WO2018032428A1 - 基于dsp的无刷直流电机控制系统 - Google Patents

基于dsp的无刷直流电机控制系统 Download PDF

Info

Publication number
WO2018032428A1
WO2018032428A1 PCT/CN2016/095736 CN2016095736W WO2018032428A1 WO 2018032428 A1 WO2018032428 A1 WO 2018032428A1 CN 2016095736 W CN2016095736 W CN 2016095736W WO 2018032428 A1 WO2018032428 A1 WO 2018032428A1
Authority
WO
WIPO (PCT)
Prior art keywords
dsp
current
control system
protection device
position sensor
Prior art date
Application number
PCT/CN2016/095736
Other languages
English (en)
French (fr)
Inventor
邹霞
钟玲珑
Original Assignee
邹霞
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 邹霞 filed Critical 邹霞
Priority to PCT/CN2016/095736 priority Critical patent/WO2018032428A1/zh
Publication of WO2018032428A1 publication Critical patent/WO2018032428A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices

Definitions

  • the present invention relates to a DSP-based brushless DC motor control system, and more particularly to a DSP-based DSP-based brushless DC motor control system, which belongs to the field of industrial control.
  • Brushless DC motors are a new type of motor developed with the rapid development of power electronics technology. It is an important moving part in modern industrial equipment.
  • the brushless DC motor is based on Faraday's law of electromagnetic induction, and is backed by new power electronics technology, digital electronics technology and various physical principles. It has strong vitality.
  • the brushless DC motor not only has a series of advantages such as simple structure, reliable operation and convenient maintenance of the AC motor, but also has many characteristics such as high operating efficiency, no excitation loss and good speed regulation performance of the DC motor, and the same has been overcome. Brushed DC motors have reduced manufacturing costs and simplified motor maintenance due to noise, sparks, radio interference and short life due to the presence of mechanical brushes and commutators.
  • Brushless DC motors are widely used in computer peripherals, office automation products, digital electronic products, industrial drives, servo control systems, in the automotive industry, and in the field of medical devices. For example, spindles and associated motion control of digital printers, hard drives, optical drives, fax copiers, and video cameras.
  • a DSP-based brushless DC motor control system including a speed regulator, a current regulator, and a rotational speed Computing device, magnetic pole position determining device, software overcurrent protection device, ADC unit, temperature protection device, hardware current protection device, current sampling circuit, driving circuit, temperature detector, magnetic pole position sensor, angular position sensor, upper computer and DC power supply
  • the speed regulator, the current regulator, the rotational speed computing device, the magnetic pole position determining device, the software overcurrent protection device, the ADC unit and the temperature protection device together constitute a DSP controller, the hardware current protection device and the current sampling circuit
  • the drive circuit, the temperature detector, the magnetic pole position sensor, the angular position sensor and the upper computer are respectively connected to the DSP controller.
  • the current sampling circuit and the temperature detector are respectively connected to the ADC unit.
  • the magnetic pole position sensor is connected to the magnetic pole position determining device, and the rotational angular position sensor is connected to the rotational speed calculating device.
  • the above driving circuit is respectively connected to the ADC unit, the hardware current protection device and the current sampling circuit.
  • the DC power source is connected to the driving circuit.
  • the upper computer communicates with the DSP through the serial port SCI, and realizes the control of the upper computer to the motor and the data collection of current and speed to visually monitor the motor operation.
  • the ADC unit of the DSP samples the three-phase current of the brushless DC motor, and realizes the feedback current input of the motor and the software overcurrent protection judgment by the DSP software algorithm; sampling the temperature detection signal by the DSP software algorithm Generate temperature protection control.
  • the DSP's eCAP edge capture unit captures the edge signal of the position sensor to generate a commutation signal for the drive circuit and control the speed of the motor.
  • the hardware overcurrent protection signal is generated by the overcurrent protection terminal of the gate driver chip 2127S.
  • the DSP-based brushless DC motor control system provided by the present invention is based on the double closed loop control of the speed and current, and adds functions such as overcurrent detection and temperature error control in the hardware design to realize Brushless error control and other functions to achieve brushless error control and other functions to achieve safe, stable and reliable operation of DSP-based brushless DC motor control system.
  • DRAWINGS 1 is a schematic structural diagram of a brushless DC motor control system based on DSP according to the present invention.
  • the present invention provides a DSP-based brushless DC motor control system.
  • the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It is understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
  • the DSP chip used in the present invention is a DSP2808 chip, which has low cost, low power consumption and high-performance processing capability, and is particularly suitable for the field of motor control which requires a large amount of data processing in the field of measurement and control and complex calculation.
  • the DSP 2808 has the following features:
  • High-performance static CMOS technology Operating frequency 100MH Z (10ns command time;); Low power design (core 1.8V power supply, I/O port 3.3V power supply).
  • On-chip memory 64Kx16-bit flash memory and 18Kx16-bit SARAM memory; lKxl6 bit 0 TP and ROM memory.
  • Enhanced peripherals 16 PWM output channels; 6 HRPWM output channels; 4 capture input interfaces; 2 orthogonal incremental encoder interfaces; 6 32-bit/16-bit fixed buffers.
  • Serial peripheral module 4 SPI modules; 2 SCI modules; 2 CAN modules; 1 I2C module.
  • the number of channels is 16 channels: 2x8 channel input multiplexing switching; 2 sample holders; two conversion modes of single sampling and two channels of simultaneous sampling; The conversion period is 160 ns, that is, the conversion rate is 6.25 MSPS.
  • the DSP-based brushless DC motor control system provided by the present invention has two parts, a control board circuit and a driving board circuit.
  • the dotted line frame is the function completed by the DSP controller, and the speed adjustment, current regulation, software overcurrent protection, temperature protection and PWM control signal generation are all completed by DSP software algorithms.
  • the ADC unit of the DSP samples the three-phase current of the brushless DC motor, and realizes the feedback current input of the motor and the software overcurrent protection judgment by the DSP software algorithm; the temperature detection signal is sampled and the temperature protection control is generated by the DSP software algorithm.
  • the eCAP edge capture unit of the DSP captures the edge signal of the position sensor to generate a commutation signal of the drive circuit and control the rotational speed of the motor.
  • the hardware overcurrent protection signal is generated by the overcurrent protection terminal of the gate driver chip 2127S.
  • the host computer communicates with the DSP through the serial port SCI , which realizes the control of the upper computer and the data collection of current and speed to visually monitor the motor operation.
  • the controller circuit mainly includes the design of several circuits of a power supply circuit, a JTAG circuit, a reset circuit, and an SCI serial communication interface circuit.
  • a stable and reliable power supply is a necessary guarantee for the operation of the entire experimental system, such as the operating voltage of the integrated chip such as Hall sensor, optocoupler, op amp, comparator, logic gate, etc. in the control system, and the voltage of some protection ports.
  • the required voltages are 48V, 15V, 5V, 3.3V, 1.8V, etc., so designing such a weak current system requires a dedicated chip.
  • the power supply of the control board and the driver board is uniformly regulated by a 5V regulated power supply.
  • the power supply uses an AC-DC power supply with an output of 5V and a maximum current of 2A. It has short-circuit automatic protection, high reliability, good voltage regulation, and compact and durable.
  • the main supply voltage of the DSP chip is 3.3V and 1.8, which are divided into 3.3V, 1.8V digital power supply and 3.3V, 1.8 V digital / analog conversion analog power supply.
  • the invention adopts a dual low-drop differential power regulator TPS767D301 chip, and one output is fixed at 3.3V, and the other channel can be adjusted, and the power supply voltage of the DSP core is 1.8V, and the maximum allowable current of the chip is 1A, which satisfies the chip requirement.
  • the output voltage value of the first path can be changed by changing the value of the resistor R4, and the resistance value selected here is 16.9 ⁇ .
  • BS170 is a small power MOSFET tube, the gate drive is 3.3V voltage output from TPS767D301, which is used for protection. When the voltage of 3.3V output of TPS767D301 is too low, BS170 will be turned off. The enable voltage of the first channel is raised, the 3.3V output is turned off, and the function of undervoltage protection or short circuit protection is provided [0035] (2) JT AG circuit design
  • the simulation debugging of the DSP passes the JTAG standard test interface.
  • the simulation signal lines of the DSP series emulators use a 14-wire emulation header and conform to the JTAG standard IEEE 1149.1.
  • the JTAG interface is an important part of the DSP control board. After debugging the DSP program, using the JTAG port to simulate online, you can track the progress of the program, and find bugs in the program, which is very convenient.
  • the reset circuit In order to ensure stable and reliable operation of the circuit in the DSP system, the reset circuit is an indispensable part.
  • the RC reset circuit used here uses the 74LVC10AD and the non-gate chip as the input buffer circuit.
  • the first function of the reset circuit is upper.
  • the voltage at the ⁇ 1 and 2 nodes is low, and the XRSN is obtained through the logic circuit.
  • the voltage is low, the DSP resets, and after the power is turned on for a while, the capacitor is fully charged.
  • the level at the XRSN is high, and the DSP enters the working state.
  • the manual reset function is similar. When SW-PB is pressed, the capacitor is discharged, and the battery is reset and charged to reset the DSP. After a few seconds, it enters the working state.
  • the serial communication interface SCI is a two-wire asynchronous serial port, which is generally regarded as a UART.
  • the SCI module supports CP U to use digital communication between asynchronous peripherals that are not returned to the 0 standard format.
  • the SCI's acceptor and transmitter each have a FIFO with 16 levels of depth, which can reduce the short service.
  • the SCI detects interrupt detection, polarity, overflow, and framing errors in the received data.
  • the host computer to communicate with the DS P serial port, the reference speed sent to the DSP motor can be realized, and the forward and reverse rotation of the motor, the speed increase, the speed reduction and the steady speed of the motor can be controlled.
  • the serial communication interface circuit of DSP adopts the RS3-compliant driver chip MAX3232E for serial communication.
  • the input and output are isolated by HCPL-0630 TLP2166A high-speed optocoupler chip to protect the DSP chip.
  • the DSP2808 In order to stabilize the accuracy of the analog-to-digital conversion circuit, the DSP2808 requires an external voltage follower, and the maximum input voltage of the AD interface is 3V, and the protection circuit design is performed outside.
  • the OPA4343UA op amp to form the follower of the input circuit, stable conversion accuracy, BZT52C3V0 is a 3V Zener diode, preventing input The voltage of the AD module exceeds 3 V and the DSP chip is burned out.
  • the DSP-based brushless DC motor control system provided by the invention is based on the double closed loop control of the speed and current, and adds functions such as overcurrent detection and temperature error control in the hardware design to realize functions such as brushless error control. To achieve functions such as brushless error control, to achieve safe, stable and reliable operation of DSP-based brushless DC motor control system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

一种基于DSP的无刷直流电机控制系统,包括转速调节器、电流调节器、转速计算装置、磁极位置判断装置、软件过流保护装置、ADC单元、温度保护装置、硬件电流保护装置、电流采样电路、驱动电路、温度检测器、磁极位置传感器、转角位置传感器、上位机以及直流电源,其中转速调节器、电流调节器、转速计算装置、磁极位置判断装置、软件过流保护装置、ADC单元和温度保护装置共同组成了DSP控制器,所述硬件电流保护装置、电流采样电路、驱动电路、温度检测器、磁极位置传感器、转角位置传感器和上位机分别与DSP控制器连接。该系统实现基于DSP的无刷直流电机控制系统的安全稳定可靠运行。

Description

发明名称:基于 DSP的无刷直流电机控制系统 技术领域
[0001] 本发明涉及一种基于 DSP的无刷直流电机控制系统, 尤其涉及一种基于 DSP的 基于 DSP的无刷直流电机控制系统, 属于工业控制领域。
背景技术
[0002] 无刷直流电机是伴着电力电子技术的迅速发展而发展起来的一中新型电机, 它 是现代工业设备中重要的运动部件。 无刷直流电机以法拉第电磁感应定律为基 础, 而又以新型的电力电子技术、 数字电子技术和各种物理原理为后盾, 具有 很强的生命力。
[0003] 无刷直流电机既具备交流电动机的结构简单、 运行可靠、 维护方便等一系列优 点, 又具备直流电动机的运行效率高、 无励磁损耗以及调速性能好等诸多特点 , 同吋克服了有刷直流电机由于机械电刷和换向器的存在所带来的噪声、 火花 、 无线电干扰以及寿命短等弊端, 降低了制造成本, 简化了电机的维修。
[0004] 无刷直流电机在计算机外围设备、 办公自动化产品、 数码电子产品中, 在工业 驱动, 伺服控制系统中, 在汽车产业中, 在医疗设备领域中, 在家用电器中存 在广泛应用。 例如在数字打印机、 硬盘驱动器、 光盘驱动器、 传真复印机、 电 影摄影机等的主轴和附属运动控制等。
技术问题
[0005] 目前对无刷直流电机的使用还停留在机械吋代, 在智能化、 数字化、 产品多样 化方面还存在很多缺失, 不能够适应现代工业发展的需要。
问题的解决方案
技术解决方案
[0006] 鉴于上述现有技术的不足之处, 本发明的目的在于提供一种可以有利于换挡控 制的基于 DSP的无刷直流电机控制系统。
[0007] 为了达到上述目的, 本发明采取了以下技术方案:
[0008] 一种基于 DSP的无刷直流电机控制系统, 包括转速调节器、 电流调节器、 转速 计算装置、 磁极位置判断装置、 软件过流保护装置、 ADC单元、 温度保护装置 、 硬件电流保护装置、 电流采样电路、 驱动电路、 温度检测器、 磁极位置传感 器、 转角位置传感器、 上位机以及直流电源, 其中所述转速调节器、 电流调节 器、 转速计算装置、 磁极位置判断装置、 软件过流保护装置、 ADC单元和温度 保护装置共同组成了 DSP控制器, 所述硬件电流保护装置、 电流采样电路、 驱动 电路、 温度检测器、 磁极位置传感器、 转角位置传感器和上位机分别与 DSP控制 器连接。
[0009] 优选地, 上述电流采样电路和温度检测器分别与 ADC单元连接。
[0010] 优选地, 上述磁极位置传感器和磁极位置判断装置连接, 所述转角位置传感器 和转速计算装置连接。
[0011] 优选地, 上述驱动电路分别连接 ADC单元、 硬件电流保护装置以及电流采样电 路。
[0012] 优选地, 上述直流电源与驱动电路连接。
[0013] 优选地, 上述上位机通过串口 SCI与 DSP进行通讯, 实现上位机对电机的控制 和电流、 速度等数据的采集以直观监控电机运行。
[0014] 优选地, 上述 DSP的 ADC单元对无刷直流电机的三相电流进行采样, 经过 DSP 软件算法实现电机的反馈电流输入和软件过流保护判断; 对温度检测信号进行 采样经 DSP软件算法产生温度保护控制。 DSP的 eCAP边沿捕捉单元对位置传感 器的边沿信号进行捕捉以产生驱动电路的换相信号和对电机的转速进行控制。 硬件过流保护信号由门极驱动芯片 2127S的过流保护端子产生。
发明的有益效果
有益效果
[0015] 相较于现有技术, 本发明提供的基于 DSP的无刷直流电机控制系统以转速、 电 流双闭环控制为基础, 在硬件设计中加入过流检测、 温度错误控制等功能, 以 实现无刷错误控制等功能, 以实现无刷错误控制等功能, 以实现基于 DSP的无刷 直流电机控制系统的安全稳定可靠运行。
对附图的简要说明
附图说明 [0016] 图 1为本发明基于 DSP的无刷直流电机控制系统结构示意图。
本发明的实施方式
[0017] 本发明提供一种基于 DSP的无刷直流电机控制系统, 为使本发明的目的、 技术 方案及效果更加清楚、 明确, 以下参照附图并举实施例对本发明进一步详细说 明。 应当理解, 此处所描述的具体实施例仅用以解释本发明, 并不用于限定本 发明。
[0018] 本发明采用的 DSP芯片为 DSP2808芯片, 具有成本低、 低功耗和高性能处理能 力, 特别适用于需要大量数据处理的测控领域和复杂运算的电机控制领域。 DSP 2808具有以下特点:
[0019] 1) 高性能静态 CMOS技术: 工作频率 100MHZ(10ns指令吋间;); 低功耗设计 (内 核 1.8V供电, I/O口 3.3V供电)。
[0020] 2) 高性能 32位 CPU: 16x16位和 32x32位 MAC操作; 16x16位双通道 MAC (乘累 加运算); 哈佛总线结构; 快速的中断响应和处理能力; 高效的 C/C++语言和汇 编语言代码。
[0021] 3) 片内存储器: 64Kxl6位Flash存储器和18Kxl6位SARAM存储器; lKxl6位0 TP和 ROM存储器。
[0022] 4) 始终系统: 基于自动锁相环技术的吋钟发生器; 片内晶体振荡器; 程序监 视器。
[0023] 5) 3个 32位 CPU定吋器。
[0024] 6) 增强型外设: 16路 PWM输出通道; 6路 HRPWM输出通道; 4个捕获输入接 口; 2个正交增量编码器接口; 6个 32位 /16位定吋器。
[0025] 7) 串行外设模块: 4个 SPI模块; 2个 SCI模块; 2个 CAN模块; 1个 I2C模块。
[0026] 8) 12位的 A/D转换器, 通道数为 16路: 2x8通道输入多路转换幵关; 2个采样保 持器; 单个采样和 2路同吋采样的两种转换模式; 快速转换周期为 160ns, 即转换 率为 6.25MSPS。
[0027] 9) 35个可独立编程复用的通用 I/O引脚 (GPIO), 其输入引脚上有窄脉冲限定期 [0028] 10) 低电压低功耗工作模式, 支持 IDLE (空闲)、 STANDBY (标准)及 HALT (停 止)模式, 可单独停止各个外设模块的吋钟。
[0029] 如图 1所示, 本发明提供的基于 DSP的无刷直流电机控制系统, 整个硬件结构 有两部分组成, 控制板电路和驱动板电路。 其中虚线框为 DSP控制器完成的功能 , 其中速度调节、 电流调节、 软件过流保护、 温度保护和 PWM控制信号的产生 都有 DSP软件算法完成。 DSP的 ADC单元对无刷直流电机的三相电流进行采样, 经过 DSP软件算法实现电机的反馈电流输入和软件过流保护判断; 对温度检测信 号进行采样经 DSP软件算法产生温度保护控制。 DSP的 eCAP边沿捕捉单元对位 置传感器的边沿信号进行捕捉以产生驱动电路的换相信号和对电机的转速进行 控制。 硬件过流保护信号由门极驱动芯片 2127S的过流保护端子产生。 上位机通 过串口 SCIDSP进行通讯, 实现上位机对电机的控制和电流、 速度等数据的采 集以直观监控电机运行。
[0030] 控制器电路主要包括电源电路、 JTAG电路、 复位电路、 SCI串行通讯接口电路 几个电路的设计。
[0031] (1)电源电路设计
[0032] 稳定而可靠的电源是整个实验系统工作的必要保证, 如控制系统中的霍尔传感 器、 光耦、 运放、 比较器、 逻辑门等集成芯片的工作电压, 以及一些保护端口 的电压, 需要的电压有 48V、 15V、 5V、 3.3V、 1.8V等, 因此设计这样的弱电系 统吋需采用专门的芯片。 控制板与驱动板的供电电源统一采用 5V稳压电源。 电 源使用的是 AC-DC幵关型电源, 输出为 5V, 最大电流 2A, 具有短路自动保护功 育 , 可靠性高, 稳压效果好, 小巧耐用的特点。
[0033] DSP芯片的主要供电电压为为 3.3V和 1.8, 分为 3.3V、 1.8V数字电源和 3.3V、 1.8 V数 /模转换模拟供电电源。 本发明采用双路低压差电源调整器 TPS767D301芯片 , 一路输出固定为 3.3V, 另一路可以进行调节, 调节为 DSP内核的供电电压 1.8V , 芯片的最大允许电流为 1A, 满足芯片要求。
[0034] 通过更改电阻 R4的值可以改变第一路的输出电压值, 这里选用的电阻值为 16.9 ΚΩ。 BS170为小功率 MOSFET管, 门极驱动为 TPS767D301输出的 3.3V电压, 在 这里起保护作用, 当 TPS767D301的 3.3V输出端的电压过低吋, BS170将关断, 第一路的使能端电压被抬高, 3.3V输出关断, 起到欠压保护或短路保护的功能 [0035] (2) JT AG电路设计
[0036] 对 DSP的仿真调试通过 JTAG标准测试接口。 DSP系列仿真器的仿真信号线都采 用 14线仿真头, 并符合 JTAG标准 IEEE 1149.1。 为了实现在线调试, 与外部数 据进行交换, JTAG接口是 DSP控制板的重要组成部分。 在调试 DSP程序吋, 使 用 JTAG口在线仿真, 可以跟踪程序进程、 及吋发现程序错误等, 十分方便。
[0037] (3)复位电路
[0038] 为确保 DSP系统中电路稳定可靠工作, 复位电路是必不可少的一部分, 这里采 用的 RC复位电路, 同吋选用 74LVC10AD与非门芯片作为输入缓冲电路。
[0039] 复位电路的第一功能是上, 当电路上吋 3.3V电源通过 RC电路分别对 C43, C44 进行充电, 此吋 1, 2节点处的电压为低电平, 通过逻辑电路得到 XRSN处的电压 为低电平, DSP进行复位, 上电一段吋间后电容充满电, 此吋 XRSN处的电平为 高电平, DSP进入工作状态。 手动复位功能于此类似, 当 SW-PB按下吋, 电容放 电, 放幵吋又充电使 DSP复位, 几秒后进入工作状态。
[0040] (4)SCI串口通讯硬件设计
[0041] 串行通信接口 SCI是一个双线的异步串口, 一般看作是 UART。 SCI模块支持 CP U采用非返回至 0标准格式的异步外围设备之间的数字通信, SCI的接受器和发送 器各有一个具有 16级深度的 FIFO, 这样就可以减少空头的服务。 为了确保数据 的完整性, SCI检测所接收数据中的中断检测、 极性、 溢出和帧错误。 采用上位 机与 DSP串口通信, 可以实吋发送给 DSP电机的参考转速, 控制电机的正反转、 电机的升速、 降速和稳速。 DSP的串行通信接口电路, 该电路采用了符合 RS-232 标准的驱动芯片 MAX3232E进行串行通信, 输入输出采用 HCPL-0630 TLP2166A 高速光耦芯片进行隔离, 以保护 DSP芯片。
[0042] (5)AD外设接口电路
[0043] 为了稳定模数转换电路的精度, DSP2808要求外接电压跟随器, 并且 AD接口 的最大输入电压为 3V, 外面要进行保护电路的设计。 采用 OPA4343UA运放构成 输入电路的跟随器, 稳定转换精度, BZT52C3V0为 3V的稳压二极管, 防止输入 AD模块的电压超过 3 V而烧坏 DSP芯片。
[0044]
[0045] 本发明提供的基于 DSP的无刷直流电机控制系统以转速、 电流双闭环控制为基 础, 在硬件设计中加入过流检测、 温度错误控制等功能, 以实现无刷错误控制 等功能, 以实现无刷错误控制等功能, 以实现基于 DSP的无刷直流电机控制系统 的安全稳定可靠运行。
[0046]
[0047] 可以理解的是, 对本领域普通技术人员来说, 可以根据本发明的技术方案及其 发明构思加以等同替换或改变, 而所有这些改变或替换都应属于本发明所附的 权利要求的保护范围。

Claims

权利要求书
[权利要求 1] 一种基于 DSP的无刷直流电机控制系统, 其特征在于: 所述基于 DSP 的无刷直流电机控制系统包括转速调节器、 电流调节器、 转速计算装 置、 磁极位置判断装置、 软件过流保护装置、 ADC单元、 温度保护 装置、 硬件电流保护装置、 电流采样电路、 驱动电路、 温度检测器、 磁极位置传感器、 转角位置传感器、 上位机以及直流电源, 其中所述 转速调节器、 电流调节器、 转速计算装置、 磁极位置判断装置、 软件 过流保护装置、 ADC单元和温度保护装置共同组成了 DSP控制器, 所 述硬件电流保护装置、 电流采样电路、 驱动电路、 温度检测器、 磁极 位置传感器、 转角位置传感器和上位机分别与 DSP控制器连接。
[权利要求 2] 如权利要求 1所述的基于 DSP的无刷直流电机控制系统, 其特征在于
: 所述电流采样电路和温度检测器分别与 ADC单元连接。
[权利要求 3] 如权利要求 1所述的基于 DSP的无刷直流电机控制系统, 其特征在于
: 所述磁极位置传感器和磁极位置判断装置连接, 所述转角位置传感 器和转速计算装置连接。
[权利要求 4] 如权利要求 1所述的基于 DSP的无刷直流电机控制系统, 其特征在于
: 所述驱动电路分别连接 ADC单元、 硬件电流保护装置以及电流采 样电路。
[权利要求 5] 如权利要求 1所述的基于 DSP的无刷直流电机控制系统, 其特征在于
: 所述直流电源与驱动电路连接。
[权利要求 6] 如权利要求 1所述的基于 DSP的无刷直流电机控制系统, 其特征在于
: 所述上位机通过串口 SCI与 DSP进行通讯, 实现上位机对电机的控 制和电流、 速度等数据的采集以直观监控电机运行。
[权利要求 7] 如权利要求 1所述的基于 DSP的无刷直流电机控制系统, 其特征在于
: 所述 DSP的 ADC单元对无刷直流电机的三相电流进行采样, 经过 D SP软件算法实现电机的反馈电流输入和软件过流保护判断; 对温度 检测信号进行采样经 DSP软件算法产生温度保护控制; DSP的 eCAP边 沿捕捉单元对位置传感器的边沿信号进行捕捉以产生驱动电路的换相 信号和对电机的转速进行控制; 硬件过流保护信号由门极驱动芯片 21 27S的过流保护端子产生。
PCT/CN2016/095736 2016-08-17 2016-08-17 基于dsp的无刷直流电机控制系统 WO2018032428A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/095736 WO2018032428A1 (zh) 2016-08-17 2016-08-17 基于dsp的无刷直流电机控制系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/095736 WO2018032428A1 (zh) 2016-08-17 2016-08-17 基于dsp的无刷直流电机控制系统

Publications (1)

Publication Number Publication Date
WO2018032428A1 true WO2018032428A1 (zh) 2018-02-22

Family

ID=61196339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/095736 WO2018032428A1 (zh) 2016-08-17 2016-08-17 基于dsp的无刷直流电机控制系统

Country Status (1)

Country Link
WO (1) WO2018032428A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090079374A1 (en) * 2005-01-07 2009-03-26 Ronald De Four Self Starting Method and an Apparatus for Sensorless Commutation of Brushless Dc Motors
CN102624315A (zh) * 2012-04-11 2012-08-01 上海三一精机有限公司 一种高精度永磁伺服电机三闭环控制系统及方法
CN204068794U (zh) * 2014-09-04 2014-12-31 深圳市智控科技有限公司 一种新型无刷直流电机控制系统
CN104790799A (zh) * 2014-01-21 2015-07-22 江苏新绿能科技有限公司 一种地铁屏蔽门门机自抗扰控制系统
CN106253768A (zh) * 2016-08-17 2016-12-21 邹霞 基于dsp的无刷直流电机控制系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090079374A1 (en) * 2005-01-07 2009-03-26 Ronald De Four Self Starting Method and an Apparatus for Sensorless Commutation of Brushless Dc Motors
CN102624315A (zh) * 2012-04-11 2012-08-01 上海三一精机有限公司 一种高精度永磁伺服电机三闭环控制系统及方法
CN104790799A (zh) * 2014-01-21 2015-07-22 江苏新绿能科技有限公司 一种地铁屏蔽门门机自抗扰控制系统
CN204068794U (zh) * 2014-09-04 2014-12-31 深圳市智控科技有限公司 一种新型无刷直流电机控制系统
CN106253768A (zh) * 2016-08-17 2016-12-21 邹霞 基于dsp的无刷直流电机控制系统

Similar Documents

Publication Publication Date Title
CN105763109B (zh) 一种直流无刷电机的换相控制方法、直流无刷电机控制系统
CN203827230U (zh) 用于多旋翼无人飞行器的无感无刷直流电机调速器
CN101729013B (zh) 基于无位置传感器无刷直流电机ip核的电机控制系统
CN204481723U (zh) 一种基于stm32单片机的无刷直流电机控制器
US20220069814A1 (en) PWM generation circuit, processing circuit and chip
CN108566104B (zh) 一种同步整流控制电路
CN207573269U (zh) 一种基于dsp的全数字交流伺服系统
CN101473524B (zh) 马达控制电路、风扇马达、电子设备、笔记本型个人计算机
CN204761340U (zh) 基于dsp的三闭环控制直流变频压缩机
WO2018032428A1 (zh) 基于dsp的无刷直流电机控制系统
CN203119841U (zh) 一种全数字交流伺服驱动器
CN106253768A (zh) 基于dsp的无刷直流电机控制系统
CN201821317U (zh) 矿井提升机变频驱动控制的保护检测反馈电路
WO2016026076A1 (zh) 一种空调器及其室外风机起动控制方法和系统
CN104090506A (zh) 一种调整电子仪器显示值的数字输入模块
CN203119827U (zh) 基于mcu的无刷直流电机控制器
CN106817049B (zh) 一种基于soc技术的卫星用直流无刷电机控制器
CN206077270U (zh) 一种基于单片机的无刷直流电机控制系统
CN205430102U (zh) 一种采用单片机的无刷直流电机控制装置
CN206039205U (zh) 一种双通道旋转变压器的智能编码器
CN103138663A (zh) 基于新型电流检测和位置反馈结构的交流伺服驱动器
CN105846471A (zh) 脉宽调制反馈控制电网
CN204304865U (zh) 一种小功率变频调速驱动装置
CN109557332B (zh) 一种基于Taylor算法的转速信号转换装置
CN109617457A (zh) 一种通风柜自动门数字伺服节能控制器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16913186

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16913186

Country of ref document: EP

Kind code of ref document: A1