WO2018032412A1 - 一种多路径传输的策略控制方法及相关设备 - Google Patents

一种多路径传输的策略控制方法及相关设备 Download PDF

Info

Publication number
WO2018032412A1
WO2018032412A1 PCT/CN2016/095698 CN2016095698W WO2018032412A1 WO 2018032412 A1 WO2018032412 A1 WO 2018032412A1 CN 2016095698 W CN2016095698 W CN 2016095698W WO 2018032412 A1 WO2018032412 A1 WO 2018032412A1
Authority
WO
WIPO (PCT)
Prior art keywords
network element
policy
transport
transmission
resource
Prior art date
Application number
PCT/CN2016/095698
Other languages
English (en)
French (fr)
Inventor
杨娇
倪慧
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/095698 priority Critical patent/WO2018032412A1/zh
Priority to CN202110656702.5A priority patent/CN113473535B/zh
Priority to CN201680086903.3A priority patent/CN109328450B/zh
Priority to EP16913172.9A priority patent/EP3481013A4/en
Publication of WO2018032412A1 publication Critical patent/WO2018032412A1/zh
Priority to US16/277,325 priority patent/US11349765B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/20Traffic policing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/24Multipath
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/76Admission control; Resource allocation using dynamic resource allocation, e.g. in-call renegotiation requested by the user or requested by the network in response to changing network conditions
    • H04L47/762Admission control; Resource allocation using dynamic resource allocation, e.g. in-call renegotiation requested by the user or requested by the network in response to changing network conditions triggered by the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0273Traffic management, e.g. flow control or congestion control adapting protocols for flow control or congestion control to wireless environment, e.g. adapting transmission control protocol [TCP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/04Registration at HLR or HSS [Home Subscriber Server]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/06Transport layer protocols, e.g. TCP [Transport Control Protocol] over wireless
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/11Identifying congestion

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a policy control method for multipath transmission and related devices.
  • EPS Evolved Packet System
  • 3GPP 3rd Generation Partnership Project
  • UE User Equipment
  • the network consists of an evolved packet core network (EPC).
  • the EPC includes an MME (Mobility Management Entity), an S-GW (Serving Gateway), a P-GW (Packet Data Network Gateway), and a PCRF (Policy and Charging Rules Function). Policy and billing rules functional units) and other components.
  • MME Mobility Management Entity
  • S-GW Serving Gateway
  • P-GW Packet Data Network Gateway
  • PCRF Policy and Charging Rules Function
  • Policy and billing rules functional units Policy and billing rules functional units
  • the activation of the dedicated bearer and the modification of the bearer QoS can be implemented by the UE, the base station, the MME, the S-GW, the P-GW, and the PCRF.
  • one user equipment has multiple network interfaces, such as Wi-Fi (Wireless-Fidelity) interface, 2G (The 2nd Generation Mobile Communication Technology, the second generation mobile communication technology interface, 3G (The 3rd Generation Mobile Communication Technology) interface, etc., so that multiple links to the target node can be realized.
  • Wi-Fi Wireless-Fidelity
  • 2G The 2nd Generation Mobile Communication Technology
  • 3G The 3rd Generation Mobile Communication Technology
  • TCP Transmission Control Protocol
  • MPTCP MultiPath TCP, Multipath Transmission Control Protocol
  • MPTCP is an improved protocol for TCP that allows both parties to communicate data over multiple connections simultaneously.
  • Support MPTCP in mobile communication When the UE and the server of the technology simultaneously use the multiple connections of the 3GPP access technology (such as the connection established by the macro base station and the home base station respectively) to communicate with the opposite end, the UE needs to be modified according to service requirements (such as a higher bandwidth required by the service). Bearer QoS.
  • the current solution is to modify the bearer QoS of each connection according to the service requirements for each connection.
  • modifying the respective bearer QoS on each connection will result in an increase in the number of signaling processes of the UE and the server, consuming additional resources. Therefore, how to reduce the number of signaling processing when modifying bearer QoS under multi-path transmission is an urgent problem to be solved.
  • the embodiment of the invention discloses a policy control method for multi-path transmission and related equipment, which is used to solve the problem of reducing the number of signaling processing when performing resource modification under multi-path transmission.
  • a first aspect of the embodiments of the present invention discloses a policy control method for multi-path transmission, in which a user equipment UE that supports multi-path transmission performs service packet transmission by using at least two transmission sub-flows, and the method includes:
  • the policy decision network element receives association information of the at least two transmission sub-flows sent by the communication peer, where the association information includes a flow identifier of the at least two transmission sub-flows;
  • the policy decision network element determines, according to the association information, a resource modification policy of at least one of the at least two transport substreams, where the resource modification policy may include, but is not limited to, the at least one transport subflow.
  • the policy decision network element sends the resource modification policy to the forwarding plane network element corresponding to the at least one transport substream, so that the forwarding plane network element corresponding to the at least one transport substream performs resources according to the resource modification policy. modify. That is to say, the policy decision network element can determine one or several transmission sub-flows that need to be modified by the resource according to the association information of at least two transmission sub-flows transmitting the same service packet, without modifying the resource.
  • the resource modification is performed on each transport sub-flow, so that the number of signaling processing for resource modification under multi-path transmission can be reduced, and the resource consumption is reduced.
  • the communication peer includes the UE or a server that supports multipath transmission.
  • the policy determining network element receives the communication peer sending
  • the associated information of the at least two transport substreams includes:
  • the policy decision network element receives the association information of the at least two transport sub-flows sent by the communication peer end in the resource modification process.
  • the method further includes:
  • the policy decision network element receives, in the resource modification process, a policy control modification request sent by a forwarding plane network element, where the forwarding plane network element is a forwarding plane corresponding to one of the at least two transmission substreams
  • the network element that is, the forwarding plane network element corresponding to the transmission substream that initiates the resource modification
  • the policy decision network element determines, according to the association information, a resource modification policy of at least one of the at least two transport substreams, including:
  • the policy decision network element responds to the policy control modification request, and determines a resource modification policy of at least one of the at least two transport substreams according to the association information. That is to say, after the policy decision network element receives the policy control modification request sent by the forwarding plane network element, the resource modification policy of one or several transmission substreams in the at least two transmission substreams may be determined according to the association information. Therefore, the initiative of the network side of the policy decision network element is enhanced.
  • the method further includes:
  • the policy decision network element determines, according to the association information, a resource modification policy of at least one of the at least two transport substreams, including:
  • the policy decision network element responds to the resource modification request, and determines a resource modification policy of at least one of the at least two transport substreams according to the association information. That is, after the policy decision network element receives the resource modification request sent by the communication peer, the resource modification policy of one or several transmission substreams in the at least two transmission substreams may be determined according to the association information, thereby The initiative of the network side of the policy decision network element is enhanced.
  • the policy Determining, by the determining network element, a resource modification policy of the at least one of the at least two transport substreams according to the association information including:
  • the policy decision network element acquires at least one of load status, air interface type, and base station type of the at least two transport sub-flows according to the association information;
  • the at least one of the load status, the air interface type, and the base station type of the at least two transmission sub-flows may be a network management system or a wireless access network report, or may be a policy decision network element actively going to the network management system or wireless. Accessed by the access network.
  • a second aspect of the embodiments of the present invention discloses a policy decision network element, where a user equipment UE that supports multi-path transmission performs service packet transmission by using at least two transport sub-flows, where the policy decision network element includes:
  • a receiving unit configured to receive association information of the at least two transmission sub-flows sent by the communication peer end, where the association information includes a flow identifier of the at least two transmission sub-streams;
  • a determining unit configured to determine, according to the association information, a resource modification policy of at least one of the at least two transport substreams
  • a sending unit configured to send the resource modification policy to a forwarding plane network element corresponding to the at least one transmission sub-flow, so that the forwarding plane network element corresponding to the at least one transmission sub-flow performs resource modification according to the resource modification policy .
  • the communications peer includes the UE or a server that supports multipath transmission.
  • the receiving unit receives the The manner in which the at least two pieces of associated information of the substream are transmitted is specifically as follows:
  • the receiving unit receives the association information of the at least two transmission sub-flows sent by the communication peer end in the resource modification process.
  • the receiving unit is further configured to receive, in the resource modification process, a policy control modification request sent by a forwarding plane network element, where the forwarding plane network element is corresponding to one of the at least two transmission substreams Forwarding plane network element;
  • the determining unit is specifically configured to: in response to the policy control modification request, determine, according to the association information, a resource modification policy of at least one of the at least two transmission substreams.
  • the receiving unit is further configured to receive, in the resource modification process, a resource modification request sent by the communication peer end;
  • the determining unit is configured to respond to the resource modification request, and determine, according to the association information, a resource modification policy of at least one of the at least two transmission substreams.
  • the determining The unit includes:
  • Obtaining a subunit configured to acquire a load of the at least two transport substreams according to the association information At least one of a situation, an air interface type, and a base station type;
  • Determining a subunit configured to determine resource modification of at least one of the at least two transport substreams according to at least one of a load condition, an air interface type, and a base station type of the at least two transport substreams Strategy.
  • a third aspect of the embodiments of the present invention discloses a policy decision network element, where a user equipment UE that supports multi-path transmission performs service packet transmission by using at least two transport sub-flows, where the policy decision network element includes: a processor, Memory, communication interface, and communication bus;
  • the memory is used to store programs and data
  • the communication bus is configured to establish connection communication between the processor, the memory, and the communication interface
  • the processor is configured to invoke the program stored in the memory, and perform the following operations:
  • association information of the at least two transmission sub-flows sent by the communication peer end where the association information includes a flow identifier of the at least two transmission sub-streams;
  • the triggering the communication interface to send the resource modification policy to the forwarding plane network element corresponding to the at least one transmission sub-flow, so that the forwarding plane network element corresponding to the at least one transmission sub-flow performs resource modification according to the resource modification policy.
  • the communications peer includes the UE or a server that supports multipath transmission.
  • the processor triggers the communications interface to receive communications
  • the manner of the association information of the at least two transmission substreams sent by the peer end is specifically:
  • the at least one of the communication peers to receive the resource modification process Two pieces of associated information for a substream.
  • the processor is further configured to invoke the program stored in the memory, And do the following:
  • the triggering the communication interface receives the policy control modification request sent by the forwarding plane network element in the resource modification process, where the forwarding plane network element is a forwarding plane network corresponding to one of the at least two transmission substreams yuan;
  • the method for determining, by the processor, the resource modification policy of the at least one of the at least two transport substreams according to the association information is specifically:
  • the processor is further configured to invoke the program stored in the memory, And do the following:
  • the method for determining, by the processor, the resource modification policy of the at least one of the at least two transport substreams according to the association information is specifically:
  • the processing The method for determining a resource modification policy of the at least one of the at least two transmission substreams according to the association information is specifically:
  • the fourth aspect of the embodiments of the present invention discloses a policy control system for multi-path transmission, including a user equipment UE, a policy decision network element disclosed in the second aspect of the embodiment of the present invention, and a communication peer.
  • the policy decision network element when the user equipment UE supporting the multi-path transmission performs the service packet transmission by using at least two transmission sub-flows, the policy decision network element receives the association information of the at least two transmission sub-flows sent by the communication peer end, And determining, according to the association information, a resource modification policy of the at least one of the at least one transmission substream, and sending the resource modification policy to the forwarding plane network element corresponding to the at least one transmission substream, so that The forwarding plane network element corresponding to the at least one transmission substream performs resource modification according to the resource modification policy.
  • the policy decision network element can determine one or several transport sub-flows that need to be modified by the resource according to the association information of the at least two transport sub-flows that transmit the same service packet. There is no need to modify the resource for each transport substream, so that the number of signaling processing for resource modification under multipath transmission can be reduced, and the resource consumption is reduced.
  • FIG. 1 is a schematic structural diagram of an EPS system according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a network architecture of multipath transmission disclosed in an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a policy control method for multi-path transmission disclosed in an embodiment of the present invention
  • FIG. 4 is a schematic flowchart diagram of another multi-path transmission policy control method according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of another multi-path transmission policy control method according to an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart diagram of still another method for controlling multi-path transmission according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a policy decision network element according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of another policy decision network element according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of still another policy decision network element according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a multi-path transmission policy control system according to an embodiment of the present invention.
  • the embodiment of the invention discloses a policy control method for multi-path transmission and related equipment, which is used to solve the problem of reducing the number of signaling processing when resource modification is performed under multi-path transmission, and optimizes the process. The details are described below separately.
  • FIG. 1 is a schematic structural diagram of an EPS system according to an embodiment of the present invention.
  • the user equipment UE the E-UTRAN (Evolved Universal Terrestrial Radio Access Network), and the evolved packet core network EPC may be included.
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • EPC evolved packet core network
  • the user equipment UE may include, but is not limited to, a handheld device having a wireless communication function (such as a mobile phone, a tablet, a personal digital assistant, etc.), an in-vehicle device, a wearable device (such as a smart watch, a smart bracelet, etc.), and a computing device. Or other processing devices connected to the wireless modem, as well as various forms Mobile Station (MS), Terminal (Terminal Equipment), Terminal Equipment, etc. For convenience of description, in the present application, it is simply referred to as a user equipment or a UE.
  • a wireless communication function such as a mobile phone, a tablet, a personal digital assistant, etc.
  • an in-vehicle device such as a smart watch, a smart bracelet, etc.
  • a computing device such as a tablet, a personal digital assistant, etc.
  • MS Mobile Station
  • Terminal Terminal Equipment
  • Terminal Equipment Terminal Equipment
  • the E-UTRAN may include an eNodeB, which is interconnected with the UE through an LTE-Uu interface, and is interconnected with the EPC through an S1 interface for implementing functions related to radio access.
  • the EPC may be composed of a mobility management entity MME, a serving gateway S-GW, a packet data network gateway P-GW, a policy and charging rule function unit PCRF, an SGSN (Serving GPRS Support Node), and an HSS (Home Subscriber Server). , belonging to the contracted user server) and other components.
  • the MME is configured to complete the processing of the signaling plane function, such as user authentication, handover, roaming control, mobility management of the idle state terminal, user context, and bearer management.
  • the S-GW is a user plane function entity that completes the routing and forwarding of packet data and acts as a data anchor in the 3GPP system to terminate the E-UTRAN interface. At the same time, it is also local in the E-UTRAN handover scenario in a certain geographical area. Anchor for mobility management.
  • the P-GW is a gateway that connects to an external data network and is a user plane anchor between the 3GPP access network and the non-3GPP access network.
  • the user equipment can access the external packet data network by connecting to the P-GW to create a PDN (Packet Data Network) connection, which may be an Internet, a virtual private network (VPN), or an IP multimedia service (IP). Multi-media Service (IMS) network, or Wireless Application Protocol (WAP) network provided by the operator.
  • PDN Packet Data Network
  • IP IP multimedia service
  • IMS Multi-media Service
  • WAP Wireless Application Protocol
  • the PCRF is a policy and charging control policy decision point for the service data flow and the IP bearer resource, and maintains the association between the gateway control session and the IP-CAN (IP-Connectivity Access Network) session.
  • the SGSN is used to perform routing and forwarding, packet management, session management, logical link management, authentication and encryption, bill generation and output of packet data packets.
  • the HSS is a database for storing user subscription information.
  • the home network may include one or more HSSs, and is responsible for storing information related to the user, such as user identification, number and routing information, security information, location information, and summary information.
  • information related to the user such as user identification, number and routing information, security information, location information, and summary information.
  • the S-GW and the P-GW can be separated or combined.
  • the S-GW and the P-GW are deployed in a unified manner.
  • the S-GW and the P-GW are deployed separately, and the two are connected through the S5 interface.
  • FIG. 2 is a schematic diagram of a network architecture of multipath transmission according to an embodiment of the present invention.
  • the UE is a user equipment that can support multi-path transmission, such as a user equipment supporting the MPTCP transmission protocol, a user equipment supporting a QUIC (Quick UDP Internet Connection) transmission protocol, and the like.
  • the control plane network element may be a control plane function network element responsible for user and session management, such as an MME, a mobile network controller, and the like.
  • the forwarding plane network element can be a forwarding plane function network element that performs processing functions such as forwarding and statistics of user packets, such as P-GW, S-GW, GW forwarding plane, and SDN (Software Defined Network) switch.
  • the policy decision network element may be a functional network element responsible for policy control and/or charging control of the mobile network, such as a PCRF in an EPC network.
  • the server is a server that can support multi-path transmission, and can provide network elements for services for users, such as an application server that supports the MPTCP transmission protocol. In the network architecture shown in FIG. 2, one user equipment UE has multiple network interfaces, and multiple links to the target node can be implemented.
  • the UE establishes a corresponding PDU (Packet Data Unit) connection, such as a PDN connection, by the base station and the corresponding forwarding plane network element, and may establish one or more transmission sub-flows on each PDN connection.
  • a corresponding PDU Packet Data Unit
  • the completion of the multi-path transmission may be implemented by using the MPTCP protocol, or may be implemented by using the QUIC protocol, which is not limited by the embodiment of the present invention.
  • the UE establishes a corresponding PDU connection (ie, PDU connection 1 and PDU connection 2) through the base station 1 and the base station 2, respectively, and establishes a corresponding transmission substream, so that the UE can simultaneously
  • the transmission of service packets is performed on the transport substream.
  • the UE simultaneously transmits service packets of the same application on the two transport substreams.
  • the base station 1 and the base station 2 are two different base stations, the base station 1 may be a macro base station, and the base station 2 may be a micro base station, such as a home base station.
  • the policy decision network element may receive association information of the two transmission sub-flows sent by the UE or the server, so that the policy decision network element learns the two transmission sub- The flow is to transmit the same service.
  • the policy decision network element may determine, according to the load condition, the air interface type, and the type of the base station, the resource modification of one or two of the two transport substreams. Therefore, the number of signaling processes for resource modification under multipath transmission can be reduced, and the process is better. And reduce the consumption of system resources.
  • FIG. 2 it is only shown that the UE establishes two PDU connections through two base stations (base station 1 and base station 2), but does not constitute a limitation on the embodiment of the present invention.
  • the UE can establish at least two PDU connections with multiple base stations, that is, the UE can transmit service packets through at least two transport sub-flows.
  • FIG. 3 is a schematic flowchart diagram of a policy control method for multipath transmission according to an embodiment of the present invention.
  • the policy control method for multipath transmission may include the following steps:
  • the policy decision network element receives association information of at least two transport sub-flows sent by the communication peer end.
  • the user equipment UE may perform service packet transmission by using at least two transmission sub-flows.
  • the UE is a user equipment that supports multi-path transmission, that is, the same service packet can be transmitted on at least two transport sub-streams.
  • the UE may establish multiple PDU connections, such as a PDN connection, and each PDU connection may establish one or more transmission substreams.
  • the at least two transport substreams for transmitting service packets are transport substreams corresponding to different PDU connections.
  • the UE establishes different PDU connections with different base stations and forwarding plane network elements. For example, the UE establishes a PDU connection 1 with the base station 1 and the forwarding plane network element 1, and the UE establishes a PDU connection 2 with the base station 2 and the forwarding plane network element 2, and the like.
  • the policy decision network element may receive the association information about the at least two transmission sub-flows sent by the communication peer end.
  • the association information is used to indicate that the at least two transport substreams transmit the same service packet, and the association information may include the flow identifier of the at least two transport substreams. Different transport substreams have different stream identifiers, and different transport substreams can be distinguished by stream identifiers.
  • the association information includes several flow identifiers, it may be that the transport substreams corresponding to the flow identifiers are transmitted by the same service packet.
  • the communication peer end may be the UE, or may be a server supporting multi-path transmission, such as an application server.
  • the communication peer may initiate resources.
  • a request is established to request establishment or activation of some or some of the resources corresponding to each transport substream.
  • the UE may initiate a dedicated bearer activation request (ie, a resource setup request) through each transport substream to activate a dedicated bearer corresponding to each transport substream.
  • a resource modification request may be initiated on the transmission substream.
  • the communication peer end can detect the transmission status of the service packets (such as the number of packet loss, the packet loss frequency, and the like) on each of the transmission substreams in real time to determine whether a certain transmission substream needs to be modified.
  • the transmission substream needs to be considered to have a higher bandwidth, so that it can be determined that the transmission substream needs to be modified. Therefore, the communication peer can initiate a resource modification request on the transport substream.
  • the specific implementation manner of the step 301 that the policy decision network element receives the association information of the at least two transport sub-flows sent by the communication peer may include the following steps:
  • the policy decision network element receives the association information of the at least two transport sub-flows sent by the communication peer end in the resource establishment process;
  • the policy decision network element receives the association information of the at least two transport sub-flows sent by the communication peer end in the resource modification process.
  • the resource establishment process and the resource modification process are the two different processes described above.
  • the communication peer may carry the association information of the at least two transmission sub-flows in the resource establishment request initiated by one of the transmission sub-flows.
  • the communication peer may carry the association information of the at least two transmission sub-flows in the initiated resource modification request.
  • the policy decision network element determines, according to the association information, a resource modification policy of at least one of the at least two transport substreams.
  • the policy decision network element may determine, according to the received association information, a resource modification policy of at least one of the at least two transport substreams. Specifically, the policy decision network element first determines the at least one transport substream, and further determines a resource modification policy of the at least one transport substream.
  • the at least one transport substream may be the at least two transporters. Any one or several transmission sub-streams in the stream; or a transmission sub-flow determined by combining the load condition, the air interface type, the base station type and the like of each transmission sub-flow to perform resource modification.
  • the resource modification policy may include, but is not limited to, a flow identifier of each of the at least one transport substream and a resource type and a modified amount that each transport substream needs to be modified.
  • the modified resource type is modified according to which resource, and may be a quality of service QoS parameter.
  • the QoS parameter may include a QCI (QoS Class Identifier), which is used to measure resource information such as packet loss rate, delay, bandwidth, and priority during service transmission, and may be modified.
  • the amount of modification is how much you modify the resource. For example, the bandwidth of a transport substream is expanded by 5M, wherein the modified resource type is bandwidth, and the modification amount is 5M.
  • the specific implementation manner of the resource modification policy for determining the at least one of the at least one of the at least two transport substreams according to the association information may include the following steps:
  • the policy decision network element acquires, according to the association information, at least one of a load condition, an air interface type, and a base station type of the at least two transport sub-flows;
  • the policy decision network element determines a resource modification policy of at least one of the at least two transport substreams according to the at least one of the load condition, the air interface type, and the base station type of the at least two transport substreams.
  • the information about the load status, the air interface type, and the type of the base station of the at least two transport sub-flows may be reported by the network management system or the radio access network (RAN) to the policy decision network element in real time or at a specific time.
  • the policy decision network element may also be actively obtained from the network management system or the RAN side.
  • the UE performs the same service packet transmission through two transport substreams (such as transport substream 1 and transport substream 2), assuming that the maximum bandwidth of transport substream 1 and transport substream 2 is 5M, and transport substream 1 4M has been occupied, and transmission substream 2 has occupied 2M. Assuming that the resource occupancy rate exceeds 60%, resource modification is required, and it can be determined that the transmission substream 1 needs to be modified.
  • the method described in FIG. 3 may further include the following steps:
  • the policy decision network element receives the policy control modification request sent by the forwarding plane network element in the resource modification process, where the forwarding plane network element is a forwarding plane network element corresponding to one of the at least two transmission substreams;
  • the specific implementation manner of the resource modification policy for determining the at least one of the at least one of the at least two transmission sub-flows according to the association information may include the following steps:
  • the policy decision network element controls the modification request in response to the policy, and determines, according to the association information, a resource modification policy of the at least one of the at least two transmission substreams.
  • the policy decision network element may receive the policy control modification request sent by the forwarding plane network element in the resource modification process, where the policy control modification request may be used to indicate that the policy decision network element determines the at least two pieces according to the association information.
  • the forwarding plane network element is a forwarding plane network element corresponding to one of the at least two transmission substreams. Specifically, the forwarding plane network element may be a forwarding corresponding to the transmission substream that initiates the resource modification request. Face network element.
  • the method for determining, by the policy determining network element, the resource modification policy of the at least one of the at least one of the at least two transmission sub-flows according to the association information may be obtained by the policy decision network element according to the association information. Determining at least one of a load condition, an air interface type, and a base station type of the at least two transport substreams; and determining the foregoing according to at least one of a load condition, an air interface type, and a base station type of the at least two transport substreams. At least one of the at least two transport substreams transmits a resource modification policy of the substream.
  • the method described in FIG. 3 may further include the following steps:
  • the policy decision network element receives the resource modification request sent by the communication peer end in the resource modification process
  • the specific implementation manner of the resource modification policy for determining the at least one of the at least one of the at least two transmission sub-flows according to the association information may include the following steps:
  • the policy decision network element responds to the resource modification request, and determines, according to the association information, a resource modification policy of at least one of the at least two transport substreams.
  • the policy decision network element may receive the resource modification request sent by the communication peer end in the resource modification process, where the resource modification request may be used to indicate that the policy decision network element determines the at least two transmission substreams according to the association information. At least one of the resource modification policies of the transport substream.
  • the method for determining, by the policy determining network element, the resource modification policy of the at least one of the at least one of the at least two transmission sub-flows according to the association information may be obtained by the policy decision network element according to the association information. Determining at least one of a load condition, an air interface type, and a base station type of the at least two transport substreams; and determining the foregoing according to at least one of a load condition, an air interface type, and a base station type of the at least two transport substreams. At least one of the at least two transport substreams transmits a resource modification policy of the substream.
  • the policy decision network element sends the resource modification policy to the forwarding plane network element corresponding to the at least one transport substream.
  • the resource modification policy may be sent to the forwarding plane network element corresponding to the at least one transmission sub-flow, so that the at least one piece is
  • the forwarding plane network element corresponding to the transmission substream performs resource modification according to the resource modification policy.
  • a transport substream corresponds to one forwarding plane network element, and the forwarding plane network elements corresponding to different transport substreams may be different.
  • the forwarding plane network element may parse the resource modification policy to obtain a modification policy of the corresponding transmission sub-flow, and perform resource modification according to the modification policy.
  • the forwarding plane network element 1 receives the resource modification policy, and parses out the modification strategy of the transmission substream 1 corresponding to the forwarding plane, such as the resource type and the modification amount that need to be modified, and the transmission type according to the resource type and the modification amount.
  • Stream 1 performs the corresponding resource modification.
  • the policy decision network element when the UE supporting the multipath transmission performs the service packet transmission by using at least two transmission substreams, the policy decision network element receives the association information of the at least two transmission substreams sent by the communication peer end. And determining, according to the association information, a resource modification policy of the at least one of the at least one transmission substream, and sending the resource modification policy to the forwarding plane network element corresponding to the at least one transmission substream, so that The forwarding plane network element corresponding to the at least one transmission substream performs resource modification according to the resource modification policy.
  • the policy decision network element can be based on Transmitting association information of at least two transport sub-flows of the same service packet, and determining one or several transport sub-streams that need to be modified by the resource to perform resource modification on the same, without performing resource modification on each transport sub-flow. Therefore, the number of signaling processes for resource modification under multipath transmission can be reduced, the processing flow is more optimized, and the system resource consumption is reduced.
  • FIG. 4 is a schematic flowchart diagram of another multi-path transmission policy control method according to an embodiment of the present invention.
  • the associated information in the policy control method of the multi-path transmission is transmitted during the resource establishment process, and the communication peer is the user equipment UE.
  • the UE can perform service packet transmission by using at least two transmission sub-flows.
  • the UE will use the two transmission sub-flows to perform service packet transmission as an example for detailed description.
  • the policy control method for multipath transmission may include the following steps:
  • the UE establishes a PDU connection 1 through the base station 1 and the forwarding plane network element 1.
  • the UE establishes a transport substream 1 for communicating with the server for the PDU connection 1 through the base station 1 and the forwarding plane network element 1.
  • the UE establishes a PDU connection 2 through the base station 2 and the forwarding plane network element 2.
  • the UE establishes a transport substream 2 for communicating with the server for the PDU connection 2 through the base station 2 and the forwarding plane network element 2.
  • a UE supporting multi-path transmission may establish multiple PDU connections, and each PDU connection may establish one or more transmission sub-flows, where a PDU connection establishes a transmission sub-flow as an example. Be explained.
  • the UE may transmit the same service packet through the transport substream 1 corresponding to the PDU connection 1 and the transport substream 2 corresponding to the PDU connection 2.
  • the base station 1 and the base station 2 are two different base stations, for example, the base station 1 is a macro base station, and the base station 2 is a micro base station.
  • the UE sends a first resource request to the control plane network element by using the PDU connection 1.
  • the first resource request carries the flow identifier of the transport substream 1.
  • the control plane network element sends the first resource request that is transmitted by the UE through the PDU connection 1 to the forwarding plane network element 1.
  • the forwarding plane network element 1 interacts with the policy decision network element.
  • the forwarding plane network element 1 performs corresponding resource modification on the transport substream 1 through the control plane network element, the base station 1 and the UE.
  • the first resource request transmitted on the PDU connection 1 may be a resource establishment request, that is, requesting establishment of some or some resources on the connection.
  • the request may include a stream identifier of the transport substream 1 and resource information requested to be established.
  • the forwarding plane network element 1 can implement interaction with the policy decision network element by establishing an IP-CAN session according to the first resource request. Specifically, the forwarding plane network element 1 sends a session request to the policy decision network element, where the session request may carry the flow identifier of the transport substream 1.
  • the policy decision network element responds to the session request, and the policy execution network element may initiate a policy modification.
  • the policy decision network element sends a modification policy to the forwarding plane network element 1 to enable the forwarding plane network element 1 to initiate corresponding resource modification according to the modification policy. At this time, the resource modification is to establish or activate the requested resource.
  • the forwarding plane network element 1 After the resource is modified, the forwarding plane network element 1 returns an acknowledgement message to the policy decision network element to indicate that the requested resource modification has been performed.
  • the forwarding plane network element 1 may return the acknowledgement information to the policy decision network element to notify the resource that the policy decision network element requests that the resource has been successfully established.
  • the UE sends a first resource request to the control plane network element by using the PDU connection 2.
  • the first resource request carries the flow identifier of the transport substream 2 and the association information of the transport substream 1 and the transport substream 2.
  • the control plane network element sends the first resource request transmitted by the UE through the PDU connection 2 to the forwarding plane network element 2.
  • the forwarding plane network element 2 interacts with the policy decision network element.
  • the forwarding plane network element 2 performs corresponding resource modification on the transport substream 2 through the control plane network element, the base station 2, and the UE.
  • the first resource request transmitted on the PDU connection 2 may be a resource setup request, that is, requesting establishment of some or some resources on the connection.
  • the request may include the transmission of substream 2
  • the forwarding plane network element 2 can implement interaction with the policy decision network element by establishing an IP-CAN session according to the first resource request. Specifically, the forwarding plane network element 2 sends a session request to the policy decision network element, where the session request may carry the flow identifier of the transport substream 2 and the association information of the transport substream 1 and the transport substream 2.
  • the policy decision network element responds to the session request, and the policy execution network element initiates the policy modification, and the policy decision network element sends a modification policy to the forwarding plane network element 2, so that the forwarding plane network element 2 initiates corresponding resource modification according to the modification policy.
  • the resource modification is to establish or activate the requested resource.
  • the forwarding plane network element 2 After the resource is modified, the forwarding plane network element 2 returns an acknowledgement message to the policy decision network element to indicate that the requested resource modification has been performed.
  • steps 405-409 and the steps 410-414 may be performed in sequence, or may be performed synchronously or in a crossover manner, which is not limited by the embodiment of the present invention.
  • the association information of the transmission substream 1 and the transmission substream 2 can be transmitted on one of the transmission substreams.
  • Steps 405-414 can be regarded as a resource establishment process, and the association information is transmitted during the resource establishment process.
  • the UE detects that a transport substream needs to modify resources.
  • the UE may detect whether the transport substream 1 and the transport substream 2 need to perform resource modification in real time or at regular intervals. Specifically, the determination may be made according to the data transmission condition of the transmission substream 1 and the transmission substream 2. For example, when the number of data packet loss transmissions on the transmission substream 1 is greater than a preset value, it can be considered that the transmission substream 1 needs a higher bandwidth, that is, the transmission of the substream 1 needs to be modified.
  • the UE sends a second resource request to the control plane network element on the transport substream.
  • the second resource request may be a resource modification request.
  • the second resource request may be sent on the transport substream 1.
  • the second resource request may be sent on the transport substream 2.
  • the transport substream 2 may be sent on the transport substream 2.
  • the control plane network element forwards the second resource request to the forwarding plane network element 1.
  • the forwarding plane network element 1 sends a policy control modification request to the policy decision network element.
  • the policy decision network element responds to the policy to control the modification request, and determines the transmission according to the association information.
  • the policy decision network element responds to the policy control modification request sent by the forwarding plane network element, and determines at least one piece according to the association information of the two transmission substreams of the received transmission substream 1 and the transmission substream 2.
  • the at least one transport substream may be any one or two of the transport substream 1 and the transport substream 2, or may be one or two of the transport substream 1 and the transport substream 2 that need to be modified.
  • the policy control modification request is also performed by the forwarding plane network element and the policy decision network element to establish an IP-CAN session.
  • the specific implementation manner of the resource modification policy for determining the at least one transport substream in the transport substream 1 and the transport substream 2 according to the association information in the step 419 may be:
  • the policy decision network element acquires at least one of the load condition, the air interface type, and the base station type of the transport substream 1 and the transport substream 2 according to the association information; and according to the load condition of the transport substream 1 and the transport substream 2,
  • a resource modification policy of at least one of the transport substream 1 and the transport substream 2 is determined by at least one of an air interface type and a base station type.
  • the policy decision network element sends the resource modification policy to perform resource modification.
  • the specific implementation manner of the step 420 that the policy decision network element sends the resource modification policy to perform resource modification may include the following steps:
  • the policy decision network element sends the resource modification policy to the forwarding plane network element corresponding to the at least one transport substream;
  • the forwarding plane network element corresponding to the at least one transport substream performs the corresponding resource modification according to the resource modification policy.
  • the policy decision network element sends the resource modification policy to the forwarding plane network element 1, so that the forwarding plane network element 1 performs the corresponding resource according to the resource modification policy. modify.
  • the policy decision network element sends the resource modification policy to the forwarding plane network element 2, so that the forwarding plane network element 2 performs corresponding resource modification according to the resource modification policy.
  • the policy decision network element sends the resource modification policy to the forwarding plane network element 1 and the forwarding plane network element 2, respectively.
  • the forwarding plane network element 1 and the forwarding plane network element 2 respectively perform corresponding resource modification according to the resource modification policy.
  • the method described in FIG. 4 may further include the following steps:
  • the forwarding plane network element corresponding to the at least one transport substream After the resource is modified, the forwarding plane network element corresponding to the at least one transport substream returns an acknowledgement information to the policy decision network element to indicate that the requested resource modification has been performed.
  • the forwarding plane network element 1 may return an acknowledgement information to the policy decision network element to indicate that the resource modification requested by the forwarding plane network element 1 has been performed. .
  • the forwarding plane network element 2 may return the acknowledgement information to the policy decision network element to indicate that the resource modification requested by the forwarding plane network element 2 has been performed.
  • the forwarding plane network element 1 and the forwarding plane network element 2 may respectively return confirmation information to the policy decision network element to respectively indicate the request. The resource modification has been performed.
  • the second resource request may be sent on the transport substream 2.
  • steps 416-420 which will not be repeated here.
  • Steps 415-420 can be regarded as a resource modification process.
  • the first resource request transmitted by the UE through the PDU connection 1 and the PDU connection 2 may be a dedicated bearer activation request, and the resource modification may be a dedicated bearer activation.
  • Steps 405-409 are the activation process of transmitting the dedicated bearer on the substream 1
  • steps 410-414 are the activation process of the dedicated bearer on the transport substream 2.
  • the second resource request transmitted on the transport substream may be a dedicated bearer modification request.
  • the resource modification policy of the at least one transport sub-flow determined by the policy decision network element according to the association information of the two transport sub-flows may be a bearer QoS modification policy of the at least one transport sub-flow.
  • the QoS modification policy is sent to the corresponding forwarding plane network element, so that the corresponding forwarding plane network element initiates the modification of the bearer QoS, and returns an acknowledgement information to the policy decision network element to indicate that the requested QoS policy has been executed.
  • the UE by implementing the method described in FIG. 4, the UE establishes a PDU connection by using multiple different base stations, and establishes a corresponding transmission substream, and the UE may transmit during the resource establishment process.
  • the flow identifier of the substream and the association information of the plurality of transport substreams notify the policy decision network element.
  • the policy decision network element determines a strip according to the association information in the resource modification process. Or a plurality of transmission substreams are used for resource modification, thereby reducing the number of signaling processes for resource modification under multipath transmission, optimizing the processing flow, and reducing system resource consumption.
  • FIG. 5 is a schematic flowchart diagram of another multi-path transmission policy control method according to an embodiment of the present invention.
  • the associated information in the policy control method of the multi-path transmission is transmitted during the resource modification process, and the communication peer is the user equipment UE.
  • the UE can perform service packet transmission by using at least two transmission sub-flows.
  • the UE will use the two transmission sub-flows to perform service packet transmission as an example for detailed description.
  • the policy control method for multipath transmission may include the following steps:
  • the UE establishes a PDU connection 1 through the base station 1 and the forwarding plane network element 1.
  • the UE establishes a transport substream 1 for communicating with the server for the PDU connection 1 through the base station 1 and the forwarding plane network element 1.
  • the UE establishes a PDU connection 2 through the base station 2 and the forwarding plane network element 2.
  • the UE establishes a transport substream 2 for communicating with the server for the PDU connection 2 through the base station 2 and the forwarding plane network element 2.
  • the UE sends a first resource request to the control plane network element by using the PDU connection 1.
  • the first resource request carries the flow identifier of the transport substream 1.
  • the control plane network element sends the first resource request that is transmitted by the UE through the PDU connection 1 to the forwarding plane network element 1.
  • the forwarding plane network element 1 interacts with the policy decision network element.
  • the forwarding plane network element 1 performs corresponding resource modification on the transport substream 1 through the control plane network element, the base station 1 and the UE.
  • the first resource request transmitted on the PDU connection 1 may be a resource establishment request, that is, requesting establishment or activation of some or some resources on the connection.
  • the request may include a stream identifier of the transport substream 1 and resource information requested to be established.
  • the forwarding plane network element 1 can implement interaction with the policy decision network element by establishing an IP-CAN session according to the first resource request. Specifically, the forwarding plane network element 1 sends a session request to the policy decision network element, where the session request may carry the flow identifier of the transport substream 1.
  • the policy decision network element responds to the session request, and the policy execution network element may initiate a policy modification.
  • the policy decision network element sends a modification policy to the forwarding plane network element 1 to enable the forwarding plane network element 1 to initiate corresponding resource modification according to the modification policy. At this time, the resource modification is to establish or activate the requested resource.
  • the forwarding plane network element 1 After the resource is modified, the forwarding plane network element 1 returns an acknowledgement message to the policy decision network element to indicate that the requested resource modification has been performed.
  • the UE sends a first resource request to the control plane network element by using the PDU connection 2.
  • the first resource request carries the flow identifier of the transport substream 2.
  • the control plane network element sends the first resource request that is transmitted by the UE through the PDU connection 2 to the forwarding plane network element 2.
  • the forwarding plane network element 2 interacts with the policy decision network element.
  • the forwarding plane network element 2 performs corresponding resource modification on the transport substream 2 through the control plane network element, the base station 2, and the UE.
  • the first resource request transmitted on the PDU connection 2 may be a resource setup request, that is, requesting establishment of some or some resources on the connection.
  • the request may include a flow identifier of the transport substream 2 and resource information requested to be established.
  • the forwarding plane network element 2 can implement interaction with the policy decision network element by establishing an IP-CAN session according to the first resource request. Specifically, the forwarding plane network element 2 sends a session request to the policy decision network element, where the session request may carry the flow identifier of the transport substream 2.
  • the policy decision network element responds to the session request, and the policy execution network element may initiate a policy modification.
  • the policy decision network element sends a modification policy to the forwarding plane network element 2, so that the forwarding plane network element 2 performs corresponding resource modification according to the modification policy. At this time, the resource modification is to establish or activate the requested resource.
  • the forwarding plane network element 2 After the resource is modified, the forwarding plane network element 2 returns an acknowledgement message to the policy decision network element to indicate that the requested resource modification has been performed.
  • steps 505-509 and the steps 510-514 may be performed in sequence, or may be performed synchronously or in a crossover manner, which is not limited by the embodiment of the present invention. Among them, steps 505-514 can be regarded as a resource establishment process.
  • the UE detects that a transport substream needs to modify resources.
  • the UE sends a second resource request to the control plane network element on the transport substream, where the second resource request carries association information of the transport substream 1 and the transport substream 2.
  • the second resource request may be a resource modification request.
  • the second resource request may be sent on the transport substream 1.
  • the second resource request may be sent on the transport substream 2.
  • the transport substream 2 may be sent on the transport substream 2.
  • the control plane network element forwards the second resource request to the forwarding plane network element 1.
  • control plane network element may send the second resource request and the association information of the two transport substreams to the forwarding plane network element 1; or send the second resource request to the forwarding plane network element 1 and
  • the association information of the two transport sub-flows is directly sent to the policy decision network element, which is not limited in the embodiment of the present invention.
  • the forwarding plane network element 1 sends a policy control modification request to the policy decision network element.
  • the policy control modification request when the control plane network element directly sends the association information of the two transport sub-flows to the policy decision network element, the policy control modification request may not carry the association information.
  • the policy control modification request may carry the association information of the two transmission substreams.
  • the policy decision network element responds to the policy control modification request, and determines, according to the association information, a resource modification policy of the at least one transport substream in the transport substream 1 and the transport substream 2.
  • the specific implementation manner of the resource modification policy for determining the at least one transport substream in the transport substream 1 and the transport substream 2 according to the association information in the step 519 may be:
  • the policy decision network element obtains the load status of the transport substream 1 and the transport substream 2 according to the association information, Determining at least one of the air interface type and the base station type; and determining the transport substream 1 and the transport substream 2 according to at least one of the load condition of the transport substream 1 and the transport substream 2, the air interface type, and the base station type At least one resource modification policy for transmitting substreams.
  • the policy decision network element sends the resource modification policy to perform resource modification.
  • the specific implementation manner in which the resource modification policy is performed by the policy decision network element in step 520 may include the following steps:
  • the policy decision network element sends the resource modification policy to the forwarding plane network element corresponding to the at least one transport substream;
  • the forwarding plane network element corresponding to the at least one transport substream performs the corresponding resource modification according to the resource modification policy.
  • the method described in FIG. 5 may further include the following steps:
  • the forwarding plane network element corresponding to the at least one transport substream After the resource is modified, the forwarding plane network element corresponding to the at least one transport substream returns an acknowledgement information to the policy decision network element to indicate that the requested resource modification has been performed.
  • the second resource request may be sent on the transport substream 2 and the association information of the two substreams may be transmitted.
  • steps 516-520 which will not be repeated here.
  • the steps 515-520 can be regarded as a resource modification process, and the associated information is transmitted during the resource modification process.
  • the first resource request transmitted by the UE through the PDU connection 1 and the PDU connection 2 may be a dedicated bearer activation request, and the resource modification may be a dedicated bearer activation.
  • Steps 505-509 are the activation process of transmitting the dedicated bearer on the substream 1
  • steps 510-514 are the activation process of the dedicated bearer on the transport substream 2.
  • the second resource request transmitted on the transport substream may be a dedicated bearer modification request, and carries the associated information of the two transport substreams.
  • the resource modification policy of the at least one transport sub-flow determined by the policy decision network element according to the association information of the two transport sub-flows may be a bearer QoS modification policy of the at least one transport sub-flow.
  • the QoS modification policy is sent to the corresponding forwarding plane network element, so that the corresponding forwarding plane network element initiates the modification of the bearer QoS, and the policy is determined.
  • the policy element returns an acknowledgment message to indicate that the requested QoS policy has been executed.
  • the UE by implementing the method described in FIG. 5, the UE establishes a PDU connection by using a plurality of different base stations, and establishes a corresponding transmission sub-flow, and the UE may notify the flow identifier of the transmission sub-flow during the resource establishment process.
  • the policy decision network element when the UE detects that one of the transport sub-flows needs to be modified, the UE notifies the policy decision network element of the association information of the two transport sub-flows in the resource modification process, so that the policy decision network element is based on the association.
  • the information determines one or several transmission substreams for resource modification, thereby reducing the number of signaling processes for resource modification under multipath transmission, optimizing the processing flow, and reducing system resource consumption.
  • FIG. 6 is a schematic flowchart diagram of still another method for controlling multi-path transmission policy according to an embodiment of the present invention.
  • the associated information in the multi-path transmission policy control method is transmitted in the resource modification process, and the communication peer end is a server supporting multi-path transmission.
  • the user equipment UE may perform service packet transmission by using at least two transmission sub-flows. The UE will use the two transmission sub-flows to perform service packet transmission as an example for detailed description.
  • the policy control method for multipath transmission may include the following steps:
  • the UE establishes a PDU connection 1 through the base station 1 and the forwarding plane network element 1.
  • the UE establishes a transport substream 1 for communicating with the server for the PDU connection 1 through the base station 1 and the forwarding plane network element 1.
  • the UE establishes a PDU connection 2 through the base station 2 and the forwarding plane network element 2.
  • the UE establishes a transport substream 2 for communicating with the server for the PDU connection 2 through the base station 2 and the forwarding plane network element 2.
  • the UE sends a first resource request to the control plane network element by using the PDU connection 1.
  • the first resource request carries the flow identifier of the transport substream 1.
  • the control plane network element sends the first resource request that is transmitted by the UE through the PDU connection 1 to the forwarding plane network element 1.
  • the forwarding plane network element 1 interacts with the policy decision network element.
  • the forwarding plane network element 1 performs corresponding resource modification on the transport substream 1 through the control plane network element, the base station 1 and the UE.
  • the first resource request transmitted on the PDU connection 1 may be a resource establishment request, that is, requesting establishment of some or some resources on the connection.
  • the request may include a stream identifier of the transport substream 1 and resource information requested to be established.
  • the forwarding plane network element 1 can implement interaction with the policy decision network element by establishing an IP-CAN session according to the first resource request. Specifically, the forwarding plane network element 1 sends a session request to the policy decision network element, where the session request may carry the flow identifier of the transport substream 1.
  • the policy decision network element responds to the session request, and the policy execution network element may initiate a policy modification.
  • the policy decision network element sends a modification policy to the forwarding plane network element 1 to enable the forwarding plane network element 1 to initiate corresponding resource modification according to the modification policy. At this time, the resource modification is to establish or activate the requested resource.
  • the forwarding plane network element 1 After the resource is modified, the forwarding plane network element 1 returns an acknowledgement information to the policy decision network element to indicate that the requested resource modification has been performed.
  • the UE sends a first resource request to the control plane network element by using the PDU connection 2.
  • the first resource request carries the flow identifier of the transport substream 2.
  • the control plane network element sends the first resource request that is transmitted by the UE through the PDU connection 2 to the forwarding plane network element 2.
  • the forwarding plane network element 2 interacts with the policy decision network element.
  • the forwarding plane network element 2 performs corresponding resource modification on the transport substream 2 through the control plane network element, the base station 2, and the UE.
  • the first resource request transmitted on the PDU connection 2 may be a resource setup request, that is, requesting establishment of some or some resources on the connection.
  • the request may include a flow identifier of the transport substream 2 and resource information requested to be established.
  • the forwarding plane network element 2 can implement interaction with the policy decision network element by establishing an IP-CAN session according to the first resource request. Specifically, the forwarding plane network element 2 sends a session request to the policy decision network element, where the session request may carry the flow identifier of the transport substream 2.
  • the policy decision network element responds to the session request, and the policy execution network element may initiate a policy modification.
  • Strategy decision The policy element sends a modification policy to the forwarding plane network element 2, so that the forwarding plane network element 2 performs corresponding resource modification according to the modification policy. At this time, the resource modification is to establish or activate the requested resource.
  • the forwarding plane network element 2 After the resource is modified, the forwarding plane network element 2 returns an acknowledgement message to the policy decision network element to indicate that the requested resource modification has been performed.
  • steps 605-609 and the steps 610-614 may be performed in sequence, or may be performed synchronously or in a crossover manner, which is not limited in the embodiment of the present invention. Among them, steps 605-614 can be regarded as a resource establishment process.
  • the server detects that a transport substream needs to modify resources.
  • the server may determine a transport substream that needs to be modified according to service requirements, such as determining which transport substream needs a higher bandwidth.
  • the server sends a second resource request to the policy decision network element on the transport substream, where the second resource request carries association information of the transport substream 1 and the transport substream 2.
  • the second resource request is the foregoing resource modification request.
  • the resource modification request carries association information of two transmission substreams.
  • the second resource request carrying the associated information may be sent on the transport substream 1.
  • the second resource request carrying the associated information may be sent on the transport substream 2.
  • the policy decision network element responds to the second resource request, and determines, according to the association information, a resource modification policy of the at least one transport substream in the transport substream 1 and the transport substream 2.
  • the specific implementation manner of the resource modification policy of the at least one transport substream in the transport substream 1 and the transport substream 2 according to the association information may be:
  • the policy decision network element acquires at least one of the load condition, the air interface type, and the base station type of the transport substream 1 and the transport substream 2 according to the association information; and according to the load condition of the transport substream 1 and the transport substream 2,
  • a resource modification policy of at least one of the transport substream 1 and the transport substream 2 is determined by at least one of an air interface type and a base station type.
  • the policy decision network element sends the resource modification policy to perform resource modification.
  • the specific implementation manner in which the resource modification policy is performed by the policy decision network element in step 618 may include the following steps:
  • the policy decision network element sends the resource modification policy to the forwarding plane network element corresponding to the at least one transport substream;
  • the forwarding plane network element corresponding to the at least one transport substream performs the corresponding resource modification according to the resource modification policy.
  • the method described in FIG. 6 may further include the following steps:
  • the forwarding plane network element corresponding to the at least one transport substream After the resource is modified, the forwarding plane network element corresponding to the at least one transport substream returns an acknowledgement information to the policy decision network element to indicate that the requested resource modification has been performed.
  • the steps 615-618 can be regarded as a resource modification process, and the associated information is transmitted during the resource modification process.
  • the first resource request transmitted by the UE through the PDU connection 1 and the PDU connection 2 may be a dedicated bearer activation request, and the resource modification may be a dedicated bearer activation.
  • Steps 605-609 are the activation process of transmitting the dedicated bearer on the substream 1
  • steps 610-614 are the activation process of the dedicated bearer on the transport substream 2.
  • the server detects that a transport substream needs to modify resources in step 615
  • the second resource request transmitted on the transport substream may be a private bearer modification request and carry associated information of two transport substreams.
  • the resource modification policy of the at least one transport sub-flow determined by the policy decision network element according to the association information of the two transport sub-flows may be a bearer QoS modification policy of the at least one transport sub-flow.
  • the QoS modification policy is sent to the corresponding forwarding plane network element, so that the corresponding forwarding plane network element initiates the modification of the bearer QoS, and returns an acknowledgement information to the policy decision network element to indicate that the requested QoS policy has been executed.
  • the UE by implementing the method described in FIG. 6, the UE establishes a PDU connection by using a plurality of different base stations, and establishes a corresponding transmission sub-flow, and the UE may notify the flow identifier of the transmission sub-flow in the resource establishment process.
  • the policy decision network element when the server detects that one of the transport sub-flows needs to be modified, the server notifies the policy decision network element of the association information of the two transport sub-flows in the resource modification process, so that the policy decision network element is based on the association Information determines one or several transmission substreams to perform
  • the resource modification can reduce the number of signaling processing for resource modification under multi-path transmission, optimize the processing flow, and reduce the consumption of system resources.
  • FIG. 7 is a schematic structural diagram of a policy decision network element according to an embodiment of the present invention, which may be used to perform a policy control method for multipath transmission disclosed in the embodiment of the present invention.
  • the policy decision network element may include:
  • the receiving unit 701 is configured to receive association information of at least two transport substreams sent by the communication peer end.
  • the UE that supports the multi-path transmission can transmit the service packet through the at least two transport sub-flows, that is, the same service packet can be transmitted on the at least two transport sub-streams.
  • the receiving unit 701 may receive the association information about the at least two transmission sub-flows sent by the communication peer.
  • the association information is used to indicate that the at least two transport substreams transmit the same service packet, and the association information may include the flow identifier of the at least two transport substreams. Different transport substreams have different stream identifiers, and different transport substreams can be distinguished by stream identifiers.
  • the communication peer end may be the UE, or may be a server supporting multi-path transmission, such as an application server.
  • the specific implementation manner that the receiving unit 701 receives the association information of the at least two transmission sub-flows sent by the communication peer end may be:
  • the receiving unit 701 receives the association information of the at least two transmission sub-flows sent by the communication peer end in the resource establishment process
  • the receiving unit 701 receives the association information of the at least two transmission sub-flows sent by the communication peer end in the resource modification process.
  • the communication peer may initiate a resource setup request to request establishment or activation of some or some resources of each transport substream.
  • the communication peer detects that a certain transmission substream needs to be modified, the substream can be transmitted in the strip. A resource modification request is initiated.
  • the communication peer when the association information is received in the resource establishment process, the communication peer may carry the association information of the at least two transmission sub-flows in the resource establishment request initiated by one of the transmission sub-flows.
  • the communication peer may carry the association information of the at least two transmission sub-flows in the initiated resource modification request.
  • the determining unit 702 is configured to determine, according to the association information, a resource modification policy of at least one of the at least two transport substreams.
  • the determining unit 702 may determine, according to the association information received by the receiving unit 701, a resource modification policy of at least one of the at least two transmission substreams.
  • the at least one transport substream may be any one or a plurality of transport substreams of the at least two transport substreams, or may be determined by combining information about a load condition, an air interface type, and a base station type of each transport substream.
  • the transport substream that needs to be modified by the resource may be any one or a plurality of transport substreams of the at least two transport substreams, or may be determined by combining information about a load condition, an air interface type, and a base station type of each transport substream. The transport substream that needs to be modified by the resource.
  • the resource modification policy may include, but is not limited to, a flow identifier of each of the at least one transport substream and a resource type and a modified amount that each transport substream needs to be modified.
  • the modified resource type is the modified resource, and may be the quality of service QoS parameter.
  • the QoS parameter may include a QCI, which is used to measure information such as packet loss rate, delay, bandwidth, and priority during service transmission. The amount of modification is how much you modify the resource.
  • the sending unit 703 is configured to send the resource modification policy to the forwarding plane network element corresponding to the at least one transport substream.
  • the sending unit 703 may send the resource modification policy to the forwarding plane network element corresponding to the at least one transport substream.
  • a transport substream corresponds to one forwarding plane network element, and the forwarding plane network elements corresponding to different transport substreams may be different.
  • the forwarding plane network element may parse the resource modification policy to obtain a modification policy of the corresponding transmission sub-flow, and perform resource modification according to the modification policy.
  • the receiving unit 701 is further configured to be used in a resource modification process. Receiving a policy control modification request sent by the forwarding plane network element, where the forwarding plane network element is a forwarding plane network element corresponding to one of the at least two transmission substreams;
  • the determining unit 702 is specifically configured to control the modification request in response to the policy, and determine, according to the association information, a resource modification policy of the at least one of the at least two transmission substreams.
  • the receiving unit 701 may receive, in the resource modification process, a policy control modification request sent by the forwarding plane network element, where the policy control modification request may be used by the indication determining unit 702 to determine at least one of the at least two transmission substreams. Resource modification strategy.
  • the forwarding plane network element is a forwarding plane network element corresponding to one of the at least two transmission substreams. Specifically, the forwarding plane network element may be a forwarding corresponding to the transmission substream that initiates the resource modification request. Face network element.
  • the receiving unit 701 is further configured to receive, in a resource modification process, a resource modification request sent by the communication peer end;
  • the determining unit 702 is specifically configured to respond to the resource modification request, and determine, according to the association information, a resource modification policy of at least one of the at least two transmission substreams.
  • the receiving unit 701 may receive, in a resource modification process, a resource modification request sent by the communication peer, where the resource modification request may be used by the indication determining unit 702 to determine resource modification of at least one of the at least two transmission substreams. Strategy.
  • FIG. 8 is a schematic structural diagram of another policy decision network element disclosed in an embodiment of the present invention, which may be used to perform a policy control method for multi-path transmission disclosed in the embodiment of the present invention.
  • the policy decision network element shown in FIG. 8 is further optimized based on the policy decision network element shown in FIG. 7.
  • the determining unit 702 in the policy decision network element shown in FIG. 8 may include:
  • the obtaining sub-unit 7021 is configured to acquire, according to the association information, at least one of a load condition, an air interface type, and a base station type of the at least two transport sub-flows;
  • a determining subunit 7022 configured to determine, according to at least one of a load condition, an air interface type, and a base station type of the at least two transport substreams, a resource modification policy of the at least one transport substream of the at least two transport substreams .
  • the information about the load status, the air interface type, and the type of the base station of the at least two transmission sub-flows may be reported by the network management system or the radio access network to the policy decision network element in real time or at a specific time, or may be a policy decision network element. Actively obtained from the network management system or the RAN side.
  • one or several pieces of resources that need to be modified may be determined according to the association information of at least two transport sub-flows transmitting the same service packet.
  • the substream is transmitted to modify the resources without modifying the resources of each transport substream, thereby reducing the number of signaling processing for resource modification under multipath transmission, optimizing the processing flow, and reducing system resources. consumption.
  • FIG. 9 is a schematic structural diagram of another policy decision network element disclosed in an embodiment of the present invention, which may be used to perform a policy control method for multipath transmission disclosed in the embodiment of the present invention.
  • the policy decision network element 900 can include at least one processor 901, such as a CPU (Central Processing Unit), at least one communication interface 902, a memory 903, and the like. Among these, these components can be communicatively coupled via one or more communication buses 904.
  • the structure of the policy decision network element 900 shown in FIG. 9 does not constitute a limitation on the embodiment of the present invention. It may be a bus-shaped structure or a star-shaped structure, and may also include a comparison diagram. Show more or fewer parts, or combine some parts, or different parts. among them:
  • the communication interface 902 can include a wired interface, a wireless interface, etc., and can be used to communicate with a communication peer.
  • the memory 903 may be a high speed RAM memory or a non-volatile memory, such as at least one disk memory.
  • the memory 903 can also optionally be at least one storage device located remotely from the aforementioned processor 901.
  • the memory 903 may include an application, a communication interface module, data, and the like, which are not limited in the embodiment of the present invention.
  • the processor 901 can be used to call an application stored in the memory 903 to perform the following operations:
  • the trigger communication interface 902 receives association information of at least two transmission sub-flows sent by the communication peer end, where the association information includes the flow identifiers of the at least two transmission sub-streams.
  • the user equipment UE performs service message transmission by using the at least two transmission sub-flows;
  • the triggering communication interface 902 sends the resource modification policy to the forwarding plane network element corresponding to the at least one transport substream, so that the forwarding plane network element corresponding to the at least one transport substream performs resource modification according to the resource modification policy.
  • the communication peer end may include the UE or a server supporting multi-path transmission.
  • the processor 901 may receive the association information of the at least two transmission sub-flows sent by the communication peer end by the triggering communication interface 902.
  • the trigger communication interface 902 receives the association information of the at least two transmission sub-flows sent by the communication peer end in the resource establishment process
  • the trigger communication interface 902 receives the association information of the at least two transport sub-flows sent by the communication peer end in the resource modification process.
  • the processor 901 may be further configured to invoke an application stored in the memory 903, and perform the following operations:
  • the triggering communication interface 902 receives the policy control modification request sent by the forwarding plane network element in the resource modification process, where the forwarding plane network element is a forwarding plane network element corresponding to one of the at least two transmission substreams;
  • the specific implementation manner of the resource modification policy for determining, by the processor 901, the at least one of the at least two transport substreams according to the association information may be:
  • the processor 901 can also be used to call the storage in the memory 903. Application and do the following:
  • the trigger communication interface 902 receives the resource modification request sent by the communication peer end in the resource modification process
  • the specific implementation manner of the resource modification policy for determining, by the processor 901, the at least one of the at least two transport substreams according to the association information may be:
  • the processor 901 may determine, according to the association information, a specific implementation manner of the resource modification policy of the at least one of the at least two transport substreams:
  • the policy decision network element introduced in the embodiment of the present invention may implement some or all of the processes in the embodiment of the policy control method for multipath transmission introduced in conjunction with FIG. 3, FIG. 4, FIG. 5 or FIG.
  • one or several transmission substreams that need to be modified by the resource may be determined according to the association information of at least two transport substreams that transmit the same service packet.
  • To modify the resources it is not necessary to modify the resources of each transport sub-flow, so as to reduce the number of signaling processing for resource modification under multi-path transmission, optimize the processing flow, and reduce the consumption of system resources.
  • FIG. 10 is a multi-path transmission policy control system according to an embodiment of the present invention.
  • the multi-path transmission policy control system may include user equipment UE1001, at least two base stations 1002 (such as base station 1, base station 2, ..., base station n, where n is a positive integer greater than or equal to 2)
  • the control plane network element 1003 the at least two forwarding plane network elements 1004 (such as the forwarding plane network element 1, the forwarding plane network element 2, ..., the forwarding plane network element n), the policy decision network element 1005, and the server 1006.
  • the policy control system for multipath transmission shown in FIG. 10 can be used to execute the policy control method for multipath transmission described in any one of FIG. 3 to FIG. 6.
  • one or several pieces of resources that need to be modified may be determined according to the association information of at least two transmission sub-flows transmitting the same service packet.
  • the substream is transmitted to modify the resources without modifying the resources of each transport substream, thereby reducing the number of signaling processing for resource modification under multipath transmission, optimizing the processing flow, and reducing system resources. consumption.
  • Units or subunits in the policy decision network element of the embodiment of the present invention may be combined, divided, and deleted according to actual needs.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • PROM Programmable Read-Only Memory
  • EPROM Erasable Programmable Read Only Memory
  • OTPROM One-time Programmable Read-Only Memory
  • EEPROM electronically erasable rewritable read-only memory
  • CD-ROM Compact Disc Read-Only Memory
  • CD-ROM Compact Disc Read-Only Memory

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种多路径传输的策略控制方法及相关设备,其中,支持多路径传输的用户设备UE通过至少两条传输子流进行业务报文传输,该方法包括:策略决策网元接收通信对端发送的所述至少两条传输子流的关联信息,所述关联信息包括所述至少两条传输子流的流标识;策略决策网元根据所述关联信息,确定所述至少两条传输子流中的至少一条传输子流的资源修改策略;策略决策网元向所述至少一条传输子流对应的转发面网元发送所述资源修改策略,以使所述至少一条传输子流对应的转发面网元按照所述资源修改策略进行资源修改。实施本发明实施例,可以在多路径传输下进行资源修改时减少信令处理数量,降低资源的消耗量。

Description

一种多路径传输的策略控制方法及相关设备 技术领域
本发明涉及通信技术领域,尤其涉及一种多路径传输的策略控制方法及相关设备。
背景技术
EPS(Evolved Packet System,演进的分组系统)是3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)标准在第四代移动通信中引入的概念,由用户设备(User Equipment,UE)、无线接入网以及演进的分组核心网(Evolved Packet Core,EPC)组成。其中,EPC包括MME(Mobility Management Entity,移动性管理实体)、S-GW(Serving Gateway,服务网关)、P-GW(Packet Data Network Gateway,分组数据网络网关)、PCRF(Policy and Charging Rules Function,策略与计费规则功能单元)等组成部分。在EPS系统中,可以通过UE、基站、MME、S-GW、P-GW以及PCRF实现专用承载的激活和承载QoS(Quality of Service,服务质量)的修改等操作。
目前,随着互联网的飞速发展,以及手机、笔记本等UE宽带接入技术的进步,一个用户设备具有多个网络接口,如Wi-Fi(Wireless-Fidelity,无线保真)接口、2G(The 2nd Generation Mobile Communication Technology,第二代移动通信技术)接口、3G(The 3rd Generation Mobile Communication Technology,第三代移动通信技术)接口等等,从而可以实现到目标节点的多条链路。传统的传输控制协议(Transfer Control Protocol,TCP)是一对一的传输协议,不能够充分利用用户设备的多址多网络接口的优势,从而造成资源浪费。基于此,IETF(Internet Engineering Task Force,互联网工程任务组)提出了MPTCP(MultiPath TCP,多路径传输控制协议)。MPTCP是一种TCP的改进协议,它允许通信双方同时通过多条连接进行数据传送。在移动通信中,支持MPTCP 技术的UE和服务器同时使用3GPP接入技术的多条连接(如分别通过宏基站和家庭基站建立的连接)与对端通信时,UE根据业务需求(如业务需要一个更高的宽带)需要修改承载的QoS。目前的解决方案是针对每一条连接根据业务需求修改各条连接的承载QoS。然而,在每条连接上修改各自的承载QoS会造成UE及服务器的信令处理数量的增多,消耗额外资源。因此,如何在多路径传输下修改承载QoS时减少信令处理数量是目前亟需解决的问题。
发明内容
本发明实施例公开了一种多路径传输的策略控制方法及相关设备,用于解决在多路径传输下进行资源修改时减少信令处理数量的问题。
本发明实施例第一方面公开了一种多路径传输的策略控制方法,其中,支持多路径传输的用户设备UE通过至少两条传输子流进行业务报文传输,所述方法包括:
策略决策网元接收通信对端发送的所述至少两条传输子流的关联信息,所述关联信息包括所述至少两条传输子流的流标识;
所述策略决策网元根据所述关联信息,确定所述至少两条传输子流中的至少一条传输子流的资源修改策略;其中,资源修改策略中可以包括但不限于上述至少一条传输子流中每条传输子流的流标识以及每条传输子流需要进行修改的资源类型和修改量等信息;
所述策略决策网元向所述至少一条传输子流对应的转发面网元发送所述资源修改策略,以使所述至少一条传输子流对应的转发面网元按照所述资源修改策略进行资源修改。也即是说,策略决策网元可以根据传输同一业务报文的至少两条传输子流的关联信息,确定出需要进行资源修改的一条或几条传输子流来对其进行资源修改,而无需对每一条传输子流都进行资源修改,从而可以减少多路径传输下进行资源修改的信令处理数量,降低资源的消耗量。
结合本发明实施例第一方面,在本发明实施例第一方面的第一种可能的实 施方式中,所述通信对端包括所述UE或支持多路径传输的服务器。
结合本发明实施例第一方面或第一方面的第一种可能的实施方式,在本发明实施例第一方面的第二种可能的实施方式中,所述策略决策网元接收通信对端发送的所述至少两条传输子流的关联信息,包括:
所述策略决策网元在资源建立过程中接收通信对端发送的所述至少两条传输子流的关联信息;
或者,所述策略决策网元在资源修改过程中接收通信对端发送的所述至少两条传输子流的关联信息。
结合本发明实施例第一方面的第二种可能的实施方式,在本发明实施例第一方面的第三种可能的实施方式中,所述方法还包括:
所述策略决策网元在所述资源修改过程中接收转发面网元发送的策略控制修改请求,所述转发面网元为所述至少两条传输子流中的一条传输子流对应的转发面网元,即为发起所述资源修改的传输子流所对应的转发面网元;
其中,所述策略决策网元根据所述关联信息,确定所述至少两条传输子流中的至少一条传输子流的资源修改策略,包括:
所述策略决策网元响应所述策略控制修改请求,并根据所述关联信息确定所述至少两条传输子流中的至少一条传输子流的资源修改策略。也即是说,当策略决策网元接收到转发面网元发送的策略控制修改请求后,可以根据该关联信息确定出至少两条传输子流中的一条或几条传输子流的资源修改策略,从而增强了网络侧的策略决策网元的主动性。
结合本发明实施例第一方面的第二种可能的实施方式,在本发明实施例第一方面的第四种可能的实施方式中,所述方法还包括:
所述策略决策网元在所述资源修改过程中接收所述通信对端发送的资源修改请求;
其中,所述策略决策网元根据所述关联信息,确定所述至少两条传输子流中的至少一条传输子流的资源修改策略,包括:
所述策略决策网元响应所述资源修改请求,并根据所述关联信息确定所述至少两条传输子流中的至少一条传输子流的资源修改策略。也即是说,当策略决策网元接收到通信对端发送的资源修改请求后,可以根据该关联信息确定出至少两条传输子流中的一条或几条传输子流的资源修改策略,从而增强了网络侧的策略决策网元的主动性。
结合本发明实施例第一方面或第一方面的第一种至第四种中任一种可能的实施方式,在本发明实施例第一方面的第五种可能的实施方式中,所述策略决策网元根据所述关联信息,确定所述至少两条传输子流中的至少一条传输子流的资源修改策略,包括:
所述策略决策网元根据所述关联信息,获取所述至少两条传输子流的负载情况、空口类型以及基站类型中的至少一种信息;
所述策略决策网元根据所述至少两条传输子流的负载情况、空口类型以及基站类型中的至少一种信息,确定所述至少两条传输子流中的至少一条传输子流的资源修改策略。其中,所述至少两条传输子流的负载情况、空口类型以及基站类型中的至少一种信息可以是网管系统或无线接入网上报的,也可以是策略决策网元主动去网管系统或无线接入网获取的。
本发明实施例第二方面公开了一种策略决策网元,其中,支持多路径传输的用户设备UE通过至少两条传输子流进行业务报文传输,所述策略决策网元包括:
接收单元,用于接收通信对端发送的所述至少两条传输子流的关联信息,所述关联信息包括所述至少两条传输子流的流标识;
确定单元,用于根据所述关联信息,确定所述至少两条传输子流中的至少一条传输子流的资源修改策略;
发送单元,用于向所述至少一条传输子流对应的转发面网元发送所述资源修改策略,以使所述至少一条传输子流对应的转发面网元按照所述资源修改策略进行资源修改。
结合本发明实施例第二方面,在本发明实施例第二方面的第一种可能的实施方式中,所述通信对端包括所述UE或支持多路径传输的服务器。
结合本发明实施例第二方面或第二方面的第一种可能的实施方式,在本发明实施例第二方面的第二种可能的实施方式中,所述接收单元接收通信对端发送的所述至少两条传输子流的关联信息的方式具体为:
所述接收单元在资源建立过程中接收通信对端发送的所述至少两条传输子流的关联信息;
或者,所述接收单元在资源修改过程中接收通信对端发送的所述至少两条传输子流的关联信息。
结合本发明实施例第二方面的第二种可能的实施方式,在本发明实施例第二方面的第三种可能的实施方式中,
所述接收单元,还用于在所述资源修改过程中接收转发面网元发送的策略控制修改请求,所述转发面网元为所述至少两条传输子流中的一条传输子流对应的转发面网元;
所述确定单元具体用于响应所述策略控制修改请求,并根据所述关联信息确定所述至少两条传输子流中的至少一条传输子流的资源修改策略。
结合本发明实施例第二方面的第二种可能的实施方式,在本发明实施例第二方面的第四种可能的实施方式中,
所述接收单元,还用于在所述资源修改过程中接收所述通信对端发送的资源修改请求;
所述确定单元具体用于响应所述资源修改请求,并根据所述关联信息确定所述至少两条传输子流中的至少一条传输子流的资源修改策略。
结合本发明实施例第二方面或第二方面的第一种至第四种中任一种可能的实施方式,在本发明实施例第二方面的第五种可能的实施方式中,所述确定单元包括:
获取子单元,用于根据所述关联信息,获取所述至少两条传输子流的负载 情况、空口类型以及基站类型中的至少一种信息;
确定子单元,用于根据所述至少两条传输子流的负载情况、空口类型以及基站类型中的至少一种信息,确定所述至少两条传输子流中的至少一条传输子流的资源修改策略。
本发明实施例第三方面公开了一种策略决策网元,其中,支持多路径传输的用户设备UE通过至少两条传输子流进行业务报文传输,所述策略决策网元包括:处理器、存储器、通信接口以及通信总线;
其中,所述存储器用于存储程序和数据;
所述通信总线用于建立所述处理器、所述存储器和所述通信接口之间的连接通信;
所述处理器用于调用所述存储器存储的程序,执行如下操作:
触发所述通信接口接收通信对端发送的所述至少两条传输子流的关联信息,所述关联信息包括所述至少两条传输子流的流标识;
根据所述关联信息,确定所述至少两条传输子流中的至少一条传输子流的资源修改策略;
触发所述通信接口向所述至少一条传输子流对应的转发面网元发送所述资源修改策略,以使所述至少一条传输子流对应的转发面网元按照所述资源修改策略进行资源修改。
结合本发明实施例第三方面,在本发明实施例第三方面的第一种可能的实施方式中,所述通信对端包括所述UE或支持多路径传输的服务器。
结合本发明实施例第三方面或第三方面的第一种可能的实施方式,在本发明实施例第三方面的第二种可能的实施方式中,所述处理器触发所述通信接口接收通信对端发送的所述至少两条传输子流的关联信息的方式具体为:
触发所述通信接口在资源建立过程中接收通信对端发送的所述至少两条传输子流的关联信息;
或者,触发所述通信接口在资源修改过程中接收通信对端发送的所述至少 两条传输子流的关联信息。
结合本发明实施例第三方面的第二种可能的实施方式,在本发明实施例第三方面的第三种可能的实施方式中,所述处理器还用于调用所述存储器存储的程序,并执行如下操作:
触发所述通信接口在所述资源修改过程中接收转发面网元发送的策略控制修改请求,所述转发面网元为所述至少两条传输子流中的一条传输子流对应的转发面网元;
其中,所述处理器根据所述关联信息,确定所述至少两条传输子流中的至少一条传输子流的资源修改策略的方式具体为:
响应所述策略控制修改请求,并根据所述关联信息确定所述至少两条传输子流中的至少一条传输子流的资源修改策略。
结合本发明实施例第三方面的第二种可能的实施方式,在本发明实施例第三方面的第四种可能的实施方式中,所述处理器还用于调用所述存储器存储的程序,并执行如下操作:
触发所述通信接口在所述资源修改过程中接收所述通信对端发送的资源修改请求;
其中,所述处理器根据所述关联信息,确定所述至少两条传输子流中的至少一条传输子流的资源修改策略的方式具体为:
响应所述资源修改请求,并根据所述关联信息确定所述至少两条传输子流中的至少一条传输子流的资源修改策略。
结合本发明实施例第三方面或第三方面的第一种至第四种中任一种可能的实施方式,在本发明实施例第三方面的第五种可能的实施方式中,所述处理器根据所述关联信息,确定所述至少两条传输子流中的至少一条传输子流的资源修改策略的方式具体为:
根据所述关联信息,获取所述至少两条传输子流的负载情况、空口类型以及基站类型中的至少一种信息;
根据所述至少两条传输子流的负载情况、空口类型以及基站类型中的至少一种信息,确定所述至少两条传输子流中的至少一条传输子流的资源修改策略。
本发明实施例第四方面公开了一种多路径传输的策略控制系统,包括用户设备UE、本发明实施例第二方面公开的策略决策网元以及通信对端。
本发明实施例中,当支持多路径传输的用户设备UE通过至少两条传输子流进行业务报文传输时,策略决策网元接收通信对端发送的上述至少两条传输子流的关联信息,可以根据该关联信息,确定出上述至少两条传输子流中的至少一条传输子流的资源修改策略,并将该资源修改策略发送至上述至少一条传输子流对应的转发面网元,以使上述至少一条传输子流对应的转发面网元按照该资源修改策略进行资源修改。可见,实施本发明实施例,策略决策网元可以根据传输同一业务报文的至少两条传输子流的关联信息,确定出需要进行资源修改的一条或几条传输子流来对其进行资源修改,而无需对每一条传输子流都进行资源修改,从而可以减少多路径传输下进行资源修改的信令处理数量,降低资源的消耗量。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例公开的一种EPS系统的架构示意图;
图2是本发明实施例公开的一种多路径传输的网络架构示意图;
图3是本发明实施例公开的一种多路径传输的策略控制方法的流程示意图;
图4是本发明实施例公开的另一种多路径传输的策略控制方法的流程示意图;
图5是本发明实施例公开的另一种多路径传输的策略控制方法的流程示意 图;
图6是本发明实施例公开的又一种多路径传输的策略控制方法的流程示意图;
图7是本发明实施例公开的一种策略决策网元的结构示意图;
图8是本发明实施例公开的另一种策略决策网元的结构示意图;
图9是本发明实施例公开的又一种策略决策网元的结构示意图;
图10是本发明实施例公开的一种多路径传输的策略控制系统的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例公开了一种多路径传输的策略控制方法及相关设备,用于解决在多路径传输下进行资源修改时减少信令处理数量的问题,且使流程更加优化。以下分别进行详细说明。
为了更好的理解本发明实施例,下面先对本发明实施例适用的系统架构进行描述。本发明实施例可以运用于EPS系统或该系统的其他演进系统等。接下来,将对本发明实施例公开的一种EPS系统架构进行描述。请参阅图1,图1是本发明实施例公开的一种EPS系统的架构示意图。在图1所示的EPS系统架构中,可以包括用户设备UE、E-UTRAN(Evolved Universal Terrestrial Radio Access Network,演进的通用陆地无线接入网)以及演进的分组核心网EPC。其中,用户设备UE可以包括但不限于具有无线通信功能的手持设备(如移动手机、平板电脑、个人数字助理等)、车载设备、可穿戴设备(如智能手表、智能手环等)、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的 移动台(Mobile Station,简称MS),终端(Terminal),终端设备(Terminal Equipment)等等。为方便描述,本申请中,简称为用户设备或UE。E-UTRAN可以包括eNodeB,与UE之间通过LTE-Uu接口互联,且与EPC之间通过S1接口互联,用于实现无线接入有关的功能。EPC可以由移动性管理实体MME、服务网关S-GW、分组数据网络网关P-GW、策略与计费规则功能单元PCRF、SGSN(Serving GPRS Support Node,服务GPRS支持节点)、HSS(Home Subscriber Server,归属签约用户服务器)等部分组成。
本发明实施例中,MME用于完成信令面功能的处理,如用户的鉴权、切换、漫游控制、空闲状态终端的移动性管理、用户上下文以及承载管理等。S-GW是一个用户面功能实体,完成分组数据的路由和转发,并作为3GPP系统内的一个数据锚点,终止E-UTRAN的接口,同时在一定地理区域下也是E-UTRAN切换场景下本地移动性管理的锚点。P-GW是连接外部数据网的网关,是3GPP接入网络和非3GPP接入网络之间的用户面锚点。用户设备可以通过连接到P-GW创建PDN(Packet Data Network,分组数据网络)连接来访问外部分组数据网络,这些PDN可以是Internet、虚拟私有网络(Virtual Private Network,VPN)、IP多媒体业务(IP Multi-media Service,IMS)网络,或者由运营商提供的无线应用协议(Wireless Application Protocol,WAP)网络等。PCRF是业务数据流和IP承载资源的策略与计费控制策略决策点,维护网关控制会话及IP-CAN(IP-Connectivity Access Network,IP连接访问网络)会话之间的关联。SGSN用于完成分组数据包的路由转发、移动性管理、会话管理、逻辑链路管理、鉴权和加密、话单产生和输出等功能。HSS是用于存储用户签约信息的数据库,归属网络中可以包含一个或多个HSS,负责保存跟用户相关的信息,如用户标识、编号和路由信息、安全信息、位置信息、概要信息等。在实际的网络部署中,S-GW和P-GW可以分离也可以合一。例如在非漫游场景下,S-GW和P-GW为合一部署;在漫游场景下,S-GW和P-GW分开部署,两者之间通过S5接口连接。
请参阅图2,图2是本发明实施例公开的一种多路径传输的网络架构示意图。在图2所示的网络架构中,可以包括UE、至少两个基站、控制面网元、转发面网元、策略决策网元以及服务器。其中,UE为可以支持多路径传输的用户设备,如支持MPTCP传输协议的用户设备、支持QUIC(Quick UDP Internet Connection,快速UDP互联网连接)传输协议的用户设备等。控制面网元可以为负责用户及会话管理的控制面功能网元,如MME、移动网络控制器等。转发面网元可以为完成用户报文的转发、统计等处理功能的转发面功能网元,如P-GW、S-GW、GW转发面、SDN(Software Defined Network,软件定义网络)交换机等。策略决策网元可以为负责对移动网络进行策略控制和/或计费控制的功能网元,如EPC网络中的PCRF。服务器为可以支持多路径传输的服务器,可以为用户提供业务的网元,如支持MPTCP传输协议的应用服务器。在图2所示的网络架构中,一个用户设备UE具有多个网络接口,可以实现到目标节点的多条链路。具体地,UE通过基站和对应的转发面网元建立相应的PDU(Packet Data Unit,分组数据单元)连接,如PDN连接,且可以在每一条PDN连接上建立一条或多条传输子流。完成多路径传输可以是利用MPTCP协议来实现,也可以是利用QUIC协议来实现,本发明实施例不作限定。
在图2所示的网络架构中,UE通过基站1和基站2分别建立对应的PDU连接(即PDU连接1和PDU连接2),并建立对应的传输子流,以使得UE可以同时在这两条传输子流上进行业务报文的传输。例如,UE在这两条传输子流上同时传输同一应用的业务报文。其中,基站1和基站2为两个不同的基站,基站1可以为宏基站,基站2可以为微基站,如家庭基站。当UE在两条传输子流上进行业务报文传输时,策略决策网元可以接收UE或服务器发送的这两条传输子流的关联信息,以使策略决策网元获知在这两条传输子流上是传输同一业务。策略决策网元可以根据这两条传输子流的负载情况、空口类型以及基站类型中的至少一种信息,确定出对这两条传输子流中的一条或两条传输子流进行资源修改。从而可以减少多路径传输下进行资源修改的信令处理数量,使流程更加优 化,且降低系统资源的消耗量。图2中虽然仅示出了UE通过两个基站(基站1和基站2)建立了两条PDU连接,但并不构成对本发明实施例的限定。UE可以与多个基站建立至少两条PDU连接,即UE可以通过至少两条传输子流进行业务报文的传输。
基于图2所示的多路径传输的网络架构,本发明实施例公开了一种多路径传输的策略控制方法。请参阅图3,图3是本发明实施例公开的一种多路径传输的策略控制方法的流程示意图。如图3所示,该多路径传输的策略控制方法可以包括以下步骤:
301、策略决策网元接收通信对端发送的至少两条传输子流的关联信息。
本发明实施例中,用户设备UE可以通过至少两条传输子流进行业务报文传输。其中,该UE为支持多路径传输的用户设备,即可以在至少两条传输子流上传输同一业务报文。UE在传输业务报文之前,可以先建立多条PDU连接,如PDN连接,且每条PDU连接可以建立对应的一条或多条传输子流。用于传输业务报文的上述至少两条传输子流为不同PDU连接对应的传输子流。UE与不同的基站和转发面网元建立不同的PDU连接,例如,UE与基站1和转发面网元1建立PDU连接1,UE与基站2和转发面网元2建立PDU连接2等等。
本发明实施例中,当UE在至少两条传输子流上进行同一业务报文的传输时,策略决策网元可以接收通信对端发送的关于上述至少两条传输子流的关联信息。其中,该关联信息用于指示上述至少两条传输子流传输同一业务报文,该关联信息可以包括上述至少两条传输子流的流标识。不同传输子流的流标识不同,通过流标识可以区分不同的传输子流。具体的,当关联信息中包含了几个流标识,则可以表示这些流标识对应的传输子流传输的是同一业务报文。
本发明实施例中,通信对端可以是该UE,也可以是支持多路径传输的服务器,如应用服务器。
本发明实施例中,当建立有至少两条传输子流后,通信对端可以发起资源 建立请求,以请求对每一条传输子流对应的某种或某些资源进行建立或激活。例如,UE可以通过每一条传输子流发起专有承载激活请求(即资源建立请求),以激活每一条传输子流对应的专有承载。此外,当通信对端检测到某一条传输子流需要进行资源修改时,可以在该条传输子流上发起资源修改请求。其中,通信对端可以实时检测各条传输子流上的业务报文传输情况(如丢包次数、丢包频率等)来确定是否某一条传输子流需要进行资源修改。例如,当某一条传输子流上的丢包次数大于预设值时,则可以认为该条传输子流需要一个更高的带宽,从而可以确定该条传输子流需要进行资源修改。因此,通信对端可以在该条传输子流上发起资源修改请求。
具体地,步骤301策略决策网元接收通信对端发送的至少两条传输子流的关联信息的具体实施方式可以包括以下步骤:
31)策略决策网元在资源建立过程中接收通信对端发送的上述至少两条传输子流的关联信息;或者,
32)策略决策网元在资源修改过程中接收通信对端发送的上述至少两条传输子流的关联信息。
其中,资源建立过程与资源修改过程为前述的两个不同的过程。当在资源建立过程中接收到关联信息时,通信对端可以在其中一条传输子流发起的资源建立请求中携带上述至少两条传输子流的关联信息。当在资源修改过程中接收到关联信息时,通信对端可以在发起的资源修改请求中携带上述至少两条传输子流的关联信息。
302、策略决策网元根据该关联信息,确定上述至少两条传输子流中的至少一条传输子流的资源修改策略。
本发明实施例中,策略决策网元可以根据接收到的关联信息,确定出上述至少两条传输子流中的至少一条传输子流的资源修改策略。具体的,策略决策网元首先确定出上述至少一条传输子流,再进一步确定出上述至少一条传输子流的资源修改策略。其中,上述至少一条传输子流可以是上述至少两条传输子 流中的任意一条或几条传输子流;也可以是结合每一条传输子流的负载情况、空口类型、基站类型等信息确定出的需要进行资源修改的传输子流。
本发明实施例中,资源修改策略中可以包括但不限于上述至少一条传输子流中每条传输子流的流标识以及每条传输子流需要进行修改的资源类型和修改量等信息。其中,修改的资源类型为修改的是哪种资源,可以为服务质量QoS参数。进一步地,QoS参数可以包括QCI(QoS Class Identifier,QoS等级标识),用于衡量业务传输时的丢包率、延迟、带宽以及优先级等资源信息,即可对这些资源进行修改。修改量即为对资源修改多少。例如,将一条传输子流的带宽扩大5M,其中,进行修改的资源类型为带宽,修改量为5M。
可选的,步骤302策略决策网元根据该关联信息,确定上述至少两条传输子流中的至少一条传输子流的资源修改策略的具体实施方式可以包括以下步骤:
33)策略决策网元根据该关联信息,获取上述至少两条传输子流的负载情况、空口类型以及基站类型中的至少一种信息;
34)策略决策网元根据上述至少两条传输子流的负载情况、空口类型以及基站类型中的至少一种信息,确定上述至少两条传输子流中的至少一条传输子流的资源修改策略。
其中,上述至少两条传输子流的负载情况、空口类型以及基站类型等信息可以是网管系统或者无线接入网(Radio Access Network,RAN)实时或每隔特定时间上报至策略决策网元的,也可以是策略决策网元主动从网管系统或RAN侧获取的。例如,UE通过两条传输子流(如传输子流1和传输子流2)进行同一业务报文传输,假设传输子流1和传输子流2的最大带宽均为5M,而传输子流1已占用了4M,传输子流2已占用2M。假设资源占用率超过60%则需要进行资源修改,则可以确定出传输子流1需要进行资源修改。
作为一种可选的实施方式,在执行步骤302之前,图3所描述的方法还可以包括以下步骤:
35)策略决策网元在资源修改过程中接收转发面网元发送的策略控制修改请求,该转发面网元为上述至少两条传输子流中的一条传输子流对应的转发面网元;
其中,步骤302策略决策网元根据该关联信息,确定上述至少两条传输子流中的至少一条传输子流的资源修改策略的具体实施方式可以包括以下步骤:
36)策略决策网元响应该策略控制修改请求,并根据该关联信息确定上述至少两条传输子流中的至少一条传输子流的资源修改策略。
在该实施方式中,策略决策网元可以在资源修改过程中接收转发面网元发送的策略控制修改请求,该策略控制修改请求可以用于指示策略决策网元根据该关联信息确定上述至少两条传输子流中的至少一条传输子流的资源修改策略。其中,该转发面网元为上述至少两条传输子流中的一条传输子流对应的转发面网元,具体的,该转发面网元可以为发起资源修改请求的传输子流所对应的转发面网元。
可选的,步骤36)中策略决策网元根据该关联信息确定上述至少两条传输子流中的至少一条传输子流的资源修改策略的具体实施方式可以为策略决策网元根据该关联信息获取上述至少两条传输子流的负载情况、空口类型以及基站类型中的至少一种信息;并根据上述至少两条传输子流的负载情况、空口类型以及基站类型中的至少一种信息,确定上述至少两条传输子流中的至少一条传输子流的资源修改策略。
作为一种可选的实施方式,在执行步骤302之前,图3所描述的方法还可以包括以下步骤:
37)策略决策网元在资源修改过程中接收通信对端发送的资源修改请求;
其中,步骤302策略决策网元根据该关联信息,确定上述至少两条传输子流中的至少一条传输子流的资源修改策略的具体实施方式可以包括以下步骤:
38)策略决策网元响应该资源修改请求,并根据该关联信息确定上述至少两条传输子流中的至少一条传输子流的资源修改策略。
在该实施方式中,策略决策网元可以在资源修改过程中接收通信对端发送的资源修改请求,该资源修改请求可以用于指示策略决策网元根据该关联信息确定上述至少两条传输子流中的至少一条传输子流的资源修改策略。
可选的,步骤38)中策略决策网元根据该关联信息确定上述至少两条传输子流中的至少一条传输子流的资源修改策略的具体实施方式可以为策略决策网元根据该关联信息获取上述至少两条传输子流的负载情况、空口类型以及基站类型中的至少一种信息;并根据上述至少两条传输子流的负载情况、空口类型以及基站类型中的至少一种信息,确定上述至少两条传输子流中的至少一条传输子流的资源修改策略。
303、策略决策网元向上述至少一条传输子流对应的转发面网元发送该资源修改策略。
本发明实施例中,当策略决策网元确定出至少一条传输子流的资源修改策略后,可以将该资源修改策略发送至上述至少一条传输子流对应的转发面网元,以使上述至少一条传输子流对应的转发面网元按照该资源修改策略进行资源修改。一条传输子流对应有一个转发面网元,且不同传输子流对应的转发面网元可以不同。当一个转发面网元接收到资源修改策略后,可以对该资源修改策略进行解析,以获得自身对应的传输子流的修改策略,并根据该修改策略进行资源修改。例如,转发面网元1接收到资源修改策略,并从中解析出自身对应的传输子流1的修改策略,如需要进行修改的资源类型和修改量等,并按照资源类型和修改量对传输子流1进行相应的资源修改。
在图3所描述的方法中,当支持多路径传输的UE通过至少两条传输子流进行业务报文传输时,策略决策网元接收通信对端发送的上述至少两条传输子流的关联信息,可以根据该关联信息,确定上述至少两条传输子流中的至少一条传输子流的资源修改策略,并将该资源修改策略发送至上述至少一条传输子流对应的转发面网元,以使上述至少一条传输子流对应的转发面网元按照该资源修改策略进行资源修改。通过实施图3所描述的方法,策略决策网元可以根据 传输同一业务报文的至少两条传输子流的关联信息,确定出需要进行资源修改的一条或几条传输子流来对其进行资源修改,而无需对每一条传输子流都进行资源修改,从而可以减少多路径传输下进行资源修改的信令处理数量,使处理流程更加优化,且降低系统资源的消耗量。
基于图2所示的多路径传输的网络架构,本发明实施例公开了另一种多路径传输的策略控制方法。请参阅图4,图4是本发明实施例公开的另一种多路径传输的策略控制方法的流程示意图。其中,该多路径传输的策略控制方法中关联信息是在资源建立过程中进行传输的,且通信对端为用户设备UE。UE可以通过至少两条传输子流进行业务报文传输,这里将以UE通过两条传输子流进行业务报文传输为例进行详细说明。如图4所示,该多路径传输的策略控制方法可以包括以下步骤:
401、UE通过基站1和转发面网元1建立PDU连接1。
402、UE通过基站1和转发面网元1针对该PDU连接1建立与服务器进行通信的传输子流1。
403、UE通过基站2和转发面网元2建立PDU连接2。
404、UE通过基站2和转发面网元2针对该PDU连接2建立与服务器进行通信的传输子流2。
本发明实施例中,支持多路径传输的UE可以建立多条PDU连接,且每条PDU连接可以建立对应的一条或多条传输子流,这里是以一条PDU连接建立一条传输子流为例来进行说明。UE可以通过PDU连接1对应的传输子流1和PDU连接2对应的传输子流2进行同一业务报文的传输。
本发明实施例中,基站1和基站2为两个不同的基站,例如,基站1为宏基站、基站2为微基站。
405、UE通过PDU连接1向控制面网元发送第一资源请求,该第一资源请求中携带有传输子流1的流标识。
406、控制面网元将UE通过PDU连接1传输的第一资源请求发送至转发面网元1。
407、转发面网元1与策略决策网元进行交互。
408、转发面网元1通过控制面网元、基站1和UE对传输子流1进行相应的资源修改。
本发明实施例中,在PDU连接1上传输的第一资源请求即可以为资源建立请求,即请求对该连接上的某种或某些资源进行建立。该请求中可以包括传输子流1的流标识以及请求建立的资源信息。转发面网元1根据第一资源请求,可以通过建立IP-CAN会话来实现与策略决策网元之间的交互。具体的,转发面网元1向策略决策网元发送会话请求,该会话请求中可以携带有传输子流1的流标识。策略决策网元响应该会话请求,可以通过策略执行网元发起策略修改。策略决策网元向转发面网元1下发修改策略,以使转发面网元1根据该修改策略发起相应的资源修改,此时资源修改即为对请求的资源进行建立或激活。
409、资源修改完毕后,转发面网元1向策略决策网元返回确认信息,以指示请求的资源修改已被执行。
本发明实施例中,当资源建立完成后,转发面网元1可以向策略决策网元返回确认信息,以告知策略决策网元请求的资源已成功建立。
410、UE通过PDU连接2向控制面网元发送第一资源请求,该第一资源请求中携带有传输子流2的流标识以及传输子流1与传输子流2的关联信息。
411、控制面网元将UE通过PDU连接2传输的第一资源请求发送至转发面网元2。
412、转发面网元2与策略决策网元进行交互。
413、转发面网元2通过控制面网元、基站2和UE对传输子流2进行相应的资源修改。
同样的,在PDU连接2上传输的第一资源请求即可以为资源建立请求,即请求对该连接上的某种或某些资源进行建立。该请求中可以包括传输子流2的 流标识、两条传输子流的关联信息以及请求建立的资源信息。转发面网元2根据第一资源请求,可以通过建立IP-CAN会话来实现与策略决策网元之间的交互。具体的,转发面网元2向策略决策网元发送会话请求,该会话请求中可以携带有传输子流2的流标识以及传输子流1与传输子流2的关联信息。策略决策网元响应该会话请求,可以通过策略执行网元发起策略修改,策略决策网元向转发面网元2下发修改策略,以使转发面网元2根据该修改策略发起相应的资源修改,此时资源修改即为对请求的资源进行建立或激活。
414、资源修改完毕后,转发面网元2向策略决策网元返回确认信息,以指示请求的资源修改已被执行。
可以理解的是,步骤405~409与步骤410~414可以先后执行,也可以同步或交叉执行,本发明实施例不作限定。传输子流1与传输子流2的关联信息可以在其中一条传输子流上进行传输。其中,步骤405~414可以看作是资源建立过程,且关联信息是在资源建立过程中进行传输的。
415、UE检测到一条传输子流需要修改资源。
本发明实施例中,UE可以实时或每隔一定时间检测传输子流1和传输子流2是否需要进行资源修改。具体的,可以根据传输子流1和传输子流2的数据传输情况来进行判断。例如,当传输子流1上传输的数据丢包次数大于预设值时,则可以认为传输子流1需要一个更高的带宽,即检测到传输子流1需要修改资源。
416、UE在该传输子流上向控制面网元发送第二资源请求。
本发明实施例中,该第二资源请求即可以为资源修改请求。当UE检测到传输子流1需要修改资源时,可以在传输子流1上发送第二资源请求。当UE检测到传输子流2需要修改资源时,则可以在传输子流2上发送第二资源请求。这里是以传输子流1需要修改资源为例进行说明。
417、控制面网元将第二资源请求转发至转发面网元1。
418、转发面网元1向策略决策网元发送策略控制修改请求。
419、策略决策网元响应该策略控制修改请求,根据该关联信息确定传输 子流1与传输子流2中的至少一条传输子流的资源修改策略。
本发明实施例中,策略决策网元响应转发面网元发送的策略控制修改请求,并根据接收到的传输子流1与传输子流2这两条传输子流的关联信息来确定出至少一条传输子流的资源修改策略。上述至少一条传输子流可以是传输子流1和传输子流2中的任意一条或两条,也可以是传输子流1和传输子流2中需要进行资源修改的一条或两条。其中,该策略控制修改请求也是转发面网元与策略决策网元建立IP-CAN会话进行传输的。
可选的,步骤419中策略决策网元根据该关联信息确定传输子流1与传输子流2中的至少一条传输子流的资源修改策略的具体实施方式可以为:
策略决策网元根据该关联信息,获取传输子流1和传输子流2的负载情况、空口类型以及基站类型中的至少一种信息;并根据传输子流1和传输子流2的负载情况、空口类型以及基站类型中的至少一种信息,确定传输子流1和传输子流2中的至少一条传输子流的资源修改策略。
420、策略决策网元下发该资源修改策略,以进行资源修改。
具体地,步骤420策略决策网元下发该资源修改策略,以进行资源修改的具体实施方式可以包括以下步骤:
41)策略决策网元将该资源修改策略发送至上述至少一条传输子流对应的转发面网元;
42)上述至少一条传输子流对应的转发面网元按照该资源修改策略进行相应的资源修改。
其中,当上述至少一条传输子流为传输子流1时,则策略决策网元将该资源修改策略发送给转发面网元1,以使转发面网元1按照该资源修改策略进行相应的资源修改。当上述至少一条传输子流为传输子流2时,则策略决策网元将该资源修改策略发送给转发面网元2,以使转发面网元2按照该资源修改策略进行相应的资源修改。当上述至少一条传输子流为传输子流1和传输子流2时,则策略决策网元将该资源修改策略分别发送给转发面网元1和转发面网元2,以使 转发面网元1和转发面网元2分别按照该资源修改策略进行相应的资源修改。
本发明实施例中,图4所描述的方法还可以包括以下步骤:
43)当资源修改完毕后,上述至少一条传输子流对应的转发面网元向策略决策网元返回确认信息,以指示请求的资源修改已被执行。
其中,当上述至少一条传输子流为传输子流1时,资源修改完毕后,转发面网元1可以向策略决策网元返回确认信息,以指示转发面网元1请求的资源修改已被执行。当上述至少一条传输子流为传输子流2时,资源修改完毕后,转发面网元2可以向策略决策网元返回确认信息,以指示转发面网元2请求的资源修改已被执行。当上述至少一条传输子流为传输子流1和传输子流2时,资源修改完毕后,转发面网元1和转发面网元2可以分别向策略决策网元返回确认信息,以分别指示请求的资源修改已被执行。
可以理解的是,当步骤415中UE检测到需要修改资源的传输子流为传输子流2时,则可以在传输子流2上发送第二资源请求。其具体实施过程可以参考步骤416~420,这里将不再赘述。其中,步骤415~420可以看作是资源修改过程。
作为一种可选的实施方式,当UE可以建立承载时,UE通过PDU连接1和PDU连接2传输的第一资源请求可以为专有承载激活请求,资源修改可以为专有承载激活。则步骤405~409为传输子流1上的专有承载的激活过程,步骤410~414为传输子流2上的专有承载的激活过程。当步骤415中UE检测到一条传输子流需要修改资源时,则在该传输子流上传输的第二资源请求可以为专有承载修改请求。相应地,策略决策网元根据两条传输子流的关联信息确定出的至少一条传输子流的资源修改策略可以是上述至少一条传输子流的承载QoS的修改策略。并下发承载QoS的修改策略至相应的转发面网元,以使相应的转发面网元发起承载QoS的修改,并向策略决策网元返回确认信息,以指示请求的QoS策略已被执行。
本发明实施例中,通过实施图4所描述的方法,UE通过多个不同的基站分别建立PDU连接,并建立对应的传输子流,UE在资源建立过程中可以将传输 子流的流标识和多条传输子流的关联信息通知策略决策网元,在UE检测到其中一条传输子流需要进行资源修改时,在资源修改过程中策略决策网元根据该关联信息确定一条或几条传输子流来进行资源修改,从而可以减少多路径传输下进行资源修改的信令处理数量,使处理流程更加优化,且降低系统资源的消耗量。
基于图2所示的多路径传输的网络架构,本发明实施例公开了另一种多路径传输的策略控制方法。请参阅图5,图5是本发明实施例公开的另一种多路径传输的策略控制方法的流程示意图。其中,该多路径传输的策略控制方法中关联信息是在资源修改过程中进行传输的,且通信对端为用户设备UE。UE可以通过至少两条传输子流进行业务报文传输,这里将以UE通过两条传输子流进行业务报文传输为例进行详细说明。如图5所示,该多路径传输的策略控制方法可以包括以下步骤:
501、UE通过基站1和转发面网元1建立PDU连接1。
502、UE通过基站1和转发面网元1针对该PDU连接1建立与服务器进行通信的传输子流1。
503、UE通过基站2和转发面网元2建立PDU连接2。
504、UE通过基站2和转发面网元2针对该PDU连接2建立与服务器进行通信的传输子流2。
505、UE通过PDU连接1向控制面网元发送第一资源请求,该第一资源请求中携带有传输子流1的流标识。
506、控制面网元将UE通过PDU连接1传输的第一资源请求发送至转发面网元1。
507、转发面网元1与策略决策网元进行交互。
508、转发面网元1通过控制面网元、基站1和UE对传输子流1进行相应的资源修改。
本发明实施例中,在PDU连接1上传输的第一资源请求即可以为资源建立请求,即请求对该连接上的某种或某些资源进行建立或激活。该请求中可以包括传输子流1的流标识以及请求建立的资源信息。转发面网元1根据第一资源请求,可以通过建立IP-CAN会话来实现与策略决策网元之间的交互。具体的,转发面网元1向策略决策网元发送会话请求,该会话请求中可以携带有传输子流1的流标识。策略决策网元响应该会话请求,可以通过策略执行网元发起策略修改。策略决策网元向转发面网元1下发修改策略,以使转发面网元1根据该修改策略发起相应的资源修改,此时资源修改即为对请求的资源进行建立或激活。
509、资源修改完毕后,转发面网元1向策略决策网元返回确认信息,以指示请求的资源修改已被执行。
510、UE通过PDU连接2向控制面网元发送第一资源请求,该第一资源请求中携带有传输子流2的流标识。
511、控制面网元将UE通过PDU连接2传输的第一资源请求发送至转发面网元2。
512、转发面网元2与策略决策网元进行交互。
513、转发面网元2通过控制面网元、基站2和UE对传输子流2进行相应的资源修改。
同样的,在PDU连接2上传输的第一资源请求即可以为资源建立请求,即请求对该连接上的某种或某些资源进行建立。该请求中可以包括传输子流2的流标识以及请求建立的资源信息。转发面网元2根据第一资源请求,可以通过建立IP-CAN会话来实现与策略决策网元之间的交互。具体的,转发面网元2向策略决策网元发送会话请求,该会话请求中可以携带有传输子流2的流标识。策略决策网元响应该会话请求,可以通过策略执行网元发起策略修改。策略决策网元向转发面网元2下发修改策略,以使转发面网元2根据该修改策略进行相应的资源修改,此时资源修改即为对请求的资源进行建立或激活。
514、资源修改完毕后,转发面网元2向策略决策网元返回确认信息,以指示请求的资源修改已被执行。
可以理解的是,步骤505~509与步骤510~514可以先后执行,也可以同步或交叉执行,本发明实施例不作限定。其中,步骤505~514可以看作是资源建立过程。
515、UE检测到一条传输子流需要修改资源。
516、UE在该传输子流上向控制面网元发送第二资源请求,该第二资源请求携带有传输子流1与传输子流2的关联信息。
本发明实施例中,该第二资源请求即可以为资源修改请求。当UE检测到传输子流1需要修改资源时,可以在传输子流1上发送第二资源请求。当UE检测到传输子流2需要修改资源时,则可以在传输子流2上发送第二资源请求。这里是以传输子流1需要修改资源为例进行说明。
517、控制面网元将第二资源请求转发至转发面网元1。
本发明实施例中,控制面网元可以将第二资源请求和两条传输子流的关联信息一起发送至转发面网元1;也可以将第二资源请求发送至转发面网元1,并将两条传输子流的关联信息直接发送至策略决策网元,本发明实施例不作限定。
518、转发面网元1向策略决策网元发送策略控制修改请求。
本发明实施例中,当控制面网元将两条传输子流的关联信息直接发送至策略决策网元时,则该策略控制修改请求中可以不携带该关联信息。当控制面网元将第二资源请求与关联信息一并发送时,则该策略控制修改请求中可以携带两条传输子流的关联信息。
519、策略决策网元响应该策略控制修改请求,根据该关联信息确定传输子流1与传输子流2中的至少一条传输子流的资源修改策略。
可选的,步骤519中策略决策网元根据该关联信息确定传输子流1与传输子流2中的至少一条传输子流的资源修改策略的具体实施方式可以为:
策略决策网元根据该关联信息,获取传输子流1和传输子流2的负载情况、 空口类型以及基站类型中的至少一种信息;并根据传输子流1和传输子流2的负载情况、空口类型以及基站类型中的至少一种信息,确定传输子流1和传输子流2中的至少一条传输子流的资源修改策略。
520、策略决策网元下发该资源修改策略,以进行资源修改。
具体地,步骤520策略决策网元下发该资源修改策略,以进行资源修改的具体实施方式可以包括以下步骤:
51)策略决策网元将该资源修改策略发送至上述至少一条传输子流对应的转发面网元;
52)上述至少一条传输子流对应的转发面网元按照该资源修改策略进行相应的资源修改。
本发明实施例中,图5所描述的方法还可以包括以下步骤:
53)当资源修改完毕后,上述至少一条传输子流对应的转发面网元向策略决策网元返回确认信息,以指示请求的资源修改已被执行。
可以理解的是,当步骤515中UE检测到需要修改资源的传输子流为传输子流2时,则可以在传输子流2上发送第二资源请求并传输两条子流的关联信息。其具体实施过程可以参考步骤516~520,这里将不再赘述。其中,步骤515~520可以看作是资源修改过程,且关联信息是在资源修改过程中进行传输的。
作为一种可选的实施方式,当UE可以建立承载时,UE通过PDU连接1和PDU连接2传输的第一资源请求可以为专有承载激活请求,资源修改可以为专有承载激活。则步骤505~509为传输子流1上的专有承载的激活过程,步骤510~514为传输子流2上的专有承载的激活过程。当步骤515中UE检测到一条传输子流需要修改资源时,则在该传输子流上传输的第二资源请求可以为专有承载修改请求,并携带有两条传输子流的关联信息。相应地,策略决策网元根据两条传输子流的关联信息确定出的至少一条传输子流的资源修改策略可以是上述至少一条传输子流的承载QoS的修改策略。并下发承载QoS的修改策略至相应的转发面网元,以使相应的转发面网元发起承载QoS的修改,并向策略决 策网元返回确认信息,以指示请求的QoS策略已被执行。
本发明实施例中,通过实施图5所描述的方法,UE通过多个不同的基站分别建立PDU连接,并建立对应的传输子流,UE在资源建立过程中可以将传输子流的流标识通知策略决策网元,当UE检测到其中一条传输子流需要进行资源修改时,UE在资源修改过程中将两条传输子流的关联信息通知给策略决策网元,使得策略决策网元根据该关联信息确定一条或几条传输子流来进行资源修改,从而可以减少多路径传输下进行资源修改的信令处理数量,使处理流程更加优化,且降低系统资源的消耗量。
基于图2所示的多路径传输的网络架构,本发明实施例公开了又一种多路径传输的策略控制方法。请参阅图6,图6是本发明实施例公开的又一种多路径传输的策略控制方法的流程示意图。其中,该多路径传输的策略控制方法中关联信息是在资源修改过程中进行传输的,且通信对端为支持多路径传输的服务器。用户设备UE可以通过至少两条传输子流进行业务报文传输,这里将以UE通过两条传输子流进行业务报文传输为例进行详细说明。如图6所示,该多路径传输的策略控制方法可以包括以下步骤:
601、UE通过基站1和转发面网元1建立PDU连接1。
602、UE通过基站1和转发面网元1针对该PDU连接1建立与服务器进行通信的传输子流1。
603、UE通过基站2和转发面网元2建立PDU连接2。
604、UE通过基站2和转发面网元2针对该PDU连接2建立与服务器进行通信的传输子流2。
605、UE通过PDU连接1向控制面网元发送第一资源请求,该第一资源请求中携带有传输子流1的流标识。
606、控制面网元将UE通过PDU连接1传输的第一资源请求发送至转发面网元1。
607、转发面网元1与策略决策网元进行交互。
608、转发面网元1通过控制面网元、基站1和UE对传输子流1进行相应的资源修改。
本发明实施例中,在PDU连接1上传输的第一资源请求即可以为资源建立请求,即请求对该连接上的某种或某些资源进行建立。该请求中可以包括传输子流1的流标识以及请求建立的资源信息。转发面网元1根据第一资源请求,可以通过建立IP-CAN会话来实现与策略决策网元之间的交互。具体的,转发面网元1向策略决策网元发送会话请求,该会话请求中可以携带有传输子流1的流标识。策略决策网元响应该会话请求,可以通过策略执行网元发起策略修改。策略决策网元向转发面网元1下发修改策略,以使转发面网元1根据该修改策略发起相应的资源修改,此时资源修改即为对请求的资源进行建立或激活。
609、资源修改完毕后,转发面网元1向策略决策网元返回确认信息,以指示请求的资源修改已被执行。
610、UE通过PDU连接2向控制面网元发送第一资源请求,该第一资源请求中携带有传输子流2的流标识。
611、控制面网元将UE通过PDU连接2传输的第一资源请求发送至转发面网元2。
612、转发面网元2与策略决策网元进行交互。
613、转发面网元2通过控制面网元、基站2和UE对传输子流2进行相应的资源修改。
同样的,在PDU连接2上传输的第一资源请求即可以为资源建立请求,即请求对该连接上的某种或某些资源进行建立。该请求中可以包括传输子流2的流标识以及请求建立的资源信息。转发面网元2根据第一资源请求,可以通过建立IP-CAN会话来实现与策略决策网元之间的交互。具体的,转发面网元2向策略决策网元发送会话请求,该会话请求中可以携带有传输子流2的流标识。策略决策网元响应该会话请求,可以通过策略执行网元发起策略修改。策略决 策网元向转发面网元2下发修改策略,以使转发面网元2根据该修改策略进行相应的资源修改,此时资源修改即为对请求的资源进行建立或激活。
614、资源修改完毕后,转发面网元2向策略决策网元返回确认信息,以指示请求的资源修改已被执行。
可以理解的是,步骤605~609与步骤610~614可以先后执行,也可以同步或交叉执行,本发明实施例不作限定。其中,步骤605~614可以看作是资源建立过程。
615、服务器检测到一条传输子流需要修改资源。
本发明实施例中,服务器可以根据业务需求来确定需要进行资源修改的传输子流,如确定哪条传输子流需要一个更高的宽带。
616、服务器在该传输子流上向策略决策网元发送第二资源请求,该第二资源请求携带有传输子流1与传输子流2的关联信息。
本发明实施例中,该第二资源请求即为前述的资源修改请求。该资源修改请求中携带有两条传输子流的关联信息。当服务器检测到传输子流1需要修改资源时,可以在传输子流1上发送携带有关联信息的第二资源请求。当服务器检测到传输子流2需要修改资源时,则可以在传输子流2上发送携带有关联信息的第二资源请求。
617、策略决策网元响应该第二资源请求,根据该关联信息确定传输子流1与传输子流2中的至少一条传输子流的资源修改策略。
可选的,步骤617中策略决策网元根据该关联信息确定传输子流1与传输子流2中至少一条传输子流的资源修改策略的具体实施方式可以为:
策略决策网元根据该关联信息,获取传输子流1和传输子流2的负载情况、空口类型以及基站类型中的至少一种信息;并根据传输子流1和传输子流2的负载情况、空口类型以及基站类型中的至少一种信息,确定传输子流1和传输子流2中的至少一条传输子流的资源修改策略。
618、策略决策网元下发该资源修改策略,以进行资源修改。
具体地,步骤618策略决策网元下发该资源修改策略,以进行资源修改的具体实施方式可以包括以下步骤:
61)策略决策网元将该资源修改策略发送至上述至少一条传输子流对应的转发面网元;
62)上述至少一条传输子流对应的转发面网元按照该资源修改策略进行相应的资源修改。
本发明实施例中,图6所描述的方法还可以包括以下步骤:
63)当资源修改完毕后,上述至少一条传输子流对应的转发面网元向策略决策网元返回确认信息,以指示请求的资源修改已被执行。
其中,步骤615~618可以看作是资源修改过程,且关联信息是在资源修改过程中进行传输的。
作为一种可选的实施方式,当UE可以建立承载时,UE通过PDU连接1和PDU连接2传输的第一资源请求可以为专有承载激活请求,资源修改可以为专有承载激活。则步骤605~609为传输子流1上的专有承载的激活过程,步骤610~614为传输子流2上的专有承载的激活过程。当步骤615中服务器检测到一条传输子流需要修改资源时,则在该传输子流上传输的第二资源请求可以为专有承载修改请求,并携带有两条传输子流的关联信息。相应地,策略决策网元根据两条传输子流的关联信息确定出的至少一条传输子流的资源修改策略可以是上述至少一条传输子流的承载QoS的修改策略。并下发承载QoS的修改策略至相应的转发面网元,以使相应的转发面网元发起承载QoS的修改,并向策略决策网元返回确认信息,以指示请求的QoS策略已被执行。
本发明实施例中,通过实施图6所描述的方法,UE通过多个不同的基站分别建立PDU连接,并建立对应的传输子流,UE在资源建立过程中可以将传输子流的流标识通知策略决策网元,当服务器检测到其中一条传输子流需要进行资源修改时,服务器在资源修改过程中将两条传输子流的关联信息通知给策略决策网元,使得策略决策网元根据该关联信息确定一条或几条传输子流来进行 资源修改,从而可以减少多路径传输下进行资源修改的信令处理数量,使处理流程更加优化,且降低系统资源的消耗量。
基于图2所示的多路径传输的网络架构,本发明实施例公开了一种策略决策网元。请参阅图7,图7是本发明实施例公开的一种策略决策网元的结构示意图,可以用于执行本发明实施例公开的多路径传输的策略控制方法。如图7所示,该策略决策网元可以包括:
接收单元701,用于接收通信对端发送的至少两条传输子流的关联信息。
本发明实施例中,支持多路径传输的用户设备UE可以通过至少两条传输子流进行业务报文传输,即可以在至少两条传输子流上传输同一业务报文。当UE在至少两条传输子流上进行同一业务报文的传输时,接收单元701可以接收通信对端发送的关于上述至少两条传输子流的关联信息。其中,该关联信息用于指示上述至少两条传输子流传输同一业务报文,该关联信息可以包括上述至少两条传输子流的流标识。不同传输子流的流标识不同,通过流标识可以区分不同的传输子流。
本发明实施例中,通信对端可以是该UE,也可以是支持多路径传输的服务器,如应用服务器。
作为一种可选的实施方式,接收单元701接收通信对端发送的至少两条传输子流的关联信息的的具体实施方式可以为:
接收单元701在资源建立过程中接收通信对端发送的上述至少两条传输子流的关联信息;
或者,接收单元701在资源修改过程中接收通信对端发送的上述至少两条传输子流的关联信息。
在该实施方式中,当建立有至少两条传输子流后,通信对端可以发起资源建立请求,以请求对每一条传输子流的某种或某些资源进行建立或激活。此外,当通信对端检测到某一条传输子流需要进行资源修改时,可以在该条传输子流 上发起资源修改请求。
在该实施方式中,当在资源建立过程中接收到关联信息时,通信对端可以在其中一条传输子流发起的资源建立请求中携带上述至少两条传输子流的关联信息。当在资源修改过程中接收到关联信息时,通信对端可以在发起的资源修改请求中携带上述至少两条传输子流的关联信息。
确定单元702,用于根据该关联信息,确定上述至少两条传输子流中的至少一条传输子流的资源修改策略。
本发明实施例中,确定单元702可以根据接收单元701接收到的关联信息,确定出上述至少两条传输子流中的至少一条传输子流的资源修改策略。其中,上述至少一条传输子流可以是上述至少两条传输子流中的任意一条或几条传输子流;也可以是结合每一条传输子流的负载情况、空口类型、基站类型等信息确定出的需要进行资源修改的传输子流。
本发明实施例中,资源修改策略中可以包括但不限于上述至少一条传输子流中每条传输子流的流标识以及每条传输子流需要进行修改的资源类型和修改量等信息。其中,修改的资源类型为修改的是哪种资源,可以为服务质量QoS参数,进一步地,QoS参数可以包括QCI,用于衡量业务传输时的丢包率、延迟、带宽以及优先级等信息。修改量即为对资源修改多少。
发送单元703,用于向上述至少一条传输子流对应的转发面网元发送该资源修改策略。
本发明实施例中,当确定单元702确定出至少一条传输子流的资源修改策略后,发送单元703可以将该资源修改策略发送至上述至少一条传输子流对应的转发面网元。一条传输子流对应有一个转发面网元,且不同传输子流对应的转发面网元可以不同。当一个转发面网元接收到资源修改策略后,可以对该资源修改策略进行解析,以获得自身对应的传输子流的修改策略,并根据该修改策略进行资源修改。
作为一种可选的实施方式,接收单元701还可以用于在资源修改过程中接 收转发面网元发送的策略控制修改请求,该转发面网元为上述至少两条传输子流中的一条传输子流对应的转发面网元;
相应地,确定单元702具体可以用于响应该策略控制修改请求,并根据该关联信息确定上述至少两条传输子流中的至少一条传输子流的资源修改策略。
其中,接收单元701可以在资源修改过程中接收转发面网元发送的策略控制修改请求,该策略控制修改请求可以用于指示确定单元702确定上述至少两条传输子流中的至少一条传输子流的资源修改策略。其中,该转发面网元为上述至少两条传输子流中的一条传输子流对应的转发面网元,具体的,该转发面网元可以为发起资源修改请求的传输子流所对应的转发面网元。
作为一种可选的实施方式,接收单元701还可以用于在资源修改过程中接收通信对端发送的资源修改请求;
相应地,确定单元702具体可以用于响应该资源修改请求,并根据该关联信息确定上述至少两条传输子流中的至少一条传输子流的资源修改策略。
其中,接收单元701可以在资源修改过程中接收通信对端发送的资源修改请求,该资源修改请求可以用于指示确定单元702确定上述至少两条传输子流中的至少一条传输子流的资源修改策略。
请一并参阅图8,图8是本发明实施例公开的另一种策略决策网元的结构示意图,可以用于执行本发明实施例公开的多路径传输的策略控制方法。其中,图8所示的策略决策网元是在图7所示的策略决策网元的基础上进一步优化得到的。与图7所示的策略决策网元相比,图8所示的策略决策网元中确定单元702可以包括:
获取子单元7021,用于根据该关联信息,获取上述至少两条传输子流的负载情况、空口类型以及基站类型中的至少一种信息;
确定子单元7022,用于根据上述至少两条传输子流的负载情况、空口类型以及基站类型中的至少一种信息,确定上述至少两条传输子流中的至少一条传输子流的资源修改策略。
其中,上述至少两条传输子流的负载情况、空口类型以及基站类型等信息可以是网管系统或者无线接入网实时或每隔特定时间上报至策略决策网元的,也可以是策略决策网元主动从网管系统或RAN侧获取的。
本发明实施例中,通过实施图7和图8所示的策略决策网元,可以根据传输同一业务报文的至少两条传输子流的关联信息,确定出需要进行资源修改的一条或几条传输子流来对其进行资源修改,而无需对每一条传输子流都进行资源修改,从而可以减少多路径传输下进行资源修改的信令处理数量,使处理流程更加优化,且降低系统资源的消耗量。
基于图2所示的多路径传输的网络架构,本发明实施例公开了又一种策略决策网元。请参阅图9,图9是本发明实施例公开的又一种策略决策网元的结构示意图,可以用于执行本发明实施例公开的多路径传输的策略控制方法。如图9所示,该策略决策网元900可以包括:至少一个处理器901,例如CPU(Central Processing Unit,中央处理器),至少一个通信接口902,存储器903等组件。其中,这些组件可以通过一条或多条通信总线904进行通信连接。本领域技术人员可以理解,图9中示出的策略决策网元900的结构并不构成对本发明实施例的限定,它既可以是总线形结构,也可以是星型结构,还可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。其中:
本发明实施例中,通信接口902可以包括有线接口和无线接口等,可以用于与通信对端进行通信。
本发明实施例中,存储器903可以是高速RAM存储器,也可以是非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。存储器903可选的还可以是至少一个位于远离前述处理器901的存储装置。如图9所示,存储器903中可以包括应用程序、通信接口模块和数据等,本发明实施例不作限定。
在图9所示的策略决策网元900中,处理器901可以用于调用存储器903中存储的应用程序以执行以下操作:
触发通信接口902接收通信对端发送的至少两条传输子流的关联信息,该关联信息包括上述至少两条传输子流的流标识。其中,用户设备UE通过上述至少两条传输子流进行业务报文传输;
根据该关联信息,确定上述至少两条传输子流中的至少一条传输子流的资源修改策略;
触发通信接口902向上述至少一条传输子流对应的转发面网元发送该资源修改策略,以使上述至少一条传输子流对应的转发面网元按照该资源修改策略进行资源修改。
作为一种可选的实施方式,通信对端可以包括该UE或支持多路径传输的服务器。
作为一种可选的实施方式,处理器901在触发通信接口902接收通信对端发送的至少两条传输子流的关联信息的具体实施方式可以为:
触发通信接口902在资源建立过程中接收通信对端发送的上述至少两条传输子流的关联信息;
或者,触发通信接口902在资源修改过程中接收通信对端发送的上述至少两条传输子流的关联信息。
作为一种可选的实施方式,处理器901还可以用于调用存储器903中存储的应用程序,并执行以下操作:
触发通信接口902在资源修改过程中接收转发面网元发送的策略控制修改请求,该转发面网元为上述至少两条传输子流中的一条传输子流对应的转发面网元;
其中,处理器901根据该关联信息,确定上述至少两条传输子流中的至少一条传输子流的资源修改策略的具体实施方式可以为:
响应该策略控制修改请求,并根据该关联信息确定上述至少两条传输子流中的至少一条传输子流的资源修改策略。
作为一种可选的实施方式,处理器901还可以用于调用存储器903中存储的 应用程序,并执行以下操作:
触发通信接口902在资源修改过程中接收通信对端发送的资源修改请求;
其中,处理器901根据该关联信息,确定上述至少两条传输子流中的至少一条传输子流的资源修改策略的具体实施方式可以为:
响应该资源修改请求,并根据该关联信息确定上述至少两条传输子流中的至少一条传输子流的资源修改策略。
作为一种可选的实施方式,处理器901根据该关联信息,确定上述至少两条传输子流中的至少一条传输子流的资源修改策略的具体实施方式可以为:
根据该关联信息,获取上述至少两条传输子流的负载情况、空口类型以及基站类型中的至少一种信息;
根据上述至少两条传输子流的负载情况、空口类型以及基站类型中的至少一种信息,确定上述至少两条传输子流中的至少一条传输子流的资源修改策略。
具体地,本发明实施例中介绍的策略决策网元可以实施本发明结合图3、图4、图5或图6介绍的多路径传输的策略控制方法实施例中的部分或全部流程。
本发明实施例中,通过实施图9所示的策略决策网元,可以根据传输同一业务报文的至少两条传输子流的关联信息,确定出需要进行资源修改的一条或几条传输子流来对其进行资源修改,而无需对每一条传输子流都进行资源修改,从而可以减少多路径传输下进行资源修改的信令处理数量,使处理流程更加优化,且降低系统资源的消耗量。
请参阅图10,图10是本发明实施例公开的一种多路径传输的策略控制系统。如图10所示,该多路径传输的策略控制系统可以包括用户设备UE1001、至少两个基站1002(如基站1、基站2、……、基站n,其中,n为大于等于2的正整数)、控制面网元1003、至少两个转发面网元1004(如转发面网元1、转发面网元2、……、转发面网元n)、策略决策网元1005以及服务器1006。其中,UE1001、基站1002、控制面网元1003、转发面网元1004、策略决策网元1005以及服务器 1006的具体功能可以参考前述各个实施例中所描述的内容,这里将不再赘述。其中,图10所示的多路径传输的策略控制系统可以用于执行图3~图6中任一项所介绍的多路径传输的策略控制方法。
本发明实施例中,通过实施图10所示的多路径传输的策略控制系统,可以根据传输同一业务报文的至少两条传输子流的关联信息,确定出需要进行资源修改的一条或几条传输子流来对其进行资源修改,而无需对每一条传输子流都进行资源修改,从而可以减少多路径传输下进行资源修改的信令处理数量,使处理流程更加优化,且降低系统资源的消耗量。
需要说明的是,对于前述的各个方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某一些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详细描述的部分,可以参见其他实施例的相关描述。
本发明实施例的方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
本发明实施例的策略决策网元中的单元或子单元可以根据实际需要进行合并、划分和删减。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质包括只读存储器(Read-Only Memory,ROM)、随机存储器(Random Access Memory,RAM)、可编程只读存储器(Programmable Read-only Memory,PROM)、可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、一次可编程只读存储器(One-time Programmable Read-Only Memory,OTPROM)、电子抹除式可复写只读存储器 (Electrically-Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储器、磁盘存储器、磁带存储器、或者能够用于携带或存储数据的计算机可读的任何其他介质。
以上对本发明实施例所提供的多路径传输的策略控制方法及相关设备进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (18)

  1. 一种多路径传输的策略控制方法,其特征在于,支持多路径传输的用户设备UE通过至少两条传输子流进行业务报文传输,所述方法包括:
    策略决策网元接收通信对端发送的所述至少两条传输子流的关联信息,所述关联信息包括所述至少两条传输子流的流标识;
    所述策略决策网元根据所述关联信息,确定所述至少两条传输子流中的至少一条传输子流的资源修改策略;
    所述策略决策网元向所述至少一条传输子流对应的转发面网元发送所述资源修改策略。
  2. 根据权利要求1所述的方法,其特征在于,所述通信对端包括所述UE或支持多路径传输的服务器。
  3. 根据权利要求1或2所述的方法,其特征在于,所述策略决策网元接收通信对端发送的所述至少两条传输子流的关联信息,包括:
    所述策略决策网元在资源建立过程中接收通信对端发送的所述至少两条传输子流的关联信息;
    或者,所述策略决策网元在资源修改过程中接收通信对端发送的所述至少两条传输子流的关联信息。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    所述策略决策网元在所述资源修改过程中接收转发面网元发送的策略控制修改请求,所述转发面网元为所述至少两条传输子流中的一条传输子流对应的转发面网元;
    其中,所述策略决策网元根据所述关联信息,确定所述至少两条传输子流中的至少一条传输子流的资源修改策略,包括:
    所述策略决策网元响应所述策略控制修改请求,并根据所述关联信息确定所述至少两条传输子流中的至少一条传输子流的资源修改策略。
  5. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    所述策略决策网元在所述资源修改过程中接收所述通信对端发送的资源修改请求;
    其中,所述策略决策网元根据所述关联信息,确定所述至少两条传输子流中的至少一条传输子流的资源修改策略,包括:
    所述策略决策网元响应所述资源修改请求,并根据所述关联信息确定所述至少两条传输子流中的至少一条传输子流的资源修改策略。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,所述策略决策网元根据所述关联信息,确定所述至少两条传输子流中的至少一条传输子流的资源修改策略,包括:
    所述策略决策网元根据所述关联信息,获取所述至少两条传输子流的负载情况、空口类型以及基站类型中的至少一种信息;
    所述策略决策网元根据所述至少两条传输子流的负载情况、空口类型以及基站类型中的至少一种信息,确定所述至少两条传输子流中的至少一条传输子流的资源修改策略。
  7. 一种策略决策网元,其特征在于,支持多路径传输的用户设备UE通过至少两条传输子流进行业务报文传输,所述策略决策网元包括:
    接收单元,用于接收通信对端发送的所述至少两条传输子流的关联信息,所述关联信息包括所述至少两条传输子流的流标识;
    确定单元,用于根据所述关联信息,确定所述至少两条传输子流中的至少一条传输子流的资源修改策略;
    发送单元,用于向所述至少一条传输子流对应的转发面网元发送所述资源修改策略。
  8. 根据权利要求7所述的策略决策网元,其特征在于,所述通信对端包括所述UE或支持多路径传输的服务器。
  9. 根据权利要求7或8所述的策略决策网元,其特征在于,所述接收单元接收通信对端发送的所述至少两条传输子流的关联信息的方式具体为:
    所述接收单元在资源建立过程中接收通信对端发送的所述至少两条传输子流的关联信息;
    或者,所述接收单元在资源修改过程中接收通信对端发送的所述至少两条传输子流的关联信息。
  10. 根据权利要求9所述的策略决策网元,其特征在于,
    所述接收单元,还用于在所述资源修改过程中接收转发面网元发送的策略控制修改请求,所述转发面网元为所述至少两条传输子流中的一条传输子流对应的转发面网元;
    所述确定单元具体用于响应所述策略控制修改请求,并根据所述关联信息确定所述至少两条传输子流中的至少一条传输子流的资源修改策略。
  11. 根据权利要求9所述的策略决策网元,其特征在于,
    所述接收单元,还用于在所述资源修改过程中接收所述通信对端发送的资源修改请求;
    所述确定单元具体用于响应所述资源修改请求,并根据所述关联信息确定所述至少两条传输子流中的至少一条传输子流的资源修改策略。
  12. 根据权利要求7-11中任一项所述的策略决策网元,其特征在于,所述确定单元包括:
    获取子单元,用于根据所述关联信息,获取所述至少两条传输子流的负载情况、空口类型以及基站类型中的至少一种信息;
    确定子单元,用于根据所述至少两条传输子流的负载情况、空口类型以及基站类型中的至少一种信息,确定所述至少两条传输子流中的至少一条传输子流的资源修改策略。
  13. 一种策略决策网元,其特征在于,支持多路径传输的用户设备UE通过至少两条传输子流进行业务报文传输,所述策略决策网元包括:处理器、存储器、通信接口以及通信总线;
    其中,所述存储器用于存储程序和数据;
    所述通信总线用于建立所述处理器、所述存储器和所述通信接口之间的连接通信;
    所述处理器用于调用所述存储器存储的程序,执行如下操作:
    触发所述通信接口接收通信对端发送的所述至少两条传输子流的关联信息,所述关联信息包括所述至少两条传输子流的流标识;
    根据所述关联信息,确定所述至少两条传输子流中的至少一条传输子流的资源修改策略;
    触发所述通信接口向所述至少一条传输子流对应的转发面网元发送所述资源修改策略。
  14. 根据权利要求13所述的策略决策网元,其特征在于,所述通信对端包括所述UE或支持多路径传输的服务器。
  15. 根据权利要求13或14所述的策略决策网元,其特征在于,所述处理器 触发所述通信接口接收通信对端发送的所述至少两条传输子流的关联信息的方式具体为:
    触发所述通信接口在资源建立过程中接收通信对端发送的所述至少两条传输子流的关联信息;
    或者,触发所述通信接口在资源修改过程中接收通信对端发送的所述至少两条传输子流的关联信息。
  16. 根据权利要求15所述的策略决策网元,其特征在于,所述处理器还用于调用所述存储器存储的程序,并执行如下操作:
    触发所述通信接口在所述资源修改过程中接收转发面网元发送的策略控制修改请求,所述转发面网元为所述至少两条传输子流中的一条传输子流对应的转发面网元;
    其中,所述处理器根据所述关联信息,确定所述至少两条传输子流中的至少一条传输子流的资源修改策略的方式具体为:
    响应所述策略控制修改请求,并根据所述关联信息确定所述至少两条传输子流中的至少一条传输子流的资源修改策略。
  17. 根据权利要求15所述的策略决策网元,其特征在于,所述处理器还用于调用所述存储器存储的程序,并执行如下操作:
    触发所述通信接口在所述资源修改过程中接收所述通信对端发送的资源修改请求;
    其中,所述处理器根据所述关联信息,确定所述至少两条传输子流中的至少一条传输子流的资源修改策略的方式具体为:
    响应所述资源修改请求,并根据所述关联信息确定所述至少两条传输子流中的至少一条传输子流的资源修改策略。
  18. 根据权利要求13-17中任一项所述的策略决策网元,其特征在于,所述处理器根据所述关联信息,确定所述至少两条传输子流中的至少一条传输子流的资源修改策略的方式具体为:
    根据所述关联信息,获取所述至少两条传输子流的负载情况、空口类型以及基站类型中的至少一种信息;
    根据所述至少两条传输子流的负载情况、空口类型以及基站类型中的至少一种信息,确定所述至少两条传输子流中的至少一条传输子流的资源修改策略。
PCT/CN2016/095698 2016-08-17 2016-08-17 一种多路径传输的策略控制方法及相关设备 WO2018032412A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2016/095698 WO2018032412A1 (zh) 2016-08-17 2016-08-17 一种多路径传输的策略控制方法及相关设备
CN202110656702.5A CN113473535B (zh) 2016-08-17 2016-08-17 一种多路径传输的策略控制方法及相关设备
CN201680086903.3A CN109328450B (zh) 2016-08-17 2016-08-17 一种多路径传输的策略控制方法及相关设备
EP16913172.9A EP3481013A4 (en) 2016-08-17 2016-08-17 GUIDANCE MANAGEMENT PROCESS FOR MULTI-TRANSMISSION AND RELATED DEVICE
US16/277,325 US11349765B2 (en) 2016-08-17 2019-02-15 Policy control method for multipath transmission, and related device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/095698 WO2018032412A1 (zh) 2016-08-17 2016-08-17 一种多路径传输的策略控制方法及相关设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/277,325 Continuation US11349765B2 (en) 2016-08-17 2019-02-15 Policy control method for multipath transmission, and related device

Publications (1)

Publication Number Publication Date
WO2018032412A1 true WO2018032412A1 (zh) 2018-02-22

Family

ID=61196413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/095698 WO2018032412A1 (zh) 2016-08-17 2016-08-17 一种多路径传输的策略控制方法及相关设备

Country Status (4)

Country Link
US (1) US11349765B2 (zh)
EP (1) EP3481013A4 (zh)
CN (2) CN113473535B (zh)
WO (1) WO2018032412A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112968843A (zh) * 2021-02-03 2021-06-15 长春理工大学 基于sdn的多路径传输控制系统及方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018210428A1 (en) * 2017-05-19 2018-11-22 Telefonaktiebolaget Lm Ericsson (Publ) Technique for enabling multipath transmission
EP3737127A1 (en) * 2019-05-10 2020-11-11 Ntt Docomo, Inc. Mobile communication network arrangement and method for operating a mobile communication network arrangement to support inter-core network roaming
US11523305B2 (en) 2019-09-25 2022-12-06 Cisco Technology, Inc. Traffic steering and policy combining
PL3820088T3 (pl) * 2019-11-06 2024-05-13 Deutsche Telekom Ag Sposób i urządzenie sieciowe do łączności wielotorowej
US11483279B2 (en) * 2019-11-15 2022-10-25 Cisco Technology, Inc. Domain name system as an authoritative source for multipath mobility policy
US11558287B2 (en) 2020-02-14 2023-01-17 Cisco Technology, Inc. Policy combining utilizing purpose
CN114205839A (zh) * 2020-09-02 2022-03-18 华为技术有限公司 多流关联传输的方法、装置及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101662415A (zh) * 2008-08-29 2010-03-03 华为技术有限公司 一种策略控制方法及通讯系统以及相关设备
CN101719918A (zh) * 2009-11-27 2010-06-02 北京交通大学 一种改进的适用于多连接多路径的传输方法
CN103763217A (zh) * 2014-02-07 2014-04-30 清华大学 多路径tcp的分组调度方法和装置
CN104753804A (zh) * 2013-12-31 2015-07-01 中国移动通信集团公司 一种数据流传输控制方法、装置及系统
US20160100332A1 (en) * 2014-10-07 2016-04-07 Kt Corporation Server-push service in heterogeneous network environment

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101998494B (zh) * 2009-08-21 2016-02-03 华为技术有限公司 业务流共享资源的方法、系统和接入网关
WO2012033774A2 (en) * 2010-09-07 2012-03-15 Interdigital Patent Holdings, Inc. Bandwidth management, aggregation and internet protocol flow mobility across multiple-access technologies
CN103222248B (zh) * 2010-09-28 2016-02-03 英国电讯有限公司 多类别数据传输的方法和装置
EP3745648B1 (en) * 2011-06-14 2022-08-17 Huawei Technologies Co., Ltd. Policy control method, related device, and policy and charging control system
US20150245409A1 (en) * 2014-02-21 2015-08-27 Broadcom Corporation Carrier aggregation over lte and wifi
CN103916253A (zh) * 2014-03-21 2014-07-09 中国科学院计算技术研究所 一种基于信息中心网络的信息传输方法及其系统
EP3138234B1 (en) * 2014-04-30 2018-10-10 Telefonaktiebolaget LM Ericsson (publ) Method and device of a policy control and charging (pcc) system in a communication network
BR112016027907A2 (pt) * 2014-05-29 2017-10-31 Huawei Tech Co Ltd aparelho e método de controle para transmissão de carga
WO2016027130A1 (en) * 2014-08-21 2016-02-25 Telefonaktiebolaget L M Ericsson (Publ) Identifying and controlling multipath traffic
US10244580B2 (en) * 2014-10-16 2019-03-26 Nokia Of America Corporation Methods and devices for providing application services to users in communications network
US10944875B2 (en) * 2015-01-27 2021-03-09 Alcatel-Lucent Usa Inc. Interface aggregation for heterogeneous wireless communication systems
EP3278514B1 (en) * 2015-03-30 2019-03-06 British Telecommunications public limited company Data transmission

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101662415A (zh) * 2008-08-29 2010-03-03 华为技术有限公司 一种策略控制方法及通讯系统以及相关设备
CN101719918A (zh) * 2009-11-27 2010-06-02 北京交通大学 一种改进的适用于多连接多路径的传输方法
CN104753804A (zh) * 2013-12-31 2015-07-01 中国移动通信集团公司 一种数据流传输控制方法、装置及系统
CN103763217A (zh) * 2014-02-07 2014-04-30 清华大学 多路径tcp的分组调度方法和装置
US20160100332A1 (en) * 2014-10-07 2016-04-07 Kt Corporation Server-push service in heterogeneous network environment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112968843A (zh) * 2021-02-03 2021-06-15 长春理工大学 基于sdn的多路径传输控制系统及方法
CN112968843B (zh) * 2021-02-03 2023-02-28 长春理工大学 基于sdn的多路径传输控制系统及方法

Also Published As

Publication number Publication date
CN109328450A (zh) 2019-02-12
US11349765B2 (en) 2022-05-31
CN109328450B (zh) 2021-06-15
US20190182165A1 (en) 2019-06-13
EP3481013A4 (en) 2019-06-26
CN113473535A (zh) 2021-10-01
CN113473535B (zh) 2023-08-22
EP3481013A1 (en) 2019-05-08

Similar Documents

Publication Publication Date Title
WO2018032412A1 (zh) 一种多路径传输的策略控制方法及相关设备
US8537781B2 (en) Low latency handover between wireless communication networks using different radio access technologies
JP2023120188A (ja) 5gネットワークでのローカルエリアデータネットワーク(ladn)への接続を管理する方法
EP2109266B1 (en) Method and devices for installing packet filters in a data transmission
WO2017117968A1 (zh) 数据接口分流方法、装置、终端设备和计算机存储介质
JP2021518684A (ja) アクセストラフィックステアリング、スイッチング、及び/又は、分割動作のための装置及び方法
CN101835201B (zh) 一种多网络连接环境中保证数据不中断的方法及系统
US20150237525A1 (en) Traffic Shaping and Steering for a Multipath Transmission Control Protocol Connection
CN112020873B (zh) 用于发送和接收数据包流的方法和相关设备
WO2012083736A1 (zh) 业务的分流处理方法、通信设备及网络系统
WO2014127515A1 (zh) 业务提供系统、方法、移动边缘应用服务器及支持节点
TW201320697A (zh) 網際網路協定流行動的方法
EP3445081B1 (en) Flow-based bearer management method and device
KR20150135035A (ko) 무선 랜으로 미디어 전송 시 사용자 체감 서비스 품질을 높이는 방법 및 장치
WO2020252710A1 (zh) 无线通信方法和设备
CN113973322A (zh) 一种通信方法及装置
WO2013086949A1 (zh) 一种通信方法及设备
JP2024506094A (ja) ハンドオーバ手順に基づくメッセージ送信方法、装置、機器及びプログラム
KR100901206B1 (ko) 기지국과 네트워크 개체간의 서비스 품질 보장이 가능한데이터 교환방법
WO2022067540A1 (zh) 中继设备的选择方法、装置、设备及存储介质
TW202101948A (zh) 支援網際網路協定多媒體子系統信令之方法及使用者設備
WO2016074454A1 (zh) 一种支持多pdn连接的优化切换的方法和相应网络节点
WO2012171425A1 (zh) 业务处理方法及装置
WO2019214105A1 (zh) 一种绑定数据流的方法及装置、计算机存储介质
WO2013185542A1 (zh) 一种本地互通的实现方法及网元设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16913172

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016913172

Country of ref document: EP

Effective date: 20190130

NENP Non-entry into the national phase

Ref country code: DE