF(Radio Frequency,射频)电路110、包括有一个或一个以上计算机可读存储介质的存储器120、输入单元130、显示单元140、传感器150、音频电路160、WiFi(Wireless Fidelity,无线保真)模块170、包括有一个或者一个以上处理核心的处理器180、以及电源190等部件。本领域技术人员可以理解,图4中示出的终端结构并不构成对终端的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。其中:
RF电路110可用于收发信息或通话过程中,信号的接收和发送,特别地,将基站的下行信息接收后,交由一个或者一个以上处理器180处理;另外,将涉及上行的数据发送给基站。通常,RF电路110包括但不限于天线、至少一个放大器、调谐器、一个或多个振荡器、用户身份模块(SIM)卡、收发信机、耦合器、LNA(Low Noise Amplifier,低噪声放大器)、双工器等。此外,RF电路110还可以通过无线通信与网络和其他设备通信,该无线通信可以通过WiFi模块170实现。
存储器120可用于存储软件程序以及模块,处理器180通过运行存储在存储器120的软件程序以及模块,从而执行各种功能应用以及数据处理。存储器120可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据节点设备400的使用所创建的数据(比如测量时间信息、音频数据、电话本等)等。此外,存储器120可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。相应地,存储器120还可以包括存储器控制器,以提供处理器180和输入单元130对存储器120的访问。
输入单元130可用于接收输入的数字或字符信息,以及产生与用户设置以及功能控制 有关的键盘、鼠标、操作杆、光学或者轨迹球信号输入。具体地,输入单元130可包括触敏表面131以及其他输入设备132。触敏表面131,也称为触摸显示屏或者触控板,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触敏表面131上或在触敏表面131附近的操作),并根据预先设定的程式驱动相应的连接装置。可选的,触敏表面131可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器180,并能接收处理器180发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触敏表面131。除了触敏表面131,输入单元130还可以包括其他输入设备132。具体地,其他输入设备132可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
显示单元140可用于显示由用户输入的信息或提供给用户的信息以及节点设备400的各种图形用户接口,这些图形用户接口可以由图形、文本、图标、视频和其任意组合来构成。显示单元140可包括显示面板141,可选的,可以采用LCD(Liquid Crystal Display,液晶显示器)、OLED(Organic Light-Emitting Diode,有机发光二极管)等形式来配置显示面板141。进一步的,触敏表面131可覆盖显示面板141,当触敏表面131检测到在其上或附近的触摸操作后,传送给处理器180以确定触摸事件的类型,随后处理器180根据触摸事件的类型在显示面板141上提供相应的视觉输出。虽然在图4中,触敏表面131与显示面板141是作为两个独立的部件来实现输入和输入功能,但是在某些实施例中,可以将触敏表面131与显示面板141集成而实现输入和输出功能。
节点设备400还可包括至少一种传感器150,比如光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板141的亮度,接近传感器可在节点设备400移动到耳边时,关闭显示面板141和/或背光。作为运动传感器的一种,重力加速度传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于节点设备400还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
音频电路160、扬声器161,传声器162可提供用户与节点设备400之间的音频接口。音频电路160可将接收到的音频数据转换后的电信号,传输到扬声器161,由扬声器161转换为声音信号输出;另一方面,传声器162将收集的声音信号转换为电信号,由音频电路160接收后转换为音频数据,再将音频数据输出处理器180处理后,经RF电路110以发送给比如另一终端,或者将音频数据输出至存储器120以便进一步处理。音频电路160还可能包括耳塞插孔,以提供外设耳机与节点设备400的通信。
WiFi属于短距离无线传输技术,节点设备400通过WiFi模块170可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问,WiFi模块170是本公开所提供的节点设备中的必须构成。
处理器180是节点设备400的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器120内的软件程序和/或模块,以及调用存储在存储器120 内的数据,执行节点设备400的各种功能和处理数据,从而对手机进行整体监控。可选的,处理器180可包括一个或多个处理核心;优选的,处理器180可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器180中。
节点设备400还包括给各个部件供电的电源190(比如电池),优选的,电源可以通过电源管理系统与处理器180逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。电源190还可以包括一个或一个以上的直流或交流电源、再充电系统、电源故障检测电路、电源转换器或者逆变器、电源状态指示器等任意组件。
尽管未示出,节点设备400还可以包括摄像头、蓝牙模块等,在此不再赘述。具体在本实施例中,终端的显示单元是触摸屏显示器,终端还包括有存储器,以及一个或者一个以上的程序,其中一个或者一个以上程序存储于存储器中,且经配置以由一个或者一个以上处理器执行。所述一个或者一个以上程序包含用于执行以下操作的指令:
向第一节点发送第一请求,所述第一请求至少包括所述第一节点的设备信息和至少两个第二节点的设备信息;
接收所述第一节点返回的测量信息,所述测量信息至少包括所述第一节点在进行距离测量的过程中获取到的所述第一节点的位置信息、所述至少两个第二节点的位置信息以及所述第一节点与所述至少两个第二节点之间的距离;
根据所述测量信息、在所述第一节点进行距离测量的过程中侦听到的测量时间信息,获取节点自身的位置信息。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本公开的较佳实施例,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (22)

  1. 一种定位方法,其特征在于,所述方法包括:
    待定位节点向第一节点发送第一请求,所述第一请求包括N个第二节点的设备信息,所述N为大于或等于1的正整数;
    接收所述第一节点返回的测量信息,所述测量信息至少包括所述N个第二节点的位置信息以及所述第一节点与所述N个第二节点之间的距离;
    根据所述测量信息、以及在所述第一节点进行距离测量的过程中侦听到的测量时间信息,获取所述待定位节点的位置信息。
  2. 根据权利要求1所述的方法,其特征在于,所述第一请求的帧格式包括类域、行为域、长度域及N个地址域;
    其中,所述类域用于指示所述第一请求是否为公共行为帧信号;
    所述行为域用于指示帧信号类型;
    所述长度域用于存储所述N个第二节点的设备信息的数目N;
    每个地址域用于存储一个所述第二节点的设备信息。
  3. 根据权利要求1所述的方法,其特征在于,所述测量信息的帧格式包括类域、行为域、长度域及N个距离域,所述每个距离域包括地址域、距离子域和允许误差值域;
    其中,所述类域用于指示所述测量信息是否为公共行为帧信号;
    所述行为域用于指示帧信号类型;
    所述长度域用于存储所述N个第二节点的设备信息的数目N;
    所述每个距离域所包括的所述距离子域用于指示所述第一节点与所述N个第二节点中任一第二节点之间的距离,每个地址域用于存储一个所述第二节点的设备信息,所述允许误差值域用于指示所述距离的最大允许测量误差值。
  4. 根据权利要求1所述的方法,其特征在于,所述根据所述测量信息、以及在所述第一节点进行距离测量的过程中侦听到的测量时间信息,获取所述待定位节点的位置信息之前,所述方法还包括:
    当所述N为2时,所述测量信息包括M1、M3、(XSTA1,YSTA1)、(XAP1,YAP1)、(XAP3,YAP3)时,获取L1距离值;
    相应地,根据所述测量信息、以及在所述第一节点进行距离测量的过程中侦听到的测量时间信息,获取所述待定位节点的位置信息包括:
    根据所述M1、所述M3及所述测量时间信息,分别获取D(STA2-STA1,STA2-AP1)=L1-L2和D(STA2-STA1,STA2-AP3)=L1-L3;
    根据所述D(STA2-STA1,STA2-AP1)和D(STA2-STA1,STA2-AP3)及所获取到的所述L1距离值,获取所述L2距离值和所述L3距离值;
    根据所述L1距离值、所述L2距离值和所述L3距离值以及(XSTA1,YSTA1)、(XAP1,YAP1)、(XAP3,YAP3),获取所述待定位节点的位置信息;
    其中,STA1为所述第一节点,STA2为所述待定位节点,AP1和AP3为所述第二节点,M1为STA1与AP1之间的距离,M3为STA1与AP3之间的距离,(XSTA1,YSTA1)、(XAP1,YAP1)、(XAP3,YAP3)分别为STA1、AP1、AP3的位置信息,L1为STA2与STA1之间的距离,L2为 STA2与AP1之间的距离,L3为STA2与AP3之间的距离。
  5. 根据权利要求1所述的方法,其特征在于,根据所述测量信息、以及在所述第一节点进行距离测量的过程中侦听到的测量时间信息,获取所述待定位节点的位置信息,包括:
    当所述N为3时,所述测量信息中包括M1、M2、M3、(XAP1,YAP1)、(XAP2,YAP2)、(XAP3,YAP3)时,根据所述M1、所述M2、所述M3及所述测量时间信息,分别获取D(STA2-STA1,STA2-AP1)=L1-L2、D(STA2-STA1,STA2-AP2)=L1-L3和D(STA2-STA1,STA2-AP3)=L1-L4;
    根据所述D(STA2-STA1,STA2-AP1)=L1-L2、D(STA2-STA1,STA2-AP2)=L1-L3和D(STA2-STA1,STA2-AP3)=L1-L4,分别获取D(STA2-AP2,STA2-AP1)=L3-L2、D(STA2-AP3,STA2-AP1)=L4-L2和D(STA2-AP3,STA2-AP2)=L4-L3;
    根据所述D(STA2-AP2,STA2-AP1)、所述D(STA2-AP3,STA2-AP1)、所述D(STA2-AP3,STA2-AP2)、(XAP1,YAP1)、(XAP2,YAP2)、(XAP3,YAP3),获取所述待定位节点的位置信息;
    其中,STA1为所述第一节点,STA2为所述节点自身,AP1、AP2和AP3为所述第二节点,M1为STA1与AP1之间的距离,M2为STA1与AP2之间的距离,M3为STA1与AP3之间的距离,(XAP1,YAP1)、(XAP2,YAP2)、(XAP3,YAP3)分别为AP1、AP2、AP3的位置信息,L1为STA2与STA1之间的距离,L2为STA2与AP1之间的距离,L3为STA2与AP2之间的距离,L4为STA2与AP3之间的距离。
  6. 根据权利要求1所述的方法,其特征在于,所述第一节点用于存储至少一个第一节点的测量信息。
  7. 根据权利要求6所述的方法,其特征在于,所述第一请求的帧格式包括类域、行为域、长度域及N个地址对域;
    其中,所述类域用于指示所述第一请求是否为公共行为帧信号;
    所述行为域用于指示帧信号类型;
    所述长度域用于存储所述N个第二节点的设备信息的数目N;
    每个地址对域用于存储所述第一节点的设备信息和所述N个第二节点中任一第二节点的设备信息。
  8. 根据权利要求6所述的方法,其特征在于,所述测量信息的帧格式包括类域、行为域、长度域及N个距离域,所述每个距离域包括地址对域、距离子域和允许误差值域;
    其中,所述类域用于指示所述测量信息是否为公共行为帧信号;
    所述行为域用于指示帧信号类型;
    所述长度域用于存储所述N个第二节点的设备信息的数目N;
    所述每个距离域所包括的所述地址对域用于存储所述第一节点的设备信息和所述N个第二节点中任一第二节点的设备信息,所述距离子域用于存储所述第一节点与所述第二节点之间的距离,所述允许误差值域用于指示所述距离子域中所存储距离的最大允许测量误差值。
  9. 根据权利要求1所述的方法,其特征在于,所述待定位节点向第一节点发送第一请求之前,所述方法还包括:
    所述待定位节点对所述第一节点与所述N个第二节点中任一第二节点之间的距离测量过程进行侦听,得到所述测量时间信息;其中,所述待定位节点对所述第一节点与所述第二节点之间的距离测量过程进行侦听包括:
    接收所述第二节点发送的测量信号;
    存储所述测量信号的接收时间信息及所述第二节点的设备信息;
    接收所述第一节点发送的应答信号;
    存储所述应答信号的接收时间信息及所述第一节点的设备信息;
    接收所述第二节点向所述待定位节点发送的信号收发时间信息,所述信号收发时间信息包括所述第二节点发送所述测量信号的时间信息和所述第二节点接收所述应答信号的时间信息;
    存储所述测量时间信息,所述测量时间信息包括将所述信号收发时间信息、所述测量信号的接收时间信息及所述应答信号的接收时间信息。
  10. 根据权利要求9所述的方法,其特征在于,所述待定位节点对所述第一节点与所述N个第二节点中任一第二节点之间的距离测量过程进行侦听之前,所述方法还包括:
    向所述第一节点发送第二请求,所述第二请求至少用于询问距离测量时间;
    接收所述第一节点返回的距离测量时间;
    根据所述距离测量时间,执行对所述第一节点与所述N个第二节点中任一第二节点之间的距离测量过程进行侦听的步骤。
  11. 根据权利要求10所述的方法,其特征在于,所述第二请求还用于询问是否同意返回所述测量信息;相应地,所述待定位节点向第一节点发送第一请求之前,所述方法还包括:
    所述待定位节点在接收到回复信息时,执行所述向第一节点发送第一请求的步骤,所述回复信息用于指示同意返回所述测量信息。
  12. 一种定位装置,其特征在于,应用于待定位节点,所述装置包括:
    发送模块,用于向第一节点发送第一请求,所述第一请求包括N个第二节点的设备信息,所述N为大于或等于1的正整数;
    接收模块,用于接收所述第一节点返回的测量信息,所述测量信息至少包括所述N个第二节点的位置信息以及所述第一节点与所述N个第二节点之间的距离;
    定位模块,用于根据所述测量信息、以及在所述第一节点进行距离测量的过程中侦听到的测量时间信息,获取所述待定位节点的位置信息。
  13. 根据权利要求12所述的装置,其特征在于,所述第一请求的帧格式包括类域、行为域、长度域及N个地址域;
    其中,所述类域用于指示所述第一请求是否为公共行为帧信号;
    所述行为域用于指示帧信号类型;
    所述长度域用于存储所述N个第二节点的设备信息的数目N;
    每个地址域用于存储一个所述第二节点的设备信息。
  14. 根据权利要求12所述的装置,其特征在于,所述测量信息的帧格式包括类域、行为域、长度域及N个距离域,所述每个距离域包括地址域、距离子域和允许误差值域;
    其中,所述类域用于指示所述测量信息是否为公共行为帧信号;
    所述行为域用于指示帧信号类型;
    所述长度域用于存储所述N个第二节点的设备信息的数目N;
    所述每个距离域所包括的所述距离子域用于指示所述第一节点与所述N个第二节点中任一第二节点之间的距离,每个地址域用于存储一个所述第二节点的设备信息,所述允许误差值域用于指示所述距离的最大允许测量误差值。
  15. 根据权利要求12所述的装置,其特征在于,所述装置还包括:
    获取模块,用于当所述N为2时,所述测量信息包括M1、M3、(XSTA1,YSTA1)、(XAP1,YAP1)、(XAP3,YAP3)时,获取L1距离值;
    相应地,所述定位模块用于:
    根据所述M1、所述M3及所述测量时间信息,分别获取D(STA2-STA1,STA2-AP1)=L1-L2和D(STA2-STA1,STA2-AP3)=L1-L3;
    根据所述D(STA2-STA1,STA2-AP1)和D(STA2-STA1,STA2-AP3)及所获取到的所述L1距离值,获取所述L2距离值和所述L3距离值;
    根据所述L1距离值、所述L2距离值和所述L3距离值以及(XSTA1,YSTA1)、(XAP1,YAP1)、(XAP3,YAP3),获取所述待定位节点的位置信息;
    其中,STA1为所述第一节点,STA2为所述待定位节点,AP1和AP3为所述第二节点,M1为STA1与AP1之间的距离,M3为STA1与AP3之间的距离,(XSTA1,YSTA1)、(XAP1,YAP1)、(XAP3,YAP3)分别为STA1、AP1、AP3的位置信息,L1为STA2与STA1之间的距离,L2为STA2与AP1之间的距离,L3为STA2与AP3之间的距离。
  16. 根据权利要求12所述的装置,其特征在于,所述定位模块用于:
    当所述N为3时,所述测量信息中包括M1、M2、M3、(XAP1,YAP1)、(XAP2,YAP2)、(XAP3,YAP3)时,根据所述M1、所述M2、所述M3及所述测量时间信息,分别获取D(STA2-STA1,STA2-AP1)=L1-L2、D(STA2-STA1,STA2-AP2)=L1-L3和D(STA2-STA1,STA2-AP3)=L1-L4;
    根据所述D(STA2-STA1,STA2-AP1)=L1-L2、D(STA2-STA1,STA2-AP2)=L1-L3和D(STA2-STA1,STA2-AP3)=L1-L4,分别获取D(STA2-AP2,STA2-AP1)=L3-L2、D(STA2-AP3,STA2-AP1)=L4-L2和D(STA2-AP3,STA2-AP2)=L4-L3;
    根据所述D(STA2-AP2,STA2-AP1)、所述D(STA2-AP3,STA2-AP1)、所述D(STA2-AP3,STA2-AP2)、(XAP1,YAP1)、(XAP2,YAP2)、(XAP3,YAP3),获取所述待定位节点的位置信息;
    其中,STA1为所述第一节点,STA2为所述节点自身,AP1、AP2和AP3为所述第二节点,M1为STA1与AP1之间的距离,M2为STA1与AP2之间的距离,M3为STA1与AP3之间的距离,(XAP1,YAP1)、(XAP2,YAP2)、(XAP3,YAP3)分别为AP1、AP2、AP3的位置信息,L1为STA2与STA1之间的距离,L2为STA2与AP1之间的距离,L3为STA2与AP2之间的距离,L4为STA2与AP3之间的距离。
  17. 根据权利要求12所述的装置,其特征在于,所述第一节点用于存储至少一个第一节点的测量信息。
  18. 根据权利要求17所述的装置,其特征在于,所述第一请求的帧格式包括类域、行为域、长度域及N个地址对域;
    其中,所述类域用于指示所述第一请求是否为公共行为帧信号;
    所述行为域用于指示帧信号类型;
    所述长度域用于存储所述N个第二节点的设备信息的数目N;
    每个地址对域用于存储所述第一节点的设备信息和所述N个第二节点中任一第二节点的设备信息。
  19. 根据权利要求17所述的装置,其特征在于,所述测量信息的帧格式包括类域、行为域、长度域及N个距离域,所述每个距离域包括地址对域、距离子域和允许误差值域;
    其中,所述类域用于指示所述测量信息是否为公共行为帧信号;
    所述行为域用于指示帧信号类型;
    所述长度域用于存储所述N个第二节点的设备信息的数目N;
    所述每个距离域所包括的所述地址对域用于存储所述第一节点的设备信息和所述N个第二节点中任一第二节点的设备信息,所述距离子域用于存储所述第一节点与所述第二节点之间的距离,所述允许误差值域用于指示所述距离子域中所存储距离的最大允许测量误差值。
  20. 根据权利要求12所述的装置,其特征在于,所述装置还包括:
    侦听模块,用于对所述第一节点与所述N个第二节点中任一第二节点之间的距离测量过程进行侦听,得到所述测量时间信息;其中,所述侦听模块用于:
    接收所述第二节点发送的测量信号;
    存储所述测量信号的接收时间信息及所述第二节点的设备信息;
    接收所述第一节点发送的应答信号;
    存储所述应答信号的接收时间信息及所述第一节点的设备信息;
    接收所述第二节点向所述待定位节点发送的信号收发时间信息,所述信号收发时间信息包括所述第二节点发送所述测量信号的时间信息和所述第二节点接收所述应答信号的时间信息;
    存储所述测量时间信息,所述测量时间信息包括将所述信号收发时间信息、所述测量信号的接收时间信息及所述应答信号的接收时间信息。
  21. 根据权利要求20所述的装置,其特征在于,所述发送模块还用于向所述第一节点发送第二请求,所述第二请求至少用于询问距离测量时间;
    所述接收模块还用于接收所述第一节点返回的距离测量时间;
    所述侦听模块还用于根据所述距离测量时间,执行对所述第一节点与所述N个第二节点中任一第二节点之间的距离测量过程进行侦听的步骤。
  22. 根据权利要求21所述的装置,其特征在于,所述第二请求还用于询问是否同意返回所述测量信息;相应地,所述发送模块还用于在接收到回复信息时,执行所述向第一节点发送第一请求的步骤,所述回复信息用于指示同意返回所述测量信息。
PCT/CN2017/097248 2016-08-15 2017-08-11 定位方法及装置 WO2018033031A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17841004.9A EP3492942A4 (en) 2016-08-15 2017-08-11 POSITIONING METHOD AND DEVICE
US16/277,257 US10785743B2 (en) 2016-08-15 2019-02-15 Positioning method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610674329.5A CN107765213B (zh) 2016-08-15 2016-08-15 定位方法及装置
CN201610674329.5 2016-08-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/277,257 Continuation US10785743B2 (en) 2016-08-15 2019-02-15 Positioning method and apparatus

Publications (1)

Publication Number Publication Date
WO2018033031A1 true WO2018033031A1 (zh) 2018-02-22

Family

ID=61196364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/097248 WO2018033031A1 (zh) 2016-08-15 2017-08-11 定位方法及装置

Country Status (4)

Country Link
US (1) US10785743B2 (zh)
EP (1) EP3492942A4 (zh)
CN (1) CN107765213B (zh)
WO (1) WO2018033031A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108156658B (zh) * 2016-12-06 2021-05-14 华为技术有限公司 基于协作节点的定位方法、待定位节点及协作节点
US10914814B1 (en) * 2019-12-26 2021-02-09 Dialog Semiconductor B.V. Two phase time difference of arrival location

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009229393A (ja) * 2008-03-25 2009-10-08 Fujitsu Ltd 無線測位システム及び無線測位方法
US20120314587A1 (en) * 2011-06-07 2012-12-13 Qualcomm Atheros, Inc. Hybrid positioning mechanism for wireless communication devices
US20140187259A1 (en) * 2013-01-03 2014-07-03 Csr Technology Inc. Method for determining location of wireless devices
CN104581739A (zh) * 2013-10-17 2015-04-29 宇龙计算机通信科技(深圳)有限公司 无线通信方法和无线通信设备
US9288625B2 (en) * 2014-06-30 2016-03-15 Qualcomm Technologies International, Ltd. Method for determining location of wireless devices based on information within messages received from other network devices
CN105492922A (zh) * 2013-08-30 2016-04-13 高通股份有限公司 利用往返时间信息的被动定位

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2485408C (en) * 2002-05-31 2012-05-15 Telecom Italia S.P.A. Method for locating mobile terminals, system and components therefor
US8971956B2 (en) * 2006-10-18 2015-03-03 Samsung Electronics Co., Ltd. Method of providing neighbor information and method of generating neighbor location information
CN101203024B (zh) * 2006-12-15 2012-05-23 华为技术有限公司 无线网络搜索方法和系统及多模设备
CN102695269B (zh) * 2011-03-21 2015-08-19 华为技术有限公司 一种定位修正方法、相关装置以及系统
US20140126394A1 (en) * 2012-11-08 2014-05-08 Adrian P. Stephens ADAPTIVE OPTIMIZATION OF TIME OF FLIGHT (ToF) EXCHANGE
US9807815B2 (en) * 2012-12-11 2017-10-31 Intel Corporation Apparatus, system and method of simultaneous connectivity to location origin transceivers
US9456306B2 (en) * 2013-09-30 2016-09-27 Broadcom Corporation Fine timing measurement transmissions between APs

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009229393A (ja) * 2008-03-25 2009-10-08 Fujitsu Ltd 無線測位システム及び無線測位方法
US20120314587A1 (en) * 2011-06-07 2012-12-13 Qualcomm Atheros, Inc. Hybrid positioning mechanism for wireless communication devices
US20140187259A1 (en) * 2013-01-03 2014-07-03 Csr Technology Inc. Method for determining location of wireless devices
CN105492922A (zh) * 2013-08-30 2016-04-13 高通股份有限公司 利用往返时间信息的被动定位
CN104581739A (zh) * 2013-10-17 2015-04-29 宇龙计算机通信科技(深圳)有限公司 无线通信方法和无线通信设备
US9288625B2 (en) * 2014-06-30 2016-03-15 Qualcomm Technologies International, Ltd. Method for determining location of wireless devices based on information within messages received from other network devices

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3492942A4 *

Also Published As

Publication number Publication date
US20190182796A1 (en) 2019-06-13
EP3492942A1 (en) 2019-06-05
CN107765213A (zh) 2018-03-06
US10785743B2 (en) 2020-09-22
EP3492942A4 (en) 2019-09-04
CN107765213B (zh) 2020-08-25

Similar Documents

Publication Publication Date Title
US10831161B2 (en) Method and device for sending communication message
WO2020221042A1 (zh) Prs资源配置方法、测量间隔配置方法和相关设备
WO2020164594A1 (zh) 测量处理方法、参数配置方法、终端和网络设备
WO2019128581A1 (zh) 配置信息的传输方法和相关设备
WO2018103439A1 (zh) 一种信息处理方法及终端设备
WO2018040813A1 (zh) 音视频通信方法、终端、服务器及存储介质
US11259323B2 (en) Random access method and user equipment
WO2021179966A1 (zh) 信号传输方法、信息指示方法和通信设备
WO2019223684A1 (zh) 测量上报方法、测量配置方法、终端和网络侧设备
WO2015081880A1 (zh) 集群业务属性处理的方法、装置和系统
WO2020228537A1 (zh) 资源确定方法、资源指示方法、终端及网络侧设备
CN112269842A (zh) 一种信息处理方法、装置、存储介质及计算机设备
WO2019242633A1 (zh) 测量间隔的处理方法、终端及网络节点
WO2018033031A1 (zh) 定位方法及装置
WO2019191996A1 (zh) 一种数据传输方法及设备
US11812281B2 (en) Measuring method, terminal and network side device
WO2021057733A1 (zh) 先听后发lbt子带划分方法、装置、设备及介质
WO2018201391A1 (zh) 同步信号块的定时方法及相关产品
WO2017076279A1 (zh) 一种更新路由表项的方法、装置及系统
WO2018082031A1 (zh) 数据发送方法及用户设备
WO2021155799A1 (zh) 系统运行模式确定方法和终端
WO2021093767A1 (zh) 资源确定、资源配置方法、终端及网络设备
WO2021114478A1 (zh) 测距方法及其装置、存储介质及终端设备
WO2020107169A1 (zh) 一种音频模式校正的方法、装置及电子设备
WO2015089825A1 (zh) 一种辅载波变更的方法、终端、网络设备及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17841004

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017841004

Country of ref document: EP

Effective date: 20190226