WO2018032269A1 - Electrically insulating composite material and electrical product - Google Patents

Electrically insulating composite material and electrical product Download PDF

Info

Publication number
WO2018032269A1
WO2018032269A1 PCT/CN2016/095350 CN2016095350W WO2018032269A1 WO 2018032269 A1 WO2018032269 A1 WO 2018032269A1 CN 2016095350 W CN2016095350 W CN 2016095350W WO 2018032269 A1 WO2018032269 A1 WO 2018032269A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
composite material
electrically insulating
fibrid
insulating composite
Prior art date
Application number
PCT/CN2016/095350
Other languages
French (fr)
Inventor
Maoshan NIU
Jiansheng Chen
Delun MENG
Orlando Girlanda
Cuicui SU
Fredrik Sahlen
Torbjorn Brattberg
Sufeng Zhang
Original Assignee
Abb Schweiz Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abb Schweiz Ag filed Critical Abb Schweiz Ag
Priority to PCT/CN2016/095350 priority Critical patent/WO2018032269A1/en
Publication of WO2018032269A1 publication Critical patent/WO2018032269A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/10Organic non-cellulose fibres
    • D21H13/20Organic non-cellulose fibres from macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H13/26Polyamides; Polyimides
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/10Organic non-cellulose fibres
    • D21H13/12Organic non-cellulose fibres from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/67Water-insoluble compounds, e.g. fillers, pigments
    • D21H17/68Water-insoluble compounds, e.g. fillers, pigments siliceous, e.g. clays
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/50Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by form
    • D21H21/52Additives of definite length or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/002Inhomogeneous material in general
    • H01B3/006Other inhomogeneous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/48Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances fibrous materials

Definitions

  • Example embodiments disclosed herein generally relate to a composite material, more specifically, to an electrically insulating composite material, an electrical product incorporating such a composite material, and a method and an apparatus for producing such a composite material.
  • electrically insulating materials are in need to be used in components such as transformers.
  • Some examples of the electrically insulating materials include electrically insulating papers, pressboards and laminates, which are all used for electrical insulation in different applications due to their outstanding electrical and mechanical properties.
  • insulating materials in oil-filled transformers endure high electrical and physical stresses around cores and windings.
  • Example embodiments disclosed herein propose an electrically insulating composite material and an electrical product, a method and an apparatus for producing an electrically insulating composite material.
  • example embodiments disclosed herein provide an electrically insulating composite material.
  • the electrically insulating composite material include a first portion of a fiber and a second portion of a fibrid, the fiber including a pre-oxidized polyacrylonitrile (PAN) fiber and the fibrid including an aromatic polyamide fibrid.
  • PAN polyacrylonitrile
  • example embodiments disclosed herein provide an electrical product comprising the electrically insulating composite material described above.
  • example embodiments disclosed herein provide a method of producing an electrically insulating composite material.
  • the method includes: mixing a first portion of a pre-oxidized polyacrylonitrile (PAN) fiber with a second portion of an aromatic polyamide fibrid in a liquid to form a mixture, wherein the pre-oxidized PAN fiber is obtained by a thermal process resulting in an oxidation and a stabilization of the PAN fiber, and heat-pressing the mixture to form sheets of the electrically insulating composite material.
  • PAN polyacrylonitrile
  • example embodiments disclosed herein provide an apparatus for producing an electrically insulating composite material.
  • the apparatus includes: a mixer configured to mix a first portion of a pre-oxidized polyacrylonitrile (PAN) fiber with a second portion of an aromatic polyamide fibrid in a liquid to form a mixture, wherein the pre-oxidized PAN fiber is obtained by a thermal process resulting in an oxidation and a stabilization of the PAN fiber, and a sheet producer configured to heat-press the mixture to form sheets of the electrically insulating composite material.
  • PAN polyacrylonitrile
  • the electrically insulating composite material produced according to the present disclosure has a desirable dielectric strength and permittivity compared with traditional cellulose products, and a better cost effectiveness compared with high performance products available on the market.
  • a prepared electrically insulating composite material has a potential to be used in various electric devices requiring a decent dielectric performance that is otherwise expensive to achieve by existing products.
  • Figure 1 illustrates a process of producing an electrically insulating composite material in accordance with an example embodiment
  • Figure 2 illustrates an apparatus for producing an electrically insulating composite material in accordance with an example embodiment.
  • the term “includes” and its variants are to be read as open terms that mean “includes, but is not limited to. ”
  • the term “or” is to be read as “and/or” unless the context clearly indicates otherwise.
  • the term “based on” is to be read as “based at least in part on. ”
  • the term “one embodiment” and “an embodiment” are to be read as “at least one embodiment. ”
  • the term “another embodiment” is to be read as “at least one other embodiment. ”
  • the terms ′′mounted, ′′ ′′connected, ′′ ′′supported, ′′ and ′′coupled′′ and variations thereof are used broadly and encompass direct and indirect mountings, connections, supports, and couplings. Further, ′′connected′′ and ′′coupled′′ are not restricted to physical or mechanical connections or couplings.
  • FIG. 1 illustrates a process 100 of producing an electrically insulating composite material in accordance with an example embodiment.
  • step 101 a first portion of a pre-oxidized polyacrylonitrile (PAN) fiber is mixed with a second portion of an aromatic polyamide fibrid in a liquid.
  • PAN fibers Prior to the mixing step, PAN fibers are treated by a thermal process with a temperature ranging from approximately 200 to 320 degrees Celsius, which results in an oxidation and a stabilization of the PAN fiber. After the thermal process, the PAN filers are turned into the so-called pre-oxidized (or oxidized) PAN fibers ready to be used in the mixing step.
  • Aromatic polyamide may be either a poly-p-phenylene terephthamide (PPTA) or a poly (metaphenylene isophthamide) (PMIA) , whose chemical formulae are illustrated below, in which formula (1) is for poly-p-phenylene terephthamide while formula (2) is for poly (metaphenylene isophthamide) .
  • PPTA poly-p-phenylene terephthamide
  • PMIA poly (metaphenylene isophthamide)
  • aromatic polyamides also include other forms except poly-p-phenylene terephthamide and poly (metaphenylene isophthamide) , it is used especially for one of the two illustrated forms.
  • aromatic polyamides including phenylene and phthamide components are expected to perform similarly with the two illustrated forms but less common, only poly-p-phenylene terephthamide and poly (metaphenylene isophthamide) are to be explained in details in the context.
  • the mixing step 101 may include beating and dispersing the first portion of the pre-oxidized PAN fiber and the second portion of the aromatic polyamide fibrid for a period from 10 to 80 minutes. In some situations, the period for this beating and dispersing process can range from 20 to 40 minutes. Such a process is to better mix the two ingredients in the solution. Although water is used as the liquid or solution for the mixing step, other agents may also be used for the sake of desired effects.
  • step 102 the mixture is heat-pressed in order to form sheets of the electrically insulating composite material.
  • the heat-pressing step 102 may include applying a pressing temperature from approximately 200 to 400 degrees Celsius. In some situations, the pressing temperature for this heat-pressing process can range from 250 to 350 degrees Celsius.
  • a paper or multi-layer pressboard can be formed with a certain thickness.
  • step 102 is to be carried out after the step 101, this does not mean that the step 102 immediately follows the step 101.
  • additional steps may be incorporated prior to the heat-pressing process.
  • the mixture can be formed into sheets and then the liquid can be removed.
  • FIG. 2 illustrates an apparatus 200 for producing an electrically insulating composite material in accordance with an example embodiment.
  • a mixer 201 is configured to mix a first portion of a pre-oxidized polyacrylonitrile (PAN) fiber with a second portion of an aromatic polyamide fibrid in a liquid to form a mixture.
  • PAN polyacrylonitrile
  • the pre-oxidized PAN fiber can be obtained by a thermal process resulting in an oxidation and a stabilization of the PAN fiber.
  • a sheet producer 201 is configured to heat-press the mixture to form sheets of the electrically insulating composite material.
  • the mixer 201 may be further configured to beat and disperse the first portion of the pre-oxidized PAN fiber and the second portion of the aromatic polyamide fibrid for a period ranging from 10 minutes to 80 minutes, preferably from 20 minutes to 40 minutes.
  • the sheet producer 202 is further configured to apply a pressing temperature ranging from 200 degrees Celsius to 400 degrees Celsius, preferably from 250 degrees Celsius to 350 degrees Celsius.
  • the pre-oxidized PAN fiber and the aromatic polyamide fibrid both provide excellent thermal stabilities as well as electrical properties
  • the mixture of the pre-oxidized PAN fiber and the aromatic polyamide fibrid is able to improve the thermal and electrical performances of the resulting sheets after the step 102 or after being produced by the sheet producer 202.
  • the cost is not significantly higher than that of the cellulose insulating material.
  • mechanical properties can be improved by adding some additives or other ingredients.
  • the electrically insulating composite material includes at least a first portion of a fiber and a second portion of fibrid.
  • the fiber includes the pre-oxidized PAN fiber.
  • the fiber can also include one or more other kinds of fibers.
  • at least one of a polyacrylonitrile fiber, a poly-p-phenylene terephthamide fiber, a poly (metaphenylene isophthamide) fiber, a polysulfonamide fiber, a polyphenylene sulfide fiber, or a polyoxadiazole fiber can be added into the liquid in the course of the mixing step 101.
  • the formulation of the fibers affects mechanical or electrical properties of the resulting material.
  • the fibers may have a length ranging from lmm to 20mm, and many of the fibers may be in a range from 3mm to 6mm to get better dispersion in the composites and compatibility with fibrids.
  • the fibrid includes the aromatic polyamide fibrid so that the resulting material include both the pre-oxidized PAN fiber and the aromatic polyamide fibrid.
  • aromatic polyamide has different forms such as a poly (metaphenylene isophthamide) fibrid and a poly-p-phenylene terephthamide.
  • the fibrid can also include one or more other kinds of fibrids. For example, at least one of a polyacrylonitrile fibrid, a polysulfonamide fibrid, a polyphenylene sulfide fibrid, or a polyoxadiazole fibrid can be added into the liquid in the course of the mixing step 101.
  • the fibrid may have a specific surface area from 3 m 2 /g to 80 m 2 /g, and many of the fibrids may be in a range from 5 m 2 /g to 40 m 2 /g to improve mechanical properties of the composites.
  • the specific surface area refers to a total surface area of the fibrid per unit of mass.
  • the formulation of the mixture can be represented by a weight percentage of an ingredient over the total weight.
  • water is removed from each of the ingredients and thus the weight percentage is obtained from dry weights of the ingredients.
  • a weight percentage of the pre-oxidized PAN fiber by dry weight ranges from 1 wt%to 99 wt%. This range can be further specified as from 30 wt%to 70 wt%for obtaining improved cost effectiveness or so-called price-quality ratio.
  • a weight percentage of the aromatic polyamide fibrid by dry weight ranges from lwt%to 99 wt%. This range can be further specified as from 30 wt%to 70 wt%. In case that no other ingredient is provided, the pre-oxidized PAN fibers and the aromatic polyamide fibrids constitute 100%of the total weight.
  • a weight percentage of the polyacrylonitrile fiber by dry weight can range from 0 wt%to 20 wt%.
  • a weight percentage of the poly-p-phenylene terephthamide fiber by dry weight can range from 0 wt%to 30 wt%.
  • a weight percentage of the poly (metaphenylene isophthamide) fiber by dry weight can range from 0 wt%to 10 wt%.
  • a weight percentage of the polysulfonamide fiber by dry weight can range from 0 wt%to 40 wt%.
  • a weight percentage of the polyphenylene sulfide fiber by dry weight can range from 0 wt%to 20 wt%.
  • a weight percentage of the polyoxadiazole fiber by dry weight can range from 0 wt%to 20 wt%.
  • a weight percentage of the polyacrylonitrile fibrid by dry weight can range from 0 wt%to 40 wt%, or more specifically from 5 wt%to 20 wt%.
  • a weight percentage of the polysulfonamide fibrid by dry weight can range from 0 wt%to 40 wt%.
  • a weight percentage of the polyphenylene sulfide fibrid by dry weight can range from 0 wt%to 20 wt%.
  • a weight percentage of the polyoxadiazole fibrid by dry weight can range from 0 wt%to 10 wt%.
  • the electrically insulating composite material may include an inorganic micro-filler or an inorganic nano-filler.
  • the weight percentage of the fillers range from 0 wt%to 20 wt%based on the total weight of the electrically insulating composite material.
  • the fillers can improve dielectric strength and electrical creepage resistance.
  • Some examples of the fillers that can be used include silica, alumina and/or their mixture.
  • the material is shaped in a form of a pressboard with a thickness of about lmm.
  • the pressboard is a multi-layer structure, although single-layer papers can also be formed in some other situations.
  • the resulting pressboard has a relatively high oil absorption ratio (from 30%to 40%) and a very low moisture absorption ratio (smaller than 1%) , which is much lower than that of IEC (International Electrotechnical Commission) requirements, dramatically lowering the drying cost of the same.
  • the pressboard also has a good compressibility as low as 5%, which is much lower than the requirement of 10%specified in the IEC standard.
  • Dielectric strength is a physical quantity used to measure how strong the pressboard is to resist electrical impact such as impulses so that the pressboard with high dielectric strength will not be broken down. Therefore, sometimes it can be called “breakdown strength. ”
  • dielectric strength or breakdown strength is measured in “kV/mm, ” indicating that how much voltage in kilovolts the pressboard is able to sustain for a given thickness in millimeter. The higher the value for the breakdown strength, the better the pressboard can avoid being broken down during operation.
  • permittivity is the measure of resistance that is encountered when forming an electric field in a medium. Therefore, permittivity of a medium describes how much electric field (more correctly, flux) is generated per unit charge in that medium. For an electrically insulating material, it is desired that the permittivity has a closer value compared with a working medium to obtain uniform electric field in the final product. For example, when the pressboard is immersed in oil used for an oil immersed transformer, a permittivity of the pressboard close to the permittivity of oil (3.1) is desired.
  • a poly-p-phenylene terephthamide fibrid is used to be mixed with a pre-oxidized PAN fiber, while additionally a PAN fibrid can be included as a third component in the mixure.
  • the experimental results were aimed to showcase the improvements on the electrical properties of prepared pressboards in accordance with the subject matter described herein, especially used as the component in an electrical product such as an electrical transformer or an electrical motor.
  • the value of breakdown strength exceeding 30 kV/mm is desirable and all of the above samples satisfy this requirement.
  • the value of permittivity in a dry environment below 4 is desirable, while the value of permittivity in an oil environment below 9.0 is desirable. Therefore, the inclusion of the pre-oxidized PAN fiber as well as the poly-p-phenylene terephthamide fibrid allows for desirable electrical properties, and the inclusion of the PAN fibrid is able to further alter the electrical properties slightly.
  • pressboard is merely an example for demonstrating the electrical properties of the electrically insulating composite material, and the material can exist in other electrical applications, for example, it can be manufactured to a spacer, a barrier, a paper wrapped conductor or a press ring, for functioning as an insulating material of high quality.
  • poly-p-phenylene terephthamide fibrid is merely an example of aromatic polyamide fibrid.
  • a pre-oxidized PAN fiber of 40 wt%in percentage was mixed with a poly (metaphenylene isophthamide) fibrid of 60 wt%in percentage.
  • the breakdown strength was measured to be 32.5 kV/mm.
  • the permittivity value in a dry environment was 4.6 while the permittivity value in an oil environment was 6.2.
  • Table 1 only shows results from a relatively effective range, i.e., from 30 to 70 wt%of the pre-oxidized PAN fiber, as tested previously. As discussed above by reference to Table 1, all the tested pressboard exhibited a considerable improvement over the control sample prepared with only one ingredient, especially reflected in the mechanical properties. Therefore, even a very small fraction of the pre-oxidized PAN fiber or aromatic polyamide fibrid (e.g., poly-p-phenylene terephthamide fibrid) in the mixture (for example, only 1%for each material) is able to improve the electrical properties as well as the mechanical properties.
  • aromatic polyamide fibrid e.g., poly-p-phenylene terephthamide fibrid
  • the present disclosure also relates to an electrical product formed by the electrical insulating composite material described above, and use of the material described above as an insulating sheet in a transformer or a motor. Because of the improved electrical properties as well as the relatively high cost effectiveness, the insulating composite material is especially suitable for replacing some existing costly insulating products such as the from DuPont which exhibits no better electrical properties but cost significantly more than the prepared material in accordance with the present disclosure.

Abstract

An electrically insulating composite material is disclosed. The material includes a first portion of a fiber and a second portion of a fibrid, the fiber including a pre-oxidized polyacrylonitrile (PAN) fiber and the fibrid including an aromatic polyamide fibrid. An electrical product including the electrically insulating composite material is also disclosed. A method and an apparatus for producing an electrically insulating composite material are also disclosed. The produced material provides decent electrical properties while keeping the cost low, and thus enabling its use in various electrical applications.

Description

ELECTRICALLY INSULATING COMPOSITE MATERIAL AND ELECTRICAL PRODUCT
TECHNOLOGY
Example embodiments disclosed herein generally relate to a composite material, more specifically, to an electrically insulating composite material, an electrical product incorporating such a composite material, and a method and an apparatus for producing such a composite material.
BACKGROUND
In various applications, electrically insulating materials are in need to be used in components such as transformers. Some examples of the electrically insulating materials include electrically insulating papers, pressboards and laminates, which are all used for electrical insulation in different applications due to their outstanding electrical and mechanical properties. For example, insulating materials in oil-filled transformers endure high electrical and physical stresses around cores and windings.
Currently, cellulose materials or polymer materials are used to form the electrically insulating materials in transformers. The former can be used in a less demanding environment in terms of thermal stability, while the latter can be used in a harsher environment but the current products are less cost effective. Thus, there is a need in the art for providing a more cost effective electrically insulating material.
SUMMARY
Example embodiments disclosed herein propose an electrically insulating composite material and an electrical product, a method and an apparatus for producing an electrically insulating composite material.
In one aspect, example embodiments disclosed herein provide an electrically insulating composite material. The electrically insulating composite material include a first portion of a fiber and a second portion of a fibrid, the fiber including a pre-oxidized polyacrylonitrile (PAN) fiber and the fibrid including an aromatic polyamide fibrid.
In another aspect, example embodiments disclosed herein provide an electrical product comprising the electrically insulating composite material described above.
In yet another aspect, example embodiments disclosed herein provide a method of producing an electrically insulating composite material. The method includes: mixing a first portion of a pre-oxidized polyacrylonitrile (PAN) fiber with a second portion of an aromatic polyamide fibrid in a liquid to form a mixture, wherein the pre-oxidized PAN fiber is obtained by a thermal process resulting in an oxidation and a stabilization of the PAN fiber, and heat-pressing the mixture to form sheets of the electrically insulating composite material.
In still another aspect, example embodiments disclosed herein provide an apparatus for producing an electrically insulating composite material. The apparatus includes: a mixer configured to mix a first portion of a pre-oxidized polyacrylonitrile (PAN) fiber with a second portion of an aromatic polyamide fibrid in a liquid to form a mixture, wherein the pre-oxidized PAN fiber is obtained by a thermal process resulting in an oxidation and a stabilization of the PAN fiber, and a sheet producer configured to heat-press the mixture to form sheets of the electrically insulating composite material.
Through the following description, it would be appreciated that the electrically insulating composite material produced according to the present disclosure has a desirable dielectric strength and permittivity compared with traditional cellulose products, and a better cost effectiveness compared with high performance products available on the market. As a result, such a prepared electrically insulating composite material has a potential to be used in various electric devices requiring a decent dielectric performance that is otherwise expensive to achieve by existing products.
DESCRIPTION OF DRAWINGS
Through the following detailed descriptions with reference to the accompanying drawings, the above and other objectives, features and advantages of the example embodiments disclosed herein will become more comprehensible. In the drawings, several example embodiments disclosed herein will be illustrated in an example and in a non-limiting manner, wherein:
Figure 1 illustrates a process of producing an electrically insulating composite material in accordance with an example embodiment; and
Figure 2 illustrates an apparatus for producing an electrically insulating composite material in accordance with an example embodiment.
DESCRIPTION OF EXAMPLE EMBODIMENTS
The subject matter described herein will now be discussed with reference to several example embodiments. These embodiments are discussed only for the purpose of enabling those skilled persons in the art to better understand and thus implement the subject matter described herein, rather than suggesting any limitations on the scope of the subject matter.
The term “includes” and its variants are to be read as open terms that mean “includes, but is not limited to. ” The term “or” is to be read as “and/or” unless the context clearly indicates otherwise. The term “based on” is to be read as “based at least in part on. ” The term “one embodiment” and “an embodiment” are to be read as “at least one embodiment. ” The term “another embodiment” is to be read as “at least one other embodiment. ” Unless specified or limited otherwise, the terms ″mounted, ″ ″connected, ″ ″supported, ″ and ″coupled″ and variations thereof are used broadly and encompass direct and indirect mountings, connections, supports, and couplings. Further, ″connected″ and ″coupled″ are not restricted to physical or mechanical connections or couplings.
Figure 1 illustrates a process 100 of producing an electrically insulating composite material in accordance with an example embodiment. In step 101, a first portion of a pre-oxidized polyacrylonitrile (PAN) fiber is mixed with a second portion of an aromatic polyamide fibrid in a liquid. As a result, a mixture is formed in the liquid form. Prior to the mixing step, PAN fibers are treated by a thermal process with a temperature ranging from approximately 200 to 320 degrees Celsius, which results in an oxidation and a stabilization of the PAN fiber. After the thermal process, the PAN filers are turned into the so-called pre-oxidized (or oxidized) PAN fibers ready to be used in the mixing step.
Aromatic polyamide may be either a poly-p-phenylene terephthamide (PPTA) or a poly (metaphenylene isophthamide) (PMIA) , whose chemical formulae are illustrated below, in which formula (1) is for poly-p-phenylene terephthamide while formula (2) is for poly (metaphenylene isophthamide) . The inventors have discovered that it is especially effective to improve the performance of the final product if the pre-oxidized PAN fiber is mixed with the fibrid including phenylene and phthamide components (which constitute the aromatic polyamide) , which will be illustrated in later paragraphs.  Although aromatic polyamides also include other forms except poly-p-phenylene terephthamide and poly (metaphenylene isophthamide) , it is used especially for one of the two illustrated forms. As other aromatic polyamides including phenylene and phthamide components are expected to perform similarly with the two illustrated forms but less common, only poly-p-phenylene terephthamide and poly (metaphenylene isophthamide) are to be explained in details in the context.
Figure PCTCN2016095350-appb-000001
Figure PCTCN2016095350-appb-000002
In one embodiment, the mixing step 101 may include beating and dispersing the first portion of the pre-oxidized PAN fiber and the second portion of the aromatic polyamide fibrid for a period from 10 to 80 minutes. In some situations, the period for this beating and dispersing process can range from 20 to 40 minutes. Such a process is to better mix the two ingredients in the solution. Although water is used as the liquid or solution for the mixing step, other agents may also be used for the sake of desired effects.
In step 102, the mixture is heat-pressed in order to form sheets of the electrically insulating composite material. In one embodiment, the heat-pressing step 102 may include applying a pressing temperature from approximately 200 to 400 degrees Celsius. In some situations, the pressing temperature for this heat-pressing process can range from 250 to 350 degrees Celsius. After the step 102, a paper or multi-layer pressboard can be formed with a certain thickness.
Although the step 102 is to be carried out after the step 101, this does not mean that the step 102 immediately follows the step 101. In other words, additional steps may be incorporated prior to the heat-pressing process. For example, the mixture can be formed into sheets and then the liquid can be removed.
Figure 2 illustrates an apparatus 200 for producing an electrically insulating composite material in accordance with an example embodiment. A mixer 201 is configured to mix a first portion of a pre-oxidized polyacrylonitrile (PAN) fiber with a second portion of an aromatic polyamide fibrid in a liquid to form a mixture. As  discussed above with the method 100, the pre-oxidized PAN fiber can be obtained by a thermal process resulting in an oxidation and a stabilization of the PAN fiber. A sheet producer 201 is configured to heat-press the mixture to form sheets of the electrically insulating composite material.
In one embodiment, the mixer 201 may be further configured to beat and disperse the first portion of the pre-oxidized PAN fiber and the second portion of the aromatic polyamide fibrid for a period ranging from 10 minutes to 80 minutes, preferably from 20 minutes to 40 minutes. In another embodiment, the sheet producer 202 is further configured to apply a pressing temperature ranging from 200 degrees Celsius to 400 degrees Celsius, preferably from 250 degrees Celsius to 350 degrees Celsius.
Because the pre-oxidized PAN fiber and the aromatic polyamide fibrid both provide excellent thermal stabilities as well as electrical properties, the mixture of the pre-oxidized PAN fiber and the aromatic polyamide fibrid is able to improve the thermal and electrical performances of the resulting sheets after the step 102 or after being produced by the sheet producer 202. In the meantime, the cost is not significantly higher than that of the cellulose insulating material. In addition, mechanical properties can be improved by adding some additives or other ingredients.
In various embodiments of the present disclosure, the electrically insulating composite material includes at least a first portion of a fiber and a second portion of fibrid. The fiber includes the pre-oxidized PAN fiber. In some other examples, the fiber can also include one or more other kinds of fibers. For example, at least one of a polyacrylonitrile fiber, a poly-p-phenylene terephthamide fiber, a poly (metaphenylene isophthamide) fiber, a polysulfonamide fiber, a polyphenylene sulfide fiber, or a polyoxadiazole fiber can be added into the liquid in the course of the mixing step 101. The formulation of the fibers affects mechanical or electrical properties of the resulting material. The fibers may have a length ranging from lmm to 20mm, and many of the fibers may be in a range from 3mm to 6mm to get better dispersion in the composites and compatibility with fibrids.
The fibrid includes the aromatic polyamide fibrid so that the resulting material include both the pre-oxidized PAN fiber and the aromatic polyamide fibrid. As discussed above, aromatic polyamide has different forms such as a poly (metaphenylene isophthamide) fibrid and a poly-p-phenylene terephthamide. In some other examples, the  fibrid can also include one or more other kinds of fibrids. For example, at least one of a polyacrylonitrile fibrid, a polysulfonamide fibrid, a polyphenylene sulfide fibrid, or a polyoxadiazole fibrid can be added into the liquid in the course of the mixing step 101. The fibrid may have a specific surface area from 3 m2/g to 80 m2/g, and many of the fibrids may be in a range from 5 m2/g to 40 m2/g to improve mechanical properties of the composites. The specific surface area refers to a total surface area of the fibrid per unit of mass.
In one embodiment, the formulation of the mixture can be represented by a weight percentage of an ingredient over the total weight. In the context, water is removed from each of the ingredients and thus the weight percentage is obtained from dry weights of the ingredients. For example, a weight percentage of the pre-oxidized PAN fiber by dry weight ranges from 1 wt%to 99 wt%. This range can be further specified as from 30 wt%to 70 wt%for obtaining improved cost effectiveness or so-called price-quality ratio. Accordingly, a weight percentage of the aromatic polyamide fibrid by dry weight ranges from lwt%to 99 wt%. This range can be further specified as from 30 wt%to 70 wt%. In case that no other ingredient is provided, the pre-oxidized PAN fibers and the aromatic polyamide fibrids constitute 100%of the total weight.
In one embodiment, in case that other fiber is also provided, as discussed above, its weight percentage is to be specified as well based on the compatibility with mixture and the cost. A weight percentage of the polyacrylonitrile fiber by dry weight can range from 0 wt%to 20 wt%. A weight percentage of the poly-p-phenylene terephthamide fiber by dry weight can range from 0 wt%to 30 wt%. A weight percentage of the poly (metaphenylene isophthamide) fiber by dry weight can range from 0 wt%to 10 wt%. A weight percentage of the polysulfonamide fiber by dry weight can range from 0 wt%to 40 wt%. A weight percentage of the polyphenylene sulfide fiber by dry weight can range from 0 wt%to 20 wt%. A weight percentage of the polyoxadiazole fiber by dry weight can range from 0 wt%to 20 wt%.
In one embodiment, in case that other fibrid is also provided, as discussed above, its weight percentage is to be specified as well based on the compatibility with mixture and the cost. A weight percentage of the polyacrylonitrile fibrid by dry weight can range from 0 wt%to 40 wt%, or more specifically from 5 wt%to 20 wt%. A weight percentage of the polysulfonamide fibrid by dry weight can range from 0 wt%to 40 wt%.  A weight percentage of the polyphenylene sulfide fibrid by dry weight can range from 0 wt%to 20 wt%. A weight percentage of the polyoxadiazole fibrid by dry weight can range from 0 wt%to 10 wt%.
In one embodiment, the electrically insulating composite material may include an inorganic micro-filler or an inorganic nano-filler. Preferably, the weight percentage of the fillers range from 0 wt%to 20 wt%based on the total weight of the electrically insulating composite material. The fillers can improve dielectric strength and electrical creepage resistance. Some examples of the fillers that can be used include silica, alumina and/or their mixture.
In order to test the electrical properties of the resulting electrically insulating composite material, the material is shaped in a form of a pressboard with a thickness of about lmm. The pressboard is a multi-layer structure, although single-layer papers can also be formed in some other situations. The resulting pressboard has a relatively high oil absorption ratio (from 30%to 40%) and a very low moisture absorption ratio (smaller than 1%) , which is much lower than that of IEC (International Electrotechnical Commission) requirements, dramatically lowering the drying cost of the same. The pressboard also has a good compressibility as low as 5%, which is much lower than the requirement of 10%specified in the IEC standard.
One of the metrics measured for the electrical properties is dielectric strength. Dielectric strength is a physical quantity used to measure how strong the pressboard is to resist electrical impact such as impulses so that the pressboard with high dielectric strength will not be broken down. Therefore, sometimes it can be called “breakdown strength. ” In the context, dielectric strength or breakdown strength is measured in “kV/mm, ” indicating that how much voltage in kilovolts the pressboard is able to sustain for a given thickness in millimeter. The higher the value for the breakdown strength, the better the pressboard can avoid being broken down during operation.
Another metric measured for the electrical properties is permittivity. Permittivity is the measure of resistance that is encountered when forming an electric field in a medium. Therefore, permittivity of a medium describes how much electric field (more correctly, flux) is generated per unit charge in that medium. For an electrically insulating material, it is desired that the permittivity has a closer value compared with a working medium to obtain uniform electric field in the final product. For example, when  the pressboard is immersed in oil used for an oil immersed transformer, a permittivity of the pressboard close to the permittivity of oil (3.1) is desired. Some experimental results are provided in Table 1 below, showing the measured values of breakdown strength and permittivity of the pressboard formed by different formulations. In Table 1, as one embodiment, a poly-p-phenylene terephthamide fibrid is used to be mixed with a pre-oxidized PAN fiber, while additionally a PAN fibrid can be included as a third component in the mixure.
Figure PCTCN2016095350-appb-000003
Table 1
The experimental results were aimed to showcase the improvements on the electrical properties of prepared pressboards in accordance with the subject matter described herein, especially used as the component in an electrical product such as an electrical transformer or an electrical motor. The value of breakdown strength exceeding 30 kV/mm is desirable and all of the above samples satisfy this requirement. In addition, the value of permittivity in a dry environment below 4 is desirable, while the value of permittivity in an oil environment below 9.0 is desirable. Therefore, the inclusion of the pre-oxidized PAN fiber as well as the poly-p-phenylene terephthamide fibrid allows for desirable electrical properties, and the inclusion of the PAN fibrid is able to further alter the electrical properties slightly.
It should be understood that the form of pressboard is merely an example for demonstrating the electrical properties of the electrically insulating composite material, and the material can exist in other electrical applications, for example, it can be  manufactured to a spacer, a barrier, a paper wrapped conductor or a press ring, for functioning as an insulating material of high quality.
In addition, the poly-p-phenylene terephthamide fibrid is merely an example of aromatic polyamide fibrid. In another experiment carried out separately, a pre-oxidized PAN fiber of 40 wt%in percentage was mixed with a poly (metaphenylene isophthamide) fibrid of 60 wt%in percentage. By this combination, the breakdown strength was measured to be 32.5 kV/mm. The permittivity value in a dry environment was 4.6 while the permittivity value in an oil environment was 6.2. These results indicate that poly (metaphenylene isophthamide) fibrids result in a similar performance to that of poly-p-phenylene terephthamide fibrids. Other forms of aromatic polyamide fibrids are in line with the above results and are thus not illustrated in details.
It is also to be understood that Table 1 only shows results from a relatively effective range, i.e., from 30 to 70 wt%of the pre-oxidized PAN fiber, as tested previously. As discussed above by reference to Table 1, all the tested pressboard exhibited a considerable improvement over the control sample prepared with only one ingredient, especially reflected in the mechanical properties. Therefore, even a very small fraction of the pre-oxidized PAN fiber or aromatic polyamide fibrid (e.g., poly-p-phenylene terephthamide fibrid) in the mixture (for example, only 1%for each material) is able to improve the electrical properties as well as the mechanical properties.
Moreover, the present disclosure also relates to an electrical product formed by the electrical insulating composite material described above, and use of the material described above as an insulating sheet in a transformer or a motor. Because of the improved electrical properties as well as the relatively high cost effectiveness, the insulating composite material is especially suitable for replacing some existing costly insulating products such as the
Figure PCTCN2016095350-appb-000004
from DuPont which exhibits no better electrical properties but cost significantly more than the prepared material in accordance with the present disclosure.
While operations are depicted in a particular order in the above descriptions, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Likewise, while several details are contained  in the above discussions, these should not be construed as limitations on the scope of the subject matter described herein, but rather as descriptions of features that may be specific to particular embodiments. Certain features that are described in the context of separate embodiments may also be implemented in combination in a single embodiment. On the other hand, various features that are described in the context of a single embodiment may also be implemented in multiple embodiments separately or in any suitable sub-combination.
Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.

Claims (25)

  1. An electrically insulating composite material comprising a first portion of a fiber and a second portion of a fibrid, the fiber including a pre-oxidized polyacrylonitrile (PAN) fiber and the fibrid including an aromatic polyamide fibrid.
  2. The electrically insulating composite material according to Claim 1, wherein the aromatic polyamide fibrid is a poly-p-phenylene terephthamide fibrid or a poly (metaphenylene isophthamide) fibrid.
  3. The electrically insulating composite material according to Claim 1, wherein the pre-oxidized PAN fiber is obtained by a thermal process resulting in an oxidation and a stabilization of the PAN fiber.
  4. The electrically insulating composite material according to Claim 1, wherein the first portion of the fiber further comprises at least one of a polyacrylonitrile fiber, a poly-p-phenylene terephthamide fiber, a poly (metaphenylene isophthamide) fiber, a polysulfonamide fiber, a polyphenylene sulfide fiber, or a polyoxadiazole fiber.
  5. The electrically insulating composite material according to any of Claims 1 to 3, wherein a plurality of fibers from the first portion of the fiber have a length ranging from 1mm to 20mm, preferably from 3mm to 6mm.
  6. The electrically insulating composite material according to Claim 1, wherein the second portion of the fibrid further comprises at least one of a polyacrylonitrile fibrid, a polysulfonamide fibrid, a polyphenylene sulfide fibrid, or a polyoxadiazole fibrid.
  7. The electrically insulating composite material according to Claim 1 or 6, wherein a plurality of fibrids from the second portion of the fibrid have a specific surface area ranging from 3 m2/g to 80 m2/g, preferably from 5 m2/g to 40 m2/g, the specific surface area being a total surface area of the fibrid per unit of mass.
  8. The electrically insulating composite material according to Claim 1, wherein a weight percentage of the pre-oxidized PAN fiber by dry weight ranges from 1 wt% to 99 wt%, preferably from 30 wt% to 70 wt%.
  9. The electrically insulating composite material according to Claim 1, wherein a weight percentage of the aromatic polyamide fibrid by dry weight ranges from 1wt% to 99 wt%, preferably from 30 wt% to 70 wt%.
  10. The electrically insulating composite material according to Claim 4, wherein a weight percentage of the polyacrylonitrile fiber by dry weight ranges from 0 wt% to 20 wt%, a weight percentage of the poly-p-phenylene terephthamide fiber by dry weight ranges from 0 wt% to 30 wt%, a weight percentage of the poly (metaphenylene isophthamide) fiber by dry weight ranges from 0 wt% to 10 wt%, a weight percentage of the polysulfonamide fiber by dry weight ranges from 0 wt% to 40 wt%, a weight percentage of the polyphenylene sulfide fiber by dry weight ranges from 0 wt% to 20 wt%, and a weight percentage of the polyoxadiazole fiber by dry weight ranges from 0 wt% to 20 wt%.
  11. The electrically insulating composite material of Claim 6, wherein a weight percentage of the polyacrylonitrile fibrid by dry weight ranges from 0 wt% to 40 wt%, preferably from 5 wt% to 20 wt%, a weight percentage of the polysulfonamide fibrid by dry weight ranges from 0 wt% to 40 wt%, a weight percentage of the polyphenylene sulfide fibrid by dry weight ranges from 0 wt% to 20 wt%, and a weight percentage of the polyoxadiazole fibrid by dry weight ranges from 0 wt% to 10 wt%.
  12. The electrically insulating composite material according to Claim 1, wherein the electrically insulating composite material further comprises an inorganic micro-filler or an inorganic nano-filler selected from at least one of silica or alumina.
  13. The electrically insulating composite material of Claim 12, wherein a weight percentage of the silica ranges from 0 wt% to 20 wt%, and a weight percentage of the  alumina ranges from 0 wt% to 20 wt%, the weight percentage being based on a total weight of the electrically insulating composite material.
  14. The electrically insulating composite material according to Claim 1, wherein the electrically insulating composite material is in the form of a paper or a pressboard.
  15. The electrically insulating composite material according to Claim 1, wherein the first portion of the fiber and the second portion of the fibrid are mixed to form a mixture by being beaten and dispersed for a period ranging from 10 minutes to 80 minutes, preferably from 20 minutes to 40 minutes.
  16. The electrically insulating composite material according to Claim 15, wherein the mixture is heat-pressed by applying a pressing temperature ranging from 200℃to 400℃, preferably from 250℃ to 350℃.
  17. An electrical product comprising the electrically insulating composite material according to any of Claims 1 to 16.
  18. The electrical product according to Claim 17, wherein the electrical product is an electrical transformer or an electrical motor.
  19. The electrical product according to Claim 17 or 18, wherein the electrically insulating composite material is manufactured to a spacer, a barrier, a paper wrapped conductor or a press ring, for insulation.
  20. A method of producing an electrically insulating composite material, comprising:
    mixing a first portion of a pre-oxidized polyacrylonitrile (PAN) fiber with a second portion of an aromatic polyamide fibrid in a liquid to form a mixture, wherein the pre-oxidized PAN fiber is obtained by a thermal process resulting in an oxidation and a stabilization of the PAN fiber; and
    heat-pressing the mixture to form sheets of the electrically insulating composite material.
  21. The method according to Claim 20, wherein the mixing comprises beating and dispersing the first portion of the pre-oxidized PAN fiber and the second portion of the aromatic polyamide fibrid for a period ranging from 10 minutes to 80 minutes, preferably from 20 minutes to 40 minutes.
  22. The method according to Claim 20 or 21, wherein the heat-pressing comprises applying a pressing temperature ranging from 200℃ to 400℃, preferably from 250℃ to 350℃.
  23. An apparatus for producing an electrically insulating composite material, comprising:
    a mixer configured to mix a first portion of a pre-oxidized polyacrylonitrile (PAN) fiber with a second portion of an aromatic polyamide fibrid in a liquid to form a mixture, wherein the pre-oxidized PAN fiber is obtained by a thermal process resulting in an oxidation and a stabilization of the PAN fiber; and
    a sheet producer configured to heat-press the mixture to form sheets of the electrically insulating composite material.
  24. The apparatus according to Claim 23, wherein the mixer is further configured to beat and disperse the first portion of the pre-oxidized PAN fiber and the second portion of the aromatic polyamide fibrid for a period ranging from 10 minutes to 80 minutes, preferably from 20 minutes to 40 minutes.
  25. The apparatus according to Claim 23 or 24, wherein the sheet producer is further configured to apply a pressing temperature ranging from 200℃ to 400℃, preferably from 250℃ to 350℃.
PCT/CN2016/095350 2016-08-15 2016-08-15 Electrically insulating composite material and electrical product WO2018032269A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/095350 WO2018032269A1 (en) 2016-08-15 2016-08-15 Electrically insulating composite material and electrical product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/095350 WO2018032269A1 (en) 2016-08-15 2016-08-15 Electrically insulating composite material and electrical product

Publications (1)

Publication Number Publication Date
WO2018032269A1 true WO2018032269A1 (en) 2018-02-22

Family

ID=61196006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/095350 WO2018032269A1 (en) 2016-08-15 2016-08-15 Electrically insulating composite material and electrical product

Country Status (1)

Country Link
WO (1) WO2018032269A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108755279A (en) * 2018-07-06 2018-11-06 江西克莱威纳米碳材料有限公司 A kind of aramid fiber porous, electrically conductive paper and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4752355A (en) * 1985-02-04 1988-06-21 Provost Richard L Pressboard and process for its preparation
CN1209093A (en) * 1995-12-28 1999-02-24 杜邦帝人先进纸有限公司 Complex sheet and method of mfg. same
JP2005029921A (en) * 2003-07-11 2005-02-03 Toho Tenax Co Ltd Oxidized fiber mixed paper and method for producing the same
CN102010564A (en) * 2010-11-16 2011-04-13 浙江吉利汽车研究院有限公司 Method for preparing carbon fiber brake lining
CN102216527A (en) * 2008-11-14 2011-10-12 纳幕尔杜邦公司 Sheet structures having improved compression performance
CN104937682A (en) * 2013-03-01 2015-09-23 Abb技术有限公司 Electrically insulating composite material and electrical device comprising the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4752355A (en) * 1985-02-04 1988-06-21 Provost Richard L Pressboard and process for its preparation
CN1209093A (en) * 1995-12-28 1999-02-24 杜邦帝人先进纸有限公司 Complex sheet and method of mfg. same
JP2005029921A (en) * 2003-07-11 2005-02-03 Toho Tenax Co Ltd Oxidized fiber mixed paper and method for producing the same
CN102216527A (en) * 2008-11-14 2011-10-12 纳幕尔杜邦公司 Sheet structures having improved compression performance
CN102010564A (en) * 2010-11-16 2011-04-13 浙江吉利汽车研究院有限公司 Method for preparing carbon fiber brake lining
CN104937682A (en) * 2013-03-01 2015-09-23 Abb技术有限公司 Electrically insulating composite material and electrical device comprising the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108755279A (en) * 2018-07-06 2018-11-06 江西克莱威纳米碳材料有限公司 A kind of aramid fiber porous, electrically conductive paper and preparation method thereof
CN108755279B (en) * 2018-07-06 2020-07-31 江西克莱威纳米碳材料有限公司 Aramid fiber porous conductive paper and preparation method thereof

Similar Documents

Publication Publication Date Title
Fofana et al. Challenge of mixed insulating liquids for use in high-voltage transformers. II. Investigations of mixed liquid impregnated paper insulation
US6980076B1 (en) Electrical apparatus with synthetic fiber and binder reinforced cellulose insulation paper
CN103582731B (en) Conductive aramid paper and manufacture method thereof
Liao et al. Thermal and electrical properties of a novel 3-element mixed insulation oil for power transformers
ES2668652T3 (en) Electrical insulating paper
Gockenbach et al. Natural and synthetic ester liquids as alternative to mineral oil for power transformers
Borsi et al. Properties of ester liquid midel 7131 as an alternative liquid to mineral oil for transformers
CN104334797A (en) Electrical insulating paper
WO2018032269A1 (en) Electrically insulating composite material and electrical product
Abdelmalik et al. Assessment of Jatropha oil as insulating fluid for power transformers
US10351996B2 (en) Pressboard
Jindal et al. Development of new solid insulating material with aid of alkyl phenolic resin for a liquid-immersed transformer
Zhang et al. Experimental study on the electrical and thermal properties of epoxy-crepe paper composites for use in UHV DC bushing condensers
Sivaramalakshmi et al. Aging performance of natural ester impregnated Nomex paper insulation
RU2705360C2 (en) Insulating element with low electric conductivity, serving for electrical insulation in high-voltage range
Schober et al. Interaction of pressboard with impregnating fluids in HVDC insulation systems
Li et al. Study on ageing characteristics of insulating pressboard impregnated by mineral-vegetable oil
Tu et al. Research of insulation properties of polymer materials using in oil-filled transformers under high temperature
Pamuk Identification of critical values based on natural ester oils as potential insulating liquid for high voltage power transformers
WO2024038415A1 (en) Electrical insulation paper
Ferrito et al. High temperature reinforced cellulose insulation for use in electrical applications
Yusof et al. Study on palm oil and treated waste vegetable oil impregnated paper
Lisoň et al. Research of electrophysical properties of oil-paper insulation
JPS593566B2 (en) pulpy particles
Flight The effect of heat on the electric strength of some commercial insulating materials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16913033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16913033

Country of ref document: EP

Kind code of ref document: A1