WO2018032242A1 - Cm受干扰度测量方法、装置和系统 - Google Patents

Cm受干扰度测量方法、装置和系统 Download PDF

Info

Publication number
WO2018032242A1
WO2018032242A1 PCT/CN2016/095286 CN2016095286W WO2018032242A1 WO 2018032242 A1 WO2018032242 A1 WO 2018032242A1 CN 2016095286 W CN2016095286 W CN 2016095286W WO 2018032242 A1 WO2018032242 A1 WO 2018032242A1
Authority
WO
WIPO (PCT)
Prior art keywords
cmts
time slot
cms
spectrum
mer
Prior art date
Application number
PCT/CN2016/095286
Other languages
English (en)
French (fr)
Inventor
张利
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201680084276.XA priority Critical patent/CN108886381B/zh
Priority to EP16913006.9A priority patent/EP3496285B1/en
Priority to PCT/CN2016/095286 priority patent/WO2018032242A1/zh
Publication of WO2018032242A1 publication Critical patent/WO2018032242A1/zh
Priority to US16/274,943 priority patent/US10461806B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/46Monitoring; Testing
    • H04B3/48Testing attenuation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/04Control of transmission; Equalising
    • H04B3/10Control of transmission; Equalising by pilot signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/32Reducing cross-talk, e.g. by compensating
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/46Monitoring; Testing
    • H04B3/487Testing crosstalk effects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2801Broadband local area networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/08Modifications for reducing interference; Modifications for reducing effects due to line faults ; Receiver end arrangements for detecting or overcoming line faults
    • H04L25/085Arrangements for reducing interference in line transmission systems, e.g. by differential transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • H04L1/203Details of error rate determination, e.g. BER, FER or WER

Definitions

  • the present invention relates to the field of communications, and in particular, to a cable modem (CM) interference measurement method, apparatus and system.
  • CM cable modem
  • the communications field mainly includes Time Division Duplex (TDD), Frequency Division Duplex (FDD), and Co-time Co-frequency Full Duplex (CCFD).
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • CCFD Co-time Co-frequency Full Duplex
  • CCFD is implemented only on the CMTS side, and on the CM side, all CMs can be grouped according to the interference relationship (also referred to as isolation) between the CMs. Specifically, the CMs that do not meet the mutual interference or mutual interference are divided into one group, and the CMs in the group implement FDD, and the CMs that do not interfere with each other or interfere with each other are divided into different groups, and the CCFD is implemented between the groups. To improve spectral efficiency.
  • the cable modem interference degree measuring method, device and system provided by the invention can more accurately acquire the interference relationship between CMs.
  • the present invention provides a cable modem CM interference measurement method, including:
  • the cable modem termination system CMTS notifies all CMs connected to the CMTS by sending a broadcast message indicating that one of the CMs is to transmit a sounding signal through a frequency spectrum S in time slot T, wherein the frequency spectrum S is up and down One of the overlapping portions of the line spectrum;
  • the CMTS broadcasts the pseudo random code sequence through the frequency band S in the downlink direction while the CMTS transmits the sounding signal through the frequency band S in the time slot T;
  • the CMTS acquires modulation error rate MER data recorded by other CMs in the time slot T, The difference between the MER data of each CM in the other CMs at the time slot T and the MER data at the normal data time slot as the interfered strength of the corresponding CM; wherein the other CMs are all connected to the CMTS.
  • the CM removes the CM remaining after the specified CM; the normal data slot refers to a time slot in which the CMTS transmits service data in the downlink direction.
  • the method further includes that the CMTS divides the CM whose interference strength is higher than a threshold and the specified CM according to the received interference strength of each of the other CMs. As a group.
  • an embodiment of the present invention provides a cable modem CM interference measurement method, including:
  • the cable modem termination system CMTS sends a broadcast message to the cable modem CM that has not yet been grouped, said broadcast message indicating that one of the CMs that have not been packetized CM is to transmit a sounding signal through a spectrum S ' in time slot T '
  • the piece of spectrum S ' is one of the overlapping portions of the uplink and downlink spectrum
  • the designated CM transmits the sounding signal through the frequency band S in the time slot T, and the CMTS broadcasts the pseudo random code sequence through the frequency band S ′ in the downlink direction;
  • the CMTS acquires modulation error rate MER data recorded by the non-designated CM in the CM that has not been grouped in the time slot T ′ , and compares the MER data of each CM in the other CM in the time slot T ′
  • the difference of the MER data at the normal data slot is the interfered strength of the corresponding CM; the other CM is the remaining CM after the specified CM is removed from the CM that has not been packetized; the normal data slot is Refers to the time slot in which the CMTS transmits service data in the downlink direction.
  • the method further comprises, in the time slot T ' , the specified CM transmitting a sounding signal through the designated frequency band S ' in an uplink direction.
  • the method further includes that the CMTS divides the CM whose interference strength is higher than a threshold and the specified CM according to the received interference strength of each of the other CMs. As a group.
  • the CMTS determines whether it belongs to a CM that has not been grouped according to configuration information of each CM.
  • an embodiment of the present invention provides a cable modem terminal system CMTS, including a sending module, a processing module, and a receiving module;
  • the sending module is configured to send a broadcast message to the cable modem CM that has not been grouped, the broadcast message indicating that one of the CMs that have not been packetized CM is to be sent through the spectrum S ′ in the time slot T ′ Detecting a signal, the segment of spectrum S ′ is a segment of an overlapping portion of the uplink and downlink spectrum; and is further configured to: in the time slot T ′ , broadcast a pseudo-random code sequence through the frequency band S ′ in a downlink direction;
  • the receiving module is configured to receive modulation error rate MER information recorded by other Ms in the time slot T ′
  • the processing module is configured to: according to the MER data recorded by the other CMs in the time slot T ′ according to the receiving module, the MER data of each CM in the other CM in the time slot T ′ and the normal data time slot.
  • the difference of the MER data as the interfered strength of the corresponding CM; wherein the other CM is the remaining CM after the specified CM is removed from the CM that has not been packetized; the normal data slot refers to the The time slot in which the CMTS transmits service data in the downlink direction.
  • a grouping module is further configured to: according to the interfered intensity of each of the other CMs acquired by the processing module, the CM with a received interference strength higher than a threshold and the specified CM is divided into groups.
  • the processing module is further configured to determine, according to configuration information of each CM, whether it belongs to a CM that has not been grouped.
  • the present invention also provides a cable modem CM, including a transmitting module, a receiving module and a recording module.
  • the receiving module is configured to receive a broadcast message sent by the CMTS, where the broadcast message includes information that specifies that the CM sends a Probing signal through a spectrum S in a time slot T, where the segment of spectrum S is an overlapping portion of uplink and downlink spectrum One of the segments; and is also used to receive the pseudo-random code sequence PRBS transmitted by the CMTS on the specified time slot T, the designated frequency band S.
  • the sending module is configured to send a Probing signal on the designated time slot T and the specified frequency band S according to the broadcast message received by the receiving module.
  • the recording module is configured to record a local MER when the Probing signal is sent on the designated time slot T, the specified frequency band S, and a local MER recorded in a normal data time slot.
  • the sending module is further configured to send the MER recorded by the recording module to the CMTS.
  • the transmitting module transmits the difference between the MER data of the time slot T and the MER data at the normal data time slot to the CMTS.
  • the present invention also provides a cable communication system comprising the above cable modem termination system CMTS and a plurality of cable modems CN.
  • a specified CM in a certain time slot, is required to transmit a Probing signal in a specified spectrum in the uplink direction, and the CMTS is simultaneously in the downlink direction. Broadcasting the PRBS on the specified spectrum is equivalent to constructing a test environment. The difference between the MER in the test environment and the MER in the normal service data transmission and reception environment of each CM reflects the interference strength of each CM. . Due to the built test environment, the CMTS also sends a signal, so that the measured CM is more accurately affected by the interference.
  • FIG. 1 is a schematic architectural diagram of a communication system according to an embodiment of the present invention.
  • FIG. 2 is a schematic flow chart of a method for measuring the degree of interference according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a CMTS according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of still another CMTS according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a CM according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of still another CM according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a cable communication system according to an embodiment of the present invention.
  • FIG. 1 For ease of understanding, an exemplary diagram of a system architecture of a cable communication system capable of implementing the method of the embodiments of the present invention is first described in its entirety. It should be understood that the embodiment of the present invention is not limited to the system architecture shown in FIG. 1.
  • the device in FIG. 1 may be hardware, or may be functionally divided software or a structure of the above two.
  • the system shown in FIG. 1 includes a Cable Modem Terminal System (CMTS) 110, a CM 120, a CM 130, a CM 140, and a CM 150. It should be noted that the number of CMTSs and CMs in Figure 1 should not be construed as limiting the invention.
  • the CM 130, CM 140, and CM 150 may conform to the Data Over Cable Service Interface Specifications (DOCSIS) 3.1.
  • DOCSIS Data Over Cable Service Interface Specifications
  • the CMTS is a device that manages and controls the CM. Its configuration can be completed through a console interface or an Ethernet interface.
  • the configuration contents include: downlink frequency, downlink modulation mode, and downlink level.
  • the downlink frequency can be arbitrarily set within the specified frequency range, but in order not to interfere with the signals of other channels, it should be selected at the specified frequency point by referring to the channel division table of the cable television.
  • the choice of modulation method should take into account the transmission quality of the channel.
  • DHCP Dynamic Host Configuration Protocol
  • IP Internet Protocol
  • TFTP Trivial File Transfer Protocol
  • CM is a device used on the cable network (ie cable network) to connect to the Internet. It is connected between the cable TV cable socket of the user's home and the Internet device, and the other end connected to it through the cable TV network is At the cable television station, the other end can be referred to as a front end or a head end (Head-End).
  • the working mode of the CMTS 110 is CCFD.
  • the CMTS 110 can respectively transmit downlink signals using channels occupying D1 spectrum, D2 spectrum, and D3 spectrum, and can also receive channel transmissions occupying U1 spectrum, U2 spectrum, and U3 spectrum.
  • the D2 spectrum overlaps with the U2 spectrum, and the D3 spectrum overlaps with the U3 spectrum.
  • the power of the CMTS to send signals to all CMs may be the same or different; the power of the signals transmitted by the CMTS to receive the CM may be the same or may be different.
  • CM 120, CM 130, CM 140, and CM 150 still maintain the uplink and downlink frequency division, that is, FDD.
  • CM 120, CM 130, CM 140 and CM 150 need to be grouped according to the degree of interference (also called interference severity or mutual isolation).
  • CM 120 and CM 130 are the same group, CM 120 and CM 130 can
  • the uplink signal is transmitted on the channel occupying the U1 spectrum and the U3 spectrum, and the downlink signal transmitted on the channel occupying the D1 spectrum and the D2 spectrum can be received.
  • the U1 spectrum, the U3 spectrum, the D1 spectrum, and the D2 spectrum do not overlap each other.
  • the CM 140 and the CM 150 are in the same group, and the CM 140 and the CM 150 can transmit uplink signals using channels occupying the U1 spectrum and the U2 spectrum, and can receive channels occupying the D1 spectrum and the D3 spectrum.
  • the downlink signal sent.
  • the U1 spectrum, the U2 spectrum, the D1 spectrum, and the D3 spectrum do not overlap each other.
  • CM i,j the degree of interference between any two CMs, such as two of the M CMs connected to the CMTS.
  • CM i,j refers to the signal received by the i-th CM of the M CMs, and the degree of interference of the signal transmitted by the j-th CM.
  • the current common interference degree test scheme is that the CMTS first allocates an uplink and downlink silent time slot, in which only one designated CM sends a probing signal, and other CMs can only receive but cannot send. The signal, while the CMTS also stops transmitting the downlink signal in the silent time slot, so as to avoid interference with the transmitting Probing signal of the designated CM. The other CM obtains the degree of interference by calculating the difference between the power of the received Probing signal and the power of the specified CM to transmit the Probing signal.
  • test solution needs to repeat the above process by assigning each CM of the M CMs in turn, and obtaining the interference level table of the entire network requires M operations, which takes a long time; and the CMTS downlink transmission signal needs to be interrupted in the above test process, belonging to Loss of measurement.
  • FIG. 2 A schematic flow chart of a method for measuring the degree of interference of an embodiment of the present invention is shown in FIG. 2. It should be understood that FIG. 2 illustrates steps or operations of the method, but these steps or operations are merely examples, and embodiments of the present invention may perform other operations or variations of the various operations in FIG. 2. Moreover, the various steps in FIG. 2 may be performed in a different order than that presented in FIG. 2, and it is possible that not all operations in FIG. 2 are to be performed.
  • the CMTS sends a broadcast message to all CMs connected to the CMTS, where the broadcast message includes information that one of the CMs transmits a Probing signal through a spectrum S in a time slot T, where the spectrum S is an uplink and downlink spectrum.
  • the broadcast message includes information that one of the CMs transmits a Probing signal through a spectrum S in a time slot T, where the spectrum S is an uplink and downlink spectrum.
  • the broadcast message format may follow the P-MAP message in the DOCSIS 3.1 standard, or may use other message formats, and only need to include information specifying that one of the CMs transmits the Probing signal through the spectrum S in the time slot T.
  • the CMTS broadcasts a pseudo random binary sequence (PRBS) through the frequency band S in a downlink direction.
  • PRBS pseudo random binary sequence
  • the designated CM after receiving the broadcast message sent by the CMTS, the designated CM sends the Probing signal in the uplink direction through the specified frequency band S in the time slot T according to the indication content; and at the same time, the CMTS is in the downlink direction.
  • the PRBS is transmitted through the frequency band S; it should be noted that the PRBS is a known pseudo-random sequence, not a service data signal.
  • the power of the specified CM in transmitting the Probing signal should be higher than the number of uplink services sent. According to the low signal power, such as 20-30dB lower, it is used to reduce the interference to the downlink signals of other CMs.
  • the CMTS acquires modulation error rate (MER) information recorded by other CMs in the time slot T, and compares the MER data of each CM in the time slot T with the normal data time slot.
  • the difference of the MER data is the received interference strength of the corresponding CM;
  • the normal data slot is the time slot in which the CMTS transmits the service data in the downlink direction.
  • MER modulation error rate
  • the MER is a logarithmic measurement of signal distortion, similar to the signal to noise ratio or carrier to noise ratio of the analog system.
  • the MER recorded by the other CMs in the time slot T can reflect the signal distortion of each CM in the test environment, that is, the specified CM sends the Probing signal through the specified frequency band S in the uplink direction, the CMTS
  • the PRBS is broadcasted through the frequency band S in the downlink direction; and the MER data of each CM can reflect the signal distortion situation in the normal service data transmission and reception environment in the normal data time slot.
  • the disturbed intensity of each CM can be known by the MER difference values in the above two environments for each of the other CMs.
  • the other CM is a CM remaining after the specified CM is removed from all CMs connected to the CMTS, that is, a non-designated CM.
  • CMTS as the received interference strength of the CM
  • the execution subject CMTS as the received interference strength of the CM can be replaced with other management devices or management modules, as long as the information can be exchanged with the CM, the MER data recorded by each CM in the time slot T, and each CM can be completed.
  • the comparison between the MER data of the slot T and the MER data at the normal data slot may not affect the implementation effect of the solution.
  • the method further includes: S240 (not shown), after receiving the broadcast message sent by the CMTS, the other CMs specify the time slot T, specify The MER is recorded when the Probing signal is transmitted on the frequency band S.
  • the method may further include: S270, the CMTS, according to the acquired interference strength of each of the other CMs, the CM with the received interference strength higher than the threshold
  • the specified CMs are divided into groups.
  • the threshold is preset, and the specific value can be set according to actual precision requirements and experience values.
  • the CMTS may further divide two uplink dedicated (US Only) bands and a downlink dedicated (DS Only) frequency band.
  • the CM obtains information about the uplink and downlink physical layer channels through the channel corresponding to the DS Only band, including: channel type (D3.0 or D3.1), One or more of the channel identifier (ID), the channel center frequency or the bandwidth; after the CM is powered on, the distance or registration is completed through the channel corresponding to the US Only band.
  • the divided uplink dedicated frequency band and the downlink dedicated frequency band do not overlap.
  • the CMTS can judge whether the CM has been grouped according to the historical configuration information.
  • the CMTS may send a broadcast message to the CM that has not yet been grouped, the broadcast message containing information specifying that one of the CMs that have not been packetized CM transmits the Probing signal through another segment of spectrum S ' in another time slot T '
  • the segment of spectrum S ′ is a segment of the overlapping portion of the uplink and downlink spectrum; in the time slot T ′ , the designated CM transmits a Probing signal in the uplink direction through the specified frequency band S, and the CMTS passes in the downlink direction.
  • the frequency band S ' transmits a PRBS signal; the CMTS acquires MER data recorded by the non-designated CM in the CM that has not been grouped in the time slot T ' , and each CM in the other CM is in the time slot T '
  • the difference between the MER data and the MER data at the normal data slot is taken as the interfered strength of the corresponding CM.
  • the CMs are then grouped according to the received interference strength.
  • the above process is repeated by specifying different CMs and different frequency bands in which the Probing signal is transmitted until all CMs are grouped.
  • all CMs can be divided into a grouped group and an ungrouped group, and the above grouping process is repeated in the group of not being grouped, and the CM is grouped and then deleted from the group of groups until the group is not empty.
  • a specified CM is required to transmit a Probing signal in a specified frequency spectrum in an uplink direction in a certain time slot, and the CMTS simultaneously broadcasts and transmits a PRBS on the specified spectrum in a downlink direction.
  • the difference between the MER of each CM in the test environment and the MER under the normal service data transmission and reception environment reflects the interference intensity of each CM.
  • the CMTS also sends a signal, which is closer to the actual normal service data receiving and receiving environment, so that the measured CM is more accurately affected by the interference strength; and can quickly complete the CM grouping according to the magnitude of the interference degree and the threshold value.
  • the difference between the MER data of each CM in the unspecified CM in the time slot T and the MER data in the normal data time slot is taken as the interference strength of the corresponding CM, that is, the normal data time slot.
  • the MER data is used as a reference value.
  • the normal data time slot is simply modified.
  • the normal data time slot is not limited to a time slot in which the CMTS transmits service data in the downlink direction, but a time slot for transmitting specific data similar to service data, and should also be Understanding also belongs to embodiments of the invention.
  • the CMTS 300 includes a sending module 310, a processing module 320, and a receiving module 330.
  • the sending module 310 is configured to send a broadcast message to all CMs connected to the CMTS, where the broadcast message includes information that one of the CMs transmits a Probing signal through a spectrum S in a time slot T, the piece of spectrum S is a segment of the overlapping portion of the uplink and downlink spectrum; and is further configured to broadcast the pseudo random code sequence PRBS through the frequency band S in the downlink direction in the time slot T.
  • the receiving module 330 is configured to receive modulation error rate (MER) information recorded by other Ms in the time slot T.
  • MER modulation error rate
  • the processing module 320 is configured to: according to the modulation error rate MER information recorded by the other CMs in the time slot T acquired by the receiving module 330, the MER data of each CM in the time slot T in the time slot T is normal. The difference in MER data at the time of the data slot is taken as the interfered strength of the corresponding CM.
  • the other CM is a remaining CM after the specified CM is removed from the CM that has not been grouped, that is, a non-designated CM.
  • the normal data slot refers to a time slot in which the CMTS transmits service data in the downlink direction.
  • the CMTS 300 further includes a grouping module 340, configured to, according to the interference strength of each of the other CMs acquired by the processing module, a CM whose interference strength is higher than a threshold Divided into a group with the specified CM.
  • the processing module 320 can be a processor or a controller, or can be a general-purpose processor, a digital signal processor (English: digital signal processor, abbreviation: DSP), an application-specific integrated circuit (abbreviation: ASIC) Field programmable gate array (English: field programmable gate array, abbreviated: FPGA) or other programmable logic device, transistor logic device, hardware component or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the receiving module 330 and the sending module 310 may be respectively a receiving interface part and a transmitting interface part in a transceiver, or may be a receiving interface part and a transmitting interface part of the transceiver circuit.
  • a specified CM is required to transmit a Probing signal in a specified frequency spectrum in an uplink direction in a certain time slot, and the CMTS simultaneously broadcasts and transmits a PRBS on the specified spectrum in a downlink direction.
  • the difference between the MER of each CM in the test environment and the MER under the normal service data transmission and reception environment reflects the interference intensity of each CM.
  • the CMTS also transmits a signal, so that the measured CM is more accurately interfered by the interference; and the CM packet can be quickly completed according to the magnitude relationship between the interference level and the threshold.
  • CMTS complementary metal-oxide-semiconductor
  • FIG. 3 Another embodiment of the present invention provides another CMTS, the structure of which is the same as that of FIG. 3, which also includes a sending module 310, a processing module 320, and a receiving module 330.
  • the sending module 310 is configured to send a broadcast message to a CM that has not been grouped, where the broadcast message includes that one of the CMs that have not been grouped is specified to pass another spectrum S in another time slot T ′ ' Sending the information of the Probing signal, the segment of spectrum S ' is one of the overlapping portions of the uplink and downlink spectrum; and is also used to broadcast the pseudo-random code sequence PRBS through the frequency band S ' in the downlink direction in the time slot T ' .
  • the receiving module 330 is configured to receive modulation error rate MER information recorded by other Ms in the time slot T ′
  • the processing module 320 is configured to: according to the MER data recorded by the other CMs received by the receiving module 330 in the time slot T ′ , the MER data of each CM in the other CMs in the time slot T ′ and the normal data.
  • the difference of the MER data at the time slot is taken as the interference strength of the corresponding CM.
  • the other CM is a remaining CM after the specified CM is removed from the CM that has not been packetized;
  • the normal data slot refers to a time slot in which the CMTS sends service data in a downlink direction.
  • the CMTS 300 further includes a grouping module 340, configured to, according to the interference strength of each of the other CMs acquired by the processing module, a CM whose interference strength is higher than a threshold Divided into a group with the specified CM.
  • the processing module 320 is further configured to determine, according to configuration information of each CM connected to the CMTS, whether those belong to the group that have not been grouped.
  • FIG. 4 is a schematic structural diagram of a CMTS 400 according to still another embodiment of the present invention.
  • the CMTS 400 includes a memory 410, a processor 420, a receiver 430, and a transmitter 440.
  • the memory 410 is configured to store a program.
  • the processor 420 is configured to execute a program stored by the memory 410.
  • the processor 420 executes the program stored by the memory 410, the processor 420 is configured to invoke the transmitter 440 to send a broadcast message to all CMs connected to the CMTS, where the broadcast message includes one of the CMs specified.
  • the time slot T transmits the information of the Probing signal through a piece of spectrum S, which is one of the overlapping portions of the uplink and downlink spectrum; and in the time slot T, the pseudo random code sequence PRBS is broadcasted through the frequency band S in the downlink direction. It is also used to call the receiver 410 to receive MER data recorded by other CMs in the time slot T.
  • the processor 420 is further configured to calculate a difference between the MER data of each CM in the other CMs in the time slot T and the MER data in the normal data time slot.
  • the other CM is a CM remaining after all the CMs connected to the CMTS remove the designated CM; the normal data slot refers to a time slot in which the CMTS sends service data in a downlink direction.
  • Yet another embodiment of the present invention provides another CMTS, the structure of which is the same as that of FIG. 4, and includes a memory 410, a processor 420, a receiver 430, and a transmitter 440.
  • the memory 410 is configured to store a program.
  • the processor 420 is configured to execute a program stored by the memory 410.
  • the processor 420 executes the program stored by the memory 410, the processor 420 is configured to invoke the transmitter 440 to send a broadcast message to the CM that has not been grouped, and the broadcast message includes the specified that the packet has not been grouped.
  • CM wherein CM in a further slot T Probing transmission information signal 'through another section of the spectrum S', the one spectrum S 'section in which the overlapping portion of the uplink and downlink frequency spectrum; and slot T', in the downlink direction
  • the pseudo random code sequence PRBS is broadcasted through the frequency band S ' . It is also used to call receiver 410 to receive MER data recorded by other CMs in time slot T ' .
  • the processor 420 is further configured to calculate a difference between the MER data of each of the other CMs in the time slot T ' and the MER data in the normal data time slot.
  • the other CM is a remaining CM after the specified CM is removed from the CM that has not been packetized;
  • the normal data slot refers to a time slot in which the CMTS sends service data in a downlink direction.
  • the processor 420 is further configured to determine, according to configuration information of each CM, whether it belongs to a CM that has not been grouped.
  • FIG. 5 Another embodiment of the present invention provides a cable modem CM.
  • the schematic diagram of the structure is shown in FIG. 5, and includes a sending module 510, a receiving module 520, and a recording module 530.
  • the receiving module 520 is configured to receive a broadcast message sent by the CMTS, where the broadcast message includes information that the CM sends a Probing signal through a spectrum S in a time slot T, where the spectrum S is an uplink and downlink spectrum overlap.
  • the broadcast message includes information that the CM sends a Probing signal through a spectrum S in a time slot T, where the spectrum S is an uplink and downlink spectrum overlap.
  • One of the sections and is also used to receive the pseudo-random code sequence PRBS transmitted by the CMTS on the designated time slot T, the designated frequency band S.
  • the sending module 510 is configured to send a Probing signal on the designated time slot T and the specified frequency band S according to the broadcast message received by the receiving module 520.
  • the recording module 530 is configured to record a local MER when the Probing signal is sent on the designated time slot T, the specified frequency band S, and a local MER recorded in a normal data time slot.
  • the sending module 510 is further configured to send the MER recorded by the recording module 510 to the CMTS. Or alternatively, the transmitting module 510 transmits the difference between the MER data at the time slot T and the MER data at the normal data time slot to the CMTS.
  • the recording module 530 can be implemented in a combination of a control circuit and a storage circuit, wherein the control circuit can be a processor or a controller, or a general-purpose processor, a digital signal processor (abbreviation: DSP). , application-specific integrated circuit (ASIC), field programmable gate array (English: field programmable gate array, abbreviation: FPGA) or other programmable logic devices, transistor logic devices, hardware components or random combination.
  • the receiving module 520 and the sending module 510 may be respectively a receiving interface part and a transmitting interface part in a transceiver, or may be a receiving interface part and a transmitting interface part of the transceiver circuit.
  • FIG. 6 Another embodiment of the present invention provides another CMTS, which is shown in FIG. 6 and includes a memory 610, a processor 620, a receiver 630, and a transmitter 640.
  • the memory 610 is configured to store a program.
  • the processor 620 is configured to execute a program stored by the memory 610.
  • the call receiver 630 receives a broadcast message sent by the CMTS, where the broadcast message includes information specifying that the CM transmits a Probing signal through a spectrum S in a time slot T, where the segment spectrum S is a segment of the overlapping portion of the uplink and downlink spectrum And is also used to receive the pseudo-random code sequence PRBS transmitted by the CMTS on the specified time slot T, the designated frequency band S.
  • the processor 620 is further configured to invoke the transmitter 640 to send a Probing signal on the designated time slot T, the designated frequency band S; and call the memory 610 to record the MER localized in the designated time slot T, the designated frequency band S; The local MER at the normal data slot.
  • the processor 620 is further configured to calculate a difference between the MER data of each CM in the time slot T and the MER data in the normal data time slot; and the difference calculated by the calling transmitter 640 is sent to The CMTS, or alternatively, the processor 620 does not perform the calculation, directly sends the recorded MER to the CMTS for calculation by the CMTS.
  • FIG. 7 is a schematic structural diagram of a cable communication system 700 according to an embodiment of the present invention. It should be understood that the communication system illustrated in FIG. 7 is merely an example, and the communication system of the embodiment of the present invention may further include other devices or units, or include modules similar in function to the respective devices in FIG.
  • the cable communication system 700 includes a CMTS 710 and a plurality of CMs 710, wherein the CMTS 710 is the CMTS 300 or CMTS 400 shown in FIG. 3 or 4, which is the CM 500 shown in FIG. For the sake of brevity, it will not be repeated here.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another The system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical, mechanical or otherwise.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种CM受干扰度测量方法、装置和系统,所述方法包括:CMTS发送广播消息给与所述CMTS相连的所有CM,所述广播消息中包含指定了其中一个CM在时隙T通过一段频谱S发送探测信号的信息;在所述时隙T,所述CMTS在下行方向通过所述频段S广播发送伪随机码序列PRBS;所述CMTS获取其他CM在时隙T记录的调制差错率MER数据,将所述其他CM中的每个CM在时隙T的MER数据与在正常数据时隙时的MER数据的差值作为对应CM的受干扰强度;利用本发明的方案,能保证测得的CM受干扰强度更准确,并能直接根据该受干扰度和阈值的大小关系,快速完成CM分组。

Description

CM受干扰度测量方法、装置和系统 技术领域
本发明涉及通信领域,尤其涉及一种电缆调制解调器(Cable Modem,CM)受干扰度测量方法、装置和系统。
背景技术
通信领域主要包括时分双工(Time Division Duplex,TDD)、频分双工(Frequency Division Duplex,FDD)以及同时同频全双工(Co-time Co-frequency Full Duplex,CCFD)。
当前一种CCFD方案中,仅在CMTS侧实现CCFD,而在CM侧,可以根据各CM之间的干扰关系(也可以称为隔离度)将所有CM分组。具体而言,存在相互干扰或相互干扰不满足需求的CM划分为一个组,组内CM实现FDD,而不存在相互干扰或相互干扰满足需求的CM划分为不同的组,组与组间实现CCFD,以提高频谱效率。
由上述内容可知,对CM分组时,主要是基于CM间的干扰关系来实现的,即CM间的干扰关系可以决定CM的分组。那如何获取CM间的准确的干扰关系,一直是业界研究的方向。
发明内容
本发明提供的电缆调制解调器受干扰度测量方法、装置和系统,能够更准确地获取CM间的干扰关系。
第一方面,本发明提供了一种电缆调制解调器CM受干扰度测量方法,包括:
电缆调制解调器终端系统CMTS会通过发送广播消息通知与所述CMTS相连的所有CM,所述广播消息指示了其中一个CM要在时隙T通过一段频谱S发送探测信号,其中所述一段频谱S是上下行频谱重叠部分的其中一段;
在所述时隙T,指定CM在时隙T通过频段S发送探测信号的同时,所述CMTS在下行方向通过所述频段S广播发送伪随机码序列;
所述CMTS获取其他CM在时隙T记录的调制差错率MER数据,将所 述其他CM中的每个CM在时隙T的MER数据与在正常数据时隙时的MER数据的差值作为对应CM的受干扰强度;其中所述其他CM为与所述CMTS相连接的所有CM去除所述指定CM后剩余的CM;所述正常数据时隙是指所述CMTS在下行方向发送业务数据的时隙。
在一种可能的设计中,所述方法还包括,所述CMTS根据获取的所述其他CM中的每个CM的受干扰强度,将受干扰强度高于阈值的CM与所述指定的CM划分为一组。
第二方面,本发明实施例提供一种电缆调制解调器CM受干扰度测量方法,包括:
电缆调制解调器终端系统CMTS发送广播消息给还未被分组的电缆调制解调器CM,所述广播消息指示了所述还未被分组CM中的其中一个CM要在时隙T通过一段频谱S发送探测信号,所述一段频谱S是上下行频谱重叠部分的其中一段;
在所述时隙T,指定CM在时隙T通过频段S发送探测信号的同时,所述CMTS在下行方向通过所述频段S广播发送伪随机码序列;
所述CMTS获取所述还未被分组的CM中的非指定CM在时隙T记录的调制差错率MER数据,将所述其他CM中的每个CM在时隙T的MER数据与在正常数据时隙时的MER数据的差值作为对应CM的受干扰强度;所述其他CM为在所述还未被分组CM中去除所述指定CM后的剩余CM;所述正常数据时隙是指所述CMTS在下行方向发送业务数据的时隙。
在一种可能的设计中,所述方法还包括在所述时隙T,所述指定的CM在上行方向通过所述指定的频段S上发送探测信号。
在一种可能的设计中,所述方法还包括,所述CMTS根据获取的所述其他CM中的每个CM的受干扰强度,将受干扰强度高于阈值的CM与所述指定的CM划分为一组。
在一种可能的设计中,所述CMTS根据各个CM的配置信息判断是否属于还未被分组的CM。
第三方面,本发明实施例提供一种电缆调制解调器终端系统CMTS,包括发送模块、处理模块和接收模块;
所述发送模块,用于发送广播消息给还未被分组的电缆调制解调器CM,所述广播消息指示了所述还未被分组CM中的其中一个CM要在时隙T通过 一段频谱S发送探测信号,所述一段频谱S是上下行频谱重叠部分的其中一段;还用于在所述时隙T,在下行方向通过所述频段S广播发送伪随机码序列;
所述接收模块,用于接收其他M在时隙T记录的调制差错率MER信息
所述处理模块,用于根据所述接收模块获取的其他CM在时隙T记录的MER数据;将所述其他CM中的每个CM在时隙T的MER数据与在正常数据时隙时的MER数据的差值作为对应CM的受干扰强度;其中所述其他CM为在所述还未被分组CM中去除所述指定CM后的剩余CM;所述正常数据时隙是指所述CMTS在下行方向发送业务数据的时隙。
在一种可能的设计中,还包括分组模块,用于根据所述处理模块获取的所述其他CM中的每个CM的受干扰强度,将受干扰强度高于阈值的CM与所述指定的CM划分为一组。
在一种可能的设计中,所述处理模块还用于根据各个CM的配置信息判断是否属于还未被分组的CM。
第四方面,本发明还提供一种电缆调制解调器CM,包括发送模块,接收模块和记录模块。
所述接收模块,用于接收CMTS发送的广播消息,所述广播消息中包含指定了所述CM在时隙T通过一段频谱S发送Probing信号的信息,所述一段频谱S是上下行频谱重叠部分的其中一段;并且还用于在述指定时隙T、指定频段S上接收CMTS发送的伪随机码序列PRBS。
所述发送模块,用于根据所述接收模块接收到的广播消息,在指定时隙T、指定频段S上发送Probing信号。
所述记录模块,用于在所述指定时隙T、指定频段S上发送Probing信号时记录本地的MER;以及记录在正常数据时隙时的本地的MER。
在一种可能的设计中,所述发送模块还用于将所述记录模块记录的MER发送给CMTS。或者可替换地,所述发送模块将在时隙T的MER数据与在正常数据时隙时的MER数据的差值发送给CMTS。
第五方面,本发明还提供一种电缆通信系统,包括上述电缆调制解调器终端系统CMTS和多个电缆调制解调器CN。
利用本实施例的方案,通过在某个时隙内,要求一个指定的CM在上行方向在指定的一段频谱内发送Probing信号,以及CMTS同时在下行方向在 所述指定的频谱上广播发送PRBS,相当于构建测试环境,每个CM的在测试环境下的MER和正常业务数据收发环境下的MER的差值,就反应了每个的CM的受干扰强度。由于构建的测试环境中,CMTS也发送信号,这样测得的CM受干扰强度更准确。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例的通信系统的示意性架构图。
图2是本发明实施例的一种受干扰程度测量方法的示意性流程图。
图3是本发明实施例的一种CMTS的示意性结构图。
图4是本发明实施例的又一种CMTS的示意性结构图。
图5是本发明实施例的一种CM的示意性结构图。
图6是本发明实施例的又一种CM的示意性结构图。
图7是本发明实施例的Cable通信系统的示意性结构图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为了便于理解,先从整体上描述能够实施本发明实施例方法的电缆(Cable)通信系统的系统架构的示例图。应理解,本发明实施例并不限于图1所示的系统架构中,此外,图1中的装置可以是硬件,也可以是从功能上划分的软件或者以上二者的结构。
图1所示的系统包括电缆调制解调器终端系统(Cable Modem Terminal System,CMTS)110、CM 120、CM 130、CM 140、和CM 150。应注意,图1中的CMTS和CM的数量不应对可以本发明构成限制。CMTS 110、CM 120、CM 130、CM 140和CM 150可以符合传统有线电缆数据服务接口规范(Data Over Cable Service Interface Specifications,DOCSIS)3.1。CMTS到CM的信号传输方向称为下行方向,CM到CMTS的信号传输方向称为上行方向。
CMTS是管理控制CM的设备,其配置可通过控制台(Console)接口或以太网接口完成,其配置内容主要有:下行频率、下行调制方式、下行电平等。下行频率在指定的频率范围内可以任意设定,但为了不干扰其他频道的信号,应参照有线电视的频道划分表选定在规定的频点上。调制方式的选择应考虑信道的传输质量。此外,还必须设置动态主机配置协议(Dynamic Host Configuration Protocol,DHCP)、简单文件传输协议(Trivial File Transfer Protocol,TFTP)服务器的互联网协议(Internet Protocol,IP)地址、CMTS的IP地址等。上述设置完成后,如果中间线路无故障,信号电平的衰减符合要求,则启动DHCP、TFTP服务器,就可在前端和CM间建立正常的通信通道。
CM是在有线电视网络(即电缆网络)上用来上互联网的设备,它是串接在用户家的有线电视电缆插座和上网设备之间的,而通过有线电视网络与之相连的另一端是在有线电视台,该另一端可以称为前端或头端(Head-End)。
CMTS 110的工作模式是CCFD,如图1中所示,CMTS 110可以分别使用占用D1频谱、D2频谱和D3频谱的信道发送下行信号,也可以接收占用U1频谱、U2频谱和U3频谱的信道发送上行信号。其中,D2频谱与U2频谱重叠,D3频谱与U3频谱重叠。CMTS向所有CM发送信号的功率可以相同,也可不同;CMTS接收所述CM发送的信号的功率也可以相同,可以不同。
CM 120、CM 130、CM 140和CM 150仍然保持上下行频分,即FDD。CM 120、CM 130、CM 140和CM 150则需要根据受干扰程度(也可以称为干扰严重性或相互隔离度)大小进行分组,如CM 120和CM 130为同一组,CM 120和CM 130可以使用占用U1频谱和U3频谱的信道发送上行信号,可以接收占用D1频谱和D2频谱的信道发送的下行信号。其中,U1频谱、U3频谱、D1频谱和D2频谱互不重叠。
CM 140和CM 150为同一组,CM 140和CM 150可以使用占用U1频谱和U2频谱的信道发送上行信号,可以接收占用D1频谱和D3频谱的信道 发送的下行信号。其中,U1频谱、U2频谱、D1频谱和D3频谱互不重叠。
本发明实施中,任意两个CM,如与CMTS相连的M个CM中的两个CM间的受干扰程度可以用CMi,j来表示。具体地,CMi,j指M个CM中的第i个CM接收到的信号,受第j个CM发送的信号的干扰程度。
并且当前比较常见的受干扰程度测试方案是,首先由CMTS分配一个上下行静默时隙,在该静默时隙内只有指定的一个CM发送探测(Probing)信号,其他CM均只能接收而不能发送信号,同时CMTS在该静默时隙内也停止发送下行信号,以免对所述指定CM的发送Probing信号形成干扰。其他CM通过计算接收到Probing信号的功率与所述指定CM发送Probing信号的功率之间的差值来获得受干扰程度。
但该测试方案需要轮流指定M个CM的每个CM来重复上述过程,获取整网的受干扰程度表需要M次操作,耗时较长;并且上述测试过程中需要中断CMTS下行发送信号,属于有损测量。
本发明一个实施例的受干扰程度测量方法的示意性流程图如图2所示。应理解,图2示出了方法的步骤或操作,但这些步骤或操作仅是示例,本发明实施例还可以执行其他操作或者图2中的各个操作的变形。此外,图2中的各个步骤可以按照与图2呈现的不同的顺序来执行,并且有可能并非要执行图2中的全部操作。
S210,CMTS发送广播消息给与所述CMTS相连的所有CM,所述广播消息中包含指定了其中一个CM在时隙T通过一段频谱S发送Probing信号的信息,所述一段频谱S是上下行频谱重叠部分的其中一段。
所述广播消息格式可沿用DOCSIS 3.1标准中的P-MAP消息,也可使用其他消息格式,只需包含指定其中一个CM在时隙T通过一段频谱S发送Probing信号的信息即可。
S230,在时隙T,所述CMTS在下行方向通过所述频段S广播发送伪随机码序列(pseudo random binary sequence,PRBS)。
具体地,所述指定的CM在接收到CMTS发送的所述广播消息后,按指示内容,在时隙T,在上行方向通过所述指定的频段S发送Probing信号;并且同时,CMTS在下行方向通过所述频段S发送PRBS;需要注意的是所述PRBS是一个已知的伪随机序列,不是业务数据信号。
一般地,所述指定CM在发送Probing信号的功率应比发送上行业务数 据信号功率低,比如低20-30dB,用来减少对其他CM的下行信号的干扰。
S250,所述CMTS获取其他CM在时隙T记录的调制差错率(Modulation error rate,MER)信息,将所述其他CM中的每个CM在时隙T的MER数据与在正常数据时隙时的MER数据的差值作为对应CM的受干扰强度;所述正常数据时隙是指所述CMTS在下行方向发送业务数据的时隙。
其中所述MER是对信号失真的对数测量结果,类似模拟系统的信噪比或载噪比。获取的其他CM在时隙T记录的MER能反应各个CM在测试环境下的信号失真情况,所述测试环境就是所述指定CM在上行方向通过所述指定的频段S发送Probing信号,所述CMTS在下行方向通过所述频段S广播发送PRBS;而在正常数据时隙时每个CM的MER数据能反应正常业务数据收发环境下的信号失真情况。通过对其他CM中的每个CM的上述两个环境下的MER差值,就能获知每个的CM的受干扰强度。
所述其他CM为与所述CMTS相连接的所有CM去除所述指定CM后剩余的CM,即非指定CM。
可替换地,作为一个实施例,步骤S250中的“获取其他CM在时隙T记录的MER数据,将每个CM在时隙T的MER数据与在正常数据时隙时的MER数据的差值作为对应CM的受干扰强度”的执行主体CMTS可以替换成其他管理设备或者管理模块,只要能和CM进行信息交互,获取各个CM在时隙T记录的MER数据,以及能完成每个CM在时隙T的MER数据与在正常数据时隙时的MER数据的比较计算即可,不影响本方案的实现效果。
进一步地,作为一个实施例,在所述步骤S250之前,所述方法还包括,S240(图中未示出),其他CM在接收CMTS发送的所述广播消息后,在指定时隙T、指定频段S上发送Probing信号时记录MER。
还进一步地,作为一个实施例,所述方法还可以包括,S270,所述CMTS根据获取的所述其他CM中的每个CM的受干扰强度,将受干扰强度高于阈值的CM与所述指定的CM划分为一组。所述阈值是预先设定的,具体数值可以根据实际精度需求和经验值设置。
可选地,作为一个实施例,CMTS还可以划分两段上行专用(US Only)频段和下行专用(DS Only)频段。在初始化阶段,CM通过DS Only频段对应的通道获取上下行物理层通道的信息,包括:通道类型(D3.0或D3.1)、 通道标识(ID)、通道中心频点或频宽等信息中的一个或多个;CM上电后通过US Only频段对应的通道完成测距或注册。所述划分的上行专用频段和下行专用频段不重叠。并且CMTS可以根据历史配置信息判断该CM是否已被分组。
需要说明的是,上述流程是从所有CM都没有被分组的场景开始描述的。如果在已有部分CM被分组的场景,对比上文描述的方法,只是将测试范围限制在了未被分组的CM内,其他过程或要求和上文描述基本对应。具体为:
CMTS可以发送广播消息给还未被分组的CM,所述广播消息中包含指定了所述还未被分组CM中的其中一个CM在另一时隙T通过另一段频谱S发送Probing信号的信息,所述一段频谱S是上下行频谱重叠部分的其中一段;在时隙T,所述指定的CM在上行方向通过所述指定的频段S发送Probing信号,所述CMTS在下行方向通过所述频段S发送PRBS信号;所述CMTS获取所述还未被分组的CM中非指定CM在时隙T记录的MER数据,将所述其他CM中的每个CM在时隙T的MER数据与在正常数据时隙时的MER数据的差值作为对应CM的受干扰强度。然后根据获得的受干扰强度对CM进行分组。
通过指定不同的CM及其发送Probing信号的不同频段,重复上述过程直到所有CM都被分组。具体实现时可以将所有CM分成已分组集合和未分组集合,在未被分组集合内重复上述分组过程,CM被分组后就从未被分组集合内删除,直到未分组集合为空。
利用本实施例的方案,通过在某个时隙内,要求一个指定的CM在上行方向在指定的一段频谱内发送Probing信号,以及CMTS同时在下行方向在所述指定的频谱上广播发送PRBS构建测试环境,每个CM的在测试环境下的MER和正常业务数据收发环境下的MER的差值,就反应了每个的CM的受干扰强度。由于构建的测试环境中,CMTS也发送信号,更接近实际正常业务数据收发环境,这样测得的CM受干扰强度更准确;并且能直接根据该受干扰度和阈值的大小关系,快速完成CM分组。
需要说明,本实施例是将非指定CM中的每个CM在时隙T的MER数据与在正常数据时隙时的MER数据的差值作为对应CM的受干扰强度,即将正常数据时隙时的MER数据作为参考值。本领域普通技术人员应该理解, 将所述正常数据时隙作简单变形,比如并不限定正常数据时隙是指所述CMTS在下行方向发送业务数据的时隙,而是发送类似业务数据的特定数据的时隙,也应该被理解也是属于本发明实施例。
本发明一个实施例提供一种CMTS,如图3所示,该CMTS 300包括发送模块310、处理模块320和接收模块330。
所述发送模块310,用于发送广播消息给与所述CMTS相连的所有CM,所述广播消息中包含指定了其中一个CM在时隙T通过一段频谱S发送Probing信号的信息,所述一段频谱S是上下行频谱重叠部分的其中一段;还用于在时隙T,在下行方向通过所述频段S广播发送伪随机码序列PRBS。
所述接收模块330,用于接收其他M在时隙T记录的调制差错率(Modulation error rate,MER)信息
所述处理模块320,用于根据所述接收模块330获取的其他CM在时隙T记录的调制差错率MER信息,将所述其他CM中的每个CM在时隙T的MER数据与在正常数据时隙时的MER数据的差值作为对应CM的受干扰强度。
其中所述其他CM为在所述还未被分组CM中去除所述指定CM后的剩余CM,即非指定CM。所述正常数据时隙是指所述CMTS在下行方向发送业务数据的时隙。
进一步地,作为一个实施例,所述CMTS 300还包括分组模块340,用于根据所述处理模块获取的所述其他CM中的每个CM的受干扰强度,将受干扰强度高于阈值的CM与所述指定的CM划分为一组。
处理模块320可以是处理器或控制器,也可以是通用处理器,数字信号处理器(英文:digital signal processor,缩写:DSP),专用集成电路(英文:application-specific integrated circuit,缩写:ASIC),现场可编程门阵列(英文:field programmable gate array,缩写:FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。接收模块330和发送模块310可以分别是收发器(transceiver)中接收接口部分和发送接口部分,也可以是收发电路的接收接口部分和发送接口部分。
利用本实施例的方案,通过在某个时隙内,要求一个指定的CM在上行方向在指定的一段频谱内发送Probing信号,以及CMTS同时在下行方向在所述指定的频谱上广播发送PRBS构建测试环境,每个CM的在测试环境下的MER和正常业务数据收发环境下的MER的差值,就反应了每个的CM的受干扰强度。由于构建的测试环境中,CMTS也发送信号,这样测得的CM受干扰强度更准确;并且能直接根据该受干扰度和阈值的大小关系,快速完成CM分组。
本发明又一个实施例提供另一种CMTS,其结构示意图和图3一样,该也包括发送模块310、处理模块320和接收模块330。
所述发送模块310,用于发送广播消息给还未被分组的CM,所述广播消息中包含指定了所述还未被分组CM中的其中一个CM在另一时隙T通过另一段频谱S发送Probing信号的信息,所述一段频谱S是上下行频谱重叠部分的其中一段;还用于在所述时隙T,在下行方向通过所述频段S广播发送伪随机码序列PRBS。
所述接收模块330,用于接收其他M在时隙T记录的调制差错率MER信息
所述处理模块320,用于根据所述接收模块330获取的其他CM在时隙T记录的MER数据,将所述其他CM中的每个CM在时隙T的MER数据与在正常数据时隙时的MER数据的差值作为对应CM的受干扰强度。
其中所述其他CM为在所述还未被分组CM中去除所述指定CM后的剩余CM;所述正常数据时隙是指所述CMTS在下行方向发送业务数据的时隙。
进一步地,作为一个实施例,所述CMTS 300还包括分组模块340,用于根据所述处理模块获取的所述其他CM中的每个CM的受干扰强度,将受干扰强度高于阈值的CM与所述指定的CM划分为一组。
所述处理模块320还可以用于根据与CMTS相连接的各个CM的配置信息判断那些是否属于还未被分组。
其中,本实施例中的各模块的功能描述可以援引到上述方法实施例涉及的各步骤的所有相关内容,并且本实施例中的发送模块310、处理模块320和接收模块330硬件实现上和上一实施例类似,在此不再赘述。
图4为本发明又一实施例的CMTS 400的示意性结构图。CMTS 400包括存储器410、处理器420、接收器430和发送器440。
存储器410,用于存储程序。
处理器420,用于执行所述存储器410存储的程序。
当所述处理器420执行所述存储器410存储的程序时,处理器420用于调用发送器440发送广播消息给与所述CMTS相连的所有CM,所述广播消息中包含指定了其中一个CM在时隙T通过一段频谱S发送Probing信号的信息,所述一段频谱S是上下行频谱重叠部分的其中一段;并且在时隙T,在下行方向通过所述频段S广播发送伪随机码序列PRBS。还用于调用接收器410接收其他CM在时隙T记录的MER数据。
处理器420还用于计算出所述其他CM中的每个CM在时隙T的MER数据与在正常数据时隙时的MER数据的差值。
其中所述其他CM为与所述CMTS相连接的所有CM去除所述指定CM后剩余的CM;所述正常数据时隙是指所述CMTS在下行方向发送业务数据的时隙。
其中,本实施例中的各模块的功能描述可以援引到上述方法实施例涉及的各步骤的所有相关内容,在此不再赘述。
本发明又一个实施例提供另一种CMTS,其结构示意图和图4一样,包括存储器410、处理器420、接收器430和发送器440。
存储器410,用于存储程序。
处理器420,用于执行所述存储器410存储的程序。
当所述处理器420执行所述存储器410存储的程序时,处理器420用于调用发送器440发送广播消息给还未被分组的CM,所述广播消息中包含指定了所述还未被分组CM中的其中一个CM在另一时隙T通过另一段频谱S发送Probing信号的信息,所述一段频谱S是上下行频谱重叠部分的其中一段;并且在时隙T,在下行方向通过所述频段S广播发送伪随机码序列PRBS。还用于调用接收器410接收其他CM在时隙T记录的MER数据。
处理器420还用于计算出所述其他CM中的每个CM在时隙T的MER数据与在正常数据时隙时的MER数据的差值。
其中所述其他CM为在所述还未被分组CM中去除所述指定CM后的剩余CM;所述正常数据时隙是指所述CMTS在下行方向发送业务数据的时隙。
所述处理器420还用于根据各个CM的配置信息判断是否属于还未被分组的CM。
其中,本实施例中的各模块的功能描述可以援引到上述方法实施例涉及的各步骤的所有相关内容,在此不再赘述。
本发明又一个实施例提供一种电缆调制解调器CM,其结构示意图如图5所示,包括发送模块510,接收模块520和记录模块530。
所述接收模块520,用于接收CMTS发送的广播消息,所述广播消息中包含指定了所述CM在时隙T通过一段频谱S发送Probing信号的信息,所述一段频谱S是上下行频谱重叠部分的其中一段;并且还用于在述指定时隙T、指定频段S上接收CMTS发送的伪随机码序列PRBS。
所述发送模块510,用于根据所述接收模块520接收到的广播消息,在指定时隙T、指定频段S上发送Probing信号。
所述记录模块530,用于在所述指定时隙T、指定频段S上发送Probing信号时记录本地的MER;以及记录在正常数据时隙时的本地的MER。
进一步地,所述发送模块510还用于将所述记录模块510记录的MER发送给CMTS。或者可替换地,所述发送模块510将在时隙T的MER数据与在正常数据时隙时的MER数据的差值发送给CMTS。
其中记录模块530在硬件可以是控制电路和存储电路组合来实现,其中控制电路可以是处理器或控制器,也可以是通用处理器,数字信号处理器(英文:digital signal processor,缩写:DSP),专用集成电路(英文:application-specific integrated circuit,缩写:ASIC),现场可编程门阵列(英文:field programmable gate array,缩写:FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。接收模块520和发送模块510可以分别是收发器(transceiver)中接收接口部分和发送接口部分,也可以是收发电路的接收接口部分和发送接口部分。
其中,本实施例中的各模块的功能描述可以援引到上述方法实施例涉及的各步骤的所有相关内容,在此不再赘述。
本发明又一个实施例提供另一种CMTS,其结构示意图如图6所示,包括存储器610、处理器620、接收器630和发送器640。
存储器610,用于存储程序。
处理器620,用于执行所述存储器610存储的程序。
当所述处理器620执行所述存储器610存储的程序时,处理器620用于 调用接收器630接收CMTS发送的广播消息,所述广播消息中包含指定了所述CM在时隙T通过一段频谱S发送Probing信号的信息,所述一段频谱S是上下行频谱重叠部分的其中一段;并且还用于在述指定时隙T、指定频段S上接收CMTS发送的伪随机码序列PRBS。
所述处理器620还用于调用发送器640,在指定时隙T、指定频段S上发送Probing信号;并调用所述存储器610记录在指定时隙T、指定频段S上本地的MER;以及记录在正常数据时隙时的本地的MER。
处理器620还用于计算出所述其他CM中的每个CM在时隙T的MER数据与在正常数据时隙时的MER数据的差值;以及调用发送器640计算出的差值发送给CMTS,或者可替换地,处理器620不进行计算,直接将记录的MER发送给CMTS,由CMTS进行计算。
其中,本实施例中的各模块的功能描述可以援引到上述方法实施例涉及的各步骤的所有相关内容,在此不再赘述。
图7为本发明实施例的Cable通信系统700的示意性结构图。应理解,图7示出的通信系统仅是示例,本发明实施例的通信系统还可包括其他设备或单元,或者包括与图7中的各个设备的功能相似的模块。
Cable通信系统700包括CMTS 710和多个CM720,其中所述CMTS 710就是图3或4中所示的CMTS 300或CMTS 400,所述CM720就是图5中的所示CM 500。为了简洁,此处不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其他的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个 系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其他的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (12)

  1. 一种电缆调制解调器CM受干扰度测量方法,其特征在于,包括:
    电缆调制解调器终端系统CMTS发送广播消息给与所述CMTS相连的所有CM,所述广播消息中包含指定了其中一个CM在时隙T通过一段频谱S发送探测信号的信息,所述一段频谱S是上下行频谱重叠部分的其中一段;
    在所述时隙T,所述CMTS在下行方向通过所述频段S广播发送伪随机码序列;
    所述CMTS获取其他CM在时隙T记录的调制差错率MER数据,将所述其他CM中的每个CM在时隙T的MER数据与在正常数据时隙时的MER数据的差值作为对应CM的受干扰强度;其中所述其他CM为与所述CMTS相连接的所有CM去除所述指定CM后剩余的CM;所述正常数据时隙是指所述CMTS在下行方向发送业务数据的时隙。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括在所述时隙T,所述指定的CM在上行方向通过所述指定的频段S上发送探测信号。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括,所述CMTS根据获取的所述其他CM中的每个CM的受干扰强度,将受干扰强度高于阈值的CM与所述指定的CM划分为一组。
  4. 根据权利要求1所述的方法,其特征在于,所述CMTS还划分两段上行专用频段和下行专用频段;所述下行专用频段频段用于与所述CMTS相连的各个CM获取上下行物理层通道的信息;所述上行专用频段用于各个CM进行测距或注册。
  5. 一种电缆调制解调器CM受干扰度测量方法,其特征在于,包括:
    电缆调制解调器终端系统CMTS发送广播消息给还未被分组的电缆调制解调器CM,所述广播消息中包含指定了所述还未被分组CM中的其中一个CM在一段时隙T’通过一段频谱S’发送探测信号的信息,所述一段频谱S’是上下行频谱重叠部分的其中一段;
    在所述时隙T’,所述CMTS在下行方向通过所述频段S’广播发送伪随机码序列;
    所述CMTS获取所述还未被分组的CM中的非指定CM在时隙T’记录的调制差错率MER数据,将所述其他CM中的每个CM在时隙T’的MER数据与在正常数据时隙时的MER数据的差值作为对应CM的受干扰强度; 所述其他CM为在所述还未被分组CM中去除所述指定CM后的剩余CM;所述正常数据时隙是指所述CMTS在下行方向发送业务数据的时隙。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括在所述时隙T’,所述指定的CM在上行方向通过所述指定的频段S’上发送探测信号。
  7. 根据权利要求5或6所述的方法,其特征在于,所述方法还包括,所述CMTS根据获取的所述其他CM中的每个CM的受干扰强度,将受干扰强度高于阈值的CM与所述指定的CM划分为一组。
  8. 根据权利要求5所述的方法,其特征在于,所述CMTS根据各个CM的配置信息判断是否属于还未被分组的CM。
  9. 一种电缆调制解调器终端系统CMTS,其特征在于,包括发送模块、处理模块和接收模块;
    所述发送模块,用于发送广播消息给还未被分组的电缆调制解调器CM,所述广播消息中包含指定了所述还未被分组CM中的其中一个CM在另一时隙T’通过另一段频谱S’发送探测信号的信息,所述一段频谱S’是上下行频谱重叠部分的其中一段;还用于在所述时隙T’,在下行方向通过所述频段S’广播发送伪随机码序列;
    所述接收模块,用于接收其他M在时隙T’记录的调制差错率MER信息
    所述处理模块,用于根据所述接收模块330获取的其他CM在时隙T’记录的MER数据,将所述其他CM中的每个CM在时隙T’的MER数据与在正常数据时隙时的MER数据的差值作为对应CM的受干扰强度;其中所述其他CM为在所述还未被分组CM中去除所述指定CM后的剩余CM;所述正常数据时隙是指所述CMTS在下行方向发送业务数据的时隙。
  10. 根据权利要求9所述的CMTS,其特征在于,还包括分组模块,用于根据所述处理模块获取的所述其他CM中的每个CM的受干扰强度,将受干扰强度高于阈值的CM与所述指定的CM划分为一组。
  11. 根据权利要求9所述的方法,其特征在于,所述处理模块还用于根据各个CM的配置信息判断是否属于还未被分组的CM。
  12. 一种电缆通信系统,其特征在于,包括如权利要求9至11任一所述的电缆调制解调器终端系统CMTS和多个电缆调制解调器CN。
PCT/CN2016/095286 2016-08-15 2016-08-15 Cm受干扰度测量方法、装置和系统 WO2018032242A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680084276.XA CN108886381B (zh) 2016-08-15 2016-08-15 Cm受干扰度测量方法、装置和系统
EP16913006.9A EP3496285B1 (en) 2016-08-15 2016-08-15 Cm interference degree measurement method, device and system
PCT/CN2016/095286 WO2018032242A1 (zh) 2016-08-15 2016-08-15 Cm受干扰度测量方法、装置和系统
US16/274,943 US10461806B2 (en) 2016-08-15 2019-02-13 Method for measuring interference to CM, apparatus, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/095286 WO2018032242A1 (zh) 2016-08-15 2016-08-15 Cm受干扰度测量方法、装置和系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/274,943 Continuation US10461806B2 (en) 2016-08-15 2019-02-13 Method for measuring interference to CM, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2018032242A1 true WO2018032242A1 (zh) 2018-02-22

Family

ID=61196075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/095286 WO2018032242A1 (zh) 2016-08-15 2016-08-15 Cm受干扰度测量方法、装置和系统

Country Status (4)

Country Link
US (1) US10461806B2 (zh)
EP (1) EP3496285B1 (zh)
CN (1) CN108886381B (zh)
WO (1) WO2018032242A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10630401B2 (en) * 2016-09-13 2020-04-21 Futurewei Technologies, Inc. Interference discovery for cable modems
US10742264B2 (en) * 2017-03-31 2020-08-11 Intel Corporation Signaling method for interference group discovery in cable modems
CA3107398A1 (en) * 2018-07-24 2020-01-30 Arris Enterprises Llc Interference group creation in full duplex networks
CN110445513B (zh) * 2019-08-08 2021-08-13 深圳市同维通信技术有限公司 一种自动化测试方法、装置、系统、pc终端及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140022943A1 (en) * 2012-07-23 2014-01-23 Maxlinear, Inc. Method and system for service group management in a cable network
CN105306250A (zh) * 2014-07-28 2016-02-03 美国博通公司 通信设备以及由通信设备执行的方法
WO2016090591A1 (zh) * 2014-12-11 2016-06-16 华为技术有限公司 抵抗干扰的方法和装置
CN105704823A (zh) * 2014-12-16 2016-06-22 网件公司 电缆与无线局域网共存的系统和方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015127624A1 (zh) * 2014-02-27 2015-09-03 华为技术有限公司 串扰信道估计方法、矢量化控制实体及osd系统
PL2938095T3 (pl) * 2014-04-25 2017-06-30 Alcatel Lucent Pełnodupleksowa komunikacja na współdzielonym medium transmisyjnym
US9912464B2 (en) * 2015-07-15 2018-03-06 Cisco Technology, Inc. Interference relationship characterization in full duplex cable network environments

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140022943A1 (en) * 2012-07-23 2014-01-23 Maxlinear, Inc. Method and system for service group management in a cable network
CN105306250A (zh) * 2014-07-28 2016-02-03 美国博通公司 通信设备以及由通信设备执行的方法
WO2016090591A1 (zh) * 2014-12-11 2016-06-16 华为技术有限公司 抵抗干扰的方法和装置
CN105704823A (zh) * 2014-12-16 2016-06-22 网件公司 电缆与无线局域网共存的系统和方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ETSI: "Access, Terminals, Transmission and Multiplexing (ATTM); Third Generation Transmission Systems for Interactive Cable Television Services-IP Cable Modems; Part 4: MAC and Upper Layer Protocols DOCSIS 3.0", ETSI EN 302.878-4 V1.1.1., vol. 302, 30 November 2011 (2011-11-30), pages 42 - 961, XP055468251 *
See also references of EP3496285A4 *

Also Published As

Publication number Publication date
EP3496285B1 (en) 2021-07-07
CN108886381B (zh) 2020-02-14
US10461806B2 (en) 2019-10-29
US20190181912A1 (en) 2019-06-13
EP3496285A4 (en) 2019-06-12
EP3496285A1 (en) 2019-06-12
CN108886381A (zh) 2018-11-23

Similar Documents

Publication Publication Date Title
US20180076910A1 (en) Interference discovery for cable modems
US10461806B2 (en) Method for measuring interference to CM, apparatus, and system
US9686594B2 (en) Spectrum analysis and plant diagnostic tool for communications systems
RU2013118212A (ru) Запрос на отправку (rts) и готовность к приему (cts) для многоканальных операций
US8712420B2 (en) Generating a network map
JP2012516585A (ja) Tvホワイトスペーススペクトルおよびロングタームエボリューションシステム構造を利用した無線ローカルエリアネットワーク
CN106575971A (zh) 同轴电缆连接的电缆数据服务接口规范(docsis)系统或电缆网络中的干扰消除
WO2018137601A1 (zh) 通信方法和相关装置
US10523271B2 (en) Cable modem echo cancellation training in full duplex coaxial networks
US20130135983A1 (en) Method and system for interference avoidance in a multiprotocol communication system
US10819497B2 (en) Systems and methods for static half-duplex spectrum allocation on a duplex band
US10797901B2 (en) Power adjustment method, network management system, cable modem termination system, and cable modem
WO2020048452A1 (zh) 定位参考信号传输的方法和装置
US11239984B2 (en) Systems, methods, and apparatuses for static upstream spectrum in cable networks
WO2018085995A1 (zh) 网络拓扑发现方法、装置及混合光纤同轴电缆网络
JP5228066B2 (ja) 帯域幅を検出するための方法およびシステム
EP3515048A1 (en) Cable media converter management method, apparatus and system
EP3706376B1 (en) Network routing device and network data transmission method
WO2019105229A1 (zh) 数据处理方法及电缆调制解调器终端系统
WO2019205536A1 (zh) 一种管理消息的传输方法及相关装置
WO2018214700A1 (zh) 异网络干扰通知及处理方法、基站及终端
US10498568B2 (en) Method and device for selecting an operating mode of a cable modem
US10659244B2 (en) Multicast profile switching method, apparatus, and system
CN108684049B (zh) 分布式WiFi网络的参数配置方法、装置、设备及存储介质
US10812844B2 (en) Transmitting apparatus, receiving apparatus, and data processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16913006

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016913006

Country of ref document: EP

Effective date: 20190304