WO2018032494A1 - Vehicle intrusion detection system and process implemented in a vehicle - Google Patents

Vehicle intrusion detection system and process implemented in a vehicle Download PDF

Info

Publication number
WO2018032494A1
WO2018032494A1 PCT/CN2016/095976 CN2016095976W WO2018032494A1 WO 2018032494 A1 WO2018032494 A1 WO 2018032494A1 CN 2016095976 W CN2016095976 W CN 2016095976W WO 2018032494 A1 WO2018032494 A1 WO 2018032494A1
Authority
WO
WIPO (PCT)
Prior art keywords
microphone
frequency range
intrusion detection
vehicle
detection system
Prior art date
Application number
PCT/CN2016/095976
Other languages
French (fr)
Inventor
Stephane SCHULER
Original Assignee
Valeo Interior Controls (Shenzhen) Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Interior Controls (Shenzhen) Co., Ltd. filed Critical Valeo Interior Controls (Shenzhen) Co., Ltd.
Priority to PCT/CN2016/095976 priority Critical patent/WO2018032494A1/en
Publication of WO2018032494A1 publication Critical patent/WO2018032494A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R25/00Fittings or systems for preventing or indicating unauthorised use or theft of vehicles
    • B60R25/10Fittings or systems for preventing or indicating unauthorised use or theft of vehicles actuating a signalling device

Definitions

  • the invention relates to intrusion detection systems for vehicles.
  • the invention relates to a vehicle intrusion detection system and to a process implemented in a vehicle.
  • Vehicle intrusion detection systems based on ultrasounds generally include an ultrasonic transmitter, at least an ultrasonic receiver and a circuit measuring the time and/or frequency shift between a signal sent by the ultrasonic transmitter and the corresponding signal received by the ultrasonic receiver.
  • the invention provides a vehicle intrusion detection system comprising an ultrasonic transmitter adapted to transmit at least one pulse in the ultrasonic frequency range; at least one microphone having a frequency response covering the audible frequency range and at least partly the ultrasonic frequency range; and a control unit adapted to detect signals measured by the microphone in the ultrasonic frequency range.
  • a vehicle intrusion detection system is thus provided, which make use of a microphone that can be used for other purposes, as described below. Indeed, a vehicle is nowadays frequently equipped with such a microphone. Dedicated ultrasonic receivers can thus be spared.
  • the vehicle intrusion detection system comprises a plurality of microphones
  • control unit is adapted to process signals respectively received from the microphones
  • the microphones are part of (or forming) a microphone matrix
  • said at least one microphone is a MEMS microphone
  • control unit is adapted to determine a time shift between transmission of a signal by the ultrasonic transmitter and reception of a corresponding signal by the microphone;
  • control unit is adapted to determine a frequency shift between a signal transmitted by the ultrasonic transmitter and a corresponding signal received by the microphone
  • control unit is designed to switch between a first mode (voice mode or audio mode) , wherein signals measured by the microphone in the audible frequency range are processed, and a second mode (ultrasonic mode) , wherein signals measured by the microphone in the ultrasonic frequency range are processed;
  • a voice signal obtained by processing said signals measured by the microphone in the audible frequency range is provided to a (separate) media unit;
  • control unit is designed to be set in the first mode when the vehicle is not in a parked and/or locked state and in the second mode when the vehicle is in a parked and/or locked state, normally with no passenger inside (intrusion detection function active) .
  • the invention also provides a process implemented in a vehicle and comprising the following steps:
  • FIG. 1 shows a vehicle equipped with an intrusion detection system in accordance with the invention.
  • Figure 2 is a schematic diagram showing some components of electronic systems embedded in the vehicle.
  • FIG. 1 shows a vehicle 2 equipped with an intrusion detection system in accordance with the invention.
  • the vehicle 2 includes an overhead console 5 located under the roof 4 of the vehicle 2, in the vicinity of the windscreen 6.
  • the intrusion detection system comprises a microphone matrix 10, which is located in the overhead console 5 in the present embodiment, and an ultrasonic transmitter 8 (or ultrasonic sounder) .
  • the ultrasonic transmitter 8 is located underneath the roof 8, in a central region of the passenger compartment.
  • the ultrasonic transmitter 8 could however be located elsewhere in the passenger compartment, possibly in the overhead console 5 (in the vicinity of the microphone matrix 10) .
  • the ultrasonic transmitter 8 could be mounted on the same (printed circuit) board like microphones of the microphone matrix 10.
  • the microphone matrix 10 is used as a receiver for ultrasonic signals transmitted by the ultrasonic transmitter 8 in order to perform intrusion detection and as a sensor for audible signals, such as vocal signals, propagating within the passenger compartment.
  • FIG. 2 is a schematic diagram showing some components of electronic systems embedded in the vehicle 2, including the vehicle intrusion detection system 20 mentioned above.
  • the vehicle intrusion detection system 20 comprises an electronic control unit 22 (or ECU) , the microphone matrix 10 and the ultrasonic transmitter 8.
  • the microphone matrix 10 comprises at least three microphones 11, 12, 13 (and possibly more than three microphones) .
  • the microphone matrix 10 comprises for instance between three and ten microphones.
  • Microphones 11, 12, 13 of the microphone matrix 10 are positioned in a spaced relationship (e.g. a geometric relationship) , making it possible to evaluate a phase difference between acoustic signals received at the various microphones 11, 12, 13 and to compute the direction of propagation of these acoustic signals (and hence the location of the source of these acoustic signals) based on the phase differences.
  • a spaced relationship e.g. a geometric relationship
  • Microphones 11, 12, 13 are for instance MEMS microphones (MEMS standing for Micro Electro Mechanical System) .
  • Each microphone 11, 12, 13 has a frequency response covering the audible frequency range and at least partly the ultrasonic frequency range.
  • the audible frequency range may for instance be defined as frequencies below 20 kHz, while the ultrasonic frequency range may be defined as frequencies between 20 kHz and 80 kHz in the application concerned.
  • the electronic control unit 22 comprises an analysis module 24, a control module 26 and a driving module 28 connected to the ultrasonic transmitter 8.
  • modules 24, 26, 28 are represented as separate functional blocks on Figure 2 for the sake of clarity, some of these modules could be practically integrated in a common electronic circuit. Functions performed by any of these modules 24, 26, 28 (as described below) may then result from a microcontroller executing computer program instructions designed therefor and stored in a memory of the microcontroller.
  • the analysis module 24 receives electric signals S 1 , S 2 , S 3 respectively corresponding to acoustic signals captured by the microphones 11, 12, 13 of the microphone matrix 10.
  • the analysis module 24 is adapted to either process the audible components of the electric signals S 1 , S 2 , S 3 in order to produce a voice signal V (audio mode) , or the ultrasonic components of the electric signals S 1 , S 2 , S 3 in order to produce a signal U used for intrusion detection as explained below (intrusion detection mode) .
  • the analysis module 24 is designed to perform an adaptive filtering of these signals in order to maximise the signal to noise ratio of the related signal (corresponding either to a voice signal in the audible frequency range or to a signal in the ultrasonic frequency range, as explained above) .
  • the control module 26 is adapted to command the driving module 28 such that the ultrasonic transmitter 8 transmits an ultrasonic signal having a desired shape, such as a pulsed sequence.
  • Systems shown in Figure 2 also include a media unit 30 (here a telecommunication unit, e.g. a Hands Free Telecommunication unit) which receives the voice signal V from the analysis unit 24 and generates an electric signal representing the voice signal V, which electric signal is transmitted as radio waves by an antenna 32.
  • a media unit 30 here a telecommunication unit, e.g. a Hands Free Telecommunication unit
  • receives the voice signal V from the analysis unit 24 and generates an electric signal representing the voice signal V, which electric signal is transmitted as radio waves by an antenna 32.
  • Media unit 30 is for instance suited to send this representation of the voice signal V over a mobile telephone network.
  • media unit 30 includes for instance a subscriber identity module (not represented) storing credentials allowing access to the mobile telephone network.
  • microphone matrix 10, analysis module 24, media unit 30 and antenna 32 provide a solution for hands free communication with a communication partner.
  • a management unit 34 (such as a Body Controller Unit or BCM) generates a state information S indicating whether the vehicle 2 is in a parked locked condition with no passenger inside (in which case the intrusion detection function should be activated) or not.
  • the state information S is provided to the control module 26 of the electronic control unit 22.
  • the systems shown in Figure 2 may operate, for instance, as follows.
  • control module 26 When the vehicle 2 is in a parked locked state, the control module 26 receives the information S indicating this state.
  • the control module 26 consequently commands transmission of a pulse train by the ultrasonic transmitter 8 (via the driving module 28) and sends a command C to the analysis module 24 setting the analysis module 24 (and hence the electronic control unit 22) in the intrusion detection mode.
  • the analysis module 24 processes ultrasonic frequency range components of the signals S 1 , S 2 , S 3 received from the microphones 11, 12, 13 and therefore detects the pulse train transmitted by the ultrasonic transmitter 8, possibly after reflection on an element of the passenger compartment or on an intruder.
  • adaptive filtering is performed (by analysis module 24) to filter out of the plurality of signalsS 1 , S 2 , S 3 a single signal U representing the signals detected by the microphone matrix 10 in the ultrasonic frequency range.
  • the signal U can thus be forwarded to the control module 26 for comparison with the signal (here a pulse train) transmitted by the ultrasonic transmitter 8 in order to determine:
  • Intrusion detection can be performed on the basis of the determined time shift and/or on the basis of the determined frequency shift by known techniques.
  • control module 26 receives the information S having a corresponding value.
  • the control module 26 then stops any transmission by the ultrasonic transmitter 8 and sends a command C to the analysis module 24 setting the analysis module 24 (and hence the electronic control unit 22) in the audio mode.
  • the analysis module 24 thus produces the voice signal V representative of acoustic signals in the audible frequency range propagating (to the microphone matrix 10) in the passenger compartment.
  • the media unit 30 may thus send (using the antenna 32) radio waves representing the voice signal V to a base station of a mobile telephone network, allowing a hands free telephone conversation in the vehicle 2.
  • At least an additional condition may in practice be required for the analysis module 24 to be activated to produce the voice signal V (i.e. to be switched to the audio mode) .
  • Such an additional condition may for instance be powering of electrical systems that are not powered in the parked locked state of the vehicle 2 and/or establishing a communication by the media unit 30.

Abstract

A vehicle intrusion detection system (20) comprises an ultrasonic transmitter (8) adapted to transmit at least one pulse in the ultrasonic frequency range and at least one microphone (11; 12; 13) having a frequency response covering the audible frequency range and at least partly the ultrasonic frequency range. The vehicle intrusion detection system (20) comprises a control unit (22) suited to detect signals measured by the microphone (11; 12; 13) in the ultrasonic frequency range. A process implemented in the vehicle is also described.

Description

VEHICLE INTRUSION DETECTION SYSTEM AND PROCESS IMPLEMENTED IN A VEHICLE
TECHNICAL FIELD OF THE INVENTION
The invention relates to intrusion detection systems for vehicles.
More precisely the invention relates to a vehicle intrusion detection system and to a process implemented in a vehicle.
BACKGROUND INFORMATION AND PRIOR ART
Vehicle intrusion detection systems based on ultrasounds generally include an ultrasonic transmitter, at least an ultrasonic receiver and a circuit measuring the time and/or frequency shift between a signal sent by the ultrasonic transmitter and the corresponding signal received by the ultrasonic receiver.
SUMMARY OF THE INVENTION
In this context, the invention provides a vehicle intrusion detection system comprising an ultrasonic transmitter adapted to transmit at least one pulse in the ultrasonic frequency range; at least one microphone having a frequency response covering the audible frequency range and at least partly the ultrasonic frequency range; and a control unit adapted to detect signals measured by the microphone in the ultrasonic frequency range.
A vehicle intrusion detection system is thus provided, which make use of a microphone that can be used for other purposes, as described below. Indeed, a vehicle is nowadays frequently equipped with such a microphone. Dedicated ultrasonic receivers can thus be spared.
According to possible additional features (which are to be understood as non limiting) :
- the vehicle intrusion detection system comprises a plurality of microphones;
- the control unit is adapted to process signals respectively received from the microphones;
- the microphones are part of (or forming) a microphone matrix;
- said at least one microphone is a MEMS microphone;
- the control unit is adapted to determine a time shift between transmission of a signal by the ultrasonic transmitter and reception of a corresponding signal by the microphone;
- the control unit is adapted to determine a frequency shift between a signal transmitted by the ultrasonic transmitter and a corresponding signal received by the microphone;
- the control unit is designed to switch between a first mode (voice mode or audio mode) , wherein signals measured by the microphone in the audible frequency range are processed, and a second mode (ultrasonic mode) , wherein signals measured by the microphone in the ultrasonic frequency range are processed;
- a voice signal obtained by processing said signals measured by the microphone in the audible frequency range is provided to a (separate) media unit;
- the control unit is designed to be set in the first mode when the vehicle is not in a parked and/or locked state and in the second mode when the vehicle is in a parked and/or locked state, normally with no passenger inside (intrusion detection function active) .
The invention also provides a process implemented in a vehicle and comprising the following steps:
- transmitting at least one pulse in the ultrasonic frequency range;
- detecting signals measured in the ultrasonic frequency range by at least one microphone having a frequency response covering the audible frequency range and, with sufficient sensitivity, (at least partly) the ultrasonic frequency range;
- performing an intrusion detection function based on the detected signals;
- inactivating the intrusion detection function;
- processing signals measured by the microphone in the audible frequency range;
- performing a hands free communication using the processed signals.
Other features and advantages of the embodiments of the present invention will be better understood upon reading of preferred embodiments thereof with reference to the appended drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 shows a vehicle equipped with an intrusion detection system in accordance with the invention.
Figure 2 is a schematic diagram showing some components of electronic systems embedded in the vehicle.
DETAILED DESCRIPTION OF EXAMPLE (S)
Figure 1 shows a vehicle 2 equipped with an intrusion detection system in accordance with the invention.
The vehicle 2 includes an overhead console 5 located under the roof 4 of the vehicle 2, in the vicinity of the windscreen 6.
The intrusion detection system comprises a microphone matrix 10, which is located in the overhead console 5 in the present embodiment, and an ultrasonic transmitter 8 (or ultrasonic sounder) . In the embodiment shown in Figure 1, the ultrasonic transmitter 8 is located underneath the roof 8, in a central region of the passenger compartment. The ultrasonic transmitter 8 could however be located elsewhere in the passenger compartment, possibly in the overhead console 5 (in the vicinity of the microphone matrix 10) . According to this last variant, the ultrasonic transmitter 8 could be mounted on the same (printed circuit) board like microphones of the microphone matrix 10.
As will be further explained below with reference to Figure 2, the microphone matrix 10 is used as a receiver for ultrasonic signals transmitted by the ultrasonic transmitter 8 in order to perform intrusion detection and as a sensor for audible signals, such as vocal signals, propagating within the passenger compartment.
Figure 2 is a schematic diagram showing some components of electronic systems embedded in the vehicle 2, including the vehicle intrusion detection system 20 mentioned above.
In the present example, the vehicle intrusion detection system 20 comprises an electronic control unit 22 (or ECU) , the microphone matrix 10 and the ultrasonic transmitter 8.
The microphone matrix 10 comprises at least three  microphones  11, 12, 13 (and possibly more than three microphones) . The microphone matrix 10 comprises for instance between three and ten microphones.
Microphones  11, 12, 13 of the microphone matrix 10 are positioned in a spaced relationship (e.g. a geometric relationship) , making it possible to evaluate a phase difference between acoustic signals received at the  various microphones  11, 12, 13 and to compute the direction of propagation of these acoustic signals (and hence the location of the source of these acoustic signals) based on the phase differences.
Microphones  11, 12, 13 are for instance MEMS microphones (MEMS standing for Micro Electro Mechanical System) .
Each  microphone  11, 12, 13 has a frequency response covering the audible frequency range and at least partly the ultrasonic frequency range. The audible frequency range may for instance be defined as frequencies below 20 kHz, while the ultrasonic frequency range may be defined as frequencies between 20 kHz and 80 kHz in the application concerned.
The electronic control unit 22 comprises an analysis module 24, a control module 26 and a driving module 28 connected to the ultrasonic transmitter 8.
Although these  modules  24, 26, 28 are represented as separate functional blocks on Figure 2 for the sake of clarity, some of these modules could be practically integrated in a common electronic circuit. Functions performed by any of these  modules  24, 26, 28 (as described below) may then result from a microcontroller executing computer program instructions designed therefor and stored in a memory of the microcontroller.
The analysis module 24 (e.g. a digital signal processor) receives electric signals S1, S2, S3 respectively corresponding to acoustic signals captured by the  microphones  11, 12, 13 of the microphone matrix 10.
Based on a command C received from the control module 26, the analysis module 24 is adapted to either process the audible components of the electric signals S1, S2, S3 in order to produce a voice signal V (audio mode) , or the ultrasonic components of the electric signals S1, S2, S3 in order to produce a signal U used for intrusion detection as explained below (intrusion detection mode) .
Whatever the components of electric signals S1, S2, S3processed by the analysis module 24, the analysis module 24 is designed to perform an adaptive filtering of these signals in order to maximise the signal to noise ratio of the related signal (corresponding either to a voice signal in the audible frequency range or to a signal in the ultrasonic frequency range, as explained above) .
The control module 26 is adapted to command the driving module 28 such that the ultrasonic transmitter 8 transmits an ultrasonic signal having a desired shape, such as a pulsed sequence.
Systems shown in Figure 2 also include a media unit 30 (here a telecommunication unit, e.g. a Hands Free Telecommunication unit) which receives the voice signal V from the analysis unit 24 and generates an electric  signal representing the voice signal V, which electric signal is transmitted as radio waves by an antenna 32.
Media unit 30 is for instance suited to send this representation of the voice signal V over a mobile telephone network. In this goal, media unit 30 includes for instance a subscriber identity module (not represented) storing credentials allowing access to the mobile telephone network.
Thus, microphone matrix 10, analysis module 24, media unit 30 and antenna 32 provide a solution for hands free communication with a communication partner.
A management unit 34 (such as a Body Controller Unit or BCM) generates a state information S indicating whether the vehicle 2 is in a parked locked condition with no passenger inside (in which case the intrusion detection function should be activated) or not. The state information S is provided to the control module 26 of the electronic control unit 22.
The systems shown in Figure 2 may operate, for instance, as follows.
When the vehicle 2 is in a parked locked state, the control module 26 receives the information S indicating this state.
The control module 26 consequently commands transmission of a pulse train by the ultrasonic transmitter 8 (via the driving module 28) and sends a command C to the analysis module 24 setting the analysis module 24 (and hence the electronic control unit 22) in the intrusion detection mode.
In the intrusion detection mode, the analysis module 24 processes ultrasonic frequency range components of the signals S1, S2, S3 received from the  microphones  11, 12, 13 and therefore detects the pulse train transmitted by the ultrasonic transmitter 8, possibly after reflection on an element of the passenger compartment or on an intruder.
As noted above, adaptive filtering is performed (by analysis module 24) to filter out of the plurality of signalsS1, S2, S3 a single signal U representing the signals detected by the microphone matrix 10 in the ultrasonic frequency range.
The signal U can thus be forwarded to the control module 26 for comparison with the signal (here a pulse train) transmitted by the ultrasonic transmitter 8 in order to determine:
- a time gap (or time shift) between transmission of the signal by the ultrasonic transmitter 8 and reception of the corresponding signal by the  microphone matrix10 (this time gap being representative of the distance of an object reflecting the ultrasonic wave) ; and/or
-a frequency shift between the signal transmitted by the ultrasonic transmitter 8 and the corresponding signal received by the microphone matrix 10 (this frequency shift indicating a speed of an object reflecting the ultrasonic wave, based on the Doppler effect) .
Intrusion detection can be performed on the basis of the determined time shift and/or on the basis of the determined frequency shift by known techniques.
When the vehicle 2 is not in the parked locked state, the control module 26 receives the information S having a corresponding value.
The control module 26 then stops any transmission by the ultrasonic transmitter 8 and sends a command C to the analysis module 24 setting the analysis module 24 (and hence the electronic control unit 22) in the audio mode.
The analysis module 24 thus produces the voice signal V representative of acoustic signals in the audible frequency range propagating (to the microphone matrix 10) in the passenger compartment.
The media unit 30 may thus send (using the antenna 32) radio waves representing the voice signal V to a base station of a mobile telephone network, allowing a hands free telephone conversation in the vehicle 2.
At least an additional condition may in practice be required for the analysis module 24 to be activated to produce the voice signal V (i.e. to be switched to the audio mode) . Such an additional condition may for instance be powering of electrical systems that are not powered in the parked locked state of the vehicle 2 and/or establishing a communication by the media unit 30.

Claims (10)

  1. Vehicle intrusion detection system (20) comprising:
    - an ultrasonic transmitter (8) adapted to transmit at least one pulse in the ultrasonic frequency range;
    - at least one microphone (11; 12; 13) having a frequency response covering the audible frequency range and at least partly the ultrasonic frequency range; and
    - a control unit (22) adapted to detect signals measured by the microphone (11; 12; 13) in the ultrasonic frequency range.
  2. Vehicle intrusion detection system according to claim 1, comprising a plurality of microphones (11, 12, 13) , wherein the control unit is adapted to process signals respectively received from the microphones (11, 12, 13) .
  3. Vehicle intrusion detection system according to claim 2, wherein the microphones (11, 12, 13) are part of a microphone matrix (10) .
  4. Vehicle intrusion detection system according to any of claims 1-3, wherein said at least one microphone (11; 12; 13) is a MEMS microphone.
  5. Vehicle intrusion detection system according to any of claims 1-4, wherein the control unit (22) is adapted to determine a time shift between transmission of a signal by the ultrasonic transmitter (8) and reception of a corresponding signal by the microphone (11; 12; 13) .
  6. Vehicle intrusion detection system according to any of claims 1-5, wherein the control unit (22) is adapted to determine a frequency shift between a signal transmitted by the ultrasonic transmitter (8) and a corresponding signal received by the microphone (11; 12; 13) .
  7. Vehicle intrusion detection system according to any of claims 1-6, wherein the control unit (22) is designed to switch between a first mode, wherein signals measured by the microphone (11; 12; 13) in the audible frequency range  are processed, and a second mode, wherein signals measured by the microphone (11; 12; 13) in the ultrasonic frequency range are processed.
  8. Vehicle intrusion detection system according to claim 7, wherein a voice signal (V) obtained by processing said signals measured by the microphone (11; 12; 13) in the audible frequency range is provided to a media unit (30) .
  9. Vehicle intrusion detection system according to claim 7 or 8, wherein the control unit (22) is designed to be set in the first mode when the vehicle (2) is not in a parked locked state and in the second mode when the vehicle (2) is in a parked locked state.
  10. Process implemented in a vehicle (2) and comprising the following steps:
    - transmitting at least one pulse in the ultrasonic frequency range;
    - detecting signals measured in the ultrasonic frequency range by at least one microphone (11; 12; 13) having a frequency response covering the audible frequency range and the ultrasonic frequency range;
    - performing an intrusion detection function based on the detected signals;
    - inactivating the intrusion detection function;
    - processing signals measured by the microphone (11; 12; 13) in the audible frequency range;
    - performing a hands free communication using the processed signals.
PCT/CN2016/095976 2016-08-19 2016-08-19 Vehicle intrusion detection system and process implemented in a vehicle WO2018032494A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/095976 WO2018032494A1 (en) 2016-08-19 2016-08-19 Vehicle intrusion detection system and process implemented in a vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/095976 WO2018032494A1 (en) 2016-08-19 2016-08-19 Vehicle intrusion detection system and process implemented in a vehicle

Publications (1)

Publication Number Publication Date
WO2018032494A1 true WO2018032494A1 (en) 2018-02-22

Family

ID=61197211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/095976 WO2018032494A1 (en) 2016-08-19 2016-08-19 Vehicle intrusion detection system and process implemented in a vehicle

Country Status (1)

Country Link
WO (1) WO2018032494A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11774567B2 (en) 2021-09-30 2023-10-03 Luxshare-Ict Co., Ltd. Graphical ultrasonic module and driver assistance system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101180797B1 (en) * 2006-12-15 2012-09-10 현대자동차주식회사 System and method for intrusion sensing and alarm using ultralsonic wave
CN103481858A (en) * 2013-10-10 2014-01-01 成都西可科技有限公司 Automobile ultrasonic anti-theft system and method
CN203450085U (en) * 2013-08-06 2014-02-26 南京科瑞思安防科技有限公司 Burglar alarm of automobile spare wheel
CN104015656A (en) * 2014-06-09 2014-09-03 天津师范大学 Interaction system and method for car honking information
JP6003181B2 (en) * 2012-04-20 2016-10-05 マツダ株式会社 Intrusion detection device for automobiles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101180797B1 (en) * 2006-12-15 2012-09-10 현대자동차주식회사 System and method for intrusion sensing and alarm using ultralsonic wave
JP6003181B2 (en) * 2012-04-20 2016-10-05 マツダ株式会社 Intrusion detection device for automobiles
CN203450085U (en) * 2013-08-06 2014-02-26 南京科瑞思安防科技有限公司 Burglar alarm of automobile spare wheel
CN103481858A (en) * 2013-10-10 2014-01-01 成都西可科技有限公司 Automobile ultrasonic anti-theft system and method
CN104015656A (en) * 2014-06-09 2014-09-03 天津师范大学 Interaction system and method for car honking information

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11774567B2 (en) 2021-09-30 2023-10-03 Luxshare-Ict Co., Ltd. Graphical ultrasonic module and driver assistance system

Similar Documents

Publication Publication Date Title
JP5432366B2 (en) LIN bus remote control system
US9747917B2 (en) Position directed acoustic array and beamforming methods
CN102294984B (en) Vehicle obstacle monitoring method based on vibration of steering wheel and device
US8005490B2 (en) In-vehicle apparatus with radio transmission restricting function and radio transmission restricting system
CN107422306B (en) Method for locating a portable device using ultra high frequency waves, associated with a locating device and a portable device
EP3042795A3 (en) System and method to detect an unattended occupant in a vehicle and take safety countermeasures
CA2769924C (en) Apparatus and method for disabling portable electronic devices
CA2536517A1 (en) Electronic location monitoring system
JP5612538B2 (en) Terminal position determination system
CN104508508A (en) Location identification system and method
US9390713B2 (en) Systems and methods for filtering sound in a defined space
KR101143986B1 (en) Vehicular alram system and a method for controlling the same
JP2016161440A (en) Terminal position determination system
JP6113016B2 (en) VEHICLE CONTROL DEVICE, VEHICLE CONTROL METHOD, AND PORTABLE DEVICE
WO2018032494A1 (en) Vehicle intrusion detection system and process implemented in a vehicle
US7224809B2 (en) Method for the acoustic localization of persons in an area of detection
JP2016099831A (en) On-vehicle apparatus
CN212148749U (en) Vehicle alarm system
US20220334249A1 (en) Computational noise compensation for ultrasonic sensor systems
JP6417703B2 (en) Hands-free communication device and jamming radio wave control method
JP6363437B2 (en) Electronic key system
KR102405261B1 (en) Distance measuring system between the car and the device
CN112534484A (en) Portable device, method and system for finding vehicle
KR20230130312A (en) Object detection device mounted on a vehicle to detect surrounding objects and the control method thereof
KR20210038397A (en) Soundwave communication using prefix and postfix structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16913251

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02.08.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16913251

Country of ref document: EP

Kind code of ref document: A1