WO2018030785A1 - Bimetal-conductive polymer janus composite nanostructure having electrical stimulus response, colloid self-assembled structure thereof, preparing method, and bio-sensing, bio-imaging, drug delivery, and industrial application - Google Patents

Bimetal-conductive polymer janus composite nanostructure having electrical stimulus response, colloid self-assembled structure thereof, preparing method, and bio-sensing, bio-imaging, drug delivery, and industrial application Download PDF

Info

Publication number
WO2018030785A1
WO2018030785A1 PCT/KR2017/008620 KR2017008620W WO2018030785A1 WO 2018030785 A1 WO2018030785 A1 WO 2018030785A1 KR 2017008620 W KR2017008620 W KR 2017008620W WO 2018030785 A1 WO2018030785 A1 WO 2018030785A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
janus
poly
core
nanoparticles
Prior art date
Application number
PCT/KR2017/008620
Other languages
French (fr)
Korean (ko)
Inventor
임동우
황은영
Original Assignee
한양대학교 에리카산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170100359A external-priority patent/KR101986545B1/en
Application filed by 한양대학교 에리카산학협력단 filed Critical 한양대학교 에리카산학협력단
Priority to US16/324,278 priority Critical patent/US11913946B2/en
Publication of WO2018030785A1 publication Critical patent/WO2018030785A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • G01N33/532Production of labelled immunochemicals
    • G01N33/533Production of labelled immunochemicals with fluorescent label
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals

Definitions

  • the present invention relates to double metal-conductive polymer Janus composite nanostructures having electrical stimulation reactivity, colloidal self-assembled structures thereof, methods for their preparation and biosensing, bioimaging, drug delivery and industrial applications using the same.
  • FL fluorescence
  • SPR surface plasmon resonance
  • Raman spectroscopy has been studied for the detection and identification of pathogens. Specifically, Surface-enhanced Raman scattering (SERS) is of great interest for spectroscopic detection and identification of small molecules, nucleic acids, proteins and cells, mainly due to its ultra-high sensitivity, narrow bandwidth and significant multiplexing capabilities. .
  • Raman spectroscopy has been used as a versatile tool for obtaining structural information on materials based on vibrational transitions, but traditional Raman scattering is limited by low sensitivity. In this regard, SERS spectroscopy is a powerful analytical technique that provides a remarkable signal up to 10 14 near the surface of metal nanoparticles compared to normal Raman scattering.
  • Metal nanoparticles have been extensively studied in a variety of applications, including electronic, catalytic, biological imaging, and surface enhanced Raman spectroscopy, due to their electrical, chemical, and optical properties, depending on their structure and size.
  • multicomponent metal nanoparticles have new or improved optical properties as well as the aggregate physicochemical properties from each component due to synergistic effects compared to single component metal nanoparticles.
  • An object of the present invention is to self-assembled double metal-polymer Janus nanostructures, self-assembled nanostructures thereof, methods for their preparation and metal nanoprobes, drug carriers, surface-enhanced Raman scattering (SERS) using the same It is to provide a method for detecting a target material based.
  • Another object of the present invention is a Janus nanostructure consisting of a double-metal nanoparticle compartment and a polymer compartment of a core-satellite structure, a method for manufacturing the same, and a metal nanoprobe for detecting a target substance based on surface-enhanced Raman scattering (SERS), SERS It is to provide a method for detecting a target material based.
  • SERS surface-enhanced Raman scattering
  • Another object of the present invention is to provide an asymmetric Janus nanoprobe for surface-enhanced Raman scattering (SERS) based target material detection, a method for preparing the same, and a method for detecting the target material using the same.
  • SERS surface-enhanced Raman scattering
  • Another object of the present invention is an asymmetric Janus nanostructure consisting of a double metal nanoparticle compartment and a polymer compartment comprising a directional metal nanorod cluster, a manufacturing method thereof and a surface-enhanced Raman scattering (SERS) -based target using the same It is to provide a method for detecting a substance.
  • SERS surface-enhanced Raman scattering
  • the present invention is a.
  • Double metal nanocluster cores And a conductive polymer shell radially positioned around the core.
  • the self-assembled double metal-polymer Janus nanostructure is provided.
  • the double metal nanocluster core is composed of a first metal and a second metal surrounding the first metal surface.
  • Each of the first metal and the second metal may be selected from the group consisting of gold, silver, copper, and mixtures thereof, but is not necessarily limited thereto, and any metal widely used in the art is not limited thereto. Can be used.
  • the first metal and the second metal may not be the same.
  • the conductive polymer may be at least one selected from the group consisting of polypyrrole, polythiophene, poly (3,4-ethylene dioxythiophene) (PEDOT), and polyaniline, but is not limited thereto. But preferably may be polyaniline.
  • the double metal nano cluster core may further include a Raman dye.
  • the Raman dye means a Raman active organic compound, and any one widely used in the art may be used without limitation. Specific examples include Malachite green isothiocyanate (MGITC), rhodamine B isothiocyanate (RBITC), rhodamine 6G, adenine, 4-amino-pyrazole (3,4-d) pyrimidine, 2-ruoroadenine, N6-benzoyl Adenine, kinetin, dimethyl-allyl-amino-adenine, zeatin, bromo-adenine, 8-aza-adenine, 8-azaguanine, 4-mercaptopyridine, 6-mercaptopurine, 4-amino- 6-mercaptopyrazolo (3,4-d) pyrimindine, 8-mercaptoadenin, 9-amino-acridine and mixtures thereof, but is not necessarily limited thereto.
  • MMITC Malachite green isothiocyanate
  • the double metal means two kinds of metals forming a metal core-metal shell structure.
  • the metal nanocluster is a term generally used in the art as a term meaning aggregates (aggregates) in which metal nanoparticles are collected and aggregated.
  • the double metal nano cluster refers to agglomerated aggregates of double metal nanoparticles forming a core-shell structure.
  • the "Janus nanostructure” or “hybrid nanostructure” refers to a nanostructure composed of two different compartments (double metal nanocluster compartment (core) and conductive polymer compartment (shell)) that are physically and chemically separated. .
  • the double metal nano cluster is composed of a first metal and a second metal surrounding the first metal surface.
  • Conductive polymer compartments are attached to only one side of the double metal nanocluster compartment to grow, that is, eccentrically deposited to form asymmetric Janus nanoparticles, and the double metal nanoparticles in the Janus nanoparticles undergo hydrophobic interactions.
  • Hydrophobic interaction of the double metal nanoparticles in the Janus nanoparticles is achieved by covalently binding ODA (octadecylamine) to the Janus nanoparticles to induce selective functionalization.
  • ODA octadecylamine
  • Janus nanostructures are also referred to as “double metal-polymer Janus nanoparticles” or “Janus nanoparticles” or “Janus nanoprobes”, as their structure includes a double metal nano cluster core-conductive polymer shell.
  • a double metal nanocluster core and a polymer compartment radially positioned around the core to form a shell shape are called “superparticular structures”.
  • the present invention provides metal nanoprobes for surface-enhanced Raman scattering (SERS) based biosensing and / or bioimaging measurement using Janus nanostructures according to the present invention.
  • SERS surface-enhanced Raman scattering
  • the self-assembled double metal-polymer Janus nanostructures according to the present invention comprise a Raman dye, thereby providing a metal nanoprobe for surface-enhanced Raman scattering based biosensing and / or bioimaging. have.
  • the probe refers to a substance capable of specifically binding to a target (target) substance to be detected, and means a substance capable of confirming the presence of the target substance through the binding.
  • nanoprobe means a probe of a nano size.
  • nano includes a range of sizes that would be understood by one of ordinary skill in the art. Specifically, the size range may be a size of 0.1 to 1000 nm, more specifically 10 to 1000 nm, more preferably 20 to 500 nm, even more preferably 40 to 250 nm.
  • the present invention provides metal nanoprobes for fluorescence based biosensing and / or bioimaging measurement using Janus nanostructures according to the present invention.
  • Janus nanostructures of self-assembled double metal-polymers according to the present invention are cyanine-based fluorescent molecules, rodamine-based fluorescent molecules, oxazine-based fluorescent molecules, Alexa-based fluorescent molecules, By including a fluorescein isothiocyanate (FITC) fluorescent molecule, a 5-carboxy fluorescein (FAM) fluorescent molecule, and a Texas red (Texas Red) fluorescent molecule, it can be provided as a metal nanoprobe for measuring fluorescence-based images.
  • FITC fluorescein isothiocyanate
  • FAM 5-carboxy fluorescein
  • Texas red Texas red
  • the fluorescent dye (R 2 ) is cy 3 (Cy 3), cy 5 (Cy 5), fluorescein isothiocyanate (FITC), tetramethyltamine isothiocyanate (RITC), Alexa (Alexa) , 4,4, -difluoro-4-boro-3a, 4a-diaza-s-indacene (BODIPY), Texas Red, biotin rhodamine, coumarin, Cy, EvoBlue, Fluorescent dyes having derivatives of oxazine, carbopyronine, naphthalene, biphenyl, anthracene, phenanthrene, pyrene, carbazole and the like as basic skeletons and derivatives of the fluorescent dyes thereof can be exemplified.
  • CR110 carboxyrodamine 110: Rhodamine Green (trade name), TAMRA: carboxytetramethylhodamine: TMR, carboxyrodamine 6G: CR6G, ATTO655 (trade name), BODIPY FL (trade name): 4,4-difluoro-5,7-dimethyl -4-bora-3a, 4a-diaza-s-indacene-3-propionic acid, BODIPY 493/503 (trade name): 4,4-difluoro-1,3,5,7-tetramethyl-4- Bora-3a, 4a-diaza-s-indacene-8-propionic acid, BOD IPY R6G (trade name): 4,4-difluoro-5- (4-phenyl-1,3-butadienyl) -4-bora-3a, 4a-diaza-s-indacene-3-propionic acid, BODIPY 558/568 (trade name): 4,4
  • the present invention provides a drug carrier using Janus nanostructures according to the present invention.
  • the drug carrier may be one that is electric field stimulant reactive.
  • the polymer compartment of the self-assembled double metal-polymer Janus nanostructure according to the present invention was composed of a conductive polymer and exhibited electric field reactivity.
  • the present invention supported the drug into the polymer compartment through the electrostatic interaction of the negatively charged drug and the positively charged conductive polymer monomer, and the concentrated drug-supported nanoparticles were added to the PEG solution and irradiated with UV to PEG- Nanoparticle hydrogels were formed.
  • the present invention provides a method for producing a self-assembled double metal-polymer Janus nanostructure comprising the following steps.
  • the metal ions are deposited on the surface of the seed metal nanoparticles while being reduced by receiving electrons provided by the conductive polymer to form a double metal nanoparticle compartment, and the conductive polymer monomer is oxidized to one side of the double metal nanoparticle compartment. Is deposited only to form a conductive polymer compartment asymmetrically while growing into a conductive polymer, thereby making Janus nanoparticles composed of double metal-polymers;
  • ODA octadecylamine
  • the double metal nanoparticles in the Janus nanoparticles self-assemble covalently with the ODA to form a double metal nano cluster core and a radially located polymer shell around the core; step.
  • the method may further include attaching a Raman dye to the surface of the double metal nanoparticles of the nanoparticles composed of the double metal-polymer.
  • RBITC and MGITC were fixed on the surface of the double metal nanoparticle consisting of Au core-Ag shell, and selectively adsorbed to the double metal nanocluster compartment.
  • the seed metal of step i) may be selected from the group consisting of gold, silver, copper and mixtures thereof, but is not necessarily limited thereto, and any metal widely used in the art may be used without limitation.
  • the metal ion of step iii) may be selected from the group consisting of gold ions, silver ions, copper ions and mixtures thereof.
  • the gold ions are gold (III) chloride hydrate, chlorocarbonylgold, hydrogen tetrachloroaurate, tetrachloroaurate hydrate, chlorotriethylphosphine gold compound.
  • the silver ions include silver nitrate (AgNO3), silver tetrafluoroborate (AgBF4), trifluoromethanesulfonate silver (AgCF3SO3), silver perchlorate (AgClO4), silver acetate (Ag (CH3COO)), hexafluorophosphate silver (AgPF6), It may be selected from the group consisting of Ag (CF 3 COO) and mixtures thereof, but is not necessarily limited thereto, and may preferably be silver nitrate.
  • Ag CF 3 COO
  • mixtures thereof but is not necessarily limited thereto, and may preferably be silver nitrate.
  • the copper ions may be copper (II) acetylacetonate (Cu (acac) 2), copper chloride (CuCl), copper chloride (II) (CuCl 2), copper (II) hexafluoroacetylacetonate (Cu (hfac) 2 ), Copper (II) trifluoroacetylchloride (Cu (tfac) 2), copper (II) dipiballomethacrylate (Cu (dpm) 2), copper (II) pentafluorodimethylheptanedione (Cu (ppm) 2), copper (II) heptafluorodimethyloctane (Cu (fod) 2), copper (II) iminopentanone (Cu (acim) 2), copper (II) hexafluoro-[(trifluoro Ethyl) imino] -pentanone (Cu (nona-F) 2), copper (II) acety
  • the double metal nanocluster core may be composed of a seed metal nanoparticle (first metal) and a second metal surrounding the seed metal surface.
  • the conductive polymer of step ii) may be at least one selected from the group consisting of polypyrrole, polythiophene, poly (3,4-ethylene dioxythiophene) (PEDOT), and polyaniline, It is not necessarily limited thereto, but may preferably be polyaniline.
  • the growth of the conductive polymer of step iv) may be by surface-templated polymerization.
  • the "surface template polymerization method” refers to a polymerization method based on an oxidation-reduction reaction, and in this specification, polyaniline, which is a conductive polymer, is deposited on a double metal nanocluster through a spontaneous redox reaction between silver nitrate and an aniline monomer. Specifically, aniline monomers having a primary amine group donate electrons to silver nitrate and silver ions receive corresponding electrons to balance the oxidation-reduction reaction so that the conductive polymer monomers are oxidatively polymerized on the double metal nanoclusters. Polyaniline was deposited.
  • the surfactant of step ii) may be at least one selected from the group consisting of sodium dodecyl sulfate (SDS), sodium deoxycholate, and Triton X-200, It is not necessarily limited to this, but may preferably be SDS.
  • SDS sodium dodecyl sulfate
  • Triton X-200 Triton X-200
  • FIG. 1 A schematic diagram of an experimental method for preparing self-assembled double metal-polymer Janus nanostructures and their specific structures and an experimental method for SERS-based biosensing and / or application is shown in FIG. 1.
  • Figure 1 (a) shows the synthesis of double metal-polymer Janus nanoparticles and their specific structure.
  • double metal-polymer Janus nanoparticles were prepared through oxidative polymerization of aniline monomers and further growth of Ag nanoparticles.
  • the concentrated Au nanoparticles were added to a solution containing aniline and a surfactant, SDS, and then silver nitrate was added to initiate an oxidation-reduction reaction.
  • the resulting solution was further incubated overnight in a 3.6 mM SDS solution to prepare double metal-polymer Janus nanoparticles consisting of a double metal nanocluster compartment consisting of Au core-Ag shell and a polymer compartment consisting of poly (aniline).
  • the partitioning of the double metal-polymer Janus nanoparticles is due to the balanced interfacial tension between three phase systems of Ag, poly (aniline) and water.
  • SDS affects the interfacial tension between two adjacent phases, poly (aniline) -Ag and poly (aniline) -water, followed by the formation of separate poly (aniline) polymer compartments on one side of the Au nanoparticles Energy was minimized.
  • the double metal cluster compartments of the double metal-polymer Janus nanoparticles are selectively functionalized with ODA containing long hydrophobic alkyl chains, the directional self-assembles to form a specific structure, where the double metal cluster compartments exhibit hydrophobic interactions. Facing through. This is due to the covalent bonding of ODA to the surface of the double metal cluster compartment by the amide bonding reaction of the residual carboxyl groups of the Au nanoparticles and the first amine groups of the ODA.
  • Figure 1 (b) shows the spontaneous redox reaction between the aniline monomer and silver nitrate for the synthesis of double metal-polymer Janus nanoparticles.
  • the redox reaction was associated with the transfer of electrons between the two precursors, where aniline was oxidized to poly (aniline) and silver nitrate was reduced to silver particles.
  • Aniline monomers which are electron donor molecules due to the first amine group, donated electrons to silver nitrate and received corresponding electrons to balance the silver nitrate redox reaction.
  • Figure 1 (c) shows the specific structure of the double metal-polymer Janus nanoparticles can be applied to a new kind of SERS nanoprobe for biosensing.
  • the bimetallic compartments are selectively functionalized with Raman dyes and ODA to create hot spots in the gaps between the bimetallic nanoparticles through directional clustering, thereby improving significant Raman signals.
  • Specific antibodies that were induced and were part of the target were introduced onto the polymer compartment via molecular binding.
  • a sandwiched immune complex consisting of specific structure, target and magnetic beads was formed and washed in the magnetic field.
  • Raman scattering-based detection of targets was confirmed via Raman shift.
  • the present invention provides a surface-enhanced Raman scattering (SERS) based target substance detection method comprising the following steps:
  • the term "sandwich immune complex” refers to an immunocomplex bound through an antibody-antigen (target) -antibody reaction.
  • the antigen was named as it is inserted in the middle of the antibody to form a sandwich.
  • FIG. 7 A schematic of SERS-based immunoassay for detection of target protein is shown in FIG. 7.
  • step 1 anti-human IgG mAb binding or anti-human CEA mAb bound magnetic beads were added to a solution containing different concentrations of IgG or CEA. The target was selectively captured by the corresponding magnetic beads and resuspended in PBS by applying an external magnetic field.
  • step 2 anti-human IgG pAb binding or anti-human CEA pAb bound SERS nanoprobes were added to the solution to form a sandwich immune complex consisting of magnetic beads, target protein and SERS based nanoprobes. The unbound SERS nanoprobe was then removed by applying a magnetic field, and the resulting sandwiched immune complex was resuspended in PBS.
  • Raman spectra were identified following Raman shift for SERS-based quantitative analysis of the target with a linear correlation between relative Raman intensity and concentration of target protein.
  • the target substance may be a protein or a pathogen.
  • the protein may be selected from the group consisting of antigens, biological aptamers, receptors, enzymes and ligands.
  • the present invention provides Janus nanostructures consisting of:
  • a double-metal nanoparticle compartment having a core-satellite structure comprising a metal nanoparticle core to which a ligand is adsorbed, and a metal satellite reduced to a ligand adsorption portion of the core;
  • the ligand may be a charged ligand or a ligand having two reactors, and the metal nanoparticle core may be a positively charged metal nanoparticle core or a negatively charged metal nanoparticle core.
  • the chargeable ligand may be a polymeric ligand including a charging unit, and the ligand having two reactors may be a small molecule ligand.
  • Polymeric ligands including the charging unit (repeating unit) are PS (poly (sodium-4-styrenesulfonate)), PVP (poly (N-vinyl pyrrolidone)), PDADMAC (poly (diallyldimethylammonium chloride)), PAA (polyacrylic acid ) Or PAH (poly (allylamine) hydrochloride) may be at least one selected from the group consisting of, but is not necessarily limited thereto, preferably PSS.
  • the two reactors may be, but are not necessarily limited to, thiol group (-SH) and amine group (-NH 2).
  • the small molecule ligand having the two reactors is selected from the group consisting of ATP (4-aminothiophenol), BDT (1,4-benzenedithiol), MBA (4-mercaptobenzoic acid) and MBIA (2-mercaptobenzoimidazole-5-carboxylic acid) At least one may be, but is not necessarily limited thereto, and may be preferably ATP.
  • the positively charged metal nanoparticle core may be a metal nanoparticle capped with a positively charged material, but is not necessarily limited thereto.
  • the positively charged material may be cetyltrimethylammonium bromide (CTAB).
  • the negatively charged metal nanoparticle core may be a metal nanoparticle capped with a negatively charged material, but is not necessarily limited thereto.
  • the negatively charged material may be citric acid.
  • the core metal nanoparticle and the metal of the satellite may each be selected from the group consisting of silver, gold, copper and mixtures thereof, but are not limited thereto. Any metal that is widely used in the art may be used without limitation.
  • the core metal and the satellite metal may not be identical to each other.
  • the conductive polymer may be at least one selected from the group consisting of polypyrrole, polythiophene, poly (3,4-ethylene dioxythiophene) (PEDOT), and polyaniline, but is not limited thereto. But preferably may be polyaniline.
  • the metal nanoparticles of the metal nanoparticle core may be metal nanorods or metal nanospheres, but are not necessarily limited thereto, and any metal nanoparticles having a form widely used in the art may be used. It can be used without limitation.
  • the double metal nanoparticle compartment of the core-satellite structure may further include a Raman dye.
  • the Raman dye means a Raman active organic compound, and any one widely used in the art may be used without limitation. Specific examples include Malachite green isothiocyanate (MGITC), rhodamine B isothiocyanate (RBITC), rhodamine 6G, adenine, 4-amino-pyrazole (3,4-d) pyrimidine, 2-ruoroadenine, N6-benzoyl Adenine, kinetin, dimethyl-allyl-amino-adenine, zeatin, bromo-adenine, 8-aza-adenine, 8-azaguanine, 4-mercaptopyridine, 6-mercaptopurine, 4-amino- 6-mercaptopyrazolo (3,4-d) pyrimindine, 8-mercaptoadenin, 9-amino-acridine and mixtures thereof, but is not necessarily limited thereto.
  • MMITC Malachite green isothiocyanate
  • the "Janus nanostructure” refers to a nanostructure composed of two different compartments (core-satellite double metal nanoparticle compartment and conductive polymer compartment).
  • the double metal nanoparticle means a nanoparticle having a metal core-metal satellite structure.
  • the metal core-metal satellite structure is named after the shape of a planet and its orbiting satellites.
  • the core-satellite form of the present invention is a shape in which a satellite metal is embedded in a metal core.
  • the double metal nanoparticle compartment consists of a metal nanoparticle core onto which ligand is adsorbed, and a metal satellite reduced to the ligand adsorption portion of the core.
  • the conductive polymer compartment is attached to only one side of the double metal nanoparticle compartment and grows, that is, eccentrically deposited to form an asymmetric Janus nanostructure.
  • Janus nanostructures refers to “Janus nanoparticles” or Janus nanoprobes or asymmetric Janus nanostructures or asymmetrical, as the structure comprises a double metal nanoparticle compartment-conductive polymer compartment of a core-satellite structure. It is also named nanostructure.
  • the present invention provides a metal nanoprobe for surface-enhanced Raman scattering (SERS) based target material detection using Janus nanostructures according to the present invention.
  • SERS surface-enhanced Raman scattering
  • Janus nanostructures according to the invention can be provided as metal nanoprobes for surface-enhanced Raman scattering based target material detection by including Raman dyes.
  • the probe refers to a substance capable of specifically binding to a target (target) substance to be detected, and means a substance capable of confirming the presence of the target substance through the binding.
  • nanoprobe means a probe of a nano size.
  • nano includes a range of sizes that would be understood by one of ordinary skill in the art. Specifically, the size range may be a size of 0.1 to 1000 nm, more specifically 10 to 1000 nm, more preferably 20 to 500 nm, even more preferably 40 to 250 nm.
  • the present invention provides a method for producing Janus nanostructures comprising the following steps:
  • the metal ions in the portion adsorbed by the ligand of the core metal nanoparticles to receive the electrons provided by the conductive polymer is reduced to form a satellite metal, thereby forming a double metal nanoparticle compartment of the core-satellite structure
  • the conductive polymer monomer is oxidized and deposited on only one side of the double metal nanoparticle compartment to grow into a conductive polymer to form asymmetrically conductive polymer polymer compartment to form Janus nanoparticles; step.
  • the positively charged core metal nanoparticle may be a metal nanoparticle capped with a positively charged material, but is not necessarily limited thereto.
  • the positively charged material may be cetyltrimethylammonium bromide (CTAB).
  • the negatively charged core metal nanoparticle may be a metal nanoparticle capped with a negatively charged material, but is not limited thereto.
  • the negatively charged material may be citric acid.
  • the negatively charged ligand may be a polymeric ligand including a charging unit, and a ligand having two reactors may be a small molecule ligand.
  • the polymeric ligand including the charging unit may include PSS (poly (sodium-4-styrenesulfonate)), PVP (poly (N-vinyl pyrrolidone)), PDADMAC (poly (diallyldimethylammonium chloride)), PAA (polyacrylic acid) or PAH (poly (allylamine) hydrochloride) may be at least one selected from the group consisting of, but is not necessarily limited thereto, preferably may be PSS.
  • PSS poly (sodium-4-styrenesulfonate)
  • PVP poly (N-vinyl pyrrolidone)
  • PDADMAC poly (diallyldimethylammonium chloride)
  • PAA polyacrylic acid
  • PAH poly (allylamine) hydrochloride
  • the small molecule ligand having the two reactors is selected from the group consisting of ATP (4-aminothiophenol), BDT (1,4-benzenedithiol), MBA (4-mercaptobenzoic acid) and MBIA (2-mercaptobenzoimidazole-5-carboxylic acid) At least one may be, but is not necessarily limited thereto, and may be preferably ATP.
  • the core metal nanoparticle and the metal of the satellite may be selected from the group consisting of silver, gold, copper and mixtures thereof, respectively. It is not necessarily limited thereto, and any metal widely used in the art may be used without limitation.
  • the metal ions of step iv) may be selected from the group consisting of gold ions, silver ions, copper ions, and mixtures thereof.
  • the gold ions are gold (III) chloride hydrate, chlorocarbonylgold, hydrogen tetrachloroaurate, tetrachloroaurate hydrate, chlorotriethylphosphine gold compound.
  • the silver ions include silver nitrate (AgNO3), silver tetrafluoroborate (AgBF4), trifluoromethanesulfonate silver (AgCF3SO3), silver perchlorate (AgClO4), silver acetate (Ag (CH3COO)), hexafluorophosphate silver (AgPF6), It may be selected from the group consisting of Ag (CF 3 COO) and mixtures thereof, but is not necessarily limited thereto, and may preferably be silver nitrate.
  • Ag CF 3 COO
  • mixtures thereof but is not necessarily limited thereto, and may preferably be silver nitrate.
  • the copper ions may be copper (II) acetylacetonate (Cu (acac) 2), copper chloride (CuCl), copper chloride (II) (CuCl 2), copper (II) hexafluoroacetylacetonate (Cu (hfac) 2 ), Copper (II) trifluoroacetylchloride (Cu (tfac) 2), copper (II) dipiballomethacrylate (Cu (dpm) 2), copper (II) pentafluorodimethylheptanedione (Cu (ppm) 2), copper (II) heptafluorodimethyloctane (Cu (fod) 2), copper (II) iminopentanone (Cu (acim) 2), copper (II) hexafluoro-[(trifluoro Ethyl) imino] -pentanone (Cu (nona-F) 2), copper (II) acety
  • the core metal and the satellite metal may not be identical to each other.
  • the conductive polymer of step iii) may be at least one selected from the group consisting of polypyrrole, polythiophene, poly (3,4-ethylene dioxythiophene) (PEDOT), and polyaniline, It is not necessarily limited thereto, but may preferably be polyaniline.
  • the metal nanoparticles of the core metal nanoparticles of step i) may be metal nanorods or metal nanospheres, but are not necessarily limited thereto, and are widely used in the art. Any particle can be used without limitation.
  • the growth of the conductive polymer of step v) may be by surface-templated polymerization.
  • the "surface template polymerization method” refers to a polymerization method based on an oxidation-reduction reaction, and in this specification, polyaniline, which is a conductive polymer, is deposited on a double metal nanoparticle through a spontaneous redox reaction between silver nitrate and an aniline monomer. Specifically, aniline monomers having a primary amine group donate electrons to silver nitrate and silver ions receive corresponding electrons to balance the oxidation-reduction reaction so that the conductive polymer monomer is oxidatively polymerized on the double metal nanoparticles. Polyaniline was deposited.
  • step v) it may further comprise the step of attaching a Raman dye on the surface of the double metal nanoparticles of the Janus nanoparticles.
  • the surfactant of step iii) may be at least one selected from the group consisting of sodium dodecyl sulfate (SDS), sodium deoxycholate, and Triton X-200, It is not necessarily limited to this, but may preferably be SDS.
  • SDS sodium dodecyl sulfate
  • Triton X-200 Triton X-200
  • FIG. 1 shows a method for producing Janus nanostructure consisting of a double metal Au core-Ag satellite nanoparticle compartment and a polymer compartment through ligand-mediated interface control and spontaneous redox reaction.
  • the AuNR surface was functionalized by coating CTAB-capped AuNR with PSS, a negatively charged polymer electrolyte.
  • PSS a polymeric ligand and negatively charged polyelectrolyte
  • a specific concentration of PSS with a molecular weight of 70,000 g / mol was added to the AuNR solution in the presence of NaCl.
  • Flexible polymers with long chain lengths compared to the size of metal nanoparticles allow electrically charged polymers to be coated on oppositely charged MNPs.
  • NaCl was used to have an extended form of high charge polymer, which is the oppositely charged metal nano It is sufficient to coat the particles efficiently.
  • Janus nanostructures having double metal nanoparticle compartments and polymer compartments of AuNP (AuNS) core-Ag satellites were synthesized by small ligand mediated surface control and redox reactions as shown in FIG. Specifically, to prepare double metal AuNP core-Ag satellite nanoparticle compartments, citric acid-capped AuNPs were functionalized with small molecule ligands. ATP, a small molecule ligand containing thiol groups and amine groups distributed in the radial direction, was introduced onto citric acid-capped AuNPs (AuNS). After simultaneous oxidation of the aniline monomer and reduction of the silver ions, Janus nanostructures having anisotropic polymer compartments were prepared.
  • ATP a small molecule ligand containing thiol groups and amine groups distributed in the radial direction
  • the ligand density on AuNP determines the degree of Ag ion coordination and the reduction rate of Ag.
  • Small molecule ligands have been used to control the interfacial tension between two metal nanoparticle layers in metal nanoparticle growth pathway control.
  • Ligands embedded at the interface between Au and Ag are the main elements that bind the second metal.
  • a positively charged polyelectrolyte, poly (dimethylaminoethyl methacrylate) was introduced into the AuNP solution as a polymer ligand, but the electrostatic between citrate-capped AuNP and positively charged polymer ligand Due to the spontaneous interaction, stable ligand-coated metal nanoparticle structures were not formed and large metal nanoparticle aggregates were formed.
  • FIG. 1 (c) shows a spontaneous redox reaction between the aniline monomer and silver nitrate. Aniline monomers were oxidized to poly (aniline) by providing electrons to silver nitrate, while silver ions received electrons and were reduced.
  • Janus nanostructure consisting of a core-satellite double metal nanoparticle compartment and a polymer compartment can be applied as SERS nano probe for bio sensing.
  • the polymer compartment provided the antibody conjugation site for target detection, while the double metal particle compartment was functionalized with a Raman dye for SERS.
  • a sandwich immune complex consisting of SERS nanoprobe, target and magnetic beads was formed, and both quantitative and qualitative SERS based biosensing was achieved as a function of Raman migration.
  • the present invention provides a surface-enhanced Raman scattering (SERS) based target substance detection method comprising the following steps:
  • sandwich immune complex an immunocomplex bound through an antibody-antigen-antibody reaction.
  • the antigen was named as it is inserted in the middle of the antibody to form a sandwich.
  • the target substance may be a protein or a pathogen.
  • the protein may be selected from the group consisting of antigens, biological aptamers, receptors, enzymes and ligands.
  • Janus nanostructures comprising a double metal Au core-Ag satellite nanoparticle compartment and a polymer compartment according to the present invention are functionalized by coating a CTAB-capped AuNR with PSS, a negatively charged polymer electrolyte, to functionalize the AuNR surface, Capping AuNPs were functionalized with small molecule ligands to form double metal nanoparticle compartments modified with charged polymers or ligands. In this manner, the silver ions are reduced only in the surface-modified portion to form a nano gap, thereby greatly improving Raman strength. Accordingly, the Janus nanostructures of the present invention can be used as metal nanoprobes for surface-enhanced Raman scattering (SERS) based target material detection for target material detection.
  • SERS surface-enhanced Raman scattering
  • the present invention provides an asymmetric Janus nanoprobe for surface-enhanced Raman scattering (SERS) based target material detection comprising:
  • Nanoprobe consisting of,
  • the nanoprobe exhibits an asymmetrical structure in which the conductive polymer compartment is oxidized on only one side of the double metal nanocluster compartment.
  • the probe refers to a substance that can specifically bind to a target (target) substance to be detected, and means a substance that can confirm the presence of the target substance through the binding.
  • nanoprobe means a probe of a nano size.
  • nano includes a range of sizes that would be understood by one of ordinary skill in the art. Specifically, the size range may be a size of 0.1 to 1000 nm, more specifically 10 to 1000 nm, more preferably 20 to 500 nm, even more preferably 40 to 250 nm.
  • the Raman dye means a Raman active organic compound, and any one widely used in the art may be used without limitation. Specific examples include Malachite green isothiocyanate (MGITC), rhodamine B isothiocyanate (RBITC), rhodamine 6G, adenine, 4-amino-pyrazole (3,4-d) pyrimidine, 2-ruoroadenine, N6-benzoyl Adenine, kinetin, dimethyl-allyl-amino-adenine, zeatin, bromo-adenine, 8-aza-adenine, 8-azaguanine, 4-mercaptopyridine, 6-mercaptopurine, 4-amino- 6-mercaptopyrazolo (3,4-d) pyrimindine, 8-mercaptoadenin, 9-amino-acridine and mixtures thereof, but is not necessarily limited thereto.
  • MMITC Malachite green isothiocyanate
  • the double metal nanocluster compartment may comprise a core selected from the group consisting of gold, silver, copper and mixtures thereof; It may be a double metal nanocluster consisting of; a shell selected from the group consisting of gold, silver, copper and mixtures thereof.
  • the core metal and the shell metal may be the same metal or may not be the same metal.
  • the conductive polymer may be at least one selected from the group consisting of polypyrrole, polythiophene, poly (3,4-ethylene dioxythiophene) (PEDOT), and polyaniline, but is not limited thereto. But preferably may be polyaniline.
  • the "asymmetric Janus nanoprobe” is a nanoprobe composed of two different compartments (a double metal nanocluster compartment and a conductive polymer compartment having a Raman dye and having a core-shell structure), and a conductive polymer compartment. It exhibits an asymmetric structure that is oxidized and grown, i.e., eccentrically deposited, on only one side of the double metal nanocluster compartment.
  • asymmetric Janus nanoprobe refers to “asymmetric Janus nanocluster-polymer nanoparticles” or asymmetric nanoprobes or asymmetric Janus nanostructures, as the structure includes a double metal nanocluster compartment-conductive polymer compartment. Or asymmetric nanostructures.
  • the double metal means two kinds of metals forming a metal core-metal shell structure.
  • the metal nanocluster is a term generally used in the art as a term meaning aggregates (aggregates) in which metal nanoparticles are collected and aggregated.
  • the double metal nanocluster refers to aggregates in which a different kind of metal ion is reduced on the core metal nanocluster to form a core-shell structure.
  • a double metal nanocluster compartment consisting of a core-shell structure according to the present invention can highly enhance SERS properties from interparticle coupling between core-shell nanoparticles in the double metal nanoclusters. It is also possible to improve the reactivity between the target and the antibody by attaching the antibody to the target to be detected in the polymer compartment. Therefore, the asymmetric Janus nanoprobe according to the present invention can be utilized as a nanoprobe for detecting SERS-based target material.
  • the present invention provides a method of making an asymmetric Janus nanoprobe for detecting surface-enhanced Raman scattering (SERS) based target material, comprising the following steps:
  • the metal ions are deposited on the surface of the core metal nanoparticles while receiving and reducing electrons provided by the conductive polymer to form a double-metal nanoparticle cluster section having a core-shell structure;
  • the conductive polymer monomer is oxidized and deposited on only one side of the double metal nanocluster compartment to grow into a conductive polymer to form an asymmetrically conductive polymer compartment; step.
  • the method may further include stabilizing the core metal nanocluster with a protein.
  • the protein may be selected from the group consisting of avidin (avidin), streptavidin (streptavidin), bovine serum albumin (BSA), insulin (insulin), soy protein, casein, gelatin and mixtures thereof, but are not limited thereto. But may preferably be BSA.
  • the core metal of step i) may be selected from the group consisting of gold, silver, copper and mixtures thereof, but is not necessarily limited thereto, and any metal widely used in the art may be used without limitation.
  • the core metal may be selected from the group consisting of gold, silver, copper and mixtures thereof.
  • the metal ion of step iii) may be selected from the group consisting of gold ions, silver ions, copper ions and mixtures thereof, but is not necessarily limited thereto.
  • the gold ions are gold (III) chloride hydrate, chlorocarbonylgold, hydrogen tetrachloroaurate, tetrachloroaurate hydrate, chlorotriethylphosphine gold compound.
  • the silver ions include silver nitrate (AgNO 3 ), tetrafluoroborate silver (AgBF 4 ), trifluoromethanesulfonate silver (AgCF 3 SO 3 ), silver perchlorate (AgClO 4 ), silver acetate (Ag (CH 3 COO)), Hexafluorophosphate may be selected from the group consisting of silver (AgPF 6 ), Ag (CF 3 COO) and mixtures thereof, but is not necessarily limited thereto, and preferably silver nitrate.
  • the copper ions include copper (II) acetylacetonate (Cu (acac) 2 ), copper chloride (CuCl), copper chloride (II) (CuCl 2 ), copper (II) hexafluoroacetylacetonate (Cu (hfac) 2 ), copper (II) trifluoroacetylchloride (Cu (tfac) 2 ), copper (II) dipiballomethacrylate (Cu (dpm) 2 ), copper (II) pentafluorodimethylheptanedione (Cu ( ppm) 2 ), copper (II) heptafluorodimethyloctane (Cu (fod) 2 ), copper (II) iminopentanone (Cu (acim) 2 ), copper (II) hexafluoro-[(trifluoro Roethyl) imino] -pentanone (Cu (nona-F) 2 ),
  • the conductive polymer of step ii) may be at least one selected from the group consisting of polypyrrole, polythiophene, poly (3,4-ethylene dioxythiophene) (PEDOT), and polyaniline. Although not limited thereto, it may be preferably polyaniline.
  • the reaction solution may further comprise the step of incubating the surfactant solution.
  • the surfactant is sodium dodecyl sulfate (SDS), sodium deoxycholate, and Triton X-200 (Triton X-200) It may be at least one selected from the group consisting of, but is not necessarily limited thereto, and preferably may be SDS.
  • the growth of the conductive polymer of step iv) may be by surface-templated polymerization.
  • the "surface template polymerization method” refers to a polymerization method based on an oxidation-reduction reaction.
  • polyaniline which is a conductive polymer
  • polyaniline monomers having a primary amine group donate electrons to silver nitrate and silver ions receive corresponding electrons to balance the redox reaction so that the conductive polymer monomer is oxidatively polymerized on the double metal nanoclusters.
  • Polyaniline was deposited.
  • FIG. 1 A schematic diagram of the synthesis and SERS-based application of the asymmetric Janus nanocluster-polymer nanoparticles according to the present invention is shown in FIG. 1.
  • Figure 1 (a) shows a method for producing SERS nanoprobe based on the reduction oxidation reaction.
  • AuNP gold nanoparticle
  • AuNP clusters were formed by agglomeration of AuNPs in the presence of Raman dye and stabilized by BSA coating.
  • citric acid capped AuNP was mixed with Raman dye MGITC or RBITC at a final concentration of 1.5 ⁇ M or 3.8 ⁇ M, respectively.
  • silver nitrate and sodium citrate were added to the AuNP colloidal solution and incubated at 95 ° C. for 10-60 minutes.
  • Figure 1 (c) shows a SERS-based biosensing (biosensing) method using an asymmetric Janus nanocluster-polymer nanoprobe.
  • antibodies were introduced by selectively functionalizing the polymer compartments.
  • the SERS nanoprobe to which the target specific antibody is bound and the magnetic beads capture the corresponding target to form a sandwich immune complex consisting of the SERS nanoprobe, the target and the magnetic beads.
  • These complexes were washed by applying a magnetic field and Raman shift appeared according to the target concentration.
  • the present invention provides a surface-enhanced Raman scattering (SERS) based target substance detection method comprising the following steps:
  • the target material may be a protein or a pathogen.
  • the protein may be selected from the group consisting of antigens, biological aptamers, receptors and enzymes.
  • sandwich immune complex an immunocomplex bound through an antibody-antigen-antibody reaction.
  • the antigen was named as it is inserted in the middle of the antibody to form a sandwich.
  • the present invention provides an asymmetric Janus nanostructure consisting of:
  • a dual metal nanorod cluster compartment comprising a directional metal nanorod cluster seed and a metal shell structure
  • the metal nanorod cluster seed and the shell metal may be selected from the group consisting of silver, gold, copper, and mixtures thereof, but are not necessarily limited thereto, and any metal widely used in the art is limited. Can be used without.
  • the directional metal nanorod cluster seed is formed in a side-by-side assmebly form in which side surfaces of the individual metal nanorod particles are aligned, or in which ends of the individual metal nanorod particles are connected to each other. -to-end assembly).
  • the "side of the metal nanorod particles” refers to two side portions having a long length in a narrow and long form of the metal nanorods.
  • the “side-by-side assmebly form” in which the side surfaces of the metal nanorod particles are arranged side by side is formed in a narrow and long form of the metal nanorod, in which two long surface portions contact each other, continuously It means the form that is arranged and assembled.
  • the "side-by-side assmebly form” of the metal nanorod particles is also referred to as “side-to-side assembly", as the form is made by the side-to-side assembling. do.
  • the "end of the metal nanorod particles” refers to two surface portions having a short length in a narrow and long form of the metal nanorods.
  • "end-to-end assembly form of the metal nanorod particles” is also referred to as “end-to-end assembly”, as the form is formed by the end-to-end assembly. .
  • the conductive polymer may be at least one selected from the group consisting of polypyrrole, polythiophene, poly (3,4-ethylene dioxythiophene) (PEDOT), and polyaniline, but is not limited thereto. But preferably may be polyaniline.
  • the double metal nanorod cluster compartment may further comprise a Raman dye.
  • the Raman dye means a Raman active organic compound, and any one widely used in the art may be used without limitation. Specific examples include Malachite green isothiocyanate (MGITC), rhodamine B isothiocyanate (RBITC), rhodamine 6G, adenine, 4-amino-pyrazole (3,4-d) pyrimidine, 2-ruoroadenine, N6-benzoyl Adenine, kinetin, dimethyl-allyl-amino-adenine, zeatin, bromo-adenine, 8-aza-adenine, 8-azaguanine, 4-mercaptopyridine, 6-mercaptopurine, 4-amino- 6-mercaptopyrazolo (3,4-d) pyrimindine, 8-mercaptoadenin, 9-amino-acridine and mixtures thereof, but is not necessarily limited thereto.
  • MMITC Malachite green isothiocyanate
  • the "asymmetric Janus nanostructure” refers to a nanostructure composed of two different partitions (seed-shell structure double metal nanorod cluster compartment and conductive polymer compartment) which are not symmetrical with each other.
  • the double metal nanorod cluster compartment is composed of a directional metal nanorod cluster seed and a metal shell, and the conductive polymer compartment is attached to only one side of the double metal nanorod cluster compartment and grows, that is, eccentrically. deposited to form an asymmetric Janus nanostructure.
  • Asymmetric Janus nanostructures herein are also termed “double metal-polymer Janus nanoparticles” or “Janus nanoparticles” or Janus nanoprobes.
  • the double metal means two kinds of metals forming a metal seed-metal shell structure.
  • the metal nanorod cluster is a term used to mean that the metal nanorods are collected, and is a term generally used in this field.
  • the double metal nanorod cluster means that the double metal nanorod particles forming a seed-shell structure are collected.
  • the present invention provides a metal nanoprobe for surface-enhanced Raman scattering (SERS) signal measurement using an asymmetric Janus nanostructure according to the present invention.
  • SERS surface-enhanced Raman scattering
  • Janus nanostructures according to the present invention can be provided as a metal nanoprobe for measuring surface-enhanced Raman scattering signal by including a Raman dye.
  • the probe refers to a substance capable of specifically binding to a target (target) substance to be detected, and means a substance capable of confirming the presence of the target substance through the binding.
  • nanoprobe means a probe of a nano size.
  • nano includes a range of sizes that would be understood by one of ordinary skill in the art. Specifically, the size range may be a size of 0.1 to 1000 nm, more specifically 10 to 1000 nm, more preferably 20 to 500 nm, even more preferably 40 to 250 nm.
  • the present invention provides a method for preparing an asymmetric Janus nanostructure comprising the following steps:
  • the metal ions are deposited on the surface of the seed metal nanorod particles while receiving and reducing electrons provided by the conductive polymer to form a seed metal shell double metal nanorod cluster section;
  • the conductive polymer monomer is oxidized and deposited only on one side of the double metal nanorod cluster compartment to grow into a conductive polymer to form an asymmetrically conductive polymer compartment; step.
  • the method may further include attaching a Raman dye on the surface of the metal nanorod cluster seed.
  • the seed metal of step i) may be selected from the group consisting of gold, silver, copper and mixtures thereof, but is not necessarily limited thereto, and any metal widely used in the art may be used without limitation.
  • the metal ion of step iii) may be selected from the group consisting of gold ions, silver ions, copper ions and mixtures thereof.
  • the gold ions are gold (III) chloride hydrate, chlorocarbonylgold, hydrogen tetrachloroaurate, tetrachloroaurate hydrate, chlorotriethylphosphine gold compound.
  • the silver ions include silver nitrate (AgNO3), silver tetrafluoroborate (AgBF4), trifluoromethanesulfonate silver (AgCF3SO3), silver perchlorate (AgClO4), silver acetate (Ag (CH3COO)), hexafluorophosphate silver (AgPF6), It may be selected from the group consisting of Ag (CF 3 COO) and mixtures thereof, but is not necessarily limited thereto, and may preferably be silver nitrate.
  • Ag CF 3 COO
  • mixtures thereof but is not necessarily limited thereto, and may preferably be silver nitrate.
  • the copper ions may be copper (II) acetylacetonate (Cu (acac) 2), copper chloride (CuCl), copper chloride (II) (CuCl 2), copper (II) hexafluoroacetylacetonate (Cu (hfac) 2 ), Copper (II) trifluoroacetylchloride (Cu (tfac) 2), copper (II) dipiballomethacrylate (Cu (dpm) 2), copper (II) pentafluorodimethylheptanedione (Cu (ppm) 2), copper (II) heptafluorodimethyloctane (Cu (fod) 2), copper (II) iminopentanone (Cu (acim) 2), copper (II) hexafluoro-[(trifluoro Ethyl) imino] -pentanone (Cu (nona-F) 2), copper (II) acety
  • the metal nanorod cluster seed having the directionality of step i) may be formed in a side-by-side assmebly side by side of the individual metal nanorod particles, or the ends of the individual metal nanorod particles are connected to each other. It may be in an end-to-end assembly form.
  • Electrostatic attraction between the positively charged surfactant attached to the side of the metal nanorods and the organic anion causes the side surfaces of the individual metal nanorods to be arranged side by side with other side metal nanorods to form a metal nanorod cluster seed. Steps.
  • the sides of the individual metal nanorods are arranged side by side with the other side of the other metal nanorods to assemble the metal nanorod cluster seeds.
  • a bond consisting of a positively charged surfactant attached to the substrate is continuously generated, and means that the side surfaces of the individual metal nanorods are assembled by being aligned with the side surfaces of other individual metal nanorods. Since the assembly occurs spontaneously by electrostatic attraction, it is referred to herein as "self assembly”.
  • the electrostatic attraction between the CTAB bilayer and citrate induced side-to-side self-assembled gold nanorod (AuNR) clusters is provided.
  • the positively charged surfactant may be selected from the group consisting of hexadecyltrimethylammonium bromide (CTAB), dodecyltrimethylammonium bromide (DTAB), and trimethyltetradecylammonium bromide (TTAB), but is not necessarily limited thereto, and preferably may be CTAB.
  • CTAB hexadecyltrimethylammonium bromide
  • DTAB dodecyltrimethylammonium bromide
  • TTAB trimethyltetradecylammonium bromide
  • the organic anion may be selected from the group consisting of citrate, maleate, fumarate, tartrate, succinate, oxalate, and gluconate, but is not necessarily limited thereto, preferably citrate, that is, citric acid It may be a salt.
  • Ends of the individual metal nanorod particles are connected to the end-to-end assembly of the metal nanorod cluster seed, which may be prepared by the following steps.
  • the positively charged surfactant at the end of the metal nanorod and the thiol group of the negatively charged stimuli-reactive copolymer combine with each other to form a metal-thiol group bond, and the positively charged surfactant at the side of the individual metal nanorod and the other individual metal nanorod Bonding the terminal negatively charged stimuli-responsive copolymers with electrostatic attraction so that the ends of the individual metal nanorod particles are joined together to form a metal nanorod cluster seed.
  • the positively charged surfactant at the end of the metal nanorod and the thiol group of the negatively charged stimulatory copolymer combine with each other to form a metal-thiol group bond", whereby the positively charged surfactant at the end of the metal nanorod is Exchanged for coalescence.
  • the positively charged surfactant on the side of the individual metal nanorods and the negatively charged stimulatory copolymer at the ends of the other individual metal nanorods are bonded together by electrostatic attraction so that the ends of the individual metal nanorod particles are assembled and assembled to form a metal nanorod cluster.
  • Seed formation is specifically defined as” positive charge-surfactant-second metal nanorods on the side of the first metal nanorods by electrostatic attraction (interaction) between the positively charged surfactant and the negatively charged stimulatory copolymer.
  • the bond consisting of the negatively charged stimuli-copolymer on the end face of is continuously generated, meaning that the ends of the individual metal nanorods (more specifically, the side-ends) are connected in a diagonal direction and assembled. Since the assembly occurs spontaneously by electrostatic attraction, it is referred to herein as "self assembly”.
  • the CTAB ligand attached to the terminal of the surface-modified AuNR was exchanged with a negatively charged poly (AAc-b-NIPAM) -SH through metal-thiol group bonds. Accordingly, the electrostatic attraction between positively charged CTAB on the side of AuNR and poly (AAc-b-NIPAM) on the end face of the other AuNR induced an end-to-end self-assembled AuNR cluster.
  • the positively charged surfactant may be selected from the group consisting of hexadecyltrimethylammonium bromide (CTAB), dodecyltrimethylammonium bromide (DTAB), and trimethyltetradecylammonium bromide (TTAB), but is not necessarily limited thereto, and preferably may be CTAB.
  • CTAB hexadecyltrimethylammonium bromide
  • DTAB dodecyltrimethylammonium bromide
  • TTAB trimethyltetradecylammonium bromide
  • stimulation responsiveness refers to a property that changes behavior in response to a stimulus (eg, heat).
  • the "negative stimulus-reactive copolymer” refers to a copolymer having a negative charge, in particular a copolymer having a negative charge whose behavior changes in response to a stimulus.
  • the negatively charged stimuli copolymer may be a copolymer consisting of a negatively charged moiety and a stimulatory polymer.
  • the copolymerization method of the negatively charged moiety and the stimuli polymer may be any copolymerization method known in the art. In one embodiment of the present invention it was synthesized by a sequential reversible addition-fragmentation chain transfer (RAFT) polymerization, followed by additional amino decomposition and hydrolysis processes.
  • RAFT sequential reversible addition-fragmentation chain transfer
  • the term "moiety” means a substance, and means a part that indicates the properties of the substance.
  • the "negative moiety” means a material having negative charge properties.
  • the negatively charged moiety is selected from the group consisting of acrylic acid, methacrylic acid, itaconic acid, maleic acid and mixtures thereof. It may be, but is not necessarily limited to this, it may be preferably an acrylic acid.
  • the "stimulatory polymer” means a polymer whose behavior changes in response to a stimulus.
  • the stimulatory polymer is poly (N-isopropylacrylamide) [poly (N-isopropylacrylamide): polyNIPAM], poly (N-diethyl acrylamide) [poly (N, N'-diethyl acrylamide): polyDEAAm], poly (Dimethylamino ethyl methacrylate) [poly (dimethylamino ethyl methacrylate): polyDMAEMA], poly (N-hydroxymethyl propyl methacrylamide) [poly (N- (L)-(1-hydroxymethyl) propyl methacrylamide)], Poly [oligo (ethylene glycol) methyl ether methacrylate]: POEGMA], poly (2-vinyl pyridine): P2VP], poly ( 4-vinyl pyridine) may be selected from the group consisting of [poly (4-vinyl pyridine): P4VP] and mixtures thereof, but is not necessarily limited thereto, and may be preferably poly (N-isoprop
  • the negatively charged stimuli-reactive copolymer is not necessarily limited thereto, but may be preferably poly (acc-b-NIPAM) (poly (acrylic acid-block-N-isopropylacrylamide)).
  • Poly (AAc-b-NIPAM) according to the present invention exhibits negative charge properties due to acrylic acid.
  • -SH thiol group
  • poly (AAc-b-NIPAM) a negatively charged irritant copolymer synthesized by a subsequent amino reversible addition-fragmentation chain transfer (RAFT) polymerization, followed by further amino decomposition and hydrolysis processes.
  • RAFT addition-fragmentation chain transfer
  • FIG. 3 Shown in First, poly (tBA) (poly (tBA)) was prepared by RAFT polymerization using tBA (tert-butyl acrylate) as monomer, CDTPA as chain transfer agent (CTA) and AIBN (azobisisobutyronitrile) as initiator, 2,2'-azobis (2-methylpropionitrile).
  • tBA -macro CDTPA
  • Poly (tBA-b-NIPAM) was prepared by RAFT polymerization using NIPAM (N-isopropylacrylamide 97%) as a monomer, poly (tBA) -macro CDTPA previously synthesized with CTA, and AIBN as an initiator.
  • NIPAM N-isopropylacrylamide 97%)
  • the thiol-terminated poly (tBA-b-NIPAM) was formed by amino decomposition of the thiocarbonylthio group in the prepared poly (tBA-b-NIPAM) to thiol (Fig.
  • Poly (AAc-b-NIPAM), a negatively charged stimuli copolymer prepared as described above, is used to selectively modify the end face of AuNR.
  • the conductive polymer may be at least one selected from the group consisting of polypyrrole, polythiophene, poly (3,4-ethylene dioxythiophene) (PEDOT), and polyaniline, but is not limited thereto. But preferably may be polyaniline.
  • the method may further include incubating the reaction solution with a surfactant solution.
  • the surfactant after the redox reaction of step iii) or step iii) comprises sodium dodecyl sulfate (SDS), sodium deoxycholate, and Triton X-200. It may be at least one selected from the group, but is not necessarily limited thereto, preferably may be SDS.
  • the growth of the conductive polymer of step iv) may be by surface-templated polymerization.
  • the "surface template polymerization method” refers to a polymerization method based on an oxidation-reduction reaction, and in this specification, polyaniline, which is a conductive polymer, is deposited on a double metal nanocluster through a spontaneous redox reaction between silver nitrate and an aniline monomer. Specifically, aniline monomers having a primary amine group donate electrons to silver nitrate and silver ions receive corresponding electrons to balance the oxidation-reduction reaction so that the conductive polymer monomers are oxidatively polymerized on the double metal nanoclusters. Polyaniline was deposited.
  • FIG. 1 A schematic diagram of the synthesis of side-by-side or end-to-end directional self-assembled AuNR and its Janus nanostructures is shown in FIG. 1.
  • Figure 1 (a) shows the controlled assembly process of AuNR through electrostatic interaction. Side-to-side assembly of AuNR was achieved by the addition of citrate anions. During the synthesis of AuNR, CTAB surfactants were used to induce asymmetric forms and to maintain the colloidal stability of AuNR. As the citrate anion and the Raman dye MGITC were added to the concentrated AuNR solution, the electrostatic attraction between the CTAB bilayer and the citrate induced side-to-side assembled AuNR clusters.
  • MGITC was effectively embedded in the CTAB bilayer and located at the interparticle junctions between adjacent AuNRs in side-to-side assembled clusters.
  • the assembled side-to-side AuNR clusters were stabilized by coating with PSS.
  • end-to-end assembly of AuNR exchanges the CTAB ligand attached to the end of AuNR with poly (AAc-b-NIPAM) through thiol group-metal bonds, and the end face exchanged with positively charged CTAB on the side of AuNR. Electrostatic attraction between poly (AAc-b-NIPAM) on the phase led to end-to-end self-assembly of AuNR.
  • Figure 1 (b) shows the synthesis of an asymmetric double metal nanorod cluster-polymer Janus nanostructures using directional self-assembled AuNR clusters as seeds.
  • Janus nanostructures were prepared through redox-reduction between silver nitrate and aniline monomers.
  • Poly (aniline) compartments were formed through surface template polymerization of the aniline monomers disclosed by reducing silver nitrate in the presence of the surfactant SDS, so that poly (aniline) was eccentrically deposited on the aromatically assembled AuNR.
  • the reaction proceeded without mechanical agitation for 24 hours and further incubated in SDS solution overnight to prepare asymmetric Janus nanostructured double metal Au core-Ag shell nanorod cluster sections and poly (aniline) sections.
  • the double metal nanorod cluster compartment was partially captured by the poly (aniline) compartment.
  • SDS a surfactant, influenced the balance of interfacial tension ( ⁇ ) in three phases including double metal, poly (aniline) and water to determine the equilibrium arrangement. That is, ⁇ poly (aniline) via SDS - water by reducing the interfacial tension ( ⁇ poly (aniline) -water) may balance the three-phase interaction; ⁇ Ag - poly (aniline) > ⁇ Ag -water + ⁇ poly (aniline) -water .
  • Figure 1 (c) shows the equation for the oxidation bond reaction between the aniline monomer and silver nitrate.
  • Redox reactions include electron transfer in which the aniline monomer provides silver ions to poly (aniline) by oxidation and the silver ions accept the electrons.
  • Figure 1 (d) Janus nanostructures according to the present invention can be applied as a promising SERS nanoprobe for biosensing.
  • Double metal nanorod cluster compartments can exhibit high SERS efficiency, due to hot spot junctions between the interparticle gaps of the directionally assembled AuNR nanoclusters, with the poly (aniline) compartment being the target.
  • a sandwich immune complex consisting of SERS nanoprobe, target and magnetic beads was formed, and both quantitative and qualitative SERS based biosensing was achieved as a function of Raman migration.
  • the present invention provides a surface-enhanced Raman scattering (SERS) based target material detection method comprising the following steps.
  • SERS surface-enhanced Raman scattering
  • the target substance may be a protein or a pathogen.
  • the protein may be selected from the group consisting of antigens, biological aptamers, receptors, enzymes and ligands.
  • sandwich immune complex an immunocomplex bound through an antibody-antigen-antibody reaction.
  • the antigen was named as it is inserted in the middle of the antibody to form a sandwich.
  • the asymmetric double metal nanorod cluster-polymer Janus nanostructure is characterized by electrostatic attraction between CTAB-capped AuNR and organic anions or electrostatic attraction between CTAB-capped AuNR and negatively charged stimulatory copolymers.
  • a double metal nanorod cluster compartment comprising a directional AuNR cluster seed and a metal shell structure is formed, and the gaps between particles of the directionally assembled AuNR nanoclusters are interspersed. Raman strength is greatly improved by hot spot junctions.
  • the poly (aniline) compartments provide antibody binding sites for target detection
  • the asymmetric Janus nanostructures consisting of polymer compartments and double metal nanoparticle compartments comprising directional metal nanorod clusters are used for surface-detection of target substances. It can be used as metal nanoprobe for measuring enhanced Raman scattering (SERS) signal.
  • SERS enhanced Raman scattering
  • the double metal-polymer Janus nanostructure according to the present invention is composed of a double metal nanocluster compartment and a conductive polymer compartment covalently bonded to ODA to induce selective functionalization, and the SERS strength is greatly improved by forming a controlled self-assembly thereof. It became. Therefore, the Janus nanostructures of the present invention can be used as metal nanoprobes for surface-enhanced Raman scattering (SERS) -based or fluorescence-based biosensing and / or bioimaging measurement for target material detection.
  • SERS surface-enhanced Raman scattering
  • the double metal-polymer Janus nanostructures and their self-assembled Janus nanostructure clusters contain a positively charged conductive polymer compartment, thereby providing a drug through an electrostatic interaction with a negatively charged drug. It can be used as a drug carrier that can control drug release because it can be supported into the polymer compartment, and can induce drug release by forming a hydrogel containing concentrated drug-supported nanoparticles and changing voltage or pH conditions have.
  • Janus nanostructures comprising a double metal Au core-Ag satellite nanoparticle compartment and a polymer compartment according to the present invention have a surface with significantly improved SERS strength as it comprises a double metal nanoparticle compartment modified with a charged polymer or ligand.
  • SERS enhanced Raman scattering
  • the asymmetric Janus nanoprobe according to the present invention highly enhances SERS properties from interparticle coupling between core-shell nanoparticles in metal nanoclusters.
  • Target detection in the polymer compartment and SERS in the metal nanocluster compartment can be measured to improve target detection and optical properties simultaneously. Therefore, the asymmetric Janus nanoprobe of the present invention can be utilized as a functional nanoprobe for SERS-based biosensing.
  • the asymmetric Janus nanostructure consisting of a double metal nanoparticle compartment and a polymer compartment comprising a directional metal nanorod cluster according to the present invention has a surface-enhanced Raman scattering with a significant improvement in Raman strength as it comprises a directional assembled double metal nanorod cluster. It can be applied as metal nano probe for (SERS) signal measurement.
  • SERS metal nano probe for
  • FIG. 1 is a schematic diagram of an experimental method for preparing a double metal-polymer Janus nanostructure, its self-assembled Janus nanostructure cluster and its specific structure, and an experimental method for SERS-based biosensing applications; (a) a method of synthesizing a double metal-polymer Janus nanostructure, its self-assembled Janus nanostructure cluster and its specific structure, (b) a spontaneous redox reaction between aniline monomer and silver nitrate for the synthesis of double metal-polymer Janus nanostructure , (c) SERS-based biosensing method using the specific structure of self-assembled Janus nanostructure cluster of double metal-polymer Janus nanostructure.
  • the average diameters of Au nanoparticles and double metal-polymer Janus nanoparticles were 30.1 ⁇ 0.5 nm and 62.8 ⁇ 2.3 nm, respectively, and the average diameters of specific structures according to different clustering levels were 168.3 ⁇ 1.3 nm, 192.4 ⁇ 2.4 nm and 266.3. ⁇ 6.0 nm.
  • the z-potential values of Au nanoparticles, double metal-polymer Janus nanoparticles and their self-assembled Janus nanostructure cluster specific structures were -29.5 ⁇ 0.7 mV, -28.0 ⁇ 0.6 mV and -11.2 ⁇ 0.9 mV, respectively.
  • the average diameters of RBITC-labeled and MGITC-labeled double metal-polymer Janus nanoparticles were 122.1 ⁇ 2.4 nm and 112.0 ⁇ 15.9 nm, respectively, and RBITC-labeled and MGITC-labeled specific structures
  • the hydrodynamic diameters of (Nanoclusters with RB / with MG) were 450.1 ⁇ 3.1 nm and 401.1 ⁇ 10.0 nm, respectively.
  • R 2 0.9162
  • FIG. 5 is a TEM and SEM image to confirm size and shape; (a) TEM image of Au nanoparticles, (b) TEM image of double metal-polymer Janus nanostructures before further incubation overnight in 3.6 mM SDS solution, (c) double incubation overnight in 3.6 mM SDS solution TEM image of metal-polymer Janus nanoparticles.
  • the black part is the double metal cluster compartment and the bright part is the polymer compartment.
  • D, e, f TEM image of the specific structure according to the degree of clustering. As the level of clustering increased, self-assembled double metal-polymer Janus nanostructure clusters in the form of dimers, trimers or tetramers were formed.
  • the scale bar of the TEM image is (a) 100 nm and (b-f) 200 nm, and the scale bar of the SEM image is (g-h) 1.0 ⁇ m.
  • FIG. 6 shows the cumulative release rate of fluorescein from double metal-polymer Janus nanostructures embedded in PEG hydrogels measured with an electric field of + 1.5 v or ⁇ 1.5 v every 30 minutes; (a) cumulative release rate upon electrical stimulation of + 1.5 v, (b) cumulative release rate upon electrical stimulation of -1.5 v, (c) fluorescein-filled double metal-polymer Janus nanoparticles at pH 4, 7 and 11 UV-vis absorbance, (d) Raman spectra of MGITC originating from fluorescein-supported double metal-polymer Janus nanostructures. Raman peaks of MGITC and fluorescein were 1617 cm ⁇ 1 and 1176 cm ⁇ 1, respectively.
  • FIG. 7 is a schematic of SERS-based immunoassay for the detection of target proteins.
  • SERS peak intensities of RBITC or MGITC-labeled specific structures increased linearly with CEA concentrations at 1646 cm ⁇ 1 and 1617 cm ⁇ 1 .
  • control 1 and control 2 are controls without anti-human CEA pAb and CEA, respectively.
  • FIG. 10 is a schematic diagram of the fabrication of Janus nanostructures consisting of a double-metal nanoparticle compartment and a polymer compartment of a core-satellite structure and its SERS-based biosensing application method; FIG. (a) a method of making a Janus nanostructure comprising a double metal nanoparticle compartment and a polymer compartment of an AuNR core-Ag satellite, (b) a Janus comprising a double metal nanoparticle compartment and a polymer compartment of an AuNP core-Ag satellite.
  • Janus nanostructures comprising Au nanoparticles, PSS coated AuNR (AuNR-PSS) or ATP coated AuNP (AuNP-ATP) and their Au core-Ag satellite double metal compartments and polymer compartments (AuNR- UV-Vis absorbance and hydrodynamic diameter of PSS Ag PANI or AuNP-ATP Ag PANI); (a) Absorbance of Janus nanostructures (AuNR-PSS Ag PANI) comprising AuNR, PSS coated AuNR (AuNR-PSS) and Au core-Ag satellite double metal compartments and polymer compartments thereof.
  • the mean diameters of the longitudinal and transverse axes of AuNR were 1.5 ⁇ 0.1 nm and 49.9 ⁇ 0.9 nm, respectively, and the average diameter of PSS coated AuNR was 2.8 ⁇ 0.1 nm, 63.4 ⁇ 0.5 nm, and the average of double metal core-satellite nanostructures.
  • the diameter was 3.1 ⁇ 0.1 nm, 73.0 ⁇ 0.8 nm due to the non-spherical morphology, (c) Janus comprising AuNP, ATP coated AuNP (AuNP-ATP) and its Au core-Ag satellite double metal compartment and polymer compartment Absorbance of Nanostructures (AuNP-ATP Ag PANI).
  • Figure 12 shows (a) relative Raman shift with Raman dye concentration of AuNR core-Ag satellites labeled with MGITC in the concentration range of 10 -7 -10 -5.5 M, (b) double metal at MGITC at 10 -5.5 M Relative Raman shift between AuNR core-Ag satellites (Au-PSS Ag PANI, Example 1) and -Ag shell nanoparticles (Au-Ag PANI, Comparative Example 1), (c) 10 -6 -5.0 x 10 -6 Relative Raman shift with Raman dye concentration of AuNP core-Ag satellites labeled with ATP in the M concentration range, (d) AuNP core-Ag satellites labeled with ATP at 2.5 ⁇ 10 -6 M concentration (Au-ATP Ag Relative Raman shift of PANI, Example 2) and -Ag shell nanoparticles (Au-Ag PANI, Comparative Example 1).
  • FIG. 13 is transmission electron microscopy (TEM) and elevation annular dark field scanning TEM (HAADF-STEM) images for each nanoparticle;
  • FIG. (a) TEM image of AuNRs, (b) TEM image of double metal AuNR core-Ag nanoparticles, (cd) TEM image of double metal AuNR core-Ag satellite nanoparticles at various magnifications, (gh) at various magnifications HAADF-STEM image of double metal AuNR core-Ag satellite nanoparticles.
  • Scale bars are (a, c, e) 100 nm, (b, g) 200 nm, (d, f, h) 20 nm.
  • FIG. 14 is transmission electron microscopy (TEM) and elevation annular dark field scanning TEM (HAADF-STEM) images for each nanoparticle;
  • FIG. (a) TEM image of AuNPs, (b) TEM image of double metal AuNP core-Ag nanoparticles, (cd) TEM image of double metal AuNP core-Ag satellite nanoparticles at various magnifications, (gh) at various magnifications HAADF-STEM image of double metal AuNP core-Ag satellite nanoparticles of.
  • the scale bar is (a) 50 nm, (b, c, e, g) 200 nm, (d, f, h) 20 nm.
  • 16 is a schematic diagram of the synthesis of asymmetric Janus nanocluster-polymer nanostructures and SERS-based biosensing applications; (a) a method for preparing an asymmetric Janus nanocluster-polymer nanostructure based on a reduction oxidation reaction, (b) a spontaneous redox reaction between silver nitrate and aniline monomers, (c) a SERS using an asymmetric Janus nanocluster-polymer nanostructure Based Biosensing Method.
  • 17 is a UV-Vis absorbance spectrum of AuNPs, Raman dye derived Au nanoclusters and asymmetric Janus nanoclusters-polymer nanostructures; (a) UV-Vis absorption peaks of AuNP (Au) and MGITC induced Au nanoclusters (Au_MG), (b) UV-Vis absorption peaks of AuNP (Au) and RBITC derived Au nanoclusters (Au_RB), (c ) UV-Vis absorption peaks of asymmetric Janus nanocluster-polymer nanostructures (Au-MG @ Ag PANI or Au-RB @ Ag PANI), (d) AuNP, Au nanoclusters and asymmetric Janus nanocluster-polymer nanostructures Hydrodynamic diameter and size distribution of (Au-MG @ Ag PANI or Au-RB @ Ag PANI).
  • the average diameters of AuNP, MGITC- or RBITC-derived Au nanoclusters were 18.9 ⁇ 0.4 nm, 152.9 ⁇ 2.8 nm and 115.7 ⁇ 1.8 nm, and the MGITC- or RBITC-induced asymmetric Janus nanocluster-polymer nanostructures were 205 ⁇ 4.5 nm and 186.3 ⁇ 2.1 nm.
  • 19 is a TEM image of asymmetric Janus nanocluster-polymer nanoparticles induced with MGITC at a final concentration of 1.5 ⁇ M; (a, b) Asymmetric Janus nanocluster-polymer nanoparticles without BSA stabilization. No asymmetric Janus nanocluster-polymer nanoparticles were formed, (c, d) BSA stabilized asymmetric Janus nanocluster-polymer nanoparticles.
  • the scale bar is (a) 100 nm, (b) 10 nm, (c) 200 nm, (d) 20 nm.
  • FIG. 20 is a TEM image of asymmetric Janus nanocluster-polymer nanoparticles induced with RBITC at a final concentration of 3.75 ⁇ M; (a, b) Asymmetric Janus nanocluster-polymer nanoparticles without BSA stabilization. No asymmetric Janus nanocluster-polymer nanoparticles were formed, (c, d) BSA stabilized asymmetric Janus nanocluster-polymer nanoparticles. Scale bars are (a, c) 100 nm, (b, d) 20 nm.
  • FIG. 21 is a TEM image of asymmetric Janus nanocluster-polymer nanoparticles induced with MGITC at a final concentration of 0.75 ⁇ M;
  • (a, b) Asymmetric Janus nanocluster-polymer nanoparticles without BSA stabilization. Low levels of clustering resulted in the formation of asymmetric Janus nanocluster-polymer nanoparticles without BSA coating.
  • FIG. 22 is a TEM image of asymmetric Janus nanocluster-polymer nanoparticles induced with RBITC at a final concentration of 1.9 ⁇ M;
  • (a, b) Asymmetric Janus nanocluster-polymer nanoparticles without BSA stabilization. Low levels of clustering resulted in the formation of asymmetric Janus nanocluster-polymer nanoparticles without BSA coating.
  • FIG. 23 shows Raman spectra and Raman intensities of different target concentrations according to CEA concentrations.
  • the SERS peak intensity of MGITC-induced asymmetric Janus nanocluster-polymer nanoparticles at 1618 cm ⁇ 1 increased linearly with CEA concentration.
  • R 2 0.9047.
  • control is a control without CEA.
  • FIG. 24 is a schematic diagram of the synthesis and application of side-by-side or end-to-end directional self-assembled AuNR and its Janus nanostructures; (a) controlled assembly of AuNR through electrostatic interaction, (b) synthesis of asymmetric double metal nanorod cluster-polymer Janus nanostructures using directional self-assembled AuNR clusters as seeds, (c) aniline monomers Spontaneous redox reaction between and silver nitrate, (d) Surface-enhanced Raman scattering (SERS) based target material detection using Janus nanostructures.
  • SERS Surface-enhanced Raman scattering
  • FIG. 25 shows UV-Vis absorbance spectra and hydrodynamic diameters of side-to-side assembled AuNR clusters and asymmetric Janus nanostructures comprising the same; (a) UV-Vis absorbance spectra of side-to-side assembled AuNR clusters with increasing incubation time from 1 to 5 minutes, (b) of side-to-side assembled AuNR clusters with increasing incubation time of 1 to 5 minutes. Hydrodynamic diameter, (c) UV-Vis absorbance spectrum of asymmetric Janus nanostructures with lateral Audirectional clusters, and (d) hydrodynamic diameters of asymmetric Janus nanostructures with lateral AuNR clusters. Control was a double metal nanorod-polymer Janus nanostructure without AuNR cluster.
  • Fig. 26 is a schematic diagram showing the synthesis steps of (a) thiol-terminated poly (tBA-b-NIPAM) and (b) poly (AAc-b-NIPAM).
  • FIG. 28 shows UV-Vis absorbance spectra and hydrodynamic diameters of end-to-end assembled AuNR clusters and asymmetric Janus nanostructures comprising the same; (a) UV-Vis absorbance spectra of deionized water at different temperatures or end-to-end assembled AuNR clusters in PBS, (b) hydrodynamic diameters of deionized water at different temperatures or end-to-end assembled AuNR clusters in PBS, (c A) UV-Vis absorbance spectra of asymmetric Janus nanostructures containing end-to-end AuNR clusters at different temperatures or deionized water at different temperatures, (d) deionized water at different temperatures or end-to-end AuNR clusters at PBS Hydrodynamic Diameter of Asymmetric Janus Nanostructures. Control was a double metal nanorod-polymer Janus nanostructure without AuNR cluster.
  • TEM 30 is transmission electron microscopy (TEM) for each nanoparticle; Asymmetric including (a) individual AuNR, (b) double metal nanorod-polymer Janus nanoparticles without AuNR clusters, (c, d) side-to-side assembled AuNR clusters, and (e, f) side-to-side assembled AuNR clusters Janus nanostructures.
  • Scale bars are (a) 100 nm, (b, c, e) 200 nm, (d) 10 nm, (f) 20 nm.
  • FIG. 31 is transmission electron microscopy (TEM) for each nanoparticle;
  • FIG. An asymmetric Janus nanostructure comprising (a, b) end-to-end assembled AuNR clusters, and (c, d) end-to-end assembled AuNR clusters.
  • Scale bars are (a, c) 100 nm, (b, d) 50 nm.
  • SERS peak intensities of asymmetric Janus nanostructures containing MGITC-derived side-to-side assembled AuNR clusters at 1618 cm ⁇ 1 increased linearly with CEA concentrations.
  • R 2 0.9412.
  • control is a control without CEA.
  • Citrate-capped gold nanoparticles were synthesized according to the citrate reduction process. Specifically, gold chloride (III) hydrate (Gold (III) chloride hydrate) (HAuCl 4 .3H 2 O) stock solution (stock solution) of the stirring the mixture, and the solution so that the total concentration of 0.01% in deionized water 100 mL After heating with heating, stirring was continued while adding 1.5 mL of 1% sodium citrate solution to the boiling solution. The solution turned red within 5 minutes, indicating a reduction of gold ions, and the reaction proceeded further for 20 minutes. The solution was then cooled to room temperature.
  • gold chloride (III) hydrate Gold (III) chloride hydrate) (HAuCl 4 .3H 2 O) stock solution (stock solution) of the stirring the mixture, and the solution so that the total concentration of 0.01% in deionized water 100 mL
  • stirring was continued while adding 1.5 mL of 1% sodium citrate solution to the boiling solution.
  • the solution turned red within 5 minutes,
  • Double metal-polymer Janus nanostructures consisting of a double metal Au core-Ag shell compartment and a poly (aniline) counter compartment were prepared via surface template polymerization based on reduction-oxidation. Specifically, 15 mL of citrate-attached AuNP solution was concentrated by centrifugation at 10,000 rpm for 15 minutes, and then the supernatant was removed. Aniline and SDS were dissolved in 7.5 mL of deionized water to a final concentration of 5 mM and 0.9 mM, respectively. Concentrated AuNP was added to the solution, followed by brief voltexing, and 2.5 ml of silver nitrate solution was added and mixed to a final concentration of 2.5 mM.
  • the reaction proceeded without stirring for 24 hours at room temperature under dark conditions to synthesize a double metal consisting of Au seed (first metal) and Ag (second metal) surrounding the seed metal.
  • the reaction solution was incubated overnight in a 3.6 mM SDS solution to eccentrically deposit poly (aniline) on only one side of the double metal to form polymer compartments.
  • the resulting solution was purified by centrifugation at 8,000 rpm for 10 minutes and resuspended in 3.6 mM SDS solution to prevent aggregation to prepare a double metal-polymer Janus nanostructure comprising a double metal nano cluster compartment and a polymer compartment. It was.
  • Example 2 Self-assembled double metal-polymer Janus nanostructure cluster specific structure synthesis consisting of a double metal nanocluster core and a polymer shell radially located around the core
  • Raman reporters Both types of Raman reporters, RBITC (rhodamine B isothiocyanate) and MGITC (Malachite green isothiocyanate), were selectively introduced into double metal-polymer Janus nanocluster compartments, and directional self-assembly into specific structures was achieved through noncovalent interactions.
  • the double metals in the double metal-polymer Janus nanostructures of Example 1 self-assemble through hydrophobic interaction to form a double metal nanocluster core, and the polymer compartment extends radially in the opposite direction of the double metal nanoclusters that abut each other. While forming a specific structure while forming a polymer shell (Fig. 1 (a)).
  • Magnetic nanoparticles were synthesized using iron chloride precursors.
  • Iron oxide nanoparticles Fe 3 O 4
  • Fe 2 + and Fe 3 + in a molar ratio of 1: 2 in an aqueous ammonia solution as a precipitant.
  • 0.86 g of ferrous chloride tetrahydrate (FeCl 2 ) and 2.35 g of ferric chloride (FeCl 3 ) were stirred and mixed in 40 mL of deionized water, and degassed with nitrogen gas for 30 minutes. The temperature was raised to 80 ° C.
  • MNPs Fe 3 O 4 magnetic nanoparticles
  • poly (acrylamide-co-acrylic acid, poly (AAm-co-AA)) is prepared in a 3: 1 volume mixture of deionized water and ethylene glycol, Concentrated MNP was uniformly suspended in the polymer solution. Suspensions of dispersed MNPs were placed in a 1.0 mL syringe (BD, Franklin Lakes, USA) with a 23 gage stainless steel capillary for the electrohydrodynamic (EHD) dispersion process. In order to achieve a stable Taylor cone and con-jet mode, optimized viscosity was obtained by dissolving the polymer in a viscous solvent such as ethylene glycol without increasing the polymer concentration.
  • a viscous solvent such as ethylene glycol
  • the syringe was equipped with a micro syringe pump KDS-100 (KD Scientific, Inc, USA) which flows the MNPs suspension at a constant rate.
  • An aluminum foil of 0.018 mm thickness (Fisherbrand; Thermo Fisher Scientific, USA) was used as the capture substrate.
  • High voltage was applied between the capillary connected to the positive electrode and the aluminum foil connected to the negative electrode using a high voltage power supply NNC HV 30 (Nano NC, Korea). The distance between the two electrodes was 20-25 cm. The high voltage was maintained in the range of 15-20 kV and the flow rates of the two solutions were maintained at 0.08-0.15 ml / hour.
  • High resolution digital cameras (D-90, Nikon Corporation, Japan) were used to visualize and capture single-phase Taylor cones, jet streams, and jet break-ups during EHD injection. After EHD injection, the resulting magnetic beads were thermally crosslinked overnight at 175 ° C. Finally, magnetic beads in powder form were collected by scraping off the foil and used for later experiments.
  • UV-Vis spectrum of double metal-polymer Janus nanoparticles is a UV-visible spectrometer (UV-1800, which changes the wavelength from 300 to 900 nm to a fixed slit width of 1 nm in a one-time 10 scan mode at medium scan speed at room temperature. Shimadzu, Japan). Baseline was calibrated using two empty cells filled with deionized water. Colloidal solution characteristics are dynamic light scattering (DLS) (Zeta-sizer Nano ZS90, Malvern Instruments, UK) with a maximum power of 5 mW as a light source at a scattering angle of 90 ° and supplied with a Ne-He laser at 633 nm.
  • DLS dynamic light scattering
  • Average diameter, size distribution and surface morphology were measured by scanning electron microscope (SEM) (VEGA-SB3, TESCAN, Czech Republic) with a focused beam of 0.5-30 kV. A few nanoparticle solutions were placed on silicon wafers and dried at room temperature. Samples were coated with a thin layer of conductive platinum using a coater (K575X Turbo Sputter Coater, Emitech Ltd, UK). The average size of the particles was analyzed by measuring approximately 50-100 particles randomly selected from TEM and SEM images using ImageJ software developed by the National Institutes of Health.
  • colloidal solutions of nanostructures labeled with RBITC or MGITC were prepared using small glass capillary tubes (Kimble Chase, plain capillary tubes, soda-lime glass, inner diameter: 1.1-1.2 mm, wall: 0.2 ⁇ 0.02 mm, length: 75 mm). ) SERS spectra were collected for 1 second of exposure time used to focus the laser spot on the glass capillary in the wavelength range of 608-1738 cm ⁇ 1 using a 20 ⁇ objective lens.
  • ABP NPs anisotropic bimetal-polymer nanoparticles: double metal-polymer Janus nanostructures.
  • FIG. 2 shows the UV-Vis absorbance and hydrodynamic diameter of AuNP, double metal-polymer Janus nanoparticles and self-assembled double metal-polymer Janus nanostructure cluster specific structures.
  • the UV-Vis absorption peak of AuNP appeared at 520 nm.
  • a new absorption peak appears in the range from 410 nm to 490 nm and Au absorption is blue-shifted to 480 nm, indicating the presence of double metal nano clusters consisting of Au core-Ag shells. Indicated. This change in plasmon absorption was consistent with the color change from red to brown of the colloidal solution.
  • Zeta potential values for Au nanoparticles in deionized water, double metal-polymer Janus nanostructures, and their self-assembled double metal-polymer Janus nanostructure cluster-specific structures are -29.5 ⁇ 0.7 mV, -28.0 ⁇ 0.6 mV, and -11.2, respectively. ⁇ 0.9 mV.
  • the surface charge of the double metal-polymer Janus nanostructure cluster specific structure was greatly reduced, indicating that ODA was well bound to the double metal cluster compartment through an amide bond reaction.
  • 2 (d) shows the hydrodynamic diameters of the RBITC-labeled and MGITC-labeled double metal-polymer Janus nanostructures and their double metal-polymer Janus nanostructure cluster specific structures.
  • the average diameters of the RBITC-labeled and MGITC-labeled double metal-polymer Janus nanostructures were 122.1 ⁇ 2.4 nm and 112.0 ⁇ 15.9 nm, respectively.
  • This result indicated that the uptake of positively charged Raman dyes induced small aggregates despite no significant change in surface charge as shown in Table 1.
  • positively charged Raman dyes may connect the double metal nanocluster compartments with each other to increase net charge.
  • the hydrodynamic diameters of the RBITC-labeled and MGITC-labeled specific structures were 450.1 ⁇ 3.1 nm and 401.1 ⁇ 10.0 nm, respectively. Because of the more hydrophobic nature of RBITC, there was a significant difference in the degree of self-assembly of specific structures labeled with Raman dyes at the same concentration of Raman dyes.
  • FIG. 3 shows the relative Raman spectra of specific structures (a) labeled with RBITC and (c) MGITC to optimize the proper concentration of Raman dye for highly sensitive SERS based biosensing.
  • Raman strength is significantly enhanced due to the increased electromagnetic field in the gaps between the nanoparticles.
  • Raman intensity of the RBITC and MGITC-labeled specific structures at 1646 cm ⁇ 1 and 1617 cm ⁇ 1 were about 15.92 and 15.59 times higher than the specific structures at ODA concentrations of 2.968 ⁇ M, respectively.
  • FIG. 5 shows (a) Au nanoparticles, (b, c, g) double metal-polymer Janus nanoparticles and (d, e, f, h) self-assembled double metal-polymer Janus to characterize size and shape.
  • the average size of Au nanoparticles was 21.82 ⁇ 2.59 nm.
  • the resulting nanoparticles consisted of two separate compartments containing a double metal Au core-Ag shell and poly (aniline) as shown in FIG. 5 (b).
  • FIG. 6 shows the accumulation of fluorescein from double metal-polymer Janus nanoparticles embedded in PEG hydrogels with electrical stimulation of (a) + 1.5 v and (b) -1.5 v every 30 minutes. Shows the release. Fluorescein was supported into the polymer compartment through the electrostatic interaction of negatively charged fluorescein and positively charged aniline monomers. Concentrated fluorescein-supported nanoparticles were added to the PEG solution and irradiated with UV to form PEG-nanoparticle hydrogels. When stimulated at 480 nm, the emission intensity of the fluorescent material was calculated by measuring the fluorescence intensity at the maximum emission wavelength of 512 nm.
  • the polymer compartment of the double metal-polymer Janus nanostructure was composed of poly (aniline), which represents a conductive polymer, and exhibited electric field reactivity.
  • poly (aniline) represents a conductive polymer
  • the amount of fluorescein emitted was higher than when a voltage of + 1.5 v was applied.
  • the positive charge in the polymer compartment reduced the electrostatic forces of the negatively charged fluorescein and poly (aniline) compartments, resulting in good drug release.
  • Figure 6 (c) shows the UV-vis absorption of fluorescein-filled double metal-polymer Janus nanoparticles at various pHs of 4, 7 and 11.
  • FIG. 6 (d) shows the Raman spectrum of MGITC generated from fluorescein-supported double metal-polymer Janus nanostructures. Raman peaks of MGITC and fluorescein were 1617 cm ⁇ 1 and 1176 cm ⁇ 1 , respectively, indicating that the dual metal-polymer Janus nanostructures are fluorescent and SERS based nanoprobes.
  • This binding reaction was based on the chemistry of sulfo-N-hydroxysuccinimide ester (EDC) and sulfo-NHS. Specifically, 1.0 mg / ml or 2.0 mg / ml of anti-human IgG pAb in a dispersion solution of double metal-polymer Janus nanoparticles containing 10 mM PBS at pH 7.4 containing 60 mM EDC and 9.2 mM sulfo-NHS. Or 5 ⁇ l of anti-human CEA pAb was added and stirred for 3 hours to bring the total pAb concentration to 5 ⁇ g / ml or 10 ⁇ g / ml, respectively.
  • EDC sulfo-N-hydroxysuccinimide ester
  • Anti-human IgG pAb- or anti-human CEA pAb- bound specific structures were washed by centrifugation at 3,000 rpm and resuspended in PBS.
  • magnetic beads were chemically reacted with an anti-human IgG mAb or an anti-human CEA mAb by activating the residual carboxyl groups on the polymer nanoparticles heat stabilized overnight at 175 ° C. Combined.
  • 1.25 mg of magnetic beads were suspended in 0.9 ml of PBS and sonicated for 2 minutes using a tip-sonicator using a 3/3 second on / off cycle at 20.0% amplitude.
  • the uniformly suspended magnetic beads were mixed with 5.0 mM EDC and 5.0 mM sulfo-NHS and stirred for 1 hour. Dilute 2.96 mg / ml or 3.56 mg / ml anti-human IgG mAb or anti-human CEA mAb with 100 ⁇ l of PBS buffer, and then add a final concentration of 7.4 ⁇ g / ml or 8.9 ⁇ g / ml to the magnetic bead solution. Add slowly and stir for 1 hour. Unbound anti-human IgG mAb or anti-human CEA mAb was isolated using a magnetic field and antibody-bound magnetic beads were resuspended in PBS for SERS-based biosensing of IgG and CEA.
  • a specific structure labeled with a Raman reporter was used as a SERS nanoprobe for quantitative analysis of target proteins IgG and CEA, and sandwiched immune complexes were prepared using anti-human IgG mAbs or magnetic beads combined with anti-human CEA mAbs.
  • the immune complexes were selectively isolated by forming tools by forming them.
  • magnetic beads bound with anti-human IgG mAb or anti-human CEA mAb were added to a buffer containing 6 different concentrations of IgG or CEA ranging from 2 ⁇ g / ml to 1 ng / ml and reacted for 1 hour. I was.
  • the target protein was washed with an external magnetic field and resuspended in fresh PBS buffer.
  • anti-human IgG pAb or anti-human CEA pAb bound SERS nanoprobe was added to each immune complex in which the target protein and magnetic beads were formed and reacted for 1 hour to constitute the magnetic beads, target protein and SERS nanoprobe.
  • Sandwich immune complexes were prepared (FIG. 1 (c)). Unbound SERS nanoprobes were removed using a magnetic field and the product sandwiched immune complex was resuspended in PBS for SERS measurements (FIG. 7). Experiments with two controls were also performed together to assess the selective binding capacity of SERS nanoprobes without each of the bound antibodies or target proteins.
  • FIG. 8 and 9 show plots of Raman spectra and Raman intensity at different target concentrations according to IgG and CEA concentrations.
  • IgG concentration increased in the range from 1.0 ng / ml to 2.0 ⁇ g / ml
  • Raman intensity of RBITC-labeled or MGITC-labeled specific structures increased due to increased formation of sandwich immune complexes.
  • Control 1 and Control 2 represent controls without anti-human IgG pAb and IgG, respectively.
  • AuNRs Gold nanorods
  • 5 mL of 0.20 M hexadecyltrimethylammonium bromide (Sigma-Aldrich, USA) was dissolved at 29-30 ° C. and 0.0005 M of Gold (III) chloride hydrate (HAuCl 4 .3H 2 O) ( Sigma-Aldrich, USA) and 5 mL of cold 0.010 M NaBH 4 were then added.
  • the yellow color of the reaction solution was changed to a brownish yellow solution, and the resultant seed solution was maintained at 29-30 ° C. and used within 2 to 2.5 hours.
  • CTAB capped AuNR was centrifuged at 10,000 rpm for 10 minutes and resuspended in 1 mM NaCl solution.
  • Poly (styrene sulfonate) (PSS) (Sigma-Aldrich, USA), a negatively charged polymeric ligand dissolved in 1 mM NaCl solution, was prepared to a final concentration of 0.06-0.2 w / v% and added to AuNR solution -Polymer (AuNR-PSS) complexes were formed.
  • the metal-polymer (AuNR-PSS) complex was purified by centrifugation at 8,000 rpm for 10 minutes and concentrated, followed by oxidation of double metal-polymer Janus nanoparticles consisting of AuNR core-Ag satellite double metal compartments and poly (aniline) compartments. Prepared via surface mold polymerization based on reduction. Specifically, aniline and SDS were dissolved in 7.5 mL of deionized water at a final concentration of 5 mM and 0.9 mM, respectively. The concentrated metal-polymer (AuNR-PSS) complex was added to the solution and stirred, followed by 2.5 mL of silver nitrate solution and mixed to a final concentration of 2.5 mM.
  • the reaction proceeded without stirring for 24 hours at room temperature under dark conditions.
  • the reaction was further incubated overnight in a 3.6 mM SDS solution so that poly (aniline) was eccentrically deposited on only one side of the double metal nanostructure of AuNR core-Ag satellites.
  • the resulting solution was purified by centrifugation at 8,000 rpm for 10 minutes and resuspended in 3.6 mM SDS solution to prevent aggregation.
  • 1 mL of Janus nanoparticle solution consisting of AuNR core-Ag satellite double metal compartment and poly (aniline) compartment was centrifuged at 10,000 rpm for 10 minutes and transferred to 1 mL of deionized water.
  • the colloidal solution was mixed with freshly prepared MGITC at a concentration range of 10 ⁇ 5 to 10 ⁇ 5.5 M, and incubated for 2 hours each.
  • Citrate-capped gold nanoparticles (AuNPs) or gold nanospheres (AuNSs) were synthesized according to the citrate reduction procedure. Specifically, a stock solution of gold (III) chloride hydrate was added to 100 mL of deionized water so that the total concentration was 0.01%, and rapidly adding 1.5 ml of 1% sodium citrate solution while stirring and boiling the solution. . The solution turned red within 5 minutes, indicating a reduction of gold ions, and the reaction proceeded further for 20 minutes. The resulting solution was cooled to room temperature.
  • double metal AuNP core-Ag satellite nanostructures having polymer compartments were synthesized by ligand mediated surface control of AuNP seed particles and redox reaction between silver nitrate and aniline.
  • the surface properties of the metal nanoparticles were modified by adjusting the interfacial energy using ligands containing -SH and -NH2 groups to control the deposition of Ag onto AuNP seed particles. Specifically, citrate-capped AuNPs were centrifuged at 10,000 rpm for 10 minutes and resuspended in deionized water. The small molecule ligand 4-aminothiophenol (ATP) containing -SH and -NH2 groups on the AuNP seed was bound to a final concentration of 10 -5 M. After purification by centrifugation, double metal-polymer Janus nanoparticles consisting of AuNP core-Ag satellite double metal compartments and poly (aniline) compartments were prepared via surface template polymerization based on redox.
  • ligands containing -SH and -NH2 groups to control the deposition of Ag onto AuNP seed particles.
  • citrate-capped AuNPs were centrifuged at 10,000 rpm for 10 minutes and resuspended in deion
  • aniline and SDS were dissolved in 7.5 mM deionized water at a final concentration of 5 mM and 0.9 mM, respectively.
  • These concentrated metal-ligand (AuNP-ATP) complexes were added to the solution and stirred, followed by 2.5 mL of silver nitrate solution and mixed to a final concentration of 2.5 mM.
  • the reaction proceeded without stirring for 24 hours at room temperature under dark conditions.
  • the reaction was further incubated overnight in a 3.6 mM SDS solution so that poly (aniline) was eccentrically deposited on only one side of the double metal AuNP core-Ag satellite nanostructure.
  • the resulting solution was purified by centrifugation at 8,000 rpm for 10 minutes and resuspended in 3.6 mM SDS solution to prevent aggregation.
  • 1 mL of Janus nanoparticle solution consisting of AuNP core-Ag satellite double metal compartment and poly (aniline) compartment was centrifuged at 10,000 rpm for 10 minutes and transferred to 1 mL of deionized water.
  • Oxidation-reduction based double metal-polymer Janus nanoparticles consisting of a double metal AuNR core-Ag shell compartment and a poly (aniline) compartment, prepared in the same manner as in Example 1 but without modifying the surface properties of the seed AuNR with PSS Prepared via surface mold polymerization. Specifically, aniline and SDS were dissolved in 7.5 mM deionized water at a final concentration of 5 mM and 0.9 mM, respectively. Concentrated AuNR was added to the solution and stirred, followed by 2.5 mL of silver nitrate solution and mixed to a final concentration of 2.5 mM. The reaction proceeded without stirring for 24 hours at room temperature under dark conditions.
  • the reaction was further incubated overnight in a 3.6 mM SDS solution so that poly (aniline) was eccentrically deposited on only one side of the AuNR core-Ag shell double metal nanostructures.
  • the resulting solution was purified by centrifugation at 8,000 rpm for 10 minutes and resuspended in 3.6 mM SDS solution to prevent aggregation.
  • 1 mL of Janus nanoparticle solution consisting of AuNR core-Ag shell double metal compartment and poly (aniline) compartment was centrifuged at 10,000 rpm for 10 minutes and transferred to 1 mL of deionized water.
  • the colloidal solution was mixed with freshly prepared MGITC at a concentration range of 10 ⁇ 5 to 10 ⁇ 5.5 M, and incubated for 2 hours each.
  • Iron oxide nanoparticles (Fe 3 O 4 ) was prepared by chemical coprecipitation using a mixture of Fe 2 + and Fe 3 + mixed in a molar ratio of 1: 2 in an aqueous ammonia solution as a precipitant. Specifically, 0.86 g of ferrous chloride tetrahydrate (FeCl 2 ) and 2.35 g of ferric chloride (FeCl 3 ) were stirred and mixed in 40 mL of deionized water, and degassed with nitrogen gas for 30 minutes. The temperature was raised to 80 ° C. while stirring and 5 mL of ammonia hydroxide (NH 4 OH) was added by syringe and then heated for 30 minutes.
  • NH 4 OH ammonia hydroxide
  • MNPs Fe 3 O 4 magnetic nanoparticles
  • EHD electrophoretic
  • a suspension of dispersed MNPs for an electrohydrodynamic (EHD) spraying process was placed in a 1.0 mL syringe (BD, Franklin Lakes, USA) with a 23 gage stainless steel capillary.
  • EHD electrohydrodynamic
  • optimized viscosity was obtained by dissolving the polymer in a viscous solvent such as ethylene glycol without increasing the polymer concentration.
  • the syringe was equipped with a micro syringe pump KDS-100 (KD Scientific, Inc, USA) which flows the MNPs suspension at a constant rate.
  • An aluminum foil (Fisherbrand; Thermo Fisher Scientific, USA) with a thickness of 0.018 mm was used as the collecting substrate.
  • High voltage was applied between the capillary connected to the positive electrode and the aluminum foil connected to the negative electrode using a high voltage power supply NNC HV 30 (Nano NC, Korea). The distance between the two electrodes was 20-25 cm. The high voltage was maintained in the range of 10-15 kV and the flow rates of the two solutions were maintained at 0.08-0.15 ml / hour. High resolution digital cameras (D-90, Nikon Corporation, Japan) were used to visualize and capture single-phase Taylor cones, jet streams, and jet break-ups during EHD injection. After EHD injection, the resulting magnetic beads were thermally crosslinked overnight at 175 ° C. Finally, magnetic beads in powder form were collected by scraping off the foil and used for later experiments.
  • NNC HV 30 Nemo NC, Korea
  • UV-visible spectrometer (Cary-100 Bio, Varian Biotech, USA) was used to measure the optical properties of single Au-Ag core-shell nanoparticles with eccentrically deposited poly (aniline) compartments and cluster nanostructures. When the wavelength was changed in the range of 300 ⁇ 900 nm, the UV-vis absorption spectrum of the single nanoparticles and their clusters were confirmed.
  • the hydrodynamic diameter and size distribution of nanoparticles was determined using dynamic light scattering (DLS) (Zeta-sizer Nano ZS90, Malvern Instruments, Malvern, UK) using Ne-He laser at 633 nm and 90 ° scattering angles. Analyzed using. Zeta potential measurements were also performed to characterize the surface charge of deionized water.
  • DLS dynamic light scattering
  • Transmission electron microscopy analysis was performed using JEM-2100F FE-STEM (JEOL, Germany) operating at an acceleration voltage of 80-200 kV.
  • the average diameter, size distribution and surface morphology of the nanoparticles were characterized by scanning electron microscopy (SEM) (VEGA-SB3, TESCAN, Czech Republic) with a focused beam of 0.5-30 kV.
  • SEM scanning electron microscopy
  • the nanoparticles were coated with a thin layer of conductive platinum using a K575X Turbo Sputter Coater (Emitech Ltd, Ashford, UK).
  • FIG. 11 shows UV-Vis absorption spectra and hydrodynamic diameters of Janus nanostructures comprising Au nanoparticles, PSS or ATP coated Au nanoparticles and Au core-Ag satellite double metal compartments and polymer compartments.
  • the absorption spectrum of AuNR changed according to PSS binding.
  • the longitudinal local surface plasmon resonance (LSPR) peaks of AuNRs were blue-shifted from 666 nm to 664 nm after being coated with PSS, indicating that AuNR was partially wrapped with PSS to provide a silver reduction site.
  • LSPR local surface plasmon resonance
  • the longitudinal and transverse LSPR peaks of AuNR at 525 nm and 664 nm were blue-shifted to 508 nm and 595 nm, respectively.
  • This UV-Vis absorption change is consistent with the blue to brown color change of the MNP solution, indicating the presence of a double metal Janus nanostructure of Au-Ag.
  • Dynamic light scattering (DLS) and ⁇ potential measurements were also performed to analyze the hydrodynamic diameter, size distribution and surface charge of AuNR, PSS coated AuNR and its double metal core-satellite Janus nanostructures.
  • the average diameter of the longitudinal axis and the transverse axis of AuNR is 1.5 ⁇ 0.1 nm, 49.9 ⁇ 0.9 nm, respectively, the average diameter of PSS coated AuNR is 2.8 ⁇ 0.1 nm, 63.4 ⁇ 0.5 nm.
  • the average diameter of the double metal core-satellite Janus nanostructures was 3.1 ⁇ 0.1 nm, 73.0 ⁇ 0.8 nm due to the aspherical morphology.
  • the ⁇ potential values of AuNRs, PSS-coated AuNRs and their double metal core-satellite Janus nanostructures were 36.6 ⁇ 0.7 nm, -36.7 ⁇ 1.1 nm and -26.5 ⁇ 0.3 nm, respectively.
  • the presence of negatively charged PSS on the AuNR surface drastically reduced the ⁇ potential of the AuNR coated with PSS.
  • the silver ions were trapped in the polymer ligand-bound AuNR and reduced by the redox reaction, the negative charge present in the AuNR was reduced, which reduced the ⁇ potential value of the double metal AuNR core-Ag satellite Janus nanostructure with polymer compartment. .
  • citric acid-capped AuNPs for core-satellite Janus nanostructures were functionalized with a small ligand, ATP.
  • FIG. 11 (c) the UV-vis absorption spectrum of citric acid-capped AuNP at 524 nm red-shifted to 526 nm, supporting that ATP was adsorbed on the AuNP surface.
  • Ag plasmon peaks and additional peaks appeared in the 400-550 nm range due to the Au-Ag interface.
  • the average diameter of AuNPs, ATP coated AuNPs and their double metal core-satellite Janus nanostructures were 19.0 ⁇ 0.8 nm, 33.3 ⁇ 0.4 nm and 72.6 ⁇ 0.6, respectively.
  • nm, and ⁇ potential values were ⁇ 26.8 ⁇ 1.1 mV, ⁇ 28.2 ⁇ 1.2 mV, and ⁇ 25.2 ⁇ 0.7 mV, respectively.
  • FIG. 12 shows relative Raman shifts according to Raman dye concentrations of (a) AuNR core-Ag satellites labeled with MGITC and (c) AuNP core-Ag satellites labeled with ATP to optimize high sensitivity SERS based biosensing conditions. Indicates. As MGITC concentrations increased, the SERS intensity increased in the concentration range from 10 ⁇ 7 M to 10 ⁇ 5.5 M. However, it labeled with the colloidal stability of the core MGITC AuNR -Ag satellites was reduced due to MGITC induced aggregation at a concentration of 10 -5 M MGITC.
  • Figure 12 (b) shows the relative Raman shift of double metal AuNR core-Ag satellites and -Ag shell nanoparticles (Comparative Example 1) at MGITC with a concentration of 10 -5.5 M.
  • the interparticle bonding between Ag satellites provides electromagnetic field enhancement, resulting in a five-fold increase in SERS strength due to hot spots.
  • the relative Raman shift of the double metal AuNP core-Ag satellites increased in the concentration range from 10 ⁇ 6 M to 2.5 ⁇ 10 ⁇ 6 M as shown in FIG. 12 (c).
  • the SERS strength of these nanostructures was greatly reduced due to deposition at ATP concentrations of 5.0 ⁇ 10 ⁇ 6 M.
  • FIG. 13 shows transmission electron microscopy (TEM) images of (a) AuNRs, (b) double metal AuNR core-Ag nanoparticles, and (c-h) -Ag satellites at various magnifications.
  • the double metal compartments of the AuNR core and Ag satellites were clearly visible and the distinct polymer compartments were grayed out against the background.
  • high-angle annular dark-field scanning TEM HAADF-STEM was performed to confirm the composition of the double metal compartment. Due to the high atomic number, the AuNR cores appeared brighter than Ag satellites.
  • TEM 14 shows transmission electron microscope (TEM) images of (a) AuNPs, (b) double metal AuNP core -Ag nanoparticles and (c-h) -Ag satellites at various magnifications.
  • the double metal compartments of the AuNP core and Ag satellites were clearly visible and the distinct polymer compartments were grayed out against the background.
  • a high angle annular dark scanning TEM (HAADF-STEM) was performed to confirm the composition of the double metal compartment.
  • the high atomic number made AuNP cores look brighter than Ag satellites.
  • Janus nanostructures and magnetic beads including Au core-Ag satellite double metal compartments and polymer compartments, bind to monoclonal antibodies (mAb) and polyclonal antibodies (pAbs) against two types of target proteins, carcinoembryonic antigens (CEA), respectively It became.
  • mAb monoclonal antibodies
  • pAbs polyclonal antibodies
  • CEA carcinoembryonic antigens
  • the polymer compartment and the anti-human CEA of the Janus nanostructure including Au core-Ag satellite double metal compartment and polymer compartment are utilized by the amide bond reaction between the amine group remaining in the poly (aniline) compartment and the carboxyl group present in the antibody.
  • a bioconjugation reaction between polyclonal antibodies (anti-human CEA pAbs) was performed.
  • This binding reaction was based on the chemistry of EDC (1-ethyl-3- (3-dimethylaminopropyl) carbodiimide) and sulfo-N-hydroxysuccinimide ester (sulfo-NHS). Specifically, 5 ⁇ l of 2.0 mg / ml anti-human CEA pAb was added to a dispersion solution of double metal-polymer Janus nanoparticles containing 10 mM PBS at pH 7.4 containing 60 mM EDC and 9.2 mM sulfo-NHS. After stirring for 3 hours, the total pAb concentration was 10 ⁇ g / ml.
  • Anti-human CEA pAb-coupled Janus nanostructures were washed by centrifugation at 3,000 rpm and resuspended in PBS.
  • magnetic beads were chemically bound to anti-human CEA mAbs by activating residual carboxyl groups on polymer nanoparticles that were heat stabilized at 175 ° C. overnight.
  • 1.25 mg of magnetic beads were suspended in 0.9 ml of PBS and sonicated for 2 minutes using a tip-sonicator using a 3/3 second on / off cycle at 20.0% amplitude.
  • the uniformly suspended magnetic beads were mixed with 5.0 mM EDC and 5.0 mM sulfo-NHS and stirred for 1 hour.
  • Janus nanostructures comprising Raman reporter labeled double metal Au core-Ag satellite compartments and polymer compartments were used as SERS nanoprobes for quantitative analysis of the target protein CEA and magnetic beads bound to anti-human CEA mAb.
  • Immune complexes were selectively isolated with a separation tool by forming sandwiched immune complexes.
  • magnetic beads bound with anti-human CEA mAb antibody were added to a buffer containing three different concentrations of CEA ranging from 22.5-67.5 ng / ml and allowed to react for 1 hour.
  • the target protein was washed with an external magnetic field and resuspended in fresh PBS buffer.
  • SERS nanoprobe with anti-human CEA pAb bound was added to each immune complex in which the target protein and the magnetic beads were formed and reacted for 1 hour to prepare a sandwich immune complex consisting of the magnetic beads, the target protein and the SERS nanoprobe.
  • Unbound SERS nanoprobes were removed using a magnetic field and the product sandwiched immune complex was resuspended in PBS for SERS measurements. Experiments with controls were also performed to assess the selective binding capacity of SERS nanoprobes without the target protein.
  • AuNPs Gold nanoparticles
  • a stock solution of gold (III) chloride hydrate (HAuCl4.3H2O, Sigma-Aldrich, USA) is added to 100 mL of deionized water to a total concentration of 0.01%, and the solution is added to 1.5 ml of 1% sodium citrate (sodium citrate) solution was added rapidly and boiled with vigorous stirring. The solution turned red within 5 minutes, indicating a reduction of gold ions, and the reaction proceeded further for 20 minutes. The resulting solution was cooled to room temperature.
  • AuNP clusters were also prepared by agglomeration of AuNPs in the presence of Raman dyes.
  • Seed AuNPs in glass vials were mixed with the mother liquor, silver nitrate, and sodium citrate of the Raman active molecule Malachite green isothiocyanate (Invitrogen, USA), resulting in a final concentration of 1.5 ⁇ M or 0.75 ⁇ M MGITC, 0.5 mM silver nitrate and 1.0 mM citric acid. Sodium. The mixture was stirred for 5 minutes and then the vial was heated to 95 ° C. for 10-60 minutes. Small aliquots were collected at known intervals during heating to specify the UV-Vis absorption band and Raman intensity of the gold nanoclusters with MGITC.
  • AuNP clusters with RODC rhodamine B isothiocyanate, Sigma-Aldrich, USA
  • RODC rhodamine B isothiocyanate
  • Asymmetric Janus nanocluster-polymer nanoparticles consisting of a double metal nanocluster compartment and a poly (aniline) compartment of an Au core-Ag shell were prepared via surface template polymerization based on redox reactions.
  • 15 mL of the BSA stabilized AuNP cluster solution of Example 1 was concentrated by centrifugation at 7,000 rpm for 5 minutes and then the supernatant was removed.
  • Aniline and SDS were dissolved in 7.5 mL of deionized water to a final concentration of 5 mM and 0.9 mM, respectively.
  • Concentrated AuNP clusters were added to the prepared solution, then briefly voltexed, and 2.5 ml of silver nitrate solution was added and mixed to a final concentration of 2.5 mM.
  • the reaction proceeded without stirring for 24 hours at room temperature under dark conditions. At this time, an Ag shell was formed in the Au core.
  • the reaction was incubated overnight in a 3.6 mM SDS solution to eccentrically deposit poly (aniline) on only one side of the Au seed.
  • SDS a surfactant, affects the interfacial tension between two adjacent phases, poly (aniline) -Ag and poly (aniline) -water, and separates poly (aniline) on one side of the Au seed to minimize total surface energy. A compartment was formed.
  • the resulting solution was purified by centrifugation at 8,000 rpm for 10 minutes and resuspended in 3.6 mM SDS solution to prevent aggregation.
  • FIG. 19A and 19B TEM images of the asymmetric Janus nanostructures including the double metal nanoclusters derived with MGITC at a final concentration of 1.5 ⁇ M are shown in FIG. 19.
  • FIGS. 19A and 19B when the Au nanoclusters were not BSA coated, the double metal nanoclusters having the Au core-Ag shells were not well formed.
  • coating Au nanoclusters with BSA resulted in the formation of an asymmetric Janus nanostructure consisting of a double metal nanocluster compartment-polymer compartment, as shown in FIGS. 19 (c) and (d).
  • asymmetric Janus nanostructures were formed via redox reactions from the RBITC-derived Au nanoclusters at a final concentration of 3.8 ⁇ M RBITC.
  • FIGS. 20 (a) and (b) show that in the absence of the BSA coating, there is no asymmetric Janus nanostructure. However, as shown in FIGS. 20 (c) and (d), when stabilizing the MNP cluster with BSA, Janus nanostructures having an asymmetric polymer compartment were formed.
  • 21 shows a TEM image of an asymmetric Janus nanostructure comprising Janus nanoclusters derived with MGITC at a final concentration of 0.75 ⁇ M.
  • Raman dye concentrations were optimized to control cluster size.
  • low concentrations of MGITC were used to induce aggregation of AuNPs, several nanoclusters were observed.
  • 21 (a) and (b) show asymmetric Janus nanostructures without BSA stabilization.
  • Janus nanostructures with Janus nanoclusters can be formed due to low levels of metal clustering without BSA coating.
  • Figure 21 (c) and (d) there was no significant difference between the two nanostructures, without or without BSA coating.
  • FIG. 22 shows a TEM image of an asymmetric Janus nanostructure comprising Janus nanoclusters derived with RBITC at a final concentration of 1.9 ⁇ M. Likewise, the low concentration of RBITC did not affect the formation of asymmetric Janus nanostructures.
  • Iron oxide nanoparticles were prepared using a chemical coprecipitation method using ammonia water mixed with Fe 2+ and Fe 3+ in a molar ratio of 1: 2 as a precipitant.
  • 0.86 g of ferrous chloride (FeCl 2 ) and 2.35 g of ferric chloride (FeCl 3 ) were mixed in 40 mL of deionized water under vigorous stirring and degassed with nitrogen gas for 30 minutes.
  • the reaction solution was heated to 80 ° C. and 5 mL of ammonium hydroxide (NH 4 OH) was added under mechanical stirring for 30 minutes.
  • 1 g citric acid was added to the reaction flask and the temperature was increased to 90 ° C. and then vigorously stirred for an additional 90 minutes.
  • Fe 3 O 4 magnetic nanoparticles were washed twice with deionized water under a static magnetic field of several hundred Gauss.
  • small aliquots of the MNP solution were concentrated using a magnetic field and added to the polymer solution to prepare magnetic beads.
  • 4.5 w / v% of poly (acrylamide-co-acrylic acid), poly (AAm-co-AA) in a mixture of deionized water and ethylene glycol in a volume ratio of 3: 1 was prepared and uniformly dispersed MNP in this polymer solution to prepare a suspension of MNPs.
  • a suspension of dispersed MNPs for an electrohydrodynamic (EHD) spraying process was placed in a 1.0 mL syringe (BD, Franklin Lakes, USA) with a 23 gage stainless steel capillary.
  • EHD electrohydrodynamic
  • optimized viscosity was obtained by dissolving the polymer in a viscous solvent such as ethylene glycol without increasing the polymer concentration.
  • the syringe was equipped with a micro syringe pump KDS-100 (KD Scientific, Inc, USA) which flows the MNPs suspension at a constant rate.
  • An aluminum foil of 0.018 mm thickness (Fisherbrand; Thermo Fisher Scientific, USA) was used as the capture substrate.
  • High voltage was applied between the capillary connected to the positive electrode and the aluminum foil connected to the negative electrode using a high voltage power supply NNC HV 30 (Nano NC, Korea). The distance between the two electrodes was 20-25 cm. The high voltage was maintained in the range of 10-15 kV and the flow rates of the two solutions were maintained at 0.08-0.15 ml / hour. High resolution digital cameras (D-90, Nikon Corporation, Japan) were used to visualize and capture single-phase Taylor cones, jet streams, and jet break-ups during EHD injection. After EHD injection, the resulting magnetic beads were thermally crosslinked overnight at 175 ° C. Finally, magnetic beads in powder form were collected and used for later experiments.
  • NNC HV 30 Nemo NC, Korea
  • the UV-Vis spectrum of the bimetallic nanocluster-polymer asymmetric Janus nanostructures is a UV-vis spectrometer with a wavelength of 300-900 nm changed to a fixed slit width of 1 nm in one scan mode of 10 scans at medium scan rate at room temperature. Obtained using (UV-1800, Shimadzu, Japan). Baseline was calibrated using two empty cells filled with deionized water. Colloidal solution characteristics are dynamic light scattering (DLS) (Zeta-sizer Nano ZS90, Malvern Instruments, UK) with a maximum power of 5 mW as a light source at a scattering angle of 90 ° and supplied with a Ne-He laser at 633 nm.
  • DLS dynamic light scattering
  • Average diameter, size distribution and surface morphology were measured by scanning electron microscope (SEM) (VEGA-SB3, TESCAN, Czech Republic) with a focused beam of 0.5-30 kV. A few nanoparticle solutions were placed on silicon wafers and dried at room temperature. Samples were coated with a thin layer of conductive platinum using a coater (K575X Turbo Sputter Coater, Emitech Ltd, UK). The average size of the particles was analyzed by measuring approximately 50-100 particles randomly selected from TEM and SEM images using ImageJ software developed by the National Institutes of Health.
  • colloidal solutions of nanoparticles labeled with RBITC or MGITC were prepared in small glass capillary tubes (Kimble Chase, plain capillary tubes, soda-lime glass, inner diameter: 1.1-1.2 mm, wall: 0.2 ⁇ 0.02 mm, length: 75 mm). ) SERS spectra were collected for 1 second of exposure time used to focus the laser spot on the glass capillary in the wavelength range of 608-1738 cm ⁇ 1 using a 20 ⁇ objective lens.
  • FIG. 17 shows the UV-Vis absorbance spectra of the asymmetric Janus nanostructures with AuNP, Raman dye induced Au nanoclusters and double metal nanoclusters.
  • UV-Vis absorption peak of AuNP was shown at 510 nm (Fig. 17 (a)).
  • MGITC MGITC
  • the original absorption peak was red-shifted and new absorption peak appeared in the range of 650-850 nm.
  • Figure 17 (b) shows the UV-Vis absorbance of RBITC induced Au nanoclusters at different incubation times from 10 minutes to 90 minutes.
  • FIG. 17 (d) shows the UV-Vis absorbance of the asymmetric Janus nanostructure having a double metal nanocluster.
  • new absorption peaks appeared in the range of 410-550 nm, indicating the presence of Ag in the Au nanoclusters.
  • wide peaks appeared in the range of 600-700 nm due to the aggregation of AuNPs.
  • Dynamic light scattering (DLS) was performed to characterize the hydrodynamic diameter and size distribution of AuNP, Au nanoclusters and asymmetric Janus nanostructures as shown in FIG. 17 (d).
  • the average diameters of AuNP, MGITC- or RBITC-induced Au nanoclusters were 18.9 ⁇ 0.4 nm, 152.9 ⁇ 2.8 nm and 115.7 ⁇ 1.8 nm, and asymmetric Janus nanostructures with MGITC- or RBITC-induced double metal nanoclusters were 205 ⁇ 4.5 nm and 186.3 ⁇ 2.1 nm.
  • FIG. 18 shows the relative Raman spectra of (a) MGITC or (c) RBITC derived Au nanoclusters during clustering at various incubation times from 10 minutes to 90 minutes to optimize the degree of clustering for high SERS efficiency.
  • Raman dye concentration and BSA coating of Au nanoclusters were adjusted to control cluster size and prevent further aggregation. It was found that as the incubation time increased, the Raman strength gradually decreased, resulting in the formation and precipitation of larger aggregates.
  • the Raman intensity of the MGITC- and RBITC- induced Au nanoclusters were 1618 cm -1 and 1648 cm -1 .
  • Asymmetric Janus nanostructures with MGITC- or RBITC-induced double nanoclusters have better optical signals than MGITC- or RBITC-labeled AuNPs at the same Raman dye and particle concentration.
  • the bimetallic nanocluster-polymer asymmetric Janus nanostructures were combined with monoclonal antibodies (mAb) and polyclonal antibodies (pAbs) against the target protein carcinoembryonic antigen (CEA), respectively.
  • mAb monoclonal antibodies
  • pAbs polyclonal antibodies against the target protein carcinoembryonic antigen
  • bioconjugation reaction of the polymer compartment and the anti-human CEA polyclonal antibody (anti-human CEA pAb) is performed by using an amide bond reaction between the amine group remaining in the poly (aniline) compartment and the carboxyl group present in the antibody. It was.
  • This binding reaction was based on the chemistry of EDC (1-ethyl-3- (3-dimethylaminopropyl) carbodiimide) and sulfo-N-hydroxysuccinimide ester (sulfo-NHS). Specifically, 5 ⁇ l of 2.0 mg / ml anti-human CEA pAb was added to a dispersion solution of asymmetric Janus nanostructures containing 10 mM PBS at pH 7.4 containing 60 mM EDC and 9.2 mM sulfo-NHS, 3 Stirring for hours allowed the total pAb concentration to be 10 ⁇ g / ml.
  • Anti-human CEA pAb-linked polymer compartments were washed by centrifugation at 3,000 rpm and resuspended in PBS.
  • magnetic beads were chemically bound with anti-human CEA monoclonal antibodies (anti-human CEA mAbs) by activating residual carboxyl groups on polymer nanoparticles heat stabilized overnight at 175 ° C.
  • 1.25 mg of magnetic beads were suspended in 0.9 ml of PBS and sonicated for 2 minutes using a tip-sonicator using a 3/3 second on / off cycle at 20.0% amplitude.
  • the uniformly suspended magnetic beads were mixed with 5.0 mM EDC and 5.0 mM sulfo-NHS and stirred for 1 hour.
  • Quantitative analysis of the target protein CEA was carried out using asymmetric Janus nanostructures labeled with a Raman reporter as SERS nanoprobes. Immune complexes were selectively isolated with a separation tool (magnet) by forming sandwiched immune complexes using magnetic beads combined with anti-human CEA mAb. First, magnetic beads bound with anti-human CEA monoclonal antibody were added to a buffer containing three different concentrations of CEA ranging from 22.5 to 67.5 ng / ml and reacted for 1 hour. The target protein was washed with an external magnetic field and resuspended in fresh PBS buffer.
  • SERS nanoprobe with anti-human CEA pAb bound was added to each immune complex in which the target protein and the magnetic beads were formed and reacted for 1 hour to prepare a sandwich immune complex consisting of the magnetic beads, the target protein and the SERS nanoprobe. It was. Unbound SERS nanoprobes were removed using a magnetic field and the product sandwiched immune complex was resuspended in PBS for SERS measurements. Experiments with controls were also performed to assess the selective binding capacity of SERS nanoprobes without the target protein.
  • AuNRs Side-to-side assembled gold nanorods clusters were prepared by the addition of citrate anions for electrostatic interaction with positively charged hexadecyltrimethylammonium bromide (CTAB) in AuNR.
  • CTAB hexadecyltrimethylammonium bromide
  • AuNRs were synthesized via a seed-mediated growth method. Specifically, the 0.20 M CTAB dissolved in 5 mL of 29-30 °C was mixed with 0.0005 M of gold chloride (III) hydrate (Gold (III) chloride hydrate, HAuCl 4 .3H 2 O), and then 5 mL of 0.010 M 0.010 mL of cold NaBH 4 was added. The yellow color of the reaction solution turned into a brownish yellow solution, and the resulting seed solution was maintained at 29-30 ° C.
  • the resulting solution was centrifuged at 10,000 rpm for 10 minutes and resuspended in 1 mM CTAB to prevent aggregation of AuNR, finally producing AuNR capped CTAB.
  • MGITC was introduced into the AuNR solution at a final concentration of 10-6 M and fixed to the AuNR surface via the isothiocyanate group (-N ⁇ C ⁇ S) of MGITC.
  • 30 uL of 0.175 mM sodium citrate solution was added to 1 mL of AuNR solution and incubated for a short period of 1 to 5 minutes.
  • NIPAM monomer was dissolved in n-hexane at 40 ° C. Impurities and inhibitors were removed by recrystallization below 4 ° C.
  • AIBN azobisisobutyronitrile, 2,2'-azobis (2-methylpropionitrile
  • tBA 5 mL, 34 mmol
  • CDTPA 0.137 g, 0.34 mmol
  • 1,4-dioxane 5 mL
  • the solution was degassed with nitrogen gas for 20 minutes before polymerization.
  • AIBN 0.0055 g, 0.034 mmol
  • the polymerization was carried out with mechanical stirring at 60 ° C. for 5 or 6 hours and quenched in ice water.
  • Poly (tBA-b-NIPAM) was prepared in a similar manner.
  • NIPAM N-isopropylacrylamide 97%) as monomer
  • poly (tBA) -macro CDTPA as CTA
  • AIBN initiator
  • [monomer]: [CTA]: [initiator] Add at 1500: 5: 1 molar ratio.
  • the trithiocarbonate group of poly (tBA-b-NIPAM) is bound to the thiol group coupling. It was cleaved by aminolysis using a nucleophilic reagent. Specifically, 0.5 g of poly (tBA-b-NIPAM) (9.5 ⁇ mol), MTS (18 ⁇ L, 190 ⁇ mol), hexylamine (252 ⁇ L, 1.9 mmol) and triethylamine (266 ⁇ L, 1.9 mmol) was dissolved in 5 mL of THF (Tetrahydrofuran) and the mixture was stirred at rt for 24 h.
  • THF Tetrahydrofuran
  • the prepared thiol-terminated poly (tBA 145 -b-NIPAM 300 ) (poly (tBA 145 -b-NIPAM 300 ) -SH) was precipitated three times in hexane and dried in a vacuum oven overnight (FIG. 26 (a)).
  • Thiol-terminated poly (AAc 145 -b-NIPAM 300 ) (poly (AAc 145 -b-NIPAM 300 ) -SH) is a thiol-terminated poly (tBA 145 -b-NIPAM 300 ) (TBA) using trifluoroacetic acid (TFA) TBA in poly (tBA 145 -b-NIPAM 300 ) -SH) was prepared by hydrolysis with AAc groups.
  • thiol-terminated poly (tBA 145 -b-NIPAM 300 ) (poly (tBA 145 -b-NIPAM 300 ) -SH) (3.8 ⁇ mol) and 583 ⁇ L of TFA (7.6 mmol) were added to 5 mL of It was dissolved in dichloromethane (DCM). After 24 hours a light brown gelatin mass formed and precipitated out of solution. The resulting material was dissolved in DCM and precipitated in n-hexane. Finally, the product was dissolved in THF and dialyzed against deionized water for 2 days.
  • DCM dichloromethane
  • the obtained thiol-terminated poly (AAc 145 -b-NIPAM 300 ) (poly (AAc 145 -b-NIPAM 300 ) -SH) was lyophilized with freeze dryer MCFD8508 (Ilshin Lab, Korea) under vacuum (FIG. 26 (b)). ).
  • An end-to-end assembled AuNR cluster was prepared by selectively attaching the poly (AAc 145 -b-NIPAM 300 ) -SH of Example 2 to the ends of the AuNR capped CTAB of Example 1. Specifically, 4 mL of CTAB capped AuNR solution was centrifuged at 10,000 rpm for 10 minutes and reproduced in 0.5 mL of deionized water. Concentrated CTAB capped AuNR was injected rapidly under sonication into a 10 mL DMSO solution containing 5 mg of poly (AAc 145 -b-NIPAM 300 ) -SH to a final concentration of 0.05 w / v%.
  • the mixture solution was sonicated in an sonicator for 30 minutes and incubated for 1 hour at room temperature.
  • the CTAB ligand attached to the terminal end of AuNR is converted to poly (AAc 145 -b-NIPAM 300 ) -SH through a metal-thiol group bond with a thiol group (-SH) in poly (AAc 145 -b-NIPAM 300 ) -SH.
  • the AuNR side is then through an electrostatic interaction between positively charged CTAB on the side of AuNR in 20 ° C. or 50 ° C. or PBS and poly (AAc 145 -b-NIPAM 300 ) -SH on the end face of AuNR.
  • End-to-end self-assembled AuNR clusters were purified by centrifugation at 6,000 rpm for 6 minutes and resuspended in 1 mL of deionized water.
  • MGITC was introduced into the AuNR solution at a final concentration of 10 -5 M and fixed to the AuNR surface via the isothiocyanate group (-N ⁇ C ⁇ S) of MGITC.
  • End-to-end assembled AuNR was stabilized by 0.5% BSA (bovine serum albumin) coating (FIG. 24 (b)).
  • aniline and SDS were dissolved in 0.5 mL of deionized water to a final concentration of 5 mM and 0.9 mM, respectively. Seed particle solution was added to the mixture and stirred, after which 0.5 mL of silver nitrate solution was added and mixed with the solution to a final concentration of 2.5 mM. The reaction proceeded without stirring for 24 hours at room temperature under dark conditions.
  • the reaction was further incubated overnight in a 3.6 mM SDS solution so that the poly (aniline) compartments were eccentrically deposited on only one side of the Au seed.
  • the resulting solution was purified by centrifugation at 8,000 rpm for 10 minutes and resuspended in deionized water or 10 mM PBS (phosphate buffer saline).
  • Double metal nanorod-polymer Janus nanoparticles without AuNR clusters were prepared in the same manner as in Example 4, but a general AuNR solution was used as a mother liquor of the seed particles.
  • the prepared double metal nanorod-polymer Janus nanoparticles without AuNR cluster were used as a control.
  • Iron oxide nanoparticles (Fe 3 O 4 ) was prepared using a chemical coprecipitation method using ammonia water mixed with Fe 2+ and Fe 3+ in a molar ratio of 1: 2 as a precipitant. 0.86 g of ferrous chloride (FeCl 2 ) and 2.35 g of ferric chloride (FeCl 3 ) were mixed in 40 mL of deionized water under vigorous stirring and degassed with nitrogen gas for 30 minutes. The reaction solution was heated to 80 ° C. and 5 mL of ammonium hydroxide (NH 4 OH) was added under mechanical stirring for 30 minutes. 1 g citric acid was added to the reaction flask and the temperature was increased to 90 ° C.
  • NH 4 OH ammonium hydroxide
  • MNPs Fe 3 O 4 magnetic nanoparticles
  • EHD electrohydrodynamic
  • a suspension of dispersed MNPs for the EHD injection process was placed in a 1.0 mL syringe (BD, Franklin Lakes, USA) with a 23 gage stainless steel capillary.
  • optimized viscosity was obtained by dissolving the polymer in a viscous solvent such as ethylene glycol without increasing the polymer concentration.
  • the syringe was equipped with a micro syringe pump KDS-100 (KD Scientific, Inc, USA) which flows the MNPs suspension at a constant rate.
  • An aluminum foil (Fisherbrand; Thermo Fisher Scientific, USA) with a thickness of 0.018 mm was used as the collecting substrate.
  • High voltage was applied between the capillary connected to the positive electrode and the aluminum foil connected to the negative electrode using a high voltage power supply NNC HV 30 (Nano NC, Korea). The distance between the two electrodes was 20-25 cm. The high voltage was maintained in the range of 15-20 kV and the flow rates of the two solutions were maintained at 0.08-0.15 ml / hour. High resolution digital cameras (D-90, Nikon Corporation, Japan) were used to visualize and capture single-phase Taylor cones, jet streams, and jet break-ups during EHD injection. After EHD injection, the resulting magnetic beads were thermally crosslinked overnight at 175 ° C. Magnetic beads in powder form were collected from the foil and used for later experiments.
  • Asymmetric Janus nanostructures and magnetic beads were conjugated separately with two different sets of monoclonal antibodies (mAb) and polyclonal antibodies (pAb) against the target protein carcinoembryonic antigen (CEA).
  • mAb monoclonal antibodies
  • pAb polyclonal antibodies against the target protein carcinoembryonic antigen
  • an anti-human CEA polyclonal antibody (anti-human CEA pAb) was introduced into a Janus nanostructured poly (aniline) compartment through an amide coupling reaction of an amine group and a carboxyl group present in the poly (aniline) compartment. This binding reaction was based on the chemistry of EDC (1-ethyl-3- (3-dimethylaminopropyl) carbodiimide) and sulfo-NHS (sulfo-N-hydroxysuccinimide ester).
  • Asymmetric Janus nanostructures labeled with Raman reporters were used as SERS nanoprobes for quantitative analysis of the target protein CEA and sandwiched immune complexes using anti-human IgG mAbs or magnetic beads coupled with anti-human CEA mAbs. Immune complexes were selectively isolated by means of a separation tool by forming. First, magnetic beads bound with anti-human IgG monoclonal antibody or anti-human CEA monoclonal antibody were added to a buffer containing IgG or CEA at three different concentrations ranging from 22.5 to 67.5 ng / ml and reacted for 1 hour. . The target protein was washed with an external magnetic field and resuspended in fresh PBS buffer.
  • SERS nanoprobe with anti-human CEA pAb bound was added to each immune complex in which the target protein and the magnetic beads were formed and reacted for 1 hour to prepare a sandwich immune complex consisting of the magnetic beads, the target protein and the SERS nanoprobe. It was. Unbound SERS nanoprobes were removed using a magnetic field and the product sandwiched immune complex was resuspended in PBS for SERS measurements. Experiments with controls were performed together to assess the selective binding capacity of SERS nanoprobes without the target protein.
  • High-performance liquid chromatography (HPLC) 1260 series apparatus (Agilent Technologies, Palo Alto, CA, USA) using GPC column KF-803 (Shodex GPC system-21; Showa Denko Co., Tokyo, Japan) It was performed using. THF and polystyrene of 1,270 to 139,000 g / mol were used as the mobile and stationary phases with a flow rate of 1.0 ml / min, respectively.
  • the thermal properties of the poly (AAc-b-NIPAM) were confirmed by measuring the UV absorbance of the poly (AAc-b-NIPAM) solution and the hydrodynamic diameter of the micelle structures in phosphate buffer was specified with temperature.
  • Samples were prepared by dissolving poly (AAc-b-NIPAM) in PBS at a concentration of 0.05 w / v%.
  • Low critical solution temperature (LCST) of poly (AAc-b-NIPAM) uses UV-Vis spectrometer Cary-100 Bio (Varian Biotech, US) with temperature control of peltier thermostat was determined by monitoring the absorbance of the poly (AAc-b-NIPAM) solution at 350 nm. The measurement was carried out in a temperature range of 20 to 70 ° C.
  • the hydrodynamic radius of poly was measured over temperature using dynamic light scattering (DLS) (Zeta-sizer Nano ZS90, Malvern Instruments, Malvern, UK).
  • a UV-Vis spectrometer Shimadzu model UV-1800 series (Shimadzu, Japan) was used to examine the UV absorbance of the sample to analyze the cleavage of trithiocarbonate groups.
  • Poly (tBA-b-NIPAM) -macro CDTPA and poly (AAc-b-NIPAM) -SH were dissolved in CHCl 3 at a concentration of 0.5 w / v%. Each sample was scanned at a wavelength of 200-700 nm.
  • poly (tBA 145) and poly (tBA 145- b-NIPAM 300) a number average molecular weight (number-average molecular weight, Mn GPC), the weight average molecular weight (weight-average molecular weight, GPC Mw) and polydispersity of The index (polydispersity index, PDI) is shown in Table 3.
  • Figure 27 (a) shows the 1H NMR spectra of poly (tBA) and poly (tBA-b-NIPAM) measured in CDCl 3 , poly (AAc-b-NIPAM) measured in DMSO-d6 at 400 MHz.
  • the peak at 1.45 ppm showed the terminal methyl proton of the tBA block and the single peak at 3.9 ppm showed the C-2 proton of the isopropyl group on the NIPAM block.
  • the peak of the methyl ester proton at 1.45 ppm disappeared, indicating that all ester groups of poly (tBA-b-NIPAM) were converted to acrylic acid.
  • poly (AAc-b-NIPAM) After removing the thiocarbonylthio group via amino decomposition, the absorption peak disappeared at 307 nm.
  • the heat deformation characteristic of poly (AAc-b-NIPAM) was measured according to the temperature through UV absorbance and dynamic light scattering, and as shown in FIG. 27 (d).
  • Poly (NIPAM) -based copolymers or block copolymers exhibited a water soluble state under a lower critical solution temperature (LCST), whereas above a LCST it showed an insoluble state due to hydrophobic interactions.
  • the LCST of the copolymer was determined as the temperature at which the maximum value of the derivative was reached in temperature dependent UV absorbance.
  • Poly (AAc-b-NIPAM) showed an LCST of 39.5 ° C.
  • the hydrodynamic radius of poly was 12.05 nm below LCST and the diameter was 39.2 nm above LCST.
  • the UV-Vis spectra of the asymmetric Janus nanostructures are UV-visible spectrometers (UV-1800, Shimadzu, Ltd.) that vary the wavelength from 300 to 900 nm to a fixed slit width of 1 nm in a one-time 10 scan mode at medium scan rate at room temperature. Japan). Baseline was calibrated using two empty cells filled with deionized water. Colloidal solution characteristics are dynamic light scattering (DLS) (Zeta-sizer Nano ZS90, Malvern Instruments, UK) with a maximum power of 5 mW as a light source at a scattering angle of 90 ° and supplied with a Ne-He laser at 633 nm.
  • DLS dynamic light scattering
  • colloidal solutions of nanoparticles labeled with MGITC were placed in small glass capillaries (Kimble Chase, plain capillary tubes, soda-lime glass, inner diameter: 1.1-1.2 mm, wall diameter: 0.2 ⁇ 0.02 mm, length: 75 mm). Put in. SERS spectra were collected for 1 second of exposure time used to focus the laser spot on the glass capillary in the wavelength range of 608-1738 cm ⁇ 1 using a 20 ⁇ objective lens.
  • AuNRs original AuNPs
  • end-to-end assembled AuNR nanoclusters end-to-end assembled AuNR nanoclusters
  • asymmetric Janus nanostructures including the same are shown in Table 5 below.
  • AuNR clusters and asymmetric Janus nanostructures were self-assembled in deionized water (DW) at room temperature or PBS at different temperatures.
  • FIG. 25 shows UV-Vis absorbance spectra and hydrodynamic diameters of the side-to-side assembled AuNR and asymmetric Janus nanostructures comprising the same.
  • the terminal plasmon peak shifted blue from 700 nm to 610 nm with reduced intensity as the incubation time increased from 1 minute to 5 minutes as shown in FIG. 25 (a).
  • the transverse peak shifted slightly red from 510 nm to 525 nm with increased intensity.
  • the degree of shift of the longitudinal and transverse peaks of AuNRs correlated with the level of clustering in terms of incubation time. This change in plasmon absorption peak is due to plasmon coupling in the lateral cross-sectional assembly of AuNRs.
  • Dynamic light scattering (DLS) measurements were also performed to characterize the hydrodynamic diameter, size distribution, and colloidal stability of the side-to-side self-assembled AuNR and its Janus nanostructures.
  • Figure 25 (b) and Table 4 shows the hydrodynamic diameter of the assembled nano-cluster between the side and the existing AuNR with increasing incubation time of 1 to 5 minutes.
  • the mean diameters of the longitudinal and transverse axes of AuNR were 1.1 ⁇ 0.1 nm and 46.8 ⁇ 0.1 nm, respectively.
  • the citrate anion was added to the AuNR solution, the diameter of both the longitudinal and transverse axes of AuNR increased as the incubation time was extended from 0 to 5 minutes.
  • the longitudinal and transverse axis mean diameters of the nanoclusters were 7.4 ⁇ 0.6 nm and 92.1 ⁇ 2.5 nm, respectively.
  • the ⁇ -potential values of the conventional AuNR and the assembled side-to-side AuNR were 31.1 ⁇ 1.3 mV and-41.4 ⁇ 0.4 mV, respectively.
  • the dramatic change in the surface charge value of the AuNR cluster was due to the presence of PSS, a negatively charged polymer electrolyte. As shown in FIG.
  • FIG. 28 shows UV-Vis absorbance spectra and hydrodynamic diameters of end-to-end assembled AuNR and asymmetric Janus nanostructures comprising the same.
  • the longitudinal plasmon absorption peak was red-shifted from 645 nm to 660 nm as shown in Fig. 28 (a), and the transverse peak was little changed. This change was caused by alternating dipoles along the AuNR chain.
  • the shoulder peak appeared at about 800 nm, indicating that these nanoclusters were partially attributable to the decrease in electrostatic repulsion between CTAB bilayers at high ionic strength of PBS. Showed aggregation.
  • the diameters were 57.9 nm and 455.3 nm due to the increase in ionic strength.
  • the collapse of the NIPAM block greatly reduces the diameter, leading to a reduction in the nanogap between AuNRs. As shown in FIG.
  • Figure 28 (d) shows the hydrodynamic diameter of asymmetric double metal nanorod cluster-polymer Janus nanostructures via end-to-end assembly of AuNR.
  • the mean diameter of Janus nanostructures was 388 nm in deionized water and the cluster of nanoparticles consisting of AuNR was 246.4 ⁇ 30.7 nm.
  • FIG. 29 (a) shows the relative Raman shift of the AuNR labeled MGITC at 10 ⁇ 6 M MGITC and the assembled side-to-side AuNR cluster.
  • the Raman strength of MGITC embedded in the interparticle junction between adjacent AuNRs of the lateral oriented nanoclusters is AuNR (original AuNPs) were approximately 11.0 times higher than the Raman strength of MGITC immobilized on the surface.
  • the SERS intensity of MGITC from this Janus nanostructure was about 6.53 times higher at 1617 cm ⁇ 1 than the MGITC SERS intensity immobilized on the AuNR (original AuNPs) surface.
  • FIG. 30 shows an asymmetric double metal nanorod-polymer Janus nanostructure using each AuNR, AuNR as a seed to specify size and shape, directional self-assembled AuNR nanoclusters through side-to-side assembly, and an asymmetric double including the same TEM images of metal nanorod cluster-polymer Janus nanostructures at various magnifications.
  • FIG. 31 is a TEM image at various magnifications of directional self-assembled AuNR nanoclusters and asymmetric bimetallic nanorod cluster-polymer Janus nanostructures comprising the same by end-to-end assembly to specify size and shape.

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Optics & Photonics (AREA)
  • Nanotechnology (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

The present invention relates to a bimetal-conductive polymer Janus composite nanostructure having electrical stimulus response, a colloid self-assembled structure thereof, a preparing method therefor, and bio-sensing, bio-imaging, drug delivery, and industrial application using the same.

Description

전기적 자극 반응성을 지닌 이중 금속-전도성 고분자 야누스 복합 나노구조체, 이의 콜로이드 자가 조립 구조체, 제조방법 및 바이오센싱, 바이오이미징, 약물전달 및 산업적 응용Double metal-conductive polymer Janus composite nanostructures with electrical stimulation responsiveness, colloidal self-assembled structures thereof, methods of preparation and biosensing, bioimaging, drug delivery and industrial applications
본 발명은 전기적 자극 반응성을 지닌 이중 금속-전도성 고분자 야누스 복합 나노구조체, 이의 콜로이드 자가 조립 구조체, 이의 제조방법 및 이를 이용한 바이오센싱, 바이오이미징, 약물전달 및 산업적 응용에 관한 것이다.The present invention relates to double metal-conductive polymer Janus composite nanostructures having electrical stimulation reactivity, colloidal self-assembled structures thereof, methods for their preparation and biosensing, bioimaging, drug delivery and industrial applications using the same.
형광(fluorescence; FL) 및 표면 플라스몬 공명(surface plasmon resonance; SPR)을 기본으로 한 다수의 광학 바이오센서는 민감도가 높기 때문에 검출용으로 어플리케이션으로 개발되어 왔다. Many optical biosensors based on fluorescence (FL) and surface plasmon resonance (SPR) have been developed for applications for detection because of their high sensitivity.
라만 분광법은 병원체의 검출 및 확인을 위해 연구되어 왔다. 구체적으로, 표면 강화 라만 산란(Surface-enhanced Raman scattering, SERS)은 주로 초고감도, 좁은 대역폭 및 중요한 다중화 능력으로 인해 분광학적 검출 및 작은 분자, 핵산, 단백질 및 세포의 식별에 있어 큰 관심을 받고 있다. 라만 분광법(Raman spectroscopy)은 진동 천이(vibrational transition)에 기반한 물질의 구조 정보를 얻기 위한 다목적 도구로 사용되었지만, 전통적인 라만 산란은 낮은 민감도에 의해 제한된다. 이와 관련하여 SERS 분광법은 강력한 분석 기술로서 정상적인 라만 산란에 비해 금속 나노입자 표면 근처에서 최대 1014의 놀라운 신호 향상을 제공한다. 이러한 향상은 입자 표면을 가로질러 불균일하게 분포된 전자기장, 즉, 나노입자 간 뾰족한 돌출부 또는 틈인 나노 스케일의 결합부에 존재하는 핫 스팟(hot spot)이 원인이다. 한편, 플라즈몬 금속 나노입자를 개발하고 이의 유용한 광학 특성뿐만 아니라 높은 SERS 효율을 위해 많은 노력이 있었다. 이러한 플라즈몬 특성은 크기, 형태 및 응집도에 크게 의존한다.Raman spectroscopy has been studied for the detection and identification of pathogens. Specifically, Surface-enhanced Raman scattering (SERS) is of great interest for spectroscopic detection and identification of small molecules, nucleic acids, proteins and cells, mainly due to its ultra-high sensitivity, narrow bandwidth and significant multiplexing capabilities. . Raman spectroscopy has been used as a versatile tool for obtaining structural information on materials based on vibrational transitions, but traditional Raman scattering is limited by low sensitivity. In this regard, SERS spectroscopy is a powerful analytical technique that provides a remarkable signal up to 10 14 near the surface of metal nanoparticles compared to normal Raman scattering. This improvement is due to hot spots present in non-uniformly distributed electromagnetic fields across the particle surface, ie, nanoscale bonds, which are sharp protrusions or gaps between nanoparticles. On the other hand, much effort has been made to develop plasmon metal nanoparticles and their high optical efficiency as well as their useful optical properties. These plasmon properties are highly dependent on size, morphology and cohesion.
한편, 금속 나노입자는 구조, 크기에 따른 전기, 화학 및 광학 특성으로 인해 전자, 촉매, 생물 영상 및 표면 강화 라만 분광법을 비롯한 다양한 응용 분야에서 광범위하게 연구되어 왔다. 또한, 다성분의 금속 나노입자는 단일 성분의 금속 나노입자와 비교하여 시너지 효과로 인해 각 성분으로부터의 집학적인 물리 화학적 성질뿐만 아니라 새롭거나 향상된 광학 특성을 갖는다.Metal nanoparticles, on the other hand, have been extensively studied in a variety of applications, including electronic, catalytic, biological imaging, and surface enhanced Raman spectroscopy, due to their electrical, chemical, and optical properties, depending on their structure and size. In addition, multicomponent metal nanoparticles have new or improved optical properties as well as the aggregate physicochemical properties from each component due to synergistic effects compared to single component metal nanoparticles.
본 발명의 목적은 자가 조립된 이중 금속-고분자의 야누스 나노구조체, 이의 자가 조립 나노구조체, 이의 제조 방법 및 이를 이용한 금속 나노프로브, 약물 전달체, 표면-증강 라만 산란(surface-enhanced Raman scattering, SERS) 기반의 표적 물질 검출 방법을 제공하는 것이다.An object of the present invention is to self-assembled double metal-polymer Janus nanostructures, self-assembled nanostructures thereof, methods for their preparation and metal nanoprobes, drug carriers, surface-enhanced Raman scattering (SERS) using the same It is to provide a method for detecting a target material based.
본 발명의 다른 목적은 코어-새틀라이트 구조의 이중 금속 나노입자 구획과 고분자 구획으로 이루어진 야누스 나노구조체, 이의 제조 방법 및 이를 이용한 표면-증강 라만 산란(SERS) 기반 표적 물질 검출용 금속 나노프로브, SERS 기반의 표적 물질 검출 방법을 제공하는 것이다.Another object of the present invention is a Janus nanostructure consisting of a double-metal nanoparticle compartment and a polymer compartment of a core-satellite structure, a method for manufacturing the same, and a metal nanoprobe for detecting a target substance based on surface-enhanced Raman scattering (SERS), SERS It is to provide a method for detecting a target material based.
본 발명의 다른 목적은 표면-증강 라만 산란(SERS) 기반 표적 물질 검출용의 비대칭형 야누스 나노프로브, 이의 제조 방법 및 이를 이용한 표적 물질 검출 방법을 제공하는 것이다.Another object of the present invention is to provide an asymmetric Janus nanoprobe for surface-enhanced Raman scattering (SERS) based target material detection, a method for preparing the same, and a method for detecting the target material using the same.
본 발명의 또 다른 목적은 방향성을 가진 금속 나노 로드 클러스터를 포함하는 이중 금속 나노입자 구획과 고분자 구획으로 이루어진 비대칭형 야누스 나노구조체, 이의 제조 방법 및 이를 이용한 표면-증강 라만 산란(SERS) 기반의 표적 물질 검출 방법을 제공하는 것이다.Another object of the present invention is an asymmetric Janus nanostructure consisting of a double metal nanoparticle compartment and a polymer compartment comprising a directional metal nanorod cluster, a manufacturing method thereof and a surface-enhanced Raman scattering (SERS) -based target using the same It is to provide a method for detecting a substance.
제 1First 발명: invent:
본 발명은 The present invention
이중 금속 나노 클러스터 코어; 및 상기 코어 주위에 방사상으로 위치하는 전도성 고분자 쉘;로 구성되는, 자가 조립된 이중 금속-고분자의 야누스 나노구조체를 제공한다.Double metal nanocluster cores; And a conductive polymer shell radially positioned around the core. The self-assembled double metal-polymer Janus nanostructure is provided.
상기 이중 금속 나노 클러스터 코어는 제1 금속 및 상기 제1 금속 표면을 감싸는 제2 금속으로 구성된다.The double metal nanocluster core is composed of a first metal and a second metal surrounding the first metal surface.
상기 제1 금속 및 제2 금속은 각각 상기 금속은 금, 은, 구리 및 이의 혼합물로 이루어진 군으로부터 선택될 수 있으나, 반드시 이로 제한되는 것은 아니며, 이 기술분야에 널리 사용되고 있는 금속은 어느 것이나 제한없이 사용될 수 있다.Each of the first metal and the second metal may be selected from the group consisting of gold, silver, copper, and mixtures thereof, but is not necessarily limited thereto, and any metal widely used in the art is not limited thereto. Can be used.
상기 제1 금속과 제2 금속은 동일하지 않은 것일 수 있다.The first metal and the second metal may not be the same.
상기 전도성 고분자는 폴리피롤(polypyrrole), 폴리싸이오펜(polythiophene), poly(3,4-ethylene dioxythiophene)(PEDOT) 및 폴리아닐린(polyaniline)으로 이루어진 군으로부터 선택되는 적어도 하나인 것일 수 있으며, 반드시 이로 제한되는 것은 아니나, 바람직하게는 폴리아닐린일 수 있다.The conductive polymer may be at least one selected from the group consisting of polypyrrole, polythiophene, poly (3,4-ethylene dioxythiophene) (PEDOT), and polyaniline, but is not limited thereto. But preferably may be polyaniline.
상기 이중 금속 나노 클러스터 코어는 라만 염료를 더 포함하는 것일 수 있다.The double metal nano cluster core may further include a Raman dye.
상기 라만 염료는 라만 활성 유기 화합물을 의미하며, 이 기술분야에서 널리 사용되는 것이라면 어느 것이나 제한없이 사용할 수 있다. 구체적인 예를 들면, MGITC(Malachite green isothiocyanate), RBITC(rhodamine B isothiocyanate), 로다민6G, 아데닌, 4-아미노-피라졸(3,4-d)피리미딘, 2-루오로아데닌, N6-벤조일아데닌, 키네틴, 디메틸-알릴-아미노-아데닌, 제아틴(zeatin), 브로모-아데닌, 8-아자-아데닌, 8-아자구아닌, 4-머캅토피리딘, 6-머캅토퓨린, 4-아미노-6-머캅토피라졸로(3,4-d)피리민딘, 8-머캅토아데닌, 9-아미노-아크리딘 및 이의 혼합물로 이루어진 군으로부터 선택될 수 있으나, 반드시 이로 제한되는 것은 아니다.The Raman dye means a Raman active organic compound, and any one widely used in the art may be used without limitation. Specific examples include Malachite green isothiocyanate (MGITC), rhodamine B isothiocyanate (RBITC), rhodamine 6G, adenine, 4-amino-pyrazole (3,4-d) pyrimidine, 2-ruoroadenine, N6-benzoyl Adenine, kinetin, dimethyl-allyl-amino-adenine, zeatin, bromo-adenine, 8-aza-adenine, 8-azaguanine, 4-mercaptopyridine, 6-mercaptopurine, 4-amino- 6-mercaptopyrazolo (3,4-d) pyrimindine, 8-mercaptoadenin, 9-amino-acridine and mixtures thereof, but is not necessarily limited thereto.
본 발명에서 상기 이중 금속이란, 금속 코어-금속 쉘 구조를 이루는 두 종류의 금속을 의미한다. In the present invention, the double metal means two kinds of metals forming a metal core-metal shell structure.
본 발명에서 상기 금속 나노 클러스터란, 금속 나노입자들이 모여서 응집된 응집물(aggregates)을 의미하는 용어로서 이 분야에서 일반적으로 사용되는 용어이다. In the present invention, the metal nanocluster is a term generally used in the art as a term meaning aggregates (aggregates) in which metal nanoparticles are collected and aggregated.
본 발명에서 상기 이중 금속 나노 클러스터란, 코어-쉘 구조를 이루는 이중 금속 나노입자들이 모여서 응집된 응집물을 의미한다.In the present invention, the double metal nano cluster refers to agglomerated aggregates of double metal nanoparticles forming a core-shell structure.
본 발명에서 상기 "야누스 나노구조체" 또는 "하이브리드 나노구조체"란, 물리화학적으로 구분되는 두 개의 서로 다른 구획(이중 금속 나노 클러스터 구획(코어) 및 전도성 고분자 구획(쉘))으로 구성된 나노구조체를 말한다.In the present invention, the "Janus nanostructure" or "hybrid nanostructure" refers to a nanostructure composed of two different compartments (double metal nanocluster compartment (core) and conductive polymer compartment (shell)) that are physically and chemically separated. .
상기 이중 금속 나노 클러스터는 제1 금속 및 상기 제1 금속 표면을 감싸는 제2 금속으로 구성된다. 상기 이중 금속 나노 클러스터 구획의 한쪽 면에만 전도성 고분자 구획이 부착되어 성장, 즉, 편심 증착(eccentrically deposited)하여 비대칭적인 야누스 나노입자를 형성하고, 상기 야누스 나노입자 내의 이중 금속 나노입자들이 소수성 상호 작용을 통해 자가 조립되어, 이중 금속 나노 클러스터 코어 및 상기 코어 주위에 방사상으로 위치하여 쉘 형태를 나타내는 고분자 구획을 형성한 것을 나타낸다. 상기 야누스 나노입자 내 이중 금속 나노입자들의 소수성 상호 작용은 야누스 나노입자에 ODA(octadecylamine)를 공유 결합시켜 선택적 기능화를 유도함으로써 이루어진다. The double metal nano cluster is composed of a first metal and a second metal surrounding the first metal surface. Conductive polymer compartments are attached to only one side of the double metal nanocluster compartment to grow, that is, eccentrically deposited to form asymmetric Janus nanoparticles, and the double metal nanoparticles in the Janus nanoparticles undergo hydrophobic interactions. Self-assembled through to form a double metal nanocluster core and a polymer compartment radially positioned around the core to exhibit a shell shape. Hydrophobic interaction of the double metal nanoparticles in the Janus nanoparticles is achieved by covalently binding ODA (octadecylamine) to the Janus nanoparticles to induce selective functionalization.
본 명세서 상에서 "야누스 나노구조체"는 그 구조가 이중 금속 나노 클러스터 코어-전도성 고분자 쉘을 포함함에 따라, "이중 금속-고분자 야누스 나노입자" 또는 "야누스 나노입자" 또는 "야누스 나노프로브"로도 명명된다. 또한, 본 명세서 상에서 "이중 금속 나노 클러스터 코어 및 상기 코어 주위에 방사상으로 위치하여 쉘 형태를 나타내는 고분자 구획을 형성한 것"은 "특이(superparticular) 구조"라고 명명한다.As used herein, "Janus nanostructures" are also referred to as "double metal-polymer Janus nanoparticles" or "Janus nanoparticles" or "Janus nanoprobes", as their structure includes a double metal nano cluster core-conductive polymer shell. . In addition, in the present specification, "a double metal nanocluster core and a polymer compartment radially positioned around the core to form a shell shape" are called "superparticular structures".
다른 측면에서 본 발명은, 본 발명에 따른 야누스 나노구조체를 이용한 표면-증강 라만 산란(SERS) 기반 바이오센싱(Biosensing) 및/또는 바이오이미징(Bioimaging) 측정용 금속 나노프로브를 제공한다.In another aspect, the present invention provides metal nanoprobes for surface-enhanced Raman scattering (SERS) based biosensing and / or bioimaging measurement using Janus nanostructures according to the present invention.
본 발명에 따른 자가 조립된 이중 금속-고분자의 야누스 나노구조체는 라만 염료를 포함함으로써, 표면-증강 라만 산란 기반 바이오센싱(Biosensing) 및/또는 바이오이미징(Bioimaging)을 위한 금속 나노프로브로 제공될 수 있다.The self-assembled double metal-polymer Janus nanostructures according to the present invention comprise a Raman dye, thereby providing a metal nanoprobe for surface-enhanced Raman scattering based biosensing and / or bioimaging. have.
본 발명에서 프로브란, 검출하고자 하는 표적(타겟) 물질과 특이적으로 결합할 수 있는 물질을 의미하며, 상기 결합을 통하여 표적 물질의 존재를 확인할 수 있는 물질을 의미한다. In the present invention, the probe refers to a substance capable of specifically binding to a target (target) substance to be detected, and means a substance capable of confirming the presence of the target substance through the binding.
본 발명에서 나노프로브란, 나노 크기의 프로브를 의미한다.In the present invention, nanoprobe means a probe of a nano size.
상기 "나노"란 이 기술분야의 통상의 기술자들이 이해하는 정도의 크기 범위를 포함한다. 구체적으로 상기 크기 범위는 0.1 에서 1000 nm의 크기일 수 있으며, 더 구체적으로는 10 에서 1000 nm, 더욱 바람직하게는 20 에서 500 nm, 더 더욱 바람직하게는 40 에서 250 nm 일 수 있다.The term " nano " includes a range of sizes that would be understood by one of ordinary skill in the art. Specifically, the size range may be a size of 0.1 to 1000 nm, more specifically 10 to 1000 nm, more preferably 20 to 500 nm, even more preferably 40 to 250 nm.
본 발명은 본 발명에 따른 야누스 나노구조체를 이용한 형광 기반 바이오센싱(Biosensing) 및/또는 바이오이미징(Bioimaging) 측정용 금속 나노프로브를 제공한다. The present invention provides metal nanoprobes for fluorescence based biosensing and / or bioimaging measurement using Janus nanostructures according to the present invention.
본 발명에 따른 자가 조립된 이중 금속-고분자의 야누스 나노구조체는 시아닌(Cyanine)계열 형광분자, 로다민(Rodamine) 계열 형광분자, 옥사진(oxazine) 계열 형광분자, 알렉사(Alexa) 계열 형광분자, FITC(fluorescein isothiocyanate) 형광분자, FAM(5-carboxy fluorescein) 형광분자 및 텍사스 레드(Texas Red) 형광분자를 포함함으로써, 형광을 기반으로 한 이미지를 측정하기 위한 금속 나노프로브로 제공될 수 있다. 구체적으로, 상기 형광염료(R2)는 싸이3(Cy3), 싸이5(Cy5), 플루오레세인 아이소티오시안산염(FITC), 테트라메틸로다민 아이소티오시안산염(RITC), 알렉사(Alexa), 4,4,-다이플루오로-4-보로-3a,4a-다이아자-s-인다센(BODIPY),텍사스 레드(Texas Red), 비오틴 로다민, 쿠마린, Cy, 에보블루(EvoBlue), 옥사진, 카보피로닌, 나프탈렌, 비페닐, 안트라센, 페난트렌, 피렌, 카바졸 등을 기본 골격으로서 갖는 형광 색소나 그 형광 색소의 유도체를 예시할 수 있고, 구체적으로는, CR110 : 카복시로다민 110 : 로다민 그린(상표명), TAMRA : 카복시테트라메틸로다민 : TMR, 카복시로다민 6G : CR6G, ATTO655(상표명), BODIPY FL(상표명) : 4,4-디플루오로-5,7-디메틸-4-보라-3a,4a-디아자-s-인다센-3-프로피온산, BODIPY 493/503(상표명) : 4,4-디플루오로-1,3,5,7-테트라메틸-4-보라-3a,4a-디아자-s-인다센-8-프로피온산, BODIPY R6G(상표명) : 4,4-디플루오로-5-(4-페닐-1,3-부타디에닐)-4-보라-3a,4a-디아자-s-인다센-3-프로피온산, BODIPY 558/568(상표명) : 4,4-디플루오로-5-(2-티에닐)-4-보라-3a,4a-디아자-s-인다센-3-프로피온산, BODIPY 564/570(상표명) : 4,4-디플루오로-5-스티릴-4-보라-3a,4a-디아자-s-인다센-3-프로피온산, BODIPY 576/589(상표명) : 4,4-디플루오로-5-(2-피롤릴)-4-보라-3a,4a-디아자-s-인다센-3-프로피온산, BODIPY 581/591(상표명) : 4,4-디플루오로-5-(4-페닐-1,3-부타디에닐)-4-보라-3a,4a-디아자-s-인다센-3-프로피온산, Cy3(상표명), Cy3B(상표명), Cy3.5(상표명), Cy5(상표명), Cy5.5(상표명), EvoBlue10(상표명), EvoBlue30(상표명), MR121, ATTO 390(상표명), ATTO 425(상표명), ATTO 465(상표명), ATTO 488(상표명), ATTO 495(상표명), ATTO 520(상표명), ATTO 532(상표명), ATTO Rho6G(상표명), ATTO 550(상표명), ATTO 565(상표명), ATTO Rho3B(상표명), ATTO Rho11(상표명), ATTO Rho12(상표명), ATTO Thio12(상표명), ATTO 610(상표명), ATTO 611X(상표명), ATTO 620(상표명), ATTO Rho14(상표명), ATTO 633(상표명), ATTO 647(상표명), ATTO 647N(상표명), ATTO 655(상표명), ATTO Oxa12(상표명), ATTO 700(상표명), ATTO 725(상표명), ATTO 740(상표명), Alexa Fluor 350(상표명), Alexa Fluor 405(상표명), Alexa Fluor 430(상표명), Alexa Fluor 488(상표명), Alexa Fluor 532(상표명), Alexa Fluor 546(상표명), Alexa Fluor 555(상표명), Alexa Fluor 568(상표명), Alexa Fluor 594(상표명), Alexa Fluor 633(상표명), Alexa Fluor 647(상표명), Alexa Fluor 680(상표명), Alexa Fluor 700(상표명), Alexa Fluor 750(상표명), Alexa Fluor 790(상표명), Rhodamine Red-X(상표명), Texas Red-X(상표명), 5(6)-TAMRA-X(상표명), 5TAMRA(상표명), SFX(상표명)를 들 수 있다.Janus nanostructures of self-assembled double metal-polymers according to the present invention are cyanine-based fluorescent molecules, rodamine-based fluorescent molecules, oxazine-based fluorescent molecules, Alexa-based fluorescent molecules, By including a fluorescein isothiocyanate (FITC) fluorescent molecule, a 5-carboxy fluorescein (FAM) fluorescent molecule, and a Texas red (Texas Red) fluorescent molecule, it can be provided as a metal nanoprobe for measuring fluorescence-based images. Specifically, the fluorescent dye (R 2 ) is cy 3 (Cy 3), cy 5 (Cy 5), fluorescein isothiocyanate (FITC), tetramethyltamine isothiocyanate (RITC), Alexa (Alexa) , 4,4, -difluoro-4-boro-3a, 4a-diaza-s-indacene (BODIPY), Texas Red, biotin rhodamine, coumarin, Cy, EvoBlue, Fluorescent dyes having derivatives of oxazine, carbopyronine, naphthalene, biphenyl, anthracene, phenanthrene, pyrene, carbazole and the like as basic skeletons and derivatives of the fluorescent dyes thereof can be exemplified. Specifically, CR110: carboxyrodamine 110: Rhodamine Green (trade name), TAMRA: carboxytetramethylhodamine: TMR, carboxyrodamine 6G: CR6G, ATTO655 (trade name), BODIPY FL (trade name): 4,4-difluoro-5,7-dimethyl -4-bora-3a, 4a-diaza-s-indacene-3-propionic acid, BODIPY 493/503 (trade name): 4,4-difluoro-1,3,5,7-tetramethyl-4- Bora-3a, 4a-diaza-s-indacene-8-propionic acid, BOD IPY R6G (trade name): 4,4-difluoro-5- (4-phenyl-1,3-butadienyl) -4-bora-3a, 4a-diaza-s-indacene-3-propionic acid, BODIPY 558/568 (trade name): 4,4-difluoro-5- (2-thienyl) -4-bora-3a, 4a-diaza-s-indacene-3-propionic acid, BODIPY 564/570 Trademark): 4,4-Difluoro-5-styryl-4-bora-3a, 4a-diaza-s-indacene-3-propionic acid, BODIPY 576/589 (trade name): 4,4-difluoro Rho-5- (2-pyrrolyl) -4-bora-3a, 4a-diaza-s-indacene-3-propionic acid, BODIPY 581/591 (trade name): 4,4-difluoro-5- ( 4-phenyl-1,3-butadienyl) -4-bora-3a, 4a-diaza-s-indacene-3-propionic acid, Cy3 (trade name), Cy3B (trade name), Cy3.5 (trade name), Cy5 (trade name), Cy5.5 (trade name), EvoBlue10 (trade name), EvoBlue30 (trade name), MR121, ATTO 390 (trade name), ATTO 425 (trade name), ATTO 465 (trade name), ATTO 488 (trade name), ATTO 495 (Trade name), ATTO 520 (trade name), ATTO 532 (trade name), ATTO Rho6G (trade name), ATTO 550 (trade name), ATTO 565 (trade name), ATTO Rho3B (trade name), ATTO R ho11 (trade name), ATTO Rho12 (trade name), ATTO Thio12 (trade name), ATTO 610 (trade name), ATTO 611X (trade name), ATTO 620 (trade name), ATTO Rho14 (trade name), ATTO 633 (trade name), ATTO 647 ( Trademark name), ATTO 647N (trade name), ATTO 655 (trade name), ATTO Oxa12 (trade name), ATTO 700 (trade name), ATTO 725 (trade name), ATTO 740 (trade name), Alexa Fluor 350 (trade name), Alexa Fluor 405 ( Trademark), Alexa Fluor 430 (trade name), Alexa Fluor 488 (trade name), Alexa Fluor 532 (trade name), Alexa Fluor 546 (trade name), Alexa Fluor 555 (trade name), Alexa Fluor 568 (trade name), Alexa Fluor 594 (trade name) ), Alexa Fluor 633 (trade name), Alexa Fluor 647 (trade name), Alexa Fluor 680 (trade name), Alexa Fluor 700 (trade name), Alexa Fluor 750 (trade name), Alexa Fluor 790 (trade name), Rhodamine Red-X (trade name) ), Texas Red-X (trade name), 5 (6) -TAMRA-X (trade name), 5TAMRA (trade name), and SFX (trade name).
본 발명은 본 발명에 따른 야누스 나노구조체를 이용한 약물 전달체를 제공한다.The present invention provides a drug carrier using Janus nanostructures according to the present invention.
상기 약물 전달체는 전기장 자극 반응성인 것일 수 있다.The drug carrier may be one that is electric field stimulant reactive.
구체적으로, 본 발명에 따른 자가 조립된 이중 금속-고분자의 야누스 나노구조체의 고분자 구획은 전도성 고분자로 이루어져 전기장 반응성을 나타내었다. 본 발명은 음으로 하전된 약물 및 양으로 하전된 전도성 고분자 단량체의 정전기적 상호 작용을 통해 약물을 고분자 구획 내로 담지하였으며, 농축된 약물-담지 나노입자를 PEG 용액에 첨가하고 UV로 조사하여 PEG-나노입자 하이드로겔을 형성시켰다. -1.5V의 전압이 가해질 때 전도성 고분자 단량체(Repeating unit)의 탈양성자화로 인해 정전기적 상호 작용이 감소하면서 약물 방출이 이루어졌다(도 6).Specifically, the polymer compartment of the self-assembled double metal-polymer Janus nanostructure according to the present invention was composed of a conductive polymer and exhibited electric field reactivity. The present invention supported the drug into the polymer compartment through the electrostatic interaction of the negatively charged drug and the positively charged conductive polymer monomer, and the concentrated drug-supported nanoparticles were added to the PEG solution and irradiated with UV to PEG- Nanoparticle hydrogels were formed. De-protonation of the conducting polymer monomer (Repeating unit) when a voltage of -1.5V was applied, the drug release was made while the electrostatic interaction is reduced (Fig. 6).
또 다른 측면에서 본 발명은, 하기 단계를 포함하는 자가 조립된 이중 금속-고분자의 야누스 나노구조체의 제조 방법을 제공한다.In another aspect, the present invention provides a method for producing a self-assembled double metal-polymer Janus nanostructure comprising the following steps.
i) 시드(seed)를 형성하는 금속 나노입자를 준비하고;i) preparing metal nanoparticles to form a seed;
ii) 전도성 고분자 단량체 및 계면활성제를 용해시킨 수용액에 상기 시드 금속 나노입자를 첨가하고, ii) adding the seed metal nanoparticles to an aqueous solution in which a conductive polymer monomer and a surfactant are dissolved,
iii) 상기 ii)의 시드 금속 나노입자가 첨가된 용액에 금속 이온 용액을 첨가하여 상기 금속 이온과 상기 전도성 고분자 단량체 사이의 산화-환원 반응을 수행하고;iii) adding a metal ion solution to the solution to which the seed metal nanoparticles of ii) are added to perform a redox reaction between the metal ion and the conductive polymer monomer;
iv) 상기 금속 이온이 상기 전도성 고분자가 제공하는 전자를 받아 환원되면서 시드 금속 나노입자 표면에 증착되어 이중 금속 나노입자 구획을 형성하고, 상기 전도성 고분자 모노머는 산화되면서 상기 이중 금속 나노입자 구획의 한쪽 면에만 증착되어 전도성 고분자로 성장하면서 비대칭적으로 전도성 고분자 구획을 형성하여, 이중 금속-고분자로 구성된 야누스 나노입자를 만들고;iv) the metal ions are deposited on the surface of the seed metal nanoparticles while being reduced by receiving electrons provided by the conductive polymer to form a double metal nanoparticle compartment, and the conductive polymer monomer is oxidized to one side of the double metal nanoparticle compartment. Is deposited only to form a conductive polymer compartment asymmetrically while growing into a conductive polymer, thereby making Janus nanoparticles composed of double metal-polymers;
v) 상기 야누스 나노입자들을 포함하는 용액에 ODA(octadecylamine)를 첨가하고; 그리고v) octadecylamine (ODA) is added to the solution containing Janus nanoparticles; And
vi) 상기 야누스 나노입자들 내의 상기 이중 금속 나노입자들이 상기 ODA와 공유결합하면서 자가 조립되어, 이중 금속 나노 클러스터 코어 및 상기 코어 주위에 방사상으로 위치하는 고분자 쉘을 형성하는; 단계.vi) the double metal nanoparticles in the Janus nanoparticles self-assemble covalently with the ODA to form a double metal nano cluster core and a radially located polymer shell around the core; step.
상기 iv) 단계 이후에, 상기 이중 금속-고분자로 구성된 나노입자의 이중 금속 나노입자 표면에 라만 염료를 부착하는 단계를 더 포함할 수 있다.After step iv), the method may further include attaching a Raman dye to the surface of the double metal nanoparticles of the nanoparticles composed of the double metal-polymer.
본 발명의 일실시예에서, 두 종류의 라만 염료인 RBITC와 MGITC를 이중 금속-고분자 야누스 나노입자의 콜로이드 용액에 첨가한 후, 라만 염료의 이소티오시아네이트(isothiocyanate) 그룹(-N = C〓S)을 통해 Au 코어-Ag 쉘로 이루어지는 이중 금속 나노입자 표면에 RBITC와 MGITC를 고정시켜, 이중 금속 나노 클러스터 구획에 선택적으로 흡착시켰다. In one embodiment of the invention, two kinds of Raman dyes, RBITC and MGITC, are added to a colloidal solution of double metal-polymer Janus nanoparticles, followed by the isothiocyanate group of the Raman dye (-N = C〓). Through S), RBITC and MGITC were fixed on the surface of the double metal nanoparticle consisting of Au core-Ag shell, and selectively adsorbed to the double metal nanocluster compartment.
상기 i) 단계의 시드 금속은 금, 은, 구리 및 이의 혼합물로 이루어진 군으로부터 선택될 수 있으나, 반드시 이로 제한되는 것은 아니며, 이 기술분야에 널리 사용되고 있는 금속은 어느 것이나 제한없이 사용될 수 있다.The seed metal of step i) may be selected from the group consisting of gold, silver, copper and mixtures thereof, but is not necessarily limited thereto, and any metal widely used in the art may be used without limitation.
상기 iii) 단계의 금속 이온은 금 이온, 은 이온, 구리 이온 및 이의 혼합물로 이루어진 군으로부터 선택될 수 있다.The metal ion of step iii) may be selected from the group consisting of gold ions, silver ions, copper ions and mixtures thereof.
구체적으로, 상기 금 이온은 염화금수화물(Gold(III) chloride hydrate), 클로로카보닐금(Chlorocarbonylgold), 테트라클로로금산수소(Hydrogen tetrachloroaurate) 테트라클로로금산수소수화물(Hydrogen tetrachloroaurate hydrate), 클로로트리에틸포스핀금화합물(Chlorotriethylphosphinegold), 클로로트리메틸포스핀금화합물(Chlorotrimethylphosphinegold), 다이메틸(아세틸아세토네이트)금화합물(Dimethyl(acetylacetonate)gold), 염화금(Gold(I) chloride), 시안화금(Gold cyanide), 황화금(Gold sulfide) 및 이의 혼합물로부터 이루어진 군으로부터 선택되는 것일 수 있으며, 반드시 이로 제한되는 것은 아니나, 바람직하게는 염화금수화물일 수 있다.Specifically, the gold ions are gold (III) chloride hydrate, chlorocarbonylgold, hydrogen tetrachloroaurate, tetrachloroaurate hydrate, chlorotriethylphosphine gold compound. (Chlorotriethylphosphinegold), Chlorotrimethylphosphinegold, Dimethyl (acetylacetonate) gold compound, Gold (I) chloride, Gold cyanide, Gold sulfide sulfide) and mixtures thereof, and may be, but is not necessarily limited to, chlorinated chloride.
상기 은 이온은 질산은(AgNO3), 테트라플루오르붕산염 은(AgBF4), 트리플루오르메탄술폰산염 은(AgCF3SO3), 과염소산은(AgClO4), 아세트산은(Ag(CH3COO)), 헥사플루오르인산염 은(AgPF6), Ag(CF3COO) 및 이의 혼합물로부터 이루어진 군으로부터 선택되는 것일 수 있으며, 반드시 이로 제한되는 것은 아니나, 바람직하게는 질산은일 수 있다.The silver ions include silver nitrate (AgNO3), silver tetrafluoroborate (AgBF4), trifluoromethanesulfonate silver (AgCF3SO3), silver perchlorate (AgClO4), silver acetate (Ag (CH3COO)), hexafluorophosphate silver (AgPF6), It may be selected from the group consisting of Ag (CF 3 COO) and mixtures thereof, but is not necessarily limited thereto, and may preferably be silver nitrate.
상기 구리 이온은 구리(II) 아세틸아세토네이트(Cu(acac)2), 염화구리(CuCl), 염화구리(II)(CuCl2), 구리(II) 헥사플루오로아세틸아세토네이트(Cu(hfac)2), 구리(II) 트리플루오로아세틸클로라이드(Cu(tfac)2), 구리(II) 디피브알로이메타네이트(Cu(dpm)2), 구리(II) 펜타플루오로디메틸헵탄디온(Cu(ppm)2), 구리(II) 헵타플루오로디메틸옥탄(Cu(fod)2), 구리(II) 이미노펜타논(Cu(acim)2), 구리(II) 헥사플루오로-[(트리플루오로에틸)이미노]-펜타논(Cu(nona-F)2), 구리(II) 아세틸아세토에틸렌디아민(Cu(acen)2), 질산구리(Cu(NO3)2), 황산구리(CuSO4) 및 이의 혼합물로부터 이루어진 군으로부터 선택되는 것일 수 있으며, 반드시 이로 제한되는 것은 아니다.The copper ions may be copper (II) acetylacetonate (Cu (acac) 2), copper chloride (CuCl), copper chloride (II) (CuCl 2), copper (II) hexafluoroacetylacetonate (Cu (hfac) 2 ), Copper (II) trifluoroacetylchloride (Cu (tfac) 2), copper (II) dipiballomethacrylate (Cu (dpm) 2), copper (II) pentafluorodimethylheptanedione (Cu (ppm) 2), copper (II) heptafluorodimethyloctane (Cu (fod) 2), copper (II) iminopentanone (Cu (acim) 2), copper (II) hexafluoro-[(trifluoro Ethyl) imino] -pentanone (Cu (nona-F) 2), copper (II) acetylacetoethylenediamine (Cu (acen) 2), copper nitrate (Cu (NO3) 2), copper sulfate (CuSO4) and its It may be selected from the group consisting of the mixture, but is not necessarily limited thereto.
본 발명의 일실시예에서, 이중 금속 나노 클러스터 코어는 시드 금속 나노입자(제1 금속)와 상기 시드 금속 표면을 감싸는 제2 금속으로 구성될 수 있다.In one embodiment of the present invention, the double metal nanocluster core may be composed of a seed metal nanoparticle (first metal) and a second metal surrounding the seed metal surface.
상기 ii) 단계의 전도성 고분자는 폴리피롤(polypyrrole), 폴리싸이오펜(polythiophene), poly(3,4-ethylene dioxythiophene)(PEDOT) 및 폴리아닐린(polyaniline)으로 이루어진 군으로부터 선택되는 적어도 하나인 것일 수 있으며, 반드시 이로 제한되는 것은 아니나, 바람직하게는 폴리아닐린일 수 있다.The conductive polymer of step ii) may be at least one selected from the group consisting of polypyrrole, polythiophene, poly (3,4-ethylene dioxythiophene) (PEDOT), and polyaniline, It is not necessarily limited thereto, but may preferably be polyaniline.
상기 iv) 단계의 전도성 고분자로 성장하는 것은 표면 주형 중합법(surface-templated polymerization)에 의한 것일 수 있다.The growth of the conductive polymer of step iv) may be by surface-templated polymerization.
상기 "표면 주형 중합법"이란 산화-환원 반응에 기반한 중합법으로, 본 명세서에서는 질산은과 아닐린 단량체 간의 자발적인 산화-환원 반응을 통해 이중 금속 나노 클러스터 상에 전도성 고분자인 폴리아닐린이 증착되는 것을 의미한다. 구체적으로, 1급 아민 그룹을 가진 아닐린 단량체가 질산은에 전자를 공여하고 은 이온은 산화-환원 반응의 균형을 맞추기 위해 상응하는 전자를 받음으로써 전도성 고분자 단량체가 산화 중합됨에 따라 이중 금속 나노 클러스터 상에 폴리아닐린이 증착되었다.The "surface template polymerization method" refers to a polymerization method based on an oxidation-reduction reaction, and in this specification, polyaniline, which is a conductive polymer, is deposited on a double metal nanocluster through a spontaneous redox reaction between silver nitrate and an aniline monomer. Specifically, aniline monomers having a primary amine group donate electrons to silver nitrate and silver ions receive corresponding electrons to balance the oxidation-reduction reaction so that the conductive polymer monomers are oxidatively polymerized on the double metal nanoclusters. Polyaniline was deposited.
상기 ii) 단계의 계면활성제는 소디움도데실설페이트(SDS), 소디움데옥시초레이트(sodium deoxycholate), 및 트리톤 X-200(Triton X-200)로 이루어진 군으로부터 선택되는 적어도 하나인 것일 수 있으며, 반드시 이로 제한되는 것은 아니나, 바람직하게는 SDS일 수 있다.The surfactant of step ii) may be at least one selected from the group consisting of sodium dodecyl sulfate (SDS), sodium deoxycholate, and Triton X-200, It is not necessarily limited to this, but may preferably be SDS.
본 발명에 따른 자가 조립된 이중 금속-고분자의 야누스 나노구조체 및 이의 특이 구조를 제조하기 위한 실험적 방법과 SERS 기반 바이오 센싱 및/또는 응용을 위한 실험적 방법의 모식도를 도 1에 나타내었다. A schematic diagram of an experimental method for preparing self-assembled double metal-polymer Janus nanostructures and their specific structures and an experimental method for SERS-based biosensing and / or application is shown in FIG. 1.
도 1 (a)는 이중 금속-고분자 야누스 나노입자와 그 특이 구조의 합성을 나타내었다. 먼저, 아닐린 단량체의 산화 중합 및 Ag 나노입자의 추가적인 성장을 통해 이중 금속-고분자 야누스 나노입자를 제조하였다. 구체적으로, 농축된 Au 나노입자를 아닐린 및 계면활성제인 SDS를 함유하는 용액에 첨가한 다음, 질산은을 첨가하여 산화-환원 반응을 개시하였다. 생성된 용액을 3.6 mM SDS 용액에서 밤새 추가로 인큐베이션하여 Au 코어-Ag 쉘로 이루어지는 이중 금속 나노 클러스터 구획과 폴리(아닐린)으로 이루어지는 고분자 구획으로 구성된 이중 금속-고분자 야누스 나노입자를 제조하였다. 이중 금속-고분자 야누스 나노입자의 구획화는 Ag, 폴리(아닐린) 및 물의 3 상 시스템 사이의 균형 잡힌 계면 장력에 기인한다. SDS의 첨가는 폴리(아닐린)-Ag 및 폴리(아닐린)-물인 2 개의 인접한 상 사이의 계면 장력에 영향을 미치고, 이어서 Au 나노입자의 한 면에 별도로 폴리(아닐린) 고분자 구획을 형성하여 총 표면 에너지를 최소화시켰다. 또한, 이중 금속-고분자 야누스 나노입자의 이중 금속 클러스터 구획이 긴 소수성 알킬 사슬을 포함하는 ODA로 선택적으로 기능화될 때, 방향성 자가 조립되어 특이 구조가 형성되고, 여기서 이중 금속 클러스터 구획은 소수성 상호 작용을 통해 마주하고 있다. 이는 Au 나노입자의 잔류 카르복실기와 ODA의 제1 아민기의 아미드 결합 반응에 의해 ODA가 이중 금속 클러스터 구획의 표면에 공유 결합되었기 때문으로 분석된다. Figure 1 (a) shows the synthesis of double metal-polymer Janus nanoparticles and their specific structure. First, double metal-polymer Janus nanoparticles were prepared through oxidative polymerization of aniline monomers and further growth of Ag nanoparticles. Specifically, the concentrated Au nanoparticles were added to a solution containing aniline and a surfactant, SDS, and then silver nitrate was added to initiate an oxidation-reduction reaction. The resulting solution was further incubated overnight in a 3.6 mM SDS solution to prepare double metal-polymer Janus nanoparticles consisting of a double metal nanocluster compartment consisting of Au core-Ag shell and a polymer compartment consisting of poly (aniline). The partitioning of the double metal-polymer Janus nanoparticles is due to the balanced interfacial tension between three phase systems of Ag, poly (aniline) and water. The addition of SDS affects the interfacial tension between two adjacent phases, poly (aniline) -Ag and poly (aniline) -water, followed by the formation of separate poly (aniline) polymer compartments on one side of the Au nanoparticles Energy was minimized. In addition, when the double metal cluster compartments of the double metal-polymer Janus nanoparticles are selectively functionalized with ODA containing long hydrophobic alkyl chains, the directional self-assembles to form a specific structure, where the double metal cluster compartments exhibit hydrophobic interactions. Facing through. This is due to the covalent bonding of ODA to the surface of the double metal cluster compartment by the amide bonding reaction of the residual carboxyl groups of the Au nanoparticles and the first amine groups of the ODA.
도 1 (b)는 이중 금속-고분자 야누스 나노입자 합성을 위한 아닐린 단량체와 질산은 사이의 자발적인 산화-환원 반응을 나타낸다. 산화-환원 반응은 아닐린이 폴리(아닐린)으로 산화되고 질산은이 은 입자로 환원되는, 2 개의 전구체 사이에서의 전자의 이동과 연관되었다. 제1 아민기로 인해 전자 공여체 분자인 아닐린 단량체는 질산은에 전자를 기증하고 질산은은 산화 환원 반응의 균형을 맞추기 위해 상응하는 전자를 받았다. 도 1 (c)에서 볼 수 있듯이, 이중 금속-고분자 야누스 나노입자의 특이 구조는 바이오 센싱을 위한 새로운 종류의 SERS 나노프로브로 적용할 수 있다. 구체적으로, 이중 금속 구획은 라만 염료 및 ODA로 선택적으로 기능화되어, 방향성 클러스터링(directional clustering)을 통해 이중 금속 나노입자 사이의 틈새에서 핫 스팟(hot spot)이 생성되어, 라만 신호의 유의한 향상을 유도하고, 표적의 일부분인 특정 항체가 분자 결합을 통한 고분자 구획 상에 도입되었다. 표적 존재 하에서, 특이 구조, 표적 및 자성 비드로 구성된 샌드위치형 면역 복합체가 형성되고 자기장에서 세척되었다. 마지막으로, 표적의 라만 산란-기반 검출은 라만 이동(Raman shift)을 통해 확인되었다.Figure 1 (b) shows the spontaneous redox reaction between the aniline monomer and silver nitrate for the synthesis of double metal-polymer Janus nanoparticles. The redox reaction was associated with the transfer of electrons between the two precursors, where aniline was oxidized to poly (aniline) and silver nitrate was reduced to silver particles. Aniline monomers, which are electron donor molecules due to the first amine group, donated electrons to silver nitrate and received corresponding electrons to balance the silver nitrate redox reaction. As can be seen in Figure 1 (c), the specific structure of the double metal-polymer Janus nanoparticles can be applied to a new kind of SERS nanoprobe for biosensing. Specifically, the bimetallic compartments are selectively functionalized with Raman dyes and ODA to create hot spots in the gaps between the bimetallic nanoparticles through directional clustering, thereby improving significant Raman signals. Specific antibodies that were induced and were part of the target were introduced onto the polymer compartment via molecular binding. In the presence of the target, a sandwiched immune complex consisting of specific structure, target and magnetic beads was formed and washed in the magnetic field. Finally, Raman scattering-based detection of targets was confirmed via Raman shift.
또 다른 측면에서 본 발명은, 하기 단계를 포함하는 표면-증강 라만 산란(SERS) 기반의 표적 물질 검출 방법을 제공한다:In another aspect, the present invention provides a surface-enhanced Raman scattering (SERS) based target substance detection method comprising the following steps:
a) 검출하고자 하는 표적 물질이 포함된 시료액을 준비하고;a) preparing a sample solution containing the target substance to be detected;
b) 자성 나노입자에 상기 표적 물질에 대한 제1 항체를 고정하여 준비하고;b) preparing by immobilizing a first antibody against the target material on magnetic nanoparticles;
c) 상기 라만 염료가 포함된 금속 나노프로브에 상기 표적 물질에 대한 제2 항체를 고정하여 준비하고;c) preparing by immobilizing a second antibody against the target material on a metal nanoprobe containing the Raman dye;
d) 상기 b)의 제1 항체가 고정된 자성 나노입자를 상기 a)의 시료액에 첨가하여 상기 표적 물질과 상기 자성 나노입자의 제1 항체가 접합된 면역복합체를 형성하고;d) adding the magnetic nanoparticles immobilized with the first antibody of b) to the sample solution of a) to form an immunocomplex in which the target material and the first antibody of the magnetic nanoparticles are conjugated;
e) 상기 c)의 제2 항체가 고정된 금속 나노프로브를 상기 d)의 제1 항체가 접합된 면역복합체가 포함된 용액에 첨가하여 금속 나노프로브의 제2 항체-표적 물질-자성 나노입자의 제1 항체의 샌드위치형 면역복합체를 형성하고;e) adding the metal nanoprobe to which the second antibody of c) is immobilized to a solution containing the immunocomplex conjugated with the first antibody of d) to prepare a second antibody-target material-magnetic nanoparticle of the metal nanoprobe. Forming a sandwich immunocomplex of the first antibody;
f) 자기장을 이용하여 상기 샌드위치형 면역복합체를 형성하지 않은 자성 나노입자 및 금속 나노프로브를 분리하고; 그리고f) separating magnetic nanoparticles and metal nanoprobes that did not form the sandwich immunocomplex using a magnetic field; And
g) 상기 샌드위치형 면역복합체의 라만 신호를 측정하는; 단계.g) measuring the Raman signal of said sandwich immunocomplex; step.
본 발명에서 "샌드위치형 면역 복합체"란 항체-항원(타겟)-항체 반응을 통해 결합된 면역복합체를 의미한다. 항원이 항체 중간에 삽입되어 샌드위치 모양을 나타냄에 따라 명명되었다.As used herein, the term "sandwich immune complex" refers to an immunocomplex bound through an antibody-antigen (target) -antibody reaction. The antigen was named as it is inserted in the middle of the antibody to form a sandwich.
표적 단백질의 검출을 위한 SERS- 기반 면역 분석법의 모식도를 도 7에 도시하였다. 1 단계에서, 항-인간 IgG mAb 결합 또는 항-인간 CEA mAb 결합된 자성 비드를 상이한 농도의 IgG 또는 CEA를 함유하는 용액에 첨가하였다. 표적은 외부 자기장을 가함으로써 대응하는 자성 비드에 의해 선택적으로 포획되고 PBS에 재현탁되었다. 2 단계에서, 항-인간 IgG pAb 결합 또는 항-인간 CEA pAb 결합된 SERS 나노프로브를 용액에 첨가하여 자성 비드, 표적 단백질 및 SERS 기반 나노프로브로 구성된 샌드위치형 면역 복합체를 형성하였다. 이어서, 자기장을 가함으로써 결합되지 않은 SERS 나노프로브를 제거하고, 결과물인 샌드위치형 면역 복합체를 PBS에 재현탁시켰다. 최종 단계에서, 라만 스펙트럼은 상대적 라만 강도와 표적 단백질의 농도 사이의 선형 상관 관계를 갖는 표적의 SERS- 기반 정량 분석에 대한 라만 이동에 따라 확인되었다.A schematic of SERS-based immunoassay for detection of target protein is shown in FIG. 7. In step 1, anti-human IgG mAb binding or anti-human CEA mAb bound magnetic beads were added to a solution containing different concentrations of IgG or CEA. The target was selectively captured by the corresponding magnetic beads and resuspended in PBS by applying an external magnetic field. In step 2, anti-human IgG pAb binding or anti-human CEA pAb bound SERS nanoprobes were added to the solution to form a sandwich immune complex consisting of magnetic beads, target protein and SERS based nanoprobes. The unbound SERS nanoprobe was then removed by applying a magnetic field, and the resulting sandwiched immune complex was resuspended in PBS. In the final step, Raman spectra were identified following Raman shift for SERS-based quantitative analysis of the target with a linear correlation between relative Raman intensity and concentration of target protein.
상기 표적 물질은 단백질 또는 병원균인 것일 수 있다.The target substance may be a protein or a pathogen.
상기 단백질은 항원, 생물학적 압타머(biological aptamer), 수용체, 효소 및 리간드로 이루어진 군으로부터 선택될 수 있다. The protein may be selected from the group consisting of antigens, biological aptamers, receptors, enzymes and ligands.
제 22nd 발명: invent:
본 발명은 하기로 구성되는 야누스 나노구조체를 제공한다: The present invention provides Janus nanostructures consisting of:
리간드를 흡착시킨 금속 나노입자 코어, 및 상기 코어의 리간드 흡착 부분에 환원된 금속 새틀라이트로 구성되는 코어-새틀라이트 구조의 이중 금속 나노입자 구획; 및 A double-metal nanoparticle compartment having a core-satellite structure comprising a metal nanoparticle core to which a ligand is adsorbed, and a metal satellite reduced to a ligand adsorption portion of the core; And
전도성 고분자 구획.Conductive polymer block.
상기 리간드는 전하성 리간드 또는 두 개의 반응기를 갖는 리간드이고, 상기 금속 나노입자 코어는 양전하성 금속 나노입자 코어 또는 음전하성 금속 나노입자 코어인 것일 수 있다.The ligand may be a charged ligand or a ligand having two reactors, and the metal nanoparticle core may be a positively charged metal nanoparticle core or a negatively charged metal nanoparticle core.
상기 전하성 리간드는 전하성 단위체(Repeating unit)를 포함하는 폴리머성 리간드이고, 상기 두 개의 반응기를 갖는 리간드는 소분자 리간드인 것일 수 있다.The chargeable ligand may be a polymeric ligand including a charging unit, and the ligand having two reactors may be a small molecule ligand.
상기 전하성 단위체(Repeating unit)를 포함하는 폴리머성 리간드는 PSS(poly(sodium-4-styrenesulfonate)), PVP(poly(N-vinyl pyrrolidone)), PDADMAC(poly(diallyldimethylammonium chloride)), PAA(polyacrylic acid) 또는 PAH(poly(allylamine) hydrochloride)로 이루어진 군으로부터 선택되는 적어도 하나인 것일 수 있으며, 반드시 이로 제한되는 것은 아니나, 바람직하게는 PSS일 수 있다.Polymeric ligands including the charging unit (repeating unit) are PS (poly (sodium-4-styrenesulfonate)), PVP (poly (N-vinyl pyrrolidone)), PDADMAC (poly (diallyldimethylammonium chloride)), PAA (polyacrylic acid ) Or PAH (poly (allylamine) hydrochloride) may be at least one selected from the group consisting of, but is not necessarily limited thereto, preferably PSS.
상기 두 개의 반응기를 갖는 리간드에서, 두 개의 반응기는 티올기(-SH) 및 아민기(-NH2)일 수 있으나, 반드시 이로 제한되는 것은 아니다.In the ligand having two reactors, the two reactors may be, but are not necessarily limited to, thiol group (-SH) and amine group (-NH 2).
상기 두 개의 반응기를 갖는 소분자 리간드는 ATP(4-aminothiophenol), BDT(1,4-benzenedithiol), MBA(4-mercaptobenzoic acid), MBIA(2 -mercaptobenzoimidazole-5-carboxylic acid)로 이루어진 군으로부터 선택되는 적어도 하나인 것일 수 있으며, 반드시 이로 제한되는 것은 아니나, 바람직하게는 ATP인 것일 수 있다.The small molecule ligand having the two reactors is selected from the group consisting of ATP (4-aminothiophenol), BDT (1,4-benzenedithiol), MBA (4-mercaptobenzoic acid) and MBIA (2-mercaptobenzoimidazole-5-carboxylic acid) At least one may be, but is not necessarily limited thereto, and may be preferably ATP.
상기 양전하성 금속 나노입자 코어는 금속 나노입자가 양전하성 물질로 캡핑된 것일 수 있으며, 반드시 이로 제한되는 것은 아니나, 구체적으로 상기 양전하성 물질은 세틸트리메틸 암모늄 브로마이드(cetyltrimethylammonium bromide, CTAB)일 수 있다.The positively charged metal nanoparticle core may be a metal nanoparticle capped with a positively charged material, but is not necessarily limited thereto. Specifically, the positively charged material may be cetyltrimethylammonium bromide (CTAB).
상기 음전하성 금속 나노입자 코어는 금속 나노입자가 음전하성 물질로 캡핑된 것일 수 있으며, 반드시 이로 제한되는 것은 아니나, 구체적으로 상기 음전하성 물질은 시트르산(citrate)일 수 있다.The negatively charged metal nanoparticle core may be a metal nanoparticle capped with a negatively charged material, but is not necessarily limited thereto. Specifically, the negatively charged material may be citric acid.
상기 코어-새틀라이트 구조의 이중 금속 나노입자 구획에서, 상기 코어 금속 나노입자 및 상기 새틀라이트의 금속은, 각각, 은, 금, 구리 및 이의 혼합물로 이루어진 군으로부터 선택될 수 있으나, 반드시 이로 제한되는 것은 아니며, 이 기술분야에 널리 사용되고 있는 금속은 어느 것이나 제한없이 사용될 수 있다.In the dual metal nanoparticle compartment of the core-satellite structure, the core metal nanoparticle and the metal of the satellite may each be selected from the group consisting of silver, gold, copper and mixtures thereof, but are not limited thereto. Any metal that is widely used in the art may be used without limitation.
상기 코어 금속과 새틀라이트 금속은 서로 동일하지 않은 것일 수 있다.The core metal and the satellite metal may not be identical to each other.
상기 전도성 고분자는 폴리피롤(polypyrrole), 폴리싸이오펜(polythiophene), poly(3,4-ethylene dioxythiophene)(PEDOT) 및 폴리아닐린(polyaniline)으로 이루어진 군으로부터 선택되는 적어도 하나인 것일 수 있으며, 반드시 이로 제한되는 것은 아니나, 바람직하게는 폴리아닐린일 수 있다.The conductive polymer may be at least one selected from the group consisting of polypyrrole, polythiophene, poly (3,4-ethylene dioxythiophene) (PEDOT), and polyaniline, but is not limited thereto. But preferably may be polyaniline.
상기 금속 나노입자 코어의 금속 나노입자는 금속 나노막대(nanorods) 또는 금속 나노구체(nanospheres)인 것일 수 있으나, 반드시 이로 제한되는 것은 아니며, 이 기술분야에 널리 사용되고 있는 형태의 금속 나노입자라면 어느 것이나 제한없이 사용될 수 있다.The metal nanoparticles of the metal nanoparticle core may be metal nanorods or metal nanospheres, but are not necessarily limited thereto, and any metal nanoparticles having a form widely used in the art may be used. It can be used without limitation.
상기 코어-새틀라이트 구조의 이중 금속 나노입자 구획은 라만 염료를 더 포함하는 것일 수 있다.The double metal nanoparticle compartment of the core-satellite structure may further include a Raman dye.
상기 라만 염료는 라만 활성 유기 화합물을 의미하며, 이 기술분야에서 널리 사용되는 것이라면 어느 것이나 제한없이 사용할 수 있다. 구체적인 예를 들면, MGITC(Malachite green isothiocyanate), RBITC(rhodamine B isothiocyanate), 로다민6G, 아데닌, 4-아미노-피라졸(3,4-d)피리미딘, 2-루오로아데닌, N6-벤조일아데닌, 키네틴, 디메틸-알릴-아미노-아데닌, 제아틴(zeatin), 브로모-아데닌, 8-아자-아데닌, 8-아자구아닌, 4-머캅토피리딘, 6-머캅토퓨린, 4-아미노-6-머캅토피라졸로(3,4-d)피리민딘, 8-머캅토아데닌, 9-아미노-아크리딘 및 이의 혼합물로 이루어진 군으로부터 선택될 수 있으나, 반드시 이로 제한되는 것은 아니다.The Raman dye means a Raman active organic compound, and any one widely used in the art may be used without limitation. Specific examples include Malachite green isothiocyanate (MGITC), rhodamine B isothiocyanate (RBITC), rhodamine 6G, adenine, 4-amino-pyrazole (3,4-d) pyrimidine, 2-ruoroadenine, N6-benzoyl Adenine, kinetin, dimethyl-allyl-amino-adenine, zeatin, bromo-adenine, 8-aza-adenine, 8-azaguanine, 4-mercaptopyridine, 6-mercaptopurine, 4-amino- 6-mercaptopyrazolo (3,4-d) pyrimindine, 8-mercaptoadenin, 9-amino-acridine and mixtures thereof, but is not necessarily limited thereto.
본 발명에서 상기 "야누스 나노구조체"란, 두 개의 서로 다른 구획(코어-새틀라이트 구조의 이중 금속 나노입자 구획 및 전도성 고분자 구획)으로 구성된 나노구조체를 말한다.In the present invention, the "Janus nanostructure" refers to a nanostructure composed of two different compartments (core-satellite double metal nanoparticle compartment and conductive polymer compartment).
본 발명에서 상기 이중 금속 나노입자이란, 금속 코어-금속 새틀라이트 구조를 이루고 있는 나노입자를 의미한다. 상기 금속 코어-금속 새틀라이트 구조는 행성과 그 주위를 도는 위성의 모양을 본따서 붙인 이름이다. 본 발명의 코어-새틀라이트 형태는 금속 코어에 새틀라이트 금속이 박혀 있는 모양이다. In the present invention, the double metal nanoparticle means a nanoparticle having a metal core-metal satellite structure. The metal core-metal satellite structure is named after the shape of a planet and its orbiting satellites. The core-satellite form of the present invention is a shape in which a satellite metal is embedded in a metal core.
상기 이중 금속 나노입자 구획은 리간드를 흡착시킨 금속 나노입자 코어, 및 상기 코어의 리간드 흡착 부분에 환원된 금속 새틀라이트로 구성된다. 그리고 상기 이중 금속 나노입자 구획의 한쪽 면에만 전도성 고분자 구획이 부착되어 성장, 즉, 편심 증착(eccentrically deposited)하여 비대칭적인 야누스 나노 구조를 형성한 것을 나타낸다.The double metal nanoparticle compartment consists of a metal nanoparticle core onto which ligand is adsorbed, and a metal satellite reduced to the ligand adsorption portion of the core. In addition, the conductive polymer compartment is attached to only one side of the double metal nanoparticle compartment and grows, that is, eccentrically deposited to form an asymmetric Janus nanostructure.
본 명세서 상에서 "야누스 나노구조체"는 그 구조가 코어-새틀라이트 구조의 이중 금속 나노입자 구획-전도성 고분자 구획을 포함함에 따라, "야누스 나노입자" 또는 야누스 나노프로브 또는 비대칭형 야누스 나노 구조 또는 비대칭형 나노 구조로도 명명된다. As used herein, "Janus nanostructures" refers to "Janus nanoparticles" or Janus nanoprobes or asymmetric Janus nanostructures or asymmetrical, as the structure comprises a double metal nanoparticle compartment-conductive polymer compartment of a core-satellite structure. It is also named nanostructure.
다른 측면에서 본 발명은, 본 발명에 따른 야누스 나노구조체를 이용한 표면-증강 라만 산란(SERS) 기반 표적 물질 검출용 금속 나노프로브를 제공한다.In another aspect, the present invention provides a metal nanoprobe for surface-enhanced Raman scattering (SERS) based target material detection using Janus nanostructures according to the present invention.
본 발명에 따른 야누스 나노구조체는 라만 염료를 포함함으로써, 표면-증강 라만 산란 기반 표적 물질 검출을 위한 금속 나노프로브로 제공될 수 있다.Janus nanostructures according to the invention can be provided as metal nanoprobes for surface-enhanced Raman scattering based target material detection by including Raman dyes.
본 발명에서 프로브란, 검출하고자 하는 표적(타겟) 물질과 특이적으로 결합할 수 있는 물질을 의미하며, 상기 결합을 통하여 표적 물질의 존재를 확인할 수 있는 물질을 의미한다. In the present invention, the probe refers to a substance capable of specifically binding to a target (target) substance to be detected, and means a substance capable of confirming the presence of the target substance through the binding.
본 발명에서 나노프로브란, 나노 크기의 프로브를 의미한다.In the present invention, nanoprobe means a probe of a nano size.
상기 "나노"란 이 기술분야의 통상의 기술자들이 이해하는 정도의 크기 범위를 포함한다. 구체적으로 상기 크기 범위는 0.1 에서 1000 nm의 크기일 수 있으며, 더 구체적으로는 10 에서 1000 nm, 더욱 바람직하게는 20 에서 500 nm, 더 더욱 바람직하게는 40 에서 250 nm 일 수 있다.The term " nano " includes a range of sizes that would be understood by one of ordinary skill in the art. Specifically, the size range may be a size of 0.1 to 1000 nm, more specifically 10 to 1000 nm, more preferably 20 to 500 nm, even more preferably 40 to 250 nm.
본 발명은 하기 단계를 포함하는 야누스 나노구조체의 제조 방법을 제공한다:The present invention provides a method for producing Janus nanostructures comprising the following steps:
i) 양전하성 또는 음전하성의 코어 금속 나노입자를 준비하고;i) preparing positively or negatively charged core metal nanoparticles;
ii) 상기 코어 금속 나노입자에 음전하성 리간드 또는 두 개의 반응기를 갖는 리간드를 흡착시키고;ii) adsorbing a negatively charged ligand or a ligand having two reactors to the core metal nanoparticle;
iii) 전도성 고분자 단량체 및 계면활성제를 용해시킨 수용액에 상기 리간드가 흡착된 코어 금속 나노입자를 첨가하고, iii) adding the ligand-adsorbed core metal nanoparticles to an aqueous solution in which the conductive polymer monomer and the surfactant are dissolved,
iv) 상기 iii)의 코어 금속 나노입자가 첨가된 용액에 금속 이온 용액을 첨가하여 상기 금속 이온과 상기 전도성 고분자 단량체 사이의 산화-환원 반응을 수행하고; 그리고iv) adding a metal ion solution to the solution to which the core metal nanoparticles of iii) are added to perform a redox reaction between the metal ion and the conductive polymer monomer; And
v) 상기 코어 금속 나노입자의 리간드가 흡착된 부분에서 상기 금속 이온이 상기 전도성 고분자가 제공하는 전자를 받아서 환원되면서 새틀라이트 금속을 형성하여, 코어-새틀라이트 구조의 이중 금속 나노입자 구획을 형성하고, 상기 전도성 고분자 단량체는 산화되면서 상기 이중 금속 나노입자 구획의 한쪽 면에만 증착되어 전도성 고분자로 성장하면서 비대칭적으로 전도성 고분자 폴리머 구획을 형성하여, 야누스 나노입자를 형성하는; 단계.v) the metal ions in the portion adsorbed by the ligand of the core metal nanoparticles to receive the electrons provided by the conductive polymer is reduced to form a satellite metal, thereby forming a double metal nanoparticle compartment of the core-satellite structure The conductive polymer monomer is oxidized and deposited on only one side of the double metal nanoparticle compartment to grow into a conductive polymer to form asymmetrically conductive polymer polymer compartment to form Janus nanoparticles; step.
상기 i) 단계의 양전하성 또는 음전하성의 코어 금속 나노입자에서,In the positively or negatively charged core metal nanoparticles of step i),
상기 양전하성 코어 금속 나노입자는 금속 나노입자가 양전하성 물질로 캡핑된 것일 수 있으며, 반드시 이로 제한되는 것은 아니나, 구체적으로 상기 양전하성 물질은 세틸트리메틸 암모늄 브로마이드(cetyltrimethylammonium bromide, CTAB)일 수 있다.The positively charged core metal nanoparticle may be a metal nanoparticle capped with a positively charged material, but is not necessarily limited thereto. Specifically, the positively charged material may be cetyltrimethylammonium bromide (CTAB).
상기 음전하성 코어 금속 나노입자는 금속 나노입자가 음전하성 물질로 캡핑된 것일 수 있으며, 반드시 이로 제한되는 것은 아니나, 구체적으로 상기 음전하성 물질은 시트르산(citrate)일 수 있다.The negatively charged core metal nanoparticle may be a metal nanoparticle capped with a negatively charged material, but is not limited thereto. Specifically, the negatively charged material may be citric acid.
상기 ii) 단계의 음전하성 리간드 또는 두 개의 반응기를 갖는 리간드에서,In the negatively charged ligand of step ii) or a ligand having two reactors,
상기 음전하성 리간드는 전하성 단위체(Repeating unit)를 포함하는 폴리머성 리간드이고, 두 개의 반응기를 갖는 리간드는 소분자 리간드인 것일 수 있다.The negatively charged ligand may be a polymeric ligand including a charging unit, and a ligand having two reactors may be a small molecule ligand.
구체적으로, 상기 전하성 단위체(Repeating unit)를 포함하는 폴리머성 리간드는 PSS(poly(sodium-4-styrenesulfonate)), PVP(poly(N-vinyl pyrrolidone)), PDADMAC(poly(diallyldimethylammonium chloride)), PAA(polyacrylic acid) 또는 PAH(poly(allylamine) hydrochloride)로 이루어진 군으로부터 선택되는 적어도 하나인 것일 수 있으며, 반드시 이로 제한되는 것은 아니나, 바람직하게는 PSS일 수 있다.Specifically, the polymeric ligand including the charging unit may include PSS (poly (sodium-4-styrenesulfonate)), PVP (poly (N-vinyl pyrrolidone)), PDADMAC (poly (diallyldimethylammonium chloride)), PAA (polyacrylic acid) or PAH (poly (allylamine) hydrochloride) may be at least one selected from the group consisting of, but is not necessarily limited thereto, preferably may be PSS.
상기 두 개의 반응기를 갖는 소분자 리간드는 ATP(4-aminothiophenol), BDT(1,4-benzenedithiol), MBA(4-mercaptobenzoic acid), MBIA(2 -mercaptobenzoimidazole-5-carboxylic acid)로 이루어진 군으로부터 선택되는 적어도 하나인 것일 수 있으며, 반드시 이로 제한되는 것은 아니나, 바람직하게는 ATP인 것일 수 있다.The small molecule ligand having the two reactors is selected from the group consisting of ATP (4-aminothiophenol), BDT (1,4-benzenedithiol), MBA (4-mercaptobenzoic acid) and MBIA (2-mercaptobenzoimidazole-5-carboxylic acid) At least one may be, but is not necessarily limited thereto, and may be preferably ATP.
상기 v) 단계의 코어-새틀라이트 구조의 이중 금속 나노입자 구획에서, 상기 코어 금속 나노입자 및 상기 새틀라이트의 금속은, 각각, 은, 금, 구리 및 이의 혼합물로 이루어진 군으로부터 선택될 수 있으나, 반드시 이로 제한되는 것은 아니며, 이 기술분야에 널리 사용되고 있는 금속은 어느 것이나 제한없이 사용될 수 있다.In the double metal nanoparticle compartment of the core-satellite structure of step v), the core metal nanoparticle and the metal of the satellite may be selected from the group consisting of silver, gold, copper and mixtures thereof, respectively. It is not necessarily limited thereto, and any metal widely used in the art may be used without limitation.
상기 iv) 단계의 금속 이온은, 금 이온, 은 이온, 구리 이온 및 이의 혼합물로 이루어진 군으로부터 선택될 수 있다.The metal ions of step iv) may be selected from the group consisting of gold ions, silver ions, copper ions, and mixtures thereof.
구체적으로, 상기 금 이온은 염화금수화물(Gold(III) chloride hydrate), 클로로카보닐금(Chlorocarbonylgold), 테트라클로로금산수소(Hydrogen tetrachloroaurate) 테트라클로로금산수소수화물(Hydrogen tetrachloroaurate hydrate), 클로로트리에틸포스핀금화합물(Chlorotriethylphosphinegold), 클로로트리메틸포스핀금화합물(Chlorotrimethylphosphinegold), 다이메틸(아세틸아세토네이트)금화합물(Dimethyl(acetylacetonate)gold), 염화금(Gold(I) chloride), 시안화금(Gold cyanide), 황화금(Gold sulfide) 및 이의 혼합물로부터 이루어진 군으로부터 선택되는 것일 수 있으며, 반드시 이로 제한되는 것은 아니나, 바람직하게는 염화금수화물일 수 있다.Specifically, the gold ions are gold (III) chloride hydrate, chlorocarbonylgold, hydrogen tetrachloroaurate, tetrachloroaurate hydrate, chlorotriethylphosphine gold compound. (Chlorotriethylphosphinegold), Chlorotrimethylphosphinegold, Dimethyl (acetylacetonate) gold compound, Gold (I) chloride, Gold cyanide, Gold sulfide sulfide) and mixtures thereof, and may be, but is not necessarily limited to, chlorinated chloride.
상기 은 이온은 질산은(AgNO3), 테트라플루오르붕산염 은(AgBF4), 트리플루오르메탄술폰산염 은(AgCF3SO3), 과염소산은(AgClO4), 아세트산은(Ag(CH3COO)), 헥사플루오르인산염 은(AgPF6), Ag(CF3COO) 및 이의 혼합물로부터 이루어진 군으로부터 선택되는 것일 수 있으며, 반드시 이로 제한되는 것은 아니나, 바람직하게는 질산은일 수 있다.The silver ions include silver nitrate (AgNO3), silver tetrafluoroborate (AgBF4), trifluoromethanesulfonate silver (AgCF3SO3), silver perchlorate (AgClO4), silver acetate (Ag (CH3COO)), hexafluorophosphate silver (AgPF6), It may be selected from the group consisting of Ag (CF 3 COO) and mixtures thereof, but is not necessarily limited thereto, and may preferably be silver nitrate.
상기 구리 이온은 구리(II) 아세틸아세토네이트(Cu(acac)2), 염화구리(CuCl), 염화구리(II)(CuCl2), 구리(II) 헥사플루오로아세틸아세토네이트(Cu(hfac)2), 구리(II) 트리플루오로아세틸클로라이드(Cu(tfac)2), 구리(II) 디피브알로이메타네이트(Cu(dpm)2), 구리(II) 펜타플루오로디메틸헵탄디온(Cu(ppm)2), 구리(II) 헵타플루오로디메틸옥탄(Cu(fod)2), 구리(II) 이미노펜타논(Cu(acim)2), 구리(II) 헥사플루오로-[(트리플루오로에틸)이미노]-펜타논(Cu(nona-F)2), 구리(II) 아세틸아세토에틸렌디아민(Cu(acen)2), 질산구리(Cu(NO3)2), 황산구리(CuSO4) 및 이의 혼합물로부터 이루어진 군으로부터 선택되는 것일 수 있으며, 반드시 이로 제한되는 것은 아니다.The copper ions may be copper (II) acetylacetonate (Cu (acac) 2), copper chloride (CuCl), copper chloride (II) (CuCl 2), copper (II) hexafluoroacetylacetonate (Cu (hfac) 2 ), Copper (II) trifluoroacetylchloride (Cu (tfac) 2), copper (II) dipiballomethacrylate (Cu (dpm) 2), copper (II) pentafluorodimethylheptanedione (Cu (ppm) 2), copper (II) heptafluorodimethyloctane (Cu (fod) 2), copper (II) iminopentanone (Cu (acim) 2), copper (II) hexafluoro-[(trifluoro Ethyl) imino] -pentanone (Cu (nona-F) 2), copper (II) acetylacetoethylenediamine (Cu (acen) 2), copper nitrate (Cu (NO3) 2), copper sulfate (CuSO4) and its It may be selected from the group consisting of the mixture, but is not necessarily limited thereto.
상기 코어 금속과 새틀라이트 금속은 서로 동일하지 않은 것일 수 있다.The core metal and the satellite metal may not be identical to each other.
상기 iii) 단계의 전도성 고분자는 폴리피롤(polypyrrole), 폴리싸이오펜(polythiophene), poly(3,4-ethylene dioxythiophene)(PEDOT) 및 폴리아닐린(polyaniline)으로 이루어진 군으로부터 선택되는 적어도 하나인 것일 수 있으며, 반드시 이로 제한되는 것은 아니나, 바람직하게는 폴리아닐린일 수 있다.The conductive polymer of step iii) may be at least one selected from the group consisting of polypyrrole, polythiophene, poly (3,4-ethylene dioxythiophene) (PEDOT), and polyaniline, It is not necessarily limited thereto, but may preferably be polyaniline.
상기 i) 단계의 코어 금속 나노입자의 금속 나노입자는 금속 나노막대(nanorods) 또는 금속 나노구체(nanospheres)인 것일 수 있으나, 반드시 이로 제한되는 것은 아니며, 이 기술분야에 널리 사용되고 있는 형태의 금속 나노입자라면 어느 것이나 제한없이 사용될 수 있다.The metal nanoparticles of the core metal nanoparticles of step i) may be metal nanorods or metal nanospheres, but are not necessarily limited thereto, and are widely used in the art. Any particle can be used without limitation.
상기 v) 단계의 전도성 고분자로 성장하는 것은 표면 주형 중합법(surface-templated polymerization)에 의한 것일 수 있다.The growth of the conductive polymer of step v) may be by surface-templated polymerization.
상기 "표면 주형 중합법"이란 산화-환원 반응에 기반한 중합법으로, 본 명세서에서는 질산은과 아닐린 단량체 간의 자발적인 산화-환원 반응을 통해 이중 금속 나노입자 상에 전도성 고분자인 폴리아닐린이 증착되는 것을 의미한다. 구체적으로, 1급 아민 그룹을 가진 아닐린 단량체가 질산은에 전자를 공여하고 은 이온은 산화-환원 반응의 균형을 맞추기 위해 상응하는 전자를 받음으로써 전도성 고분자 단량체가 산화 중합됨에 따라 이중 금속 나노입자 상에 폴리아닐린이 증착되었다.The "surface template polymerization method" refers to a polymerization method based on an oxidation-reduction reaction, and in this specification, polyaniline, which is a conductive polymer, is deposited on a double metal nanoparticle through a spontaneous redox reaction between silver nitrate and an aniline monomer. Specifically, aniline monomers having a primary amine group donate electrons to silver nitrate and silver ions receive corresponding electrons to balance the oxidation-reduction reaction so that the conductive polymer monomer is oxidatively polymerized on the double metal nanoparticles. Polyaniline was deposited.
상기 v) 단계 이후에, 상기 야누스 나노입자의 이중 금속 나노입자 표면에 라만 염료를 부착하는 단계를 더 포함하는 것일 수 있다.After the step v), it may further comprise the step of attaching a Raman dye on the surface of the double metal nanoparticles of the Janus nanoparticles.
상기 iii) 단계의 계면활성제는 소디움도데실설페이트(SDS), 소디움데옥시초레이트(sodium deoxycholate), 및 트리톤 X-200(Triton X-200)로 이루어진 군으로부터 선택되는 적어도 하나인 것일 수 있으며, 반드시 이로 제한되는 것은 아니나, 바람직하게는 SDS일 수 있다.The surfactant of step iii) may be at least one selected from the group consisting of sodium dodecyl sulfate (SDS), sodium deoxycholate, and Triton X-200, It is not necessarily limited to this, but may preferably be SDS.
본 발명에 따른 코어-새틀라이트 구조의 이중 금속 나노입자 구획과 고분자 구획으로 이루어진 야누스 나노구조체의 제조 및 이의 SERS 기반의 바이오 센싱 응용 방법을 도 1에 나타내었다. 도 1 (a, b)는 리간드 매개 계면 제어와 자발적인 산화 환원 반응을 통한 이중 금속 Au 코어-Ag 새틀라이트 나노입자 구획과 고분자 구획으로 이루어진 야누스 나노구조체의 제조 방법을 나타낸다. 도 1 (a)에서 볼 수 있듯이, 이중 금속 AuNR 코어-Ag 새틀라이트 나노입자 구획의 합성을 위해, CTAB-캡핑된 AuNR을 음으로 대전된 고분자 전해질인 PSS로 코팅하여 AuNR 표면을 기능화하였다. 고분자성 리간드이자, 음전하 고분자 전해질인 PSS는 정전기적 상호 작용을 통해 양전하를 띠는 CTAB로 캡핑된 AuNR에 흡착되었다. 70,000 g/mol의 분자량을 지닌 특정 농도의 PSS가 NaCl의 존재 하에 AuNR 용액에 첨가되었다. 금속 나노입자의 크기와 비교하여 긴 사슬 길이를 갖는 유연한 고분자는 전기적으로 대전된 고분자가 반대 전하로 대전된 MNP 상에 코팅될 수 있게 한다. 또한, 염분 농도는 전기적으로 대전된 고분자와 금속 나노입자 사이의 정전기적 상호 작용에 영향을 미치기 때문에, NaCl은 확장된 형태의 높은 전하를 갖는 고분자를 가지기 위해 사용되었으며, 이는 반대쪽으로 대전된 금속 나노입자를 효율적으로 코팅하기에 충분하다. 높은 염 농도는 증가된 이온 강도 때문에 금속 나노입자의 조절되지 않은 응집을 유도할 수 있다. 또한, 안정한 폴리머-금속 나노입자 복합체를 제조하기 위해서, 금속 나노입자의 침전을 방지하기 위한 적절한 농도 범위의 고분자가 필요하다. 또한, 계면활성제인 SDS의 존재 하에서 아닐린 단량체와 질산은 사이의 산화-환원 반응을 통해 이중 금속 나노입자 구획 및 고분자 구획을 갖는 야누스 구조를 제조하였다. 구체적으로, 아닐린 용액에 폴리머 코팅된 AuNR을 첨가하고, 아닐린 단량체의 산화 중합 및 은 이온의 추가 환원을 개시하기 위해 SDS 및 질산은을 첨가하였다. 흥미롭게도, 금 나노 로드 입자(AgNPs)의 리간드에 의해 개질된 표면에 은 이온이 환원되어 다수의 은 나노입자(AgNPs)는 고분자로 코팅된 AuNR 상에서 새틀라이트 입자로 사용되었다. The production of Janus nanostructures consisting of a double-metal nanoparticle compartment and a polymer compartment of a core-satellite structure according to the present invention and a method of applying SERS-based biosensing are shown in FIG. 1. Figure 1 (a, b) shows a method for producing Janus nanostructure consisting of a double metal Au core-Ag satellite nanoparticle compartment and a polymer compartment through ligand-mediated interface control and spontaneous redox reaction. As can be seen in Figure 1 (a), for the synthesis of double metal AuNR core-Ag satellite nanoparticle compartments, the AuNR surface was functionalized by coating CTAB-capped AuNR with PSS, a negatively charged polymer electrolyte. PSS, a polymeric ligand and negatively charged polyelectrolyte, was adsorbed onto AuNR capped with positively charged CTAB through electrostatic interaction. A specific concentration of PSS with a molecular weight of 70,000 g / mol was added to the AuNR solution in the presence of NaCl. Flexible polymers with long chain lengths compared to the size of metal nanoparticles allow electrically charged polymers to be coated on oppositely charged MNPs. In addition, because the salt concentration affects the electrostatic interaction between the electrically charged polymer and the metal nanoparticles, NaCl was used to have an extended form of high charge polymer, which is the oppositely charged metal nano It is sufficient to coat the particles efficiently. High salt concentrations can lead to uncontrolled aggregation of metal nanoparticles due to increased ionic strength. In addition, in order to produce stable polymer-metal nanoparticle composites, polymers in a suitable concentration range are needed to prevent precipitation of metal nanoparticles. In addition, a Janus structure having a double metal nanoparticle compartment and a polymer compartment was prepared through an oxidation-reduction reaction between the aniline monomer and the silver nitrate in the presence of the surfactant SDS. Specifically, the polymer-coated AuNR was added to the aniline solution and SDS and silver nitrate were added to initiate oxidative polymerization of the aniline monomer and further reduction of silver ions. Interestingly, silver ions were reduced on the surface modified by ligands of gold nanorod particles (AgNPs), so that many silver nanoparticles (AgNPs) were used as satellite particles on AuNR coated with polymers.
본 발명자들은 Ag+ 이온이, 코어 표면 상에서 양으로 대전된 은 이온과 음으로 하전된 술폰산 작용기 사이의 정전기적 상호 작용을 통해 폴리머로 코팅된 AuNR 상에 우선적으로 흡착되고, AgNPs가 새틀라이트 입자로 이종 증착된다고 판단하였다. 또한, 아닐린의 동시 산화 중합은 은 이온에 의해 개시되어 SDS의 존재 하에서 이중 금속 코어-새틀라이트 나노입자의 한쪽에만 증착된 폴리(아닐린) 구획을 형성했다. 이중 금속 코어-새틀라이트 나노입자 구획과 고분자 구획을 가진 야누스 나노구조체의 구획화는 총 표면 에너지의 균형에 의해 이루어졌으며, 이는 SDS가 두 개의 인접한 상인 폴리(아닐린)-물과 폴리(아닐린)-금속 나노입자 사이의 계면 장력에 영향을 줄 수 있기 때문이다. 대조군 실험으로, 리간드 매개 표면 기능화를 더 확인하기 위해 음으로 하전된 분자, 시트르산 나트륨을 작은 리간드로서 도입하였으나, 이러한 조건에서 코어-새틀라이트 나노 구조는 관찰되지 않았다. CTAB가 AuNR의 가로축을 따라 조밀하게 패킹됨에 따라, 시트르산 이온이 AuNR 사이에 위치하여 CTAB와 시트르산 이온의 이중층 사이 정전기적 상호 작용을 통해 AuNR이 나란히 배열되었다. 이는 작은 리간드가 CTAB 코팅을 대체하여 전체 AuNR 표면을 기능화하는 것은 어렵기 때문이다.We preferentially adsorb Ag + ions onto the polymer-coated AuNR through electrostatic interaction between positively charged silver ions and negatively charged sulfonic acid functional groups on the core surface, and AgNPs to satellite particles. It was judged that it is heterogeneous deposition. In addition, the co-oxidative polymerization of aniline was initiated by silver ions to form poly (aniline) compartments deposited on only one side of the double metal core-satellite nanoparticles in the presence of SDS. The partitioning of Janus nanostructures with double metal core-satellite nanoparticle compartments and polymer compartments was achieved by the balance of total surface energy, which means that SDS has two adjacent phases, poly (aniline) -water and poly (aniline) -metal. This may affect the interfacial tension between nanoparticles. In a control experiment, a negatively charged molecule, sodium citrate, was introduced as a small ligand to further confirm ligand mediated surface functionalization, but no core-satellite nanostructures were observed under these conditions. As CTAB was densely packed along the transverse axis of AuNR, the citrate ions were placed between AuNRs so that the AuNRs were arranged side by side through electrostatic interactions between the CTAB and the bilayer of citrate ions. This is because it is difficult for small ligands to replace the CTAB coating to functionalize the entire AuNR surface.
한편, AuNP(AuNS) 코어-Ag 새틀라이트의 이중 금속 나노입자 구획과 고분자 구획을 가진 야누스 나노 구조는 도 1 (b)와 같이 작은 리간드 매개 표면 제어와 산화 환원 반응에 의해 합성되었다. 구체적으로, 이중 금속 AuNP 코어-Ag 새틀라이트 나노입자 구획을 제조하기 위해, 시트르산-캡핑된 AuNP는 소분자 리간드로 기능화되었다. 직경 방향으로 분포된 티올 그룹 및 아민기를 함유하는 소분자 리간드인 ATP가 시트르산-캡핑된 AuNP(AuNS) 상에 도입되었다. 아닐린 단량체의 산화 반응과 은 이온의 동시 환원 후, 이방성 고분자 구획을 갖는 야누스 나노구조체를 제조하였다. AuNP(AuNS) 상의 리간드 밀도는 Ag 이온 배위 정도 및 Ag의 환원율을 결정한다. 금속 나노입자 성장 경로 조절에서 두 금속 나노입자 층 사이의 계면 장력을 조절하기 위해 소분자 리간드가 사용되었다. Au와 Ag의 계면에 매립된 리간드는 두 번째 금속을 결합시키는 주요 요소이다. 대조군 실험으로, 양전하를 띤 고분자 전해질인 폴리(디메틸아미노에틸메타크릴레이트)(poly(dimethylaminoethyl methacrylate))를 폴리머 리간드로써 AuNP 용액에 도입하였으나, 시트르산-캡핑된 AuNP와 양전하를 띤 폴리머 리간드 사이의 정전기적 상호 작용으로 인해, 안정한 리간드-코팅된 금속 나노입자 구조가 형성되지 않고 큰 금속 나노입자 집합체가 형성되었다. AuNP는 시트르산 이온으로 약하게 캡핑되어 있기 때문에, AuNP는 이종 물질 첨가 시 쉽게 응집되는 경향이 있다. 이와 관련하여, 작은 리간드인 ATP는 AuNP의 콜로이드 안정성을 유지하기에 충분한 농도로 선택되었다. 도 1 (c)는 아닐린 단량체와 질산은 사이의 자발적인 산화-환원 반응을 나타낸다. 아닐린 단량체는 질산은에 전자를 제공함으로써 폴리(아닐린)으로 산화되는 반면 은 이온은 전자를 받아들여 환원되었다. Meanwhile, Janus nanostructures having double metal nanoparticle compartments and polymer compartments of AuNP (AuNS) core-Ag satellites were synthesized by small ligand mediated surface control and redox reactions as shown in FIG. Specifically, to prepare double metal AuNP core-Ag satellite nanoparticle compartments, citric acid-capped AuNPs were functionalized with small molecule ligands. ATP, a small molecule ligand containing thiol groups and amine groups distributed in the radial direction, was introduced onto citric acid-capped AuNPs (AuNS). After simultaneous oxidation of the aniline monomer and reduction of the silver ions, Janus nanostructures having anisotropic polymer compartments were prepared. The ligand density on AuNP (AuNS) determines the degree of Ag ion coordination and the reduction rate of Ag. Small molecule ligands have been used to control the interfacial tension between two metal nanoparticle layers in metal nanoparticle growth pathway control. Ligands embedded at the interface between Au and Ag are the main elements that bind the second metal. In a control experiment, a positively charged polyelectrolyte, poly (dimethylaminoethyl methacrylate), was introduced into the AuNP solution as a polymer ligand, but the electrostatic between citrate-capped AuNP and positively charged polymer ligand Due to the miraculous interaction, stable ligand-coated metal nanoparticle structures were not formed and large metal nanoparticle aggregates were formed. Since AuNPs are weakly capped with citrate ions, AuNPs tend to aggregate easily upon addition of heterogeneous materials. In this regard, the small ligand ATP was chosen at a concentration sufficient to maintain the colloidal stability of AuNPs. Figure 1 (c) shows a spontaneous redox reaction between the aniline monomer and silver nitrate. Aniline monomers were oxidized to poly (aniline) by providing electrons to silver nitrate, while silver ions received electrons and were reduced.
도 1 (d)에서 볼 수 있듯이, 코어-새틀라이트 구조의 이중 금속 나노입자 구획과 고분자 구획으로 이루어진 야누스 나노구조체는 바이오 센싱을 위한 SERS 나노프로브로 적용할 수 있다. 고분자 구획은 표적 검출을 위한 항체 접합 부위를 제공하는 반면, 이중 금속 입자 구획은 SERS를 위한 라만 염료로 기능화되었다. 표적이 존재할 때, SERS 나노프로브, 표적 및 자성 비드로 구성된 샌드위치형 면역 복합체가 형성되었으며, 양적 및 질적 SERS 기반 바이오 센싱 모두 라만 이동의 함수로 달성되었다.As can be seen in Figure 1 (d), Janus nanostructure consisting of a core-satellite double metal nanoparticle compartment and a polymer compartment can be applied as SERS nano probe for bio sensing. The polymer compartment provided the antibody conjugation site for target detection, while the double metal particle compartment was functionalized with a Raman dye for SERS. When the target was present, a sandwich immune complex consisting of SERS nanoprobe, target and magnetic beads was formed, and both quantitative and qualitative SERS based biosensing was achieved as a function of Raman migration.
본 발명은 하기 단계를 포함하는 표면-증강 라만 산란(SERS) 기반의 표적 물질 검출 방법을 제공한다:The present invention provides a surface-enhanced Raman scattering (SERS) based target substance detection method comprising the following steps:
a) 검출하고자 하는 표적 물질이 포함된 시료액을 준비하고;a) preparing a sample solution containing the target substance to be detected;
b) 자성 나노입자에 상기 표적에 대한 제1 항체를 고정하여 준비하고;b) preparing by immobilizing a first antibody against the target on magnetic nanoparticles;
c) 상기 금속 나노프로브에 상기 표적에 대한 제2 항체를 고정하여 준비하고;c) preparing by immobilizing a second antibody against the target on the metal nanoprobe;
d) 상기 제1 항체가 고정된 자성 나노입자를 상기 시료액에 첨가하여 상기 표적과 상기 자성 나노입자의 제1 항체가 접합된 면역복합체를 형성하고;d) adding the magnetic nanoparticle to which the first antibody is immobilized to the sample solution to form an immunocomplex in which the target and the first antibody of the magnetic nanoparticle are conjugated;
e) 상기 제2 항체가 고정된 금속 나노프로브를 상기 제1 항체가 접합된 면역복합체가 포함된 용액에 첨가하여 금속 나노프로브의 제2 항체-표적-자성 나노입자의 제1 항체의 샌드위치 면역복합체를 형성하고;e) a sandwich immunocomplex of the first antibody of the second antibody-target-magnetic nanoparticle of the metal nanoprobe by adding a metal nanoprobe to which the second antibody is immobilized to a solution containing the immunocomplex to which the first antibody is conjugated To form;
f) 자기장을 이용하여 상기 샌드위치 면역복합체를 형성하지 않은 자성 나노입자 및 금속 나노프로브를 분리하고; 그리고f) separating magnetic nanoparticles and metal nanoprobes that do not form the sandwich immunocomplex using a magnetic field; And
g) 상기 샌드위치 면역복합체의 라만 신호를 측정하는; 단계.g) measuring the Raman signal of said sandwich immunocomplex; step.
본 발명에서 "샌드위치 면역 복합체"란 항체-항원-항체 반응을 통해 결합된 면역복합체를 의미한다. 항원이 항체 중간에 삽입되어 샌드위치 모양을 나타냄에 따라 명명되었다.By "sandwich immune complex" is meant herein an immunocomplex bound through an antibody-antigen-antibody reaction. The antigen was named as it is inserted in the middle of the antibody to form a sandwich.
상기 표적 물질은 단백질 또는 병원균인 것일 수 있다.The target substance may be a protein or a pathogen.
상기 단백질은 항원, 생물학적 압타머(biological aptamer), 수용체, 효소 및 리간드로 이루어진 군으로부터 선택될 수 있다. The protein may be selected from the group consisting of antigens, biological aptamers, receptors, enzymes and ligands.
본 발명에 따른 이중 금속 Au 코어-Ag 새틀라이트 나노입자 구획 및 고분자 구획을 포함하는 야누스 나노구조체는 CTAB-캡핑된 AuNR을 음으로 대전된 고분자 전해질인 PSS로 코팅하여 AuNR 표면을 기능화하고, 시트르산-캡핑된 AuNP를 소분자 리간드로 기능화함으로써, 전하를 띠는 고분자 또는 리간드로 개질된 이중 금속 나노입자 구획을 형성하였다. 이와 같이 표면 개질된 부분에서만 은 이온이 환원되어 나노 갭(gap)이 형성됨으로써 라만 강도가 크게 향상되었다. 따라서, 본 발명의 야누스 나노구조체는 표적 물질 검출을 위한 표면-증강 라만 산란(SERS) 기반 표적 물질 검출용 금속 나노프로브로 이용될 수 있다.Janus nanostructures comprising a double metal Au core-Ag satellite nanoparticle compartment and a polymer compartment according to the present invention are functionalized by coating a CTAB-capped AuNR with PSS, a negatively charged polymer electrolyte, to functionalize the AuNR surface, Capping AuNPs were functionalized with small molecule ligands to form double metal nanoparticle compartments modified with charged polymers or ligands. In this manner, the silver ions are reduced only in the surface-modified portion to form a nano gap, thereby greatly improving Raman strength. Accordingly, the Janus nanostructures of the present invention can be used as metal nanoprobes for surface-enhanced Raman scattering (SERS) based target material detection for target material detection.
제 33rd 발명: invent:
본 발명은 하기를 포함하는 표면-증강 라만 산란(SERS) 기반 표적 물질 검출용의 비대칭형 야누스 나노프로브를 제공한다:The present invention provides an asymmetric Janus nanoprobe for surface-enhanced Raman scattering (SERS) based target material detection comprising:
라만 염료를 가지고, 코어-쉘 구조로 이루어진 이중 금속 나노클러스터 구획; A double metal nanocluster compartment having a Raman dye and consisting of a core-shell structure;
및 전도성 고분자 구획; And conductive polymer compartments;
으로 구성된 나노프로브로, Nanoprobe consisting of,
상기 나노프로브는 상기 전도성 고분자 구획이 상기 이중 금속 나노클러스터 구획의 한쪽 면에만 산화되어 비대칭형 구조를 나타냄. The nanoprobe exhibits an asymmetrical structure in which the conductive polymer compartment is oxidized on only one side of the double metal nanocluster compartment.
본 발명에서 프로브란, 검출하고자 하는 표적(표적) 물질과 특이적으로 결합할 수 있는 물질을 의미하며, 상기 결합을 통하여 표적 물질의 존재를 확인할 수 있는 물질을 의미한다. In the present invention, the probe refers to a substance that can specifically bind to a target (target) substance to be detected, and means a substance that can confirm the presence of the target substance through the binding.
본 발명에서 나노프로브란, 나노 크기의 프로브를 의미한다.In the present invention, nanoprobe means a probe of a nano size.
상기 "나노"란 이 기술분야의 통상의 기술자들이 이해하는 정도의 크기 범위를 포함한다. 구체적으로 상기 크기 범위는 0.1 에서 1000 nm의 크기일 수 있으며, 더 구체적으로는 10 에서 1000 nm, 더욱 바람직하게는 20 에서 500 nm, 더 더욱 바람직하게는 40 에서 250 nm 일 수 있다.The term " nano " includes a range of sizes that would be understood by one of ordinary skill in the art. Specifically, the size range may be a size of 0.1 to 1000 nm, more specifically 10 to 1000 nm, more preferably 20 to 500 nm, even more preferably 40 to 250 nm.
본 발명에서 상기 라만 염료는 라만 활성 유기 화합물을 의미하며, 이 기술분야에서 널리 사용되는 것이라면 어느 것이나 제한없이 사용할 수 있다. 구체적인 예를 들면, MGITC(Malachite green isothiocyanate), RBITC(rhodamine B isothiocyanate), 로다민6G, 아데닌, 4-아미노-피라졸(3,4-d)피리미딘, 2-루오로아데닌, N6-벤조일아데닌, 키네틴, 디메틸-알릴-아미노-아데닌, 제아틴(zeatin), 브로모-아데닌, 8-아자-아데닌, 8-아자구아닌, 4-머캅토피리딘, 6-머캅토퓨린, 4-아미노-6-머캅토피라졸로(3,4-d)피리민딘, 8-머캅토아데닌, 9-아미노-아크리딘 및 이의 혼합물로 이루어진 군으로부터 선택될 수 있으나, 반드시 이로 제한되는 것은 아니다.In the present invention, the Raman dye means a Raman active organic compound, and any one widely used in the art may be used without limitation. Specific examples include Malachite green isothiocyanate (MGITC), rhodamine B isothiocyanate (RBITC), rhodamine 6G, adenine, 4-amino-pyrazole (3,4-d) pyrimidine, 2-ruoroadenine, N6-benzoyl Adenine, kinetin, dimethyl-allyl-amino-adenine, zeatin, bromo-adenine, 8-aza-adenine, 8-azaguanine, 4-mercaptopyridine, 6-mercaptopurine, 4-amino- 6-mercaptopyrazolo (3,4-d) pyrimindine, 8-mercaptoadenin, 9-amino-acridine and mixtures thereof, but is not necessarily limited thereto.
상기 이중 금속 나노클러스터 구획은, 금, 은, 구리 및 이의 혼합물로 이루어진 군으로부터 선택되는 코어와; 금, 은, 구리 및 이의 혼합물로부터 이루어진 군으로부터 선택되는 쉘;로 구성된 이중 금속 나노클러스터인 것일 수 있다.The double metal nanocluster compartment may comprise a core selected from the group consisting of gold, silver, copper and mixtures thereof; It may be a double metal nanocluster consisting of; a shell selected from the group consisting of gold, silver, copper and mixtures thereof.
상기 코어 금속과 상기 쉘 금속은 서로 동일한 금속일 수도 있고, 동일하지 않은 금속일 수도 있다.The core metal and the shell metal may be the same metal or may not be the same metal.
상기 전도성 고분자는 폴리피롤(polypyrrole), 폴리싸이오펜(polythiophene), poly(3,4-ethylene dioxythiophene)(PEDOT) 및 폴리아닐린(polyaniline)으로 이루어진 군으로부터 선택되는 적어도 하나인 것일 수 있으며, 반드시 이로 제한되는 것은 아니나, 바람직하게는 폴리아닐린일 수 있다.The conductive polymer may be at least one selected from the group consisting of polypyrrole, polythiophene, poly (3,4-ethylene dioxythiophene) (PEDOT), and polyaniline, but is not limited thereto. But preferably may be polyaniline.
본 발명에서 상기 "비대칭형 야누스 나노프로브"란, 구분되는 두 개의 서로 다른 구획(라만 염료를 가지며 코어-쉘 구조로 이루어진 이중 금속 나노클러스터 구획 및 전도성 고분자 구획)으로 구성된 나노프로브로, 전도성 고분자 구획이 상기 이중 금속 나노클러스터 구획의 한쪽 면에만 산화되어 성장하는, 즉, 편심 증착(eccentrically deposited)되는 비대칭 구조를 나타낸다. 본 명세서 상에서 "비대칭형 야누스 나노프로브"는 그 구조가 이중 금속 나노클러스터 구획-전도성 고분자 구획을 포함함에 따라, "비대칭형 야누스 나노클러스터-고분자 나노입자" 또는 비대칭형 나노프로브 또는 비대칭형 야누스 나노 구조 또는 비대칭형 나노 구조로도 명명된다. In the present invention, the "asymmetric Janus nanoprobe" is a nanoprobe composed of two different compartments (a double metal nanocluster compartment and a conductive polymer compartment having a Raman dye and having a core-shell structure), and a conductive polymer compartment. It exhibits an asymmetric structure that is oxidized and grown, i.e., eccentrically deposited, on only one side of the double metal nanocluster compartment. As used herein, “asymmetric Janus nanoprobe” refers to “asymmetric Janus nanocluster-polymer nanoparticles” or asymmetric nanoprobes or asymmetric Janus nanostructures, as the structure includes a double metal nanocluster compartment-conductive polymer compartment. Or asymmetric nanostructures.
본 발명에서 상기 이중 금속이란, 금속 코어-금속 쉘 구조를 이루는 두 종류의 금속을 의미한다. In the present invention, the double metal means two kinds of metals forming a metal core-metal shell structure.
본 발명에서 상기 금속 나노클러스터란, 금속 나노입자들이 모여서 응집된 응집물(aggregates)을 의미하는 용어로서 이 분야에서 일반적으로 사용되는 용어이다. In the present invention, the metal nanocluster is a term generally used in the art as a term meaning aggregates (aggregates) in which metal nanoparticles are collected and aggregated.
본 발명에서 상기 이중 금속 나노클러스터란, 코어 금속 나노클러스터 위에 다른 종류의 금속 이온이 환원되어 코어-쉘 구조를 이루는 응집물(aggregates)을 의미한다.In the present invention, the double metal nanocluster refers to aggregates in which a different kind of metal ion is reduced on the core metal nanocluster to form a core-shell structure.
본 발명에 따른 코어-쉘 구조로 이루어진 이중 금속 나노클러스터 구획; 및 전도성 고분자 구획으로 이루어진 비대칭형 야누스 나노구조체는, 상기 이중 금속 나노클러스터 내의 코어-쉘 나노입자 사이의 입자 간 커플링으로부터 SERS 특성을 고도로 향상시킬 수 있다. 또한 고분자 구획에 검출하고자 하는 표적에 대한 항체를 부착시켜서 표적과 항체 사이의 반응성도 향상시킬 수 있다. 따라서 본 발명에 따른 비대칭형 야누스 나노프로브는 SERS 기반 표적 물질 검출용의 나노프로브로 활용 가능하다.A double metal nanocluster compartment consisting of a core-shell structure according to the present invention; And asymmetric Janus nanostructures consisting of conductive polymer compartments can highly enhance SERS properties from interparticle coupling between core-shell nanoparticles in the double metal nanoclusters. It is also possible to improve the reactivity between the target and the antibody by attaching the antibody to the target to be detected in the polymer compartment. Therefore, the asymmetric Janus nanoprobe according to the present invention can be utilized as a nanoprobe for detecting SERS-based target material.
다른 측면에서 본 발명은, 하기 단계를 포함하는 표면-증강 라만 산란(SERS) 기반 표적 물질 검출용의 비대칭형 야누스 나노프로브의 제조 방법을 제공한다: In another aspect, the present invention provides a method of making an asymmetric Janus nanoprobe for detecting surface-enhanced Raman scattering (SERS) based target material, comprising the following steps:
i) 코어(core)를 형성하는 금속 나노입자 및 라만 염료를 혼합하고 가열 또는 응집하여 라만 염료를 가지는 코어 금속 나노입자 클러스터를 형성하고;i) mixing and heating or agglomerating the metal nanoparticles and the Raman dye forming the core to form a core metal nanoparticle cluster having a Raman dye;
ii) 전도성 고분자 단량체 및 계면활성제를 용해시킨 수용액에 상기 코어 금속 나노입자 클러스터를 첨가하고; ii) adding the core metal nanoparticle cluster to an aqueous solution in which a conductive polymer monomer and a surfactant are dissolved;
iii) 상기 ii)의 코어 금속 나노클러스터가 첨가된 용액에 금속 이온 용액을 첨가하여 상기 금속 이온과 상기 전도성 고분자 단량체 사이의 산화-환원 반응을 수행하고; 그리고iii) performing a redox reaction between the metal ions and the conductive polymer monomer by adding a metal ion solution to the solution to which the core metal nanoclusters of ii) are added; And
iv) 상기 금속 이온이 상기 전도성 고분자가 제공하는 전자를 받아 환원되면서 코어 금속 나노입자 표면에 증착되어 코어-쉘 구조의 이중 금속 나노입자 클러스터 구획을 형성하고; 상기 전도성 고분자 단량체는 산화되면서 상기 이중 금속 나노클러스터 구획의 한쪽 면에만 증착되어 전도성 고분자로 성장하면서 비대칭형적으로 전도성 고분자 고분자 구획을 형성하는; 단계.iv) the metal ions are deposited on the surface of the core metal nanoparticles while receiving and reducing electrons provided by the conductive polymer to form a double-metal nanoparticle cluster section having a core-shell structure; The conductive polymer monomer is oxidized and deposited on only one side of the double metal nanocluster compartment to grow into a conductive polymer to form an asymmetrically conductive polymer compartment; step.
상기 i) 단계 이후에, 상기 코어 금속 나노클러스터를 단백질로 안정화시키는 단계를 더 포함할 수 있다.After step i), the method may further include stabilizing the core metal nanocluster with a protein.
상기 단백질은 아비딘(avidin), 스트렙타비딘(streptavidin), BSA(bovine serum albumin), 인슐린(insulin), 콩단백질, 카제인, 젤라틴 및 이의 혼합물로 이루어진 군으로부터 선택되는 것일 수 있으며, 반드시 이로 제한되는 것은 아니나, 바람직하게는 BSA일 수 있다.The protein may be selected from the group consisting of avidin (avidin), streptavidin (streptavidin), bovine serum albumin (BSA), insulin (insulin), soy protein, casein, gelatin and mixtures thereof, but are not limited thereto. But may preferably be BSA.
상기 i) 단계의 코어 금속은 금, 은, 구리 및 이의 혼합물로 이루어진 군으로부터 선택될 수 있으나, 반드시 이로 제한되는 것은 아니며, 이 기술분야에 널리 사용되고 있는 금속은 어느 것이나 제한없이 사용될 수 있다.The core metal of step i) may be selected from the group consisting of gold, silver, copper and mixtures thereof, but is not necessarily limited thereto, and any metal widely used in the art may be used without limitation.
구체적으로, 상기 코어 금속은 금, 은, 구리 및 이의 혼합물로 이루어진 군으로부터 선택되는 것일 수 있다.Specifically, the core metal may be selected from the group consisting of gold, silver, copper and mixtures thereof.
상기 iii) 단계의 금속 이온은 금 이온, 은 이온, 구리 이온 및 이의 혼합물로 이루어진 군으로부터 선택되는 것일 수 있으나, 반드시 이로 제한되는 것은 아니다.The metal ion of step iii) may be selected from the group consisting of gold ions, silver ions, copper ions and mixtures thereof, but is not necessarily limited thereto.
구체적으로, 상기 금 이온은 염화금수화물(Gold(III) chloride hydrate), 클로로카보닐금(Chlorocarbonylgold), 테트라클로로금산수소(Hydrogen tetrachloroaurate) 테트라클로로금산수소수화물(Hydrogen tetrachloroaurate hydrate), 클로로트리에틸포스핀금화합물(Chlorotriethylphosphinegold), 클로로트리메틸포스핀금화합물(Chlorotrimethylphosphinegold), 다이메틸(아세틸아세토네이트)금화합물(Dimethyl(acetylacetonate)gold), 염화금(Gold(I) chloride), 시안화금(Gold cyanide), 황화금(Gold sulfide) 및 이의 혼합물로부터 이루어진 군으로부터 선택되는 것일 수 있으며, 반드시 이로 제한되는 것은 아니나, 바람직하게는 염화금수화물일 수 있다.Specifically, the gold ions are gold (III) chloride hydrate, chlorocarbonylgold, hydrogen tetrachloroaurate, tetrachloroaurate hydrate, chlorotriethylphosphine gold compound. (Chlorotriethylphosphinegold), Chlorotrimethylphosphinegold, Dimethyl (acetylacetonate) gold compound, Gold (I) chloride, Gold cyanide, Gold sulfide sulfide) and mixtures thereof, and may be, but is not necessarily limited to, chlorinated chloride.
상기 은 이온은 질산은(AgNO3), 테트라플루오르붕산염 은(AgBF4), 트리플루오르메탄술폰산염 은(AgCF3SO3), 과염소산은(AgClO4), 아세트산은(Ag(CH3COO)), 헥사플루오르인산염 은(AgPF6), Ag(CF3COO) 및 이의 혼합물로부터 이루어진 군으로부터 선택되는 것일 수 있으며, 반드시 이로 제한되는 것은 아니나, 바람직하게는 질산은일 수 있다.The silver ions include silver nitrate (AgNO 3 ), tetrafluoroborate silver (AgBF 4 ), trifluoromethanesulfonate silver (AgCF 3 SO 3 ), silver perchlorate (AgClO 4 ), silver acetate (Ag (CH 3 COO)), Hexafluorophosphate may be selected from the group consisting of silver (AgPF 6 ), Ag (CF 3 COO) and mixtures thereof, but is not necessarily limited thereto, and preferably silver nitrate.
상기 구리 이온은 구리(II) 아세틸아세토네이트(Cu(acac)2), 염화구리(CuCl), 염화구리(II)(CuCl2), 구리(II) 헥사플루오로아세틸아세토네이트(Cu(hfac)2), 구리(II) 트리플루오로아세틸클로라이드(Cu(tfac)2), 구리(II) 디피브알로이메타네이트(Cu(dpm)2), 구리(II) 펜타플루오로디메틸헵탄디온(Cu(ppm)2), 구리(II) 헵타플루오로디메틸옥탄(Cu(fod)2), 구리(II) 이미노펜타논(Cu(acim)2), 구리(II) 헥사플루오로-[(트리플루오로에틸)이미노]-펜타논(Cu(nona-F)2), 구리(II) 아세틸아세토에틸렌디아민(Cu(acen)2), 질산구리(Cu(NO3)2), 황산구리(CuSO4) 및 이의 혼합물로부터 이루어진 군으로부터 선택되는 것일 수 있으며, 반드시 이로 제한되는 것은 아니다.The copper ions include copper (II) acetylacetonate (Cu (acac) 2 ), copper chloride (CuCl), copper chloride (II) (CuCl 2 ), copper (II) hexafluoroacetylacetonate (Cu (hfac) 2 ), copper (II) trifluoroacetylchloride (Cu (tfac) 2 ), copper (II) dipiballomethacrylate (Cu (dpm) 2 ), copper (II) pentafluorodimethylheptanedione (Cu ( ppm) 2 ), copper (II) heptafluorodimethyloctane (Cu (fod) 2 ), copper (II) iminopentanone (Cu (acim) 2 ), copper (II) hexafluoro-[(trifluoro Roethyl) imino] -pentanone (Cu (nona-F) 2 ), copper (II) acetylacetoethylenediamine (Cu (acen) 2 ), copper nitrate (Cu (NO 3 ) 2 ), copper sulfate (CuSO 4 ) And mixtures thereof, but is not necessarily limited thereto.
상기 ii) 단계의 전도성 고분자는 폴리피롤(polypyrrole), 폴리싸이오펜(polythiophene), poly(3,4-ethylene dioxythiophene)(PEDOT) 및 폴리아닐린(polyaniline)로 이루어진 군으로부터 선택되는 적어도 하나일 수 있으며, 반드시 이로 제한되는 것은 아니나, 바람직하게는 폴리아닐린일 수 있다.The conductive polymer of step ii) may be at least one selected from the group consisting of polypyrrole, polythiophene, poly (3,4-ethylene dioxythiophene) (PEDOT), and polyaniline. Although not limited thereto, it may be preferably polyaniline.
상기 iii) 단계의 산화-환원 반응 이후에, 상기 반응 용액을 계면활성제 용액으로 인큐베이션 하는 단계를 더 포함할 수 있다.After the oxidation-reduction reaction of step iii), the reaction solution may further comprise the step of incubating the surfactant solution.
상기 ii) 단계 및 상기 iii) 단계의 산화-환원 반응 이후에서, 상기 계면활성제는 소디움도데실설페이트(SDS), 소디움데옥시초레이트(sodium deoxycholate), 및 트리톤 X-200(Triton X-200)로 이루어진 군으로부터 선택되는 적어도 하나인 것일 수 있으며, 반드시 이로 제한되는 것은 아니나, 바람직하게는 SDS일 수 있다.After the redox reaction of step ii) and step iii), the surfactant is sodium dodecyl sulfate (SDS), sodium deoxycholate, and Triton X-200 (Triton X-200) It may be at least one selected from the group consisting of, but is not necessarily limited thereto, and preferably may be SDS.
상기 iv) 단계의 전도성 고분자로 성장하는 것은 표면 주형 중합법(surface-templated polymerization)에 의한 것일 수 있다.The growth of the conductive polymer of step iv) may be by surface-templated polymerization.
상기 "표면 주형 중합법"이란 산화-환원 반응에 기반한 중합법으로, 본 명세서에서는 질산은과 아닐린 단량체 간의 자발적인 산화-환원 반응을 통해 이중 금속 나노클러스터 상에 전도성 고분자인 폴리아닐린이 증착되는 것을 의미한다. 구체적으로, 1급 아민 그룹을 가진 아닐린 단량체가 질산은에 전자를 공여하고 은 이온은 산화-환원 반응의 균형을 맞추기 위해 상응하는 전자를 받음으로써 전도성 고분자 단량체가 산화 중합됨에 따라 이중 금속 나노클러스터 상에 폴리아닐린이 증착되었다.The "surface template polymerization method" refers to a polymerization method based on an oxidation-reduction reaction. In this specification, polyaniline, which is a conductive polymer, is deposited on a double metal nanocluster through a spontaneous redox reaction between silver nitrate and an aniline monomer. Specifically, aniline monomers having a primary amine group donate electrons to silver nitrate and silver ions receive corresponding electrons to balance the redox reaction so that the conductive polymer monomer is oxidatively polymerized on the double metal nanoclusters. Polyaniline was deposited.
본 발명에 따른 비대칭형 야누스 나노클러스터-고분자 나노입자의 합성 및 SERS 기반의 응용에 대한 모식도를 도 1에 나타내었다. 도 1 (a)는 환원 산화 반응에 기반한 SERS 나노프로브의 제조 방법을 나타낸다. 첫째, 금 나노입자(AuNP) 클러스터는 AuNP를 라만 염료의 존재 하에서 응집시켜 형성되었고, BSA 코팅에 의해 안정화되었다. 구체적으로, 시트르산 캡핑된 AuNP는 라만 염료인 MGITC 또는 RBITC와 각각 1.5 μM 또는 3.8 μM의 최종 농도로 혼합되었다. 또한, 질산은과 시트르산 나트륨을 AuNP 콜로이드 용액에 첨가하고, 95 ℃에서 10-60 분 동안 인큐베이션하였다. 은 이온이 Au로 환원될 때, 표면에 라만 염료가 흡착됨으로써 Au 나노입자가 성장하고 동시에 응집되었다. MGITC와 RBITC의 이소티오시아네이트(isothiocyanate) 그룹(-N = C = S)이 AuNP 표면에 강하게 결합되면 음전하를 띤 입자와 양이온성 표면 전하를 갖는 라만 염료로 표지된 입자 사이에서 정전기적 상호 작용이 발생하여 AuNP 클러스터를 형성하였다. 라만 염료를 포함하는 Au 나노클러스터는 더 이상의 응집을 막기 위해 BSA에 의해 안정화되었다. 둘째, 비대칭형 이중 금속 나노클러스터-고분자 나노구조체를 질산은과 아닐린 단량체 간의 산화-환원 반응을 통해 제조하였다. 농축된 AuNP 클러스터는 아닐린 모노머 및 계면활성제인 SDS를 함유하는 용액에 첨가되었다. 혼합 후, 질산은은 AuNP 클러스터에서 은 이온을 감소시켜 이중 금속 Au(코어)-Ag(쉘) 나노클러스터를 형성함으로써 폴리(아닐린)으로의 산화 중합을 개시하기 위해 용액에 첨가되었다. SDS의 존재 하에서, 이중 금속 나노클러스터와 폴리(아닐린)의 이방성(비대칭성) 구획화는 표면 영역을 최소화함으로써 폴리(아닐린)-이중 금속 나노클러스터와-물 간의 계면 장력의 균형을 맞추기 위해 형성되었다. 도 1 (b)는 두 전구체 사이의 자발적인 산화 환원 반응을 나타낸다. 1급 아민 그룹을 가진 아닐린 단량체는 질산은에 전자를 공여하고 은 이온은 산화-환원 반응의 균형을 맞추기 위해 상응하는 전자를 받았다. 도 1 (c)는 비대칭형 야누스 나노클러스터-고분자 나노프로브를 이용한 SERS 기반 바이오센싱(biosensing) 방법을 보여준다. 구체적으로, 중합체 구획을 선택적으로 작용화시켜 항체를 도입하였다. 표적 분자가 존재하면, 표적 특이적 항체가 결합된 SERS 나노프로브와 자성 비드가 상응하는 표적을 포착하여 SERS 나노프로브, 표적 및 자성 비드로 구성된 샌드위치형 면역 복합체를 형성하였다. 이들 복합체는 자기장을 가함으로써 세척되었고, 라만 이동(Raman shift)은 표적 농도에 따라 나타났다.A schematic diagram of the synthesis and SERS-based application of the asymmetric Janus nanocluster-polymer nanoparticles according to the present invention is shown in FIG. 1. Figure 1 (a) shows a method for producing SERS nanoprobe based on the reduction oxidation reaction. First, gold nanoparticle (AuNP) clusters were formed by agglomeration of AuNPs in the presence of Raman dye and stabilized by BSA coating. Specifically, citric acid capped AuNP was mixed with Raman dye MGITC or RBITC at a final concentration of 1.5 μM or 3.8 μM, respectively. In addition, silver nitrate and sodium citrate were added to the AuNP colloidal solution and incubated at 95 ° C. for 10-60 minutes. When silver ions were reduced to Au, Au nanoparticles grew and agglomerated at the same time by adsorbing Raman dye on the surface. When the isothiocyanate group (-N = C = S) of MGITC and RBITC is strongly bound to the AuNP surface, the electrostatic interaction between negatively charged particles and particles labeled with Raman dye with cationic surface charge This occurred to form AuNP clusters. Au nanoclusters containing Raman dyes were stabilized by BSA to prevent further aggregation. Second, asymmetric double metal nanocluster-polymer nanostructures were prepared by redox reactions between silver nitrate and aniline monomers. Concentrated AuNP clusters were added to the solution containing the aniline monomer and the surfactant SDS. After mixing, silver nitrate was added to the solution to initiate the oxidative polymerization to poly (aniline) by reducing silver ions in the AuNP cluster to form a double metal Au (core) -Ag (shell) nanocluster. In the presence of SDS, anisotropic (asymmetric) partitioning of double metal nanoclusters and poly (aniline) was formed to balance the interfacial tension between poly (aniline) -double metal nanoclusters and-water by minimizing the surface area. Figure 1 (b) shows a spontaneous redox reaction between two precursors. Aniline monomers with primary amine groups donated electrons to silver nitrate and silver ions received corresponding electrons to balance the redox reaction. Figure 1 (c) shows a SERS-based biosensing (biosensing) method using an asymmetric Janus nanocluster-polymer nanoprobe. Specifically, antibodies were introduced by selectively functionalizing the polymer compartments. When the target molecule is present, the SERS nanoprobe to which the target specific antibody is bound and the magnetic beads capture the corresponding target to form a sandwich immune complex consisting of the SERS nanoprobe, the target and the magnetic beads. These complexes were washed by applying a magnetic field and Raman shift appeared according to the target concentration.
또 다른 측면에서 본 발명은, 하기 단계를 포함하는 표면-증강 라만 산란(SERS) 기반의 표적 물질 검출 방법을 제공한다:In another aspect, the present invention provides a surface-enhanced Raman scattering (SERS) based target substance detection method comprising the following steps:
a) 검출하고자 하는 표적 물질이 포함된 시료액을 준비하고;a) preparing a sample solution containing the target substance to be detected;
b) 자성 나노입자에 상기 표적에 대한 제1 항체를 고정하여 준비하고;b) preparing by immobilizing a first antibody against the target on magnetic nanoparticles;
c) 상기 금속 나노프로브에 상기 표적에 대한 제2 항체를 고정하여 준비하고;c) preparing by immobilizing a second antibody against the target on the metal nanoprobe;
d) 상기 제1 항체가 고정된 자성 나노입자를 상기 시료액에 첨가하여 상기 표적과 상기 자성 나노입자의 제1 항체가 접합된 면역복합체를 형성하고;d) adding the magnetic nanoparticle to which the first antibody is immobilized to the sample solution to form an immunocomplex in which the target and the first antibody of the magnetic nanoparticle are conjugated;
e) 상기 제2 항체가 고정된 금속 나노프로브를 상기 제1 항체가 접합된 면역복합체가 포함된 용액에 첨가하여 금속 나노프로브의 제2 항체-표적-자성 나노입자의 제1 항체의 샌드위치 면역복합체를 형성하고;e) a sandwich immunocomplex of the first antibody of the second antibody-target-magnetic nanoparticle of the metal nanoprobe by adding a metal nanoprobe to which the second antibody is immobilized to a solution containing the immunocomplex to which the first antibody is conjugated To form;
f) 자기장을 이용하여 상기 샌드위치 면역복합체를 형성하지 않은 자성 나노입자 및 금속 나노프로브를 분리하고; 그리고f) separating magnetic nanoparticles and metal nanoprobes that do not form the sandwich immunocomplex using a magnetic field; And
g) 상기 샌드위치 면역복합체의 라만 신호를 측정하는; 단계.g) measuring the Raman signal of said sandwich immunocomplex; step.
상기 표적 물질은 단백질 또는 병원균일 수 있다.The target material may be a protein or a pathogen.
상기 단백질은 항원, 생물학적 압타머(biological aptamer), 수용체 및 효소로 이루어진 군으로부터 선택될 수 있다. The protein may be selected from the group consisting of antigens, biological aptamers, receptors and enzymes.
본 발명에서 "샌드위치형 면역 복합체"란 항체-항원-항체 반응을 통해 결합된 면역복합체를 의미한다. 항원이 항체 중간에 삽입되어 샌드위치 모양을 나타냄에 따라 명명되었다.By "sandwich immune complex" is meant herein an immunocomplex bound through an antibody-antigen-antibody reaction. The antigen was named as it is inserted in the middle of the antibody to form a sandwich.
제 44th 발명: invent:
본 발명은 하기로 구성되는 비대칭형 야누스 나노구조체를 제공한다:The present invention provides an asymmetric Janus nanostructure consisting of:
방향성을 가진 금속 나노막대 클러스터 시드 및 금속 쉘 구조를 포함하는 이중 금속 나노막대 클러스터 구획; 및A dual metal nanorod cluster compartment comprising a directional metal nanorod cluster seed and a metal shell structure; And
전도성 고분자 구획.Conductive polymer block.
상기 시드-쉘 구조의 이중 금속 나노막대 클러스터 구획에서,In the seed-shell structured double metal nanorod cluster compartment,
상기 금속 나노막대 클러스터 시드 및 상기 쉘 금속은, 각각, 은, 금, 구리 및 이의 혼합물로 이루어진 군으로부터 선택될 수 있으나, 반드시 이로 제한되는 것은 아니며, 이 기술분야에 널리 사용되고 있는 금속은 어느 것이나 제한없이 사용될 수 있다.The metal nanorod cluster seed and the shell metal, respectively, may be selected from the group consisting of silver, gold, copper, and mixtures thereof, but are not necessarily limited thereto, and any metal widely used in the art is limited. Can be used without.
상기 방향성을 가진 금속 나노막대 클러스터 시드는, 상기 개별 금속 나노막대 입자의 측면이 나란히 배열되어 조립된(side-by-side assmebly) 형태이거나, 또는 개별 금속 나노막대 입자의 말단이 연결되어 조립된(end-to-end assembly) 형태일 수 있다.The directional metal nanorod cluster seed is formed in a side-by-side assmebly form in which side surfaces of the individual metal nanorod particles are aligned, or in which ends of the individual metal nanorod particles are connected to each other. -to-end assembly).
본 발명에서 상기 "금속 나노막대 입자의 측면(side)"이란 금속 나노막대의 좁고 긴 형태에서 길이가 긴 2 개의 면 부분을 의미한다. In the present invention, the "side of the metal nanorod particles" refers to two side portions having a long length in a narrow and long form of the metal nanorods.
본 발명에서 상기 "금속 나노막대 입자의 측면이 나란히 배열되어 조립된(side-by-side assmebly) 형태"는 금속 나노막대의 좁고 긴 형태에서 길이가 긴 2 개의 면 부분이 서로 맞닿아, 연속적으로 배열되어 조립되어 있는 형태를 의미한다. 본 명세서 상에서 "금속 나노막대 입자의 측면이 나란히 배열되어 조립된(side-by-side assmebly) 형태"는 그 형태가 측면과 측면 사이의 조립에 의해 이루어짐에 따라, "측면 간 조립"으로도 명명된다.In the present invention, the “side-by-side assmebly form” in which the side surfaces of the metal nanorod particles are arranged side by side is formed in a narrow and long form of the metal nanorod, in which two long surface portions contact each other, continuously It means the form that is arranged and assembled. In the present specification, the "side-by-side assmebly form" of the metal nanorod particles is also referred to as "side-to-side assembly", as the form is made by the side-to-side assembling. do.
본 발명에서 상기 "금속 나노막대 입자의 말단(end)"이란 금속 나노막대의 좁고 긴 형태에서 길이가 짧은 2 개의 면 부분을 의미한다. In the present invention, the "end of the metal nanorod particles" refers to two surface portions having a short length in a narrow and long form of the metal nanorods.
본 발명에서 상기 "금속 나노막대 입자의 말단이 연결되어 조립된(end-to-end assembly) 형태"는 금속 나노막대의 좁고 긴 형태에서 길이가 짧은 2 개의 면 부분이 대각선 방향으로 서로 맞닿아, 연속적으로 배열되어 조립되어 있는 형태를 의미한다. 본 명세서 상에서 "금속 나노막대 입자의 말단이 연결되어 조립된(end-to-end assembly) 형태"는 그 형태가 말단과 말단 사이의 조립에 의해 이루어짐에 따라, "말단 간 조립"으로도 명명된다.In the present invention, the "end-to-end assembly form of the ends of the metal nanorod particles" in the narrow and long form of the metal nanorods, the two surface portions of short length abut each other in a diagonal direction, It means the form that is continuously arranged and assembled. In the present specification, "end-to-end assembly form of the metal nanorod particles" is also referred to as "end-to-end assembly", as the form is formed by the end-to-end assembly. .
상기 전도성 고분자는 폴리피롤(polypyrrole), 폴리싸이오펜(polythiophene), poly(3,4-ethylene dioxythiophene)(PEDOT) 및 폴리아닐린(polyaniline)으로 이루어진 군으로부터 선택되는 적어도 하나인 것일 수 있으며, 반드시 이로 제한되는 것은 아니나, 바람직하게는 폴리아닐린일 수 있다.The conductive polymer may be at least one selected from the group consisting of polypyrrole, polythiophene, poly (3,4-ethylene dioxythiophene) (PEDOT), and polyaniline, but is not limited thereto. But preferably may be polyaniline.
상기 이중 금속 나노막대 클러스터 구획은 라만 염료를 더 포함하는 것일 수 있다.The double metal nanorod cluster compartment may further comprise a Raman dye.
상기 라만 염료는 라만 활성 유기 화합물을 의미하며, 이 기술분야에서 널리 사용되는 것이라면 어느 것이나 제한없이 사용할 수 있다. 구체적인 예를 들면, MGITC(Malachite green isothiocyanate), RBITC(rhodamine B isothiocyanate), 로다민6G, 아데닌, 4-아미노-피라졸(3,4-d)피리미딘, 2-루오로아데닌, N6-벤조일아데닌, 키네틴, 디메틸-알릴-아미노-아데닌, 제아틴(zeatin), 브로모-아데닌, 8-아자-아데닌, 8-아자구아닌, 4-머캅토피리딘, 6-머캅토퓨린, 4-아미노-6-머캅토피라졸로(3,4-d)피리민딘, 8-머캅토아데닌, 9-아미노-아크리딘 및 이의 혼합물로 이루어진 군으로부터 선택될 수 있으나, 반드시 이로 제한되는 것은 아니다.The Raman dye means a Raman active organic compound, and any one widely used in the art may be used without limitation. Specific examples include Malachite green isothiocyanate (MGITC), rhodamine B isothiocyanate (RBITC), rhodamine 6G, adenine, 4-amino-pyrazole (3,4-d) pyrimidine, 2-ruoroadenine, N6-benzoyl Adenine, kinetin, dimethyl-allyl-amino-adenine, zeatin, bromo-adenine, 8-aza-adenine, 8-azaguanine, 4-mercaptopyridine, 6-mercaptopurine, 4-amino- 6-mercaptopyrazolo (3,4-d) pyrimindine, 8-mercaptoadenin, 9-amino-acridine and mixtures thereof, but is not necessarily limited thereto.
본 발명에서 상기 "비대칭형 야누스 나노구조체"란, 서로 대칭되지 않고, 구분되는 두 개의 서로 다른 구획(시드-쉘 구조의 이중 금속 나노막대 클러스터 구획 및 전도성 고분자 구획)으로 구성된 나노구조체를 말한다. 본 발명에서 상기 이중 금속 나노막대 클러스터 구획은 방향성을 가진 금속 나노막대 클러스터 시드 및 금속 쉘로 구성되고, 상기 이중 금속 나노막대 클러스터 구획의 한쪽 면에만 전도성 고분자 구획이 부착되어 성장, 즉, 편심 증착(eccentrically deposited)하여 비대칭적인 야누스 나노 구조를 형성한 것을 나타낸다.In the present invention, the "asymmetric Janus nanostructure" refers to a nanostructure composed of two different partitions (seed-shell structure double metal nanorod cluster compartment and conductive polymer compartment) which are not symmetrical with each other. In the present invention, the double metal nanorod cluster compartment is composed of a directional metal nanorod cluster seed and a metal shell, and the conductive polymer compartment is attached to only one side of the double metal nanorod cluster compartment and grows, that is, eccentrically. deposited to form an asymmetric Janus nanostructure.
본 명세서 상에서 "비대칭형 야누스 나노구조체"는 "이중 금속-고분자 야누스 나노입자" 또는 "야누스 나노입자" 또는 야누스 나노프로브로도 명명된다.Asymmetric Janus nanostructures herein are also termed "double metal-polymer Janus nanoparticles" or "Janus nanoparticles" or Janus nanoprobes.
본 발명에서 상기 이중 금속이란, 금속 시드-금속 쉘 구조를 이루는 두 종류의 금속을 의미한다. In the present invention, the double metal means two kinds of metals forming a metal seed-metal shell structure.
본 발명에서 상기 금속 나노막대 클러스터란, 금속 나노막대들이 모여 있는 것을 의미하는 용어로서 이 분야에서 일반적으로 사용되는 용어이다. In the present invention, the metal nanorod cluster is a term used to mean that the metal nanorods are collected, and is a term generally used in this field.
본 발명에서 상기 이중 금속 나노막대 클러스터란, 시드-쉘 구조를 이루는 이중 금속 나노막대 입자들이 모여 있는 것을 의미한다.In the present invention, the double metal nanorod cluster means that the double metal nanorod particles forming a seed-shell structure are collected.
본 발명은 본 발명에 따른 비대칭형 야누스 나노구조체를 이용한 표면-증강 라만 산란(SERS) 신호 측정용 금속 나노프로브를 제공한다.The present invention provides a metal nanoprobe for surface-enhanced Raman scattering (SERS) signal measurement using an asymmetric Janus nanostructure according to the present invention.
본 발명에 따른 야누스 나노구조체는 라만 염료를 포함함으로써, 표면-증강 라만 산란 신호를 측정하기 위한 금속 나노프로브로 제공될 수 있다.Janus nanostructures according to the present invention can be provided as a metal nanoprobe for measuring surface-enhanced Raman scattering signal by including a Raman dye.
본 발명에서 프로브란, 검출하고자 하는 표적(타겟) 물질과 특이적으로 결합할 수 있는 물질을 의미하며, 상기 결합을 통하여 표적 물질의 존재를 확인할 수 있는 물질을 의미한다. In the present invention, the probe refers to a substance capable of specifically binding to a target (target) substance to be detected, and means a substance capable of confirming the presence of the target substance through the binding.
본 발명에서 나노프로브란, 나노 크기의 프로브를 의미한다.In the present invention, nanoprobe means a probe of a nano size.
상기 "나노"란 이 기술분야의 통상의 기술자들이 이해하는 정도의 크기 범위를 포함한다. 구체적으로 상기 크기 범위는 0.1 에서 1000 nm의 크기일 수 있으며, 더 구체적으로는 10 에서 1000 nm, 더욱 바람직하게는 20 에서 500 nm, 더 더욱 바람직하게는 40 에서 250 nm 일 수 있다.The term " nano " includes a range of sizes that would be understood by one of ordinary skill in the art. Specifically, the size range may be a size of 0.1 to 1000 nm, more specifically 10 to 1000 nm, more preferably 20 to 500 nm, even more preferably 40 to 250 nm.
본 발명은 하기 단계를 포함하는 비대칭형 야누스 나노구조체의 제조 방법을 제공한다:The present invention provides a method for preparing an asymmetric Janus nanostructure comprising the following steps:
i) 시드(seed)를 형성하는 금속 나노막대 입자 및 유기 음이온 또는 말단에 티올기를 가지는 음전하성 자극반응성 공중합체를 혼합하여, 방향성을 가진 금속 나노막대 클러스터 시드를 형성하고;i) mixing the metal nanorod particles forming the seed and the negatively charged stimulatory copolymer having a thiol group at the organic anion or the terminal to form a metal nanorod cluster seed having an orientation;
ii) 전도성 고분자 단량체 및 계면활성제를 용해시킨 수용액에 상기 금속 나노막대 클러스터 시드를 첨가하고, ii) adding the metal nanorod cluster seed to an aqueous solution in which the conductive polymer monomer and the surfactant were dissolved,
iii) 상기 ii)의 금속 나노막대 클러스터 시드가 첨가된 용액에 금속 이온 용액을 첨가하여 상기 금속 이온과 상기 전도성 고분자 단량체 사이의 산화-환원 반응을 수행하고;iii) adding a metal ion solution to the solution to which the metal nanorod cluster seed of ii) is added to perform a redox reaction between the metal ion and the conductive polymer monomer;
iv) 상기 금속 이온이 상기 전도성 고분자가 제공하는 전자를 받아 환원되면서 시드 금속 나노막대 입자 표면에 증착되어 시드-쉘 구조의 이중 금속 나노막대 클러스터 구획을 형성하고; 상기 전도성 고분자 단량체는 산화되면서 상기 이중 금속 나노막대 클러스터 구획의 한쪽 면에만 증착되어 전도성 고분자로 성장하면서 비대칭적으로 전도성 고분자 구획을 형성하는; 단계.iv) the metal ions are deposited on the surface of the seed metal nanorod particles while receiving and reducing electrons provided by the conductive polymer to form a seed metal shell double metal nanorod cluster section; The conductive polymer monomer is oxidized and deposited only on one side of the double metal nanorod cluster compartment to grow into a conductive polymer to form an asymmetrically conductive polymer compartment; step.
상기 i) 단계 이후에, 금속 나노막대 클러스터 시드 표면에 라만 염료를 부착하는 단계를 더 포함할 수 있다.After step i), the method may further include attaching a Raman dye on the surface of the metal nanorod cluster seed.
상기 i) 단계의 시드 금속은 금, 은, 구리 및 이의 혼합물로 이루어진 군으로부터 선택될 수 있으나, 반드시 이로 제한되는 것은 아니며, 이 기술분야에 널리 사용되고 있는 금속은 어느 것이나 제한없이 사용될 수 있다.The seed metal of step i) may be selected from the group consisting of gold, silver, copper and mixtures thereof, but is not necessarily limited thereto, and any metal widely used in the art may be used without limitation.
상기 iii) 단계의 금속 이온은 금 이온, 은 이온, 구리 이온 및 이의 혼합물로 이루어진 군으로부터 선택될 수 있다. The metal ion of step iii) may be selected from the group consisting of gold ions, silver ions, copper ions and mixtures thereof.
구체적으로, 상기 금 이온은 염화금수화물(Gold(III) chloride hydrate), 클로로카보닐금(Chlorocarbonylgold), 테트라클로로금산수소(Hydrogen tetrachloroaurate) 테트라클로로금산수소수화물(Hydrogen tetrachloroaurate hydrate), 클로로트리에틸포스핀금화합물(Chlorotriethylphosphinegold), 클로로트리메틸포스핀금화합물(Chlorotrimethylphosphinegold), 다이메틸(아세틸아세토네이트)금화합물(Dimethyl(acetylacetonate)gold), 염화금(Gold(I) chloride), 시안화금(Gold cyanide), 황화금(Gold sulfide) 및 이의 혼합물로부터 이루어진 군으로부터 선택되는 것일 수 있으며, 반드시 이로 제한되는 것은 아니나, 바람직하게는 염화금수화물일 수 있다. Specifically, the gold ions are gold (III) chloride hydrate, chlorocarbonylgold, hydrogen tetrachloroaurate, tetrachloroaurate hydrate, chlorotriethylphosphine gold compound. (Chlorotriethylphosphinegold), Chlorotrimethylphosphinegold, Dimethyl (acetylacetonate) gold compound, Gold (I) chloride, Gold cyanide, Gold sulfide sulfide) and mixtures thereof, and may be, but is not necessarily limited to, chlorinated chloride.
상기 은 이온은 질산은(AgNO3), 테트라플루오르붕산염 은(AgBF4), 트리플루오르메탄술폰산염 은(AgCF3SO3), 과염소산은(AgClO4), 아세트산은(Ag(CH3COO)), 헥사플루오르인산염 은(AgPF6), Ag(CF3COO) 및 이의 혼합물로부터 이루어진 군으로부터 선택되는 것일 수 있으며, 반드시 이로 제한되는 것은 아니나, 바람직하게는 질산은일 수 있다. The silver ions include silver nitrate (AgNO3), silver tetrafluoroborate (AgBF4), trifluoromethanesulfonate silver (AgCF3SO3), silver perchlorate (AgClO4), silver acetate (Ag (CH3COO)), hexafluorophosphate silver (AgPF6), It may be selected from the group consisting of Ag (CF 3 COO) and mixtures thereof, but is not necessarily limited thereto, and may preferably be silver nitrate.
상기 구리 이온은 구리(II) 아세틸아세토네이트(Cu(acac)2), 염화구리(CuCl), 염화구리(II)(CuCl2), 구리(II) 헥사플루오로아세틸아세토네이트(Cu(hfac)2), 구리(II) 트리플루오로아세틸클로라이드(Cu(tfac)2), 구리(II) 디피브알로이메타네이트(Cu(dpm)2), 구리(II) 펜타플루오로디메틸헵탄디온(Cu(ppm)2), 구리(II) 헵타플루오로디메틸옥탄(Cu(fod)2), 구리(II) 이미노펜타논(Cu(acim)2), 구리(II) 헥사플루오로-[(트리플루오로에틸)이미노]-펜타논(Cu(nona-F)2), 구리(II) 아세틸아세토에틸렌디아민(Cu(acen)2), 질산구리(Cu(NO3)2), 황산구리(CuSO4) 및 이의 혼합물로부터 이루어진 군으로부터 선택되는 것일 수 있으며, 반드시 이로 제한되는 것은 아니다.The copper ions may be copper (II) acetylacetonate (Cu (acac) 2), copper chloride (CuCl), copper chloride (II) (CuCl 2), copper (II) hexafluoroacetylacetonate (Cu (hfac) 2 ), Copper (II) trifluoroacetylchloride (Cu (tfac) 2), copper (II) dipiballomethacrylate (Cu (dpm) 2), copper (II) pentafluorodimethylheptanedione (Cu (ppm) 2), copper (II) heptafluorodimethyloctane (Cu (fod) 2), copper (II) iminopentanone (Cu (acim) 2), copper (II) hexafluoro-[(trifluoro Ethyl) imino] -pentanone (Cu (nona-F) 2), copper (II) acetylacetoethylenediamine (Cu (acen) 2), copper nitrate (Cu (NO3) 2), copper sulfate (CuSO4) and its It may be selected from the group consisting of the mixture, but is not necessarily limited thereto.
상기 i) 단계의 방향성을 가진 금속 나노막대 클러스터 시드는, 상기 개별 금속 나노막대 입자의 측면이 나란히 배열되어 조립된(side-by-side assmebly) 형태이거나, 또는 개별 금속 나노막대 입자의 말단이 연결되어 조립된(end-to-end assembly) 형태인 것일 수 있다.The metal nanorod cluster seed having the directionality of step i) may be formed in a side-by-side assmebly side by side of the individual metal nanorod particles, or the ends of the individual metal nanorod particles are connected to each other. It may be in an end-to-end assembly form.
상기 개별 금속 나노막대 입자의 측면이 나란히 배열되어 조립된(side-by-side assmebly) 형태의 금속 나노막대 클러스터 시드는, 하기 단계를 포함하여 제조되는 것일 수 있다:Sides of the individual metal nanorod particles are arranged side by side (by side-by-side assmebly) form of metal nanorod cluster seed, it may be prepared by including the following steps:
금속 시드를 이용하여 표면에 양전하성 계면활성제가 존재하는 금속 나노막대 입자를 제조하고;Preparing metal nanorod particles in which a positively charged surfactant is present on the surface using the metal seeds;
상기 금속 나노막대를 포함한 용액에 라만 염료를 첨가하고; 그리고Adding a Raman dye to the solution containing the metal nanorods; And
상기 라만 염료가 포함된 상기 금속 나노막대 용액에 유기 음이온을 첨가하고;Adding an organic anion to the metal nanorod solution containing the Raman dye;
상기 금속 나노막대 측면에 부착된 양전하성 계면활성제와 상기 유기 음이온 사이의 정전기적 인력에 의해 개별 금속 나노막대의 측면이 다른 개별 금속 나노막대의 측면과 나란히 배열되어 조립되어 금속 나노막대 클러스터 시드를 형성하는 단계.Electrostatic attraction between the positively charged surfactant attached to the side of the metal nanorods and the organic anion causes the side surfaces of the individual metal nanorods to be arranged side by side with other side metal nanorods to form a metal nanorod cluster seed. Steps.
상기 "금속 나노막대 측면에 부착된 양전하성 계면활성제와 상기 유기 음이온 사이의 정전기적 인력에 의해 개별 금속 나노막대의 측면이 다른 개별 금속 나노막대의 측면과 나란히 배열되어 조립되어 금속 나노막대 클러스터 시드를 형성하는" 것은, 구체적으로 양전하성 계면활성제와 상기 유기 음이온 사이의 정전기적 인력(상호 작용)에 의해 '제1 금속 나노막대 측면에 부착된 양전하성 계면활성제-유기 음이온-제2 금속 나노막대 측면에 부착된 양전하성 계면활성제'로 이루어지는 결합이 연속적으로 발생되어, 개별 금속 나노막대의 측면이 다른 개별 금속 나노막대의 측면과 나란히 배열됨으로써 조립되는 것을 의미한다. 상기 조립은 정전기적 인력에 의해 자발적으로 일어나므로, 본 명세서 상에서 "자가 조립"으로 명명되었다.By the electrostatic attraction between the positively charged surfactant attached to the side of the metal nanorods and the organic anion, the sides of the individual metal nanorods are arranged side by side with the other side of the other metal nanorods to assemble the metal nanorod cluster seeds. Forming " specifically refers to the positively charged surfactant-organic anion-second metal nanorod side attached to the first metal nanorod side by electrostatic attraction (interaction) between the positively charged surfactant and the organic anion. A bond consisting of a positively charged surfactant attached to the substrate is continuously generated, and means that the side surfaces of the individual metal nanorods are assembled by being aligned with the side surfaces of other individual metal nanorods. Since the assembly occurs spontaneously by electrostatic attraction, it is referred to herein as "self assembly".
본 발명의 일실시예에서는 CTAB 이중층과 시트르산염 사이의 정전기적 인력이 측면 간 자가 조립된 금 나노막대(AuNR) 클러스터를 유도하였다.In one embodiment of the present invention, the electrostatic attraction between the CTAB bilayer and citrate induced side-to-side self-assembled gold nanorod (AuNR) clusters.
상기 양전하성 계면활성제는 CTAB(hexadecyltrimethylammonium bromide), DTAB(dodecyltrimethylammonium bromide), 및 TTAB(trimethyltetradecylammonium bromide)로 이루어진 군으로부터 선택되는 것일 수 있으며, 반드시 이로 제한되는 것은 아니나, 바람직하게는 CTAB일 수 있다.The positively charged surfactant may be selected from the group consisting of hexadecyltrimethylammonium bromide (CTAB), dodecyltrimethylammonium bromide (DTAB), and trimethyltetradecylammonium bromide (TTAB), but is not necessarily limited thereto, and preferably may be CTAB.
상기 유기 음이온은 시트레이트, 말레이트, 푸마레이트, 타르트레이트, 석시네이트, 옥살레이트 및 글루코네이트로 이루어지는 군으로부터 선택되는 것일 수 있으며, 반드시 이로 제한되는 것은 아니나, 바람직하게는 시트레이트, 즉, 시트르산염일 수 있다.The organic anion may be selected from the group consisting of citrate, maleate, fumarate, tartrate, succinate, oxalate, and gluconate, but is not necessarily limited thereto, preferably citrate, that is, citric acid It may be a salt.
상기 개별 금속 나노막대 입자의 말단이 연결되어 조립된(end-to-end assembly) 형태의 금속 나노막대 클러스터 시드는, 하기 단계를 포함하여 제조되는 것일 수 있다.Ends of the individual metal nanorod particles are connected to the end-to-end assembly of the metal nanorod cluster seed, which may be prepared by the following steps.
금속 시드를 이용하여 표면에 양전하성 계면활성제가 존재하는 금속 나노막대 입자를 제조하고;Preparing metal nanorod particles in which a positively charged surfactant is present on the surface using the metal seeds;
상기 금속 나노막대를 포함하는 용액에, 말단에 티올기를 가지는 음전하성 자극반응성 공중합체를 첨가하고; 그리고Adding a negatively charged stimulatory copolymer having a thiol group at the end to the solution containing the metal nanorods; And
상기 음전하성 자극반응성 공중합체가 첨가된 금속 나노막대 용액을 교반하고;Stirring the metal nanorod solution to which the negatively charged stimulatory copolymer is added;
상기 교반된 용액에 라만 염료를 첨가하고;Adding Raman dye to the stirred solution;
상기 금속 나노막대 말단의 양전하성 계면활성제와 상기 음전하성 자극반응성 공중합체의 티올기가 서로 결합하여 금속-티올기 결합을 형성하고, 상기 개별 금속 나노막대 측면의 양전하성 계면활성제와 다른 개별 금속 나노막대 말단의 음전하성 자극반응성 공중합체가 정전기적 인력으로 결합하여 상기 개별 금속 나노막대 입자의 말단이 연결되어 조립되어 금속 나노막대 클러스터 시드를 형성하는 단계.The positively charged surfactant at the end of the metal nanorod and the thiol group of the negatively charged stimuli-reactive copolymer combine with each other to form a metal-thiol group bond, and the positively charged surfactant at the side of the individual metal nanorod and the other individual metal nanorod Bonding the terminal negatively charged stimuli-responsive copolymers with electrostatic attraction so that the ends of the individual metal nanorod particles are joined together to form a metal nanorod cluster seed.
상기 "금속 나노막대 말단의 양전하성 계면활성제와 상기 음전하성 자극반응성 공중합체의 티올기가 서로 결합하여 금속-티올기 결합을 형성"함으로써, 금속 나노막대 말단의 양전하성 계면활성제는 음전하성 자극반응성 공중합체로 교환된다."The positively charged surfactant at the end of the metal nanorod and the thiol group of the negatively charged stimulatory copolymer combine with each other to form a metal-thiol group bond", whereby the positively charged surfactant at the end of the metal nanorod is Exchanged for coalescence.
상기 "개별 금속 나노막대 측면의 양전하성 계면활성제와 다른 개별 금속 나노막대 말단의 음전하성 자극반응성 공중합체가 정전기적 인력으로 결합하여 상기 개별 금속 나노막대 입자의 말단이 연결되어 조립되어 금속 나노막대 클러스터 시드를 형성하는" 것은, 구체적으로 양전하성 계면활성제와 음전하성 자극반응성 공중합체 사이의 정전기적 인력(상호 작용)에 의해 '제1 금속 나노막대의 측면 상의 양전하성 계면활성제-제2 금속 나노막대의 말단면 상의 음전하성 자극반응성 공중합체'로 이루어지는 결합이 연속적으로 발생되어, 개별 금속 나노막대의 말단이(더욱 구체적으로는, 측면-말단이) 대각선 방향으로 연결되어 조립되는 것을 의미한다. 상기 조립은 정전기적 인력에 의해 자발적으로 일어나므로, 본 명세서 상에서 "자가 조립"으로 명명되었다."The positively charged surfactant on the side of the individual metal nanorods and the negatively charged stimulatory copolymer at the ends of the other individual metal nanorods are bonded together by electrostatic attraction so that the ends of the individual metal nanorod particles are assembled and assembled to form a metal nanorod cluster. Seed formation "is specifically defined as" positive charge-surfactant-second metal nanorods on the side of the first metal nanorods by electrostatic attraction (interaction) between the positively charged surfactant and the negatively charged stimulatory copolymer. The bond consisting of the negatively charged stimuli-copolymer on the end face of is continuously generated, meaning that the ends of the individual metal nanorods (more specifically, the side-ends) are connected in a diagonal direction and assembled. Since the assembly occurs spontaneously by electrostatic attraction, it is referred to herein as "self assembly".
본 발명의 일실시예에서 표면 개질된 AuNR의 말단부에 부착되어 있는 CTAB 리간드는 금속-티올기 결합을 통해 음으로 하전된 poly(AAc-b-NIPAM)-SH로 교환되었다. 이에 따라, AuNR의 측면 상의 양으로 대전된 CTAB와 다른 AuNR의 말단면 상의 poly(AAc-b-NIPAM) 사이의 정전기적 인력은 말단 간 자가 조립된 AuNR 클러스터를 유도하였다.In one embodiment of the present invention, the CTAB ligand attached to the terminal of the surface-modified AuNR was exchanged with a negatively charged poly (AAc-b-NIPAM) -SH through metal-thiol group bonds. Accordingly, the electrostatic attraction between positively charged CTAB on the side of AuNR and poly (AAc-b-NIPAM) on the end face of the other AuNR induced an end-to-end self-assembled AuNR cluster.
상기 양전하성 계면활성제는 CTAB(hexadecyltrimethylammonium bromide), DTAB(dodecyltrimethylammonium bromide), 및 TTAB(trimethyltetradecylammonium bromide)로 이루어진 군으로부터 선택되는 것일 수 있으며, 반드시 이로 제한되는 것은 아니나, 바람직하게는 CTAB일 수 있다.The positively charged surfactant may be selected from the group consisting of hexadecyltrimethylammonium bromide (CTAB), dodecyltrimethylammonium bromide (DTAB), and trimethyltetradecylammonium bromide (TTAB), but is not necessarily limited thereto, and preferably may be CTAB.
본 발명에서 용어 "자극반응성"이란, 자극(예를 들면, 열 등)에 반응하여 행동이 변하는 성질을 말한다.As used herein, the term "stimulatory responsiveness" refers to a property that changes behavior in response to a stimulus (eg, heat).
본 발명에서 상기 "음전하성 자극반응성 공중합체"란, 음전하를 띠는 공중합체로서, 특히 자극에 반응하여 행동이 변하는 음전하를 띠는 공중합체를 의미한다.In the present invention, the "negative stimulus-reactive copolymer" refers to a copolymer having a negative charge, in particular a copolymer having a negative charge whose behavior changes in response to a stimulus.
상기 음전하성 자극반응성 공중합체는 음전하성 모이어티 및 자극반응성 고분자로 이루어진 공중합체인 것일 수 있다. 상기 음전하성 모이어티 및 자극반응성 고분자의 공중합 방법은 이 기술분야에 알려진 공중합 방법은 어느 것이나 이용할 수 있다. 본 발명의 일실시예에서는 연속 RAFT(sequential reversible addition-fragmentation chain transfer) 중합 후, 추가적인 아미노 분해 및 가수 분해 공정에 의해 합성되었다.The negatively charged stimuli copolymer may be a copolymer consisting of a negatively charged moiety and a stimulatory polymer. The copolymerization method of the negatively charged moiety and the stimuli polymer may be any copolymerization method known in the art. In one embodiment of the present invention it was synthesized by a sequential reversible addition-fragmentation chain transfer (RAFT) polymerization, followed by additional amino decomposition and hydrolysis processes.
본 발명에서 용어 "모이어티(moiety)"란, 어떤 물질(substance)을 의미하며, 물질의 성질을 나타내는 부분을 의미한다.In the present invention, the term "moiety" means a substance, and means a part that indicates the properties of the substance.
본 발명에서 상기 "음전하성 모이어티"란, 음전하 성질을 가지는 물질을 의미한다.In the present invention, the "negative moiety" means a material having negative charge properties.
상기 음전하성 모이어티는 아크릴릭 액시드(acrylic acid), 메타크릴릭 액시드(metacrylic acid), 이타코닉 액시드(itaconic acid), 말레익 액시드(maleic acid) 및 이의 혼합물로 이루어진 군으로부터 선택되는 것일 수 있으며, 반드시 이로 제한되는 것은 아니나, 바람직하게는 아크릴릭 액시드일 수 있다.The negatively charged moiety is selected from the group consisting of acrylic acid, methacrylic acid, itaconic acid, maleic acid and mixtures thereof. It may be, but is not necessarily limited to this, it may be preferably an acrylic acid.
본 발명에서 상기 "자극반응성 고분자"란, 자극에 반응하여 행동이 변하는 고분자를 의미한다. In the present invention, the "stimulatory polymer" means a polymer whose behavior changes in response to a stimulus.
상기 자극반응성 고분자는 폴리(N-이소프로필아크릴아마이드)[poly(N-isopropylacrylamide): polyNIPAM], 폴리(N-디에틸 아크릴아마이드)[poly (N,N'-diethyl acrylamide): polyDEAAm], 폴리(디메틸아미노 에틸 메타크릴레이트)[poly (dimethylamino ethyl methacrylate): polyDMAEMA], 폴리(N-하이드록시메틸 프로필 메타아크릴아마이드)[poly (N-(L)-(1-hydroxymethyl) propyl methacrylamide)], 폴리[올리고(에틸렌글리콜)메틸에테르메타크릴레이트] [Poly[oligo(ethylene glycol) methyl ether methacrylate]: POEGMA], 폴리(2-비닐 피리딘)[poly(2-vinyl pyridine) : P2VP], 폴리(4-비닐 피리딘) [poly(4-vinyl pyridine) : P4VP] 및 이의 혼합물로 이루어진 군으로부터 선택되는 것일 수 있으며, 반드시 이로 제한되는 것은 아니나, 바람직하게는 폴리(N-이소프로필아크릴아마이드)일 수 있다.The stimulatory polymer is poly (N-isopropylacrylamide) [poly (N-isopropylacrylamide): polyNIPAM], poly (N-diethyl acrylamide) [poly (N, N'-diethyl acrylamide): polyDEAAm], poly (Dimethylamino ethyl methacrylate) [poly (dimethylamino ethyl methacrylate): polyDMAEMA], poly (N-hydroxymethyl propyl methacrylamide) [poly (N- (L)-(1-hydroxymethyl) propyl methacrylamide)], Poly [oligo (ethylene glycol) methyl ether methacrylate]: POEGMA], poly (2-vinyl pyridine): P2VP], poly ( 4-vinyl pyridine) may be selected from the group consisting of [poly (4-vinyl pyridine): P4VP] and mixtures thereof, but is not necessarily limited thereto, and may be preferably poly (N-isopropylacrylamide). have.
상기 음전하성 자극반응성 공중합체는, 반드시 이로 제한되는 것은 아니나, 바람직하게는 폴리(AAc-b-NIPAM)(poly(acrylic acid-block-N-isopropylacrylamide))일 수 있다. 본 발명에 따른 폴리(AAc-b-NIPAM)는 아크릴릭 액시드로 인하여 음전하 성질을 나타낸다. 또한, 말단에 티올기(-SH)를 가지므로, 본 명세서 상에서 "폴리(AAc-b-NIPAM)-SH"로도 명명된다..The negatively charged stimuli-reactive copolymer is not necessarily limited thereto, but may be preferably poly (acc-b-NIPAM) (poly (acrylic acid-block-N-isopropylacrylamide)). Poly (AAc-b-NIPAM) according to the present invention exhibits negative charge properties due to acrylic acid. In addition, since it has a thiol group (-SH) at the terminal, it is also named "poly (AAc-b-NIPAM) -SH" in this specification.
본 발명에 따라, 연속 RAFT(sequential reversible addition-fragmentation chain transfer) 중합 후, 추가적인 아미노 분해 및 가수 분해 공정에 의해 합성되는 음전하성 자극반응성 공중합체인 폴리(AAc-b-NIPAM)의 합성 단계를 도 3에 도시하였다. 먼저 단량체로 tBA(tert-butyl acrylate), CTA(chain transfer agent)로 CDTPA, 개시제로 AIBN(azobisisobutyronitrile, 2,2'-azobis(2-methylpropionitrile))을 사용한 RAFT 중합에 의해 폴리(tBA)(폴리(tBA)-macro CDTPA)를 합성하였다. 단량체로 NIPAM(N-isopropylacrylamide 97%), CTA로 앞서 합성한 폴리(tBA)-macro CDTPA, 개시제로 AIBN을 사용한 RAFT 중합에 의해 폴리(tBA-b-NIPAM)을 제조하였다. 제조한 폴리(tBA-b-NIPAM) 내 티오카보닐티오 그룹을 아미노 분해하여 티올로 전환함으로써 티올-말단 폴리(tBA-b-NIPAM)을 형성하고(도 3 (a)), 형성된 티올-말단 폴리(tBA-b-NIPAM) 내 폴리(tBA) 블록의 큰 소수성 말단 그룹을 가수 분해를 통해 카르복실기로 전환함으로써 티올-말단 폴리(AAc-b-NIPAM)을 제조하였다(도 3 (b)).According to the present invention, the synthesis step of poly (AAc-b-NIPAM), a negatively charged irritant copolymer synthesized by a subsequent amino reversible addition-fragmentation chain transfer (RAFT) polymerization, followed by further amino decomposition and hydrolysis processes, is shown in FIG. 3. Shown in First, poly (tBA) (poly (tBA)) was prepared by RAFT polymerization using tBA (tert-butyl acrylate) as monomer, CDTPA as chain transfer agent (CTA) and AIBN (azobisisobutyronitrile) as initiator, 2,2'-azobis (2-methylpropionitrile). (tBA) -macro CDTPA) was synthesized. Poly (tBA-b-NIPAM) was prepared by RAFT polymerization using NIPAM (N-isopropylacrylamide 97%) as a monomer, poly (tBA) -macro CDTPA previously synthesized with CTA, and AIBN as an initiator. The thiol-terminated poly (tBA-b-NIPAM) was formed by amino decomposition of the thiocarbonylthio group in the prepared poly (tBA-b-NIPAM) to thiol (Fig. 3 (a)), and the thiol-terminated formed Thiol-terminated poly (AAc-b-NIPAM) was prepared by converting large hydrophobic end groups of poly (tBA) blocks in poly (tBA-b-NIPAM) through hydrolysis to carboxyl groups (FIG. 3 (b)).
상기와 같이 제조된 음전하성 자극반응성 공중합체인 폴리(AAc-b-NIPAM)은 AuNR의 말단면을 선택적으로 변형시키는 데에 사용된다.Poly (AAc-b-NIPAM), a negatively charged stimuli copolymer prepared as described above, is used to selectively modify the end face of AuNR.
상기 전도성 고분자는 폴리피롤(polypyrrole), 폴리싸이오펜(polythiophene), poly(3,4-ethylene dioxythiophene)(PEDOT) 및 폴리아닐린(polyaniline)로 이루어진 군으로부터 선택되는 적어도 하나인 것일 수 있으며, 반드시 이로 제한되는 것은 아니나, 바람직하게는 폴리아닐린일 수 있다.The conductive polymer may be at least one selected from the group consisting of polypyrrole, polythiophene, poly (3,4-ethylene dioxythiophene) (PEDOT), and polyaniline, but is not limited thereto. But preferably may be polyaniline.
상기 iii) 단계의 산화-환원 반응 이후에, 상기 반응 용액을 계면활성제 용액으로 인큐베이션하는 단계를 더 포함할 수 있다.After the oxidation-reduction reaction of step iii), the method may further include incubating the reaction solution with a surfactant solution.
상기 iii) 단계 또는 iii) 단계의 산화-환원 반응 이후의 상기 계면활성제는 소디움도데실설페이트(SDS), 소디움데옥시초레이트(sodium deoxycholate), 및 트리톤 X-200(Triton X-200)로 이루어진 군으로부터 선택되는 적어도 하나인 것일 수 있으며, 반드시 이로 제한되는 것은 아니나, 바람직하게는 SDS일 수 있다.The surfactant after the redox reaction of step iii) or step iii) comprises sodium dodecyl sulfate (SDS), sodium deoxycholate, and Triton X-200. It may be at least one selected from the group, but is not necessarily limited thereto, preferably may be SDS.
상기 iv) 단계의 전도성 고분자로 성장하는 것은 표면 주형 중합법(surface-templated polymerization)에 의한 것일 수 있다.The growth of the conductive polymer of step iv) may be by surface-templated polymerization.
상기 "표면 주형 중합법"이란 산화-환원 반응에 기반한 중합법으로, 본 명세서에서는 질산은과 아닐린 단량체 간의 자발적인 산화-환원 반응을 통해 이중 금속 나노 클러스터 상에 전도성 고분자인 폴리아닐린이 증착되는 것을 의미한다. 구체적으로, 1급 아민 그룹을 가진 아닐린 단량체가 질산은에 전자를 공여하고 은 이온은 산화-환원 반응의 균형을 맞추기 위해 상응하는 전자를 받음으로써 전도성 고분자 단량체가 산화 중합됨에 따라 이중 금속 나노 클러스터 상에 폴리아닐린이 증착되었다.The "surface template polymerization method" refers to a polymerization method based on an oxidation-reduction reaction, and in this specification, polyaniline, which is a conductive polymer, is deposited on a double metal nanocluster through a spontaneous redox reaction between silver nitrate and an aniline monomer. Specifically, aniline monomers having a primary amine group donate electrons to silver nitrate and silver ions receive corresponding electrons to balance the oxidation-reduction reaction so that the conductive polymer monomers are oxidatively polymerized on the double metal nanoclusters. Polyaniline was deposited.
측면 간(side-by-side) 또는 말단 간(end-to-end) 방향성 자가 조립 AuNR과 그 야누스 나노구조체의 합성에 대한 모식도를 도 1에 도시하였다. 도 1 (a)는 정전기적 상호 작용을 통한 AuNR의 제어된 조립 과정을 나타낸다. AuNR의 측면 간 조립은 시트르산염 음이온의 첨가에 의해 이루어졌다. AuNR의 합성 동안, CTAB 계면활성제는 비대칭성 형태를 유도하고 AuNR의 콜로이드 안정성을 유지하는데 사용되었다. 시트르산염 음이온과 라만 염료인 MGITC가 농축된 AuNR 용액에 첨가됨에 따라 CTAB 이중층과 시트르산염 사이의 정전기적 인력이 측면 간 조립된 AuNR 클러스터를 유도하였다. MGITC는 CTAB 이중층에 효과적으로 매립되었고 측면 간 조립된 클러스터에서 인접한 AuNR 사이의 입자 간 접합부에 위치하였다. 측면 간 조립된 AuNR 클러스터는 PSS로 코팅되어 안정화되었다. 한편, AuNR의 말단 간 조립은 AuNR의 말단부에 부착된 CTAB 리간드를 티올기-금속 결합을 통해 폴리(AAc-b-NIPAM)로 교환하고, AuNR의 측면 상의 양으로 대전된 CTAB와 교환된 말단면 상의 폴리(AAc-b-NIPAM) 사이의 정전기적 인력은 AuNR의 말단 간 자가 조립을 유도하였다. 도 1 (b)는 방향성 자가 조립 AuNR 클러스터를 시드로 사용하는 비대칭성 이중 금속 나노막대 클러스터-고분자 야누스 나노구조체의 합성을 나타낸다. 야누스 나노구조체는 질산은과 아닐린 단량체 사이의 산화-환원을 통해 제조되었다. 폴리(아닐린) 구획은 계면활성제인 SDS의 존재하에 질산은을 환원시킴으로써 개시된 아닐린 단량체의 표면 주형 중합을 통해 형성되어, 방향성 조립된 AuNR 상에 폴리(아닐린)이 편심 증착되었다. 반응은 24 시간 동안 기계적 교반없이 진행되었으며, SDS 용액에서 밤새 더 인큐베이션하여 비대칭성 야누스 나노 구조의 이중 금속 Au 코어-Ag 쉘 나노막대 클러스터 구획 및 폴리(아닐린) 구획을 제조하였다. SDS의 첨가 시, 이중 금속 나노막대 클러스터 구획은 폴리(아닐린) 구획에 의해 부분적으로 포획되었다. 계면활성제인 SDS는 이중 금속, 폴리(아닐린) 및 물을 포함하는 3 상 중 계면 장력(σ)의 균형에 영향을 주어 평형 배치를 결정했다. 즉, SDS를 통해 σ폴리 (아닐린)-물poly (aniline)-water)의 계면 장력을 감소시켜 3 상 상호 작용의 균형을 이룰 수 있다; σAg - poly (aniline) > σAg -water + σpoly (aniline)-water. 도 1 (c)는 아닐린 단량체와 질산은 사이의 산화 결합 반응에 대한 방정식을 나타낸다. 산화 환원 반응은 아닐린 단량체가 산화에 의해 은 이온을 폴리(아닐린)으로 제공하고 은 이온이 해당 전자를 받아들이는 전자 이동을 포함한다. 도 1 (d)에서 볼 수 있듯이, 본 발명에 따른 야누스 나노구조체는 바이오센싱을 위한 유망한 SERS 나노프로브로 적용할 수 있다. 이중 금속 나노막대 클러스터 구획은 높은 SERS 효율을 나타낼 수 있는데, 이는 방향성 조립된 AuNR 나노 클러스터의 입자 간 갭(gap) 사이의 핫 스폿 접합(hot spot junction)에 기인하며, 폴리(아닐린) 구획은 표적 검출을 위한 항체 결합 위치를 제공한다. 표적이 존재할 때, SERS 나노프로브, 표적 및 자성 비드로 구성된 샌드위치형 면역 복합체가 형성되었으며, 양적 및 질적 SERS 기반 바이오센싱 모두 라만 이동의 함수로 달성되었다.A schematic diagram of the synthesis of side-by-side or end-to-end directional self-assembled AuNR and its Janus nanostructures is shown in FIG. 1. Figure 1 (a) shows the controlled assembly process of AuNR through electrostatic interaction. Side-to-side assembly of AuNR was achieved by the addition of citrate anions. During the synthesis of AuNR, CTAB surfactants were used to induce asymmetric forms and to maintain the colloidal stability of AuNR. As the citrate anion and the Raman dye MGITC were added to the concentrated AuNR solution, the electrostatic attraction between the CTAB bilayer and the citrate induced side-to-side assembled AuNR clusters. MGITC was effectively embedded in the CTAB bilayer and located at the interparticle junctions between adjacent AuNRs in side-to-side assembled clusters. The assembled side-to-side AuNR clusters were stabilized by coating with PSS. On the other hand, end-to-end assembly of AuNR exchanges the CTAB ligand attached to the end of AuNR with poly (AAc-b-NIPAM) through thiol group-metal bonds, and the end face exchanged with positively charged CTAB on the side of AuNR. Electrostatic attraction between poly (AAc-b-NIPAM) on the phase led to end-to-end self-assembly of AuNR. Figure 1 (b) shows the synthesis of an asymmetric double metal nanorod cluster-polymer Janus nanostructures using directional self-assembled AuNR clusters as seeds. Janus nanostructures were prepared through redox-reduction between silver nitrate and aniline monomers. Poly (aniline) compartments were formed through surface template polymerization of the aniline monomers disclosed by reducing silver nitrate in the presence of the surfactant SDS, so that poly (aniline) was eccentrically deposited on the aromatically assembled AuNR. The reaction proceeded without mechanical agitation for 24 hours and further incubated in SDS solution overnight to prepare asymmetric Janus nanostructured double metal Au core-Ag shell nanorod cluster sections and poly (aniline) sections. Upon addition of SDS, the double metal nanorod cluster compartment was partially captured by the poly (aniline) compartment. SDS, a surfactant, influenced the balance of interfacial tension (σ) in three phases including double metal, poly (aniline) and water to determine the equilibrium arrangement. That is, σ poly (aniline) via SDS - water by reducing the interfacial tension (σ poly (aniline) -water) may balance the three-phase interaction; σ Ag - poly (aniline) > σ Ag -water + σ poly (aniline) -water . Figure 1 (c) shows the equation for the oxidation bond reaction between the aniline monomer and silver nitrate. Redox reactions include electron transfer in which the aniline monomer provides silver ions to poly (aniline) by oxidation and the silver ions accept the electrons. As can be seen in Figure 1 (d), Janus nanostructures according to the present invention can be applied as a promising SERS nanoprobe for biosensing. Double metal nanorod cluster compartments can exhibit high SERS efficiency, due to hot spot junctions between the interparticle gaps of the directionally assembled AuNR nanoclusters, with the poly (aniline) compartment being the target. Provide an antibody binding site for detection. When the target was present, a sandwich immune complex consisting of SERS nanoprobe, target and magnetic beads was formed, and both quantitative and qualitative SERS based biosensing was achieved as a function of Raman migration.
본 발명은 하기 단계를 포함하는 표면-증강 라만 산란(SERS) 기반의 표적 물질 검출 방법을 제공한다.The present invention provides a surface-enhanced Raman scattering (SERS) based target material detection method comprising the following steps.
a) 검출하고자 하는 표적 물질이 포함된 시료액을 준비하고;a) preparing a sample solution containing the target substance to be detected;
b) 자성 나노입자에 상기 표적에 대한 제1 항체를 고정하여 준비하고;b) preparing by immobilizing a first antibody against the target on magnetic nanoparticles;
c) 상기 금속 나노프로브에 상기 표적에 대한 제2 항체를 고정하여 준비하고;c) preparing by immobilizing a second antibody against the target on the metal nanoprobe;
d) 상기 제1 항체가 고정된 자성 나노입자를 상기 시료액에 첨가하여 상기 표적과 상기 자성 나노입자의 제1 항체가 접합된 면역복합체를 형성하고;d) adding the magnetic nanoparticle to which the first antibody is immobilized to the sample solution to form an immunocomplex in which the target and the first antibody of the magnetic nanoparticle are conjugated;
e) 상기 제2 항체가 고정된 금속 나노프로브를 상기 제1 항체가 접합된 면역복합체가 포함된 용액에 첨가하여 금속 나노프로브의 제2 항체-표적-자성 나노입자의 제1 항체의 샌드위치 면역복합체를 형성하고;e) a sandwich immunocomplex of the first antibody of the second antibody-target-magnetic nanoparticle of the metal nanoprobe by adding a metal nanoprobe to which the second antibody is immobilized to a solution containing the immunocomplex to which the first antibody is conjugated To form;
f) 자기장을 이용하여 상기 샌드위치 면역복합체를 형성하지 않은 자성 나노입자 및 금속 나노프로브를 분리하고; 그리고f) separating magnetic nanoparticles and metal nanoprobes that do not form the sandwich immunocomplex using a magnetic field; And
g) 상기 샌드위치 면역복합체의 라만 신호를 측정하는; 단계.g) measuring the Raman signal of said sandwich immunocomplex; step.
상기 표적 물질은 단백질 또는 병원균인 것일 수 있다.The target substance may be a protein or a pathogen.
상기 단백질은 항원, 생물학적 압타머(biological aptamer), 수용체, 효소 및 리간드로 이루어진 군으로부터 선택될 수 있다. The protein may be selected from the group consisting of antigens, biological aptamers, receptors, enzymes and ligands.
본 발명에서 "샌드위치형 면역 복합체"란 항체-항원-항체 반응을 통해 결합된 면역복합체를 의미한다. 항원이 항체 중간에 삽입되어 샌드위치 모양을 나타냄에 따라 명명되었다.By "sandwich immune complex" is meant herein an immunocomplex bound through an antibody-antigen-antibody reaction. The antigen was named as it is inserted in the middle of the antibody to form a sandwich.
본 발명의 일실시예에 따른 비대칭형 이중 금속 나노막대 클러스터-고분자 야누스 나노구조체는 CTAB-캡핑된 AuNR과 유기 음이온 간의 정전기적 인력 또는 CTAB-캡핑된 AuNR과 음전하성 자극반응성 공중합체 간의 정전기적 인력을 이용하여 방향성 자가 조립을 유도함으로써, 방향성을 가진 AuNR 클러스터 시드 및 금속 쉘 구조를 포함하는 이중 금속 나노막대 클러스터 구획을 형성하며, 이와 같이 방향성 조립된 AuNR 나노 클러스터의 입자 간 갭(gap) 사이의 핫 스폿 접합(hot spot junction)에 의해 라만 강도가 크게 향상되었다. 또한, 폴리(아닐린) 구획은 표적 검출을 위한 항체 결합 위치를 제공하므로, 방향성 금속 나노막대 클러스터를 포함하는 이중 금속 나노입자 구획과 고분자 구획으로 이루어진 비대칭형 야누스 나노구조체는 표적 물질 검출을 위한 표면-증강 라만 산란(SERS) 신호 측정용 금속 나노프로브로 이용할 수 있다.The asymmetric double metal nanorod cluster-polymer Janus nanostructure according to an embodiment of the present invention is characterized by electrostatic attraction between CTAB-capped AuNR and organic anions or electrostatic attraction between CTAB-capped AuNR and negatively charged stimulatory copolymers. By inducing directional self-assembly using, a double metal nanorod cluster compartment comprising a directional AuNR cluster seed and a metal shell structure is formed, and the gaps between particles of the directionally assembled AuNR nanoclusters are interspersed. Raman strength is greatly improved by hot spot junctions. In addition, since the poly (aniline) compartments provide antibody binding sites for target detection, the asymmetric Janus nanostructures consisting of polymer compartments and double metal nanoparticle compartments comprising directional metal nanorod clusters are used for surface-detection of target substances. It can be used as metal nanoprobe for measuring enhanced Raman scattering (SERS) signal.
제 1First 발명: invent:
본 발명에 따른 이중 금속-고분자의 야누스 나노구조체는 ODA를 공유 결합시켜 선택적 기능화를 유도한 이중 금속 나노 클러스터 구획 및 전도성 고분자 구획으로 구성되며, 이의 제어된 자가 조립체를 형성함에 따라 SERS 강도가 크게 향상되었다. 따라서 본 발명의 야누스 나노구조체는, 표적 물질 검출을 위한 표면-증강 라만 산란(SERS) 기반 또는 형광 기반의 바이오센싱(Biosensing) 및/또는 바이오이미징(Bioimaging) 측정용 금속 나노프로브로 이용할 수 있다. 또한, 본 발명에 따른 이중 금속-고분자의 야누스 나노구조체 및 이의 자가 조립된 야누스 나노구조체 클러스터는 양으로 하전된 전도성 고분자 구획을 포함함에 따라, 음으로 하전된 약물과의 정전기적 상호 작용을 통해 약물을 고분자 구획 내로 담지할 수 있으며, 농축된 약물-담지 나노입자를 포함하는 하이드로겔을 형성시키고 전압 또는 pH 조건을 변화시킴으로써 약물 방출을 유도할 수 있으므로, 약물 방출을 조절할 수 있는 약물 전달체로 이용할 수 있다.The double metal-polymer Janus nanostructure according to the present invention is composed of a double metal nanocluster compartment and a conductive polymer compartment covalently bonded to ODA to induce selective functionalization, and the SERS strength is greatly improved by forming a controlled self-assembly thereof. It became. Therefore, the Janus nanostructures of the present invention can be used as metal nanoprobes for surface-enhanced Raman scattering (SERS) -based or fluorescence-based biosensing and / or bioimaging measurement for target material detection. In addition, the double metal-polymer Janus nanostructures and their self-assembled Janus nanostructure clusters, according to the present invention, contain a positively charged conductive polymer compartment, thereby providing a drug through an electrostatic interaction with a negatively charged drug. It can be used as a drug carrier that can control drug release because it can be supported into the polymer compartment, and can induce drug release by forming a hydrogel containing concentrated drug-supported nanoparticles and changing voltage or pH conditions have.
제 22nd 발명: invent:
본 발명에 따른 이중 금속 Au 코어-Ag 새틀라이트 나노입자 구획 및 고분자 구획을 포함하는 야누스 나노구조체는 전하를 띠는 고분자 또는 리간드로 개질된 이중 금속 나노입자 구획을 포함함에 따라 SERS 강도가 현저히 향상된 표면-증강 라만 산란(SERS) 기반 표적 물질 검출용 금속 나노프로브로 이용할 수 있다.Janus nanostructures comprising a double metal Au core-Ag satellite nanoparticle compartment and a polymer compartment according to the present invention have a surface with significantly improved SERS strength as it comprises a double metal nanoparticle compartment modified with a charged polymer or ligand. -Can be used as metal nanoprobes for detection of enhanced Raman scattering (SERS) based target materials.
제 33rd 발명: invent:
본 발명에 따른 비대칭형 야누스 나노프로브는, 금속 나노클러스터 내의 코어-쉘 나노입자 사이의 입자 간 커플링으로부터 SERS 특성을 고도로 향상시킨다. 고분자 구획에서 타겟을 포획하고 금속 나노클러스터 구획에서 SERS를 측정하여 타겟 검출과 광학 특성을 동시에 향상시킬 수 있다. 따라서 본 발명의 비대칭형 야누스 나노프로브는 SERS 기반 바이오센싱을 위한 기능성 나노프로브로 활용할 수 있다. The asymmetric Janus nanoprobe according to the present invention highly enhances SERS properties from interparticle coupling between core-shell nanoparticles in metal nanoclusters. Target detection in the polymer compartment and SERS in the metal nanocluster compartment can be measured to improve target detection and optical properties simultaneously. Therefore, the asymmetric Janus nanoprobe of the present invention can be utilized as a functional nanoprobe for SERS-based biosensing.
제 44th 발명: invent:
본 발명에 따른 방향성 금속 나노막대 클러스터를 포함하는 이중 금속 나노입자 구획과 고분자 구획으로 이루어진 비대칭형 야누스 나노구조체는 방향성 조립된 이중 금속 나노막대 클러스터를 포함함에 따라 라만 강도가 크게 향상된 표면-증강 라만 산란(SERS) 신호 측정용 금속 나노프로브로 적용할 수 있다.The asymmetric Janus nanostructure consisting of a double metal nanoparticle compartment and a polymer compartment comprising a directional metal nanorod cluster according to the present invention has a surface-enhanced Raman scattering with a significant improvement in Raman strength as it comprises a directional assembled double metal nanorod cluster. It can be applied as metal nano probe for (SERS) signal measurement.
제 1First 발명: invent:
도 1은 이중 금속-고분자 야누스 나노구조체, 이의 자가 조립된 야누스 나노구조체 클러스터 및 이의 특이 구조를 제조하기 위한 실험적 방법, SERS 기반 바이오 센싱 응용을 위한 실험적 방법의 모식도이다; (a) 이중 금속-고분자 야누스 나노구조체, 이의 자가 조립된 야누스 나노구조체 클러스터 및 그 특이 구조의 합성 방법, (b) 이중 금속-고분자 야누스 나노 구조 합성을 위한 아닐린 단량체와 질산은 사이의 자발적인 산화 환원 반응, (c) 이중 금속-고분자 야누스 나노구조체의 자가 조립된 야누스 나노구조체 클러스터의 특이 구조를 이용한 SERS 기반 바이오 센싱 방법.1 is a schematic diagram of an experimental method for preparing a double metal-polymer Janus nanostructure, its self-assembled Janus nanostructure cluster and its specific structure, and an experimental method for SERS-based biosensing applications; (a) a method of synthesizing a double metal-polymer Janus nanostructure, its self-assembled Janus nanostructure cluster and its specific structure, (b) a spontaneous redox reaction between aniline monomer and silver nitrate for the synthesis of double metal-polymer Janus nanostructure , (c) SERS-based biosensing method using the specific structure of self-assembled Janus nanostructure cluster of double metal-polymer Janus nanostructure.
도 2는 Au 나노입자, 이중 금속-고분자 야누스 나노구조체, 이의 자가 조립된 야누스 나노구조체 클러스터 및 이의 특이 구조의 UV-Vis 흡광도 및 유체역학 직경이다; (a) AuNP, 이중 금속-고분자 야누스 나노입자(Hybrid nanostructure) 및 이의 특이 구조(Nanoclusters Ⅰ, Ⅱ, Ⅲ)의 UV-Vis 흡수 피크, (b) 10-6 M의 라만 염료와 2.968μM의 ODA가 각각 첨가되었을 때, RBITC- 표지 또는 MGITC- 표지된 이중 금속-고분자 야누스 나노구조체(Hybrid nanostructure with RB/with MG) 및 이의 자가 조립된 야누스 나노구조체 클러스터 특이 구조(Nanoclusters with RB/with MG)의 UV-Vis 흡수 스펙트럼, (c) AuNP, 이중 금속-고분자 야누스 나노입자(Hybrid nanostructure) 및 이의 특이 구조(Nanoclusters Ⅰ, Ⅱ, Ⅲ)의 유체역학 직경. Au 나노입자 및 이중 금속-고분자 야누스 나노입자의 평균 직경은 각각 30.1 ± 0.5 nm 및 62.8 ± 2.3 nm이었고, 서로 다른 클러스터링 수준에 따른 특이 구조의 평균 직경은 168.3 ± 1.3 nm, 192.4 ± 2.4 nm 및 266.3 ± 6.0 nm이었다. Au 나노입자, 이중 금속-고분자 야누스 나노입자 및 이의 자가 조립된 야누스 나노구조체 클러스터 특이 구조의 z-전위 값은 각각 -29.5 ± 0.7 mV, -28.0 ± 0.6 mV 및 -11.2 ± 0.9 mV이었다, (d) 각각 RBITC- 표지, MGITC- 표지된 이중 금속-고분자 야누스 나노입자 및 이의 자가 조립된 야누스 나노구조체 클러스터 특이 구조의 유체역학적 직경. RBITC- 표지 및 MGITC- 표지된 이중 금속-고분자 야누스 나노입자(Hybrid nanostructure with RB/with MG)의 평균 직경은 각각 122.1 ± 2.4 nm 및 112.0 ± 15.9 nm였으며, RBITC- 표지 및 MGITC- 표지된 특이 구조(Nanoclusters with RB/with MG)의 유체역학적 직경은 각각 450.1 ± 3.1 nm 및 401.1 ± 10.0 nm이었다.2 is the UV-Vis absorbance and hydrodynamic diameters of Au nanoparticles, double metal-polymer Janus nanostructures, their self-assembled Janus nanostructure clusters and their specific structures; (a) UV-Vis absorption peaks of AuNP, double metal-polymer Janus nanoparticles and their specific structures (Nanoclusters I, II, III), (b) 10-6 M Raman dye and 2.968 μM ODA When added respectively, the RBITC- or MGITC-labeled double metal-polymer Janus nanostructures (RB / with MG) and their self-assembled Janus nanostructure cluster-specific structures (Nanoclusters with RB / with MG) UV-Vis absorption spectrum, (c) hydrodynamic diameters of AuNP, double metal-polymer hybrid nanostructures and their specific structures (Nanoclusters I, II, III). The average diameters of Au nanoparticles and double metal-polymer Janus nanoparticles were 30.1 ± 0.5 nm and 62.8 ± 2.3 nm, respectively, and the average diameters of specific structures according to different clustering levels were 168.3 ± 1.3 nm, 192.4 ± 2.4 nm and 266.3. ± 6.0 nm. The z-potential values of Au nanoparticles, double metal-polymer Janus nanoparticles and their self-assembled Janus nanostructure cluster specific structures were -29.5 ± 0.7 mV, -28.0 ± 0.6 mV and -11.2 ± 0.9 mV, respectively (d ) Hydrodynamic diameters of RBITC-labeled, MGITC-labeled double metal-polymer Janus nanoparticles and their self-assembled Janus nanostructure cluster specific structures, respectively. The average diameters of RBITC-labeled and MGITC-labeled double metal-polymer Janus nanoparticles (Hybrid nanostructure with RB / with MG) were 122.1 ± 2.4 nm and 112.0 ± 15.9 nm, respectively, and RBITC-labeled and MGITC-labeled specific structures The hydrodynamic diameters of (Nanoclusters with RB / with MG) were 450.1 ± 3.1 nm and 401.1 ± 10.0 nm, respectively.
도 3은 농도 범위 10-5-10-8 M의 라만 염료의 적정 농도를 최적화하기 위한 상대적 라만 스펙트럼 및 라만 강도이다. (a) RBITC로 표지된 특이 구조의 상대적 라만 스펙트럼. R2 = 0.9826, (b) 1646 cm-1에서의 RBITC 라만 강도, (c) MGITC로 표지된 특이 구조의 상대적 라만 스펙트럼, (d) 1617 cm-1에서의 MGITC 라만 강도. R2 = 0.9162, (e) ODA의 2.968 μM 농도 및 RBITC의 10-6 M 농도에서 이중 금속-고분자 야누스 나노입자 및 그 특이 구조의 라만 스펙트럼, (f) RBITC의 10-6 M 농도에서 이중 금속-고분자 야누스 나노입자 및 그 특이 구조의 라만 강도, (g) ODA의 2.968 μM 농도 및 MGITC의 10-6 M 농도에서 이중 금속-고분자 야누스 나노입자 및 그 특이 구조의 라만 스펙트럼, (h) MGITC의 10-6 M 농도에서 이중 금속-고분자 야누스 나노입자 및 그 특이 구조의 라만 강도.3 is a relative Raman spectrum and Raman intensity for optimizing the proper concentration of Raman dye in the concentration range 10 -5 -10 -8 M. (a) Relative Raman spectra of specific structures labeled with RBITC. R 2 = 0.9826, (b) RBITC Raman intensity at 1646 cm −1 , (c) relative Raman spectrum of specific structure labeled with MGITC, (d) MGITC Raman intensity at 1617 cm −1 . R 2 = 0.9162, (e) Raman spectra of double metal-polymer Janus nanoparticles and their specific structures at 2.968 μM concentration of ODA and 10 -6 M concentration of RBITC, (f) double metal at 10 -6 M concentration of RBITC Raman intensity of polymer Janus nanoparticles and their specific structures, (g) Raman spectra of double metal-polymer Janus nanoparticles and their specific structures, at 2.968 μM concentration of ODA and 10 -6 M concentration of MGITC, (h) of MGITC Raman strength of double metal-polymer Janus nanoparticles and their specific structure at 10 -6 M concentration.
도 4는 특이 구조의 시간에 따른 콜로이드 안정성 및 배치 간 변동성이다. (a) MGITC로 표지된 특이 구조의 시간에 따른 콜로이드 안정성, (b) RBITC로 표지된 특이 구조의 시간에 따른 콜로이드 안정성, (c) MGITC로 표지된 특이 구조의 배치(S1-S5) 간 변동성, (d) RBITC로 표지된 특이 구조의 배치(S1-S5) 간 변동성.4 shows colloidal stability and inter-batch variability over time of specific structures. (a) Colloidal stability over time of a specific structure labeled with MGITC, (b) Colloidal stability over time with a specific structure labeled with RBITC, (c) Variability between batches (S1-S5) of a specific structure labeled with MGITC (d) Variability between batches (S1-S5) of specific structures labeled with RBITC.
도 5는 크기 및 형태를 확인하기 위한 TEM 및 SEM 이미지이다; (a) Au 나노입자의 TEM 이미지, (b) 3.6 mM SDS 용액에서 밤새 추가로 인큐베이션 하기 전 이중 금속-고분자 야누스 나노구조체의 TEM 이미지, (c) 3.6 mM SDS 용액에서 밤새 추가로 인큐베이션한 후 이중 금속-고분자 야누스 나노입자의 TEM 이미지. 검은 부분이 이중 금속 클러스터 구획이고 밝은 부분이 고분자 구획이다, (d, e, f) 클러스터링 정도에 따른 특이 구조의 TEM 이미지. 클러스터링 수준이 증가할수록 다이머(dimer), 트리머(trimer) 또는 테트라머(tetramer) 형태의 자가 조립된 이중 금속-고분자 야누스 나노구조체 클러스터를 형성하였다, (g) 이중 금속-고분자 야누스 나노구조체의 SEM 이미지, (h) 자가 조립된 이중 금속-고분자 야누스 나노구조체 클러스터 특이 구조의 SEM 이미지. TEM 이미지의 스케일 바는 (a) 100 nm 및 (b-f) 200 nm, SEM 이미지의 스케일 바는 (g-h) 1.0 μm이다.5 is a TEM and SEM image to confirm size and shape; (a) TEM image of Au nanoparticles, (b) TEM image of double metal-polymer Janus nanostructures before further incubation overnight in 3.6 mM SDS solution, (c) double incubation overnight in 3.6 mM SDS solution TEM image of metal-polymer Janus nanoparticles. The black part is the double metal cluster compartment and the bright part is the polymer compartment. (D, e, f) TEM image of the specific structure according to the degree of clustering. As the level of clustering increased, self-assembled double metal-polymer Janus nanostructure clusters in the form of dimers, trimers or tetramers were formed. (G) SEM images of double metal-polymer Janus nanostructures. , (h) SEM image of self-assembled double metal-polymer Janus nanostructure cluster specific structure. The scale bar of the TEM image is (a) 100 nm and (b-f) 200 nm, and the scale bar of the SEM image is (g-h) 1.0 μm.
도 6은 1 분마다 30 초 동안 + 1.5 v 혹은 - 1.5 v 의 전기장을 가해 측정한 PEG 하이드로겔에 내장된 이중 금속-고분자 야누스 나노구조체로부터의 플루오레세인 누적 방출율을 나타낸 도이다; (a) + 1.5 v의 전기 자극 시 누적 방출율, (b) -1.5 v의 전기 자극 시 누적 방출율, (c) pH 4, 7 및 11에서 플루오레세인이 충진된 이중 금속-고분자 야누스 나노입자의 UV-vis 흡광도, (d) 플루오레세인이 담지된 이중 금속-고분자 야누스 나노구조체로부터 발생하는 MGITC의 라만 스펙트럼. MGITC와 플루오레세인의 라만 피크는 각각 1617 cm-1과 1176 cm-1이었다.FIG. 6 shows the cumulative release rate of fluorescein from double metal-polymer Janus nanostructures embedded in PEG hydrogels measured with an electric field of + 1.5 v or − 1.5 v every 30 minutes; (a) cumulative release rate upon electrical stimulation of + 1.5 v, (b) cumulative release rate upon electrical stimulation of -1.5 v, (c) fluorescein-filled double metal-polymer Janus nanoparticles at pH 4, 7 and 11 UV-vis absorbance, (d) Raman spectra of MGITC originating from fluorescein-supported double metal-polymer Janus nanostructures. Raman peaks of MGITC and fluorescein were 1617 cm −1 and 1176 cm −1, respectively.
도 7은 표적 단백질의 검출을 위한 SERS- 기반 면역 분석법의 모식도이다.7 is a schematic of SERS-based immunoassay for the detection of target proteins.
도 8은 IgG 농도에 따른 서로 다른 표적 농도의 라만 스펙트럼 및 라만 강도이다. 1646 cm-1 및 1617 cm-1에서 RBITC 또는 MGITC- 표지된 특이 구조의 SERS 피크 강도는 IgG 농도와 함께 선형적으로 증가했다. R2 = 0.9435-0.9806 및 R2 = 0.9572-0.9953. control 1 및 control 2는 각각 항-인간 IgG pAb 및 IgG가 없는 대조군이다.8 is Raman spectrum and Raman intensity of different target concentrations according to IgG concentration. SERS peak intensities of RBITC or MGITC-labeled specific structures at 1646 cm −1 and 1617 cm −1 increased linearly with IgG concentration. R 2 = 0.9435-0.9806 and R 2 = 0.9572-0.9953. control 1 and control 2 are controls without anti-human IgG pAb and IgG, respectively.
도 9는 CEA 농도에 따른 서로 다른 표적 농도의 라만 스펙트럼 및 라만 강도이다. 1646 cm-1 및 1617 cm-1에서 RBITC 또는 MGITC- 표지된 특이 구조의 SERS 피크 강도는 CEA 농도와 함께 선형적으로 증가했다. R2 = 0.9801-0.9856 및 R2 = 0.9257-0.9838. control 1 및 control 2는 각각 항-인간 CEA pAb 및 CEA가 없는 대조군이다.9 is Raman spectrum and Raman intensity of different target concentrations according to CEA concentrations. SERS peak intensities of RBITC or MGITC-labeled specific structures increased linearly with CEA concentrations at 1646 cm −1 and 1617 cm −1 . R 2 = 0.9801-0.9856 and R 2 = 0.9257-0.9838. control 1 and control 2 are controls without anti-human CEA pAb and CEA, respectively.
제 22nd 발명: invent:
도 10은 코어-새틀라이트 구조의 이중 금속 나노입자 구획과 고분자 구획으로 이루어진 야누스 나노구조체의 제조 및 이의 SERS 기반의 바이오 센싱 응용 방법의 모식도이다; (a) AuNR 코어-Ag 새틀라이트의 이중 금속 나노입자 구획과 고분자 구획을 포함하는 야누스 나노구조체의 제조 방법, (b) AuNP 코어-Ag 새틀라이트의 이중 금속 나노입자 구획과 고분자 구획을 포함하는 야누스 나노구조체의 제조 방법, (c) 아닐린 단량체와 질산은 사이의 자발적인 산화-환원 반응, (d) 코어-새틀라이트 구조의 이중 금속 나노입자 구획과 고분자 구획으로 이루어진 야누스 나노구조체를 이용한 표면-증강 라만 산란(SERS) 기반의 타겟 물질 검출 방법.FIG. 10 is a schematic diagram of the fabrication of Janus nanostructures consisting of a double-metal nanoparticle compartment and a polymer compartment of a core-satellite structure and its SERS-based biosensing application method; FIG. (a) a method of making a Janus nanostructure comprising a double metal nanoparticle compartment and a polymer compartment of an AuNR core-Ag satellite, (b) a Janus comprising a double metal nanoparticle compartment and a polymer compartment of an AuNP core-Ag satellite. Method for preparing nanostructures, (c) spontaneous redox reaction between aniline monomer and silver nitrate, (d) surface-enhanced Raman scattering using Janus nanostructures consisting of core-satellite double metal nanoparticle compartments and polymer compartments (SERS) based target substance detection method.
도 11은 Au 나노입자, PSS 코팅된 AuNR(AuNR-PSS) 또는 ATP 코팅된 AuNP(AuNP-ATP) 및 이들의 Au 코어-Ag 새틀라이트 이중 금속 구획 및 고분자 구획을 포함하는 야누스 나노구조체(AuNR-PSS Ag PANI 또는 AuNP-ATP Ag PANI)의 UV-Vis 흡광도 및 유체역학 직경이다; (a) AuNR, PSS 코팅된 AuNR(AuNR-PSS) 및 이의 Au 코어-Ag 새틀라이트 이중 금속 구획 및 고분자 구획을 포함하는 야누스 나노구조체(AuNR-PSS Ag PANI)의 흡광도. Au 코어-Ag 새틀라이트 이중 금속 구획 및 고분자 구획을 포함하는 야누스 나노구조체의 합성 후, 새로운 Ag 흡수 피크는 380 nm 내지 480 nm의 범위에서 나타났고, 525 nm 및 664 nm에서의 AuNR의 종축 및 횡축 LSPR 피크는 청색-편이되어 각각 508 nm 및 595 nm이었다, (b) AuNR, PSS 코팅된 AuNR(AuNR-PSS) 및 이의 Au 코어-Ag 새틀라이트 이중 금속 구획 및 고분자 구획을 포함하는 야누스 나노구조체(AuNR-PSS Ag PANI)의 유체역학 직경. AuNR의 종축과 횡축의 평균 직경은 각각 1.5 ± 0.1 nm, 49.9 ± 0.9 nm이고, PSS 코팅된 AuNR의 평균 직경은 2.8 ± 0.1 nm, 63.4 ± 0.5 nm, 이중 금속 코어-새틀라이트 야누스 나노구조체의 평균 직경은 비구형 형태로 인해 3.1 ± 0.1 nm, 73.0 ± 0.8 nm이었다, (c) AuNP, ATP 코팅된 AuNP(AuNP-ATP) 및 이의 Au 코어-Ag 새틀라이트 이중 금속 구획 및 고분자 구획을 포함하는 야누스 나노구조체(AuNP-ATP Ag PANI)의 흡광도. 524 nm에서 시트르산-캡핑된 AuNP의 UV-vis 흡수 스펙트럼은 526 nm로 적색-편이되어, ATP가 AuNP 표면 상에 흡착되었다, (d) AuNP, ATP 코팅된 AuNP(AuNP-ATP) 및 이의 Au 코어-Ag 새틀라이트 이중 금속 구획 및 고분자 구획을 포함하는 야누스 나노구조체(AuNP-ATP Ag PANI)의 유체역학 직경. AuNPs, ATP 코팅된 AuNPs 및 이의 이중 금속 코어-새틀라이트 야누스 나노 구조의 평균 직경은 각각 19.0 ± 0.8 nm, 33.3 ± 0.4 nm 및 72.6 ± 0.6 nm이었다.11 shows Janus nanostructures comprising Au nanoparticles, PSS coated AuNR (AuNR-PSS) or ATP coated AuNP (AuNP-ATP) and their Au core-Ag satellite double metal compartments and polymer compartments (AuNR- UV-Vis absorbance and hydrodynamic diameter of PSS Ag PANI or AuNP-ATP Ag PANI); (a) Absorbance of Janus nanostructures (AuNR-PSS Ag PANI) comprising AuNR, PSS coated AuNR (AuNR-PSS) and Au core-Ag satellite double metal compartments and polymer compartments thereof. After synthesis of Janus nanostructures comprising Au core-Ag satellite double metal compartments and polymer compartments, new Ag absorption peaks appeared in the range of 380 nm to 480 nm, and the longitudinal and transverse axes of AuNR at 525 nm and 664 nm. LSPR peaks were blue-shifted to 508 nm and 595 nm, respectively. (B) Janus nanostructures comprising AuNR, PSS coated AuNR (AuNR-PSS) and Au core-Ag satellite double metal compartments and polymer compartments thereof ( Hydrodynamic diameter of AuNR-PSS Ag PANI). The mean diameters of the longitudinal and transverse axes of AuNR were 1.5 ± 0.1 nm and 49.9 ± 0.9 nm, respectively, and the average diameter of PSS coated AuNR was 2.8 ± 0.1 nm, 63.4 ± 0.5 nm, and the average of double metal core-satellite nanostructures. The diameter was 3.1 ± 0.1 nm, 73.0 ± 0.8 nm due to the non-spherical morphology, (c) Janus comprising AuNP, ATP coated AuNP (AuNP-ATP) and its Au core-Ag satellite double metal compartment and polymer compartment Absorbance of Nanostructures (AuNP-ATP Ag PANI). The UV-vis absorption spectrum of citric acid-capped AuNP at 524 nm was red-shifted to 526 nm, so that ATP was adsorbed on the AuNP surface, (d) AuNP, ATP coated AuNP (AuNP-ATP) and its Au core -Hydrodynamic diameter of Janus nanostructures (AuNP-ATP Ag PANI) including Ag satellite double metal compartments and polymer compartments. The average diameters of AuNPs, ATP coated AuNPs and their double metal core-satellite Janus nanostructures were 19.0 ± 0.8 nm, 33.3 ± 0.4 nm and 72.6 ± 0.6 nm, respectively.
도 12는 (a) 10-7-10-5.5 M 농도 범위의 MGITC로 표지된 AuNR 코어-Ag 새틀라이트의 라만 염료 농도에 따른 상대적 라만 이동, (b) 10-5.5 M 농도의 MGITC에서 이중 금속 AuNR 코어-Ag 새틀라이트(Au-PSS Ag PANI, 실시예 1)와 -Ag 쉘 나노입자(Au-Ag PANI, 비교예 1)의 상대적 라만 이동, (c) 10-6-5.0×10-6M 농도 범위의 ATP로 표지된 AuNP 코어-Ag 새틀라이트의 라만 염료 농도에 따른 상대적 라만 이동, (d) 2.5×10-6M 농도의 ATP로 표지된 AuNP 코어-Ag 새틀라이트(Au-ATP Ag PANI, 실시예 2)와 -Ag 쉘 나노입자(Au-Ag PANI, 비교예 1)의 상대적 라만 이동.Figure 12 shows (a) relative Raman shift with Raman dye concentration of AuNR core-Ag satellites labeled with MGITC in the concentration range of 10 -7 -10 -5.5 M, (b) double metal at MGITC at 10 -5.5 M Relative Raman shift between AuNR core-Ag satellites (Au-PSS Ag PANI, Example 1) and -Ag shell nanoparticles (Au-Ag PANI, Comparative Example 1), (c) 10 -6 -5.0 x 10 -6 Relative Raman shift with Raman dye concentration of AuNP core-Ag satellites labeled with ATP in the M concentration range, (d) AuNP core-Ag satellites labeled with ATP at 2.5 × 10 -6 M concentration (Au-ATP Ag Relative Raman shift of PANI, Example 2) and -Ag shell nanoparticles (Au-Ag PANI, Comparative Example 1).
도 13은 나노입자별 투과전자현미경(transmission electron microscopy, TEM) 및 고각 환형 암장 스캐닝 TEM(HAADF-STEM) 이미지이다; (a) AuNRs의 TEM 이미지, (b) 이중 금속 AuNR 코어-Ag 나노입자의 TEM 이미지, (c-d) 다양한 배율에서의 이중 금속 AuNR 코어-Ag 새틀라이트 나노입자의 TEM 이미지, (g-h) 다양한 배율에서의 이중 금속 AuNR 코어-Ag 새틀라이트 나노입자의 HAADF-STEM 이미지. 스케일 바는 (a, c, e) 100 nm, (b, g) 200 nm, (d, f, h) 20 nm.FIG. 13 is transmission electron microscopy (TEM) and elevation annular dark field scanning TEM (HAADF-STEM) images for each nanoparticle; FIG. (a) TEM image of AuNRs, (b) TEM image of double metal AuNR core-Ag nanoparticles, (cd) TEM image of double metal AuNR core-Ag satellite nanoparticles at various magnifications, (gh) at various magnifications HAADF-STEM image of double metal AuNR core-Ag satellite nanoparticles. Scale bars are (a, c, e) 100 nm, (b, g) 200 nm, (d, f, h) 20 nm.
도 14는 나노입자별 투과전자현미경(transmission electron microscopy, TEM) 및 고각 환형 암장 스캐닝 TEM(HAADF-STEM) 이미지이다; (a) AuNPs의 TEM 이미지, (b) 이중 금속 AuNP 코어-Ag 나노입자의 TEM 이미지, (c-d) 다양한 배율에서의 이중 금속 AuNP 코어-Ag 새틀라이트 나노입자의 TEM 이미지, (g-h) 다양한 배율에서의 이중 금속 AuNP 코어-Ag 새틀라이트 나노입자의 HAADF-STEM 이미지. 스케일 바는 (a) 50 nm, (b, c, e, g) 200 nm, (d, f, h) 20 nm.FIG. 14 is transmission electron microscopy (TEM) and elevation annular dark field scanning TEM (HAADF-STEM) images for each nanoparticle; FIG. (a) TEM image of AuNPs, (b) TEM image of double metal AuNP core-Ag nanoparticles, (cd) TEM image of double metal AuNP core-Ag satellite nanoparticles at various magnifications, (gh) at various magnifications HAADF-STEM image of double metal AuNP core-Ag satellite nanoparticles of. The scale bar is (a) 50 nm, (b, c, e, g) 200 nm, (d, f, h) 20 nm.
도 15는 CEA 농도에 따른 서로 다른 표적 농도의 라만 스펙트럼 및 라만 강도이다. 1618 cm-1에서 MGITC- 표지된 이중 금속 Au 코어-Ag 새틀라이트 구획 및 고분자 구획을 포함하는 야누스 나노구조체의 SERS 피크 강도는 CEA 농도와 함께 선형적으로 증가했다. R2 = 0.9954. control은 CEA가 없는 대조군이다.15 shows Raman spectra and Raman intensities of different target concentrations according to CEA concentrations. The SERS peak intensity of Janus nanostructures comprising MGITC-labeled double metal Au core-Ag satellite compartments and polymer compartments at 1618 cm −1 increased linearly with CEA concentration. R2 = 0.9954. control is a control without CEA.
제 33rd 발명: invent:
도 16은 비대칭형 야누스 나노클러스터-고분자 나노구조체의 합성 및 SERS 기반의 바이오센싱 응용에 대한 모식도이다; (a) 환원 산화 반응에 기반한 비대칭형 야누스 나노클러스터-고분자 나노구조체의 제조 방법, (b) 질산은과 아닐린 단량체 사이의 자발적인 산화 환원 반응, (c) 비대칭형 야누스 나노클러스터-고분자 나노구조체를 이용한 SERS 기반 바이오센싱 방법.16 is a schematic diagram of the synthesis of asymmetric Janus nanocluster-polymer nanostructures and SERS-based biosensing applications; (a) a method for preparing an asymmetric Janus nanocluster-polymer nanostructure based on a reduction oxidation reaction, (b) a spontaneous redox reaction between silver nitrate and aniline monomers, (c) a SERS using an asymmetric Janus nanocluster-polymer nanostructure Based Biosensing Method.
도 17은 AuNP, 라만 염료 유도된 Au 나노클러스터 및 비대칭형 야누스 나노클러스터-고분자 나노구조체의 UV-Vis 흡광도 스펙트럼이다; (a) AuNP(Au) 및 MGITC 유도된 Au 나노클러스터(Au_MG)의 UV-Vis 흡수 피크, (b) AuNP(Au) 및 RBITC 유도된 Au 나노클러스터(Au_RB)의 UV-Vis 흡수 피크, (c) 비대칭형 야누스 나노클러스터-고분자 나노구조체(Au-MG@Ag PANI 또는 Au-RB@Ag PANI)의 UV-Vis 흡광 피크, (d) AuNP, Au 나노클러스터 및 비대칭형 야누스 나노클러스터-고분자 나노구조체(Au-MG@Ag PANI 또는 Au-RB@Ag PANI)의 유체역학 직경과 크기 분포. AuNP, MGITC- 또는 RBITC- 유도된 Au 나노클러스터의 평균 직경은 18.9 ± 0.4 nm, 152.9 ± 2.8 nm 및 115.7 ± 1.8 nm이었고, MGITC- 또는 RBITC- 유도된 비대칭형 야누스 나노클러스터-고분자 나노 구조는 205 ± 4.5 nm 및 186.3 ± 2.1 nm이었다.17 is a UV-Vis absorbance spectrum of AuNPs, Raman dye derived Au nanoclusters and asymmetric Janus nanoclusters-polymer nanostructures; (a) UV-Vis absorption peaks of AuNP (Au) and MGITC induced Au nanoclusters (Au_MG), (b) UV-Vis absorption peaks of AuNP (Au) and RBITC derived Au nanoclusters (Au_RB), (c ) UV-Vis absorption peaks of asymmetric Janus nanocluster-polymer nanostructures (Au-MG @ Ag PANI or Au-RB @ Ag PANI), (d) AuNP, Au nanoclusters and asymmetric Janus nanocluster-polymer nanostructures Hydrodynamic diameter and size distribution of (Au-MG @ Ag PANI or Au-RB @ Ag PANI). The average diameters of AuNP, MGITC- or RBITC-derived Au nanoclusters were 18.9 ± 0.4 nm, 152.9 ± 2.8 nm and 115.7 ± 1.8 nm, and the MGITC- or RBITC-induced asymmetric Janus nanocluster-polymer nanostructures were 205 ± 4.5 nm and 186.3 ± 2.1 nm.
도 18은 다양한 인큐베이션 시간에서 클러스터를 형성하는 동안의 MGITC 또는 RBITC 유도된 Au 나노클러스터의 상대적 라만 스펙트럼이다; (a) MGITC 유도된 Au 나노클러스터의 상대적 라만 스펙트럼, (b) MGITC 유도된 Au 나노클러스터의 라만 강도, (c) RBITC 유도된 Au 나노클러스터의 상대적 라만 스펙트럼, (d) RBITC 유도된 Au 나노클러스터의 라만 강도, (e) MGITC-표지 AuNPs(Au), MGITC 유도된 Au 나노클러스터(AuNC) 및 이를 포함하는 비대칭형 야누스 나노클러스터-고분자 나노구조체(Au-Ag cluster PANI, Au-MG@Ag PANI)의 상대적 라만 스펙트럼, (f)는 RBITC -표지 AuNPs(Au), RBITC 유도된 Au 나노클러스터(AuNC) 및 이를 포함하는 비대칭형 야누스 나노클러스터-고분자 나노구조체(Au-Ag cluster PANI, Au-RB@Ag PANI)의 상대적 라만 스펙트럼.18 is a relative Raman spectrum of MGITC or RBITC derived Au nanoclusters during cluster formation at various incubation times; (a) the relative Raman spectrum of the MGITC derived Au nanoclusters, (b) the Raman intensity of the MGITC derived Au nanoclusters, (c) the relative Raman spectrum of the RBITC derived Au nanoclusters, and (d) the RBITC derived Au nanoclusters Raman strength of (e) MGITC-labeled AuNPs (Au), MGITC-derived Au nanoclusters (AuNC) and asymmetric Janus nanocluster-polymer nanostructures comprising them (Au-Ag cluster PANI, Au-MG @ Ag PANI) Relative Raman spectra of (a), (f) are RBITC-labeled AuNPs (Au), RBITC-derived Au nanoclusters (AuNC) and asymmetric Janus nanocluster-polymer nanostructures (Au-Ag cluster PANI, Au-RB) Relative Raman spectrum of @Ag PANI).
도 19는 최종 농도 1.5 μM의 MGITC로 유도된 비대칭형 야누스 나노클러스터-고분자 나노입자의 TEM 이미지이다; (a, b) BSA 안정화하지 않은 비대칭형 야누스 나노클러스터-고분자 나노입자. 비대칭형 야누스 나노클러스터-고분자 나노입자가 형성되지 않았다, (c, d) BSA 안정화한 비대칭형 야누스 나노클러스터-고분자 나노입자. 스케일 바는 (a) 100 nm, (b) 10 nm, (c) 200nm, (d) 20 nm.19 is a TEM image of asymmetric Janus nanocluster-polymer nanoparticles induced with MGITC at a final concentration of 1.5 μM; (a, b) Asymmetric Janus nanocluster-polymer nanoparticles without BSA stabilization. No asymmetric Janus nanocluster-polymer nanoparticles were formed, (c, d) BSA stabilized asymmetric Janus nanocluster-polymer nanoparticles. The scale bar is (a) 100 nm, (b) 10 nm, (c) 200 nm, (d) 20 nm.
도 20은 최종 농도 3.75 μM의 RBITC로 유도된 비대칭형 야누스 나노클러스터-고분자 나노입자의 TEM 이미지이다; (a, b) BSA 안정화하지 않은 비대칭형 야누스 나노클러스터-고분자 나노입자. 비대칭형 야누스 나노클러스터-고분자 나노입자가 형성되지 않았다, (c, d) BSA 안정화한 비대칭형 야누스 나노클러스터-고분자 나노입자. 스케일 바는 (a, c) 100 nm, (b, d) 20 nm.20 is a TEM image of asymmetric Janus nanocluster-polymer nanoparticles induced with RBITC at a final concentration of 3.75 μM; (a, b) Asymmetric Janus nanocluster-polymer nanoparticles without BSA stabilization. No asymmetric Janus nanocluster-polymer nanoparticles were formed, (c, d) BSA stabilized asymmetric Janus nanocluster-polymer nanoparticles. Scale bars are (a, c) 100 nm, (b, d) 20 nm.
도 21은 최종 농도 0.75 μM의 MGITC로 유도된 비대칭형 야누스 나노클러스터-고분자 나노입자의 TEM 이미지이다; (a, b) BSA 안정화하지 않은 비대칭형 야누스 나노클러스터-고분자 나노입자. 낮은 수준의 클러스터링으로 인해 BSA 코팅 없이 비대칭형 야누스 나노클러스터-고분자 나노입자가 형성되었다, (c, d) BSA 안정화한 비대칭형 야누스 나노클러스터-고분자 나노입자. BSA 코팅을 하지 않거나 BSA 코팅을 한 두 개의 나노 구조에는 유의한 차이가 없었다. 스케일 바는 (a, c) 200 nm, (b) 50 nm, (d) 20 nm.21 is a TEM image of asymmetric Janus nanocluster-polymer nanoparticles induced with MGITC at a final concentration of 0.75 μM; (a, b) Asymmetric Janus nanocluster-polymer nanoparticles without BSA stabilization. Low levels of clustering resulted in the formation of asymmetric Janus nanocluster-polymer nanoparticles without BSA coating. (C, d) BSA stabilized asymmetric Janus nanocluster-polymer nanoparticles. There was no significant difference between the two nanostructures with or without BSA coating. Scale bars are (a, c) 200 nm, (b) 50 nm, (d) 20 nm.
도 22는 최종 농도 1.9 μM의 RBITC로 유도된 비대칭형 야누스 나노클러스터-고분자 나노입자의 TEM 이미지이다; (a, b) BSA 안정화하지 않은 비대칭형 야누스 나노클러스터-고분자 나노입자. 낮은 수준의 클러스터링으로 인해 BSA 코팅 없이 비대칭형 야누스 나노클러스터-고분자 나노입자가 형성되었다, (c, d) BSA 안정화한 비대칭형 야누스 나노클러스터-고분자 나노입자. BSA 코팅을 하지 않거나 BSA 코팅을 한 두 개의 나노 구조에는 유의한 차이가 없었다. 스케일 바는 (a, c) 200 nm, (b, d) 20 nm.22 is a TEM image of asymmetric Janus nanocluster-polymer nanoparticles induced with RBITC at a final concentration of 1.9 μM; (a, b) Asymmetric Janus nanocluster-polymer nanoparticles without BSA stabilization. Low levels of clustering resulted in the formation of asymmetric Janus nanocluster-polymer nanoparticles without BSA coating. (C, d) BSA stabilized asymmetric Janus nanocluster-polymer nanoparticles. There was no significant difference between the two nanostructures with or without BSA coating. Scale bars are (a, c) 200 nm, (b, d) 20 nm.
도 23은 CEA 농도에 따른 서로 다른 표적 농도의 라만 스펙트럼 및 라만 강도이다. 1618 cm-1에서 MGITC로 유도된 비대칭형 야누스 나노클러스터-고분자 나노입자의 SERS 피크 강도는 CEA 농도와 함께 선형적으로 증가했다. R2 = 0.9047. control은 CEA가 없는 대조군이다.FIG. 23 shows Raman spectra and Raman intensities of different target concentrations according to CEA concentrations. The SERS peak intensity of MGITC-induced asymmetric Janus nanocluster-polymer nanoparticles at 1618 cm −1 increased linearly with CEA concentration. R 2 = 0.9047. control is a control without CEA.
제 44th 발명: invent:
도 24는 측면 간(side-by-side) 또는 말단 간(end-to-end) 방향성 자가 조립 AuNR과 그 야누스 나노 구조의 합성 및 이의 응용에 대한 모식도이다; (a) 정전기적 상호 작용을 통한 AuNR의 제어된 조립 과정, (b) 방향성 자가 조립 AuNR 클러스터를 시드로 사용하는 비대칭성 이중 금속 나노막대 클러스터-고분자 야누스 나노구조체의 합성 과정, (c) 아닐린 단량체와 질산은 사이의 자발적인 산화-환원 반응, (d) 야누스 나노구조체를 이용한 표면-증강 라만 산란(SERS) 기반의 표적 물질 검출 방법.FIG. 24 is a schematic diagram of the synthesis and application of side-by-side or end-to-end directional self-assembled AuNR and its Janus nanostructures; (a) controlled assembly of AuNR through electrostatic interaction, (b) synthesis of asymmetric double metal nanorod cluster-polymer Janus nanostructures using directional self-assembled AuNR clusters as seeds, (c) aniline monomers Spontaneous redox reaction between and silver nitrate, (d) Surface-enhanced Raman scattering (SERS) based target material detection using Janus nanostructures.
도 25는 측면 간 조립된 AuNR 클러스터 및 이를 포함하는 비대칭형 야누스 나노구조체의 UV-Vis 흡광도 스펙트럼과 유체역학 직경을 나타낸다; (a) 인큐베이션 시간이 1 분에서 5 분까지 증가함에 따른 측면 간 조립된 AuNR 클러스터의 UV-Vis 흡광도 스펙트럼, (b) 1 ~ 5 분의 인큐베이션 시간을 증가시킴에 따른 측면 간 조립된 AuNR 클러스터의 유체역학 직경, (c) 측면 간 방향성 AuNR 클러스터를 포함하는 비대칭형 야누스 나노구조체의 UV-Vis 흡광도 스펙트럼, (d) 측면 간 방향성 AuNR 클러스터를 포함하는 비대칭형 야누스 나노구조체의 유체역학 직경. 대조군(control)은 AuNR 클러스터가 없는 이중 금속 나노막대-고분자 야누스 나노구조체.FIG. 25 shows UV-Vis absorbance spectra and hydrodynamic diameters of side-to-side assembled AuNR clusters and asymmetric Janus nanostructures comprising the same; (a) UV-Vis absorbance spectra of side-to-side assembled AuNR clusters with increasing incubation time from 1 to 5 minutes, (b) of side-to-side assembled AuNR clusters with increasing incubation time of 1 to 5 minutes. Hydrodynamic diameter, (c) UV-Vis absorbance spectrum of asymmetric Janus nanostructures with lateral Audirectional clusters, and (d) hydrodynamic diameters of asymmetric Janus nanostructures with lateral AuNR clusters. Control was a double metal nanorod-polymer Janus nanostructure without AuNR cluster.
도 26은 (a) 티올-말단 폴리(tBA-b-NIPAM) 및 (b) 폴리(AAc-b-NIPAM)의 합성 단계를 나타낸 모식도이다.Fig. 26 is a schematic diagram showing the synthesis steps of (a) thiol-terminated poly (tBA-b-NIPAM) and (b) poly (AAc-b-NIPAM).
도 27 (a)는 CDCl3에서 측정된 폴리(tBA) 및 폴리(tBA-b-NIPAM), 400MHz의 DMSO-d6에서 측정된 폴리(AAc-b-NIPAM)의 1H NMR 스펙트럼, (b) 유지(반응) 시간에 따른 폴리(tBA) 및 폴리(tBA-b-NIPAM)의 GPC 흔적(trace), (c)는 아미노 분해 전후의 폴리(tBA-b-NIPAM)의 UV-Vis 흡수 그래프, (d) 온도에 따른 0.05 w/v% PBS 10mM에서의 폴리(AAc-b-NIPAM)의 고유한 열 변형 특성.(A) 1H NMR spectra of poly (tBA) and poly (tBA-b-NIPAM) measured in CDCl 3 , poly (AAc-b-NIPAM) measured in DMSO-d6 at 400 MHz, (b) retention GPC traces of poly (tBA) and poly (tBA-b-NIPAM) over time (reaction), (c) are UV-Vis absorption graphs of poly (tBA-b-NIPAM) before and after amino degradation, ( d) inherent thermal deformation properties of poly (AAc-b-NIPAM) at 0.05 w / v% PBS 10 mM over temperature.
도 28은 말단 간 조립된 AuNR 클러스터 및 이를 포함하는 비대칭형 야누스 나노구조체의 UV-Vis 흡광도 스펙트럼과 유체역학 직경을 나타낸다; (a) 서로 다른 온도의 탈이온수 또는 PBS에서 말단 간 조립된 AuNR 클러스터의 UV-Vis 흡광도 스펙트럼, (b) 서로 다른 온도의 탈이온수 또는 PBS에서 말단 간 조립된 AuNR 클러스터의 유체역학 직경, (c) 서로 다른 온도의 탈이온수 또는 PBS에서 말단 간 방향성 AuNR 클러스터를 포함하는 비대칭형 야누스 나노구조체의 UV-Vis 흡광도 스펙트럼, (d) 서로 다른 온도의 탈이온수 또는 PBS에서 말단 간 방향성 AuNR 클러스터를 포함하는 비대칭형 야누스 나노구조체의 유체역학 직경. 대조군(control)은 AuNR 클러스터가 없는 이중 금속 나노막대-고분자 야누스 나노구조체.FIG. 28 shows UV-Vis absorbance spectra and hydrodynamic diameters of end-to-end assembled AuNR clusters and asymmetric Janus nanostructures comprising the same; (a) UV-Vis absorbance spectra of deionized water at different temperatures or end-to-end assembled AuNR clusters in PBS, (b) hydrodynamic diameters of deionized water at different temperatures or end-to-end assembled AuNR clusters in PBS, (c A) UV-Vis absorbance spectra of asymmetric Janus nanostructures containing end-to-end AuNR clusters at different temperatures or deionized water at different temperatures, (d) deionized water at different temperatures or end-to-end AuNR clusters at PBS Hydrodynamic Diameter of Asymmetric Janus Nanostructures. Control was a double metal nanorod-polymer Janus nanostructure without AuNR cluster.
도 29 (a) 탈이온수에서 10-6 M MGITC로 표지된 측면 간 조립된 AuNR 클러스터 및 이를 포함하는 비대칭형 야누스 나노구조체의 상대적 라만 이동, (b) 상온의 탈이온수 및 PBS에서 말단 간 조립된 AuNR 나노 클러스터를 포함하는 야누스 나노구조체의 상대적 라만 이동. 대조군(control)은 개별 AuNR.29 (a) Relative Raman migration of side-to-side assembled AuNR clusters labeled with 10 −6 M MGITC in deionized water and asymmetric Janus nanostructures comprising the same, (b) end-to-end assembled in deionized water at room temperature and PBS Relative Raman shift of Janus nanostructures containing AuNR nanoclusters. Control was individual AuNR.
도 30은 나노입자별 투과전자현미경(transmission electron microscopy, TEM)이다; (a) 개별 AuNR, (b) AuNR 클러스터가 없는 이중 금속 나노막대-고분자 야누스 나노입자, (c, d) 측면 간 조립된 AuNR 클러스터, (e, f) 측면 간 조립된 AuNR 클러스터를 포함하는 비대칭형 야누스 나노구조체. 스케일 바는 (a) 100 nm, (b, c, e) 200 nm, (d) 10 nm, (f) 20 nm.30 is transmission electron microscopy (TEM) for each nanoparticle; Asymmetric including (a) individual AuNR, (b) double metal nanorod-polymer Janus nanoparticles without AuNR clusters, (c, d) side-to-side assembled AuNR clusters, and (e, f) side-to-side assembled AuNR clusters Janus nanostructures. Scale bars are (a) 100 nm, (b, c, e) 200 nm, (d) 10 nm, (f) 20 nm.
도 31은 나노입자별 투과전자현미경(transmission electron microscopy, TEM)이다; (a, b) 말단 간 조립된 AuNR 클러스터, (c, d) 말단 간 조립된 AuNR 클러스터를 포함하는 비대칭형 야누스 나노구조체. 스케일 바는 (a, c) 100 nm, (b, d) 50 nm.FIG. 31 is transmission electron microscopy (TEM) for each nanoparticle; FIG. An asymmetric Janus nanostructure comprising (a, b) end-to-end assembled AuNR clusters, and (c, d) end-to-end assembled AuNR clusters. Scale bars are (a, c) 100 nm, (b, d) 50 nm.
도 32는 CEA 농도에 따른 서로 다른 표적 농도의 라만 스펙트럼 및 라만 강도이다. 1618 cm-1에서 MGITC로 유도된 측면 간 조립된 AuNR 클러스터를 포함하는 비대칭형 야누스 나노구조체의 SERS 피크 강도는 CEA 농도와 함께 선형적으로 증가했다. R2 = 0.9412. control은 CEA가 없는 대조군이다.32 shows Raman spectra and Raman intensities of different target concentrations according to CEA concentrations. SERS peak intensities of asymmetric Janus nanostructures containing MGITC-derived side-to-side assembled AuNR clusters at 1618 cm −1 increased linearly with CEA concentrations. R 2 = 0.9412. control is a control without CEA.
이하 본 발명을 하기 실시예에서 보다 상세하게 기술한다. 본 발명의 하기 실시예는 본 발명을 구체화하기 위한 것일 뿐 본 발명의 권리범위를 제한하거나 한정하는 것이 아니다. 본 발명의 상세한 설명 및 실시예로부터 본 발명이 속하는 기술분야의 통상의 기술자가 용이하게 유추할 수 있는 것은 본 발명의 권리범위에 속하는 것으로 해석된다. 또한 본 발명에서 인용하고 있는 참고문헌은 본 발명의 명세서의 일부로 통합된다. Hereinafter, the present invention will be described in more detail in the following examples. The following examples of the present invention are intended to embody the present invention, but do not limit or limit the scope of the present invention. From the detailed description and examples of the present invention, those skilled in the art to which the present invention pertains can be easily inferred to be within the scope of the present invention. References cited in the present invention are also incorporated into the specification of the present invention.
제 1First 발명: invent:
<실시예 1> 이중 금속-고분자 야누스 구조체의 합성Example 1 Synthesis of Double Metal-Polymer Janus Structure
시트르산염이 부착된 금 나노입자(Citrate-capped gold nanoparticles, AuNPs)는 시트르산염(citrate) 환원 과정에 따라 합성되었다. 구체적으로, 염화 금 (III) 수화물(Gold (III) chloride hydrate)(HAuCl4.3H2O)의 모액(stock solution)을 100 mL의 탈이온수에 총 농도 0.01 %가 되도록 첨가하고, 용액을 교반하면서 가열한 후, 끓는 용액에 1 % 시트르산 나트륨 용액 1.5 mL를 첨가하면서 계속 교반하였다. 용액은 5 분 이내에 금 이온의 환원을 나타내는 적색으로 변하였고, 반응은 20 분 동안 더 진행되었다. 이어서, 용액을 실온으로 냉각시켰다. 이중 금속 Au 코어-Ag 쉘 구획과 폴리(아닐린) 반대 구획으로 구성된 이중 금속-고분자 야누스 나노구조체는 환원-산화에 기초한 표면 주형 중합을 통해 제조되었다. 구체적으로, 15 mL의 시트르산염이 부착된 AuNP 용액을 10,000 rpm에서 15 분 동안 원심분리하여 농축한 후, 상등액을 제거하였다. 아닐린과 SDS를 7.5mL의 탈이온수에 최종 농도가 각각 5mM과 0.9mM가 되도록 용해시켰다. 농축된 AuNP를 용액에 첨가한 후, 짧게 교반하고(voltexing), 2.5 ml의 질산은 용액을 첨가하고 혼합하여 최종 농도가 2.5 mM이 되게 하였다. 반응은 어두운 조건에서 실온에서 24 시간 동안 교반하지 않고 진행되어, Au 시드(제1 금속)과 이 시드 금속을 감싸는 Ag(제2 금속)로 이루어지는 이중 금속이 합성되었다. 반응액을 3.6mM SDS 용액에서 밤새 인큐베이션하여 이중 금속의 한쪽에만 폴리(아닐린)을 편심 증착(eccentrically deposited)하여 고분자 구획을 형성하였다. 생성된 용액을 8,000 rpm에서 10 분간 원심분리하여 정제하고, 응집을 방지하기 위해 3.6 mM의 SDS 용액에 재현탁시켜, 이중 금속 나노 클러스터 구획 및 고분자 구획을 포함하는 이중 금속-고분자 야누스 나노구조체를 제조하였다.Citrate-capped gold nanoparticles (AuNPs) were synthesized according to the citrate reduction process. Specifically, gold chloride (III) hydrate (Gold (III) chloride hydrate) (HAuCl 4 .3H 2 O) stock solution (stock solution) of the stirring the mixture, and the solution so that the total concentration of 0.01% in deionized water 100 mL After heating with heating, stirring was continued while adding 1.5 mL of 1% sodium citrate solution to the boiling solution. The solution turned red within 5 minutes, indicating a reduction of gold ions, and the reaction proceeded further for 20 minutes. The solution was then cooled to room temperature. Double metal-polymer Janus nanostructures consisting of a double metal Au core-Ag shell compartment and a poly (aniline) counter compartment were prepared via surface template polymerization based on reduction-oxidation. Specifically, 15 mL of citrate-attached AuNP solution was concentrated by centrifugation at 10,000 rpm for 15 minutes, and then the supernatant was removed. Aniline and SDS were dissolved in 7.5 mL of deionized water to a final concentration of 5 mM and 0.9 mM, respectively. Concentrated AuNP was added to the solution, followed by brief voltexing, and 2.5 ml of silver nitrate solution was added and mixed to a final concentration of 2.5 mM. The reaction proceeded without stirring for 24 hours at room temperature under dark conditions to synthesize a double metal consisting of Au seed (first metal) and Ag (second metal) surrounding the seed metal. The reaction solution was incubated overnight in a 3.6 mM SDS solution to eccentrically deposit poly (aniline) on only one side of the double metal to form polymer compartments. The resulting solution was purified by centrifugation at 8,000 rpm for 10 minutes and resuspended in 3.6 mM SDS solution to prevent aggregation to prepare a double metal-polymer Janus nanostructure comprising a double metal nano cluster compartment and a polymer compartment. It was.
<실시예 2> 이중 금속 나노 클러스터 코어 및 상기 코어 주위에 방사상으로 위치하는 고분자 쉘로 구성되는, 자가조립된 이중금속-고분자의 야누스 나노구조체 클러스터 특이 구조 합성Example 2 Self-assembled double metal-polymer Janus nanostructure cluster specific structure synthesis consisting of a double metal nanocluster core and a polymer shell radially located around the core
RBITC(rhodamine B isothiocyanate)와 MGITC(Malachite green isothiocyanate)인 2 종류의 라만 리포터 모두 이중 금속-고분자 야누스 나노 클러스터 구획에 선택적으로 도입되었고, 비공유 상호 작용을 통해 특이 구조로의 방향성 자가 조립이 이루어졌다. 실시예 1의 이중 금속-고분자의 야누스 나노구조체들 내의 이중 금속들이 소수성 상호 작용을 통해 자가 조립하여 이중 금속 나노 클러스터 코어를 형성하고, 서로 맞닿은 이중 금속 나노 클러스터의 반대 방향으로 고분자 구획이 뻗어나가 방사상으로 위치하면서 고분자 쉘을 형성하면서 특이 구조가 만들어진다(도 1 (a)). 구체적으로, 이중 금속-고분자 야누스 나노입자 용액 1 mL를 10,000 rpm에서 10 분간 원심분리하고 탈이온수 1 mL에 옮겼다. 콜로이드 용액을 새로 준비한 RBITC 또는 MGITC와 10-5~10-8 M의 농도 범위로 혼합하고, 각각 2 시간 동안 인큐베이션하였다. 또한, 선택적 기능화를 통해 이중 금속 클러스터 구획에 긴 소수성 알킬 사슬을 포함하는 ODA(octadecylamine)를 공유 결합시키기 위해, 0.46 mM의 EDC(1-ethyl-3-(3-dimethylaminopropyl) carbodiimide)를 먼저 이들 나노입자 용액에 첨가하여 이중 금속 클러스터 구획 상의 잔류 카르복실기를 활성화시키고, 1 시간 동안 교반하였다. THF(tetrahydrofuran)에 용해된 ODA를 반응액에 0.742 μM, 1.484 μM 및 2.968 μM이 되도록 서서히 첨가하고 1 시간 동안 교반하여 카르복실기와 ODA의 아민기를 아미드 결합 반응시켰다. 마지막으로, 반응 용액을 10,000rpm에서 10 분간 원심분리하고, 탈이온수 또는 PBS(phosphate buffered saline)에 재현탁시켜 이후 실험을 수행하였다.Both types of Raman reporters, RBITC (rhodamine B isothiocyanate) and MGITC (Malachite green isothiocyanate), were selectively introduced into double metal-polymer Janus nanocluster compartments, and directional self-assembly into specific structures was achieved through noncovalent interactions. The double metals in the double metal-polymer Janus nanostructures of Example 1 self-assemble through hydrophobic interaction to form a double metal nanocluster core, and the polymer compartment extends radially in the opposite direction of the double metal nanoclusters that abut each other. While forming a specific structure while forming a polymer shell (Fig. 1 (a)). Specifically, 1 mL of the double metal-polymer Janus nanoparticle solution was centrifuged at 10,000 rpm for 10 minutes and transferred to 1 mL of deionized water. The colloidal solution was mixed with freshly prepared RBITC or MGITC at a concentration range of 10 −5 to 10 −8 M and incubated for 2 hours each. In addition, 0.46 mM EDC (1-ethyl-3- (3-dimethylaminopropyl) carbodiimide) was first used to covalently bond ODA (octadecylamine) containing a long hydrophobic alkyl chain to the double metal cluster compartment through selective functionalization. It was added to the particle solution to activate the residual carboxyl groups on the double metal cluster compartment and stirred for 1 hour. ODA dissolved in THF (tetrahydrofuran) was slowly added to the reaction solution to be 0.742 μM, 1.484 μM and 2.968 μM and stirred for 1 hour to amide bond reaction between the carboxyl group and the amine group of ODA. Finally, the reaction solution was centrifuged at 10,000 rpm for 10 minutes and resuspended in deionized water or phosphate buffered saline (PBS) to carry out the experiment.
<실시예 3> 전기유체역학(electrohydrodynamic, EHD) 분사를 통한 자성 나노입자(magnetic nanoparticles, MNPs)와 자성 비드(magnetic beads)의 합성Example 3 Synthesis of Magnetic Nanoparticles (MNPs) and Magnetic Beads by Electrohydrodynamic (EHD) Injection
자성 나노입자(MNPs)는 염화 철 전구체를 사용하여 합성되었다. 산화철 나노입자(Fe3O4)는 침전제로서 암모니아 수용액에서 1 : 2의 몰비로 혼합된 Fe2 +와 Fe3 + 혼합물을 이용한 화학적 공침법(chemical coprecipitation)으로 제조하였다. 구체적으로, 0.86g의 염화 제1철4수화물(FeCl2) 및 2.35g의 염화 제2철(FeCl3)을 40mL의 탈이온수에서 교반하여 혼합하고, 질소 가스로 30 분 동안 탈기시켰다. 온도를 80 ℃로 올리고 교반하면서 수산화 암모니아(NH4OH) 5mL를 주사기로 첨가한 후 30 분 동안 가열하였다. 시트르산 1g을 반응 플라스크에 첨가하고, 반응 용액을 90 ℃로 가열한 후, 추가로 90 분 동안 교반하였다. 마지막으로, Fe3O4 자성 나노입자(MNPs)를 수백 가우스(Gauss)의 정자기장(static magnetic field) 하에서 2 회 탈이온수로 세척하였다. 또한, MNP 용액의 작은 분액을 자기장을 이용하여 농축시키고 고분자 용액에 첨가하고 전기유체역학(EHD) 분사하여 자성 비드를 제조하였다. 폴리(아크릴아미드-코-아크릴산)(poly(acrylamide-co-acrylic acid), 폴리(AAm-co-AA)) 4.5 w/v%는 탈이온수와 에틸렌 글리콜의 3 : 1 부피비 혼합물에서 제조하고, 농축된 MNP를 고분자 용액에 균일하게 현탁시켰다. 전기유체역학(EHD) 분산 공정을 위해 분산된 MNPs의 현탁액을 23 게이지(gage) 스테인리스 스틸 모세관이 있는 1.0 mL 주사기(BD, Franklin Lakes, USA)에 넣었다. 안정한 테일러 원뿔(Taylor cone) 및 원뿔 분사 모드(con-jet mode)를 달성하기 위해, 고분자 농도를 증가시키지 않고 고분자를 에틸렌 글리콜과 같은 점성 용매에 용해시킴으로써 최적화된 점도를 얻었다. 주사기에는 일정한 속도로 MNPs 현탁액을 흐르게 하는 마이크로 주사기 펌프 KDS-100(KD Scientific, Inc, USA)가 장착되었다. 포집 기판으로 두께 0.018mm의 알루미늄 호일(Fisherbrand; Thermo Fisher Scientific, USA)을 사용하였다. 고전압 전원 NNC HV 30(Nano NC, Korea)을 이용하여 양전극에 연결된 모세관과 음전극에 연결된 알루미늄 호일 사이에 고전압을 가했다. 두 전극 사이의 거리는 20-25cm였다. 고전압은 15-20 kV의 범위로 유지되었고, 두 용액의 유속은 0.08-0.15 ml/hour으로 유지되었다. 고해상도의 디지털 카메라(D-90, Nikon Corporation, Japan)를 사용하여 EHD 분사 중에 단상의 테일러 원뿔, jet stream 및 jet break-up을 시각화하고 캡처했다. EHD 분사 후, 생성된 자성 비드를 175 ℃에서 밤새 열가교(thermally crosslinked)시켰다. 마지막으로, 분말 형태의 자성 비드를 호일에서 긁어 수집하고 이후 실험에 사용하였다.Magnetic nanoparticles (MNPs) were synthesized using iron chloride precursors. Iron oxide nanoparticles (Fe 3 O 4 ) was prepared by chemical coprecipitation using a mixture of Fe 2 + and Fe 3 + in a molar ratio of 1: 2 in an aqueous ammonia solution as a precipitant. Specifically, 0.86 g of ferrous chloride tetrahydrate (FeCl 2 ) and 2.35 g of ferric chloride (FeCl 3 ) were stirred and mixed in 40 mL of deionized water, and degassed with nitrogen gas for 30 minutes. The temperature was raised to 80 ° C. while stirring and 5 mL of ammonia hydroxide (NH 4 OH) was added by syringe and then heated for 30 minutes. 1 g citric acid was added to the reaction flask and the reaction solution was heated to 90 ° C. and then stirred for an additional 90 minutes. Finally, Fe 3 O 4 magnetic nanoparticles (MNPs) were washed twice with deionized water under a static magnetic field of several hundred Gauss. In addition, a small aliquot of the MNP solution was concentrated using a magnetic field, added to the polymer solution, and electrophoretic (EHD) injection to prepare magnetic beads. 4.5 w / v% of poly (acrylamide-co-acrylic acid, poly (AAm-co-AA)) is prepared in a 3: 1 volume mixture of deionized water and ethylene glycol, Concentrated MNP was uniformly suspended in the polymer solution. Suspensions of dispersed MNPs were placed in a 1.0 mL syringe (BD, Franklin Lakes, USA) with a 23 gage stainless steel capillary for the electrohydrodynamic (EHD) dispersion process. In order to achieve a stable Taylor cone and con-jet mode, optimized viscosity was obtained by dissolving the polymer in a viscous solvent such as ethylene glycol without increasing the polymer concentration. The syringe was equipped with a micro syringe pump KDS-100 (KD Scientific, Inc, USA) which flows the MNPs suspension at a constant rate. An aluminum foil of 0.018 mm thickness (Fisherbrand; Thermo Fisher Scientific, USA) was used as the capture substrate. High voltage was applied between the capillary connected to the positive electrode and the aluminum foil connected to the negative electrode using a high voltage power supply NNC HV 30 (Nano NC, Korea). The distance between the two electrodes was 20-25 cm. The high voltage was maintained in the range of 15-20 kV and the flow rates of the two solutions were maintained at 0.08-0.15 ml / hour. High resolution digital cameras (D-90, Nikon Corporation, Japan) were used to visualize and capture single-phase Taylor cones, jet streams, and jet break-ups during EHD injection. After EHD injection, the resulting magnetic beads were thermally crosslinked overnight at 175 ° C. Finally, magnetic beads in powder form were collected by scraping off the foil and used for later experiments.
<실시예 4> 이중 금속-고분자 야누스 나노입자 및 특이 구조의 특성Example 4 Properties of Double Metal-Polymer Janus Nanoparticles and Specific Structures
이중 금속-고분자 야누스 나노입자의 UV-Vis 스펙트럼은 300~900 nm의 파장을 실온에서 중간 스캔 속도의 1 회 10 스캔 모드에서 1 nm의 고정 슬릿 폭으로 변화시킨 UV-가시 분광계(UV-1800, Shimadzu, Japan)를 사용하여 수득하였다. 기준선은 탈이온수로 채워진 두 개의 빈 셀(cell)을 사용하여 교정되었다. 콜로이드 용액 특성은 90 °의 산란각에서 광원으로써 5mW의 최대 출력을 가지며 633 nm 에서 Ne-He 레이저가 공급되는 동적 광 산란(dynamic light scattering, DLS)(Zeta-sizer Nano ZS90, Malvern Instruments, UK)을 사용하여 유체역학 직경(hydrodynamic diameter) 및 그 크기 분포를 특성화하였으며, 온도는 25 ℃로 제어하였다. 탈이온수에 샘플을 1 : 1의 부피비로 2 배 희석시키고, 이의 평균 크기를 최소 20 스캔 주기에서 측정하였다. 또한, 탈이온수에서 표면 전하를 특성화하기 위해 제타 전위(ξ-potential) 측정을 수행했다. 투과전자현미경(Transmission Electron Microcopy)을 통해 가속 전압 80~200 kV에서 작동하는 JEM-2100F FE-STEM(JEOL, Germany)을 사용하여 개별 AuNP와 이중 금속-고분자 야누스 나노입자 및 이의 특이 구조를 분석하였다. 샘플은 탄소의 초박막 층(Ted Pella, Inc., USA)으로 코팅 된 400 메쉬 구리 격자 상에 증착되었다. 평균 직경, 크기 분포 및 표면 모폴로지는 0.5-30 kV의 집속된 빔을 갖는 주사전자현미경(scanning electron microscope, SEM)(VEGA-SB3, TESCAN, Czech Republic)에 의해 측정되었다. 소수의 나노입자 용액을 실리콘 웨이퍼 위에 놓고 실온에서 건조시켰다. 샘플을 코팅기(K575X Turbo Sputter Coater, Emitech Ltd, UK)를 사용하여 얇은 전도성 백금 층으로 코팅하였다. 입자의 평균 크기는 미국의 국립 보건원에서 개발된 ImageJ 소프트웨어를 사용하여 TEM 및 SEM 이미지에서 임의로 선택된 약 50-100 개의 입자를 측정하여 분석되었다. 또한, 모든 SERS 측정은 12.5 mW의 레이저 출력을 가진 자극 소스에 대해 632.8 nm의 파장(λ)에서 작동하는 Renishaw He-Ne 레이저가 장착된 Renishaw inVia 라만 현미경 시스템을 사용하여 수행되었다. Rayleigh 선은 수집 필터에 위치한 홀로그램 노치 필터(holographic notch filter)를 사용하여 수집된 SERS 스펙트럼에서 제거되었다. 라만 산란은 분광 해상도 1 cm-1의 전하 결합 소자(charge-coupled device, CCD) 카메라를 사용하여 얻었으며 모든 SERS 스펙트럼은 520 cm-1 실리콘 라인으로 보정되었다. RBITC 또는 MGITC로 표지된 나노구조체의 콜로이드 용액을 작은 유리 모세관(Kimble Chase, 평 모세관 튜브(plain capillary tubes), 소다 석회 유리, 내경 : 1.1-1.2 mm, 벽 : 0.2 ± 0.02 mm, 길이 : 75 mm)에 넣었다. SERS 스펙트럼은 20x 대물 렌즈를 사용하여 608-1738 cm-1의 파장 범위에서 유리 모세관에 레이저 스팟을 집중시키는 데 사용된 노출 시간의 1 초 동안 수집되었다.The UV-Vis spectrum of double metal-polymer Janus nanoparticles is a UV-visible spectrometer (UV-1800, which changes the wavelength from 300 to 900 nm to a fixed slit width of 1 nm in a one-time 10 scan mode at medium scan speed at room temperature. Shimadzu, Japan). Baseline was calibrated using two empty cells filled with deionized water. Colloidal solution characteristics are dynamic light scattering (DLS) (Zeta-sizer Nano ZS90, Malvern Instruments, UK) with a maximum power of 5 mW as a light source at a scattering angle of 90 ° and supplied with a Ne-He laser at 633 nm. Was used to characterize the hydrodynamic diameter and its size distribution and the temperature was controlled to 25 ° C. Samples were diluted 2-fold in deionized water at a volume ratio of 1: 1, and their average size was measured at least 20 scan cycles. Zeta potential measurements were also performed to characterize the surface charge in deionized water. Individual AuNPs and double metal-polymer Janus nanoparticles and their specific structures were analyzed using a JEM-2100F FE-STEM (JEOL, Germany) operating at an acceleration voltage of 80 to 200 kV via transmission electron microcopy. . Samples were deposited on a 400 mesh copper grating coated with an ultra thin layer of carbon (Ted Pella, Inc., USA). Average diameter, size distribution and surface morphology were measured by scanning electron microscope (SEM) (VEGA-SB3, TESCAN, Czech Republic) with a focused beam of 0.5-30 kV. A few nanoparticle solutions were placed on silicon wafers and dried at room temperature. Samples were coated with a thin layer of conductive platinum using a coater (K575X Turbo Sputter Coater, Emitech Ltd, UK). The average size of the particles was analyzed by measuring approximately 50-100 particles randomly selected from TEM and SEM images using ImageJ software developed by the National Institutes of Health. In addition, all SERS measurements were performed using a Renishaw inVia Raman microscope system equipped with a Renishaw He-Ne laser operating at a wavelength (λ) of 632.8 nm for a stimulus source with a laser power of 12.5 mW. Rayleigh lines were removed from the collected SERS spectrum using a holographic notch filter located in the acquisition filter. Raman scattering was obtained using a charge-coupled device (CCD) camera with a spectral resolution of 1 cm −1 and all SERS spectra were corrected with a 520 cm −1 silicon line. Colloidal solutions of nanostructures labeled with RBITC or MGITC were prepared using small glass capillary tubes (Kimble Chase, plain capillary tubes, soda-lime glass, inner diameter: 1.1-1.2 mm, wall: 0.2 ± 0.02 mm, length: 75 mm). ) SERS spectra were collected for 1 second of exposure time used to focus the laser spot on the glass capillary in the wavelength range of 608-1738 cm −1 using a 20 × objective lens.
그 결과, 각 나노입자별 유체역학 직경 및 제타 전위는 하기 표 1과 같았다.As a result, the hydrodynamic diameter and zeta potential for each nanoparticle were as shown in Table 1 below.
AuNPsAuNPs ABP NPs* ABP NPs * superparticular nanostructuresuperparticular nanostructure ABP NPs with RBABP NPs with RB ABP NPs with MGABP NPs with MG superparticular nanostructure with RBsuperparticular nanostructure with RB superparticular nanostructure with MGsuperparticular nanostructure with MG
hydrodynamic diameter(nm)hydrodynamic diameter (nm) 30.1±0.530.1 ± 0.5 62.8±2.362.8 ± 2.3 266.3±6.0266.3 ± 6.0 122.1±2.4122.1 ± 2.4 112.0±15.9112.0 ± 15.9 450.1±3.1450.1 ± 3.1 401.1±10.0401.1 ± 10.0
ξ-potential(mV)ξ-potential (mV) -29.5±0.7-29.5 ± 0.7 -28.0±0.6-28.0 ± 0.6 -11.2±0.9-11.2 ± 0.9 -32.2±0.2-32.2 ± 0.2 -37±1.1-37 ± 1.1 -5.9±0.2-5.9 ± 0.2 -9.8±0.2-9.8 ± 0.2
*ABP NPs(anisotropic bimetal-polymer nanoparticles): 이중 금속-고분자 야누스 나노구조체. * ABP NPs (anisotropic bimetal-polymer nanoparticles): double metal-polymer Janus nanostructures.
도 2에 AuNP, 이중 금속-고분자 야누스 나노입자 및 이의 자가 조립된 이중 금속-고분자의 야누스 나노구조체 클러스터 특이 구조의 UV-Vis 흡광도 및 유체역학 직경을 도시하였다. 도 2 (a)에 나타난 바와 같이, AuNP의 UV-Vis 흡수 피크는 520 nm에서 나타났다. 이중 금속-고분자 야누스 나노구조체의 합성 후 새로운 흡수 피크가 410 nm부터 490 nm 범위에서 나타나고 Au 흡수는 480 nm로 파란색으로 이동되어(blue-shifted) Au 코어-Ag 쉘로 이루어지는 이중 금속 나노 클러스터의 존재를 나타내었다. 이러한 플라즈몬 흡수 변화는 콜로이드 용액의 적색에서 갈색으로의 색 변화와 일치하였다. 또한, 집합된 금속 나노구조체의 플라즈몬 흡수 밴드로 인하여 특이 구조로의 방향성 자가 조립 이후 650 nm에 추가 피크가 나타났다. 도 2 (b)는 10-6 M의 라만 염료와 2.968μM의 ODA가 각각 첨가되었을 때, RBITC- 표지 또는 MGITC- 표지된 이중 금속-고분자 야누스 나노입자 및 이의 자가 조립된 이중 금속-고분자의 야누스 나노 클러스터 특이 구조의 UV-Vis 흡수 스펙트럼을 도시한다. 도입된 라만 리포터의 낮은 농도로 인해 라만 리포터의 존재 또는 부재 하에서 UV-Vis 흡수 스펙트럼의 유의한 차이는 없었다. 그러나 RBITC와 MGITC의 UV-vis 흡수 파장과 상관 관계가 있는 이중 금속 나노 클러스터 구획 상에서 라만 염료를 흡수한 후 넓은 피크가 410nm 부터 500nm 범위에서 나타났다. 또한, 도 2 (c) 및 상기 표 1에 도시된 바와 같이, Au 나노입자 및 이중 금속-고분자 야누스 나노구조체의 평균 직경은 각각 30.1 ± 0.5 nm 및 62.8 ± 2.3 nm이었고, 서로 다른 클러스터링 수준에 따른 특이 구조의 평균 직경은 168.3 ± 1.3 nm, 192.4 ± 2.4 nm 및 266.3 ± 6.0 nm이었다. 탈이온수 내 Au 나노입자, 이중 금속-고분자 야누스 나노구조체 및 이의 자가 조립된 이중 금속-고분자의 야누스 나노구조체 클러스터 특이 구조의 제타 전위 값은 각각 -29.5 ± 0.7 mV, -28.0 ± 0.6 mV 및 -11.2 ± 0.9 mV이었다. 이중 금속-고분자의 야누스 나노구조체 클러스터 특이 구조의 표면 전하가 크게 감소되어 ODA가 아미드 결합 반응을 통해 이중 금속 클러스터 구획에 잘 결합되었음을 알 수 있다. 도 2 (d)는 RBITC- 표지 및 MGITC- 표지된 이중 금속-고분자 야누스 나노구조체 및 이의 이중 금속-고분자 야누스 나노구조체 클러스터 특이 구조의 유체역학적 직경을 나타낸다. RBITC- 표지 및 MGITC- 표지된 이중 금속-고분자 야누스 나노구조체의 평균 직경은 각각 122.1 ± 2.4 nm 및 112.0 ± 15.9 nm였다. 이 결과는 양전하를 띤 라만 염료의 흡수가 표 1에 나타낸 것처럼 표면 전하의 큰 변화가 없었음에도 불구하고 작은 응집체를 유도함을 나타냈다. 이는 입자의 모순된 제타 전위 값이 이중 금속 클러스터 구획의 전체 표면을 덮기에 부적당한 낮은 농도의 라만 염료 및 표면과 연관된 반대의 음이온인 Cl- 및 ClO4 -로 인한 결과로 분석되었다. 또한, 양으로 대전된 라만 염료가 이중 금속 나노 클러스터 구획을 서로 연결하여 순전하(net charge)가 증가할 수도 있다. 방향성 클러스터링 후, RBITC- 표지 및 MGITC- 표지된 특이 구조의 유체역학 직경은 각각 450.1 ± 3.1 nm 및 401.1 ± 10.0 nm이었다. 상대적으로 더 소수성인 RBITC의 특성 때문에, 동일한 농도의 라만 염료에서 라만 염료로 표지된 특이 구조의 자가 조립 정도에 상당한 차이가 있었다.FIG. 2 shows the UV-Vis absorbance and hydrodynamic diameter of AuNP, double metal-polymer Janus nanoparticles and self-assembled double metal-polymer Janus nanostructure cluster specific structures. As shown in Figure 2 (a), the UV-Vis absorption peak of AuNP appeared at 520 nm. After synthesis of the double metal-polymer Janus nanostructures, a new absorption peak appears in the range from 410 nm to 490 nm and Au absorption is blue-shifted to 480 nm, indicating the presence of double metal nano clusters consisting of Au core-Ag shells. Indicated. This change in plasmon absorption was consistent with the color change from red to brown of the colloidal solution. In addition, due to the plasmon absorption band of the aggregated metal nanostructures, additional peaks appeared at 650 nm after directional self-assembly into specific structures. 2 (b) shows RBITC-labeled or MGITC-labeled double metal-polymer Janus nanoparticles and their self-assembled double metal-polymer Janus when 10 −6 M Raman dye and 2.968 μM ODA were added, respectively. The UV-Vis absorption spectrum of the nanocluster specific structure is shown. There was no significant difference in the UV-Vis absorption spectrum in the presence or absence of the Raman reporter due to the low concentration of the introduced Raman reporter. However, after absorbing Raman dyes on the double-metal nanocluster compartments correlated with the UV-vis absorption wavelengths of RBITC and MGITC, a broad peak appeared in the range from 410 nm to 500 nm. In addition, as shown in Figure 2 (c) and Table 1, the average diameter of Au nanoparticles and double metal-polymer Janus nanostructures were 30.1 ± 0.5 nm and 62.8 ± 2.3 nm, respectively, according to different clustering levels The average diameters of the specific structures were 168.3 ± 1.3 nm, 192.4 ± 2.4 nm and 266.3 ± 6.0 nm. Zeta potential values for Au nanoparticles in deionized water, double metal-polymer Janus nanostructures, and their self-assembled double metal-polymer Janus nanostructure cluster-specific structures are -29.5 ± 0.7 mV, -28.0 ± 0.6 mV, and -11.2, respectively. ± 0.9 mV. The surface charge of the double metal-polymer Janus nanostructure cluster specific structure was greatly reduced, indicating that ODA was well bound to the double metal cluster compartment through an amide bond reaction. 2 (d) shows the hydrodynamic diameters of the RBITC-labeled and MGITC-labeled double metal-polymer Janus nanostructures and their double metal-polymer Janus nanostructure cluster specific structures. The average diameters of the RBITC-labeled and MGITC-labeled double metal-polymer Janus nanostructures were 122.1 ± 2.4 nm and 112.0 ± 15.9 nm, respectively. This result indicated that the uptake of positively charged Raman dyes induced small aggregates despite no significant change in surface charge as shown in Table 1. This was analyzed as a result of the contrary zeta potential values of the particles, Cl and ClO 4 , which are low concentrations of Raman dye and the opposite anions associated with the surface, which are inappropriate to cover the entire surface of the double metal cluster compartment. In addition, positively charged Raman dyes may connect the double metal nanocluster compartments with each other to increase net charge. After directional clustering, the hydrodynamic diameters of the RBITC-labeled and MGITC-labeled specific structures were 450.1 ± 3.1 nm and 401.1 ± 10.0 nm, respectively. Because of the more hydrophobic nature of RBITC, there was a significant difference in the degree of self-assembly of specific structures labeled with Raman dyes at the same concentration of Raman dyes.
도 3은 매우 민감한 SERS 기반 바이오 센싱을 위한 라만 염료의 적정 농도를 최적화하기 위한 (a) RBITC로 표지된 및 (c) MGITC로 표지된 특이 구조의 상대적 라만 스펙트럼을 나타내었다. (b) RBITC 및 (d) MGITC의 라만 강도는 1646 cm-1 및 1617 cm-1의 10-5~10-8 M의 범위에서 라만 염료의 농도에 선형 비례하였다. 즉, 라만 염료 농도가 증가함에 따라 라만 산란 강도는 선형적으로 증가했다(RBITC의 경우 R2 = 0.9826, MGITC의 경우 R2 = 0.9162). 특히 RBITC의 강도는 10-5 M에서 최대값에 이르렀다가, 큰 응집체의 콜로이드 안정도가 낮아져 감소했다. 이는 도 2 (d)의 DLS 프로파일과 큰 일치를 보였다. 도 3 (e-h)에서 볼 수 있듯이, (e) RBITC와 (g) MGITC의 10-6 M 농도에서 이중 금속-고분자 야누스 나노구조체 및 이의 이중 금속-고분자 야누스 나노구조체 클러스터 특이 구조의 라만 스펙트럼은 클러스터링 정도에 따른 라만 강도를 비교하기 위해 측정하였다. 이중 금속-고분자 야누스 나노구조체는 상대적으로 낮은 라만 강도를 나타내었으며, 라만 염료의 불충분한 흡수는 이중 금속 Au 코어-Ag 쉘이 국부적인 표면 플라즈몬 공명에 대해 높은 능력을 가짐에도 불구하고 고분자 구획(고분자 쉘)의 두께로 인해 높은 라만 신호의 생성을 방해함을 나타냈다. 반면에, 이중 금속 나노 클러스터 구획의 선택적 변형을 통해 방향성 자가 조립이 형성되면, 나노입자들 사이의 틈새에서 증가된 전자기장으로 인해 라만 강도가 상당히 강화되었다. 1646 cm-1 및 1617 cm-1에서 RBITC 및 MGITC로 표지된 특이 구조의 라만 강도는 각각 2.968 μM의 ODA 농도에서의 특이 구조보다 약 15.92 및 15.59 배 더 높았다.FIG. 3 shows the relative Raman spectra of specific structures (a) labeled with RBITC and (c) MGITC to optimize the proper concentration of Raman dye for highly sensitive SERS based biosensing. Raman intensity of (b) RBITC and (d) MGITC was linearly proportional to the concentration of Raman dye in the range of 10 −5 to 10 −8 M of 1646 cm −1 and 1617 cm −1 . That is, as the Raman dye concentration increased, the Raman scattering intensity increased linearly (R 2 = 0.9826 for RBITC, R 2 = 0.9162 for MGITC). In particular, the strength of RBITC reached its maximum at 10 -5 M, but decreased as colloidal stability of large aggregates was lowered. This is in great agreement with the DLS profile of FIG. As can be seen in FIG. 3 (eh), Raman spectra of (e) RBITC and (g) dual metal-polymer Janus nanostructures and their double metal-polymer Janus nanostructure cluster specific structures at 10-6 M concentration of MGITC are clustered It was measured to compare the Raman intensity according to the degree. The double metal-polymer Janus nanostructures exhibited relatively low Raman strength, and insufficient absorption of the Raman dye resulted in the polymer compartment (polymer), although the double metal Au core-Ag shell has a high capacity for local surface plasmon resonance. Thickness of the shell) impedes the generation of high Raman signals. On the other hand, when directional self-assembly is formed through selective deformation of the double metal nanocluster compartment, Raman strength is significantly enhanced due to the increased electromagnetic field in the gaps between the nanoparticles. Raman intensity of the RBITC and MGITC-labeled specific structures at 1646 cm −1 and 1617 cm −1 were about 15.92 and 15.59 times higher than the specific structures at ODA concentrations of 2.968 μM, respectively.
도 4는 (a, c) MGITC 또는 (b, d) RBITC로 표지된 특이 구조의 (a, b) 시간에 따른 콜로이드 안정성, (c, d) 배치(batch) 간 변동성을 나타내었다. 라만 스펙트럼은 5 가지 상이한 배치(S1-S5)를 사용하여 수용액에서 측정되었다. 이중 금속 나노 클러스터 구획의 방향성 자가 조립은 수성 조건 하에서 고분자 구획을 노출시켜, 수 일간의 양호한 콜로이드 안정성 및 특이 구조의 안정화를 통한 SERS 신호의 재현성을 유도하였다.4 shows colloidal stability over time (a, b) and (c, d) batch variability of (a, c) MGITC or (b, d) specific structures labeled with RBITC. Raman spectra were measured in aqueous solution using five different batches (S1-S5). Directional self-assembly of the double metal nanocluster compartments exposed the polymer compartments under aqueous conditions, leading to reproducibility of the SERS signal through several days of good colloidal stability and stabilization of specific structures.
도 5는 크기 및 형태를 특정하기 위해 (a) Au 나노입자, (b, c, g) 이중 금속-고분자 야누스 나노입자 및 (d, e, f, h) 이의 자가 조립된 이중 금속-고분자 야누스 나노구조체 클러스터 특이 구조를 서로 다른 확대 배율에서 3 차원 형태를 분석한 TEM 및 SEM 이미지이다. Au 나노입자의 평균 크기는 21.82 ± 2.59 nm이었다. 생성된 나노입자는 도 5 (b)와 같이 이중 금속 Au 코어-Ag 쉘과 폴리(아닐린)을 포함하는 두 개의 별개의 구획으로 구성되었다. 3.6 mM의 SDS 용액에서 나노입자를 밤새 인큐베이션한 후, 그림 5 (c)에서 볼 수 있듯이, Au 나노입자 상에 더 편심된(eccentric) 고분자 구획이 형성되었다. 소수성 긴 알킬 사슬을 함유하는 ODA의 상이한 농도가 이중 금속 나노 클러스터 구획 상에 선택적으로 도입되었을 때, 도 5 (d-f)에 나타낸 바와 같이 방향성 자가 조립이 형성되었다. 자가 조립의 정도는 ODA의 농도에 의해 통제되었다. 도 5 (g)와 5 (h)는 SEM 이미지이며 이중 금속-고분자 야누스 나노구조체와 이의 자가 조립된 이중 금속-고분자 야누스 나노구조체 클러스터 특이 구조의 3 차원 표면 형태를 명확하게 나타낸다. 이중 금속-고분자 야누스 나노구조체와 그 클러스터 구조의 평균 직경은 각각 69 ± 15 nm 및 148 ± 24 nm이었다.FIG. 5 shows (a) Au nanoparticles, (b, c, g) double metal-polymer Janus nanoparticles and (d, e, f, h) self-assembled double metal-polymer Janus to characterize size and shape. TEM and SEM images of three-dimensional morphologies of nanostructure cluster-specific structures at different magnifications. The average size of Au nanoparticles was 21.82 ± 2.59 nm. The resulting nanoparticles consisted of two separate compartments containing a double metal Au core-Ag shell and poly (aniline) as shown in FIG. 5 (b). After overnight incubation of the nanoparticles in a 3.6 mM SDS solution, a more eccentric polymer compartment was formed on the Au nanoparticles, as shown in Figure 5 (c). When different concentrations of ODA containing hydrophobic long alkyl chains were selectively introduced onto the double metal nanocluster compartments, directional self-assembly was formed as shown in FIG. 5 (d-f). The degree of self-assembly was controlled by the concentration of ODA. 5 (g) and 5 (h) are SEM images and clearly show the three-dimensional surface morphology of the double metal-polymer Janus nanostructure and its self-assembled double metal-polymer Janus nanostructure cluster specific structure. The average diameters of the double metal-polymer Janus nanostructures and their cluster structures were 69 ± 15 nm and 148 ± 24 nm, respectively.
도 6은 1 분마다 30 초 동안 나타나는 (a) + 1.5 v 및 (b) -1.5 v의 전기 자극에 따른 PEG 하이드로겔에 내장된 이중 금속-고분자 야누스 나노입자로부터의 플루오레세인(fluorescein) 누적 방출을 도시한다. 플루오레세인은 음으로 하전된 플루오레세인 및 양으로 하전된 아닐린 단량체의 정전기적 상호 작용을 통해 고분자 구획 내로 담지되었다. 농축된 플루오레세인-담지 나노입자를 PEG 용액에 첨가하고 UV로 조사하여 PEG-나노입자 하이드로겔을 형성시켰다. 480 nm에서 자극시켰을 때 최대 방사 파장 512 nm에서의 형광 강도를 측정하여 형광 물질의 방출량을 계산하였다. 이중 금속-고분자 야누스 나노구조체의 고분자 구획은 전도성 고분자를 대표하는 폴리(아닐린)으로 이루어져 전기장 반응성을 나타내었다. 두 전극 사이에 -1.5 v의 전압이 가해졌을 때, + 1.5 v의 전압을 인가했을 때보다 플루오레세인의 방출량이 더 높았다. -1.5 v의 전압을 가했을 때 고분자 구획 내 양전하의 감소로 인해 음전하를 띠는 약물인 플루오레세인 및 폴리(아닐린) 구획의 정전기력이 약해져 약물 방출이 잘 이루어졌다. 도 6 (c)는 4, 7 및 11의 다양한 pH에서 플루오레세인이 충진된 이중 금속-고분자 야누스 나노입자의 UV-vis 흡수를 나타내었다. 높은 pH에서는 아닐린 단위체(Repeating unit)의 탈양성자화로 인해 플루오레세인의 정전기적 상호 작용이 감소하였다. 이에 따라, 음전하를 띠는 약물인 플루오레세인의 정전기력이 약해져 약물 방출이 잘 이루어졌다. 도 6 (d)는 플루오레세인이 담지된 이중 금속-고분자 야누스 나노구조체로부터 발생하는 MGITC의 라만 스펙트럼을 도시한다. MGITC와 플루오레세인의 라만 피크는 각각 1617 cm-1과 1176 cm-1이었으며, 이는 이중 금속-고분자 야누스 나노구조체가 형광 및 SERS 기반의 나노프로브임을 의미한다.FIG. 6 shows the accumulation of fluorescein from double metal-polymer Janus nanoparticles embedded in PEG hydrogels with electrical stimulation of (a) + 1.5 v and (b) -1.5 v every 30 minutes. Shows the release. Fluorescein was supported into the polymer compartment through the electrostatic interaction of negatively charged fluorescein and positively charged aniline monomers. Concentrated fluorescein-supported nanoparticles were added to the PEG solution and irradiated with UV to form PEG-nanoparticle hydrogels. When stimulated at 480 nm, the emission intensity of the fluorescent material was calculated by measuring the fluorescence intensity at the maximum emission wavelength of 512 nm. The polymer compartment of the double metal-polymer Janus nanostructure was composed of poly (aniline), which represents a conductive polymer, and exhibited electric field reactivity. When a voltage of -1.5 v was applied between the two electrodes, the amount of fluorescein emitted was higher than when a voltage of + 1.5 v was applied. When a voltage of -1.5 v was applied, the positive charge in the polymer compartment reduced the electrostatic forces of the negatively charged fluorescein and poly (aniline) compartments, resulting in good drug release. Figure 6 (c) shows the UV-vis absorption of fluorescein-filled double metal-polymer Janus nanoparticles at various pHs of 4, 7 and 11. At high pH, the deprotonation of the apeline unit reduced the electrostatic interaction of fluorescein. As a result, the electrostatic force of fluorescein, a negatively charged drug, was weakened, resulting in good drug release. Figure 6 (d) shows the Raman spectrum of MGITC generated from fluorescein-supported double metal-polymer Janus nanostructures. Raman peaks of MGITC and fluorescein were 1617 cm −1 and 1176 cm −1 , respectively, indicating that the dual metal-polymer Janus nanostructures are fluorescent and SERS based nanoprobes.
<실시예 5> 자성 비드 및 이중 금속-고분자 야누스 나노구조체의 자가 조립된 이중 금속-고분자의 야누스 나노구조체 클러스터 특이 구조에 항체 결합Example 5 Antibody Binding to Self-assembled Double Metal-Polymer Janus Nanostructure Cluster Specific Structures of Magnetic Beads and Double Metal-Polymer Janus Nanostructures
자가 조립된 이중 금속-고분자의 야누스 나노구조체 클러스터 특이 구조와 자성 비드는 2 종류의 표적 단백질인 IgG(Immunogloblin G)와 CEA(carcinoembryonic antigen)에 대한 단클론 항체(mAb)와 다클론 항체(pAbs)의 서로 다른 2 세트와 각각 결합되었다. 먼저, 폴리(아닐린) 구획에 잔류하는 아민기와 항체에 존재하는 카르복실기의 아미드 결합 반응을 이용하여 특이 구조의 고분자 구획(고분자 쉘)과 항-인간 IgG 다클론 항체(anti-human IgG pAb) 또는 항-인간 CEA 다클론 항체(anti-human CEA pAb)의 생체 결합(bioconjugation)을 수행하였다. 이러한 결합 반응은 EDC와 sulfo-NHS(sulfo-N-hydroxysuccinimide ester) 화학을 기반으로 하였다. 구체적으로, EDC 60 mM과 sulfo-NHS 9.2 mM을 함유한 pH 7.4의 PBS 10 mM을 포함하는 이중 금속-고분자 야누스 나노입자의 분산 용액에 1.0 mg/ml 또는 2.0 mg/ml의 항-인간 IgG pAb 또는 항-인간 CEA pAb 5 ㎕를 첨가하고, 3 시간 동안 교반하여 전체 pAb 농도가 각각 5 ㎍/㎖ 또는 10 ㎍/㎖가 되도록 하였다. 항-인간 IgG pAb- 또는 항-인간 CEA pAb- 결합된 특이 구조를 3,000 rpm에서 원심분리하여 세척하고 PBS로 재현탁하였다. 또한, 175 ℃에서 밤새 열 안정화한 고분자 나노입자 상의 잔류 카르복실기를 활성화시킴으로써 자성 비드를 항-인간 IgG 단클론 항체(anti-human IgG mAb) 또는 항-인간 CEA 단클론 항체(anti-human CEA mAb)와 화학적으로 결합시켰다. 구체적으로, 1.25 mg의 자성 비드를 0.9 ml의 PBS에 현탁시키고, 진폭 20.0 %에서 3/3 초 온/오프 사이클을 사용한 팁-초음파 발생장치(sonicator)를 사용하여 2 분 동안 초음파 처리하였다. 균일하게 현탁된 자성 비드를 5.0 mM EDC 및 5.0 mM sulfo-NHS와 혼합하고 1 시간 동안 교반하였다. 2.96 ㎎/㎖ 또는 3.56 ㎎/㎖의 항-인간 IgG mAb 또는 항-인간 CEA mAb를 100 ㎕의 PBS 완충액으로 희석시킨 다음, 자성 비드 용액에 최종 농도가 7.4 ㎍/㎖ 또는 8.9 ㎍/㎖가 되도록 천천히 첨가하고 1 시간 동안 교반하였다. 결합되지 않은 항-인간 IgG mAb 또는 항-인간 CEA mAb를 자기장을 사용하여 분리하고, 항체-결합된 자성 비드를 IgG 및 CEA의 SERS- 기반 바이오 센싱을 위해 PBS로 재현탁시켰다.Self-assembled double metal-polymer Janus nanostructure cluster Specific structures and magnetic beads were combined with two different sets of monoclonal antibodies (mAb) and polyclonal antibodies (pAbs) against two types of target proteins, IgG (Immunogloblin G) and CEA (carcinoembryonic antigen). First, a polymer structure (polymer shell) having a specific structure and an anti-human IgG pAb or an anti-human antibody are obtained by using an amide bond reaction between an amine group remaining in the poly (aniline) compartment and a carboxyl group present in the antibody. Bioconjugation of the human CEA polyclonal antibody (anti-human CEA pAb) was performed. This binding reaction was based on the chemistry of sulfo-N-hydroxysuccinimide ester (EDC) and sulfo-NHS. Specifically, 1.0 mg / ml or 2.0 mg / ml of anti-human IgG pAb in a dispersion solution of double metal-polymer Janus nanoparticles containing 10 mM PBS at pH 7.4 containing 60 mM EDC and 9.2 mM sulfo-NHS. Or 5 μl of anti-human CEA pAb was added and stirred for 3 hours to bring the total pAb concentration to 5 μg / ml or 10 μg / ml, respectively. Anti-human IgG pAb- or anti-human CEA pAb- bound specific structures were washed by centrifugation at 3,000 rpm and resuspended in PBS. In addition, magnetic beads were chemically reacted with an anti-human IgG mAb or an anti-human CEA mAb by activating the residual carboxyl groups on the polymer nanoparticles heat stabilized overnight at 175 ° C. Combined. Specifically, 1.25 mg of magnetic beads were suspended in 0.9 ml of PBS and sonicated for 2 minutes using a tip-sonicator using a 3/3 second on / off cycle at 20.0% amplitude. The uniformly suspended magnetic beads were mixed with 5.0 mM EDC and 5.0 mM sulfo-NHS and stirred for 1 hour. Dilute 2.96 mg / ml or 3.56 mg / ml anti-human IgG mAb or anti-human CEA mAb with 100 μl of PBS buffer, and then add a final concentration of 7.4 μg / ml or 8.9 μg / ml to the magnetic bead solution. Add slowly and stir for 1 hour. Unbound anti-human IgG mAb or anti-human CEA mAb was isolated using a magnetic field and antibody-bound magnetic beads were resuspended in PBS for SERS-based biosensing of IgG and CEA.
<실시예 6> 특이 구조와 자성 비드를 이용한 표적 단백질 IgG와 CEA에 대한 SERS 기반 바이오 센싱Example 6 SERS-Based Biosensing of Target Proteins IgG and CEA Using Specific Structures and Magnetic Beads
라만 리포터로 표지된 특이 구조를 표적 단백질인 IgG, CEA의 정량 분석을 위해 SERS 나노프로브로 사용하였으며, 항-인간 IgG mAb 또는 항-인간 CEA mAb와 결합된 자성 비드를 사용하여 샌드위치형 면역 복합체를 형성함으로써 분리 도구로 면역 복합체를 선택적으로 분리하였다. 먼저, 항-인간 IgG mAb 또는 항-인간 CEA mAb가 결합된 자성 비드를 2 ㎍/ml ~ 1 ng/ml 범위의 상이한 6 가지 농도의 IgG 또는 CEA를 함유하는 완충액에 첨가하고, 1 시간 동안 반응시켰다. 표적 단백질을 외부 자기장으로 세척하고 새로운 PBS 완충액으로 재현탁시켰다. 이어서, 표적 단백질 및 자성 비드가 형성된 각각의 면역 복합체에 항-인간 IgG pAb 또는 항-인간 CEA pAb가 결합된 SERS 나노프로브를 첨가하고 1 시간 동안 반응시켜 자성 비드, 표적 단백질 및 SERS 나노프로브로 구성된 샌드위치형 면역 복합체를 제조하였다(도 1 (c)). 결합되지 않은 SERS 나노프로브를 자기장을 사용하여 제거하고, 생성물인 샌드위치형 면역 복합체를 SERS 측정을 위해 PBS로 재현탁하였다(도 7). 결합된 항체 또는 표적 단백질 각각이 없는 SERS 나노프로브의 선택적인 결합 능력을 평가하기 위해 2 가지 대조군(control)에 대한 실험 또한 함께 수행되었다.A specific structure labeled with a Raman reporter was used as a SERS nanoprobe for quantitative analysis of target proteins IgG and CEA, and sandwiched immune complexes were prepared using anti-human IgG mAbs or magnetic beads combined with anti-human CEA mAbs. The immune complexes were selectively isolated by forming tools by forming them. First, magnetic beads bound with anti-human IgG mAb or anti-human CEA mAb were added to a buffer containing 6 different concentrations of IgG or CEA ranging from 2 μg / ml to 1 ng / ml and reacted for 1 hour. I was. The target protein was washed with an external magnetic field and resuspended in fresh PBS buffer. Subsequently, anti-human IgG pAb or anti-human CEA pAb bound SERS nanoprobe was added to each immune complex in which the target protein and magnetic beads were formed and reacted for 1 hour to constitute the magnetic beads, target protein and SERS nanoprobe. Sandwich immune complexes were prepared (FIG. 1 (c)). Unbound SERS nanoprobes were removed using a magnetic field and the product sandwiched immune complex was resuspended in PBS for SERS measurements (FIG. 7). Experiments with two controls were also performed together to assess the selective binding capacity of SERS nanoprobes without each of the bound antibodies or target proteins.
도 8과 9는 IgG와 CEA 농도에 따른 서로 다른 표적 농도의 라만 스펙트럼 및 라만 강도의 플롯을 나타낸다. 1.0 ng/ml ~ 2.0 ㎍/ml 범위에서 IgG 농도가 증가함에 따라, RBITC- 표지 또는 MGITC- 표지된 특이 구조의 라만 강도는 샌드위치형 면역 복합체의 형성 증가로 인해 증가하였다. 대조군 1 및 대조군 2는 각각 항-인간 IgG pAb 및 IgG가 없는 대조군을 나타내었다. 또한 1646 cm-1 및 1617 cm-1에서 RBITC와 MGITC의 대표적인 SERS 피크 강도는 도 8에서와 같이 IgG 농도와 함께 선형적으로 증가했다(R2 = 0.9435-0.9806 및 R2 = 0.9572-0.9953). 마찬가지로, 도 9에 나타낸 바와 같이, CEA 농도가 증가함에 따라, RBITC- 표지 또는 MGITC- 표지된 특이 구조의 라만 강도가 선형적으로 증가하였다(R2 = 0.9801-0.9856 및 R2 = 0.9257-0.9838). 대조군 1 및 대조군 2는 각각 항-인간 CEA pAb 및 CEA가 없는 대조군을 나타내었다. IgG 및 CEA에 대한 검출 한계는 1 ng/ml 미만이었다.8 and 9 show plots of Raman spectra and Raman intensity at different target concentrations according to IgG and CEA concentrations. As IgG concentration increased in the range from 1.0 ng / ml to 2.0 μg / ml, Raman intensity of RBITC-labeled or MGITC-labeled specific structures increased due to increased formation of sandwich immune complexes. Control 1 and Control 2 represent controls without anti-human IgG pAb and IgG, respectively. In addition, the representative SERS peak intensities of RBITC and MGITC at 1646 cm −1 and 1617 cm −1 increased linearly with IgG concentration as shown in FIG. 8 (R 2 = 0.9435-0.9806 and R 2 = 0.9572-0.9953). Likewise, as shown in FIG. 9, as the CEA concentration increased, the Raman intensity of the RBITC-labeled or MGITC-labeled specific structure increased linearly (R 2 = 0.9801-0.9856 and R 2 = 0.9257-0.9838). . Control 1 and Control 2 represent controls without anti-human CEA pAb and CEA, respectively. Detection limits for IgG and CEA were less than 1 ng / ml.
제 22nd 발명: invent:
<실시예 1> AuNR 코어-Ag 새틀라이트 이중 금속 구획 및 고분자 구획을 포함하는 야누스 나노구조체의 합성Example 1 Synthesis of Janus Nanostructures Containing AuNR Core-Ag Satellite Double Metal Compartments and Polymer Compartments
금 나노막대(Gold nanorods, AuNRs)는 시드-매개 성장 방법(seed-mediated growth method)을 통해 합성되었다. 구체적으로, CTAB(hexadecyltrimethylammoniumbromide)(Sigma-Aldrich, USA) 0.20 M 5mL를 29-30 ℃에서 용해시키고 0.0005 M의 염화 금 (III) 수화물(Gold (III) chloride hydrate, HAuCl4.3H2O)(Sigma-Aldrich, USA) 5 mL와 혼합한 다음 차가운 0.010 M의 NaBH4 0.010 mL를 첨가하였다. 반응액의 황색이 갈색을 띠는 황색의 용액으로 바뀌며 생성된 시드 용액은 29-30 ℃로 유지하며 2 ~ 2.5 시간 내에 사용하였다. 시드 입자 위에 나노막대를 성장시키기 위해 0.004 M의 AgNO3 0.25 mL과 0.20 M의 CTAB 5 ml를 29-30 ℃에서 혼합했다. 이어서, 용액에 0.001 M HAuCl4 5.0 mL를 넣고 교반하였다. 30-40 분간 혼합한 후, 환원제인 아스코르브산(ascorbic acid)을 첨가하여 진한 황색에서 무색이 될 때까지 성장 용액의 색상 변화를 유도하였다. 최종 단계에서 시드 용액 12 μL를 무색 용액에 첨가한 다음 용액 색상을 10-20 분 내에 서서히 변화시켰다. 용액을 교반하고 29-30 ℃에서 밤새 보관하였다. 시드 금속 나노입자의 표면 특성을 바꾸기 위해, 금속-고분자 복합체 형성은 정전기 상호 작용을 통해 준비되었다. CTAB 캡핑된 AuNR을 10,000 rpm에서 10 분간 원심분리하고 1 mM NaCl 용액에 재현탁시켰다. 1 mM NaCl 용액에 용해된 음전하를 띤 폴리머성 리간드인 PSS(poly(styrene sulfonate))(Sigma-Aldrich, USA)를 최종 농도가 0.06-0.2 w/v%가 되도록 준비하고 AuNR 용액에 첨가하여 금속-고분자(AuNR-PSS) 복합체를 형성시켰다. 금속-고분자(AuNR-PSS) 복합체를 8,000 rpm에서 10 분간 원심분리하여 정제하고 농축시킨 후, AuNR 코어-Ag 새틀라이트 이중 금속 구획과 폴리(아닐린) 구획으로 구성된 이중 금속-고분자 야누스 나노입자를 산화-환원에 기초한 표면 주형 중합을 통해 제조하였다. 구체적으로, 아닐린 및 SDS는 7.5 mL의 탈이온수에 각각 최종 농도 5 mM 및 0.9 mM로 용해시켰다. 농축된 금속-고분자(AuNR-PSS) 복합체를 용액에 첨가하고 교반(voltexing)한 후, 질산은 용액 2.5 mL를 첨가하고 혼합하여 최종 농도가 2.5 mM이 되도록 하였다. 반응은 어두운 조건에서 실온에서 24 시간 동안 교반하지 않고 진행되었다. 반응액을 3.6mM SDS 용액에서 밤새 추가로 인큐베이션하여 AuNR 코어-Ag 새틀라이트의 이중 금속 나노 구조의 한쪽에만 폴리(아닐린)이 편심 침착(eccentrically deposited)되도록 하였다. 생성된 용액을 8,000 rpm에서 10 분간 원심분리하여 정제하고, 응집을 방지하기 위해 3.6 mM의 SDS 용액에 재현탁시켰다. AuNR 코어-Ag 새틀라이트 이중 금속 구획 및 폴리(아닐린) 구획으로 이루어지는 야누스 나노입자 용액 1 mL를 10,000 rpm에서 10 분간 원심분리하고 탈이온수 1 mL에 옮겼다. 콜로이드 용액을 새로 준비한 MGITC와 10-5~10-5.5 M의 농도 범위로 혼합하고, 각각 2 시간 동안 인큐베이션하였다. 라만 염료의 이소티오시아네이트(isothiocyanate) 그룹(-N = C〓S)을 통해 AuNR 코어-Ag 새틀라이트로 이루어지는 이중 금속 나노입자 표면에 MGITC를 고정시켜, AuNR 상의 Ag 새틀라이트 표면에 선택적으로 흡착시켰다. Gold nanorods (AuNRs) were synthesized through a seed-mediated growth method. Specifically, 5 mL of 0.20 M hexadecyltrimethylammonium bromide (Sigma-Aldrich, USA) was dissolved at 29-30 ° C. and 0.0005 M of Gold (III) chloride hydrate (HAuCl 4 .3H 2 O) ( Sigma-Aldrich, USA) and 5 mL of cold 0.010 M NaBH 4 were then added. The yellow color of the reaction solution was changed to a brownish yellow solution, and the resultant seed solution was maintained at 29-30 ° C. and used within 2 to 2.5 hours. To grow the nanorods on the seed particles, 0.25 mL of 0.004 M AgNO 3 and 5 ml of 0.20 M CTAB were mixed at 29-30 ° C. Then, 5.0 mL of 0.001 M HAuCl 4 was added to the solution, followed by stirring. After mixing for 30-40 minutes, ascorbic acid, a reducing agent, was added to induce a color change of the growth solution from dark yellow to colorless. In the final step 12 μL of the seed solution was added to the colorless solution and the solution color was slowly changed in 10-20 minutes. The solution was stirred and stored at 29-30 ° C overnight. In order to change the surface properties of the seed metal nanoparticles, metal-polymer composite formation was prepared through electrostatic interaction. CTAB capped AuNR was centrifuged at 10,000 rpm for 10 minutes and resuspended in 1 mM NaCl solution. Poly (styrene sulfonate) (PSS) (Sigma-Aldrich, USA), a negatively charged polymeric ligand dissolved in 1 mM NaCl solution, was prepared to a final concentration of 0.06-0.2 w / v% and added to AuNR solution -Polymer (AuNR-PSS) complexes were formed. The metal-polymer (AuNR-PSS) complex was purified by centrifugation at 8,000 rpm for 10 minutes and concentrated, followed by oxidation of double metal-polymer Janus nanoparticles consisting of AuNR core-Ag satellite double metal compartments and poly (aniline) compartments. Prepared via surface mold polymerization based on reduction. Specifically, aniline and SDS were dissolved in 7.5 mL of deionized water at a final concentration of 5 mM and 0.9 mM, respectively. The concentrated metal-polymer (AuNR-PSS) complex was added to the solution and stirred, followed by 2.5 mL of silver nitrate solution and mixed to a final concentration of 2.5 mM. The reaction proceeded without stirring for 24 hours at room temperature under dark conditions. The reaction was further incubated overnight in a 3.6 mM SDS solution so that poly (aniline) was eccentrically deposited on only one side of the double metal nanostructure of AuNR core-Ag satellites. The resulting solution was purified by centrifugation at 8,000 rpm for 10 minutes and resuspended in 3.6 mM SDS solution to prevent aggregation. 1 mL of Janus nanoparticle solution consisting of AuNR core-Ag satellite double metal compartment and poly (aniline) compartment was centrifuged at 10,000 rpm for 10 minutes and transferred to 1 mL of deionized water. The colloidal solution was mixed with freshly prepared MGITC at a concentration range of 10 −5 to 10 −5.5 M, and incubated for 2 hours each. Selective adsorption on Ag satellite surfaces on AuNR by immobilization of MGITC on the surface of double metal nanoparticles consisting of AuNR core-Ag satellites via isothiocyanate groups (-N = C〓S) of the Raman dye I was.
<실시예 2> AuNP(AuNS) 코어-Ag 새틀라이트 이중 금속 나노입자 구획 및 고분자 구획을 포함하는 야누스 나노구조체의 합성Example 2 Synthesis of Janus Nanostructures Comprising AuNP (AuNS) Core-Ag Satellite Double Metal Nanoparticle Compartments and Polymer Compartments
시트르산염(citrate)-캡핑된 금 나노입자(Gold nanoparticles, AuNPs) 또는 금 나노구체(Gold nanospheres, AuNSs)는 시트르산염 환원 절차에 따라 합성되었다. 구체적으로, 염화 금 (III) 수화물의 모액(stock solution)을 100 mL의 탈이온수에 총 농도가 0.01 %이 되도록 첨가하고, 용액을 교반하며 끓이면서 1.5 ml의 1 % 시트르산 나트륨 용액을 신속하게 첨가하였다. 용액은 5 분 이내에 금 이온의 환원을 나타내는 적색으로 변하였고, 반응은 20 분 동안 더 진행되었다. 생성된 용액을 실온으로 냉각시켰다. 또한, AuNP 시드 입자의 리간드 매개 표면 제어 및 질산은과 아닐린 간의 산화-환원 반응에 의해 고분자 구획을 갖는 이중 금속 AuNP 코어-Ag 새틀라이트 나노 구조가 합성되었다. -SH 및 -NH2 그룹을 함유하는 리간드를 사용하여 계면 에너지를 조정함으로써 금속 나노입자의 표면 특성을 변형시켜, AuNP 시드 입자 상으로의 Ag 증착을 제어하였다. 구체적으로, 시트르산염-캡핑된 AuNP는 10 분 동안 10,000 rpm에서 원심분리되고 탈이온수에 재현탁되었다. AuNP 시드 위에 -SH 및 -NH2 그룹을 함유하는 소분자 리간드인 4-아미노티오페놀(4-aminothiophenol, ATP)을 최종 농도 10-5 M로 결합시켰다. 원심분리에 의한 정제 후, AuNP 코어-Ag 새틀라이트 이중 금속 구획과 폴리(아닐린) 구획으로 구성된 이중 금속-고분자 야누스 나노입자를 산화-환원에 기초한 표면 주형 중합을 통해 제조하였다. 구체적으로, 아닐린 및 SDS는 7.5 mM의 탈이온수에 각각 최종 농도 5 mM 및 0.9 mM로 용해시켰다. 이들 농축된 금속-리간드(AuNP-ATP) 복합체를 용액에 첨가하고 교반(voltexing)한 후, 질산은 용액 2.5 mL를 첨가하고 혼합하여 최종 농도가 2.5 mM가 되도록 하였다. 반응은 어두운 조건에서 실온에서 24 시간 동안 교반하지 않고 진행되었다. 반응액을 3.6mM SDS 용액에서 밤새 추가로 인큐베이션하여 이중 금속 AuNP 코어-Ag 새틀라이트 나노 구조의 한쪽에만 폴리(아닐린)이 편심 침착(eccentrically deposited)되도록 하였다. 생성된 용액을 8,000 rpm에서 10 분간 원심분리하여 정제하고, 응집을 방지하기 위해 3.6 mM의 SDS 용액에 재현탁시켰다. AuNP 코어-Ag 새틀라이트 이중 금속 구획 및 폴리(아닐린) 구획으로 이루어지는 야누스 나노입자 용액 1 mL를 10,000 rpm에서 10 분간 원심분리하고 탈이온수 1 mL에 옮겼다.Citrate-capped gold nanoparticles (AuNPs) or gold nanospheres (AuNSs) were synthesized according to the citrate reduction procedure. Specifically, a stock solution of gold (III) chloride hydrate was added to 100 mL of deionized water so that the total concentration was 0.01%, and rapidly adding 1.5 ml of 1% sodium citrate solution while stirring and boiling the solution. . The solution turned red within 5 minutes, indicating a reduction of gold ions, and the reaction proceeded further for 20 minutes. The resulting solution was cooled to room temperature. In addition, double metal AuNP core-Ag satellite nanostructures having polymer compartments were synthesized by ligand mediated surface control of AuNP seed particles and redox reaction between silver nitrate and aniline. The surface properties of the metal nanoparticles were modified by adjusting the interfacial energy using ligands containing -SH and -NH2 groups to control the deposition of Ag onto AuNP seed particles. Specifically, citrate-capped AuNPs were centrifuged at 10,000 rpm for 10 minutes and resuspended in deionized water. The small molecule ligand 4-aminothiophenol (ATP) containing -SH and -NH2 groups on the AuNP seed was bound to a final concentration of 10 -5 M. After purification by centrifugation, double metal-polymer Janus nanoparticles consisting of AuNP core-Ag satellite double metal compartments and poly (aniline) compartments were prepared via surface template polymerization based on redox. Specifically, aniline and SDS were dissolved in 7.5 mM deionized water at a final concentration of 5 mM and 0.9 mM, respectively. These concentrated metal-ligand (AuNP-ATP) complexes were added to the solution and stirred, followed by 2.5 mL of silver nitrate solution and mixed to a final concentration of 2.5 mM. The reaction proceeded without stirring for 24 hours at room temperature under dark conditions. The reaction was further incubated overnight in a 3.6 mM SDS solution so that poly (aniline) was eccentrically deposited on only one side of the double metal AuNP core-Ag satellite nanostructure. The resulting solution was purified by centrifugation at 8,000 rpm for 10 minutes and resuspended in 3.6 mM SDS solution to prevent aggregation. 1 mL of Janus nanoparticle solution consisting of AuNP core-Ag satellite double metal compartment and poly (aniline) compartment was centrifuged at 10,000 rpm for 10 minutes and transferred to 1 mL of deionized water.
<비교예 1> AuNR 코어-Ag 쉘 나노입자 및 고분자 구획을 포함하는 야누스 나노구조체의 합성Comparative Example 1 Synthesis of Janus Nanostructure Containing AuNR Core-Ag Shell Nanoparticles and Polymer Compartments
실시예 1과 동일한 방법으로 제조하되 시드 AuNR의 표면 특성을 PSS로 개질시키지 않은, 이중 금속 AuNR 코어-Ag 쉘 구획과 폴리(아닐린) 구획으로 구성된 이중 금속-고분자 야누스 나노입자를 산화-환원에 기초한 표면 주형 중합을 통해 제조하였다. 구체적으로, 아닐린 및 SDS는 7.5 mM의 탈이온수에 각각 최종 농도 5 mM 및 0.9 mM로 용해시켰다. 농축된 AuNR를 용액에 첨가하고 교반(voltexing)한 후, 질산은 용액 2.5 mL를 첨가하고 혼합하여 최종 농도가 2.5 mM이 되도록 하였다. 반응은 어두운 조건에서 실온에서 24 시간 동안 교반하지 않고 진행되었다. 반응액을 3.6mM SDS 용액에서 밤새 추가로 인큐베이션하여 AuNR 코어-Ag 쉘 이중 금속 나노 구조의 한쪽에만 폴리(아닐린)이 편심 침착(eccentrically deposited)되도록 하였다. 생성된 용액을 8,000 rpm에서 10 분간 원심분리하여 정제하고, 응집을 방지하기 위해 3.6 mM의 SDS 용액에 재현탁시켰다. AuNR 코어-Ag 쉘 이중 금속 구획 및 폴리(아닐린) 구획으로 이루어지는 야누스 나노입자 용액 1 mL를 10,000 rpm에서 10 분간 원심분리하고 탈이온수 1 mL에 옮겼다. 콜로이드 용액을 새로 준비한 MGITC와 10-5~10-5.5 M의 농도 범위로 혼합하고, 각각 2 시간 동안 인큐베이션하였다. 라만 염료의 이소티오시아네이트(isothiocyanate) 그룹(-N = C〓S)을 통해 AuNR 코어-Ag 쉘로 이루어지는 이중 금속 나노입자 표면에 MGITC를 고정시켜, AuNR 상의 Ag 쉘 표면에 선택적으로 흡착시켰다. Oxidation-reduction based double metal-polymer Janus nanoparticles consisting of a double metal AuNR core-Ag shell compartment and a poly (aniline) compartment, prepared in the same manner as in Example 1 but without modifying the surface properties of the seed AuNR with PSS Prepared via surface mold polymerization. Specifically, aniline and SDS were dissolved in 7.5 mM deionized water at a final concentration of 5 mM and 0.9 mM, respectively. Concentrated AuNR was added to the solution and stirred, followed by 2.5 mL of silver nitrate solution and mixed to a final concentration of 2.5 mM. The reaction proceeded without stirring for 24 hours at room temperature under dark conditions. The reaction was further incubated overnight in a 3.6 mM SDS solution so that poly (aniline) was eccentrically deposited on only one side of the AuNR core-Ag shell double metal nanostructures. The resulting solution was purified by centrifugation at 8,000 rpm for 10 minutes and resuspended in 3.6 mM SDS solution to prevent aggregation. 1 mL of Janus nanoparticle solution consisting of AuNR core-Ag shell double metal compartment and poly (aniline) compartment was centrifuged at 10,000 rpm for 10 minutes and transferred to 1 mL of deionized water. The colloidal solution was mixed with freshly prepared MGITC at a concentration range of 10 −5 to 10 −5.5 M, and incubated for 2 hours each. MGITC was immobilized on the surface of the double metal nanoparticles consisting of AuNR core-Ag shells through isothiocyanate groups (-N = C〓S) of the Raman dye and selectively adsorbed onto the Ag shell surface on AuNR.
<실시예 3> 전기유체역학(EHD) 분사를 통한 자성 나노입자(MNPs)와 자성 비드의 합성Example 3 Synthesis of Magnetic Nanoparticles (MNPs) and Magnetic Beads by Electrohydrodynamic (EHD) Injection
산화철 나노입자(Fe3O4)는 침전제로서 암모니아 수용액에서 1 : 2의 몰비로 혼합된 Fe2+와 Fe3+ 혼합물을 이용한 화학적 공침법(chemical coprecipitation)으로 제조하였다. 구체적으로, 0.86g의 염화 제1철4수화물(FeCl2) 및 2.35g의 염화 제2철(FeCl3)을 40mL의 탈이온수에서 교반하여 혼합하고, 질소 가스로 30 분 동안 탈기시켰다. 온도를 80 ℃로 올리고 교반하면서 수산화 암모니아(NH4OH) 5mL를 주사기로 첨가한 후 30 분 동안 가열하였다. 시트르산 1g을 반응 플라스크에 첨가하고, 반응 용액을 90 ℃로 가열한 후, 추가로 90 분 동안 교반하였다. 마지막으로, Fe3O4 자성 나노입자(MNPs)를 수백 가우스(Gauss)의 정자기장(static magnetic field) 하에서 2 회 탈이온수로 세척하였다. 또한, MNP 용액의 작은 분액을 자기장을 이용하여 농축시키고 고분자 용액에 첨가하고 전기유체역학(EHD) 분사하여 자성 비드를 제조하였다. 폴리(아크릴아미드-코-아크릴산)(poly(acrylamide-co-acrylic acid), 폴리(AAm-co-AA)) 4.5 w/v %는 탈이온수와 에틸렌 글리콜의 3 : 1 부피비 혼합물에서 제조하고, 농축된 MNP를 고분자 용액에 균일하게 현탁시켰다. 전기유체역학(EHD) 분사 공정을 위해 분산된 MNPs의 현탁액을 23 게이지(gage) 스테인리스 스틸 모세관이 있는 1.0 mL 주사기(BD, Franklin Lakes, USA)에 넣었다. 안정한 테일러 원뿔(Taylor cone) 및 원뿔 분사 모드(con-jet mode)를 달성하기 위해, 고분자 농도를 증가시키지 않고 고분자를 에틸렌 글리콜과 같은 점성 용매에 용해시킴으로써 최적화된 점도를 얻었다. 주사기에는 일정한 속도로 MNPs 현탁액을 흐르게 하는 마이크로 주사기 펌프 KDS-100(KD Scientific, Inc, USA)가 장착되었다. 포집 기판으로 두께 0.018 mm의 알루미늄 호일(Fisherbrand; Thermo Fisher Scientific, USA)을 사용하였다. 고전압 전원 NNC HV 30(Nano NC, Korea)을 이용하여 양전극에 연결된 모세관과 음전극에 연결된 알루미늄 호일 사이에 고전압을 가했다. 두 전극 사이의 거리는 20-25 cm였다. 고전압은 10-15 kV의 범위로 유지되었고, 두 용액의 유속은 0.08-0.15 ml/hour으로 유지되었다. 고해상도의 디지털 카메라(D-90, Nikon Corporation, Japan)를 사용하여 EHD 분사 중에 단상의 테일러 원뿔, jet stream 및 jet break-up을 시각화하고 캡처했다. EHD 분사 후, 생성된 자성 비드를 175 ℃에서 밤새 열가교(thermally crosslinked)시켰다. 마지막으로, 분말 형태의 자성 비드를 호일에서 긁어 수집하고 이후 실험에 사용하였다.Iron oxide nanoparticles (Fe 3 O 4 ) was prepared by chemical coprecipitation using a mixture of Fe 2 + and Fe 3 + mixed in a molar ratio of 1: 2 in an aqueous ammonia solution as a precipitant. Specifically, 0.86 g of ferrous chloride tetrahydrate (FeCl 2 ) and 2.35 g of ferric chloride (FeCl 3 ) were stirred and mixed in 40 mL of deionized water, and degassed with nitrogen gas for 30 minutes. The temperature was raised to 80 ° C. while stirring and 5 mL of ammonia hydroxide (NH 4 OH) was added by syringe and then heated for 30 minutes. 1 g citric acid was added to the reaction flask and the reaction solution was heated to 90 ° C. and then stirred for an additional 90 minutes. Finally, Fe 3 O 4 magnetic nanoparticles (MNPs) were washed twice with deionized water under a static magnetic field of several hundred Gauss. In addition, a small aliquot of the MNP solution was concentrated using a magnetic field, added to the polymer solution, and electrophoretic (EHD) injection to prepare magnetic beads. 4.5 w / v% of poly (acrylamide-co-acrylic acid, poly (AAm-co-AA)) was prepared in a 3: 1 volume mixture of deionized water and ethylene glycol, Concentrated MNP was uniformly suspended in the polymer solution. A suspension of dispersed MNPs for an electrohydrodynamic (EHD) spraying process was placed in a 1.0 mL syringe (BD, Franklin Lakes, USA) with a 23 gage stainless steel capillary. In order to achieve a stable Taylor cone and con-jet mode, optimized viscosity was obtained by dissolving the polymer in a viscous solvent such as ethylene glycol without increasing the polymer concentration. The syringe was equipped with a micro syringe pump KDS-100 (KD Scientific, Inc, USA) which flows the MNPs suspension at a constant rate. An aluminum foil (Fisherbrand; Thermo Fisher Scientific, USA) with a thickness of 0.018 mm was used as the collecting substrate. High voltage was applied between the capillary connected to the positive electrode and the aluminum foil connected to the negative electrode using a high voltage power supply NNC HV 30 (Nano NC, Korea). The distance between the two electrodes was 20-25 cm. The high voltage was maintained in the range of 10-15 kV and the flow rates of the two solutions were maintained at 0.08-0.15 ml / hour. High resolution digital cameras (D-90, Nikon Corporation, Japan) were used to visualize and capture single-phase Taylor cones, jet streams, and jet break-ups during EHD injection. After EHD injection, the resulting magnetic beads were thermally crosslinked overnight at 175 ° C. Finally, magnetic beads in powder form were collected by scraping off the foil and used for later experiments.
<실시예 4> Au 코어- Ag 새틀라이트 이중 금속 구획 및 고분자 구획을 포함하는 야누스 나노 구조의 특성 Example 4 Properties of Janus Nanostructure Including Au Core-Ag Satellite Double Metal Compartment and Polymer Compartment
편심 증착된 폴리(아닐린) 구획과 클러스터 나노 구조를 갖는 단일 Au-Ag 코어-쉘 나노입자의 광학 특성 측정을 위해 자외선 가시광선 분광기(UV-visible spectrometer, Cary-100 Bio, Varian Biotech, USA)를 이용하여 파장이 300~900 nm의 범위에서 변할 때 단일 나노입자와 그 클러스터의 UV-vis 흡수 스펙트럼을 확인하였다. 나노입자의 유체역학 직경 및 그 크기 분포는 633 nm 및 90 ° 산란 각에서 Ne-He 레이저를 사용한 동적 광 산란(dynamic light scattering, DLS)(Zeta-sizer Nano ZS90, Malvern Instruments, Malvern, UK)을 사용하여 분석했다. 또한 탈이온수의 표면 전하를 특정화하기 위해 제타(ζ) 전위 측정을 수행했다. 투과 전자 현미경 분석은 가속 전압 80~200 kV에서 작동하는 JEM-2100F FE-STEM(JEOL, Germany)을 사용하여 수행되었다. 나노입자의 평균 직경, 크기 분포 및 표면 형태는 0.5-30 kV의 집속된 빔을 갖는 주사전자현미경(scanning electron microscopy, SEM)(VEGA-SB3, TESCAN, 체코)에 의해 특정되었다. 이 나노입자는 K575X Turbo Sputter Coater(Emitech Ltd, Ashford, UK)를 사용하여 얇은 전도성 백금 층으로 코팅되었다. 모든 SERS 측정은 12.5 mW의 레이저 출력을 가진 자극 소스에 대해 632.8 nm의 파장(λ)에서 작동하는 Renishaw He-Ne 레이저가 장착된 Renishaw inVia 라만 현미경 시스템을 사용하여 수행되었다. Rayleigh 선은 수집 필터에 위치한 홀로그램 노치 필터(holographic notch filter)를 사용하여 수집된 SERS 스펙트럼에서 제거되었다. 라만 산란은 분광 해상도 1 cm-1의 전하 결합 소자(charge-coupled device, CCD) 카메라를 사용하여 얻었으며 모든 SERS 스펙트럼은 520 cm-1 실리콘 라인으로 보정되었다. SERS 스펙트럼은 20x 대물 렌즈를 사용하여 608-1738 cm-1의 파장 범위에서 유리 모세관에 레이저 스팟을 집중시키는 데 사용된 노출 시간의 1 초 동안 수집되었다.UV-visible spectrometer (Cary-100 Bio, Varian Biotech, USA) was used to measure the optical properties of single Au-Ag core-shell nanoparticles with eccentrically deposited poly (aniline) compartments and cluster nanostructures. When the wavelength was changed in the range of 300 ~ 900 nm, the UV-vis absorption spectrum of the single nanoparticles and their clusters were confirmed. The hydrodynamic diameter and size distribution of nanoparticles was determined using dynamic light scattering (DLS) (Zeta-sizer Nano ZS90, Malvern Instruments, Malvern, UK) using Ne-He laser at 633 nm and 90 ° scattering angles. Analyzed using. Zeta potential measurements were also performed to characterize the surface charge of deionized water. Transmission electron microscopy analysis was performed using JEM-2100F FE-STEM (JEOL, Germany) operating at an acceleration voltage of 80-200 kV. The average diameter, size distribution and surface morphology of the nanoparticles were characterized by scanning electron microscopy (SEM) (VEGA-SB3, TESCAN, Czech Republic) with a focused beam of 0.5-30 kV. The nanoparticles were coated with a thin layer of conductive platinum using a K575X Turbo Sputter Coater (Emitech Ltd, Ashford, UK). All SERS measurements were performed using a Renishaw inVia Raman microscope system equipped with a Renishaw He-Ne laser operating at a wavelength (λ) of 632.8 nm for a stimulus source with a laser power of 12.5 mW. Rayleigh lines were removed from the collected SERS spectrum using a holographic notch filter located in the acquisition filter. Raman scattering was obtained using a charge-coupled device (CCD) camera with a spectral resolution of 1 cm −1 and all SERS spectra were corrected with a 520 cm −1 silicon line. SERS spectra were collected for 1 second of exposure time used to focus the laser spot on the glass capillary in the wavelength range of 608-1738 cm −1 using a 20 × objective lens.
그 결과, 각 나노입자별 ζ 전위 및 유체역학 직경은 하기 표 2와 같았다.As a result, the ζ potential and the hydrodynamic diameter of each nanoparticle were as shown in Table 2 below.
ξ-potential(mV)ξ-potential (mV) hydrodynamic diameter(nm)hydrodynamic diameter (nm)
AuNRAuNR 36.6±0.736.6 ± 0.7 49.9±0.9, 1.5±0.149.9 ± 0.9, 1.5 ± 0.1
AuNR-PSSAuNR-PSS -36.7±1.1-36.7 ± 1.1 63.37±0.5, 2.8±0.163.37 ± 0.5, 2.8 ± 0.1
AuNR-PSS Ag PANI(polyaniline)AuNR-PSS Ag PANI (polyaniline) -26.5±0.3-26.5 ± 0.3 73.0±0.8, 3.1±0.173.0 ± 0.8, 3.1 ± 0.1
AuNPAuNP -26.8±1.1-26.8 ± 1.1 19.0±0.819.0 ± 0.8
AuNP-ATPAuNP-ATP -28.2±1.2 -28.2 ± 1.2 33.3±0.433.3 ± 0.4
AuNP-ATP Ag PANI(polyaniline)AuNP-ATP Ag PANI (polyaniline) -25.2±0.7-25.2 ± 0.7 72.6±0.672.6 ± 0.6
도 11은 Au 나노입자, PSS 또는 ATP 코팅된 Au 나노입자 및 Au 코어-Ag 새틀라이트 이중 금속 구획 및 고분자 구획을 포함하는 야누스 나노구조체의 UV-Vis 흡수 스펙트럼 및 유체역학 직경을 나타낸다. 도 11 (a)에서 보듯이 AuNR의 흡수 스펙트럼은 PSS 결합에 따라 변화하였다. AuNRs의 길이 방향 국소 표면 플라즈몬 공명(local surface plasmon resonance, LSPR) 피크는 PSS로 코팅된 후 666nm에서 664nm로 청색-편이되어, AuNR이 부분적으로 PSS로 감싸져 있어 은 환원 위치를 제공하는 것을 나타냈다. 또한, 프로세스 중에 추가 피크가 관찰되지 않았으므로 AuNR 응집 또는 클러스터링은 발생하지 않았다. 금속 나노입자가 PSS로 완전히 코팅되었을 때, local dielectric function의 증가로 인해 LSPR 피크의 적색-편이가 관찰되었다. 그러나, PSS로 완전히 감싸진 AuNR은 은 이온이 코어 금속 나노입자로 환원되는 것을 막았다. 반면에, 불충분한 PSS 코팅은 정전기적 상호 작용으로 인해 AuNR의 침전을 촉발시켰다. 이와 관련하여, 최적 조건에서 PSS의 적절한 농도는 신중하게 고려되었다. 또한, 은 이온과 아닐린 단량체의 산화-환원 반응을 통해 Au 코어-Ag 새틀라이트 이중 금속 구획 및 고분자 구획을 포함하는 야누스 나노구조체의 합성 후, 새로운 Ag 흡수 피크는 380 nm 내지 480 nm의 범위에서 나타났고, 525 nm 및 664 nm에서의 AuNR의 종축 및 횡축 LSPR 피크는 청색-편이되어 각각 508 nm 및 595 nm이었다. 이러한 UV-Vis 흡수 변화는 MNP 용액의 청색에서 갈색으로의 색상 변화와 일치하며, Au-Ag의 이중 금속 야누스 나노 구조의 존재를 나타내었다. 또한 동적 광 산란(DLS) 및 ζ 전위 측정을 수행하여 AuNR, PSS 코팅된 AuNR 및 이의 이중 금속 코어-새틀라이트 야누스 나노 구조의 유체역학 직경, 크기 분포 및 표면 전하를 분석했다. 도 11 (b)와 표 2에서 볼 수 있듯이, AuNR의 종축과 횡축의 평균 직경은 각각 1.5 ± 0.1 nm, 49.9 ± 0.9 nm이고, PSS 코팅된 AuNR의 평균 직경은 2.8 ± 0.1 nm, 63.4 ± 0.5 nm였다. 또한, 이중 금속 코어-새틀라이트 야누스 나노 구조의 평균 직경은 비구형 형태로 인해 3.1 ± 0.1 nm, 73.0 ± 0.8 nm이었다. AuNRs, PSS-코팅된 AuNRs 및 이의 이중 금속 코어-새틀라이트 야누스 나노 구조의 ζ 전위 값은 각각 36.6 ± 0.7 nm, -36.7 ± 1.1 nm 및 -26.5 ± 0.3 nm이었다. AuNR 표면에 음으로 하전된 PSS가 존재하기 때문에 PSS로 코팅된 AuNR의 ζ 전위가 급격하게 감소했다. 은 이온이 고분자 리간드 결합된 AuNR에 포획되어 산화 환원 반응에 의해 환원됨에 따라, AuNR에 존재하는 음전하가 감소되어 고분자 구획을 갖는 이중 금속 AuNR 코어-Ag 새틀라이트 야누스 나노구조체의 ζ 전위 값이 감소되었다. 유사하게, 코어-새틀라이트 야누스 나노 구조를 위해 시트르산-캡핑된 AuNP는 작은 리간드인 ATP로 기능화되었다. 도 11 (c)에 도시된 바와 같이, 524 nm에서 시트르산-캡핑된 AuNP의 UV-vis 흡수 스펙트럼은 526 nm로 적색-편이되어, ATP가 AuNP 표면 상에 흡착되었음을 뒷받침하였다. 고분자 구획을 갖는 이중 금속 코어-새틀라이트 야누스 나노 구조의 합성 후, Au-Ag 계면으로 인해 Ag 플라즈몬 피크와 추가적인 피크가 400 ~ 550 nm 범위에서 나타났다. 또한, 도 11 (d) 및 표 2에 나타낸 바와 같이, AuNPs, ATP 코팅된 AuNPs 및 이의 이중 금속 코어-새틀라이트 야누스 나노 구조의 평균 직경은 각각 19.0 ± 0.8nm, 33.3 ± 0.4nm 및 72.6 ± 0.6nm였으며, ζ 전위 값은 각각 -26.8 ± 1.1 mV, -28.2 ± 1.2 mV 및 -25.2 ± 0.7 mV였다.FIG. 11 shows UV-Vis absorption spectra and hydrodynamic diameters of Janus nanostructures comprising Au nanoparticles, PSS or ATP coated Au nanoparticles and Au core-Ag satellite double metal compartments and polymer compartments. As shown in FIG. 11 (a), the absorption spectrum of AuNR changed according to PSS binding. The longitudinal local surface plasmon resonance (LSPR) peaks of AuNRs were blue-shifted from 666 nm to 664 nm after being coated with PSS, indicating that AuNR was partially wrapped with PSS to provide a silver reduction site. In addition, AuNR aggregation or clustering did not occur since no additional peak was observed during the process. When metal nanoparticles were completely coated with PSS, red-shifts of LSPR peaks were observed due to an increase in local dielectric function. However, AuNR completely wrapped with PSS prevented silver ions from being reduced to core metal nanoparticles. On the other hand, insufficient PSS coating triggered the precipitation of AuNR due to electrostatic interaction. In this regard, the proper concentration of PSS at optimal conditions has been carefully considered. In addition, after the synthesis of the Janus nanostructures comprising Au core-Ag satellite double metal compartments and polymer compartments through redox reactions of silver ions and aniline monomers, new Ag absorption peaks appear in the range of 380 nm to 480 nm. The longitudinal and transverse LSPR peaks of AuNR at 525 nm and 664 nm were blue-shifted to 508 nm and 595 nm, respectively. This UV-Vis absorption change is consistent with the blue to brown color change of the MNP solution, indicating the presence of a double metal Janus nanostructure of Au-Ag. Dynamic light scattering (DLS) and ζ potential measurements were also performed to analyze the hydrodynamic diameter, size distribution and surface charge of AuNR, PSS coated AuNR and its double metal core-satellite Janus nanostructures. As can be seen in Figure 11 (b) and Table 2, the average diameter of the longitudinal axis and the transverse axis of AuNR is 1.5 ± 0.1 nm, 49.9 ± 0.9 nm, respectively, the average diameter of PSS coated AuNR is 2.8 ± 0.1 nm, 63.4 ± 0.5 nm. In addition, the average diameter of the double metal core-satellite Janus nanostructures was 3.1 ± 0.1 nm, 73.0 ± 0.8 nm due to the aspherical morphology. The ζ potential values of AuNRs, PSS-coated AuNRs and their double metal core-satellite Janus nanostructures were 36.6 ± 0.7 nm, -36.7 ± 1.1 nm and -26.5 ± 0.3 nm, respectively. The presence of negatively charged PSS on the AuNR surface drastically reduced the ζ potential of the AuNR coated with PSS. As the silver ions were trapped in the polymer ligand-bound AuNR and reduced by the redox reaction, the negative charge present in the AuNR was reduced, which reduced the ζ potential value of the double metal AuNR core-Ag satellite Janus nanostructure with polymer compartment. . Similarly, citric acid-capped AuNPs for core-satellite Janus nanostructures were functionalized with a small ligand, ATP. As shown in FIG. 11 (c), the UV-vis absorption spectrum of citric acid-capped AuNP at 524 nm red-shifted to 526 nm, supporting that ATP was adsorbed on the AuNP surface. After synthesis of double metal core-satellite Janus nanostructures with polymer compartments, Ag plasmon peaks and additional peaks appeared in the 400-550 nm range due to the Au-Ag interface. In addition, as shown in Fig. 11 (d) and Table 2, the average diameter of AuNPs, ATP coated AuNPs and their double metal core-satellite Janus nanostructures were 19.0 ± 0.8 nm, 33.3 ± 0.4 nm and 72.6 ± 0.6, respectively. nm, and ζ potential values were −26.8 ± 1.1 mV, −28.2 ± 1.2 mV, and −25.2 ± 0.7 mV, respectively.
도 12는 고감도 SERS 기반 바이오 센싱 조건을 최적화하기 위한, (a) MGITC로 표지된 AuNR 코어-Ag 새틀라이트와 (c) ATP로 표지된 AuNP 코어-Ag 새틀라이트의 라만 염료 농도에 따른 상대적 라만 이동을 나타낸다. MGITC 농도가 증가함에 따라 SERS 강도는 10-7 M에서 10-5.5 M까지의 농도 범위에서 증가하였다. 그러나 MGITC로 표지된 AuNR 코어-Ag 새틀라이트의 콜로이드 안정성은 농도 10-5 M의 MGITC에서 MGITC 유도 응집으로 인해 감소했다. 도 12 (b)는 농도 10-5.5 M의 MGITC에서 이중 금속 AuNR 코어-Ag 새틀라이트와 -Ag 쉘 나노입자(비교예 1)의 상대적 라만 이동을 나타낸다. Ag 새틀라이트 간의 입자 간 접합은 전자기장 향상을 제공하여, 핫 스팟(hot spot)으로 인해 SERS 강도가 5 배 증가하였다. 유사하게, 이중 금속 AuNP 코어-Ag 새틀라이트의 상대적 라만 이동은 도 12 (c)에서 보는 바와 같이 10-6 M에서 2.5×10-6 M까지의 농도 범위에서 증가했다. 이들 나노 구조의 SERS 강도는 농도 5.0×10-6 M의 ATP에서 침적으로 인해 크게 감소했다. 합성 과정에서 ATP가 코팅된 AuNP의 표면에 은 새틀라이트가 형성되어 ATP가 AuNP 코어와 Ag 새틀라이트 사이의 내부 틈에 묻혔다. 그러므로, 도 12 (d)와 같이 라만 활성 ATP가 위치한 이 위치에서 전자기장의 큰 향상이 관찰될 수 있다.FIG. 12 shows relative Raman shifts according to Raman dye concentrations of (a) AuNR core-Ag satellites labeled with MGITC and (c) AuNP core-Ag satellites labeled with ATP to optimize high sensitivity SERS based biosensing conditions. Indicates. As MGITC concentrations increased, the SERS intensity increased in the concentration range from 10 −7 M to 10 −5.5 M. However, it labeled with the colloidal stability of the core MGITC AuNR -Ag satellites was reduced due to MGITC induced aggregation at a concentration of 10 -5 M MGITC. Figure 12 (b) shows the relative Raman shift of double metal AuNR core-Ag satellites and -Ag shell nanoparticles (Comparative Example 1) at MGITC with a concentration of 10 -5.5 M. The interparticle bonding between Ag satellites provides electromagnetic field enhancement, resulting in a five-fold increase in SERS strength due to hot spots. Similarly, the relative Raman shift of the double metal AuNP core-Ag satellites increased in the concentration range from 10 −6 M to 2.5 × 10 −6 M as shown in FIG. 12 (c). The SERS strength of these nanostructures was greatly reduced due to deposition at ATP concentrations of 5.0 × 10 −6 M. During the synthesis, silver satellites formed on the surface of the ATP-coated AuNP so that ATP was buried in the inner gap between the AuNP core and Ag satellite. Therefore, a large improvement in the electromagnetic field can be observed at this position where the Raman active ATP is located as shown in FIG. 12 (d).
도 13은 (a) AuNRs, (b) 이중 금속 AuNR 코어-Ag 나노입자 및 (c-h) 다양한 배율에서의 -Ag 새틀라이트의 투과전자현미경(transmission electron microscopy, TEM) 이미지를 나타낸다. AuNR 코어와 Ag 새틀라이트의 이중 금속 구획이 명확하게 보이고, 뚜렷한 고분자 구획이 배경과 대비하여 회색으로 보였다. 또한, 고각 환형 암장 스캐닝 TEM(high-angle annular dark-field scanning TEM, HAADF-STEM)을 수행하여 이중 금속 구획의 조성을 확인하였다. 높은 원자 번호로 인해 AuNR 코어가 Ag 새틀라이트보다 밝게 보였다.FIG. 13 shows transmission electron microscopy (TEM) images of (a) AuNRs, (b) double metal AuNR core-Ag nanoparticles, and (c-h) -Ag satellites at various magnifications. The double metal compartments of the AuNR core and Ag satellites were clearly visible and the distinct polymer compartments were grayed out against the background. In addition, high-angle annular dark-field scanning TEM (HAADF-STEM) was performed to confirm the composition of the double metal compartment. Due to the high atomic number, the AuNR cores appeared brighter than Ag satellites.
도 14는 (a) AuNPs, (b) 이중 금속 AuNP 코어 -Ag 나노입자 및 (c-h) 다양한 배율에서의 -Ag 새틀라이트의 투과전자현미경(TEM) 이미지를 나타낸다. AuNP 코어와 Ag 새틀라이트의 이중 금속 구획이 명확하게 보이고, 뚜렷한 고분자 구획이 배경과 대비하여 회색으로 보였다. 또한, 이중 금속 구획의 조성을 확인하기 위해 고각 환형 암장 스캐닝 TEM(HAADF-STEM)을 수행하였다. 높은 원자 번호로 인해 AuNP 코어가 Ag 새틀라이트보다 밝게 보였다.14 shows transmission electron microscope (TEM) images of (a) AuNPs, (b) double metal AuNP core -Ag nanoparticles and (c-h) -Ag satellites at various magnifications. The double metal compartments of the AuNP core and Ag satellites were clearly visible and the distinct polymer compartments were grayed out against the background. In addition, a high angle annular dark scanning TEM (HAADF-STEM) was performed to confirm the composition of the double metal compartment. The high atomic number made AuNP cores look brighter than Ag satellites.
<실시예 5> 자성 비드 및 Au 코어- Ag 새틀라이트 이중 금속 구획 및 고분자 구획을 포함하는 야누스 나노구조체의 항체 결합Example 5 Antibody Binding of Janus Nanostructures Containing Magnetic Beads and Au Core-Ag Satellite Double Metal Compartments and Polymer Compartments
Au 코어- Ag 새틀라이트 이중 금속 구획 및 고분자 구획을 포함하는 야누스 나노구조체와 자성 비드는 2 종류의 표적 단백질인 CEA(carcinoembryonic antigen)에 대한 단클론 항체(mAb)와 다클론 항체(pAbs)와 각각 결합되었다. 먼저, 폴리(아닐린) 구획에 잔류하는 아민기와 항체에 존재하는 카르복실기 간의 아미드 결합 반응을 이용하여 Au 코어-Ag 새틀라이트 이중 금속 구획 및 고분자 구획을 포함하는 야누스 나노구조체의 고분자 구획과 항-인간 CEA 다클론 항체(anti-human CEA pAb) 간의 공유 결합(bioconjugation) 반응을 수행하였다. 이러한 결합 반응은 EDC(1-ethyl-3-(3-dimethylaminopropyl) carbodiimide)와 sulfo-NHS(sulfo-N-hydroxysuccinimide ester) 화학을 기반으로 하였다. 구체적으로, EDC 60 mM과 sulfo-NHS 9.2 mM을 함유한 pH 7.4의 PBS 10 mM을 포함하는 이중 금속-고분자 야누스 나노입자의 분산 용액에 2.0 mg/ml의 항-인간 CEA pAb 5 ㎕를 첨가하고, 3 시간 동안 교반하여 전체 pAb 농도가 10 ㎍/㎖가 되도록 하였다. 항-인간 CEA pAb- 결합된 야누스 나노구조체를 3,000 rpm에서 원심분리하여 세척하고 PBS로 재현탁하였다. 또한, 175 ℃에서 밤새 열 안정화한 고분자 나노입자 상의 잔류 카르복실기를 활성화시킴으로써 자성 비드를 항-인간 CEA mAb와 화학적으로 결합시켰다. 구체적으로, 1.25 mg의 자성 비드를 0.9ml의 PBS에 현탁시키고, 진폭 20.0 %에서 3/3 초 온/오프 사이클을 사용한 팁-초음파 발생장치(sonicator)를 사용하여 2 분 동안 초음파 처리 하였다. 균일하게 현탁된 자성 비드를 5.0 mM EDC 및 5.0 mM sulfo-NHS와 혼합하고 1 시간 동안 교반하였다. 3.56 ㎎/㎖의 항-인간 CEA mAb를 100 ㎕의 PBS 완충액으로 희석시킨 다음, 자성 비드 용액에 최종 농도가 8.9 ㎍/㎖가 되도록 천천히 첨가하고 1 시간 동안 교반하였다. 결합되지 않은 항-인간 CEA mAb를 자기장을 사용하여 분리하고, 항체-결합된 자성 비드를 CEA의 SERS- 기반 바이오 센싱을 위해 PBS로 재현탁시켰다.Janus nanostructures and magnetic beads, including Au core-Ag satellite double metal compartments and polymer compartments, bind to monoclonal antibodies (mAb) and polyclonal antibodies (pAbs) against two types of target proteins, carcinoembryonic antigens (CEA), respectively It became. First, the polymer compartment and the anti-human CEA of the Janus nanostructure including Au core-Ag satellite double metal compartment and polymer compartment are utilized by the amide bond reaction between the amine group remaining in the poly (aniline) compartment and the carboxyl group present in the antibody. A bioconjugation reaction between polyclonal antibodies (anti-human CEA pAbs) was performed. This binding reaction was based on the chemistry of EDC (1-ethyl-3- (3-dimethylaminopropyl) carbodiimide) and sulfo-N-hydroxysuccinimide ester (sulfo-NHS). Specifically, 5 μl of 2.0 mg / ml anti-human CEA pAb was added to a dispersion solution of double metal-polymer Janus nanoparticles containing 10 mM PBS at pH 7.4 containing 60 mM EDC and 9.2 mM sulfo-NHS. After stirring for 3 hours, the total pAb concentration was 10 μg / ml. Anti-human CEA pAb-coupled Janus nanostructures were washed by centrifugation at 3,000 rpm and resuspended in PBS. In addition, magnetic beads were chemically bound to anti-human CEA mAbs by activating residual carboxyl groups on polymer nanoparticles that were heat stabilized at 175 ° C. overnight. Specifically, 1.25 mg of magnetic beads were suspended in 0.9 ml of PBS and sonicated for 2 minutes using a tip-sonicator using a 3/3 second on / off cycle at 20.0% amplitude. The uniformly suspended magnetic beads were mixed with 5.0 mM EDC and 5.0 mM sulfo-NHS and stirred for 1 hour. 3.56 mg / ml anti-human CEA mAb was diluted with 100 μl of PBS buffer, then slowly added to the magnetic bead solution to a final concentration of 8.9 μg / ml and stirred for 1 hour. Unbound anti-human CEA mAbs were isolated using a magnetic field and antibody-bound magnetic beads were resuspended in PBS for SERS-based biosensing of CEA.
<실시예 6> Au 코어- Ag 새틀라이트 이중 금속 구획 및 고분자 구획을 포함하는 야누스 나노구조체와 자성 비드를 이용한 표적 단백질 CEA에 대한 SERS 기반 바이오 센싱Example 6 SERS-Based Biosensing of Target Protein CEA Using Janus Nanostructures and Magnetic Beads Containing Au Core-Ag Satellite Double Metal Compartments and Polymer Compartments
라만 리포터로 표지된 이중 금속 Au 코어-Ag 새틀라이트 구획 및 고분자 구획을 포함하는 야누스 나노구조체를 표적 단백질인 CEA의 정량 분석을 위해 SERS 나노프로브로 사용하였으며, 항-인간 CEA mAb와 결합된 자성 비드를 사용하여 샌드위치형 면역 복합체를 형성함으로써 분리 도구로 면역 복합체를 선택적으로 분리하였다. 먼저, 항-인간 CEA mAb 항체가 결합된 자성 비드를 22.5~67.5 ng/ml 범위의 상이한 3 가지 농도의 CEA를 함유하는 완충액에 첨가하고, 1 시간 동안 반응시켰다. 표적 단백질을 외부 자기장으로 세척하고 새로운 PBS 완충액으로 재현탁시켰다. 이어서, 표적 단백질 및 자성 비드가 형성된 각각의 면역 복합체에 항-인간 CEA pAb가 결합된 SERS 나노프로브를 첨가하고 1 시간 동안 반응시켜 자성 비드, 표적 단백질 및 SERS 나노프로브로 구성된 샌드위치형 면역 복합체를 제조하였다(도 10 (d)). 결합되지 않은 SERS 나노프로브를 자기장을 사용하여 제거하고, 생성물인 샌드위치형 면역 복합체를 SERS 측정을 위해 PBS로 재현탁하였다. 표적 단백질이 없는 SERS 나노프로브의 선택적인 결합 능력을 평가하기 위해 대조군(control)에 대한 실험 또한 함께 수행되었다.Janus nanostructures comprising Raman reporter labeled double metal Au core-Ag satellite compartments and polymer compartments were used as SERS nanoprobes for quantitative analysis of the target protein CEA and magnetic beads bound to anti-human CEA mAb. Immune complexes were selectively isolated with a separation tool by forming sandwiched immune complexes. First, magnetic beads bound with anti-human CEA mAb antibody were added to a buffer containing three different concentrations of CEA ranging from 22.5-67.5 ng / ml and allowed to react for 1 hour. The target protein was washed with an external magnetic field and resuspended in fresh PBS buffer. Subsequently, SERS nanoprobe with anti-human CEA pAb bound was added to each immune complex in which the target protein and the magnetic beads were formed and reacted for 1 hour to prepare a sandwich immune complex consisting of the magnetic beads, the target protein and the SERS nanoprobe. (FIG. 10 (d)). Unbound SERS nanoprobes were removed using a magnetic field and the product sandwiched immune complex was resuspended in PBS for SERS measurements. Experiments with controls were also performed to assess the selective binding capacity of SERS nanoprobes without the target protein.
도 15는 CEA 농도에 따른 서로 다른 표적 농도의 라만 스펙트럼 및 라만 강도의 플롯을 나타낸다. 22.5~67.5 ng/ml 범위에서 CEA 농도가 증가함에 따라 MGITC- 표지된 Au 코어-Ag 새틀라이트 이중 금속 구획 및 고분자 구획을 포함하는 야누스 나노구조체의 라만 강도는 샌드위치형 면역 복합체의 형성 증가로 인해 증가하였다. 대조군에 대한 실험은 CEA가 없을 때 수행되었다. 또한 1618 cm-1에서 MGITC의 대표적인 SERS 피크 강도는 CEA 농도와 함께 선형적으로 증가했다(R2 = 0.9954).15 shows a plot of Raman spectra and Raman intensity of different target concentrations according to CEA concentrations. As the CEA concentration increased in the range of 22.5-67.5 ng / ml, Raman strength of Janus nanostructures containing MGITC-labeled Au core-Ag satellite double metal compartments and polymer compartments increased due to increased formation of sandwich immune complexes. It was. Experiments on the control were performed in the absence of CEA. In addition, the representative SERS peak intensity of MGITC at 1618 cm −1 increased linearly with CEA concentration (R 2 = 0.9954).
제 33rd 발명: invent:
<실시예 1> 금 나노클러스터(gold nanoparticle clusters, AuNCs) 제조Example 1 Preparation of gold nanoparticle clusters (AuNCs)
금 나노입자(gold nanoparticles, AuNPs)는 시트르산(citrate) 환원 절차에 따라 합성되었다. 구체적으로, 염화 금(III) 수화물(HAuCl4.3H2O, Sigma-Aldrich, USA)의 모액(stock solution)을 100mL의 탈이온수에 총 농도 0.01 %가 되도록 첨가하고, 용액을 1.5 ml의 1 % 시트르산 나트륨(sodium citrate) 용액을 신속하게 첨가하면서 강하게 교반하며 끓였다. 용액은 5 분 이내에 금 이온의 환원을 나타내는 적색으로 변하였고, 반응은 20 분 동안 더 진행되었다. 생성된 용액을 실온으로 냉각시켰다. 또한, AuNP 클러스터는 AuNP를 라만 염료의 존재 하에서 응집시켜 제조하였다. 유리 바이알 내 시드(seed) AuNP를 라만 활성 분자인 MGITC(Malachite green isothiocyanate, Invitrogen, USA)의 모액, 질산은 및 시트르산 나트륨을 혼합하여 최종 농도가 1.5 μM 또는 0.75 μM MGITC, 0.5 mM 질산은 및 1.0 mM 시트르산 나트륨이 되도록 하였다. 혼합물을 5 분 동안 교반한 후 바이알을 10-60 분 동안 95℃로 가열하였다. 가열하는 동안 작은 분액(aliquots)을 공지된 간격으로 회수하여 MGITC를 갖는 금 나노클러스터의 UV-Vis 흡수 밴드 및 라만 강도를 특정하였다. 동일한 방법으로 RBITC(rhodamine B isothiocyanate, Sigma-Aldrich, USA)를 갖는 AuNP 클러스터는 최종 농도가 3.8 μM 또는 1.9 μM RBITC가 되도록 제조되었다. 충분한 클러스터링 후, 반응 용액을 실온으로 급속히 냉각시키고 0.5 % BSA를 첨가하여 클러스터를 안정화시켜 이후의 응집을 막았다.Gold nanoparticles (AuNPs) were synthesized according to the citric acid reduction procedure. Specifically, a stock solution of gold (III) chloride hydrate (HAuCl4.3H2O, Sigma-Aldrich, USA) is added to 100 mL of deionized water to a total concentration of 0.01%, and the solution is added to 1.5 ml of 1% sodium citrate (sodium citrate) solution was added rapidly and boiled with vigorous stirring. The solution turned red within 5 minutes, indicating a reduction of gold ions, and the reaction proceeded further for 20 minutes. The resulting solution was cooled to room temperature. AuNP clusters were also prepared by agglomeration of AuNPs in the presence of Raman dyes. Seed AuNPs in glass vials were mixed with the mother liquor, silver nitrate, and sodium citrate of the Raman active molecule Malachite green isothiocyanate (Invitrogen, USA), resulting in a final concentration of 1.5 μM or 0.75 μM MGITC, 0.5 mM silver nitrate and 1.0 mM citric acid. Sodium. The mixture was stirred for 5 minutes and then the vial was heated to 95 ° C. for 10-60 minutes. Small aliquots were collected at known intervals during heating to specify the UV-Vis absorption band and Raman intensity of the gold nanoclusters with MGITC. In the same way, AuNP clusters with RODC (rhodamine B isothiocyanate, Sigma-Aldrich, USA) were prepared with a final concentration of 3.8 μM or 1.9 μM RBITC. After sufficient clustering, the reaction solution was rapidly cooled to room temperature and 0.5% BSA was added to stabilize the cluster to prevent subsequent aggregation.
<실시예 2> 이중 금속 나노클러스터-고분자의 비대칭형 야누스 나노프로브 제조Example 2 Preparation of Asymmetric Janus Nanoprobe of Double Metal Nanocluster-Polymer
Au 코어-Ag 쉘의 이중 금속 나노클러스터 구획과 폴리(아닐린) 구획으로 구성된 비대칭형 야누스 나노클러스터-고분자 나노입자는 산화-환원 반응에 기초한 표면 주형 중합을 통해 제조되었다. Au 코어-Ag 쉘을 제조하기 위해, 실시예 1의 BSA로 안정화된 AuNP 클러스터 용액 15 mL을 7,000 rpm에서 5 분간 원심분리하여 농축시킨 후, 상등액을 제거하였다. 7.5 mL의 탈이온수에 아닐린과 SDS를 최종 농도가 각각 5 mM과 0.9 mM가 되도록 용해시켰다. 제조된 용액에 농축된 AuNP 클러스터를 첨가한 후, 간단히 교반하고(voltexing), 질산은 용액 2.5 ml을 첨가하고 혼합하여 최종 농도가 2.5 mM가 되도록 하였다. 반응은 어두운 조건에서 실온에서 24 시간 동안 교반하지 않고 진행되었다. 이때 Au 코어에 Ag 쉘이 형성되었다. 반응액을 3.6 mM SDS 용액에서 밤새 인큐베이션하여 Au 시드의 한쪽에만 폴리(아닐린)을 편심 증착(eccentrically deposited)하였다. 계면활성제인 SDS는 폴리(아닐린)-Ag 및 폴리(아닐린)-물인 2개의 인접한 상 사이의 계면 장력에 영향을 미치고, 총 표면 에너지를 최소화하기 위해 Au 시드의 한 면에 별도의 폴리(아닐린) 구획이 형성되었다. 그 결과 생성된 용액을 8,000 rpm에서 10 분간 원심분리하여 정제하고, 응집을 방지하기 위해 3.6 mM의 SDS 용액에 재현탁시켰다.Asymmetric Janus nanocluster-polymer nanoparticles consisting of a double metal nanocluster compartment and a poly (aniline) compartment of an Au core-Ag shell were prepared via surface template polymerization based on redox reactions. To prepare an Au core-Ag shell, 15 mL of the BSA stabilized AuNP cluster solution of Example 1 was concentrated by centrifugation at 7,000 rpm for 5 minutes and then the supernatant was removed. Aniline and SDS were dissolved in 7.5 mL of deionized water to a final concentration of 5 mM and 0.9 mM, respectively. Concentrated AuNP clusters were added to the prepared solution, then briefly voltexed, and 2.5 ml of silver nitrate solution was added and mixed to a final concentration of 2.5 mM. The reaction proceeded without stirring for 24 hours at room temperature under dark conditions. At this time, an Ag shell was formed in the Au core. The reaction was incubated overnight in a 3.6 mM SDS solution to eccentrically deposit poly (aniline) on only one side of the Au seed. SDS, a surfactant, affects the interfacial tension between two adjacent phases, poly (aniline) -Ag and poly (aniline) -water, and separates poly (aniline) on one side of the Au seed to minimize total surface energy. A compartment was formed. The resulting solution was purified by centrifugation at 8,000 rpm for 10 minutes and resuspended in 3.6 mM SDS solution to prevent aggregation.
최종 농도 1.5 μM의 MGITC로 유도된 이중 금속 나노클러스터를 포함하는 비대칭형 야누스 나노구조체의 TEM 이미지를 도 19에 나타내었다. 도 19 (a) 및 (b)에서 보여지듯이, Au 나노클러스터를 BSA 코팅하지 않은 경우, Au 코어-Ag 쉘을 가진 이중 금속 나노클러스터가 잘 형성되지 않았다. 그러나, Au 나노클러스터를 BSA로 코팅하면, 도 19 (c) 및 (d)에 도시된 바와 같이, 이중 금속 나노클러스터 구획-고분자 구획으로 구성된 비대칭형 야누스 나노구조체가 형성되었다. 유사하게, 최종 농도 3.8 μM의 RBITC에서 RBITC로 유도된 Au 나노클러스터로부터 비대칭형 야누스 나노구조체가 산화 환원 반응을 통해 형성되었다. TEM images of the asymmetric Janus nanostructures including the double metal nanoclusters derived with MGITC at a final concentration of 1.5 μM are shown in FIG. 19. As shown in FIGS. 19A and 19B, when the Au nanoclusters were not BSA coated, the double metal nanoclusters having the Au core-Ag shells were not well formed. However, coating Au nanoclusters with BSA resulted in the formation of an asymmetric Janus nanostructure consisting of a double metal nanocluster compartment-polymer compartment, as shown in FIGS. 19 (c) and (d). Similarly, asymmetric Janus nanostructures were formed via redox reactions from the RBITC-derived Au nanoclusters at a final concentration of 3.8 μM RBITC.
도 20 (a) 및 (b)는 BSA 코팅이 없는 경우, 비대칭형 야누스 나노구조체가 존재하지 않음을 나타내었다. 그러나 도 20 (c) 및 (d)에 도시된 바와 같이, BSA로 MNP 클러스터를 안정화시킨 경우, 비대칭형 고분자 구획을 갖는 야누스 나노구조체가 형성되었다.20 (a) and (b) show that in the absence of the BSA coating, there is no asymmetric Janus nanostructure. However, as shown in FIGS. 20 (c) and (d), when stabilizing the MNP cluster with BSA, Janus nanostructures having an asymmetric polymer compartment were formed.
도 21은 최종 농도 0.75 μM의 MGITC로 유도된 야누스 나노클러스터를 포함하는 비대칭형 야누스 나노구조체의 TEM 이미지를 나타낸다. 클러스터 크기를 제어하기 위해 라만 염료의 농도가 최적화되었다. 낮은 농도의 MGITC가 AuNP의 응집을 유도하기 위해 사용되었을 때, 몇 개의 나노클러스터가 관찰되었다. 도 21 (a) 및 (b)는 BSA 안정화가 없는 비대칭형 야누스 나노구조체를 나타낸다. 1.5 μM 농도의 MGITC를 사용하여 제조된 나노구조체와 비교하여, BSA 코팅 없이도 낮은 수준의 금속 클러스터링으로 인해 야누스 나노클러스터를 갖는 야누스 나노구조체가 형성될 수 있다. 도 21 (c) 및 (d)에서 볼 수 있듯이 BSA 코팅을 하지 않거나 또는 BSA 코팅을 한, 두 개의 나노구조체에는 유의한 차이가 없었다. 21 shows a TEM image of an asymmetric Janus nanostructure comprising Janus nanoclusters derived with MGITC at a final concentration of 0.75 μM. Raman dye concentrations were optimized to control cluster size. When low concentrations of MGITC were used to induce aggregation of AuNPs, several nanoclusters were observed. 21 (a) and (b) show asymmetric Janus nanostructures without BSA stabilization. Compared to nanostructures prepared using MGITC at 1.5 μM concentration, Janus nanostructures with Janus nanoclusters can be formed due to low levels of metal clustering without BSA coating. As can be seen in Figure 21 (c) and (d) there was no significant difference between the two nanostructures, without or without BSA coating.
도 22는 최종 농도 1.9 μM의 RBITC로 유도된 야누스 나노클러스터를 포함하는 비대칭형 야누스 나노구조체의 TEM 이미지를 나타낸다. 마찬가지로, RBITC의 농도가 낮으므로 BSA 코팅은 비대칭형 야누스 나노구조체의 형성에 영향을 미치지 않았다.FIG. 22 shows a TEM image of an asymmetric Janus nanostructure comprising Janus nanoclusters derived with RBITC at a final concentration of 1.9 μM. Likewise, the low concentration of RBITC did not affect the formation of asymmetric Janus nanostructures.
<실시예 3> 전기유체역학(electrohydrodynamic, EHD) 분사를 통한 자성 나노입자(magnetic nanoparticles, MNPs)와 자성 비드(magnetic beads)의 합성Example 3 Synthesis of Magnetic Nanoparticles (MNPs) and Magnetic Beads by Electrohydrodynamic (EHD) Injection
산화철 나노입자(Fe3O4)는 침전제로 Fe2+와 Fe3+가 1 : 2의 몰비로 혼합된 암모니아수를 사용한 화학적 공침법을 이용하여 제조하였다. 염화 제1철4수화물(FeCl2) 0.86 g 및 염화 제2철(FeCl3) 2.35 g을 격렬한 교반 하에서 탈이온수 40 mL에 혼합하고 30 분 동안 질소 가스로 탈기시켰다. 반응 용액을 80 ℃로 가열하고 수산화암모늄(NH4OH) 5 mL를 30 분 동안의 기계적 교반 하에 첨가하였다. 시트르산 1 g을 반응 플라스크에 첨가하고 온도를 90 ℃로 증가시킨 다음, 추가로 90 분 동안 격렬하게 교반하였다. 마지막으로, Fe3O4 자성 나노입자(MNPs)를 수백 가우스(Gauss)의 정적 자기장 하에서 2 회 탈이온수로 세척하였다. 또한, MNP 용액의 작은 분액을 자기장을 이용하여 농축하고 중합체 용액에 첨가하여 자성 비드를 제조하였다. 탈이온수와 에틸렌글리콜이 3 : 1의 부피비로 혼합된 혼합물에서 폴리(아크릴아미드-코-아크릴산)(poly(acrylamide-co-acrylic acid), 폴리(AAm-co-AA)) 4.5 w/v%를 제조하고, 이 중합체 용액에 농축된 MNP를 균일하게 분산시켜 MNPs의 현탁액을 제조하였다. 전기유체역학(EHD) 분사 공정을 위해 분산된 MNPs의 현탁액을 23 게이지(gage) 스테인리스 스틸 모세관이 있는 1.0 mL 주사기(BD, Franklin Lakes, USA)에 넣었다. 안정한 테일러 원뿔(Taylor cone) 및 원뿔 분사 모드(con-jet mode)를 달성하기 위해, 중합체 농도를 증가시키지 않고 중합체를 에틸렌 글리콜과 같은 점성 용매에 용해시킴으로써 최적화된 점도를 얻었다. 주사기에는 일정한 속도로 MNPs 현탁액을 흐르게 하는 마이크로 주사기 펌프 KDS-100(KD Scientific, Inc, USA)가 장착되었다. 포집 기판으로 두께 0.018mm의 알루미늄 호일(Fisherbrand; Thermo Fisher Scientific, USA)을 사용하였다. 고전압 전원 NNC HV 30(Nano NC, Korea)을 이용하여 양전극에 연결된 모세관과 음전극에 연결된 알루미늄 호일 사이에 고전압을 가했다. 두 전극 사이의 거리는 20-25 cm였다. 고전압은 10-15 kV의 범위로 유지되었고, 두 용액의 유속은 0.08-0.15 ml/hour으로 유지되었다. 고해상도의 디지털 카메라(D-90, Nikon Corporation, Japan)를 사용하여 EHD 분사 중에 단상의 테일러 원뿔, jet stream 및 jet break-up을 시각화하고 캡처했다. EHD 분사 후, 생성된 자성 비드를 175 ℃에서 밤새 열가교(thermally crosslinked)시켰다. 마지막으로, 분말 형태의 자성 비드를 수집하고 이후 실험에 사용하였다.Iron oxide nanoparticles (Fe3O4) were prepared using a chemical coprecipitation method using ammonia water mixed with Fe 2+ and Fe 3+ in a molar ratio of 1: 2 as a precipitant. 0.86 g of ferrous chloride (FeCl 2 ) and 2.35 g of ferric chloride (FeCl 3 ) were mixed in 40 mL of deionized water under vigorous stirring and degassed with nitrogen gas for 30 minutes. The reaction solution was heated to 80 ° C. and 5 mL of ammonium hydroxide (NH 4 OH) was added under mechanical stirring for 30 minutes. 1 g citric acid was added to the reaction flask and the temperature was increased to 90 ° C. and then vigorously stirred for an additional 90 minutes. Finally, Fe 3 O 4 magnetic nanoparticles (MNPs) were washed twice with deionized water under a static magnetic field of several hundred Gauss. In addition, small aliquots of the MNP solution were concentrated using a magnetic field and added to the polymer solution to prepare magnetic beads. 4.5 w / v% of poly (acrylamide-co-acrylic acid), poly (AAm-co-AA) in a mixture of deionized water and ethylene glycol in a volume ratio of 3: 1 Was prepared and uniformly dispersed MNP in this polymer solution to prepare a suspension of MNPs. A suspension of dispersed MNPs for an electrohydrodynamic (EHD) spraying process was placed in a 1.0 mL syringe (BD, Franklin Lakes, USA) with a 23 gage stainless steel capillary. To achieve a stable Taylor cone and con-jet mode, optimized viscosity was obtained by dissolving the polymer in a viscous solvent such as ethylene glycol without increasing the polymer concentration. The syringe was equipped with a micro syringe pump KDS-100 (KD Scientific, Inc, USA) which flows the MNPs suspension at a constant rate. An aluminum foil of 0.018 mm thickness (Fisherbrand; Thermo Fisher Scientific, USA) was used as the capture substrate. High voltage was applied between the capillary connected to the positive electrode and the aluminum foil connected to the negative electrode using a high voltage power supply NNC HV 30 (Nano NC, Korea). The distance between the two electrodes was 20-25 cm. The high voltage was maintained in the range of 10-15 kV and the flow rates of the two solutions were maintained at 0.08-0.15 ml / hour. High resolution digital cameras (D-90, Nikon Corporation, Japan) were used to visualize and capture single-phase Taylor cones, jet streams, and jet break-ups during EHD injection. After EHD injection, the resulting magnetic beads were thermally crosslinked overnight at 175 ° C. Finally, magnetic beads in powder form were collected and used for later experiments.
<실시예 4> 이중 금속 나노클러스터 구획 및 고분자 구획을 가지는 비대칭형 야누스 나노구조체의 특성Example 4 Properties of Asymmetric Janus Nanostructures Having Double Metal Nanocluster Compartments and Polymer Compartments
이중 금속 나노클러스터-고분자의 비대칭형 야누스 나노구조체의 UV-Vis 스펙트럼은 300~900 nm의 파장을 실온에서 중간 스캔 속도의 1 회 10 스캔 모드에서 1 nm의 고정 슬릿 폭으로 변화시킨 UV-vis 분광계(UV-1800, Shimadzu, Japan)를 사용하여 수득하였다. 기준선은 탈이온수로 채워진 두 개의 빈 셀(cell)을 사용하여 교정되었다. 콜로이드 용액 특성은 90 °의 산란각에서 광원으로써 5 mW의 최대 출력을 가지며 633 nm에서 Ne-He 레이저가 공급되는 동적 광 산란(dynamic light scattering, DLS)(Zeta-sizer Nano ZS90, Malvern Instruments, UK)을 사용하여 유체역학 직경(hydrodynamic diameter) 및 그 크기 분포를 특성화하였으며, 온도는 25 ℃로 제어하였다. 탈이온수에 샘플을 1 : 1의 부피비로 2 회 희석시키고, 이들의 평균 크기를 최소 20 스캔 주기에서 측정하였다. 또한, 탈이온수에서 표면 전하를 특성화하기 위해 제타 전위(ζ-potential) 측정을 수행했다. 투과전자현미경(Transmission Electron Microcopy)을 이용해 가속 전압 80~200 kV에서 작동하는 JEM-2100F FE-STEM(JEOL, Germany)을 사용하여 개별 AuNP와 비대칭형 야누스 나노클러스터-고분자 나노입자를 분석하였다. 샘플은 탄소의 초박막 층(Ted Pella, Inc., USA)으로 코팅 된 400 메쉬 구리 격자 상에 증착되었다. 평균 직경, 크기 분포 및 표면 모폴로지는 0.5-30 kV의 집속된 빔을 갖는 주사전자현미경(scanning electron microscope, SEM)(VEGA-SB3, TESCAN, Czech Republic)에 의해 측정되었다. 소수의 나노입자 용액을 실리콘 웨이퍼 위에 놓고 실온에서 건조시켰다. 샘플을 코팅기(K575X Turbo Sputter Coater, Emitech Ltd, UK)를 사용하여 얇은 전도성 백금 층으로 코팅하였다. 입자의 평균 크기는 미국의 국립 보건원에서 개발된 ImageJ 소프트웨어를 사용하여 TEM 및 SEM 이미지에서 임의로 선택된 약 50-100 개의 입자를 측정하여 분석되었다. 또한, 모든 SERS 측정은 12.5 mW의 레이저 출력을 가진 자극 소스에 대해 632.8 nm의 파장(λ)에서 작동하는 Renishaw He-Ne 레이저가 장착된 Renishaw inVia 라만 현미경 시스템을 사용하여 수행되었다. Rayleigh 선은 수집 필터에 위치한 홀로그램 노치 필터(holographic notch filter)를 사용하여 수집된 SERS 스펙트럼에서 제거되었다. 라만 산란은 분광 해상도 1 cm-1의 전하 결합 소자(charge-coupled device, CCD) 카메라를 사용하여 얻었으며 모든 SERS 스펙트럼은 520 cm-1 실리콘 라인으로 보정되었다. RBITC 또는 MGITC로 표지된 나노입자의 콜로이드 용액을 작은 유리 모세관(Kimble Chase, 평 모세관 튜브(plain capillary tubes), 소다 석회 유리, 내경 : 1.1-1.2 mm, 벽 : 0.2 ± 0.02 mm, 길이 : 75 mm)에 넣었다. SERS 스펙트럼은 20x 대물 렌즈를 사용하여 608-1738 cm-1의 파장 범위에서 유리 모세관에 레이저 스팟을 집중시키는 데 사용된 노출 시간의 1 초 동안 수집되었다.The UV-Vis spectrum of the bimetallic nanocluster-polymer asymmetric Janus nanostructures is a UV-vis spectrometer with a wavelength of 300-900 nm changed to a fixed slit width of 1 nm in one scan mode of 10 scans at medium scan rate at room temperature. Obtained using (UV-1800, Shimadzu, Japan). Baseline was calibrated using two empty cells filled with deionized water. Colloidal solution characteristics are dynamic light scattering (DLS) (Zeta-sizer Nano ZS90, Malvern Instruments, UK) with a maximum power of 5 mW as a light source at a scattering angle of 90 ° and supplied with a Ne-He laser at 633 nm. ) Was used to characterize the hydrodynamic diameter and its size distribution, and the temperature was controlled to 25 ° C. Samples were diluted twice in a volume ratio of 1: 1 in deionized water and their average size was measured at a minimum of 20 scan cycles. Zeta-potential measurements were also performed to characterize the surface charge in deionized water. Individual AuNPs and asymmetric Janus nanocluster-polymer nanoparticles were analyzed using JEM-2100F FE-STEM (JEOL, Germany) operating at 80-200 kV acceleration voltage using Transmission Electron Microcopy. Samples were deposited on a 400 mesh copper grating coated with an ultra thin layer of carbon (Ted Pella, Inc., USA). Average diameter, size distribution and surface morphology were measured by scanning electron microscope (SEM) (VEGA-SB3, TESCAN, Czech Republic) with a focused beam of 0.5-30 kV. A few nanoparticle solutions were placed on silicon wafers and dried at room temperature. Samples were coated with a thin layer of conductive platinum using a coater (K575X Turbo Sputter Coater, Emitech Ltd, UK). The average size of the particles was analyzed by measuring approximately 50-100 particles randomly selected from TEM and SEM images using ImageJ software developed by the National Institutes of Health. In addition, all SERS measurements were performed using a Renishaw inVia Raman microscope system equipped with a Renishaw He-Ne laser operating at a wavelength (λ) of 632.8 nm for a stimulus source with a laser power of 12.5 mW. Rayleigh lines were removed from the collected SERS spectrum using a holographic notch filter located in the acquisition filter. Raman scattering was obtained using a charge-coupled device (CCD) camera with a spectral resolution of 1 cm −1 and all SERS spectra were corrected with a 520 cm −1 silicon line. Colloidal solutions of nanoparticles labeled with RBITC or MGITC were prepared in small glass capillary tubes (Kimble Chase, plain capillary tubes, soda-lime glass, inner diameter: 1.1-1.2 mm, wall: 0.2 ± 0.02 mm, length: 75 mm). ) SERS spectra were collected for 1 second of exposure time used to focus the laser spot on the glass capillary in the wavelength range of 608-1738 cm −1 using a 20 × objective lens.
AuNP, 라만 염료 유도 Au 나노클러스터 및 이중 금속 나노클러스터를 가지는 비대칭형 야누스 나노구조체의 UV-Vis 흡광도 스펙트럼을 도 17에 나타내었다. AuNP의 UV-Vis 흡수 피크는 510 nm에서 나타났다(도 17 (a)). MGITC를 AuNP 용액에 첨가하고 10 내지 90 분 동안 인큐베이션하였을 때, 원래 흡수 피크는 적색 편이(red-shifted)되었고, 새로운 흡수 피크는 650-850 nm의 범위에서 나타났다. 인큐베이션 시간이 증가함에 따라 두 피크는 AuNP의 응집으로 인해 적색 편이를 나타내었다. 도 17 (b)는 RBITC로 유도된 Au 나노클러스터의 UV-Vis 흡광도를 10 분에서 90 분까지의 서로 다른 인큐베이션 시간에서 나타내었다. MGITC 유도된 나노클러스터와 유사하게, 인큐베이션 시간이 증가함에 따라 피크가 적색 편이되었다. 도 17 (c)는 이중 금속 나노클러스터를 가지는 비대칭형 야누스 나노구조체의 UV-Vis 흡광도를 보여준다. 이중 금속 나노클러스터의 합성 후, 새로운 흡수 피크는 410-550 nm의 범위에서 나타나며, 이는 Au 나노클러스터에 Ag의 존재를 나타내었다. 또한, AuNPs의 응집에 기인하여 600-700 nm의 범위에서 넓은 피크가 나타났다. 도 17 (d)와 같이 AuNP, Au 나노클러스터 및 비대칭형 야누스 나노구조체의 유체역학 직경과 크기 분포를 특성화하기 위해 동적 광 산란 (DLS)이 수행되었다. AuNP, MGITC- 또는 RBITC- 유도 Au 나노클러스터의 평균 직경은 18.9 ± 0.4 nm, 152.9 ± 2.8 nm 및 115.7 ± 1.8 nm이었고, MGITC- 또는 RBITC- 유도 이중 금속 나노클러스터를 갖는 비대칭형 야누스 나노구조체는 205 ± 4.5 nm 및 186.3 ± 2.1 nm이었다.17 shows the UV-Vis absorbance spectra of the asymmetric Janus nanostructures with AuNP, Raman dye induced Au nanoclusters and double metal nanoclusters. UV-Vis absorption peak of AuNP was shown at 510 nm (Fig. 17 (a)). When MGITC was added to AuNP solution and incubated for 10-90 minutes, the original absorption peak was red-shifted and new absorption peak appeared in the range of 650-850 nm. As the incubation time increased both peaks showed red shift due to the aggregation of AuNPs. Figure 17 (b) shows the UV-Vis absorbance of RBITC induced Au nanoclusters at different incubation times from 10 minutes to 90 minutes. Similar to the MGITC derived nanoclusters, the peak shifted red as the incubation time increased. Figure 17 (c) shows the UV-Vis absorbance of the asymmetric Janus nanostructure having a double metal nanocluster. After synthesis of the double metal nanoclusters, new absorption peaks appeared in the range of 410-550 nm, indicating the presence of Ag in the Au nanoclusters. In addition, wide peaks appeared in the range of 600-700 nm due to the aggregation of AuNPs. Dynamic light scattering (DLS) was performed to characterize the hydrodynamic diameter and size distribution of AuNP, Au nanoclusters and asymmetric Janus nanostructures as shown in FIG. 17 (d). The average diameters of AuNP, MGITC- or RBITC-induced Au nanoclusters were 18.9 ± 0.4 nm, 152.9 ± 2.8 nm and 115.7 ± 1.8 nm, and asymmetric Janus nanostructures with MGITC- or RBITC-induced double metal nanoclusters were 205 ± 4.5 nm and 186.3 ± 2.1 nm.
도 18은 높은 SERS 효율을 위한 클러스터링 정도를 최적화하기 위해 10 분에서 90 분까지 다양한 인큐베이션 시간에서 클러스터를 형성하는 동안의 (a) MGITC 또는 (c) RBITC 유도 Au 나노클러스터의 상대적 라만 스펙트럼을 나타낸다. 또한, Au 나노클러스터의 라만 염료 농도와 BSA 코팅은 클러스터 크기를 제어하고 추가 응집을 방지하기 위해 조정되었다. 인큐베이션 시간이 증가함에 따라 라만 강도가 점차 감소하여 더 큰 응집체가 형성되고 침전되었다는 것을 알 수 있었다. 도 18 (b)와 (d)에서 볼 수 있듯이, MGITC- 및 RBITC- 유도 Au 나노클러스터의 라만 강도는 1618 cm-1 및 1648 cm-1로 나타났다. 도 18 (e) 및 (f)는 동일한 라만 염료 및 입자 농도에서 MGITC- 또는 RBITC- 표지 AuNPs, MGITC- 또는 RBITC- 유도 Au 나노클러스터 및 이들의 비대칭형 야누스 나노구조체의 상대적 라만 스펙트럼을 도시한다. MGITC- 및 RBITC- 유도 Au 나노클러스터의 라만 강도는 AuNP의 10.42 및 2.32 배였으며, 이는 AuNP 클러스터 간의 입자 간 커플링이 핫 스팟(hot spot)으로 인해 SERS 효율을 크게 향상시키는 것을 의미한다. 또한, MGITC- 또는 RBITC- 유도 이중 나노클러스터를 갖는 비대칭형 야누스 나노구조체의 라만 강도는 라만 염료-표지 AuNP보다 8.87 및 1.82 배 더 높았다. MGITC- 및 RBITC- 유도 Au 나노클러스터의 라만 강도와 비교했을 때, 비대칭형 야누스 나노구조체의 라만 강도는 다소 감소하였다. MGITC- 또는 RBITC- 유도 이중 나노클러스터를 갖는 비대칭형 야누스 나노구조체는 동일한 라만 염료 및 입자 농도에서 MGITC- 또는 RBITC- 표지 AuNPs 보다 더 우수한 광학 신호를 갖는다. FIG. 18 shows the relative Raman spectra of (a) MGITC or (c) RBITC derived Au nanoclusters during clustering at various incubation times from 10 minutes to 90 minutes to optimize the degree of clustering for high SERS efficiency. In addition, Raman dye concentration and BSA coating of Au nanoclusters were adjusted to control cluster size and prevent further aggregation. It was found that as the incubation time increased, the Raman strength gradually decreased, resulting in the formation and precipitation of larger aggregates. As can be seen in Figure 18 (b) and (d), the Raman intensity of the MGITC- and RBITC- induced Au nanoclusters were 1618 cm -1 and 1648 cm -1 . 18 (e) and (f) show the relative Raman spectra of MGITC- or RBITC-labeled AuNPs, MGITC- or RBITC-induced Au nanoclusters and their asymmetric Janus nanostructures at the same Raman dye and particle concentrations. The Raman intensity of the MGITC- and RBITC-derived Au nanoclusters was 10.42 and 2.32 times that of AuNPs, which means that interparticle coupling between AuNP clusters significantly improves SERS efficiency due to hot spots. In addition, the Raman intensity of asymmetric Janus nanostructures with MGITC- or RBITC-induced double nanoclusters was 8.87 and 1.82 times higher than Raman dye-labeled AuNPs. Compared to the Raman intensity of the MGITC- and RBITC-induced Au nanoclusters, the Raman intensity of the asymmetric Janus nanostructures was somewhat reduced. Asymmetric Janus nanostructures with MGITC- or RBITC-induced double nanoclusters have better optical signals than MGITC- or RBITC-labeled AuNPs at the same Raman dye and particle concentration.
<실시예 5> 이중 금속 나노클러스터 구획 및 고분자 구획을 가지는 비대칭형 야누스 나노구조체와 항체 결합Example 5 Antibody-Binding with Asymmetric Janus Nanostructures Having Double Metal Nanocluster Compartments and Polymer Compartments
이중 금속 나노클러스터-고분자의 비대칭형 야누스 나노구조체는 표적 단백질인 CEA(carcinoembryonic antigen)에 대한 단클론 항체(mAb)와 다클론 항체(pAbs)와 각각 결합되었다. 먼저, 폴리(아닐린) 구획에 잔류하는 아민기와 항체에 존재하는 카르복실기 간의 아미드 결합 반응을 이용하여 고분자 구획과 항-인간 CEA 다클론 항체(anti-human CEA pAb)의 공유 결합(bioconjugation) 반응을 수행하였다. 이러한 결합 반응은 EDC(1-ethyl-3-(3-dimethylaminopropyl) carbodiimide)와 sulfo-NHS(sulfo-N-hydroxysuccinimide ester) 화학을 기반으로 하였다. 구체적으로, EDC 60 mM과 sulfo-NHS 9.2 mM을 함유한 pH 7.4의 PBS 10 mM을 포함하는 비대칭형 야누스 나노구조체의 분산 용액에 2.0 mg/ml의 항-인간 CEA pAb 5 ㎕를 첨가하고, 3 시간 동안 교반하여 전체 pAb 농도가 10 ㎍/㎖가 되도록 하였다. 항-인간 CEA pAb- 결합된 고분자 구획을 3,000 rpm에서 원심분리하여 세척하고 PBS로 재현탁하였다. 또한, 175 ℃에서 밤새 열 안정화한 고분자 나노입자 상의 잔류 카르복실기를 활성화시킴으로써 자성 비드를 항-인간 CEA 단클론 항체(anti-human CEA mAb)와 화학적으로 결합시켰다. 구체적으로, 1.25 mg의 자성 비드를 0.9ml의 PBS에 현탁시키고, 진폭 20.0 %에서 3/3 초 온/오프 사이클을 사용한 팁-초음파 발생장치(sonicator)를 사용하여 2 분 동안 초음파 처리하였다. 균일하게 현탁된 자성 비드를 5.0 mM EDC 및 5.0 mM sulfo-NHS와 혼합하고 1 시간 동안 교반하였다. 3.56 ㎎/㎖의 항-인간 CEA mAb를 100 ㎕의 PBS 완충액으로 희석시킨 다음, 자성 비드 용액에 최종 농도가 8.9 ㎍/㎖가 되도록 천천히 첨가하고 1 시간 동안 교반하였다. 결합되지 않은 항-인간 CEA mAb를 자기장을 사용하여 분리하고, 항체-결합된 자성 비드를 CEA의 SERS-기반 바이오센싱을 위해 PBS로 재현탁시켰다(도 16 (c)).The bimetallic nanocluster-polymer asymmetric Janus nanostructures were combined with monoclonal antibodies (mAb) and polyclonal antibodies (pAbs) against the target protein carcinoembryonic antigen (CEA), respectively. First, the bioconjugation reaction of the polymer compartment and the anti-human CEA polyclonal antibody (anti-human CEA pAb) is performed by using an amide bond reaction between the amine group remaining in the poly (aniline) compartment and the carboxyl group present in the antibody. It was. This binding reaction was based on the chemistry of EDC (1-ethyl-3- (3-dimethylaminopropyl) carbodiimide) and sulfo-N-hydroxysuccinimide ester (sulfo-NHS). Specifically, 5 μl of 2.0 mg / ml anti-human CEA pAb was added to a dispersion solution of asymmetric Janus nanostructures containing 10 mM PBS at pH 7.4 containing 60 mM EDC and 9.2 mM sulfo-NHS, 3 Stirring for hours allowed the total pAb concentration to be 10 μg / ml. Anti-human CEA pAb-linked polymer compartments were washed by centrifugation at 3,000 rpm and resuspended in PBS. In addition, magnetic beads were chemically bound with anti-human CEA monoclonal antibodies (anti-human CEA mAbs) by activating residual carboxyl groups on polymer nanoparticles heat stabilized overnight at 175 ° C. Specifically, 1.25 mg of magnetic beads were suspended in 0.9 ml of PBS and sonicated for 2 minutes using a tip-sonicator using a 3/3 second on / off cycle at 20.0% amplitude. The uniformly suspended magnetic beads were mixed with 5.0 mM EDC and 5.0 mM sulfo-NHS and stirred for 1 hour. 3.56 mg / ml anti-human CEA mAb was diluted with 100 μl of PBS buffer, then slowly added to the magnetic bead solution to a final concentration of 8.9 μg / ml and stirred for 1 hour. Unbound anti-human CEA mAbs were separated using a magnetic field, and antibody-bound magnetic beads were resuspended in PBS for SERS-based biosensing of CEA (FIG. 16 (c)).
<실시예 6> 비대칭형 야누스 나노구조체를 이용한 SERS 기반 바이오센싱Example 6 SERS-Based Biosensing Using Asymmetric Janus Nanostructures
라만 리포터로 표지된 비대칭형 야누스 나노구조체를 SERS 나노프로브로 이용하여 표적 단백질인 CEA의 정량 분석을 수행하였다. 항-인간 CEA mAb와 결합된 자성 비드를 사용하여 샌드위치형 면역 복합체를 형성함으로써 분리 도구(자석)로 면역 복합체를 선택적으로 분리하였다. 먼저, 항-인간 CEA 단클론 항체가 결합된 자성 비드를 22.5 ~ 67.5 ng/ml 범위의 상이한 3 가지 농도의 CEA를 함유하는 완충액에 첨가하고, 1 시간 동안 반응시켰다. 표적 단백질을 외부 자기장으로 세척하고 새로운 PBS 완충액으로 재현탁시켰다. 이어서, 표적 단백질 및 자성 비드가 형성된 각각의 면역 복합체에 항-인간 CEA pAb가 결합된 SERS 나노프로브를 첨가하고 1 시간 동안 반응시켜 자성 비드, 표적 단백질 및 SERS 나노프로브로 구성된 샌드위치형 면역 복합체를 제조하였다. 결합되지 않은 SERS 나노프로브를 자기장을 사용하여 제거하고, 생성물인 샌드위치형 면역 복합체를 SERS 측정을 위해 PBS로 재현탁하였다. 표적 단백질이 없는 SERS 나노프로브의 선택적인 결합 능력을 평가하기 위해 대조군(control)에 대한 실험 또한 함께 수행되었다.Quantitative analysis of the target protein CEA was carried out using asymmetric Janus nanostructures labeled with a Raman reporter as SERS nanoprobes. Immune complexes were selectively isolated with a separation tool (magnet) by forming sandwiched immune complexes using magnetic beads combined with anti-human CEA mAb. First, magnetic beads bound with anti-human CEA monoclonal antibody were added to a buffer containing three different concentrations of CEA ranging from 22.5 to 67.5 ng / ml and reacted for 1 hour. The target protein was washed with an external magnetic field and resuspended in fresh PBS buffer. Subsequently, SERS nanoprobe with anti-human CEA pAb bound was added to each immune complex in which the target protein and the magnetic beads were formed and reacted for 1 hour to prepare a sandwich immune complex consisting of the magnetic beads, the target protein and the SERS nanoprobe. It was. Unbound SERS nanoprobes were removed using a magnetic field and the product sandwiched immune complex was resuspended in PBS for SERS measurements. Experiments with controls were also performed to assess the selective binding capacity of SERS nanoprobes without the target protein.
제 44th 발명: invent:
<실시예 1> 측면 간 조립(Side-by-Side)을 통한 이중 금속 나노막대 클러스터의 합성Example 1 Synthesis of Double Metal Nanorod Clusters by Side-by-Side
측면 간 조립된 금 나노막대(Gold nanorods, AuNRs) 클러스터는 AuNR에서 양전하를 띠는 CTAB(hexadecyltrimethylammonium bromide)과의 정전기적 상호 작용을 위한 시트르산염 음이온의 첨가에 의해 제조되었다. AuNRs는 시드-매개 성장 방법(seed-mediated growth method)을 통해 합성되었다. 구체적으로, 0.20 M의 CTAB 5 mL를 29-30 ℃에서 용해시키고 0.0005 M의 염화 금 (III) 수화물(Gold (III) chloride hydrate, HAuCl4.3H2O) 5 mL와 혼합한 다음 0.010 M의 차가운 NaBH4 0.010 mL를 첨가하였다. 반응액의 황색은 갈색을 띠는 황색의 용액으로 바뀌며, 생성된 시드 용액은 29-30 ℃로 유지되어 2 ~ 2.5 시간 내에 사용되었다. 시드 입자 위에 나노막대를 성장시키기 위해 0.004 M의 AgNO3 0.25 mL를 CTAB 0.20 M과 함께 29-30 ℃에서 혼합했다. 이어서, 이 용액에 0.001 M의 HAuCl4 5.0 mL를 넣고 교반하였다. 30-40 분간 혼합한 후, 환원제인 아스코르브산을 첨가하여 진한 황색에서 무색이 될 때까지 성장 용액의 색상 변화를 유도하였다. 최종 단계에서 시드 용액 12 μL를 무색 용액에 가한 다음 용액 색상을 10-20 분 내로 서서히 변화시켰다. 용액을 교반하고 29-30 ℃에서 밤새 보관하였다. 생성된 용액을 10,000 rpm에서 10 분간 원심 분리하고, AuNR의 응집을 막기 위해 1 mM CTAB에 재현탁시켜, 최종적으로 CTAB가 캡핑된 AuNR를 제조하였다. MGITC는 10-6 M의 최종 농도로 AuNR 용액에 도입되었으며, MGITC의 이소티오시아네이트 그룹(isothiocyanate group, -N〓C〓S)을 통해 AuNR 표면에 고정되었다. AuNR의 측면 간 조립을 위해, 0.175 mM 시트르산 나트륨 용액 30 uL을 1 mL의 AuNR 용액에 첨가하고, 1 내지 5 분의 단기간 동안 인큐베이션하였다. 음이온인 시트르산 이온과 양이온인 CTAB 간의 정전기적 상호 작용을 통해 측면 간 자가 조립된 AuNR 클러스터는 200 μL 의 1 w/v% PSS 코팅에 의해 안정화되었다(도 24 (a)).Side-to-side assembled gold nanorods (AuNRs) clusters were prepared by the addition of citrate anions for electrostatic interaction with positively charged hexadecyltrimethylammonium bromide (CTAB) in AuNR. AuNRs were synthesized via a seed-mediated growth method. Specifically, the 0.20 M CTAB dissolved in 5 mL of 29-30 ℃ was mixed with 0.0005 M of gold chloride (III) hydrate (Gold (III) chloride hydrate, HAuCl 4 .3H 2 O), and then 5 mL of 0.010 M 0.010 mL of cold NaBH 4 was added. The yellow color of the reaction solution turned into a brownish yellow solution, and the resulting seed solution was maintained at 29-30 ° C. and used within 2 to 2.5 hours. 0.25 mL of 0.004 M AgNO 3 was mixed with 0.20 M CTAB at 29-30 ° C. to grow nanorods on seed particles. Subsequently, 5.0 mL of 0.001 M HAuCl 4 was added to the solution and stirred. After mixing for 30-40 minutes, ascorbic acid, a reducing agent, was added to induce a color change of the growth solution from dark yellow to colorless. In the final step, 12 μL of the seed solution was added to the colorless solution and the solution color was slowly changed within 10-20 minutes. The solution was stirred and stored at 29-30 ° C overnight. The resulting solution was centrifuged at 10,000 rpm for 10 minutes and resuspended in 1 mM CTAB to prevent aggregation of AuNR, finally producing AuNR capped CTAB. MGITC was introduced into the AuNR solution at a final concentration of 10-6 M and fixed to the AuNR surface via the isothiocyanate group (-N〓C〓S) of MGITC. For side-to-side assembly of AuNR, 30 uL of 0.175 mM sodium citrate solution was added to 1 mL of AuNR solution and incubated for a short period of 1 to 5 minutes. Through electrostatic interactions between citrate ions, which are anions, and CTAB, which are cations, the side-to-side self-assembled AuNR clusters were stabilized by 200 μL of 1 w / v% PSS coating (FIG. 24 (a)).
<실시예 2> 다이블록 폴리(AAc-b-NIPAM)의 합성Example 2 Synthesis of Diblock Poly (AAc-b-NIPAM)
음전하성 자극반응성 공중합체이자 다이블록 고분자(diblock polymer)인 폴리(AAc-b-NIPAM)(poly(acrylic acid-block-N-isopropylacrylamide))은 RAFT(sequential reversible addition-fragmentation chain transfer) 중합 및 폴리(tBA-b-NIPAM)(poly(tert-butyl acrylate-block-N-isopropylacrylamide)의 tBA 그룹의 추가 가수 분해 공정에 의해 합성되었다. NIPAM 단량체를 40 ℃에서 n-헥산(n-hexane)에 용해시키고 4 ℃ 이하에서 재결정하여 저해제를 포함한 불순물을 제거하였다. NIPAM 10 g을 비커에서 n-헥산 200 ml에 용해시켜 5 w/v% 농도로 만들었다. 결정성 NIPAM이 저온에서 형성되면, 여과지(Whatman  정성 여과지 1 등급)를 이용하는 흡인기 장치(EYELA 1000S, US)를 통해 용액을 여과하고 생성물을 진공 하에 건조시켜 n-헥산을 제거하였다. tBA는 중합 억제제를 제거하기 위해 40 ℃ 및 26 mmHg에서 증류하여 정제하였다.Poly (acrylic acid-block-N-isopropylacrylamide), a negatively charged stimulatory copolymer and diblock polymer, is a sequential reversible addition-fragmentation chain transfer (RAFT) polymerization and poly (tBA-b-NIPAM) was synthesized by an additional hydrolysis process of the tBA group of poly (tert-butyl acrylate-block-N-isopropylacrylamide). NIPAM monomer was dissolved in n-hexane at 40 ° C. Impurities and inhibitors were removed by recrystallization below 4 ° C. 10 g of NIPAM was dissolved in 200 ml of n-hexane in a beaker to a concentration of 5 w / v% When crystalline NIPAM was formed at low temperature, filter paper (Whatman The solution was filtered through an aspirator device (EYELA 1000S, US) using qualitative filter paper grade 1) and the product was dried under vacuum to remove n-hexane tBA was distilled at 40 ° C. and 26 mmHg to remove the polymerization inhibitor. Purified.
폴리(tBA), 즉 폴리(tBA)-macro CDTPA(4-cyano-4-[(dodecylsulfanylthiocarbonyl)sulfanyl]pentanoic acid)는 단량체로 tBA(tert-butyl acrylate), CTA(chain transfer agent)로 CDTPA, 개시제로 AIBN(azobisisobutyronitrile, 2,2'-azobis(2-methylpropionitrile))을 반응 용매인 1,4-디옥산(1,4-dioxane)하에서 [단량체]:[CTA]:[개시제] = 1000:10:1 몰비로 첨가한 tBA의 RAFT 중합에 의해 합성되었다. 구체적으로, tBA(5 mL, 34 mmol), CDTPA(0.137 g, 0.34 mmol) 및 1,4-디옥산(5 mL)을 플라스크(Schlenk flask)에 넣었다. 중합 전에 용액을 20 분 동안 질소 가스로 탈기시켰다. AIBN(0.0055 g, 0.034 mmol)을 반응 혼합물에 첨가하여 중합 반응을 개시하였다. 60 ℃에서 5 시간 또는 6 시간 동안 기계적으로 교반하면서 중합 과정을 진행시키고, 얼음물에서 급냉시켰다. 생성된 폴리(tBA)-macro CDTPA를 메탄올:H2O = 50:50 (v/v) 용액에서 침전시켜 수득하고 진공 오븐에서 밤새 건조시켰다. Poly (tBA), i.e. poly (tBA) -macro CDTPA (4-cyano-4-[(dodecylsulfanylthiocarbonyl) sulfanyl] pentanoic acid) is a monomer, tB (tert-butyl acrylate), CTA (chain transfer agent) [A Monomer]: [CTA]: [Initiator] = 1000: 10 with zero AIBN (azobisisobutyronitrile, 2,2'-azobis (2-methylpropionitrile)) under reaction solvent 1,4-dioxane (1,4-dioxane) Synthesis was carried out by RAFT polymerization of tBA added in a: 1 molar ratio. Specifically, tBA (5 mL, 34 mmol), CDTPA (0.137 g, 0.34 mmol) and 1,4-dioxane (5 mL) were placed in a Schlenk flask. The solution was degassed with nitrogen gas for 20 minutes before polymerization. AIBN (0.0055 g, 0.034 mmol) was added to the reaction mixture to initiate the polymerization reaction. The polymerization was carried out with mechanical stirring at 60 ° C. for 5 or 6 hours and quenched in ice water. The resulting poly (tBA) -macro CDTPA was obtained by precipitation in a methanol: H 2 O = 50: 50 (v / v) solution and dried overnight in a vacuum oven.
폴리(tBA-b-NIPAM)을 이와 유사한 방법으로 제조하였다. 폴리(tBA-b-NIPAM)의 합성을 위해, 단량체로 NIPAM(N-isopropylacrylamide 97%), CTA로 폴리(tBA)-macro CDTPA, 개시제로 AIBN을 [단량체]:[CTA]:[개시제] = 1500:5:1 몰비로 첨가하였다. 구체적으로, 0.411 g의 폴리(tBA145)-macro CDTPA(MnNMR = 18,584 g/mol) 및 0.75 g의 NIPAM을 2.5 ㎖의 1,4-디옥산에 용해시키고 질소 가스로 20 분 동안 탈기시켰다. 이 용액에 AIBN 0.00075 g을 첨가하고, 60 ℃에서 6 시간 동안 중합하였다. 플라스크를 얼음물에 담그어 반응을 정지시키고 용액을 공기에 노출시켰다. 미반응 단량체 및 개시제를 제거하기 위해 폴리(tBA145-b-NIPAM300) 용액을 에테르에 침전시켜 정제하였고, 밤새 진공 오븐에서 건조하였다.Poly (tBA-b-NIPAM) was prepared in a similar manner. For the synthesis of poly (tBA-b-NIPAM), NIPAM (N-isopropylacrylamide 97%) as monomer, poly (tBA) -macro CDTPA as CTA and AIBN as initiator [monomer]: [CTA]: [initiator] = Add at 1500: 5: 1 molar ratio. Specifically, 0.411 g of poly (tBA 145 ) -macro CDTPA (Mn NMR = 18,584 g / mol) and 0.75 g of NIPAM were dissolved in 2.5 ml of 1,4-dioxane and degassed with nitrogen gas for 20 minutes. To this solution was added 0.00075 g of AIBN and polymerized at 60 ° C. for 6 hours. The flask was immersed in ice water to stop the reaction and the solution was exposed to air. The poly (tBA 145 -b-NIPAM 300 ) solution was purified by precipitation in ether to remove unreacted monomers and initiators and dried overnight in a vacuum oven.
티오카르보닐티오(thiocarbonylthio-) 그룹은 보호된 티올기(masked -SH)로 존재하므로, 티올기 커플링을 위해 폴리(tBA-b-NIPAM)의 트리티오카르보네이트 그룹(trithiocarbonate group)을 친핵성 시약(nucleophilic reagent)으로 이용하여 아미노 분해(Amionlysis)함으로써 절단시켰다. 구체적으로, 폴리(tBA-b-NIPAM)(9.5 μmol) 0.5 g, MTS(18 μL, 190 μmol), 헥실아민(hexylamine)(252 μL, 1.9 mmol) 및 트리에틸아민(trimethylamine)(266 μL, 1.9 mmol)을 5 ㎖의 THF(Tetrahydrofuran)에 용해하고, 혼합물을 실온에서 24 시간 동안 교반하였다. 제조된 티올-말단 폴리(tBA145-b-NIPAM300)(폴리(tBA145-b-NIPAM300)-SH)를 헥산에 3회 침전시키고 진공 오븐에서 밤새 건조시켰다(도 26 (a)).Since the thiocarbonylthio- group exists as a protected thiol group (masked -SH), the trithiocarbonate group of poly (tBA-b-NIPAM) is bound to the thiol group coupling. It was cleaved by aminolysis using a nucleophilic reagent. Specifically, 0.5 g of poly (tBA-b-NIPAM) (9.5 μmol), MTS (18 μL, 190 μmol), hexylamine (252 μL, 1.9 mmol) and triethylamine (266 μL, 1.9 mmol) was dissolved in 5 mL of THF (Tetrahydrofuran) and the mixture was stirred at rt for 24 h. The prepared thiol-terminated poly (tBA 145 -b-NIPAM 300 ) (poly (tBA 145 -b-NIPAM 300 ) -SH) was precipitated three times in hexane and dried in a vacuum oven overnight (FIG. 26 (a)).
티올-말단 폴리(AAc145-b-NIPAM300)(폴리(AAc145-b-NIPAM300)-SH)은 TFA(trifluoroacetic acid)를 사용하여 티올-말단 폴리(tBA145-b-NIPAM300)(폴리(tBA145-b-NIPAM300)-SH) 내 tBA를 AAc 그룹으로 가수 분해시킴으로써 제조하였다. 구체적으로, 0.2 g의 티올-말단 폴리(tBA145-b-NIPAM300)(폴리(tBA145-b-NIPAM300)-SH)(3.8 μmol) 및 583 μL의 TFA(7.6 mmol)를 5 mL의 DCM(dichloromethane)에 용해시켰다. 24 시간 후에 밝은 갈색의 젤라틴 덩어리가 형성되고 용액으로부터 침전되었다. 생성된 물질을 DCM에 용해시키고 n-헥산에 침전시켰다. 마지막으로, 생성물을 THF에 용해시키고 탈이온수에 대해 2 일 동안 투석하였다. 얻어진 티올-말단 폴리(AAc145-b-NIPAM300)(폴리(AAc145-b-NIPAM300)-SH)은 진공 하에서 동결 건조기 MCFD8508(일신 랩, 한국)로 동결 건조하였다(도 26 (b)).Thiol-terminated poly (AAc 145 -b-NIPAM 300 ) (poly (AAc 145 -b-NIPAM 300 ) -SH) is a thiol-terminated poly (tBA 145 -b-NIPAM 300 ) (TBA) using trifluoroacetic acid (TFA) TBA in poly (tBA 145 -b-NIPAM 300 ) -SH) was prepared by hydrolysis with AAc groups. Specifically, 0.2 g of thiol-terminated poly (tBA 145 -b-NIPAM 300 ) (poly (tBA 145 -b-NIPAM 300 ) -SH) (3.8 μmol) and 583 μL of TFA (7.6 mmol) were added to 5 mL of It was dissolved in dichloromethane (DCM). After 24 hours a light brown gelatin mass formed and precipitated out of solution. The resulting material was dissolved in DCM and precipitated in n-hexane. Finally, the product was dissolved in THF and dialyzed against deionized water for 2 days. The obtained thiol-terminated poly (AAc 145 -b-NIPAM 300 ) (poly (AAc 145 -b-NIPAM 300 ) -SH) was lyophilized with freeze dryer MCFD8508 (Ilshin Lab, Korea) under vacuum (FIG. 26 (b)). ).
<실시예 3> 말단 간(End-to-End) 조립을 통한 이중 금속 나노막대 클러스터의 합성Example 3 Synthesis of Double Metal Nanorod Clusters through End-to-End Assembly
실시예 1의 CTAB가 캡핑된 AuNR의 말단에 실시예 2의 폴리(AAc145-b-NIPAM300)-SH를 선택적으로 부착하여 말단 간 조립된 AuNR 클러스터를 제조하였다. 구체적으로, 4 mL의 CTAB 캡핑된 AuNR 용액을 10,000 rpm에서 10 분간 원심 분리하고 0.5 mL의 탈이온수에서 재현시켰다. 농축된 CTAB 캡핑된 AuNR은 5 mg의 폴리(AAc145-b-NIPAM300)-SH를 포함하는 10 mL의 DMSO 용액에 최종 농도가 0.05 w/v%가 되도록 초음파 처리 하에서 신속하게 주입되었다. 상기 혼합물 용액을 30 분간 초음파기에서 초음파 처리하고 실온에서 1 시간 동안 인큐베이션하였다. AuNR의 말단부에 부착되어 있는 CTAB 리간드는 폴리(AAc145-b-NIPAM300)-SH 내 티올기(-SH)와의 금속-티올기 결합을 통해 폴리(AAc145-b-NIPAM300)-SH로 교환되었다. 이후, 20 ℃ 또는 50 ℃의 탈이온수 또는 PBS에서 AuNR의 측면 상의 양으로 대전된 CTAB와 AuNR의 말단면 상의 폴리(AAc145-b-NIPAM300)-SH 사이의 정전기적 상호 작용을 통해 AuNR 측면과 AuNR 말단이 결합하여 말단 간 자가 조립을 형성하였다. 말단 간 자가 조립된 AuNR 클러스터를 6,000 rpm에서 6 분 동안 원심 분리하여 정제하고 1 mL의 탈이온수에 재현탁시켰다. MGITC를 10-5 M의 최종 농도로 AuNR 용액에 도입되었으며, MGITC의 이소티오시아네이트 그룹(isothiocyanate group, -N〓C〓S)을 통해 AuNR 표면에 고정되었다. 말단 간 조립된 AuNR은 0.5% BSA(bovine serum albumin) 코팅에 의해 안정화되었다(도 24 (b)). An end-to-end assembled AuNR cluster was prepared by selectively attaching the poly (AAc 145 -b-NIPAM 300 ) -SH of Example 2 to the ends of the AuNR capped CTAB of Example 1. Specifically, 4 mL of CTAB capped AuNR solution was centrifuged at 10,000 rpm for 10 minutes and reproduced in 0.5 mL of deionized water. Concentrated CTAB capped AuNR was injected rapidly under sonication into a 10 mL DMSO solution containing 5 mg of poly (AAc 145 -b-NIPAM 300 ) -SH to a final concentration of 0.05 w / v%. The mixture solution was sonicated in an sonicator for 30 minutes and incubated for 1 hour at room temperature. The CTAB ligand attached to the terminal end of AuNR is converted to poly (AAc 145 -b-NIPAM 300 ) -SH through a metal-thiol group bond with a thiol group (-SH) in poly (AAc 145 -b-NIPAM 300 ) -SH. Exchanged. The AuNR side is then through an electrostatic interaction between positively charged CTAB on the side of AuNR in 20 ° C. or 50 ° C. or PBS and poly (AAc 145 -b-NIPAM 300 ) -SH on the end face of AuNR. And AuNR ends are bonded to form self-assembly between ends. End-to-end self-assembled AuNR clusters were purified by centrifugation at 6,000 rpm for 6 minutes and resuspended in 1 mL of deionized water. MGITC was introduced into the AuNR solution at a final concentration of 10 -5 M and fixed to the AuNR surface via the isothiocyanate group (-N〓C〓S) of MGITC. End-to-end assembled AuNR was stabilized by 0.5% BSA (bovine serum albumin) coating (FIG. 24 (b)).
<실시예 4> 비대칭형 이중 금속 나노막대 클러스터-고분자 야누스 나노구조체의 합성Example 4 Synthesis of Asymmetric Double Metal Nanorod Cluster-Polymer Janus Nanostructures
이중 금속 나노막대 클러스터와 고분자(폴리(아닐린)) 구획으로 구성된 비대칭형 야누스 나노 구조는 아닐린의 표면 주형 중합 및 환원 산화에 기초한 은의 환원을 통해 합성되었다. 시드(seed) 입자의 모액으로 측면 간 또는 말단 간 조립된 AuNR 클러스터가 사용되었다. 구체적으로, 아닐린 및 SDS를 탈이온수 0.5 mL에 최종 농도가 각각 5 mM 및 0.9 mM가 되도록 용해시켰다. 시드 입자 용액을 혼합물에 첨가하고 교반(voltexing)한 후, 질산은 용액 0.5 mL를 첨가하고 최종 농도가 2.5 mM이 되도록 용액과 함께 혼합하였다. 반응은 어두운 조건에서 실온에서 24 시간 동안 교반하지 않고 진행되었다. 반응액을 3.6mM SDS 용액에서 하룻밤 동안 추가로 인큐베이션하여 폴리(아닐린) 구획을 Au 시드의 편측에만 편심 증착(eccentrically deposited)시켰다. 생성된 용액을 8,000 rpm에서 10 분간 원심 분리하여 정제하고 탈이온수 또는 10 mM PBS(phosphate buffer saline)에 재현탁시켰다.Asymmetric Janus nanostructures consisting of double metal nanorod clusters and polymer (poly (aniline)) compartments were synthesized through reduction of silver based on surface template polymerization and reduction oxidation of aniline. A mother-side or end-to-end assembled AuNR cluster was used as the mother liquor of the seed particles. Specifically, aniline and SDS were dissolved in 0.5 mL of deionized water to a final concentration of 5 mM and 0.9 mM, respectively. Seed particle solution was added to the mixture and stirred, after which 0.5 mL of silver nitrate solution was added and mixed with the solution to a final concentration of 2.5 mM. The reaction proceeded without stirring for 24 hours at room temperature under dark conditions. The reaction was further incubated overnight in a 3.6 mM SDS solution so that the poly (aniline) compartments were eccentrically deposited on only one side of the Au seed. The resulting solution was purified by centrifugation at 8,000 rpm for 10 minutes and resuspended in deionized water or 10 mM PBS (phosphate buffer saline).
<비교예 1> AuNR 클러스터가 없는 이중 금속 나노막대-고분자 야누스 나노입자의 제조Comparative Example 1 Preparation of Double Metal Nanorod-Polymer Janus Nanoparticles Without AuNR Cluster
실시예 4와 동일한 방법으로 AuNR 클러스터가 없는 이중 금속 나노막대-고분자 야누스 나노입자를 제조하되, 시드 입자의 모액으로 일반적인 AuNR 용액을 사용하였다. Double metal nanorod-polymer Janus nanoparticles without AuNR clusters were prepared in the same manner as in Example 4, but a general AuNR solution was used as a mother liquor of the seed particles.
제조된 AuNR 클러스터가 없는 이중 금속 나노막대-고분자 야누스 나노입자는 대조군으로 사용하였다.The prepared double metal nanorod-polymer Janus nanoparticles without AuNR cluster were used as a control.
<실시예 5> 전기유체역학(electrohydrodynamic, EHD) 분사를 통한 자성 나노입자(magnetic nanoparticles, MNPs)와 자성 비드(magnetic beads)의 합성Example 5 Synthesis of Magnetic Nanoparticles (MNPs) and Magnetic Beads by Electrohydrodynamic (EHD) Injection
산화철 나노입자(Fe3O4)는 침전제로 Fe2+와 Fe3+가 1 : 2의 몰비로 혼합된 암모니아수를 사용한 화학적 공침법을 이용하여 제조하였다. 염화 제1철4수화물(FeCl2) 0.86g 및 염화 제2철(FeCl3) 2.35g을 격렬한 교반 하에서 탈이온수 40mL에 혼합하고 30 분 동안 질소 가스로 탈기시켰다. 반응 용액을 80 ℃로 가열하고 수산화암모늄(NH4OH) 5 mL를 30 분 동안의 기계적 교반 하에 첨가하였다. 시트르산 1g을 반응 플라스크에 첨가하고 온도를 90 ℃로 증가시킨 다음, 추가로 90 분 동안 격렬하게 교반하였다. Fe3O4 자성 나노입자(MNPs)를 수백 가우스(Gauss)의 정적 자기장 하에서 2 회 탈이온수로 세척하였다. 또한, MNP 용액의 작은 분액을 자기장을 이용하여 농축하고 중합체 용액에 첨가하는 전기유체역학(EHD) 분사를 통해 자성 비드로 제조하였다. 탈이온수와 에틸렌글리콜이 3 : 1의 부피비로 혼합된 혼합물에서 폴리(아크릴아미드-코-아크릴산)(poly(acrylamide-co-acrylic acid), 폴리 (AAm-co-AA)) 4.5 w/v%를 제조하고, 이 중합체 용액에 농축된 MNP를 균일하게 분산시켜 MNPs의 현탁액을 제조하였다. EHD 분사 공정을 위해 분산된 MNPs의 현탁액을 23 게이지(gage) 스테인리스 스틸 모세관이 있는 1.0 mL 주사기(BD, Franklin Lakes, USA)에 넣었다. 안정한 테일러 원뿔(Taylor cone) 및 원뿔 분사 모드(con-jet mode)를 달성하기 위해, 중합체 농도를 증가시키지 않고 중합체를 에틸렌 글리콜과 같은 점성 용매에 용해시킴으로써 최적화된 점도를 얻었다. 주사기에는 일정한 속도로 MNPs 현탁액을 흐르게 하는 마이크로 주사기 펌프 KDS-100(KD Scientific, Inc, USA)가 장착되었다. 포집 기판으로 두께 0.018 mm의 알루미늄 호일(Fisherbrand; Thermo Fisher Scientific, USA)을 사용하였다. 고전압 전원 NNC HV 30(Nano NC, Korea)을 이용하여 양전극에 연결된 모세관과 음전극에 연결된 알루미늄 호일 사이에 고전압을 가했다. 두 전극 사이의 거리는 20-25 cm였다. 고전압은 15-20 kV의 범위로 유지되었고, 두 용액의 유속은 0.08-0.15 ml/hour으로 유지되었다. 고해상도의 디지털 카메라(D-90, Nikon Corporation, Japan)를 사용하여 EHD 분사 중에 단상의 테일러 원뿔, jet stream 및 jet break-up을 시각화하고 캡처했다. EHD 분사 후, 생성된 자성 비드를 175 ℃에서 밤새 열가교(thermally crosslinked)시켰다. 호일로부터 분말 형태의 자성 비드를 수집하고 이후 실험에 사용하였다.Iron oxide nanoparticles (Fe 3 O 4 ) was prepared using a chemical coprecipitation method using ammonia water mixed with Fe 2+ and Fe 3+ in a molar ratio of 1: 2 as a precipitant. 0.86 g of ferrous chloride (FeCl 2 ) and 2.35 g of ferric chloride (FeCl 3 ) were mixed in 40 mL of deionized water under vigorous stirring and degassed with nitrogen gas for 30 minutes. The reaction solution was heated to 80 ° C. and 5 mL of ammonium hydroxide (NH 4 OH) was added under mechanical stirring for 30 minutes. 1 g citric acid was added to the reaction flask and the temperature was increased to 90 ° C. and then vigorously stirred for an additional 90 minutes. Fe 3 O 4 magnetic nanoparticles (MNPs) were washed twice with deionized water under a static magnetic field of several hundred Gauss. In addition, small aliquots of the MNP solution were prepared as magnetic beads via electrohydrodynamic (EHD) spraying which was concentrated using a magnetic field and added to the polymer solution. 4.5 w / v% of poly (acrylamide-co-acrylic acid), poly (AAm-co-AA) in a mixture of deionized water and ethylene glycol in a volume ratio of 3: 1 Was prepared and uniformly dispersed MNP in this polymer solution to prepare a suspension of MNPs. A suspension of dispersed MNPs for the EHD injection process was placed in a 1.0 mL syringe (BD, Franklin Lakes, USA) with a 23 gage stainless steel capillary. To achieve a stable Taylor cone and con-jet mode, optimized viscosity was obtained by dissolving the polymer in a viscous solvent such as ethylene glycol without increasing the polymer concentration. The syringe was equipped with a micro syringe pump KDS-100 (KD Scientific, Inc, USA) which flows the MNPs suspension at a constant rate. An aluminum foil (Fisherbrand; Thermo Fisher Scientific, USA) with a thickness of 0.018 mm was used as the collecting substrate. High voltage was applied between the capillary connected to the positive electrode and the aluminum foil connected to the negative electrode using a high voltage power supply NNC HV 30 (Nano NC, Korea). The distance between the two electrodes was 20-25 cm. The high voltage was maintained in the range of 15-20 kV and the flow rates of the two solutions were maintained at 0.08-0.15 ml / hour. High resolution digital cameras (D-90, Nikon Corporation, Japan) were used to visualize and capture single-phase Taylor cones, jet streams, and jet break-ups during EHD injection. After EHD injection, the resulting magnetic beads were thermally crosslinked overnight at 175 ° C. Magnetic beads in powder form were collected from the foil and used for later experiments.
<실시예 6> 비대칭형 이중 금속 나노막대 클러스터-고분자 야누스 나노구조체 및 자성 비드의 항체 접합Example 6 Antibody Conjugation of Asymmetric Double Metal Nanorod Cluster-Polymer Janus Nanostructures and Magnetic Beads
비대칭형 야누스 나노구조체 및 자성 비드는 표적 단백질인 CEA(carcinoembryonic antigen)에 대한 단클론 항체(mAb)와 다클론 항체(pAb)의 서로 다른 2 세트와 별도로 접합되었다. 먼저, 폴리(아닐린) 구획에 존재하는 아민기와 카르복실기의 아미드 커플링 반응을 통해 야누스 나노 구조의 폴리(아닐린) 구획에 항-인간 CEA 다클론 항체(anti-human CEA pAb)를 도입하였다. 이러한 결합 반응은 EDC(1-ethyl-3-(3-dimethylaminopropyl) carbodiimide)와 sulfo-NHS(sulfo-N-hydroxysuccinimide ester) 화학을 기반으로 했다. EDC 60 mM과 sulfo-NHS 9.2 mM을 함유한 pH 7.4의 PBS 10 mM인 나노 구조 용액에 5 ㎕의 항-인간 CEA pAb 2.0 mg/ml을 첨가하고 3 시간 동안 교반하여 총 pAb 농도가 5 μg/ml가 되도록 하였다. 항-인간 CEA pAb-결합 야누스 나노구조체를 3,000 rpm에서 원심분리하여 세척하고 PBS로 재현탁시켰다. 또한, 175 ℃에서 밤새 열 안정화한 자성 비드 상의 잔류 카르복실기를 활성화시킴으로써 자성 비드를 항-인간 CEA 단클론 항체(anti-human CEA mAb)와 화학적으로 결합시켰다. 구체적으로, 1.25 mg의 자성 비드를 0.9ml의 PBS에 현탁시키고, 진폭 20.0 %에서 3/3 초 온/오프 사이클을 사용한 팁-초음파 발생장치(sonicator)를 사용하여 2 분 동안 초음파 처리하였다. 균일하게 현탁된 자성 비드를 5.0 mM EDC 및 5.0 mM sulfo-NHS와 혼합하고 1 시간 동안 교반하였다. 3.56 mg/ml의 항-인간 CEA mAb를 100 ㎕의 PBS 완충액으로 희석한 후, 자성 비드 용액에 최종 농도 8.9 ㎍/ml가 될 때까지 서서히 첨가하고, 1 시간 동안 교반하였다. 비접합 항-인간 CEA mAb를 자기장을 사용하여 분리하고, 항체-결합된 자성 비드를 CEA의 SERS- 기반 바이오센싱을 위해 PBS로 재현탁하였다.Asymmetric Janus nanostructures and magnetic beads were conjugated separately with two different sets of monoclonal antibodies (mAb) and polyclonal antibodies (pAb) against the target protein carcinoembryonic antigen (CEA). First, an anti-human CEA polyclonal antibody (anti-human CEA pAb) was introduced into a Janus nanostructured poly (aniline) compartment through an amide coupling reaction of an amine group and a carboxyl group present in the poly (aniline) compartment. This binding reaction was based on the chemistry of EDC (1-ethyl-3- (3-dimethylaminopropyl) carbodiimide) and sulfo-NHS (sulfo-N-hydroxysuccinimide ester). To a nanostructure solution of 10 mM PBS, pH 7.4, containing 60 mM EDC and 9.2 mM sulfo-NHS, 5 μl of anti-human CEA pAb 2.0 mg / ml was added and stirred for 3 hours to give a total pAb concentration of 5 μg / to ml. Anti-human CEA pAb-binding Janus nanostructures were washed by centrifugation at 3,000 rpm and resuspended in PBS. In addition, magnetic beads were chemically bound to anti-human CEA monoclonal antibodies (anti-human CEA mAbs) by activating residual carboxyl groups on magnetic beads that were thermally stabilized at 175 ° C. overnight. Specifically, 1.25 mg of magnetic beads were suspended in 0.9 ml of PBS and sonicated for 2 minutes using a tip-sonicator using a 3/3 second on / off cycle at 20.0% amplitude. The uniformly suspended magnetic beads were mixed with 5.0 mM EDC and 5.0 mM sulfo-NHS and stirred for 1 hour. 3.56 mg / ml of anti-human CEA mAb was diluted with 100 μl of PBS buffer, then slowly added to the magnetic bead solution until the final concentration was 8.9 μg / ml and stirred for 1 hour. Unconjugated anti-human CEA mAbs were separated using a magnetic field and antibody-bound magnetic beads were resuspended in PBS for SERS-based biosensing of CEA.
<실시예 7> 비대칭형 이중 금속 나노막대 클러스터-고분자 야누스 나노구조체 및 자성 비드를 이용한 표적 단백질 CEA에 대한 SERS 기반 바이오센싱Example 7 SERS-Based Biosensing for Target Protein CEA Using Asymmetric Double Metal Nanorod Cluster-Polymer Janus Nanostructures and Magnetic Beads
라만 리포터로 표지된 비대칭형 야누스 나노구조체를 표적 단백질인 CEA의 정량 분석을 위해 SERS 나노프로브로 사용하였으며, 항-인간 IgG mAb 또는 항-인간 CEA mAb와 결합된 자성 비드를 사용하여 샌드위치형 면역 복합체를 형성함으로써 분리 도구로 면역 복합체를 선택적으로 분리하였다. 먼저, 항-인간 IgG 단클론 항체 또는 항-인간 CEA 단클론 항체가 결합된 자성 비드를 22.5~67.5 ng/ml 범위의 상이한 3 가지 농도의 IgG 또는 CEA를 함유하는 완충액에 첨가하고, 1 시간 동안 반응시켰다. 표적 단백질을 외부 자기장으로 세척하고 새로운 PBS 완충액으로 재현탁시켰다. 이어서, 표적 단백질 및 자성 비드가 형성된 각각의 면역 복합체에 항-인간 CEA pAb가 결합된 SERS 나노프로브를 첨가하고 1 시간 동안 반응시켜 자성 비드, 표적 단백질 및 SERS 나노프로브로 구성된 샌드위치형 면역 복합체를 제조하였다. 결합되지 않은 SERS 나노프로브를 자기장을 사용하여 제거하고, 생성물인 샌드위치형 면역 복합체를 SERS 측정을 위해 PBS로 재현탁하였다. 표적 단백질이 없는 SERS 나노프로브의 선택적인 결합 능력을 평가하기 위해 대조군(control)에 대한 실험이 함께 수행되었다.Asymmetric Janus nanostructures labeled with Raman reporters were used as SERS nanoprobes for quantitative analysis of the target protein CEA and sandwiched immune complexes using anti-human IgG mAbs or magnetic beads coupled with anti-human CEA mAbs. Immune complexes were selectively isolated by means of a separation tool by forming. First, magnetic beads bound with anti-human IgG monoclonal antibody or anti-human CEA monoclonal antibody were added to a buffer containing IgG or CEA at three different concentrations ranging from 22.5 to 67.5 ng / ml and reacted for 1 hour. . The target protein was washed with an external magnetic field and resuspended in fresh PBS buffer. Subsequently, SERS nanoprobe with anti-human CEA pAb bound was added to each immune complex in which the target protein and the magnetic beads were formed and reacted for 1 hour to prepare a sandwich immune complex consisting of the magnetic beads, the target protein and the SERS nanoprobe. It was. Unbound SERS nanoprobes were removed using a magnetic field and the product sandwiched immune complex was resuspended in PBS for SERS measurements. Experiments with controls were performed together to assess the selective binding capacity of SERS nanoprobes without the target protein.
<실시예 8> 다이블록 폴리(AAc-b-NIPAM)의 특성 검정Example 8 Characterization of Diblock Poly (AAc-b-NIPAM)
디메틸 술폭사이드(dimethyl sulfoxide (d-6)) 및 클로로포름(chloroform)-d(CDCl3)를 용매로 사용하고 400 MHz 주파수로 작동하는 1H 핵 자기 공명(1H nuclear magnetic resonance, 1H NMR) 기기(AVANCE III 400, Bruker BioSpin AG, Fallennden, 스위스)로 실시예 2의 폴리(AAc-b-NIPAM)의 화학적 조성을 분석하였다. 폴리(AAc-b-NIPAM)의 겉보기 몰비는 각각의 단량체로부터 상응하는 양성자의 상대적 피크 신호를 비교함으로써 얻어졌다. 그의 수 평균 분자량(number-average molecular weight), 중량 평균 분자량(weight-average molecular weight) 및 다분산성 지수(polydispersity index)를 측정하기 위해, 겔 투과 크로마토그래피(gel-permeation chromatography, GPC) 측정을 Shodex GPC 칼럼 KF-803(Shodex GPC system-21; Showa Denko Co., Tokyo, Japan)을 사용한 고성능 액체 크로마토그래피(high-performance liquid chromatography, HPLC) 1260 시리즈 장치(Agilent Technologies, Palo Alto, CA, USA)를 이용하여 수행하였다. 1,270 내지 139,000 g/mol의 THF 및 폴리스티렌(polystyrene)을 유속이 1.0 ml/분인 이동상 및 고정상으로 각각 사용하였다.1H nuclear magnetic resonance (1H NMR) instrument operating at 400 MHz frequency using dimethyl sulfoxide (d-6) and chloroform-d (CDCl3) as a solvent, AVANCE III 400, Bruker BioSpin AG, Fallennden, Switzerland) to analyze the chemical composition of the poly (AAc-b-NIPAM) of Example 2. The apparent molar ratio of poly (AAc-b-NIPAM) was obtained by comparing the relative peak signals of the corresponding protons from each monomer. To determine its number-average molecular weight, weight-average molecular weight and polydispersity index, gel-permeation chromatography (GPC) measurements were performed on Shodex. High-performance liquid chromatography (HPLC) 1260 series apparatus (Agilent Technologies, Palo Alto, CA, USA) using GPC column KF-803 (Shodex GPC system-21; Showa Denko Co., Tokyo, Japan) It was performed using. THF and polystyrene of 1,270 to 139,000 g / mol were used as the mobile and stationary phases with a flow rate of 1.0 ml / min, respectively.
폴리(AAc-b-NIPAM)의 열 특성은 폴리(AAc-b-NIPAM) 용액의 UV 흡광도를 측정함으로써 확인되었고 인산염 완충액에서의 미셀 구조(micellar structures)의 유체역학 직경은 온도에 따라 특정되었다. 폴리(AAc-b-NIPAM)를 0.05 w/v%의 농도로 PBS에 용해시켜 샘플을 제조하였다. 폴리(AAc-b-NIPAM)의 낮은 임계 용액 온도(low critical solution temperature, LCST)는 펠티어(peltier) 온도 조절 장치의 온도 제어를 갖는 UV-Vis 분광기 Cary-100 Bio(Varian Biotech, US)를 사용하여 350 nm에서 폴리(AAc-b-NIPAM) 용액의 흡광도를 모니터링함으로써 결정되었다. 측정은 1 ℃/분의 가열 속도에서 20~70 ℃의 온도 범위로 수행되었다. 동적 광산란(dynamic light scattering, DLS)(Zeta-sizer Nano ZS90, Malvern Instruments, Malvern, UK)을 사용하여 폴리(AAc-b-NIPAM)의 유체역학 반경을 온도에 따라 측정하였다.The thermal properties of the poly (AAc-b-NIPAM) were confirmed by measuring the UV absorbance of the poly (AAc-b-NIPAM) solution and the hydrodynamic diameter of the micelle structures in phosphate buffer was specified with temperature. Samples were prepared by dissolving poly (AAc-b-NIPAM) in PBS at a concentration of 0.05 w / v%. Low critical solution temperature (LCST) of poly (AAc-b-NIPAM) uses UV-Vis spectrometer Cary-100 Bio (Varian Biotech, US) with temperature control of peltier thermostat Was determined by monitoring the absorbance of the poly (AAc-b-NIPAM) solution at 350 nm. The measurement was carried out in a temperature range of 20 to 70 ° C. at a heating rate of 1 ° C./min. The hydrodynamic radius of poly (AAc-b-NIPAM) was measured over temperature using dynamic light scattering (DLS) (Zeta-sizer Nano ZS90, Malvern Instruments, Malvern, UK).
UV-Vis 분광기 Shimadzu 모델 UV-1800 시리즈(Shimadzu, Japan)를 사용하여 시료의 UV 흡광도를 조사하여 트리티오카르보네이트 그룹의 절단 여부를 분석했다. 폴리(tBA-b-NIPAM)-macro CDTPA 및 폴리(AAc-b-NIPAM)-SH를 농도 0.5 w/v%의 CHCl3에 용해시켰다. 각 샘플은 200-700 nm의 파장에서 스캔되었다.A UV-Vis spectrometer Shimadzu model UV-1800 series (Shimadzu, Japan) was used to examine the UV absorbance of the sample to analyze the cleavage of trithiocarbonate groups. Poly (tBA-b-NIPAM) -macro CDTPA and poly (AAc-b-NIPAM) -SH were dissolved in CHCl 3 at a concentration of 0.5 w / v%. Each sample was scanned at a wavelength of 200-700 nm.
그 결과, 폴리(tBA145) 및 폴리(tBA145-b-NIPAM300)의 수 평균 분자량(number-average molecular weight, MnGPC), 중량 평균 분자량(weight-average molecular weight, MwGPC) 및 다분산성 지수(polydispersity index, PDI)을 표 3에 나타내었다.As a result, poly (tBA 145) and poly (tBA 145- b-NIPAM 300) a number average molecular weight (number-average molecular weight, Mn GPC), the weight average molecular weight (weight-average molecular weight, GPC Mw) and polydispersity of The index (polydispersity index, PDI) is shown in Table 3.
[Monomer]:[CTA]:[Initiater][Monomer]: [CTA]: [Initiater] Retention (Reaction) time(h)Retention (Reaction) time (h) MnNMR(g/mol)Mn NMR (g / mol) MnGPC(g/mol)Mn GPC (g / mol) MwGPC(g/mol)Mw GPC (g / mol) PDIPDI
poly(tBA145) poly (tBA 145 ) 1000:10:11000: 10: 1 55 18,58418,584 21,15221,152 25,59325,593 1.211.21
poly(tBA145-b-NIPAM300)poly (tBA 145- b-NIPAM 300 ) 1500:5:11500: 5: 1 66 52,53252,532 55,86355,863 70,94670,946 1.271.27
도 27 (a)는 CDCl3에서 측정된 폴리(tBA) 및 폴리(tBA-b-NIPAM), 400MHz의 DMSO-d6에서 측정된 폴리(AAc-b-NIPAM)의 1H NMR 스펙트럼을 나타낸다. 1.45 ppm에서의 피크는 tBA 블록의 말단 메틸 양성자를 나타내었고, 3.9 ppm에서의 단일 피크는 NIPAM 블록상의 이소프로필(isopropyl) 그룹의 C-2 양성자를 나타내었다. tBA 그룹이 AAc 그룹으로 가수 분해된 후, 1.45 ppm에서 메틸 에스테르 양성자의 피크가 사라져, 폴리(tBA-b-NIPAM)의 모든 에스테르 그룹이 아크릴산으로 전환되었음을 나타냈다. 도 27 (b)와 상기 표 3은 유지(반응) 시간에 따른 분자량, 다분산성 지수 및 공중합체 분포를 측정하기 위해 THF를 이동상으로 사용한 폴리(tBA) 및 폴리(tBA-b-NIPAM)의 GPC 흔적을 나타낸다. 폴리(tBA145)는 중량 평균 분자량이 25,593 g/mol, PDI 1.21이고 폴리(tBA145-b-NIPAM300)는 중량 평균 분자량이 70,946 g/mol, PDI는 1.27이다. 도 27 (c)는 아미노 분해 전후의 폴리(tBA-b-NIPAM)의 UV-Vis 흡수 그래프이다. 아미노 분해를 통해 티오카르보닐티오기를 제거한 후, 307 nm에서 흡수 피크가 사라졌다. 또한 폴리(AAc-b-NIPAM)의 고유한 열 변형 특성을 UV 흡광도와 동적 광 산란을 통해 온도에 따라 측정한 결과 도 27 (d)와 같은 특성을 나타냈다. 폴리(NIPAM)-기반 공중합체 또는 블록 공중합체는 LCST(lower critical solution temperature) 아래에서 수용성 상태를 나타내는 반면, LCST 이상에서는 소수성 상호 작용으로 인해 불용성 상태를 나타냈다. 공중합체의 LCST는 온도 의존성 UV 흡광도에서 유도체의 최대값에 도달한 온도로서 결정되었다. 폴리(AAc-b-NIPAM)은 10 mM PBS에서 최종 농도가 0.05 w/v%일 때, 39.5 ℃의 LCST를 나타내었다. 폴리(AAc-b-NIPAM)의 유체역학 반경은 LCST 아래에서 12.05 nm 였으며 직경은 LCST 이상에서 39.2 nm 였다.Figure 27 (a) shows the 1H NMR spectra of poly (tBA) and poly (tBA-b-NIPAM) measured in CDCl 3 , poly (AAc-b-NIPAM) measured in DMSO-d6 at 400 MHz. The peak at 1.45 ppm showed the terminal methyl proton of the tBA block and the single peak at 3.9 ppm showed the C-2 proton of the isopropyl group on the NIPAM block. After the tBA group was hydrolyzed to the AAc group, the peak of the methyl ester proton at 1.45 ppm disappeared, indicating that all ester groups of poly (tBA-b-NIPAM) were converted to acrylic acid. FIG. 27 (b) and Table 3 show GPC of poly (tBA) and poly (tBA-b-NIPAM) using THF as a mobile phase to measure molecular weight, polydispersity index and copolymer distribution according to holding time (reaction) time. Indicates a trace. Poly (tBA 145 ) has a weight average molecular weight of 25,593 g / mol, PDI 1.21 and poly (tBA 145 -b-NIPAM 300 ) has a weight average molecular weight of 70,946 g / mol and PDI of 1.27. (C) is a UV-Vis absorption graph of poly (tBA-b-NIPAM) before and after amino degradation. After removing the thiocarbonylthio group via amino decomposition, the absorption peak disappeared at 307 nm. In addition, the heat deformation characteristic of poly (AAc-b-NIPAM) was measured according to the temperature through UV absorbance and dynamic light scattering, and as shown in FIG. 27 (d). Poly (NIPAM) -based copolymers or block copolymers exhibited a water soluble state under a lower critical solution temperature (LCST), whereas above a LCST it showed an insoluble state due to hydrophobic interactions. The LCST of the copolymer was determined as the temperature at which the maximum value of the derivative was reached in temperature dependent UV absorbance. Poly (AAc-b-NIPAM) showed an LCST of 39.5 ° C. at a final concentration of 0.05 w / v% in 10 mM PBS. The hydrodynamic radius of poly (AAc-b-NIPAM) was 12.05 nm below LCST and the diameter was 39.2 nm above LCST.
<실시예 9> 비대칭형 나노막대 클러스터-고분자 야누스 나노구조체의 특성 규명Example 9 Characterization of Asymmetric Nanorod Cluster-Polymer Janus Nanostructures
비대칭형 야누스 나노구조체의 UV-Vis 스펙트럼은 300~900 nm의 파장을 실온에서 중간 스캔 속도의 1 회 10 스캔 모드에서 1 nm의 고정 슬릿 폭으로 변화시킨 UV-가시 분광계(UV-1800, Shimadzu, Japan)를 사용하여 수득하였다. 기준선은 탈이온수로 채워진 두 개의 빈 셀(cell)을 사용하여 교정되었다. 콜로이드 용액 특성은 90 °의 산란각에서 광원으로써 5mW의 최대 출력을 가지며 633 nm 에서 Ne-He 레이저가 공급되는 동적 광 산란(dynamic light scattering, DLS)(Zeta-sizer Nano ZS90, Malvern Instruments, UK)을 사용하여 유체역학 직경 및 그 크기 분포를 특성화하였으며, 온도는 25 ℃로 제어하였다. 탈이온수 또는 PBS에 샘플을 1 : 1의 부피비로 10 배 희석시키고, 이들의 평균 크기를 최소 20 스캔 주기에서 측정하였다. 또한, 탈이온수에서 표면 전하를 특성화하기 위해 제타(ζ) 전위 측정을 수행했다. 투과전자현미경(Transmission Electron Microcopy)을 통해 가속 전압 80~200 kV에서 작동하는 JEM-2100F FE-STEM(JEOL, Germany)을 사용하여 개별 AuNRs와 비대칭형 야누스 나노구조체를 분석하였다. 샘플은 탄소의 초박막 층(Ted Pella, Inc., USA)으로 코팅된 400 메쉬 구리 격자 상에 증착되었다. 모든 SERS 측정은 12.5 mW의 레이저 출력을 가진 자극 소스에 대해 632.8 nm의 파장(λ)에서 작동하는 Renishaw He-Ne 레이저가 장착된 Renishaw inVia 라만 현미경 시스템 (Renishaw, UK)을 사용하여 수행되었다. Rayleigh 선은 수집 필터에 위치한 홀로그램 노치 필터(holographic notch filter)를 사용하여 수집된 SERS 스펙트럼에서 제거되었다. 라만 산란은 분광 해상도 1 cm-1의 전하 결합 소자(charge-coupled device, CCD) 카메라를 사용하여 얻었으며 모든 SERS 스펙트럼은 520 cm-1 실리콘 라인으로 보정되었다. MGITC로 표지된 나노입자의 콜로이드 용액을 작은 유리 모세관(Kimble Chase, 평 모세관 튜브(plain capillary tubes), 소다 석회 유리, 내경 : 1.1-1.2 mm, 벽 : 0.2 ± 0.02 mm, 길이 : 75 mm)에 넣었다. SERS 스펙트럼은 20x 대물 렌즈를 사용하여 608-1738 cm-1의 파장 범위에서 유리 모세관에 레이저 스팟을 집중시키는 데 사용된 노출 시간의 1 초 동안 수집되었다.The UV-Vis spectra of the asymmetric Janus nanostructures are UV-visible spectrometers (UV-1800, Shimadzu, Ltd.) that vary the wavelength from 300 to 900 nm to a fixed slit width of 1 nm in a one-time 10 scan mode at medium scan rate at room temperature. Japan). Baseline was calibrated using two empty cells filled with deionized water. Colloidal solution characteristics are dynamic light scattering (DLS) (Zeta-sizer Nano ZS90, Malvern Instruments, UK) with a maximum power of 5 mW as a light source at a scattering angle of 90 ° and supplied with a Ne-He laser at 633 nm. Was used to characterize the hydrodynamic diameter and its size distribution, and the temperature was controlled to 25 ° C. Samples were diluted 10-fold in deionized water or PBS at a volume ratio of 1: 1, and their average size was measured at a minimum of 20 scan cycles. Zeta potential measurements were also performed to characterize the surface charge in deionized water. Individual AuNRs and asymmetric Janus nanostructures were analyzed using JEM-2100F FE-STEM (JEOL, Germany) operating at 80-200 kV acceleration voltage through Transmission Electron Microcopy. Samples were deposited on a 400 mesh copper lattice coated with an ultra thin layer of carbon (Ted Pella, Inc., USA). All SERS measurements were performed using a Renishaw inVia Raman microscope system (Renishaw, UK) equipped with a Renishaw He-Ne laser operating at a wavelength (λ) of 632.8 nm for a stimulus source with a laser power of 12.5 mW. Rayleigh lines were removed from the collected SERS spectrum using a holographic notch filter located in the acquisition filter. Raman scattering was obtained using a charge-coupled device (CCD) camera with a spectral resolution of 1 cm −1 and all SERS spectra were corrected with a 520 cm −1 silicon line. Colloidal solutions of nanoparticles labeled with MGITC were placed in small glass capillaries (Kimble Chase, plain capillary tubes, soda-lime glass, inner diameter: 1.1-1.2 mm, wall diameter: 0.2 ± 0.02 mm, length: 75 mm). Put in. SERS spectra were collected for 1 second of exposure time used to focus the laser spot on the glass capillary in the wavelength range of 608-1738 cm −1 using a 20 × objective lens.
그 결과, 시트르산염 음이온을 AuNR 용액에 첨가한 후 인큐베이션 시간을 달리하여 제조한 측면 간 조립된 AuNR 클러스터(side-by-side assembled AuNR nanoclusters) 및 이를 포함하는 비대칭형 야누스 나노구조체(Anisotropic hybrid nanoparticles)(시트르산염 음이온 인큐베이션 시간: 1~5 분)의 유체역학 직경 및 제타 전위는 하기 표 4와 같았다.As a result, side-by-side assembled AuNR nanoclusters prepared by adding the citrate anion to the AuNR solution at different incubation times, and an asymmetric hybrid nanoparticles comprising the same Hydrodynamic diameter and zeta potential of (Citrate anion incubation time: 1-5 minutes) were as Table 4 below.
side-by-side assembled AuNR nanoclustersside-by-side assembled AuNR nanoclusters Anisotropic hybrid nanoparticlesAnisotropic hybrid nanoparticles
incubation time(min)incubation time (min)
00 1One 22 33 55
hydrodynamic diameter(nm)hydrodynamic diameter (nm) transverse:46.8±0.1, longitudinal: 1.1±0.1transverse: 46.8 ± 0.1, longitudinal: 1.1 ± 0.1 transverse: 68.2±2.5, longitudinal: 3.7±0.5transverse: 68.2 ± 2.5, longitudinal: 3.7 ± 0.5 transverse: 99.8±3.0, longitudinal: 8.9±0.7transverse: 99.8 ± 3.0, longitudinal: 8.9 ± 0.7 transverse: 87.6±1.1, longitudinal: 6.4±0.2transverse: 87.6 ± 1.1, longitudinal: 6.4 ± 0.2 transverse: 92.1±2.5, longitudinal: 7.4±0.6transverse: 92.1 ± 2.5, longitudinal: 7.4 ± 0.6 78.6±0.278.6 ± 0.2
ζ-potential(mV) ζ-potential (mV) 31.1±1.3331.1 ± 1.33 N/A* N / A * N/A* N / A * N/A* N / A * -41.4±0.4-41.4 ± 0.4 -7.8±0.3-7.8 ± 0.3
*N/A: not available. * N / A: not available.
또한, AuNR(original AuNPs), 말단 간 조립된 AuNR 클러스터(end-to-end assembled AuNR nanoclusters) 및 이를 포함하는 비대칭형 야누스 나노구조체(Anisotropic hybrid nanoparticles)의 유체역학 직경은 하기 표 5와 같았다. AuNR 클러스터 및 비대칭형 야누스 나노구조체는 상온의 탈이온수(deionized water, DW) 또는 서로 다른 온도의 PBS에서 자가 조립되었다.In addition, the hydrodynamic diameters of AuNRs (original AuNPs), end-to-end assembled AuNR nanoclusters and asymmetric Janus nanostructures including the same are shown in Table 5 below. AuNR clusters and asymmetric Janus nanostructures were self-assembled in deionized water (DW) at room temperature or PBS at different temperatures.
original AuNPsoriginal AuNPs DW(RT)DW (RT) PBS(20 ℃)PBS (20 degreeC) PBS(50 ℃)PBS (50 degreeC)
end-to-end assembled AuNR nanoclustersend-to-end assembled AuNR nanoclusters Anisotropic hybrid nanoparticlesAnisotropic hybrid nanoparticles end-to-end assembled AuNR nanoclustersend-to-end assembled AuNR nanoclusters Anisotropic hybrid nanoparticlesAnisotropic hybrid nanoparticles end-to-end assembled AuNR nanoclustersend-to-end assembled AuNR nanoclusters Anisotropic hybrid nanoparticlesAnisotropic hybrid nanoparticles
hydrodynamic diameter(nm)hydrodynamic diameter (nm) transverse: 60.9±0.5, longitudinal:2.0±0.1transverse: 60.9 ± 0.5, longitudinal: 2.0 ± 0.1 transverse: 499.5, 101.8, longitudinal: 5.1transverse: 499.5, 101.8, longitudinal: 5.1 388388 transverse: 455.3, longitudinal: 57.9transverse: 455.3, longitudinal: 57.9 735735 transverse: 329.7, longitudinal: 46.0transverse: 329.7, longitudinal: 46.0 590590
도 25는 측면 간 조립된 AuNR 및 이를 포함하는 비대칭형 야누스 나노구조체의 UV-Vis 흡광도 스펙트럼과 유체역학 직경을 나타낸다. AuNR의 측면 간 조립에서, 도 25 (a)와 같이 인큐베이션 시간이 1 분에서 5 분까지 증가함에 따라 종단 플라즈몬 피크는 감소된 강도로 700 nm에서 610 nm까지 청색 이동되었다. 반면에, 횡단 피크는 증가된 강도로 510 nm에서 525 nm까지 약간 적색 이동되었다. AuNRs의 종단 및 횡단 피크의 이동 정도는 인큐베이션 시간 측면에서 클러스터링 수준과 상관 관계가 있었다. 이러한 플라즈몬 흡수 피크의 변화는 AuNRs의 측면 간 방향성 조립에서의 플라즈몬 커플링에 기인한다. 또한 측면 간 자가 조립된 AuNR 및 이의 야누스 나노구조체의 유체역학 직경, 크기 분포 및 콜로이드 안정성을 특정하기 위해 동적 광산란(DLS) 측정을 수행했다. 도 25 (b)와 상기 표 4는 1 ~ 5 분의 인큐베이션 시간을 증가시킴에 따른 기존 AuNR과 측면 간 조립된 나노 클러스터의 유체역학 직경을 보여준다. AuNR의 종축과 횡축의 평균 직경은 각각 1.1 ± 0.1 nm와 46.8 ± 0.1 nm였다. 시트르산염 음이온을 AuNR 용액에 첨가할 때, 인큐베이션 시간이 0에서 5 분으로 길어짐에 따라 AuNR의 종축 및 횡축 모두의 직경은 증가하였다. 측면 간 조립된 AuNRs의 PSS 코팅 후, 나노 클러스터의 세로 및 가로 축 평균 직경은 각각 7.4 ± 0.6 nm 및 92.1 ± 2.5 nm이었다. 기존 AuNR과 측면 간 조립된 AuNR의 ζ-전위 값은 각각 31.1 ± 1.3 mV 및 - 41.4 ± 0.4 mV이었다. AuNR 클러스터의 표면 전하 값의 극적인 변화는 음으로 대전된 고분자 전해질인 PSS의 존재 때문이었다. 도 25 (c)에 도시된 바와 같이, 측면 간 방향성 AuNR 클러스터상에서의 폴리(아닐린)으로의 산화 중합 및 은 증착 후에, 새로운 Ag 흡수 피크가 330~450 nm의 범위에서 나타나고 종단 플라스몬 피크는 기존 AuNR을 시드로 하는 야누스 나노입자의 피크와 비교하여 적색-이동을 나타내어, 이중 금속 Au 코어-Ag 쉘 나노막대 클러스터 구획의 존재를 나타내었다. 도 25 (d)는 AuNR의 측면 간 조립을 통한 비대칭형 이중 금속 나노막대 클러스터-고분자 야누스 나노구조체의 유체역학 직경을 보여준다. 야누스 나노 구조의 평균 직경은 78.6 ± 0.2 nm 였고, 시드인 기존 AuNRs를 포함하는 나노입자의 클러스터는 93.2 ± 2.3 nm였다.FIG. 25 shows UV-Vis absorbance spectra and hydrodynamic diameters of the side-to-side assembled AuNR and asymmetric Janus nanostructures comprising the same. In the side-to-side assembly of AuNR, the terminal plasmon peak shifted blue from 700 nm to 610 nm with reduced intensity as the incubation time increased from 1 minute to 5 minutes as shown in FIG. 25 (a). In contrast, the transverse peak shifted slightly red from 510 nm to 525 nm with increased intensity. The degree of shift of the longitudinal and transverse peaks of AuNRs correlated with the level of clustering in terms of incubation time. This change in plasmon absorption peak is due to plasmon coupling in the lateral cross-sectional assembly of AuNRs. Dynamic light scattering (DLS) measurements were also performed to characterize the hydrodynamic diameter, size distribution, and colloidal stability of the side-to-side self-assembled AuNR and its Janus nanostructures. Figure 25 (b) and Table 4 shows the hydrodynamic diameter of the assembled nano-cluster between the side and the existing AuNR with increasing incubation time of 1 to 5 minutes. The mean diameters of the longitudinal and transverse axes of AuNR were 1.1 ± 0.1 nm and 46.8 ± 0.1 nm, respectively. When the citrate anion was added to the AuNR solution, the diameter of both the longitudinal and transverse axes of AuNR increased as the incubation time was extended from 0 to 5 minutes. After PSS coating of side-to-side assembled AuNRs, the longitudinal and transverse axis mean diameters of the nanoclusters were 7.4 ± 0.6 nm and 92.1 ± 2.5 nm, respectively. The ζ-potential values of the conventional AuNR and the assembled side-to-side AuNR were 31.1 ± 1.3 mV and-41.4 ± 0.4 mV, respectively. The dramatic change in the surface charge value of the AuNR cluster was due to the presence of PSS, a negatively charged polymer electrolyte. As shown in FIG. 25 (c), after oxidation polymerization and silver deposition onto poly (aniline) on the lateral AuNR clusters, a new Ag absorption peak appears in the range of 330-450 nm and the termination plasmon peak is Red-shifts were shown as compared to the peaks of Janus nanoparticles seeded with AuNR, indicating the presence of double metal Au core-Ag shell nanorod cluster sections. Figure 25 (d) shows the hydrodynamic diameter of the asymmetric double metal nanorod cluster-polymer Janus nanostructures through side-to-side assembly of AuNR. The mean diameter of Janus nanostructures was 78.6 ± 0.2 nm, and the cluster of nanoparticles containing the existing AuNRs as seeds was 93.2 ± 2.3 nm.
도 28은 말단 간 조립된 AuNR 및 이를 포함하는 비대칭형 야누스 나노구조체의 UV-Vis 흡광도 스펙트럼과 유체역학 직경을 나타낸다. AuNR의 말단 간 조립에서, 도 28 (a)와 같이 종단 방향 플라즈몬 흡수 피크는 645 nm에서 660 nm로 적색-이동되었으며, 횡단 피크는 거의 변하지 않았다. 이러한 변화는 AuNR 사슬을 따라 쌍극자가 교대로 연결되어 발생했다. AuNR이 20 ℃의 PBS에서 말단 간 방향으로 조립되었을 때, 어깨 피크(shoulder peak)가 약 800 nm로 나타나, PBS의 높은 이온 강도에서 CTAB 이중층 사이의 정전기적 반발력의 감소로 인해 이들 나노 클러스터가 부분적으로 응집되었음을 나타내었다. 폴리(AAc-b-NIPAM)의 LCST 이상인 50 ℃에서 종단 방향 플라즈몬 흡수 피크는 약간 청색-이동되었다. 도 28 (b)와 상기 표 5은 서로 다른 온도의 탈이온수 또는 PBS에서 말단 간 조립된 AuNR 클러스터의 유체역학 직경을 나타내었다. 기존 AuNR의 종축과 횡축의 평균 직경은 각각 2.0 ± 0.1 nm와 60.9 ± 0.5 nm였다. 탈이온수 내 AuNR 나노 클러스터의 직경은 5.1 nm, 101.8 nm 및 499.5 nm였으며, 이는 개별 AuNR과 말단 간 조립 AuNR의 존재를 모두 나타내었다. 나노 클러스터가 20 ℃의 PBS에 존재할 때, 이온 강도의 증가로 인해 직경은 57.9 nm와 455.3 nm로 나타났다. 폴리(AAc-b-NIPAM)의 전이 온도보다 높은 50 ℃에서는 NIPAM 블록의 붕괴로 인해 직경이 크게 감소하여 AuNR 사이의 나노 갭이 감소하게 된다. 도 28 (c)에 도시된 바와 같이, 말단 간 방향성 AuNR 클러스터 상에서 폴리(아닐린)으로의 산화 중합 및 은 환원 후, 새로운 Ag 흡수 피크는 350-450 nm의 범위에서 나타나고, 종단 방향 플라즈몬 피크는 말단 간 조립 된 AuNR로 인해 기존 AuNR을 시드로 하는 야누스 나노입자와 비교하여 약간 청색-이동되었다. 도 28 (d)는 AuNR의 말단 간 조립을 통한 비대칭형 이중 금속 나노막대 클러스터-고분자 야누스 나노구조체의 유체역학 직경을 보여준다. 야누스 나노구조체의 평균 직경은 탈이온수에서 388 nm 였고 기존 AuNR로 이루어진 나노입자의 클러스터는 246.4 ± 30.7 nm였다. 이러한 야누스 나노 구조가 20 ℃의 PBS에 현탁될 때, 평균 직경은 735 nm로, 이는 야누스 나노 구조의 이중 금속 나노막대 클러스터 구획 사이의 부분 응집을 나타내었다. 그러나, LCST 이상인 50 ℃에서는 NIPAM 블록의 붕괴로 인하여 인접한 나노막대 사이의 입자 간극이 감소하여 유체역학 직경이 590 nm로 감소하였다.FIG. 28 shows UV-Vis absorbance spectra and hydrodynamic diameters of end-to-end assembled AuNR and asymmetric Janus nanostructures comprising the same. In the end-to-end assembly of AuNR, the longitudinal plasmon absorption peak was red-shifted from 645 nm to 660 nm as shown in Fig. 28 (a), and the transverse peak was little changed. This change was caused by alternating dipoles along the AuNR chain. When AuNR was assembled in the end-to-end direction in PBS at 20 ° C., the shoulder peak appeared at about 800 nm, indicating that these nanoclusters were partially attributable to the decrease in electrostatic repulsion between CTAB bilayers at high ionic strength of PBS. Showed aggregation. At 50 ° C. above LCST of poly (AAc-b-NIPAM) the longitudinal plasmon absorption peak was slightly blue-shifted. 28 (b) and Table 5 show the hydrodynamic diameters of the assembled end-to-end AuNR clusters in deionized water or PBS at different temperatures. The mean diameters of the vertical and horizontal axes of the conventional AuNR were 2.0 ± 0.1 nm and 60.9 ± 0.5 nm, respectively. The diameters of AuNR nanoclusters in deionized water were 5.1 nm, 101.8 nm and 499.5 nm, indicating both the presence of individual AuNR and the end-to-end assembled AuNR. When the nanoclusters were present in PBS at 20 ° C, the diameters were 57.9 nm and 455.3 nm due to the increase in ionic strength. At 50 ° C., higher than the transition temperature of poly (AAc-b-NIPAM), the collapse of the NIPAM block greatly reduces the diameter, leading to a reduction in the nanogap between AuNRs. As shown in FIG. 28 (c), after oxidation polymerization to poly (aniline) and silver reduction on the end-to-end directional AuNR cluster, a new Ag absorption peak appears in the range of 350-450 nm, and the longitudinal plasmon peak is terminal Due to the inter-assembled AuNR, it was slightly blue-shifted compared to Janus nanoparticles seeded with conventional AuNR. Figure 28 (d) shows the hydrodynamic diameter of asymmetric double metal nanorod cluster-polymer Janus nanostructures via end-to-end assembly of AuNR. The mean diameter of Janus nanostructures was 388 nm in deionized water and the cluster of nanoparticles consisting of AuNR was 246.4 ± 30.7 nm. When these Janus nanostructures were suspended in PBS at 20 ° C., the average diameter was 735 nm, indicating partial cohesion between the double metal nanorod cluster compartments of Janus nanostructures. However, at 50 ° C above LCST, the particle gap between adjacent nanorods was reduced due to the collapse of the NIPAM block, resulting in a decrease in hydrodynamic diameter to 590 nm.
도 29 (a)는 10-6 M MGITC에서 MGITC로 표지된 AuNR과 이를 포함하는 측면 간 조립된 AuNR 클러스터의 상대적 라만 이동을 보여준다. MGITC가 MGITC의 이소티오시아네이트 그룹(-N=C=S)을 통해 AuNR 표면에 고정됨에 따라, 측면 간 방향성 나노 클러스터의 인접한 AuNR 사이의 입자 간 접합부에 매립된 MGITC의 라만 강도는 AuNR(original AuNPs) 표면에 고정된 MGITC의 라만 강도 보다 약 11.0 배 향상되었다. 이러한 야누스 나노 구조로부터의 MGITC의 SERS 강도는 AuNR(original AuNPs) 표면에 고정된 MGITC SERS 강도보다 1617 cm-1에서 약 6.53 배 더 높았다. 또한, 도 29 (b)와 같이 말단 간 조립된 AuNR 클러스터 및 이를 포함하는 야누스 나노구조체의 상대적 라만 스펙트럼을 상온의 탈이온수 및 PBS에서 측정하였다. 자가 조립 후 SERS 효율을 조사하기 위해 MGITC가 도입되었다. 개별 AuNR과 비교하여, 말단 간 조립된 AuNR 나노 클러스터의 라만 강도는 탈이온수에서 38.2 배까지 현저히 증가했다. AuNRs의 곡면이 높으면 전자기장이 크게 향상되고, 이에 따라 개별 AuNR에 비해 말단 간 조립의 SERS 강도가 크게 높아진다. 야누스 나노구조체의 SERS 강도는 개별 AuNR과 비교하여 17.3 배 증가했다.FIG. 29 (a) shows the relative Raman shift of the AuNR labeled MGITC at 10 −6 M MGITC and the assembled side-to-side AuNR cluster. As MGITC is anchored to the AuNR surface via the isothiocyanate group of MGITC (-N = C = S), the Raman strength of MGITC embedded in the interparticle junction between adjacent AuNRs of the lateral oriented nanoclusters is AuNR (original AuNPs) were approximately 11.0 times higher than the Raman strength of MGITC immobilized on the surface. The SERS intensity of MGITC from this Janus nanostructure was about 6.53 times higher at 1617 cm −1 than the MGITC SERS intensity immobilized on the AuNR (original AuNPs) surface. In addition, relative Raman spectra of the end-assembled AuNR cluster and Janus nanostructure including the same as shown in FIG. 29 (b) were measured in deionized water and PBS at room temperature. MGITC was introduced to investigate SERS efficiency after self-assembly. Compared to the individual AuNRs, the Raman intensity of the end-to-end assembled AuNR nanoclusters increased significantly by 38.2 times in deionized water. The higher the curved surface of the AuNRs, the greater the electromagnetic field, and thus the higher SERS strength of the end-to-end assembly compared to the individual AuNR. The SERS strength of Janus nanostructures increased by 17.3 times compared to the individual AuNR.
도 30은 크기 및 모양을 특정하기 위해 각각의 AuNR, AuNR을 시드로 사용한 비대칭형 이중 금속 나노막대-고분자 야누스 나노구조체, 측면 간 조립을 통해 방향성 자가 조립된 AuNR 나노 클러스터 및 이를 포함하는 비대칭형 이중 금속 나노막대 클러스터-고분자 야누스 나노구조체를 다양한 배율로 나타낸 TEM 이미지이다.30 shows an asymmetric double metal nanorod-polymer Janus nanostructure using each AuNR, AuNR as a seed to specify size and shape, directional self-assembled AuNR nanoclusters through side-to-side assembly, and an asymmetric double including the same TEM images of metal nanorod cluster-polymer Janus nanostructures at various magnifications.
도 31은 크기 및 모양을 특정하기 위해 말단 간 조립을 통해 방향성 자가 조립된 AuNR 나노 클러스터 및 이를 포함하는 비대칭형 이중 금속 나노막대 클러스터-고분자 야누스 나노구조체를 다양한 배율로 나타낸 TEM 이미지이다.FIG. 31 is a TEM image at various magnifications of directional self-assembled AuNR nanoclusters and asymmetric bimetallic nanorod cluster-polymer Janus nanostructures comprising the same by end-to-end assembly to specify size and shape.

Claims (68)

  1. 이중 금속 나노 클러스터 코어; 및 Double metal nanocluster cores; And
    상기 코어 주위에 방사상으로 위치하는 전도성 고분자 쉘;A conductive polymer shell radially located around the core;
    로 구성되는, 자가 조립된 이중 금속-고분자의 야누스 나노구조체.Self-assembled double metal-polymer Janus nanostructure consisting of.
  2. 제1항에 있어서,The method of claim 1,
    상기 이중 금속 나노 클러스터 코어는 제1 금속 및 상기 제1 금속 표면을 감싸는 제2 금속으로 구성되고,The double metal nano cluster core is composed of a first metal and a second metal surrounding the first metal surface,
    상기 제1 금속 및 제2 금속은 각각 은, 금, 구리 및 이의 혼합물로 이루어진 군으로부터 선택되고,The first metal and the second metal are each selected from the group consisting of silver, gold, copper and mixtures thereof,
    상기 제1 금속과 제2 금속은 동일하지 않은 것인, 자가 조립된 이중 금속-고분자의 야누스 나노구조체.The first metal and the second metal are not the same, self-assembled double metal-polymer Janus nanostructures.
  3. 제1항에 있어서,The method of claim 1,
    상기 전도성 고분자는 폴리피롤(polypyrrole), 폴리싸이오펜(polythiophene), poly(3,4-ethylene dioxythiophene)(PEDOT) 및 폴리아닐린(polyaniline)으로 이루어진 군으로부터 선택되는 적어도 하나인, 자가 조립된 이중 금속-고분자의 야누스 나노구조체.The conductive polymer is at least one selected from the group consisting of polypyrrole, polythiophene, poly (3,4-ethylene dioxythiophene) (PEDOT) and polyaniline, self-assembled double metal-polymer Janus nanostructures.
  4. 제1항에 있어서, The method of claim 1,
    상기 이중 금속 나노 클러스터 코어는 라만 염료를 더 포함하는 것인, 자가 조립된 이중 금속-고분자의 야누스 나노구조체.The double metal nano cluster core further comprises a Raman dye, self-assembled double metal-polymer Janus nanostructure.
  5. 제4항의 야누스 나노구조체를 이용한 표면-증강 라만 산란(SERS) 기반 바이오센싱(Biosensing) 및/또는 바이오이미징(Bioimaging) 측정용 금속 나노프로브.Metal nanoprobe for surface-enhanced Raman scattering (SERS) based biosensing and / or bioimaging measurement using Janus nanostructure of claim 4.
  6. 제1항 내지 제3항 중 어느 한 항에 따른 야누스 나노구조체를 이용한 형광 기반 바이오센싱(Biosensing) 및/또는 바이오이미징(Bioimaging) 측정용 금속 나노프로브.Metal nanoprobe for fluorescence based biosensing and / or bioimaging measurement using the Janus nanostructures according to claim 1.
  7. 제1항 내지 제4항 중 어느 한 항에 따른 야누스 나노구조체를 이용한 약물 전달체.Drug delivery using the Janus nanostructures according to any one of claims 1 to 4.
  8. i) 시드(seed)를 형성하는 금속 나노입자를 준비하고;i) preparing metal nanoparticles to form a seed;
    ii) 전도성 고분자 단량체 및 계면활성제를 용해시킨 수용액에 상기 시드 금속 나노입자를 첨가하고, ii) adding the seed metal nanoparticles to an aqueous solution in which a conductive polymer monomer and a surfactant are dissolved,
    iii) 상기 ii)의 시드 금속 나노입자가 첨가된 용액에 금속 이온 용액을 첨가하여 상기 금속 이온과 상기 전도성 고분자 단량체 사이의 산화-환원 반응을 수행하고;iii) adding a metal ion solution to the solution to which the seed metal nanoparticles of ii) are added to perform a redox reaction between the metal ion and the conductive polymer monomer;
    iv) 상기 금속 이온이 상기 전도성 고분자가 제공하는 전자를 받아 환원되면서 시드 금속 나노입자 표면에 증착되어 이중 금속 나노입자 구획을 형성하고, 상기 전도성 고분자 모노머는 산화되면서 상기 이중 금속 나노입자 구획의 한쪽 면에만 증착되어 전도성 고분자로 성장하면서 비대칭적으로 전도성 고분자 구획을 형성하여, 이중 금속-고분자로 구성된 야누스 나노입자를 만들고;iv) the metal ions are deposited on the surface of the seed metal nanoparticles while being reduced by receiving electrons provided by the conductive polymer to form a double metal nanoparticle compartment, and the conductive polymer monomer is oxidized to one side of the double metal nanoparticle compartment. Is deposited only to form a conductive polymer compartment asymmetrically while growing into a conductive polymer, thereby making Janus nanoparticles composed of double metal-polymers;
    v) 상기 야누스 나노입자들을 포함하는 용액에 ODA(octadecylamine)를 첨가하고; 그리고v) octadecylamine (ODA) is added to the solution containing Janus nanoparticles; And
    vi) 상기 야누스 나노입자들 내의 상기 이중 금속 나노입자들이 상기 ODA와 공유결합하면서 자가 조립되어, 이중 금속 나노 클러스터 코어 및 상기 코어 주위에 방사상으로 위치하는 고분자 쉘을 형성하는; vi) the double metal nanoparticles in the Janus nanoparticles self-assemble covalently with the ODA to form a double metal nano cluster core and a radially located polymer shell around the core;
    단계를 포함하는, Comprising the steps,
    자가 조립된 이중 금속-고분자의 야누스 나노구조체의 제조 방법.Method for producing self-assembled double metal-polymer Janus nanostructures.
  9. 제8항에 있어서,The method of claim 8,
    상기 iv) 단계 이후에, After step iv),
    상기 이중 금속-고분자로 구성된 나노입자의 이중 금속 나노입자 표면에 라만 염료를 부착하는 단계를 더 포함하는, 자가 조립된 이중 금속-고분자의 야누스 나노구조체의 제조 방법.A method of producing a self-assembled double metal-polymer Janus nanostructure, further comprising attaching a Raman dye to the surface of the double metal nanoparticle of the double metal-polymer nanoparticles.
  10. 제8항에 있어서,The method of claim 8,
    상기 i) 단계의 시드 금속은 금, 은, 구리 및 이의 혼합물로 이루어진 군으로부터 선택되고;The seed metal of step i) is selected from the group consisting of gold, silver, copper and mixtures thereof;
    상기 iii) 단계의 금속 이온은 금 이온, 은 이온, 구리 이온 및 이의 혼합물로부터 이루어진 군으로부터 선택되는 것인, 자가 조립된 이중 금속-고분자의 야누스 나노구조체의 제조 방법.Wherein the metal ions of step iii) is selected from the group consisting of gold ions, silver ions, copper ions and mixtures thereof, a method for producing self-assembled double metal-polymer Janus nanostructures.
  11. 제8항에 있어서,The method of claim 8,
    상기 ii) 단계의 전도성 고분자는 폴리피롤(polypyrrole), 폴리싸이오펜(polythiophene), poly(3,4-ethylene dioxythiophene)(PEDOT) 및 폴리아닐린(polyaniline)로 이루어진 군으로부터 선택되는 적어도 하나인, 자가 조립된 이중 금속-고분자의 야누스 나노구조체의 제조 방법.The conductive polymer of step ii) is at least one selected from the group consisting of polypyrrole, polythiophene, poly (3,4-ethylene dioxythiophene) (PEDOT) and polyaniline, self-assembled Method for producing double metal-polymer Janus nanostructures.
  12. 제8항에 있어서,The method of claim 8,
    상기 iv) 단계의 전도성 고분자로 성장하는 것은 표면 주형 중합법(surface-templated polymerization)에 의한 것인, 자가 조립된 이중 금속-고분자의 야누스 나노구조체의 제조 방법.The growth of the conductive polymer of step iv) is by surface-templated polymerization, a method for producing self-assembled double metal-polymer Janus nanostructures.
  13. a) 검출하고자 하는 표적 물질이 포함된 시료액을 준비하고;a) preparing a sample solution containing the target substance to be detected;
    b) 자성 나노입자에 상기 표적 물질에 대한 제1 항체를 고정하여 준비하고;b) preparing by immobilizing a first antibody against the target material on magnetic nanoparticles;
    c) 제5항의 금속 나노프로브에 상기 표적 물질에 대한 제2 항체를 고정하여 준비하고;c) preparing by immobilizing a second antibody against the target material on the metal nanoprobe of claim 5;
    d) 상기 b)의 제1 항체가 고정된 자성 나노입자를 상기 a)의 시료액에 첨가하여 상기 표적 물질과 상기 자성 나노입자의 제1 항체가 접합된 면역복합체를 형성하고;d) adding the magnetic nanoparticles immobilized with the first antibody of b) to the sample solution of a) to form an immunocomplex in which the target material and the first antibody of the magnetic nanoparticles are conjugated;
    e) 상기 c)의 제2 항체가 고정된 금속 나노프로브를 상기 d)의 제1 항체가 접합된 면역복합체가 포함된 용액에 첨가하여 금속 나노프로브의 제2 항체-표적 물질-자성 나노입자의 제1 항체의 샌드위치형 면역복합체를 형성하고;e) adding the metal nanoprobe to which the second antibody of c) is immobilized to a solution containing the immunocomplex conjugated with the first antibody of d) to prepare a second antibody-target material-magnetic nanoparticle of the metal nanoprobe. Forming a sandwich immunocomplex of the first antibody;
    f) 자기장을 이용하여 상기 샌드위치형 면역복합체를 형성하지 않은 자성 나노입자 및 금속 나노프로브를 분리하고; 그리고f) separating magnetic nanoparticles and metal nanoprobes that did not form the sandwich immunocomplex using a magnetic field; And
    g) 상기 샌드위치형 면역복합체의 라만 신호를 측정하는;g) measuring the Raman signal of said sandwich immunocomplex;
    단계를 포함하는, 표면-증강 라만 산란(SERS) 기반의 표적 물질 검출 방법.A surface-enhanced Raman scattering (SERS) based target substance detection method comprising the step.
  14. 제13항에 있어서,The method of claim 13,
    상기 표적 물질은 단백질 또는 병원균인, 표면-증강 라만 산란(SERS) 기반의 표적 물질 검출 방법.The target material is a protein or pathogen, surface-enhanced Raman scattering (SERS) based target material detection method.
  15. 리간드를 흡착시킨 금속 나노입자 코어, 및 상기 코어의 리간드 흡착 부분에 환원된 금속 새틀라이트로 구성되는 코어-새틀라이트 구조의 이중 금속 나노입자 구획; 및 A double-metal nanoparticle compartment having a core-satellite structure comprising a metal nanoparticle core to which a ligand is adsorbed, and a metal satellite reduced to a ligand adsorption portion of the core; And
    전도성 고분자 구획;Conductive polymer compartments;
    으로 구성된 야누스 나노구조체.Janus nanostructure consisting of.
  16. 제15항에 있어서,The method of claim 15,
    상기 리간드는 음전하성 리간드 또는 두 개의 반응기를 갖는 리간드이고, The ligand is a negatively charged ligand or a ligand having two reactors,
    상기 금속 나노입자 코어는 양전하성 금속 나노입자 코어 또는 음전하성 금속 나노입자 코어인, 야누스 나노구조체.The metal nanoparticle core is a positively charged metal nanoparticle core or a negatively charged metal nanoparticle core, Janus nanostructure.
  17. 제16항에 있어서,The method of claim 16,
    상기 음전하성 리간드는 전하성 단위체(Repeating unit)를 포함하는 폴리머성 리간드 또는 두 개의 반응기를 갖는 소분자 리간드인, 야누스 나노구조체.The negatively charged ligand is a Janus nanostructure, which is a polymeric ligand comprising a charging unit (Repeating unit) or a small molecule ligand having two reactors.
  18. 제17항에 있어서, The method of claim 17,
    상기 폴리머성 리간드는 PSS(poly(sodium-4-styrenesulfonate)), PVP(poly(N-vinyl pyrrolidone)), PDADMAC(poly(diallyldimethylammonium chloride)), PAA(polyacrylic acid) 또는 PAH(poly(allylamine) hydrochloride)로 이루어진 군으로부터 선택되는 적어도 하나이고, The polymeric ligand is PS (poly (sodium-4-styrenesulfonate)), PVP (poly (N-vinyl pyrrolidone)), PDADMAC (poly (diallyldimethylammonium chloride)), PAA (polyacrylic acid) or PAH (poly (allylamine) hydrochloride At least one selected from the group consisting of
    상기 소분자 리간드는 ATP(4-aminothiophenol), BDT(1,4-benzenedithiol), MBA(4-mercaptobenzoic acid), MBIA(2 -mercaptobenzoimidazole-5-carboxylic acid)로 이루어진 군으로부터 선택되는 적어도 하나인, 야누스 나노구조체.The small molecule ligand is at least one selected from the group consisting of ATP (4-aminothiophenol), BDT (1,4-benzenedithiol), MBA (4-mercaptobenzoic acid), and MBIA (2-mercaptobenzoimidazole-5-carboxylic acid). Nanostructures.
  19. 제15항에 있어서, The method of claim 15,
    상기 코어-새틀라이트 구조의 이중 금속 나노입자 구획에서,In the double metal nanoparticle compartment of the core-satellite structure,
    상기 코어 금속 나노입자 및 상기 새틀라이트의 금속은, 각각, 은, 금, 구리 및 이의 혼합물로 이루어진 군으로부터 선택되고, 상기 코어 금속과 새틀라이트 금속은 서로 동일하지 않은 것인, 야누스 나노구조체.Janus nanostructures, wherein the core metal nanoparticles and the metal of the satellite are each selected from the group consisting of silver, gold, copper and mixtures thereof, and the core metal and the satellite metal are not identical to each other.
  20. 제15항에 있어서,The method of claim 15,
    상기 전도성 고분자는 폴리피롤(polypyrrole), 폴리싸이오펜(polythiophene), poly(3,4-ethylene dioxythiophene)(PEDOT) 및 폴리아닐린(polyaniline)으로 이루어진 군으로부터 선택되는 적어도 하나인, 야누스 나노구조체.The conductive polymer is at least one selected from the group consisting of polypyrrole, polythiophene, polythiophene, poly (3,4-ethylene dioxythiophene) (PEDOT), and polyaniline, Janus nanostructure.
  21. 제15항에 있어서, The method of claim 15,
    상기 금속 나노입자 코어의 금속 나노입자는 금속 나노막대(nanorods) 또는 금속 나노구체(nanospheres)인, 야누스 나노구조체.Janus nanostructures of the metal nanoparticle core of the metal nanoparticles are metal nanorods (nanorods) or metal nanospheres (nanospheres).
  22. 제15항에 있어서, The method of claim 15,
    상기 코어-새틀라이트 구조의 이중 금속 나노입자 구획은 라만 염료를 더 포함하는 것인, 야누스 나노구조체.Janus nanostructure, wherein the core-satellite structure of the double metal nanoparticle compartment further comprises a Raman dye.
  23. 제22항의 야누스 나노구조체를 이용한 표면-증강 라만 산란(SERS) 기반 표적 물질 검출용 금속 나노프로브.A metal nanoprobe for detecting surface-enhanced Raman scattering (SERS) based target substance using Janus nanostructure of claim 22.
  24. i) 양전하성 또는 음전하성의 코어 금속 나노입자를 준비하고;i) preparing positively or negatively charged core metal nanoparticles;
    ii) 상기 코어 금속 나노입자에 음전하성 리간드 또는 두 개의 반응기를 갖는 리간드를 흡착시키고;ii) adsorbing a negatively charged ligand or a ligand having two reactors to the core metal nanoparticle;
    iii) 전도성 고분자 단량체 및 계면활성제를 용해시킨 수용액에 상기 리간드가 흡착된 코어 금속 나노입자를 첨가하고, iii) adding the ligand-adsorbed core metal nanoparticles to an aqueous solution in which the conductive polymer monomer and the surfactant are dissolved,
    iv) 상기 iii)의 코어 금속 나노입자가 첨가된 용액에 금속 이온 용액을 첨가하여 상기 금속 이온과 상기 전도성 고분자 단량체 사이의 산화-환원 반응을 수행하고; 그리고iv) adding a metal ion solution to the solution to which the core metal nanoparticles of iii) are added to perform a redox reaction between the metal ion and the conductive polymer monomer; And
    v) 상기 코어 금속 나노입자의 리간드가 흡착된 부분에서 상기 금속 이온이 상기 전도성 고분자가 제공하는 전자를 받아서 환원되면서 새틀라이트 금속을 형성하여, 코어-새틀라이트 구조의 이중 금속 나노입자 구획을 형성하고, 상기 전도성 고분자 단량체는 산화되면서 상기 이중 금속 나노입자 구획의 한쪽 면에만 증착되어 전도성 고분자로 성장하면서 비대칭적으로 전도성 고분자 폴리머 구획을 형성하여, 야누스 나노입자를 형성하는; v) the metal ions in the portion adsorbed by the ligand of the core metal nanoparticles to receive the electrons provided by the conductive polymer is reduced to form a satellite metal, thereby forming a double metal nanoparticle compartment of the core-satellite structure The conductive polymer monomer is oxidized and deposited on only one side of the double metal nanoparticle compartment to grow into a conductive polymer to form asymmetrically conductive polymer polymer compartment to form Janus nanoparticles;
    단계를 포함하는, 야누스 나노구조체의 제조 방법.Method of producing a Janus nanostructure, comprising the step.
  25. 제24항에 있어서,The method of claim 24,
    상기 ii) 단계의 음전하성 리간드는 전하성 단위체(Repeating unit)를 포함하는 폴리머성 리간드 또는 두 개의 반응기를 갖는 소분자 리간드인, 야누스 나노구조체의 제조 방법.The negatively charged ligand of step ii) is a polymeric ligand comprising a charging unit (Repeating unit) or a small molecule ligand having two reactors, the manufacturing method of Janus nanostructures.
  26. 제25항에 있어서,The method of claim 25,
    상기 폴리머성 리간드는 PSS(poly(sodium-4-styrenesulfonate)), PVP(poly(N-vinyl pyrrolidone)), PDADMAC(poly(diallyldimethylammonium chloride)), PAA(polyacrylic acid) 또는 PAH(poly(allylamine) hydrochloride)로 이루어진 군으로부터 선택되는 적어도 하나이고, The polymeric ligand is PS (poly (sodium-4-styrenesulfonate)), PVP (poly (N-vinyl pyrrolidone)), PDADMAC (poly (diallyldimethylammonium chloride)), PAA (polyacrylic acid) or PAH (poly (allylamine) hydrochloride At least one selected from the group consisting of
    상기 소분자 리간드는 ATP(4-aminothiophenol), BDT(1,4-benzenedithiol), MBA(4-mercaptobenzoic acid), MBIA(2 -mercaptobenzoimidazole-5-carboxylic acid)로 이루어진 군으로부터 선택되는 적어도 하나인, 야누스 나노구조체의 제조 방법.The small molecule ligand is at least one selected from the group consisting of ATP (4-aminothiophenol), BDT (1,4-benzenedithiol), MBA (4-mercaptobenzoic acid), and MBIA (2-mercaptobenzoimidazole-5-carboxylic acid). Method of producing nanostructures.
  27. 제24항에 있어서,The method of claim 24,
    상기 v) 단계의 코어-새틀라이트 구조의 이중 금속 나노입자 구획에서,In the double metal nanoparticle compartment of the core-satellite structure of step v),
    상기 코어 금속 나노입자 및 상기 새틀라이트의 금속은, 각각, 은, 금, 구리 및 이의 혼합물로 이루어진 군으로부터 선택되고, 상기 코어 금속과 새틀라이트 금속은 서로 동일하지 않은 것인, 야누스 나노구조체의 제조 방법.The core metal nanoparticle and the metal of the satellite are each selected from the group consisting of silver, gold, copper and mixtures thereof, wherein the core metal and the satellite metal are not identical to each other. Way.
  28. 제24항에 있어서,The method of claim 24,
    상기 iii) 단계의 전도성 고분자는 폴리피롤(polypyrrole), 폴리싸이오펜(polythiophene), poly(3,4-ethylene dioxythiophene)(PEDOT) 및 폴리아닐린(polyaniline)로 이루어진 군으로부터 선택되는 적어도 하나인, 야누스 나노구조체의 제조 방법.The conductive polymer of step iii) is at least one selected from the group consisting of polypyrrole, polythiophene, poly (3,4-ethylene dioxythiophene) (PEDOT) and polyaniline, Janus nanostructure Method of preparation.
  29. 제24항에 있어서, The method of claim 24,
    상기 i) 단계의 코어 금속 나노입자의 금속 나노입자는 금속 나노막대(nanorods) 또는 금속 나노구체(nanospheres)인, 야누스 나노구조체의 제조 방법.The metal nanoparticles of the core metal nanoparticles of step i) are metal nanorods or metal nanospheres.
  30. 제24항에 있어서,The method of claim 24,
    상기 v) 단계의 전도성 고분자로 성장하는 것은 표면 주형 중합법(surface-templated polymerization)에 의한 것인, 야누스 나노구조체의 제조 방법.The growth of the conductive polymer of step v) is by the surface-templated polymerization (surface-templated polymerization), the manufacturing method of Janus nanostructures.
  31. 제24항에 있어서,The method of claim 24,
    상기 v) 단계 이후에, After step v),
    상기 야누스 나노입자의 이중 금속 나노입자 표면에 라만 염료를 부착하는 단계를 더 포함하는, 야누스 나노구조체의 제조 방법.Attaching a Raman dye on the surface of the double metal nanoparticles of the Janus nanoparticles, manufacturing method of Janus nanostructures.
  32. 제24항에 있어서, The method of claim 24,
    상기 iii) 단계의 계면활성제는 소디움도데실설페이트(SDS), 소디움데옥시초레이트(sodium deoxycholate), 및 트리톤 X-200(Triton X-200)로 이루어진 군으로부터 선택되는 적어도 하나인, 야누스 나노구조체의 제조 방법.The surfactant of step iii) is at least one selected from the group consisting of sodium dodecyl sulfate (SDS), sodium deoxycholate, and Triton X-200, Janus nanostructure Method of preparation.
  33. a) 검출하고자 하는 표적 물질이 포함된 시료액을 준비하고;a) preparing a sample solution containing the target substance to be detected;
    b) 자성 나노입자에 상기 표적에 대한 제1 항체를 고정하여 준비하고;b) preparing by immobilizing a first antibody against the target on magnetic nanoparticles;
    c) 제23항의 금속 나노프로브에 상기 표적에 대한 제2 항체를 고정하여 준비하고;c) preparing by immobilizing a second antibody against the target on the metal nanoprobe of claim 23;
    d) 상기 제1 항체가 고정된 자성 나노입자를 상기 시료액에 첨가하여 상기 표적과 상기 자성 나노입자의 제1 항체가 접합된 면역복합체를 형성하고;d) adding the magnetic nanoparticle to which the first antibody is immobilized to the sample solution to form an immunocomplex in which the target and the first antibody of the magnetic nanoparticle are conjugated;
    e) 상기 제2 항체가 고정된 금속 나노프로브를 상기 제1 항체가 접합된 면역복합체가 포함된 용액에 첨가하여 금속 나노프로브의 제2 항체-표적-자성 나노입자의 제1 항체의 샌드위치 면역복합체를 형성하고;e) a sandwich immunocomplex of the first antibody of the second antibody-target-magnetic nanoparticle of the metal nanoprobe by adding a metal nanoprobe to which the second antibody is immobilized to a solution containing the immunocomplex to which the first antibody is conjugated To form;
    f) 자기장을 이용하여 상기 샌드위치 면역복합체를 형성하지 않은 자성 나노입자 및 금속 나노프로브를 분리하고; 그리고f) separating magnetic nanoparticles and metal nanoprobes that do not form the sandwich immunocomplex using a magnetic field; And
    g) 상기 샌드위치 면역복합체의 라만 신호를 측정하는;g) measuring the Raman signal of said sandwich immunocomplex;
    단계를 포함하는, 표면-증강 라만 산란(SERS) 기반의 표적 물질 검출 방법.A surface-enhanced Raman scattering (SERS) based target substance detection method comprising the step.
  34. 제33항에 있어서,The method of claim 33, wherein
    상기 표적 물질은 단백질 또는 병원균인, 표면-증강 라만 산란(SERS) 기반의 표적 물질 검출 방법.The target material is a protein or pathogen, surface-enhanced Raman scattering (SERS) based target material detection method.
  35. 라만 염료를 가지고, 코어-쉘 구조로 이루어진 이중 금속 나노클러스터 구획; 및A double metal nanocluster compartment having a Raman dye and consisting of a core-shell structure; And
    전도성 고분자 구획;Conductive polymer compartments;
    으로 구성된 나노프로브로,Nanoprobe consisting of,
    상기 나노프로브는 상기 전도성 고분자 구획이 상기 이중 금속 나노클러스터 구획의 한쪽 면에만 산화되어 비대칭형 구조를 나타내는 것인,The nanoprobe is that the conductive polymer compartment is oxidized only on one side of the double metal nanocluster compartment to exhibit an asymmetric structure,
    표면-증강 라만 산란(SERS) 기반 표적 물질 검출용의 비대칭형 야누스 나노프로브.Asymmetric Janus nanoprobes for surface-enhanced Raman scattering (SERS) based target material detection.
  36. 제35항에 있어서,36. The method of claim 35 wherein
    상기 이중 금속 나노클러스터 구획은, The double metal nanocluster compartment,
    금, 은, 구리 및 이의 혼합물로 이루어진 군으로부터 선택되는 코어와;A core selected from the group consisting of gold, silver, copper and mixtures thereof;
    금, 은, 구리 및 이의 혼합물로부터 이루어진 군으로부터 선택되는 쉘;A shell selected from the group consisting of gold, silver, copper and mixtures thereof;
    로 구성된 이중 금속 나노클러스터인, 표면-증강 라만 산란(SERS) 기반 표적 물질 검출용의 비대칭형 야누스 나노프로브.Asymmetric Janus nanoprobe for surface-enhanced Raman scattering (SERS) based target material detection, which is a bimetallic nanocluster composed of:
  37. 제35항에 있어서,36. The method of claim 35 wherein
    상기 전도성 고분자는 폴리피롤(polypyrrole), 폴리싸이오펜(polythiophene), poly(3,4-ethylene dioxythiophene)(PEDOT) 및 폴리아닐린(polyaniline)으로 이루어진 군으로부터 선택되는 적어도 하나인, 표면-증강 라만 산란(SERS) 기반 표적 물질 검출용의 비대칭형 야누스 나노프로브.The conductive polymer is at least one selected from the group consisting of polypyrrole, polythiophene, poly (3,4-ethylene dioxythiophene) (PEDOT) and polyaniline, surface-enhanced Raman scattering (SERS) ) Asymmetric Janus nanoprobes for detection of target material.
  38. i) 코어(core)를 형성하는 금속 나노입자 및 라만 염료를 혼합하고 가열 또는 응집하여 라만 염료를 가지는 코어 금속 나노입자 클러스터를 형성하고;i) mixing and heating or agglomerating the metal nanoparticles and the Raman dye forming the core to form a core metal nanoparticle cluster having a Raman dye;
    ii) 전도성 고분자 단량체 및 계면활성제를 용해시킨 수용액에 상기 코어 금속 나노입자 클러스터를 첨가하고; ii) adding the core metal nanoparticle cluster to an aqueous solution in which a conductive polymer monomer and a surfactant are dissolved;
    iii) 상기 ii)의 코어 금속 나노클러스터가 첨가된 용액에 금속 이온 용액을 첨가하여 상기 금속 이온과 상기 전도성 고분자 단량체 사이의 산화-환원 반응을 수행하고; 그리고iii) performing a redox reaction between the metal ions and the conductive polymer monomer by adding a metal ion solution to the solution to which the core metal nanoclusters of ii) are added; And
    iv) 상기 금속 이온이 상기 전도성 고분자가 제공하는 전자를 받아 환원되면서 코어 금속 나노입자 표면에 증착되어 코어-쉘 구조의 이중 금속 나노입자 클러스터 구획을 형성하고; 상기 전도성 고분자 단량체는 산화되면서 상기 이중 금속 나노클러스터 구획의 한쪽 면에만 증착되어 전도성 고분자로 성장하면서 비대칭형적으로 전도성 고분자 고분자 구획을 형성하는;iv) the metal ions are deposited on the surface of the core metal nanoparticles while receiving and reducing electrons provided by the conductive polymer to form a double-metal nanoparticle cluster section having a core-shell structure; The conductive polymer monomer is oxidized and deposited on only one side of the double metal nanocluster compartment to grow into a conductive polymer to form an asymmetrically conductive polymer compartment;
    단계를 포함하는, Comprising the steps,
    표면-증강 라만 산란(SERS) 기반 표적 물질 검출용의 비대칭형 야누스 나노프로브의 제조 방법.Method for preparing asymmetric Janus nanoprobes for surface-enhanced Raman scattering (SERS) based target material detection.
  39. 제38항에 있어서,The method of claim 38,
    상기 i) 단계 이후에, 상기 코어 금속 나노클러스터를 단백질로 안정화시키는 단계를 더 포함하는, 표면-증강 라만 산란(SERS) 기반 표적 물질 검출용의 비대칭형 야누스 나노프로브의 제조 방법.After step i), further comprising stabilizing the core metal nanocluster with a protein, wherein the asymmetric Janus nanoprobe for surface-enhanced Raman scattering (SERS) based target material detection.
  40. 제39항에 있어서,The method of claim 39,
    상기 단백질은 아비딘(avidin), 스트렙타비딘(streptavidin), BSA(bovine serum albumin), 인슐린(insulin), 콩단백질, 카제인, 젤라틴 및 이의 혼합물로 이루어진 군으로부터 선택되는 것인 표면-증강 라만 산란(SERS) 기반 표적 물질 검출용의 비대칭형 야누스 나노프로브의 제조 방법.The protein is surface-enhanced Raman scattering (avidin) selected from the group consisting of avidin (streptavidin), bovine serum albumin (BSA), insulin (sulin), soy protein, casein, gelatin and mixtures thereof SERS) based asymmetric Janus nanoprobe method for the detection of target substances.
  41. 제38항에 있어서,The method of claim 38,
    상기 i) 단계의 코어 금속은 금, 은, 구리 및 이의 혼합물로 이루어진 군으로부터 선택되고;The core metal of step i) is selected from the group consisting of gold, silver, copper and mixtures thereof;
    상기 iii) 단계의 금속 이온은 금 이온, 은 이온, 구리 이온 및 이의 혼합물로 이루어진 군으로부터 선택되는 것인 표면-증강 라만 산란(SERS) 기반 표적 물질 검출용의 비대칭형 야누스 나노프로브의 제조 방법.The metal ion of step iii) is selected from the group consisting of gold ions, silver ions, copper ions and mixtures thereof. The method for preparing asymmetric Janus nanoprobes for surface-enhanced Raman scattering (SERS) based target material detection.
  42. 제38항에 있어서,The method of claim 38,
    상기 전도성 고분자는 폴리피롤(polypyrrole), 폴리싸이오펜(polythiophene), poly(3,4-ethylene dioxythiophene)(PEDOT) 및 폴리아닐린(polyaniline)으로 이루어진 군으로부터 선택되는 적어도 하나인, 표면-증강 라만 산란(SERS) 기반 표적 물질 검출용의 비대칭형 야누스 나노프로브의 제조 방법.The conductive polymer is at least one selected from the group consisting of polypyrrole, polythiophene, poly (3,4-ethylene dioxythiophene) (PEDOT) and polyaniline, surface-enhanced Raman scattering (SERS) ) A method for producing an asymmetric Janus nanoprobe for detecting a target material.
  43. 제38항에 있어서,The method of claim 38,
    상기 iii) 단계의 산화-환원 반응 이후에, 상기 반응 용액을 계면활성제 용액으로 인큐베이션 하는 단계를 더 포함하는, 표면-증강 라만 산란(SERS) 기반 표적 물질 검출용의 비대칭형 야누스 나노프로브의 제조 방법.After the redox reaction of step iii), further comprising incubating the reaction solution with a surfactant solution, wherein the asymmetric Janus nanoprobe for surface-enhanced Raman scattering (SERS) based target material detection is prepared. .
  44. 제38항 또는 제43항 중 어느 한 항에 있어서, The method of claim 38 or 43, wherein
    상기 계면활성제는 소디움도데실설페이트(SDS), 소디움데옥시초레이트(sodium deoxycholate), 및 트리톤 X-200(Triton X-200)로 이루어진 군으로부터 선택되는 적어도 하나인, 표면-증강 라만 산란(SERS) 기반 표적 물질 검출용의 비대칭형 야누스 나노프로브의 제조 방법.The surfactant is at least one selected from the group consisting of sodium dodecyl sulfate (SDS), sodium deoxycholate, and Triton X-200, surface-enhanced Raman scattering (SERS) ) A method for producing an asymmetric Janus nanoprobe for detecting a target material.
  45. 제38항에 있어서,The method of claim 38,
    상기 iv) 단계의 전도성 고분자로 성장하는 것은 표면 주형 중합법(surface-templated polymerization)에 의한 것인, 표면-증강 라만 산란(SERS) 기반 표적 물질 검출용의 비대칭형 야누스 나노프로브의 제조 방법.Wherein the growth of the conductive polymer of step iv) is by surface-templated polymerization (surface-templated polymerization), manufacturing method of asymmetric Janus nanoprobe for surface-enhanced Raman scattering (SERS) -based target material detection.
  46. a) 검출하고자 하는 표적 물질이 포함된 시료액을 준비하고;a) preparing a sample solution containing the target substance to be detected;
    b) 자성 나노입자에 상기 표적에 대한 제1 항체를 고정하여 준비하고;b) preparing by immobilizing a first antibody against the target on magnetic nanoparticles;
    c) 제35항 내지 제37항 중 어느 한 항의 금속 나노프로브에 상기 표적에 대한 제2 항체를 고정하여 준비하고;c) preparing by immobilizing a second antibody against the target on the metal nanoprobe of any one of claims 35-37;
    d) 상기 제1 항체가 고정된 자성 나노입자를 상기 시료액에 첨가하여 상기 표적과 상기 자성 나노입자의 제1 항체가 접합된 면역복합체를 형성하고;d) adding the magnetic nanoparticle to which the first antibody is immobilized to the sample solution to form an immunocomplex in which the target and the first antibody of the magnetic nanoparticle are conjugated;
    e) 상기 제2 항체가 고정된 금속 나노프로브를 상기 제1 항체가 접합된 면역복합체가 포함된 용액에 첨가하여 금속 나노프로브의 제2 항체-표적-자성 나노입자의 제1 항체의 샌드위치 면역복합체를 형성하고;e) a sandwich immunocomplex of the first antibody of the second antibody-target-magnetic nanoparticle of the metal nanoprobe by adding a metal nanoprobe to which the second antibody is immobilized to a solution containing the immunocomplex to which the first antibody is conjugated To form;
    f) 자기장을 이용하여 상기 샌드위치 면역복합체를 형성하지 않은 자성 나노입자 및 금속 나노프로브를 분리하고; 그리고f) separating magnetic nanoparticles and metal nanoprobes that do not form the sandwich immunocomplex using a magnetic field; And
    g) 상기 샌드위치 면역복합체의 라만 신호를 측정하는;g) measuring the Raman signal of said sandwich immunocomplex;
    단계를 포함하는, Comprising the steps,
    표면-증강 라만 산란(SERS) 기반의 표적 물질 검출 방법.Surface-enhanced Raman scattering (SERS) based target material detection method.
  47. 제46항에 있어서,47. The method of claim 46 wherein
    상기 표적 물질은 단백질 또는 병원균인, 표면-증강 라만 산란(SERS) 기반의 표적 물질 검출 방법.The target material is a protein or pathogen, surface-enhanced Raman scattering (SERS) based target material detection method.
  48. 방향성을 가진 금속 나노막대 클러스터 시드 및 금속 쉘 구조를 포함하는 이중 금속 나노막대 클러스터 구획; 및A dual metal nanorod cluster compartment comprising a directional metal nanorod cluster seed and a metal shell structure; And
    전도성 고분자 구획:Conductive polymer block:
    으로 구성된 비대칭형 야누스 나노구조체. Asymmetric Janus nanostructure consisting of.
  49. 제48항에 있어서, The method of claim 48,
    상기 시드-쉘 구조의 이중 금속 나노막대 클러스터 구획에서,In the seed-shell structured double metal nanorod cluster compartment,
    상기 금속 나노막대 클러스터 시드 및 상기 쉘 금속은, 각각, 은, 금, 구리 및 이의 혼합물로 이루어진 군으로부터 선택되고, 상기 코어 금속과 쉘 금속은 서로 동일하지 않은 것인, 비대칭형 야누스 나노구조체.The metal nanorod cluster seed and the shell metal are each selected from the group consisting of silver, gold, copper and mixtures thereof, wherein the core metal and the shell metal are not identical to each other.
  50. 제48항에 있어서,The method of claim 48,
    상기 방향성을 가진 금속 나노막대 클러스터 시드는, The oriented metal nanorod cluster seed,
    상기 개별 금속 나노막대 입자의 측면이 나란히 배열되어 조립된(side-by-side assmebly) 형태이거나, 또는 개별 금속 나노막대 입자의 말단이 연결되어 조립된(end-to-end assembly) 형태인 것인, 비대칭형 야누스 나노구조체. Sides of the individual metal nanorod particles are arranged side by side (by side-by-side assmebly) form, or end-to-end assembly of the ends of the individual metal nanorod particles are connected (assembled form) , Asymmetric Janus nanostructures.
  51. 제48항에 있어서,The method of claim 48,
    상기 전도성 고분자는 폴리피롤(polypyrrole), 폴리싸이오펜(polythiophene), poly(3,4-ethylene dioxythiophene)(PEDOT) 및 폴리아닐린(polyaniline)으로 이루어진 군으로부터 선택되는 적어도 하나인, 비대칭형 야누스 나노구조체. The conductive polymer is at least one selected from the group consisting of polypyrrole, polythiophene, polythiophene, poly (3,4-ethylene dioxythiophene) (PEDOT), and polyaniline, asymmetric Janus nanostructure.
  52. 제48항에 있어서, The method of claim 48,
    상기 이중 금속 나노막대 클러스터 구획은 라만 염료를 더 포함하는 것인, 비대칭형 야누스 나노구조체.Wherein the double metal nanorod cluster compartment is asymmetric Janus nanostructure further comprising a Raman dye.
  53. 제52항의 비대칭형 야누스 나노구조체를 이용한 표면-증강 라만 산란(SERS) 신호 측정용 금속 나노프로브.A metal nanoprobe for measuring surface-enhanced Raman scattering (SERS) signals using the asymmetric Janus nanostructure of claim 52.
  54. i) 시드(seed)를 형성하는 금속 나노막대 입자와 유기 음이온 또는 말단에 티올기를 가지는 음전하성 자극반응성 공중합체를 혼합하여, 방향성을 가진 금속 나노막대 클러스터 시드를 형성하고;i) mixing the metal nanorod particles to form a seed and the negatively charged stimuli responsive copolymer having a thiol group at the organic anion or terminal to form a metal nanorod cluster seed having an orientation;
    ii) 전도성 고분자 단량체 및 계면활성제를 용해시킨 수용액에 상기 금속 나노막대 클러스터 시드를 첨가하고, ii) adding the metal nanorod cluster seed to an aqueous solution in which the conductive polymer monomer and the surfactant were dissolved,
    iii) 상기 ii)의 금속 나노막대 클러스터 시드가 첨가된 용액에 금속 이온 용액을 첨가하여 상기 금속 이온과 상기 전도성 고분자 단량체 사이의 산화-환원 반응을 수행하고;iii) adding a metal ion solution to the solution to which the metal nanorod cluster seed of ii) is added to perform a redox reaction between the metal ion and the conductive polymer monomer;
    iv) 상기 금속 이온이 상기 전도성 고분자가 제공하는 전자를 받아 환원되면서 시드 금속 나노막대 입자 표면에 증착되어 시드-쉘 구조의 이중 금속 나노막대 클러스터 구획을 형성하고; 상기 전도성 고분자 단량체는 산화되면서 상기 이중 금속 나노막대 클러스터 구획의 한쪽 면에만 증착되어 전도성 고분자로 성장하면서 비대칭적으로 전도성 고분자 구획을 형성하는;iv) the metal ions are deposited on the surface of the seed metal nanorod particles while receiving and reducing electrons provided by the conductive polymer to form a seed metal shell double metal nanorod cluster section; The conductive polymer monomer is oxidized and deposited only on one side of the double metal nanorod cluster compartment to grow into a conductive polymer to form an asymmetrically conductive polymer compartment;
    단계를 포함하는, 비대칭형 야누스 나노구조체의 제조 방법.Method of producing an asymmetric Janus nanostructure, comprising the step.
  55. 제54항에 있어서,The method of claim 54,
    상기 i) 단계 이후에, 상기 금속 나노막대 클러스터 시드의 표면에 라만 염료를 부착하는 단계를 더 포함하는, 비대칭형 야누스 나노구조체의 제조 방법.And after step i), further comprising attaching a Raman dye to the surface of the metal nanorod cluster seed.
  56. 제54항에 있어서,The method of claim 54,
    상기 i) 단계의 방향성을 가진 금속 나노막대 클러스터 시드는, 상기 개별 금속 나노막대 입자의 측면이 나란히 배열되어 조립된(side-by-side assmebly) 형태이거나, 또는 개별 금속 나노막대 입자의 말단이 연결되어 조립된(end-to-end assembly) 형태인 것인, 비대칭형 야누스 나노구조체의 제조 방법.The metal nanorod cluster seed having the directionality of step i) may be formed in a side-by-side assmebly side by side of the individual metal nanorod particles, or the ends of the individual metal nanorod particles are connected to each other. Method of producing an asymmetric Janus nanostructure, which will be in the form of end-to-end assembly.
  57. 제56항에 있어서,The method of claim 56, wherein
    상기 개별 금속 나노막대 입자의 측면이 나란히 배열되어 조립된(side-by-side assmebly) 형태의 금속 나노막대 클러스터 시드는, 하기 단계를 포함하여 제조되는 것인, 비대칭형 야누스 나노구조체의 제조 방법:Method for producing an asymmetric Janus nanostructure, wherein the metal nanorod cluster seed of the side-by-side assmebly form of the side of the individual metal nanorod particles are prepared, comprising the following steps:
    금속 시드를 이용하여 표면에 양전하성 계면활성제가 존재하는 금속 나노막대 입자를 제조하고;Preparing metal nanorod particles in which a positively charged surfactant is present on the surface using the metal seeds;
    상기 금속 나노막대를 포함한 용액에 라만 염료를 첨가하고; 그리고Adding a Raman dye to the solution containing the metal nanorods; And
    상기 라만 염료가 포함된 상기 금속 나노막대 용액에 유기 음이온을 첨가하고;Adding an organic anion to the metal nanorod solution containing the Raman dye;
    상기 금속 나노막대 측면에 부착된 양전하성 계면활성제와 상기 유기 음이온 사이의 정전기적 인력에 의해 개별 금속 나노막대의 측면이 다른 개별 금속 나노막대의 측면과 나란히 배열되어 조립되어 금속 나노막대 클러스터 시드를 형성하는 단계.Electrostatic attraction between the positively charged surfactant attached to the side of the metal nanorods and the organic anion causes the side surfaces of the individual metal nanorods to be arranged side by side with other side metal nanorods to form a metal nanorod cluster seed. Steps.
  58. 제57항에 있어서,The method of claim 57,
    상기 양전하성 계면활성제는 CTAB(hexadecyltrimethylammonium bromide), DTAB(dodecyltrimethylammoniumbromide), 및 TTAB(trimethyltetradecylammoniumbromide)로 이루어진 군으로부터 선택되고, The positively charged surfactant is selected from the group consisting of hexadecyltrimethylammonium bromide (CTAB), dodecyltrimethylammonium bromide (DTAB), and trimethyltetradecylammonium bromide (TTAB),
    상기 유기 음이온은 시트레이트, 말레이트, 푸마레이트, 타르트레이트, 석시네이트, 옥살레이트 및 글루코네이트로 이루어지는 군으로부터 선택되는 것인, 비대칭형 야누스 나노구조체의 제조 방법.The organic anion is selected from the group consisting of citrate, malate, fumarate, tartrate, succinate, oxalate, and gluconate.
  59. 제56항에 있어서,The method of claim 56, wherein
    상기 개별 금속 나노막대 입자의 말단이 연결되어 조립된(end-to-end assembly) 형태의 금속 나노막대 클러스터 시드는, 하기 단계를 포함하여 제조되는 것인, 비대칭형 야누스 나노구조체의 제조 방법:Method for producing an asymmetric Janus nanostructure, wherein the metal nanorod cluster seed in the form of the end-to-end assembly of the ends of the individual metal nanorod particles are prepared, comprising the following steps:
    금속 시드를 이용하여 표면에 양전하성 계면활성제가 존재하는 금속 나노막대 입자를 제조하고;Preparing metal nanorod particles in which a positively charged surfactant is present on the surface using the metal seeds;
    상기 금속 나노막대를 포함하는 용액에, 말단에 티올기를 가지는 음전하성 자극반응성 공중합체를 첨가하고; 그리고Adding a negatively charged stimulatory copolymer having a thiol group at the end to the solution containing the metal nanorods; And
    상기 음전하성 자극반응성 공중합체가 첨가된 금속 나노막대 용액을 교반하고;Stirring the metal nanorod solution to which the negatively charged stimulatory copolymer is added;
    상기 교반된 용액에 라만 염료를 첨가하고;Adding Raman dye to the stirred solution;
    상기 금속 나노막대 말단의 양전하성 계면활성제와 상기 음전하성 자극반응성 공중합체의 티올기가 서로 결합하여 금속-티올기 결합을 형성하고, 상기 개별 금속 나노막대 측면의 양전하성 계면활성제와 다른 개별 금속 나노막대 말단의 음전하성 자극반응성 공중합체가 정전기적 인력으로 결합하여 상기 개별 금속 나노막대 입자의 말단이 연결되어 조립되어 금속 나노막대 클러스터 시드를 형성하는 단계.The positively charged surfactant at the end of the metal nanorod and the thiol group of the negatively charged stimuli-reactive copolymer combine with each other to form a metal-thiol group bond, and the positively charged surfactant at the side of the individual metal nanorod and the other individual metal nanorod Bonding the terminal negatively charged stimuli-responsive copolymers with electrostatic attraction so that the ends of the individual metal nanorod particles are joined together to form a metal nanorod cluster seed.
  60. 제59항에 있어서,The method of claim 59,
    상기 양전하성 계면활성제는 CTAB(hexadecyltrimethylammonium bromide), DTAB(dodecyltrimethylammonium bromide), 및 TTAB(trimethyltetradecylammonium bromide)로 이루어진 군으로부터 선택되고,The positively charged surfactant is selected from the group consisting of hexadecyltrimethylammonium bromide (CTAB), dodecyltrimethylammonium bromide (DTAB), and trimethyltetradecylammonium bromide (TTAB),
    상기 음전하성 자극반응성 공중합체는 음전하성 모이어티 및 자극반응성 고분자로 이루어진 공중합체인, 비대칭형 야누스 나노구조체의 제조 방법.The negatively charged stimuli-responsive copolymer is a copolymer consisting of a negatively charged moiety and a stimulation-responsive polymer, a method for producing an asymmetric Janus nanostructure.
  61. 제60항에 있어서,The method of claim 60,
    상기 음전하성 모이어티는 아크릴릭 액시드(acrylic acid), 메타크릴릭 액시드(metacrylic acid), 이타코닉 액시드(itaconic acid), 말레익 액시드(maleic acid) 및 이의 혼합물로 이루어진 군으로부터 선택되고;The negatively charged moiety is selected from the group consisting of acrylic acid, methacrylic acid, itaconic acid, maleic acid and mixtures thereof. ;
    상기 자극반응성 고분자는 폴리(N-이소프로필아크릴아마이드)[poly(N-isopropylacrylamide): polyNIPAM], 폴리(N-디에틸 아크릴아마이드)[poly (N,N'-diethyl acrylamide): polyDEAAm], 폴리(디메틸아미노 에틸 메타크릴레이트)[poly (dimethylamino ethyl methacrylate): polyDMAEMA], 폴리(N-하이드록시메틸 프로필 메타아크릴아마이드)[poly (N-(L)-(1-hydroxymethyl) propyl methacrylamide)], 폴리[올리고(에틸렌글리콜)메틸에테르메타크릴레이트] [Poly[oligo(ethylene glycol) methyl ether methacrylate]: POEGMA], 폴리(2-비닐 피리딘)[poly(2-vinyl pyridine) : P2VP], 폴리(4-비닐 피리딘) [poly(4-vinyl pyridine) : P4VP] 및 이의 혼합물로 이루어진 군으로부터 선택되는 것인, 비대칭형 야누스 나노구조체의 제조 방법.The stimulatory polymer is poly (N-isopropylacrylamide) [poly (N-isopropylacrylamide): polyNIPAM], poly (N-diethyl acrylamide) [poly (N, N'-diethyl acrylamide): polyDEAAm], poly (Dimethylamino ethyl methacrylate) [poly (dimethylamino ethyl methacrylate): polyDMAEMA], poly (N-hydroxymethyl propyl methacrylamide) [poly (N- (L)-(1-hydroxymethyl) propyl methacrylamide)], Poly [oligo (ethylene glycol) methyl ether methacrylate]: POEGMA], poly (2-vinyl pyridine): P2VP], poly ( 4-vinyl pyridine) [poly (4-vinyl pyridine): P4VP] and a mixture thereof, the method for producing an asymmetric Janus nanostructure.
  62. 제59항에 있어서,The method of claim 59,
    상기 음전하성 자극반응성 공중합체는 폴리(AAc-b-NIPAM)(poly(acrylic acid-block-N-isopropylacrylamide))인 비대칭형 야누스 나노구조체의 제조 방법.The negatively charged stimuli-responsive copolymer is poly (AAc-b-NIPAM) (poly (acrylic acid-block-N-isopropylacrylamide)) a method for producing an asymmetric Janus nanostructure.
  63. 제54항에 있어서,The method of claim 54,
    상기 ii) 단계의 전도성 고분자는 폴리피롤(polypyrrole), 폴리싸이오펜(polythiophene), poly(3,4-ethylene dioxythiophene)(PEDOT) 및 폴리아닐린(polyaniline)로 이루어진 군으로부터 선택되는 적어도 하나인, 비대칭형 야누스 나노구조체의 제조 방법.The conductive polymer of step ii) is at least one selected from the group consisting of polypyrrole, polythiophene, poly (3,4-ethylene dioxythiophene) (PEDOT), and polyaniline, asymmetrical Janus Method of producing nanostructures.
  64. 제54항에 있어서,The method of claim 54,
    상기 iii) 단계의 산화-환원 반응 이후에, 상기 반응 용액을 계면활성제 용액으로 인큐베이션하는 단계를 더 포함하는, 비대칭형 야누스 나노구조체의 제조 방법.After the redox reaction of step iii), further comprising incubating the reaction solution with a surfactant solution.
  65. 제54항 또는 제64항 중 어느 한 항에 있어서, The method of claim 54 or 64, wherein
    상기 계면활성제는 소디움도데실설페이트(SDS), 소디움데옥시초레이트(sodium deoxycholate), 및 트리톤 X-200(Triton X-200)로 이루어진 군으로부터 선택되는 적어도 하나인, 비대칭형 야누스 나노구조체의 제조 방법.The surfactant is at least one selected from the group consisting of sodium dodecyl sulfate (SDS), sodium deoxycholate, and Triton X-200, the production of asymmetric Janus nanostructures Way.
  66. 제54항에 있어서,The method of claim 54,
    상기 iv) 단계의 전도성 고분자로 성장하는 것은 표면 주형 중합법(surface-templated polymerization)에 의한 것인, 비대칭형 야누스 나노구조체의 제조 방법.The growth of the conductive polymer of step iv) is by surface-templated polymerization (surface-templated polymerization), a method for producing an asymmetric Janus nanostructure.
  67. a) 검출하고자 하는 표적 물질이 포함된 시료액을 준비하고;a) preparing a sample solution containing the target substance to be detected;
    b) 자성 나노입자에 상기 표적에 대한 제1 항체를 고정하여 준비하고;b) preparing by immobilizing a first antibody against the target on magnetic nanoparticles;
    c) 제53항의 금속 나노프로브에 상기 표적에 대한 제2 항체를 고정하여 준비하고;c) preparing by immobilizing a second antibody against the target on the metal nanoprobe of claim 53;
    d) 상기 제1 항체가 고정된 자성 나노입자를 상기 시료액에 첨가하여 상기 표적과 상기 자성 나노입자의 제1항체가 접합된 면역복합체를 형성하고;d) adding the magnetic nanoparticles immobilized with the first antibody to the sample solution to form an immunocomplex in which the target and the first antibody of the magnetic nanoparticles are conjugated;
    e) 상기 제2 항체가 고정된 금속 나노프로브를 상기 제1 항체가 접합된 면역복합체가 포함된 용액에 첨가하여 금속 나노프로브의 제2 항체-표적-자성 나노입자의 제1 항체의 샌드위치 면역복합체를 형성하고;e) a sandwich immunocomplex of the first antibody of the second antibody-target-magnetic nanoparticle of the metal nanoprobe by adding a metal nanoprobe to which the second antibody is immobilized to a solution containing the immunocomplex to which the first antibody is conjugated To form;
    f) 자기장을 이용하여 상기 샌드위치 면역복합체를 형성하지 않은 자성 나노입자 및 금속 나노프로브를 분리하고; 그리고f) separating magnetic nanoparticles and metal nanoprobes that do not form the sandwich immunocomplex using a magnetic field; And
    g) 상기 샌드위치 면역복합체의 라만 신호를 측정하는;g) measuring the Raman signal of said sandwich immunocomplex;
    단계를 포함하는, 표면-증강 라만 산란(SERS) 기반의 표적 물질 검출 방법.A surface-enhanced Raman scattering (SERS) based target substance detection method comprising the step.
  68. 제67항에 있어서,The method of claim 67,
    상기 표적 물질은 단백질 또는 병원균인, 표면-증강 라만 산란(SERS) 기반의 표적 물질 검출 방법.The target material is a protein or pathogen, surface-enhanced Raman scattering (SERS) based target material detection method.
PCT/KR2017/008620 2016-08-09 2017-08-09 Bimetal-conductive polymer janus composite nanostructure having electrical stimulus response, colloid self-assembled structure thereof, preparing method, and bio-sensing, bio-imaging, drug delivery, and industrial application WO2018030785A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/324,278 US11913946B2 (en) 2016-08-09 2017-08-09 Bimetal-conductive polymer Janus composite nanostructure having electrical stimulus response, colloid self-assembled structure thereof, preparing method, and bio-sensing, bio-imaging, drug delivery and industrial application

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
KR20160101255 2016-08-09
KR10-2016-0101255 2016-08-09
KR1020170100359A KR101986545B1 (en) 2016-08-09 2017-08-08 Directional Assembly of Gold Nanorods and their Anisotropic Bimetal Nanorod Cluster-Polymer Hybrid Nanostructures for Biophotonics, process for producing the same, and use thereof
KR1020170100356A KR101986537B1 (en) 2016-08-09 2017-08-08 Controlled Self-assembly of Anisotropic Bimetal-Polymer Hybrid Nanostructures for Surface Enhanced Raman Scattering-based Biosensing
KR10-2017-0100357 2017-08-08
KR10-2017-0100359 2017-08-08
KR10-2017-0100358 2017-08-08
KR10-2017-0100356 2017-08-08
KR1020170100358A KR101986531B1 (en) 2016-08-09 2017-08-08 Anisotropic Nanostructures with Bimetallic Nanocluster and Conducting Polymer Compartment for Photonics-based Biosensing, process for producing the same, and use thereof
KR1020170100357A KR101986535B1 (en) 2016-08-09 2017-08-08 Ligand-mediated Growth of Bimetallic Core-satellite Nanostructures with Anisotropic Polymer Shell for Biophotonics

Publications (1)

Publication Number Publication Date
WO2018030785A1 true WO2018030785A1 (en) 2018-02-15

Family

ID=61163118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/008620 WO2018030785A1 (en) 2016-08-09 2017-08-09 Bimetal-conductive polymer janus composite nanostructure having electrical stimulus response, colloid self-assembled structure thereof, preparing method, and bio-sensing, bio-imaging, drug delivery, and industrial application

Country Status (1)

Country Link
WO (1) WO2018030785A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019205364A1 (en) * 2018-04-28 2019-10-31 厦门斯贝克科技有限责任公司 Enhanced raman detection method using satellite structure
KR20190142241A (en) * 2018-06-15 2019-12-26 한양대학교 에리카산학협력단 Bimetallic nanoparticles with stimuli-responsiveness, process for producing the same, and use thereof
CN112326749A (en) * 2020-10-26 2021-02-05 中国科学院重庆绿色智能技术研究院 Preparation method of novel coronavirus electrochemical immunoassay kit, product and use method of novel coronavirus electrochemical immunoassay kit
CN113295666A (en) * 2020-09-28 2021-08-24 成都理工大学 Quantitative analysis method for As element in pyrite by using mineral Raman parameters
CN113385687A (en) * 2021-06-11 2021-09-14 杭州电子科技大学 Asymmetric gold-silver-platinum-silver multilayer composite material and synthetic method thereof
CN113514517A (en) * 2021-03-26 2021-10-19 江苏大学 Preparation method of electrochemical sensor for simultaneously detecting rutin and Zanthoxylum bungeanum amide in Zanthoxylum bungeanum
CN114225041A (en) * 2021-11-05 2022-03-25 南开大学 Nano material with asymmetric structure and preparation method and application thereof
CN114888276A (en) * 2022-05-12 2022-08-12 集美大学 Preparation method and application of chain-like high polymer modified nano particles
US11427602B2 (en) 2018-06-15 2022-08-30 Industry-University Cooperation Foundation Hanyang University Erica Campus Bimetallic nanoparticles with stimuli-responsiveness, process for producing the same, and use thereof
US11428638B2 (en) * 2018-01-12 2022-08-30 The Regents Of The University Of California Spectroscopic biological material characterization
CN115849726A (en) * 2022-10-21 2023-03-28 珠海中科先进技术研究院有限公司 Surface-enhanced Raman scattering composite substrate and preparation method and application thereof

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
BIMETALLIC NANOCLUSTERS WITH ANISOTROPIC POLYMER SHELL FOR PHOTONICS-BASED BIOSENSING, April 2016 (2016-04-01), pages 3PS - 302 *
CHEN, S.: "Self-assembly of gold nanoparticles to silver microspheres as highly efficient 3D SERS substrates", NANOSCALE RESEARCH LETTERS, vol. 8, no. 1, 2013, pages 1 - 7, XP055603368 *
CLUSTERED ARCHITECTURES OF ANISOTROPIC BIMETAL-POLYMER NANOPARTICLES FOR SURFACE ENHANCED RAMAN SCATTERING-BASED BIOSENSING, May 2016 (2016-05-01), pages 2 - 70 *
GONZALEZ, C. M.: "Photochemical synthesis of bimetallic and anisotropic Au-containing nanoparticles using a one-step protocol", JOURNAL OF MATERIALS CHEMISTRY A, vol. 2, 2014, pages 17574 - 17585, XP055603371 *
SELF-ASSEMBLY OF ANISOTROPIC BIMETAL-POLYMER NANOPARTICLES, vol. 139, 2015, pages 3PS - 281 *
SYNTHESIS AND CHARACTERIZATION OF BIMETALLIC CORE-SATELLITE NANOSTRUCTURES WITH ECCENTRIC POLYMER SHELL, vol. 145, April 2016 (2016-04-01), pages 3PS - 303 *
TOKONAMI, S.: "Novel synthesis, structure, and oxidation catalysis of Ag/Au bimetallic nanoparticles", THE JOURNAL OF PHYSICAL CHEMISTRY C, vol. 114, no. 23, 2010, pages 10336 - 10341, XP055603387 *
WANG, X: "Assembly of dandelion-like Au/PANI nanocomposites and their application as SERS nanosensors", BIOSENSORS AND BIOELECTRONICS, 2011, pages 3063 - 3067, XP055155843, DOI: doi:10.1016/j.bios.2010.11.044 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11680907B2 (en) 2018-01-12 2023-06-20 The Regents Of The University Of California Spectroscopic biological material characterization
US11428638B2 (en) * 2018-01-12 2022-08-30 The Regents Of The University Of California Spectroscopic biological material characterization
WO2019205364A1 (en) * 2018-04-28 2019-10-31 厦门斯贝克科技有限责任公司 Enhanced raman detection method using satellite structure
US11427602B2 (en) 2018-06-15 2022-08-30 Industry-University Cooperation Foundation Hanyang University Erica Campus Bimetallic nanoparticles with stimuli-responsiveness, process for producing the same, and use thereof
KR102221139B1 (en) 2018-06-15 2021-02-26 한양대학교 에리카산학협력단 Bimetallic nanoparticles with stimuli-responsiveness, process for producing the same, and use thereof
KR20190142241A (en) * 2018-06-15 2019-12-26 한양대학교 에리카산학협력단 Bimetallic nanoparticles with stimuli-responsiveness, process for producing the same, and use thereof
CN113295666A (en) * 2020-09-28 2021-08-24 成都理工大学 Quantitative analysis method for As element in pyrite by using mineral Raman parameters
CN113295666B (en) * 2020-09-28 2023-08-22 成都理工大学 Quantitative analysis method for As element in pyrite by utilizing mineral Raman parameters
CN112326749A (en) * 2020-10-26 2021-02-05 中国科学院重庆绿色智能技术研究院 Preparation method of novel coronavirus electrochemical immunoassay kit, product and use method of novel coronavirus electrochemical immunoassay kit
CN112326749B (en) * 2020-10-26 2022-10-11 中国科学院重庆绿色智能技术研究院 Preparation method of novel coronavirus kit for electrochemical immunodetection, product and use method of novel coronavirus kit
CN113514517A (en) * 2021-03-26 2021-10-19 江苏大学 Preparation method of electrochemical sensor for simultaneously detecting rutin and Zanthoxylum bungeanum amide in Zanthoxylum bungeanum
CN113514517B (en) * 2021-03-26 2023-04-11 江苏大学 Preparation method of electrochemical sensor for simultaneously detecting rutin and Zanthoxylum bungeanum amide in Zanthoxylum bungeanum
CN113385687A (en) * 2021-06-11 2021-09-14 杭州电子科技大学 Asymmetric gold-silver-platinum-silver multilayer composite material and synthetic method thereof
CN114225041A (en) * 2021-11-05 2022-03-25 南开大学 Nano material with asymmetric structure and preparation method and application thereof
CN114225041B (en) * 2021-11-05 2024-06-11 南开大学 Asymmetric-structure nano material and preparation method and application thereof
CN114888276A (en) * 2022-05-12 2022-08-12 集美大学 Preparation method and application of chain-like high polymer modified nano particles
CN114888276B (en) * 2022-05-12 2023-11-03 集美大学 Preparation method and application of chain polymer modified nanoparticle
CN115849726A (en) * 2022-10-21 2023-03-28 珠海中科先进技术研究院有限公司 Surface-enhanced Raman scattering composite substrate and preparation method and application thereof

Similar Documents

Publication Publication Date Title
WO2018030785A1 (en) Bimetal-conductive polymer janus composite nanostructure having electrical stimulus response, colloid self-assembled structure thereof, preparing method, and bio-sensing, bio-imaging, drug delivery, and industrial application
WO2009136741A1 (en) Novel au / ag core-shell composite useful for biosensor
Shenton et al. Directed self‐assembly of nanoparticles into macroscopic materials using antibody–antigen recognition
EP2078045B1 (en) Triazole functionalised polymers for binding metal surfaces
KR102221138B1 (en) Core@shell bimetallic nanoparticles with stimuli-responsiveness, process for producing the same, and use thereof
WO2012070893A2 (en) Single nanoparticle having a nanogap between a core material and a shell material, and manufacturing method thereof
WO2015084124A1 (en) Block copolymer
WO2015084121A1 (en) Block copolymer
WO2015084122A1 (en) Block copolymer
CA2537199C (en) Precious metal colloid, precious metal microparticle, composition, and process for producing the precious metal microparticle
WO2015084120A1 (en) Monomer and block copolymer
WO2016048053A1 (en) Substrate on which multiple nanogaps are formed, and manufacturing method therefor
Oliveira et al. Bioinspired systems for metal-ion sensing: new emissive peptide probes based on benzo [d] oxazole derivatives and their gold and silica nanoparticles
WO2015084125A1 (en) Block copolymer
WO2009097319A2 (en) Water-soluble nanocrystals through dual-interaction ligands
Mahouche et al. Tandem diazonium salt electroreduction and click chemistry as a novel, efficient route for grafting macromolecules to gold surface
WO2010044752A1 (en) Amphiphilic polymers and nanocrystals coated therewith
WO2014148713A1 (en) Method for preparing protein cage, and in situ method for preparing hydrophobic additive-supported core-shell structured polymer-protein particles
WO2020235702A1 (en) Carboxylic acid-functionalized three-dimensional sers substrate
Achadu et al. Graphene quantum dots anchored onto mercaptopyridine-substituted zinc phthalocyanine-Au@ Ag nanoparticle hybrid: Application as fluorescence “off-on-off” sensor for Hg2+ and biothiols
WO2020032294A1 (en) Biosensor using magnetic nanoparticles, and detection device and detection method using same
WO2020091405A1 (en) Raman spectroscopy substrate and aptasensor
Bhattacharya et al. Synthesis of gold nanoparticles stabilised by metal-chelator and the controlled formation of close-packed aggregates by them
Han et al. Optical tweezers-based characterisation of gold core–satellite plasmonic nano-assemblies incorporating thermo-responsive polymers
US4900817A (en) Multiring phthalocyanine compounds

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17839803

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17839803

Country of ref document: EP

Kind code of ref document: A1