WO2018032409A1 - 液流电池系统及大规模液流电池储能装置 - Google Patents

液流电池系统及大规模液流电池储能装置 Download PDF

Info

Publication number
WO2018032409A1
WO2018032409A1 PCT/CN2016/095676 CN2016095676W WO2018032409A1 WO 2018032409 A1 WO2018032409 A1 WO 2018032409A1 CN 2016095676 W CN2016095676 W CN 2016095676W WO 2018032409 A1 WO2018032409 A1 WO 2018032409A1
Authority
WO
WIPO (PCT)
Prior art keywords
power unit
battery pack
battery
power
group
Prior art date
Application number
PCT/CN2016/095676
Other languages
English (en)
French (fr)
Inventor
赵海军
张华民
马相坤
邵家云
王宏博
叱干婷
Original Assignee
大连融科储能技术发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连融科储能技术发展有限公司 filed Critical 大连融科储能技术发展有限公司
Priority to PCT/CN2016/095676 priority Critical patent/WO2018032409A1/zh
Priority to US16/326,104 priority patent/US20190288320A1/en
Publication of WO2018032409A1 publication Critical patent/WO2018032409A1/zh
Priority to US17/463,800 priority patent/US11705570B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0018Circuits for equalisation of charge between batteries using separate charge circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention belongs to the technical field of liquid flow batteries, and particularly relates to a liquid flow battery system and a large-scale liquid flow battery energy storage device.
  • the large-scale grouping schemes for liquid flow batteries at home and abroad mainly include the following methods: 1 flow battery system in series; 2 flow battery system in parallel; 3 flow battery system in series and combination; existing flow battery is large
  • the scale grouping scheme has the following defects:
  • each reactor in the flow battery system is limited. Because a set of electrolyte storage tanks and pipelines are shared between the piles in the same system, each pile is subjected to multiple stages after being connected in series.
  • the large voltage causes the leakage current in the system pipeline to increase, damaging the equipment, and the parallel connection will cause the voltage to be too low, the current is too large, the system efficiency is too low, and it cannot be converted into the required AC system;
  • the flow battery systems are connected in series and in parallel.
  • series or parallel connection between multiple flow battery systems it is strictly required that the pipelines between the systems are independent of each other, due to the internal resistance deviation of each flow battery system.
  • the SOC is inconsistent. After several cycles of charge and discharge, the barrel effect will be formed, resulting in a complete system.
  • the prior art is to connect all the positive storage tanks of each flow battery system through the pipeline, all the negative storage tanks. Connected through the pipeline to balance the SOC between the various systems, but this will result in a large leakage current loss energy when the pipelines are connected between the systems during charging and discharging, and large currents easily burn the equipment and affect the equipment utilization rate.
  • the flow battery system is connected to the AC grid through a series of series, parallel, or series and parallel connection, and then converted into a three-phase alternating current through the energy storage converter;
  • the energy storage converters used in the technical field of the flow battery are Three-phase full-control bridge converter, the existing technology of connecting the power modules included in the converter in series or parallel is applied to the static dynamic reactive power compensation device (SVG), and the application of the flow battery system has not been involved;
  • the existing converter also has an H-bridge cascaded converter structure, wherein the H-bridge series voltage is high, the flow battery cannot meet the high voltage requirement, and in the H-bridge series structure, the voltages of the respective power modules are superimposed. Mode, therefore, the flow battery system is required to be completely independent insulation, and the existing power flow battery system power units are connected through the electrolyte circulation pipeline and cannot be separated, so the H-bridge cascade converter structure is not suitable for the existing Flow battery system.
  • the present invention is directed to the above problems, and develops a flow battery system and a large-scale flow battery energy storage device.
  • a flow battery system comprising:
  • each of the flow batteries respectively includes an A battery pack, a B battery pack, a C battery pack, and a set of electrolyte circulation systems shared by the A battery pack, the B battery pack, and the C battery pack;
  • the A battery pack, the B battery pack and the C battery pack included in the flow battery are independent of each other on the circuit;
  • the A battery pack, the B battery pack, or the C battery pack each include a plurality of stacks connected in series with each other on the circuit;
  • the electrolyte circulation system includes at least a positive storage tank, a negative storage tank, and an electrolyte circulation line;
  • a battery pack, the B battery pack and the C battery pack are electrically isolated from each other and equipotential;
  • the energy storage scale of the flow battery system is varied by increasing the number of flow batteries.
  • a large-scale flow battery energy storage device comprising:
  • An energy storage converter having a plurality of power units; the plurality of power units are divided into three groups, respectively, a group A power unit, a group B power unit, and a group C power unit; and the group A power unit is connected to the AC side.
  • the DC side Connected between the A-phase line and the neutral line of the three-phase power, the DC side is respectively connected to the A battery pack included in each flow battery;
  • the B side power unit is connected to the AC side and then connected to the B-phase line of the three-phase power and Between the neutral lines, the DC side is connected to the B battery packs included in each flow battery;
  • the AC side of the C power unit is cascaded and connected between the C phase line and the neutral line of the three-phase power, and the DC side is respectively connected.
  • a C battery pack included in each flow battery Connected between the A-phase line and the neutral line of the three-phase power, the DC side is respectively connected to the A battery pack included in each flow battery;
  • the B side power unit is connected to the
  • a DC/DC isolation conversion module is disposed between each power unit and the A battery pack, the B battery pack, and the C battery pack;
  • the energy storage device further comprises an A transformer, a B transformer and a C transformer; the two ends of the primary winding of the A transformer are respectively connected with the A phase line and the neutral line of the three-phase electric power; the A transformer is respectively passed through the plurality of secondary windings respectively Connect the AC side of each power unit of the A group power unit; the two sides of the primary winding of the B transformer are respectively connected with the B phase line and the neutral line of the three-phase electric power; the B transformer is respectively connected to the B group power unit through the plurality of secondary windings The AC side of each power unit; the C-phase line and the neutral line of the three-phase electric power are respectively connected to the two ends of the primary winding of the C-transformer; the C-transformer is respectively connected to each power unit of the C-group power unit through a plurality of secondary windings. side;
  • the input and output parameters of each power unit included in the A group power unit are the same; the input and output parameters of each power unit included in the B group power unit are the same; the input and output parameters of each power unit included in the C group power unit are the same;
  • the power unit adopts an H-bridge conversion circuit;
  • the SOC difference between the A battery packs of each flow battery system is reduced by adjusting the AC side voltage of each power unit of the A group power unit; the liquid is reduced by adjusting the AC side voltage of each power unit of the B power unit.
  • the SOC difference between the B battery packs of the flow battery system; the SOC difference between the C battery packs of each flow battery system is reduced by adjusting the AC side voltage of each power unit of the C group power unit;
  • the power absorbed by the battery pack in the plurality of A battery packs that meet the first preset condition is lower than the SOC value according to the second preset condition.
  • the power absorbed by the battery pack is adjusted by adjusting the AC side voltage of each power unit of the power unit of the B group, so that the power absorbed by the battery pack in which the SOC value of the plurality of B battery packs meets the first preset condition is lower than the SOC value according to the second pre-compensation
  • the power absorbed by the battery pack of the condition is adjusted by adjusting the voltage of the AC side of each power unit of the power unit of the C group, so that the power absorbed by the battery pack whose SOC value meets the first preset condition in the plurality of C battery packs is lower than the SOC value.
  • the power released by the battery pack in which the SOC value of the plurality of A battery packs meets the first preset condition is higher than the SOC value according to the second preset condition.
  • the power released by the battery pack is adjusted by adjusting the voltage of the AC side of each power unit of the power unit of the B group, so that the power released by the battery pack in which the SOC value of the plurality of B battery packs meets the first preset condition is higher than the SOC value according to the second pre-compensation
  • the power released by the conditional battery pack is adjusted by adjusting the AC side voltage of each power unit of the C group power unit, so that the power released by the battery pack in the plurality of C battery packs that meets the first preset condition is higher than the SOC value.
  • ⁇ V CAi represents a modulated wave modulating the i-th power unit in the power unit of group A
  • ⁇ V CBi a modulated wave modulating the i-th power unit in the power unit of group B
  • ⁇ V CCi represents a power unit of group C a modulation wave modulated by the i-th power unit
  • k 2 0 to 2
  • ⁇ SOC Ai SOC A - SOC Ai
  • SOC A represents the average value of SOC of a plurality of A battery packs
  • SOC Ai represents the SOC value of the ith A battery pack
  • V CA represents the A phase voltage
  • SOC B represents the SOC average value of the plurality of B battery packs
  • SOC Bi represents the SOC value of the ith B battery pack
  • V CB represents the B phase voltage
  • SOC C represents the SOC average of the plurality of C battery packs
  • SOC Ci represents the SOC value of the i-th C battery pack
  • V CC represents the C-phase
  • the flow battery system and the large-scale flow battery energy storage device provided by the invention can keep the reference potential of each battery group unchanged, relatively save the cost of the energy storage inverter, and do not need high resistance.
  • Pressure design each flow battery is connected with the A group power unit, the B group power unit and the C group power unit connected to it, and the power of the battery pack included in different levels is controllable, so that the different levels of each layer can be adjusted.
  • the SOC between the battery packs solves the problem of SOC inconsistency between the various levels; when the SOC of each level of the battery packs is large, the SOC can be converged by controlling the energy storage converter; the flow battery system is expanded.
  • the charge and discharge current does not change; save at least 2 sets of electrolyte circulation system under the same power scale, improve system stability, and save cost; the flow battery does not need to go through multiple series and Parallel connection can greatly reduce the leakage current of the electrolyte and improve the overall efficiency and safety of the flow battery; under the same capacity and voltage conditions and other Compared with the energy storage system of the topology structure, the DC voltage and current of the battery cluster connected by the structure are smaller, the scale of the parallel flow of the liquid flow battery is reduced, and the influence of the short board effect of the battery on the energy storage system of the large capacity battery is reduced.
  • FIG. 1 is a schematic structural view of a flow battery system according to the present invention.
  • FIGS. 2 and 3 are schematic structural views of an energy storage device according to the present invention.
  • FIG. 4-a, FIG. 4-b, and FIG. 4-c are states of the SOC average value of the plurality of A battery packs, the plurality of B battery packs, or the plurality of C battery packs of the present invention, and corresponding group A power units, B Schematic diagram of the input power of a group power unit or a group C power unit.
  • a flow battery system 1 as shown in FIG. 1 includes: a plurality of flow batteries; each of the flow batteries includes an A battery pack, a B battery pack, a C battery pack, and an A battery pack and a B battery pack.
  • a large-scale flow battery energy storage device as shown in FIG. 2 and FIG. 3, comprising: the flow battery system 1 according to any one of the above; an energy storage converter having a plurality of power units;
  • the power units are divided into three groups, which are A group power unit 2, B group power unit 4 and C group power unit 5; group A power unit 2 is connected to the AC side and then connected to the three-phase A phase line and medium Between the lines, the DC side is connected to the A battery packs included in each flow battery; the B side power unit 4 is connected to the AC side and then connected to the B phase line and the neutral line of the three-phase power, and the DC side is respectively connected.
  • the B battery pack included in each flow battery; the C side power unit 5 is connected to the AC side and then connected to the C phase line and the neutral line of the three-phase power, and the DC side is respectively connected to the C battery included in each flow battery.
  • a DC/DC isolation conversion module 3 is provided between each power unit and the A battery pack, the B battery pack, and the C battery pack; or the energy storage device further includes an A transformer 6, a B transformer 7 and a C Transformer 8;
  • a transformer 6 is connected to the three-phase A phase line and the neutral line at both ends of the primary winding; the A transformer 6 passes through multiple pairs The windings are respectively connected to the AC side of each power unit of the A group power unit 2; the two ends of the primary winding of the B transformer 7 are respectively connected with the B phase line and the neutral line of the three phases; the B transformer 7 passes through the plurality of secondary windings respectively Connect the AC side of each power unit of the power unit 4 of the B group; the two ends of the primary winding of the C transformer 8 are respectively connected to
  • the power absorbed by the battery pack whose SOC value meets the first preset condition in the plurality of B battery packs is lower than the power absorbed by the battery pack whose SOC value meets the second preset condition, and the AC side of each power unit of the C group power unit 5 is adjusted.
  • the voltage is such that the power absorbed by the battery pack in which the SOC value of the plurality of C battery packs meets the first preset condition is lower than the power absorbed by the battery pack whose SOC value meets the second preset condition; during the discharge process, the power of the group A is adjusted.
  • the AC side voltage of each power unit of the unit 2 is such that the power released by the battery pack in which the SOC value of the plurality of A battery packs meets the first preset condition is higher than the power released by the battery pack whose SOC value meets the second preset condition, Adjusting the AC side voltage of each power unit of the power unit 4 of the B group, so that the power released by the battery pack whose SOC value meets the first preset condition in the plurality of B battery packs is higher than the SOC value is released according to the second preset condition By adjusting the AC side voltage of each power unit of the C power unit 5, the power released by the battery pack in the plurality of C battery packs that meets the first preset condition is higher than the SOC value according to the second preset condition.
  • the SOC value of the X battery pack may be higher than or equal to an average value of SOC values of the plurality of X battery packs; the X battery pack is an A battery pack, a B battery pack, or a C battery pack, that is, for a plurality of A battery packs, During charging, some of the A battery packs are absorbed by a lower power than the other A battery packs. During the discharge process, the A battery packs release more power than the other A batteries.
  • the SOC value of some A battery packs here is higher than the average value of the SOC values of the plurality of A battery packs, and the SOC value of some A battery packs is lower than the average value of the SOC values of the plurality of A battery packs;
  • Ground, for a plurality of B battery packs some of the B battery packs of the plurality of B battery packs are absorbed at a lower power than the other B battery packs during the charging process, and the B battery packs are released during the discharge process.
  • the power is higher than the power released by the other B battery packs, and some B batteries here have higher SOC values.
  • the average value of the SOC value of the plurality of B battery packs, and the SOC value of the other B battery packs is lower than the average value of the SOC values of the plurality of B battery packs; for the plurality of C battery packs, the plurality of C battery packs are made during the charging process Some of the C battery packs absorb less power than some other C battery packs. During the discharge process, some C battery packs release more power than the other C battery packs, some C battery packs here.
  • the SOC value is higher than or equal to the average value of the SOC values of the plurality of C battery packs, and the SOC values of the other C battery packs are lower than the average value of the SOC values of the plurality of C battery packs.
  • the secondary winding winding ratio Ki of the A transformer 6, B transformer 7 or C transformer 8 of the present invention can be determined according to system requirements, and a plurality of battery packs constitute a battery matrix, and each row of the matrix is an independently controllable flow battery.
  • the flow battery system 1 includes a plurality of flow batteries, and each set of liquid flow batteries realizes a circuit connection between the plurality of flow batteries through a series energy storage converter or a transformer, and each row of the battery groups is electrically isolated.
  • the invention is equipotential to each other; the invention uses a multi-tap type transformer or an energy storage converter to isolate the three phases A, B and C, so that the phase potentials are the same, and the corresponding power unit and the flow battery unit are in the circuit.
  • a battery pack, B battery pack and C battery pack share a set of electrolyte circulation system sharing a set of tanks, that is, the flow batteries on the three phases A, B and C are completely charged. Consistent, there is only one SOC power in the same layer, and there is no need to adjust the SOC. This ensures that the three-phase output of A, B, and C is exactly the same, and the three-phase balance and stable operation of the AC output of the system, and A, B, and C in the same layer. Shared in phase power unit Set; in addition, the energy storage device further includes a certain redundancy, when any failure of a flow cell, through the other breaker to ensure normal operation of the flow battery.
  • FIG. 2 and FIG. 3 are schematic diagrams showing the structure of the energy storage device of the present invention.
  • the A phase line, the B phase line and the C phase line are also connected to the power grid through the main transformer T;
  • the energy storage converter can
  • the three-phase full-control bridge circuit structure includes a positive electrode storage tank, a negative electrode storage tank and an electrolyte circulation pipeline, and further includes a circulation pump, and the electrolyte circulation pipeline specifically includes a positive storage tank a liquid inlet pipe of the electric stack in each battery pack, a liquid return line returning from the electric stack in each battery pack to the positive electrode storage tank, and a liquid supply line from the negative electrode storage tank to the electric stack in each battery pack, And a liquid return line returned from the stack in each battery pack to the negative storage tank;
  • the internal stacks of the A battery pack, the B battery pack and the C battery pack are in a series configuration, the stack currents are equal, and each flow battery internal There will be 3 sets of voltages (U1+, U1-), (U
  • the A transformer 6, B transformer 7 and C transformer 8 in Fig. 3 can function as potential isolation;
  • the power unit adopts an H-bridge conversion circuit, and has the characteristics of high voltage, large capacity, good output waveform, easy expansion, and redundancy.
  • the invention can realize in-phase SOC equalization of the energy storage device, and the intra-phase SOC equalization refers to Is to reduce the SOC difference between the A battery packs of each flow battery, to reduce the SOC difference between the B battery groups of each flow battery, or to reduce the SOC difference between the C battery groups of each flow battery;
  • the current flowing through the power-exchange side of each power and current in the A-group power unit 2 of the unit AC side is the same, so that the power-side voltage of each power unit in the phase can be adjusted while maintaining the voltage of the A-phase, so that each power unit can be realized.
  • the i-th power unit in unit 5 is modulated, and the battery pack with a large SOC value releases power with a larger amplitude modulation wave during discharge, and the power is less absorbed by a smaller amplitude modulation wave during charging.
  • FIG. 4-a, FIG. 4-b, and FIG. 4-c show the state of the SOC average value of the plurality of A battery packs, the plurality of B battery packs, or the plurality of C battery packs of the present invention.
  • Group A power unit 2 Group B power unit 4 or Group C power unit 5 Schematic, as shown in Figure 4-a, when the average SOC of multiple A battery packs, multiple B battery packs, or multiple C battery packs is low, the corresponding Group A power unit 2, Group B power unit 4 Or the power output of the C power unit 5 is small, as shown in FIG. 4-b, when the average values of the SOCs of the plurality of A battery packs, the plurality of B battery packs, or the plurality of C battery packs are normal, the corresponding group A power units 2.
  • the output of power unit 4 or group C power unit 5 of group B is normal, as shown in Figure 4-c, when the average SOC of multiple A battery packs, multiple B battery packs or multiple C battery packs is high When the corresponding group A power unit 2, group B power unit 4 or group C power unit 5 has a large output.
  • the liquid flow battery system and the large-scale liquid flow battery energy storage device provided by the invention can maintain the reference potential of each battery pack unchanged, relatively save the cost of the energy storage inverter, and do not require a high pressure resistant design; each liquid The flow battery forms a hierarchy with the A group power unit, the B group power unit and the C group power unit connected thereto, and the power of the battery pack included in different levels is controllable, so that the SOC between the battery packs of different levels can be adjusted.
  • the problem of SOC inconsistency between the various levels is solved; when the SOC of each level of the battery pack is relatively large, the SOC can be converged by controlling the energy storage converter; when the flow battery system is expanded, only a single unit needs to be added.
  • Battery power, charge and discharge current does not change; save at least 2 sets of electrolyte circulation system under the same power scale, improve system stability, and save cost; flow battery can be greatly reduced without multiple series and parallel connection
  • the leakage current of the electrolyte improves the overall efficiency and safety of the flow battery; under the same capacity and voltage conditions, compared with other topological energy storage systems, the DC voltage and current of the battery cluster connected by this structure are smaller and smaller.
  • the scale of the liquid-current battery series and parallel connection reduces the impact of the battery short-board effect on the large-capacity battery energy storage system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种液流电池系统及大规模液流电池储能装置,所述液流电池系统包括:多个液流电池;各液流电池均分别包括A电池组、B电池组、C电池组、以及由A电池组、B电池组和C电池组所共用的一套电解液循环系统;每一液流电池所包括的A电池组、B电池组、C电池组在电路上相互独立;该技术方案在同等功率规模下节省至少2套电解液循环系统,提高系统稳定性,同时节约成本。

Description

液流电池系统及大规模液流电池储能装置 技术领域
本发明属于液流电池技术领域,具体涉及一种液流电池系统及大规模液流电池储能装置。
背景技术
目前,国内外的液流电池大规模成组方案主要有以下几种方式:①液流电池系统串联;②液流电池系统并联;③液流电池系统串并组合;现有的液流电池大规模成组方案存在如下缺陷:
1、液流电池系统内部各电堆串联与并联级数受限,由于在同一系统内各个电堆之间共用一套电解液储罐与管路,在经过多级串联之后各电堆承受较大电压导致系统管路中漏电流增大,损坏设备,而并联会导致电压过低,电流过大,系统效率太低,无法转换为需要的交流系统;
2、液流电池系统之间串联与并联,在多个液流电池系统之间串联或并联时严格要求各系统之间管路相互独立,由于各液流电池系统内阻偏差导致各系统之间SOC不一致,经过多次充放电循环后会形成木桶效应,导致整套系统瘫痪,针对这一问题现有技术是采用将各套液流电池系统所有正极储罐通过管路相连,所有负极储罐通过管路相连,来均衡各个系统之间SOC,但这样会导致在充放电时各系统之间管路相连产生较大漏电流损失能量,同时大电流容易烧毁设备,影响设备使用率。
另外,液流电池系统经过一定的串联、并联、或者串并联之后再通过储能变流器转换成三相交流电连接至交流电网;目前液流电池技术领域所采用的储能变流器均为三相全控桥变流器,已有的将变流器所包括的功率模块进行串联或并联的技术应用在静止型动态无功补偿装置(SVG)上,尚未涉及液流电池系统的应用;现有的变流器还具有H桥级联式变流器结构,其中H桥串联电压较高,液流电池无法满足高电压要求,并且,H桥串联结构中,各个功率模块的电压为叠加模式,因此要求液流电池系统完全独立绝缘,而现有的液流电池系统各功率单元通过电解液循环管路相连而无法分离,故H桥级联式变流器结构并不适用于现有的液流电池系统。
发明内容
本发明针对以上问题的提出,而研制一种液流电池系统及大规模液流电池储能装置。
本发明的技术手段如下:
一种液流电池系统,包括:
多个液流电池;各液流电池均分别包括A电池组、B电池组、C电池组、以及由A电池组、B电池组和C电池组所共用的一套电解液循环系统;每一液流电池所包括的A电池组、B电池组、C电池组在电路上相互独立;
进一步地,A电池组、B电池组或C电池组均分别包括在电路上相互串联的多个电堆;所述电解液循环系统至少包括正极储罐、负极储罐和电解液循环管路;
进一步地,A电池组、B电池组与C电池组之间相互电隔离且等电位;
进一步地,通过增加液流电池的数量来改变所述液流电池系统的储能规模。
一种大规模液流电池储能装置,包括:
上述任一项所述的液流电池系统;
具有多个功率单元的储能变流器;所述多个功率单元均分为三组,分别为A组功率单元、B组功率单元和C组功率单元;A组功率单元交流侧级联后接入三相电的A相线和中性线之间,直流侧分别连接各液流电池所包括的A电池组;B组功率单元交流侧级联后接入三相电的B相线和中性线之间,直流侧分别连接各液流电池所包括的B电池组;C组功率单元交流侧级联后接入三相电的C相线和中性线之间,直流侧分别连接各液流电池所包括的C电池组;
进一步地,
各功率单元与A电池组、B电池组和C电池组之间均设有DC/DC隔离变换模块;
或者所述储能装置还包括A变压器、B变压器和C变压器;A变压器的原边绕组两端分别连接三相电的A相线和中性线;所述A变压器通过多个副边绕组分别连接A组功率单元的各功率单元交流侧;B变压器的原边绕组两端分别连接三相电的B相线和中性线;所述B变压器通过多个副边绕组分别连接B组功率单元的各功率单元交流侧;C变压器的原边绕组两端分别连接三相电的C相线和中性线;所述C变压器通过多个副边绕组分别连接C组功率单元的各功率单元交流侧;
进一步地,A组功率单元所包括的各功率单元输入输出参数相同;B组功率单元所包括的各功率单元输入输出参数相同;C组功率单元所包括的各功率单元输入输出参数相同;所述功率单元采用H桥变换电路;
进一步地,通过调节A组功率单元的各功率单元交流侧电压来缩小各液流电池系统的A电池组之间的SOC差异;通过调节B组功率单元的各功率单元交流侧电压来缩小各液流电池系统的B电池组之间的SOC差异;通过调节C组功率单元的各功率单元交流侧电压来缩小各液流电池系统的C电池组之间的SOC差异;
进一步地,
在充电过程中,通过调节A组功率单元的各功率单元交流侧电压,使得多个A电池组中SOC值符合第一预设条件的电池组吸收的功率低于SOC值符合第二预设条件的电池组吸收的功率,通过调节B组功率单元的各功率单元交流侧电压,使得多个B电池组中SOC值符合第一预设条件的电池组吸收的功率低于SOC值符合第二预设条件的电池组吸收的功率,通过调节C组功率单元的各功率单元交流侧电压,使得多个C电池组中SOC值符合第一预设条件的电池组吸收的功率低于SOC值符合第二预设条件的电池组吸收的功率;
在放电过程中,通过调节A组功率单元的各功率单元交流侧电压,使得多个A电池组中SOC值符合第一预设条件的电池组释放的功率高于SOC值符合第二预设条件的电池组释放的功率,通过调节B组功率单元的各功率单元交流侧电压,使得多个B电池组中SOC值符合第一预设条件的电池组释放的功率高于SOC值符合第二预设条件的电池组释放的功率,通过调节C组功率单元的各功率单元交流侧电压,使得多个C电池组中SOC值符合第一预设条件的电池组释放的功率高于SOC值符合第二预设条件的电池组释放的功率;
进一步地,通过调制波ΔVCAi=k1·k2·ΔSOCAi·VCA对A组功率单元中第i个功率单元进行调制,通过调制波ΔVCBi=k1·k2·ΔSOCBi·VCB对B组功率单元中第i个功率单元进行调制,通过调制波ΔVCCi=k1·k2·ΔSOCCi·VCC对C组功率单元中第i个功率单元进行调制;
其中,ΔVCAi表示对A组功率单元中第i个功率单元进行调制的调制波,ΔVCBi表示对B组功率单元中第i个功率单元进行调制的调制波,ΔVCCi表示对C组功率单元中第i个功率单元进行调制的调制波,
Figure PCTCN2016095676-appb-000001
k2=0~2, ΔSOCAi=SOCA-SOCAi,SOCA表示多个A电池组的SOC平均值、
Figure PCTCN2016095676-appb-000002
SOCAi表示第i个A电池组的SOC值,VCA表示A相电压,SOCB表示多个B电池组的SOC平均值、
Figure PCTCN2016095676-appb-000003
SOCBi表示第i个B电池组的SOC值,VCB表示B相电压,SOCC表示多个C电池组的SOC平均值、
Figure PCTCN2016095676-appb-000004
SOCCi表示第i个C电池组的SOC值,VCC表示C相电压,i=1、2、…n,Id表示储能变流器直流侧的总电流。
由于采用了上述技术方案,本发明提供的液流电池系统及大规模液流电池储能装置,能够保持各电池组参考电位不变,相对节省储能逆变器成本,不需要较高的耐压设计;每一液流电池同其所连接的A组功率单元、B组功率单元和C组功率单元构成一个层级,不同层级所包括的电池组的功率可控,从而可以调整各层级不同相间电池组之间的SOC,解决了各层级之间SOC不一致问题;当各层级电池组SOC相差较大情况下,可以通过控制储能变流器使SOC趋于收敛;对液流电池系统进行扩容时,仅需要增加单个电池组功率,充放电电流不发生变化;在同等功率规模下节省至少2套电解液循环系统,提高系统稳定性,同时节约成本;液流电池不需要经过多次串联和并联,即可大大降低电解液的漏电电流,提高液流电池整体效率和安全性;在同等容量和电压条件下与其它拓扑结构的储能系统相比,这种结构联接的电池簇直流电压、电流更小,减小了液流电池串并联的规模,降低了电池短板效应对大容量电池储能系统的影响。
附图说明
图1是本发明所述液流电池系统的结构示意图;
图2和图3是本发明所述储能装置的结构示意图;
图4-a、图4-b、图4-c是本发明多个A电池组、多个B电池组或多个C电池组的的SOC平均值的状态与相应的A组功率单元、B组功率单元或C组功率单元的输入功率情况示意图。
图中:1、液流电池系统,2、A组功率单元,3、DC/DC隔离变换模块,4、B组功率单元,5、C组功率单元,6、A变压器,7、B变压器,8、C变压器,
具体实施方式
如图1所示的一种液流电池系统1,包括:多个液流电池;各液流电池均分别包括A电池组、B电池组、C电池组、以及由A电池组、B电池组和C电池 组所共用的一套电解液循环系统;每一液流电池所包括的A电池组、B电池组、C电池组在电路上相互独立;进一步地,A电池组、B电池组或C电池组均分别包括在电路上相互串联的多个电堆;所述电解液循环系统至少包括正极储罐、负极储罐和电解液循环管路;进一步地,A电池组、B电池组与C电池组之间相互电隔离且等电位;进一步地,通过增加液流电池的数量来改变所述液流电池系统1的储能规模。
如图2和图3所示的一种大规模液流电池储能装置,包括:上述任一项所述的液流电池系统1;具有多个功率单元的储能变流器;所述多个功率单元均分为三组,分别为A组功率单元2、B组功率单元4和C组功率单元5;A组功率单元2交流侧级联后接入三相电的A相线和中性线之间,直流侧分别连接各液流电池所包括的A电池组;B组功率单元4交流侧级联后接入三相电的B相线和中性线之间,直流侧分别连接各液流电池所包括的B电池组;C组功率单元5交流侧级联后接入三相电的C相线和中性线之间,直流侧分别连接各液流电池所包括的C电池组;进一步地,各功率单元与A电池组、B电池组和C电池组之间均设有DC/DC隔离变换模块3;或者所述储能装置还包括A变压器6、B变压器7和C变压器8;A变压器6的原边绕组两端分别连接三相电的A相线和中性线;所述A变压器6通过多个副边绕组分别连接A组功率单元2的各功率单元交流侧;B变压器7的原边绕组两端分别连接三相电的B相线和中性线;所述B变压器7通过多个副边绕组分别连接B组功率单元4的各功率单元交流侧;C变压器8的原边绕组两端分别连接三相电的C相线和中性线;所述C变压器8通过多个副边绕组分别连接C组功率单元5的各功率单元交流侧;进一步地,A组功率单元2所包括的各功率单元输入输出参数相同;B组功率单元4所包括的各功率单元输入输出参数相同;C组功率单元5所包括的各功率单元输入输出参数相同;所述功率单元采用H桥变换电路;进一步地,通过调节A组功率单元2的各功率单元交流侧电压来缩小各液流电池系统1的A电池组之间的SOC差异;通过调节B组功率单元4的各功率单元交流侧电压来缩小各液流电池系统1的B电池组之间的SOC差异;通过调节C组功率单元5的各功率单元交流侧电压来缩小各液流电池系统1的C电池组之间的SOC差异;进一步地,在充电过程中,通过调节A组功率单元2的各功率单元交流侧电压,使得多个A电池组中SOC值符合第一预设条件的电池组吸收的功率低于SOC值符合第二预设条件的电池组吸收的功率,通过调节B组功率单元4的各功率单元交流侧 电压,使得多个B电池组中SOC值符合第一预设条件的电池组吸收的功率低于SOC值符合第二预设条件的电池组吸收的功率,通过调节C组功率单元5的各功率单元交流侧电压,使得多个C电池组中SOC值符合第一预设条件的电池组吸收的功率低于SOC值符合第二预设条件的电池组吸收的功率;在放电过程中,通过调节A组功率单元2的各功率单元交流侧电压,使得多个A电池组中SOC值符合第一预设条件的电池组释放的功率高于SOC值符合第二预设条件的电池组释放的功率,通过调节B组功率单元4的各功率单元交流侧电压,使得多个B电池组中SOC值符合第一预设条件的电池组释放的功率高于SOC值符合第二预设条件的电池组释放的功率,通过调节C组功率单元5的各功率单元交流侧电压,使得多个C电池组中SOC值符合第一预设条件的电池组释放的功率高于SOC值符合第二预设条件的电池组释放的功率;进一步地,通过调制波ΔVCAi=k1·k2·ΔSOCAi·VCA对A组功率单元2中第i个功率单元进行调制,通过调制波ΔVCBi=k1·k2·ΔSOCBi·VCB对B组功率单元4中第i个功率单元进行调制,通过调制波ΔVCCi=k1·k2·ΔSOCCi·VCC对C组功率单元5中第i个功率单元进行调制;其中,ΔVCAi表示对A组功率单元2中第i个功率单元进行调制的调制波,ΔVCBi表示对B组功率单元4中第i个功率单元进行调制的调制波,ΔVCCi表示对C组功率单元5中第i个功率单元进行调制的调制波,
Figure PCTCN2016095676-appb-000005
k2=0~2,ΔSOCAi=SOCA-SOCAi,SOCA表示多个A电池组的SOC平均值、
Figure PCTCN2016095676-appb-000006
SOCAi表示第i个A电池组的SOC值,VCA表示A相电压,SOCB表示多个B电池组的SOC平均值、
Figure PCTCN2016095676-appb-000007
SOCBi表示第i个B电池组的SOC值,VCB表示B相电压,SOCC表示多个C电池组的SOC平均值、
Figure PCTCN2016095676-appb-000008
SOCCi表示第i个C电池组的SOC值,VCC表示C相电压,i=1、2、…n,Id表示储能变流器直流侧的总电流;所述第一预设条件可以为X电池组的SOC值高于等于多个X电池组的SOC值的平均值;所述X电池组为A电池组、B电池组或C电池组,即,对于多个A电池组,在充电过程中,使多个A电池组中的一些A电池组吸收的功率低于另外一些A电池组,在放电过程中,所述一些A电池组释放的功率高于所述另外一些A电池组释放的功率,这里的一些A电池组的SOC值高于等于多个A电池组的SOC值平均 值,另外一些A电池组的SOC值低于多个A电池组的SOC值平均值;同样地,对于多个B电池组,在充电过程中,使多个B电池组中的一些B电池组吸收的功率低于另外一些B电池组,在放电过程中,所述一些B电池组释放的功率高于所述另外一些B电池组释放的功率,这里的一些B电池组的SOC值高于等于多个B电池组的SOC值平均值,另外一些B电池组的SOC值低于多个B电池组的SOC值平均值;对于多个C电池组,在充电过程中,使多个C电池组中的一些C电池组吸收的功率低于另外一些C电池组,在放电过程中,所述一些C电池组释放的功率高于所述另外一些C电池组释放的功率,这里的一些C电池组的SOC值高于等于多个C电池组的SOC值平均值,另外一些C电池组的SOC值低于多个C电池组的SOC值平均值。
本发明A变压器6、B变压器7或C变压器8的每个副边绕组变比Ki可以根据系统要求确定,多个电池组构成电池矩阵,矩阵每行都是一个独立可控的液流电池,液流电池系统1包括多个液流电池,每套液流电池之间通过串联储能变流器或变压器实现多个液流电池之间的电路连接,每行电池组之间为电隔离,彼此之间为等电位;本发明采用多抽头式变压器或储能变流器将A、B、C三相之间隔离,使得相间电位相同,相对应的功率单元及液流电池单元在电路中也是等电位,并且在电路中相互独立;A电池组、B电池组和C电池组共用一套电解液循环系统共用一套储罐,即A、B、C三相上的液流电池电量完全一致,同层中只有一个SOC电量,不需要调节SOC,这样保证了A、B、C三相出力完全相同,以及系统交流输出三相平衡和稳定运行,并且同层中A、B、C三相功率单元中共享一套;另外,所述储能装置还具有一定冗余功能,当任意一液流电池发生故障时,可以通过断路器断开以保证其它液流电池正常工作。
图2和图3示出了本发明所述储能装置的结构示意图,如图2所示,A相线、B相线和C相线还通过主变压器T连接电网;储能变流器可以采用三相全控桥电路结构,所述电解液循环系统包括正极储罐、负极储罐和电解液循环管路,还包括循环泵,所述电解液循环管路具体包括由正极储罐去往各电池组内的电堆的进液管路、由各电池组内的电堆返回正极储罐的回液管路、由负极储罐去往各电池组内的电堆的进液管路、以及由各电池组内的电堆返回负极储罐的回液管路;A电池组、B电池组和C电池组各自内部的电堆是串联结构,电堆电流相等,每一液流电池内部会有3组电压(U1+、U1-),(U2+、U2-),(U3+、U3-),分别是与A电池组、B电池组和C电池组对应的;各功率单元与A电池 组、B电池组和C电池组之间均设有DC/DC隔离变换模块3,所述DC/DC隔离变换模块3具体可以采用多重斩波直流隔离升压电路,通过多重斩波直流隔离升压电路能够实现各个功率单元之间的电位隔离,图3中的A变压器6、B变压器7和C变压器8可以起到电位隔离的作用;所述功率单元采用H桥变换电路,具有高电压、大容量、输出波形好、容易扩展和可实现冗余的特点;本发明能够实现储能装置的相内SOC均衡,相内SOC均衡指的是缩小各液流电池的A电池组之间的SOC差异、缩小各液流电池的B电池组之间的SOC差异、或者缩小各液流电池的C电池组之间的SOC差异;由于各功率单元交流侧级联的A组功率单元2中流经各功率电流交流侧的电流相同,因此在保持A相电压不变的前提下,调节相内各功率单元交流侧电压,即可实现各功率单元输入功率或输出功率的区别化控制,进而实现相内SOC偏差的调节,这里的A组功率单元2还可以是B组功率单元4或C组功率单元5,相应的,A相电压还可以是B相电压或C相电压,进一步地,通过调制波ΔVCAi=k1·k2·ΔSOCAi·VCA对A组功率单元2中第i个功率单元进行调制,通过调制波ΔVCBi=k1·k2·ΔSOCBi·VCB对B组功率单元4中第i个功率单元进行调制,通过调制波ΔVCCi=k1·k2·ΔSOCCi·VCC对C组功率单元5中第i个功率单元进行调制,实现SOC值大的电池组在放电过程中以较大幅值的调制波多释放功率,在充电过程中则以较小幅值的调制波少吸收功率,SOC值小的电池组在放电过程中以较小幅值的调制波少释放功率,在充电过程中则以较大幅值的调制波多吸收功率,依此规律,通过不同速度的充放电调节,最终使得各电池组的SOC趋同;图4-a、图4-b、图4-c示出了本发明多个A电池组、多个B电池组或多个C电池组的的SOC平均值的状态与相应的A组功率单元2、B组功率单元4或C组功率单元5的输入功率情况示意图,如图4-a所示,当多个A电池组、多个B电池组或多个C电池组的的SOC平均值偏低时,相应的A组功率单元2、B组功率单元4或C组功率单元5的出力小,如图4-b所示,当多个A电池组、多个B电池组或多个C电池组的的SOC平均值正常时,相应的A组功率单元2、B组功率单元4或C组功率单元5的出力正常,如图4-c所示,当多个A电池组、多个B电池组或多个C电池组的的SOC平均值偏高时,相应的A组功率单元2、B组功率单元4或C组功率单元5的出力大。
本发明提供的液流电池系统及大规模液流电池储能装置,能够保持各电池组参考电位不变,相对节省储能逆变器成本,不需要较高的耐压设计;每一液 流电池同其所连接的A组功率单元、B组功率单元和C组功率单元构成一个层级,不同层级所包括的电池组的功率可控,从而可以调整各层级不同相间电池组之间的SOC,解决了各层级之间SOC不一致问题;当各层级电池组SOC相差较大情况下,可以通过控制储能变流器使SOC趋于收敛;对液流电池系统进行扩容时,仅需要增加单个电池组功率,充放电电流不发生变化;在同等功率规模下节省至少2套电解液循环系统,提高系统稳定性,同时节约成本;液流电池不需要经过多次串联和并联,即可大大降低电解液的漏电电流,提高液流电池整体效率和安全性;在同等容量和电压条件下与其它拓扑结构的储能系统相比,这种结构联接的电池簇直流电压、电流更小,减小了液流电池串并联的规模,降低了电池短板效应对大容量电池储能系统的影响。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (10)

  1. 一种液流电池系统,其特征在于所述液流电池系统包括:
    多个液流电池;各液流电池均分别包括A电池组、B电池组、C电池组、以及由A电池组、B电池组和C电池组所共用的一套电解液循环系统;每一液流电池所包括的A电池组、B电池组、C电池组在电路上相互独立。
  2. 根据权利要求1所述的液流电池系统,其特征在于A电池组、B电池组或C电池组均分别包括在电路上相互串联的多个电堆;所述电解液循环系统至少包括正极储罐、负极储罐和电解液循环管路。
  3. 根据权利要求1所述的液流电池系统,其特征在于A电池组、B电池组与C电池组之间相互电隔离且等电位。
  4. 根据权利要求1所述的液流电池系统,其特征在于通过增加液流电池的数量来改变所述液流电池系统的储能规模。
  5. 一种大规模液流电池储能装置,其特征在于所述储能装置包括:
    权利要求1至4任一项所述的液流电池系统;
    具有多个功率单元的储能变流器;所述多个功率单元均分为三组,分别为A组功率单元、B组功率单元和C组功率单元;A组功率单元交流侧级联后接入三相电的A相线和中性线之间,直流侧分别连接各液流电池所包括的A电池组;B组功率单元交流侧级联后接入三相电的B相线和中性线之间,直流侧分别连接各液流电池所包括的B电池组;C组功率单元交流侧级联后接入三相电的C相线和中性线之间,直流侧分别连接各液流电池所包括的C电池组。
  6. 根据权利要求5所述的大规模液流电池储能装置,其特征在于,
    各功率单元与A电池组、B电池组和C电池组之间均设有DC/DC隔离变换模块;
    或者所述储能装置还包括A变压器、B变压器和C变压器;A变压器的原边绕组两端分别连接三相电的A相线和中性线;所述A变压器通过多个副边绕组分别连接A组功率单元的各功率单元交流侧;B变压器的原边绕组两端分别连接三相电的B相线和中性线;所述B变压器通过多个副边绕组分别连接B组功率单元的各功率单元交流侧;C变压器的原边绕组两端分别连接三相电的C相线和中性线;所述C变压器通过多个副边绕组分别连接C组功率单元的各功率单元交流侧。
  7. 根据权利要求5所述的大规模液流电池储能装置,其特征在于A组功率单元所包括的各功率单元输入输出参数相同;B组功率单元所包括的各功率单元输入输出参数相同;C组功率单元所包括的各功率单元输入输出参数相同;所述功率单元采用H桥变换电路。
  8. 根据权利要求5所述的大规模液流电池储能装置,其特征在于通过调节A组功率单元的各功率单元交流侧电压来缩小各液流电池系统的A电池组之间的SOC差异;通过调节B组功率单元的各功率单元交流侧电压来缩小各液流电池系统的B电池组之间的SOC差异;通过调节C组功率单元的各功率单元交流侧电压来缩小各液流电池系统的C电池组之间的SOC差异。
  9. 根据权利要求8所述的大规模液流电池储能装置,其特征在于,
    在充电过程中,通过调节A组功率单元的各功率单元交流侧电压,使得多个A电池组中SOC值符合第一预设条件的电池组吸收的功率低于SOC值符合第二预设条件的电池组吸收的功率,通过调节B组功率单元的各功率单元交流侧电压,使得多个B电池组中SOC值符合第一预设条件的电池组吸收的功率低于SOC值符合第二预设条件的电池组吸收的功率,通过调节C组功率单元的各功率单元交流侧电压,使得多个C电池组中SOC值符合第一预设条件的电池组吸收的功率低于SOC值符合第二预设条件的电池组吸收的功率;
    在放电过程中,通过调节A组功率单元的各功率单元交流侧电压,使得多个A电池组中SOC值符合第一预设条件的电池组释放的功率高于SOC值符合第二预设条件的电池组释放的功率,通过调节B组功率单元的各功率单元交流侧电压,使得多个B电池组中SOC值符合第一预设条件的电池组释放的功率高于SOC值符合第二预设条件的电池组释放的功率,通过调节C组功率单元的各功率单元交流侧电压,使得多个C电池组中SOC值符合第一预设条件的电池组释放的功率高于SOC值符合第二预设条件的电池组释放的功率。
  10. 根据权利要求9所述的大规模液流电池储能装置,其特征在于通过调制波ΔVCAi=k1·k2·ΔSOCAi·VCA对A组功率单元中第i个功率单元进行调制,通过调制波ΔVCBi=k1·k2·ΔSOCBi·VCB对B组功率单元中第i个功率单元进行调制,通过调制波ΔVCCi=k1·k2·ΔSOCCi·VCC对C组功率单元中第i个功率单元进行调制;
    其中,ΔVCAi表示对A组功率单元中第i个功率单元进行调制的调制波,ΔVCBi表示对B组功率单元中第i个功率单元进行调制的调制波,ΔVCCi表示对C组功 率单元中第i个功率单元进行调制的调制波,
    Figure PCTCN2016095676-appb-100001
    k2=0~2,ΔSOCAi=SOCA-SOCAi,SOCA表示多个A电池组的SOC平均值、
    Figure PCTCN2016095676-appb-100002
    SOCAi表示第i个A电池组的SOC值,VCA表示A相电压,SOCB表示多个B电池组的SOC平均值、
    Figure PCTCN2016095676-appb-100003
    SOCBi表示第i个B电池组的SOC值,VCB表示B相电压,SOCC表示多个C电池组的SOC平均值、
    Figure PCTCN2016095676-appb-100004
    SOCCi表示第i个C电池组的SOC值,VCC表示C相电压,i=1、2、…n,Id表示储能变流器直流侧的总电流。
PCT/CN2016/095676 2016-08-17 2016-08-17 液流电池系统及大规模液流电池储能装置 WO2018032409A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2016/095676 WO2018032409A1 (zh) 2016-08-17 2016-08-17 液流电池系统及大规模液流电池储能装置
US16/326,104 US20190288320A1 (en) 2016-08-17 2016-08-17 Flow battery system and large scale flow battery energy storage device
US17/463,800 US11705570B2 (en) 2016-08-17 2021-09-01 Flow battery system and large scale flow battery energy storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/095676 WO2018032409A1 (zh) 2016-08-17 2016-08-17 液流电池系统及大规模液流电池储能装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/326,104 A-371-Of-International US20190288320A1 (en) 2016-08-17 2016-08-17 Flow battery system and large scale flow battery energy storage device
US17/463,800 Division US11705570B2 (en) 2016-08-17 2021-09-01 Flow battery system and large scale flow battery energy storage device

Publications (1)

Publication Number Publication Date
WO2018032409A1 true WO2018032409A1 (zh) 2018-02-22

Family

ID=61196320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/095676 WO2018032409A1 (zh) 2016-08-17 2016-08-17 液流电池系统及大规模液流电池储能装置

Country Status (2)

Country Link
US (2) US20190288320A1 (zh)
WO (1) WO2018032409A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109742782A (zh) * 2019-02-12 2019-05-10 广州智光储能科技有限公司 一种适用于退役动力电池梯次利用的装置及方法
GB2576182A (en) * 2018-08-08 2020-02-12 Renewable Energy Dynamics Tech Ltd Flow battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201845830U (zh) * 2010-11-11 2011-05-25 中国人民解放军63971部队 一种液流电池电堆
CN102354761A (zh) * 2011-10-10 2012-02-15 中国东方电气集团有限公司 液流电池系统及其停机保护方法和装置
CN102723518A (zh) * 2011-03-30 2012-10-10 中国人民解放军63971部队 一种全铅液流电池
CN102810698A (zh) * 2011-05-31 2012-12-05 北京宝盒精英科技有限公司 蓄电池组、蓄电池组充放电管理的方法和系统
CN102867975A (zh) * 2011-07-05 2013-01-09 中国科学院大连化学物理研究所 一种减小甚至消除全钒液流储能电池系统漏电电流的方法
CN105702994A (zh) * 2014-11-26 2016-06-22 大连融科储能技术发展有限公司 一种液流电池系统结构

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8394518B2 (en) * 2009-06-26 2013-03-12 Global Energy Science, LLC (California) Galvanic electrochemical cells for generating alternating current electricity
EP2760122A1 (en) * 2013-01-24 2014-07-30 DET International Holding Limited Cascaded H-Bridge Converter with transformer based cell power balancing in each voltage level
DE102014216289A1 (de) * 2014-08-15 2016-03-03 TRUMPF Hüttinger GmbH + Co. KG Verfahren zur Messung des Ladezustands eines Flow-Batterie-Stacks und Batteriemanagementsystem
US9893385B1 (en) 2015-04-23 2018-02-13 Ambri Inc. Battery management systems for energy storage devices
DE102016112004A1 (de) * 2016-06-30 2018-01-04 TRUMPF Hüttinger GmbH + Co. KG Flussbatteriestapel und Flussbatteriesystem mit einem solchen Flussbatteriestapel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201845830U (zh) * 2010-11-11 2011-05-25 中国人民解放军63971部队 一种液流电池电堆
CN102723518A (zh) * 2011-03-30 2012-10-10 中国人民解放军63971部队 一种全铅液流电池
CN102810698A (zh) * 2011-05-31 2012-12-05 北京宝盒精英科技有限公司 蓄电池组、蓄电池组充放电管理的方法和系统
CN102867975A (zh) * 2011-07-05 2013-01-09 中国科学院大连化学物理研究所 一种减小甚至消除全钒液流储能电池系统漏电电流的方法
CN102354761A (zh) * 2011-10-10 2012-02-15 中国东方电气集团有限公司 液流电池系统及其停机保护方法和装置
CN105702994A (zh) * 2014-11-26 2016-06-22 大连融科储能技术发展有限公司 一种液流电池系统结构

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2576182A (en) * 2018-08-08 2020-02-12 Renewable Energy Dynamics Tech Ltd Flow battery
WO2020030762A1 (en) 2018-08-08 2020-02-13 Renewable Energy Dynamics Technology Ltd Flow battery and a method for balancing the soc
GB2576182B (en) * 2018-08-08 2022-04-06 Renewable Energy Dynamics Tech Ltd Flow battery
CN109742782A (zh) * 2019-02-12 2019-05-10 广州智光储能科技有限公司 一种适用于退役动力电池梯次利用的装置及方法

Also Published As

Publication number Publication date
US20190288320A1 (en) 2019-09-19
US20210399326A1 (en) 2021-12-23
US11705570B2 (en) 2023-07-18

Similar Documents

Publication Publication Date Title
WO2021017170A1 (zh) 多端口直流潮流控制的模块化多电平变流器及控制方法
CN110350564B (zh) 高压直挂式储能装置及功率控制方法
CN207459728U (zh) 一种储能型多端口电力电子变压器
US9142964B2 (en) Electrical energy and distribution system
CN109245123B (zh) 一种级联型储能系统多机并联虚拟同步控制系统及方法
CN104426157A (zh) 储能模块以及储能装置
WO2021217530A1 (zh) 储能系统
CN207705800U (zh) 一种具有电池功率波动平抑能力的链式储能系统
CN103457271A (zh) 带有功调节能力的链式静止同步补偿器及其级联单元
US11705570B2 (en) Flow battery system and large scale flow battery energy storage device
CN104917418A (zh) 一种采用电池电流独立控制的储能型mmc变流器
WO2024040982A1 (zh) 一种交流直接并网型电池储能系统的功率变换方法
CN103199630A (zh) 一种大容量中压电池储能系统
CN203104011U (zh) 一种蓄电池或电容充放电管理均衡系统
CN204258410U (zh) 具备多组电池和超级电容接入功能的储能变流装置
CN108599216A (zh) 链式电池储能系统及其工作方法
CN106208396A (zh) 一种基于mmc拓扑的分散式混合储能与电力补偿系统
Gui et al. A hierarchical active balancing architecture for Li-ion batteries
Liu et al. Review on modeling and control of megawatt liquid flow energy storage system
CN114552579B (zh) 计及低压台区柔性互联的配电网最大供电能力计算方法
Hussain et al. Current controlled operation of cascaded H-bridge converter for fast SoC balancing in grid energy storage
Zhou et al. Composite energy storage system with flexible energy management capability for micro-grid applications
Anees et al. Isolated multiport converter for solar PV systems and energy storage systems for DC microgrid
CN107768701A (zh) 一种大规模液流电池储能装置
Zhang et al. Cooperative control of distributed heterogeneous energy storage devices with virtual impedance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16913169

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16913169

Country of ref document: EP

Kind code of ref document: A1