WO2018030759A1 - Resin composition for optical material and optical film comprising same - Google Patents

Resin composition for optical material and optical film comprising same Download PDF

Info

Publication number
WO2018030759A1
WO2018030759A1 PCT/KR2017/008566 KR2017008566W WO2018030759A1 WO 2018030759 A1 WO2018030759 A1 WO 2018030759A1 KR 2017008566 W KR2017008566 W KR 2017008566W WO 2018030759 A1 WO2018030759 A1 WO 2018030759A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical film
polymethyl methacrylate
resin composition
optical
glass transition
Prior art date
Application number
PCT/KR2017/008566
Other languages
French (fr)
Korean (ko)
Inventor
이중훈
박세정
황성호
문병준
송헌식
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170096362A external-priority patent/KR20180018334A/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/765,298 priority Critical patent/US10633530B2/en
Priority to EP17839777.4A priority patent/EP3333224B1/en
Priority to JP2018513453A priority patent/JP6587165B2/en
Priority to CN201780003543.0A priority patent/CN108137897B/en
Publication of WO2018030759A1 publication Critical patent/WO2018030759A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation

Definitions

  • Resin composition for optical materials and optical film comprising same
  • the present invention relates to a resin composition for an optical material and an optical film including the same.
  • the liquid crystal display uses polarized light, and for this purpose, a polarizing plate is used, and a PVA element is typically used.
  • a polarizing plate such as a PVA device has a weak mechanical property and is easily affected by an external environment, for example, temperature or humidity
  • a protective film is required to protect it.
  • Such protective films should be excellent in optical properties and in mechanical properties.
  • a TAC film Tro i-Acetyl-cel lulose Film
  • an acrylic film having better heat resistance and water absorption resistance than a TAC film has been used.
  • Such a polarizing plate protective acrylic film is manufactured through a stretching process, so that the acrylic resin having a glass transition temperature of 120 ° C or more is generally used so that the dimensional change at high temperature and the optical properties can be stably maintained.
  • a monomer is introduced.
  • introducing a monomer having a ring structure not only the unit cost of the raw material is increased, but also a problem of processing at a higher temperature is required.
  • polymethyl methacrylate PMMA
  • PMMA polymethyl methacrylate
  • the glass transition temperature is low, and thus there is a problem that the dimensional stability is worsened because the draw history is released at high temperatures.
  • a separate phase difference regulator in order to use as a polarizing plate protective film for the IPS mode, a separate phase difference regulator must be added in order to realize a low phase difference value.
  • the phase difference regulator used here should be excellent in compatibility with polymethyl methacrylate, and also have a low phase difference. An appropriate content should be included for the realization of the value.
  • polymethyl methacrylate has a negative birefringence characteristic that the refractive index increases in the direction perpendicular to the stretching direction when drawn into a film, so that the retardation agent used for the realization of a low retardation value increases the refractive index in the stretching direction Must have positive birefringence properties.
  • materials having such positive refractive characteristics polycarbonate, polyester, phenoxy resin, and the like are known, and most have disadvantages of poor compatibility with polymethyl methacrylate. Accordingly, the present inventors have made diligent efforts to prepare a resin composition for an optical material that can realize a low retardation value while using polymethyl methacrylate that does not contain a monomer having a ring structure in a polymer main chain. Methacrylate. When a specific amount of methacrylic acid monomer is included at the terminal and polycarbonate is included as a phase difference regulator, it was confirmed that the above was achieved to complete the present invention.
  • the present invention is to provide a resin composition for an optical material having excellent transparency and heat resistance, and a small retardation value, and a film comprising the same. will be.
  • this invention is providing the polarizing plate containing the said optical film.
  • the present invention is 1) polymethyl methacrylate
  • polymethylmethacrylate comprises 1 to 5% by weight of methacrylic acid monomers relative to the weight of the polymethylmethacrylate, and the poly
  • the glass transition temperature of methyl methacrylate is 100 ° C or more and less than 120 ° C.
  • the glass transition degree of the polycarbonate is 125 ° C or more and less than 135 ° C., and the glass transition temperature of the polymethyl methacrylate and polycarbonate. The difference is less than 20 ° C, to provide a resin composition for an optical material.
  • Polymethyl methacrylate (PMMA) is excellent in transparency and can be used as an optical film, especially a polarizing plate protective film.
  • the polymethyl methacrylate when produced as a film, a stretching process should be used to increase the mechanical strength. Since the polymethyl methacrylate has a low glass transition temperature, the optical film prepared using the same is stretched when used at a high temperature. There is a problem that the hysteresis is released and the dimensional stability worsens. In order to improve this, there is a method of introducing a monomer having a ring structure into the polymethyl methacrylate polymer backbone, but the manufacturing process is complicated, the cost of the raw material is not only high, but also must be processed at a higher temperature, There is a problem that the end group of the polymer is decomposed or the low molecular weight additives are pyrolyzed.
  • the present invention provides a resin composition for an optical material that can realize a low retardation value by using polymethyl methacrylate, which will be described later, and polycarbonate as a retardation regulator.
  • polymethyl methacrylate which will be described later
  • polycarbonate as a retardation regulator
  • the methacrylic acid serves to control the glass transition temperature by inhibiting the decomposition of the copolymer.
  • the glass transition temperature of the polymethyl methacrylate is 100 ° C or more and less than 120 ° C., preferably 110 ° C or more and 117 ° C or less.
  • the glass transition temperature is less than 100 ° C, there is a problem in that the thermal stability is poor when prepared as a film.
  • the glass transition temperature is 120 ° C or more, as described above, a special monomer having a ring structure is introduced into the polymethyl methacrylate main chain, or the stereoregularity of the acrylic polymer chain in the polymerization process (tact i ci ty). )
  • the polymethyl methacrylate may be prepared by a known method except that methacrylic acid is used in addition to methyl methacrylate, for example, emulsion polymerization, emulsion-suspension polymerization, suspension polymerization, and the like. It can be prepared as.
  • methacrylic acid monomer used in addition to methyl methacrylate
  • the polymethyl methacrylate is first polymerized Methacrylic acid monomers can be polymerized.
  • the weight average molecular weight of the polymethyl methacrylate is 100, 000 to 160, 000. If the weight average molecular weight is less than 100, 000, there is a problem that the mechanical properties when the film is produced, and if the weight average molecular weight is more than 160, 000, there is a problem that stretching processing is difficult.
  • polycarbonate' used in the present invention refers to an aromatic diol compound and a carbonate precursor formed by reaction, and may be prepared by interfacial polymerization or solution polymerization.
  • bisphenol A and phosgene can be produced by interfacial polymerization.
  • the polycarbonate is added to control the retardation, and the glass transition temperature of the polycarbonate should be comparable to the polymethacrylate for compatibility with the polymethacrylate, processability of the optical film, and physical properties of the optical film.
  • the glass transition temperature of the polycarbonate is more than 125 ° C and less than 135 ° C. If the glass transition temperature is less than 125 ° C.
  • the polymerization efficiency is also poor to manufacture.
  • the glass transition temperature is 135 ° C. or more, the compatibility with the acrylic resin of the present invention is poor, it is not preferable to obtain a transparent film.
  • the polycarbonate is preferably 1% by weight to 10% by weight in the resin composition for an optical material. If the polycarbonate content is less than 1% by weight, the negative refraction property is so large that zero phase difference is not realized. On the contrary, if the polycarbonate content is more than 10% by weight, the positive birefringence property is too large to realize zero phase difference. There is also a problem that the compatibility is worsened and the transparency is lowered.
  • the resin composition for optical materials which concerns on this invention contains 90-99 weight% of polymethylmethacrylate mentioned above, and 1-10 weight% of polycarbonate. Moreover, the said resin composition for optical materials can be manufactured by melt-stirring the said polymethylmethacrylate and a polycarbonate composition. Moreover, the said resin composition for optical materials may contain additives, such as a ultraviolet absorber, a heat stabilizer, a lubricating agent, as needed. In this case, the additives may be included in an appropriate content within a range that does not impair the physical properties of the resin composition, for example, may be included in 0.1 to 5 parts by weight based on 100 parts by weight of the resin composition for the entire optical material. Optical film
  • optical film containing the resin composition for optical materials mentioned above.
  • optical film used in the present invention means a film produced by stretching the above-mentioned resin composition for optical materials.
  • any method known in the art for example, a solution caster method or an extrusion method, may be used, and for example, a melt extrusion method may be used.
  • the extruder After drying the resin composition in vacuo to remove moisture and dissolved oxygen, the extruder is nitrogen-substituted from a raw material hopper to a single or twin extruder, which is melted at high temperature to obtain raw material pellets, and vacuum drying the obtained raw material pellets; After melt
  • the film forming temperature is preferably 150 ° C to 350 ° C, more preferably 200 ° C to 300 ° C.
  • the optical film according to the present invention is preferably produced by biaxially stretching a film made of the above-described resin composition for optical materials 1.5 times to 2.5 times in the MD direction and 1.5 times to 3.0 times in the TD direction. The stretching is to align the molecules of the polymer contained in the composition for the optical material, and affects the properties of the optical film produced according to the degree of stretching.
  • ratio (TD draw ratio / MD draw ratio) of the draw ratio of the said MD direction and the draw ratio of a TD direction is 1.05 or more and 1.70 or less.
  • the stretching temperature is preferably carried out at a temperature of KC to 30 ° C higher than the glass transition temperature of the polymethyl methacrylate.
  • the optical film according to the present invention has excellent dimensional stability, and introduced a parameter called TTS (Temperature of Thermal Shr inkage) to evaluate the thermal dimensional stability.
  • TTS refers to the temperature at which the optical film produced by the stretching process begins to shrink rapidly as the stretching history is relaxed. Specifically, when the temperature is applied to the optical film, it means the temperature at which shrinkage starts after expansion as the temperature increases.
  • the TTS in the MD direction and the TD direction of the optical film according to the present invention is 100 ° C. to 120 ° C., respectively.
  • the optical film according to the present invention can be produced by orienting the polymer chain through a biaxial stretching process, it is possible to improve the easily brittle characteristics.
  • the optical film according to the present invention is characterized in that the impact energy value of Equation 1 is 400 kN-m / m 3 or more:
  • Lamination energy (gravity acceleration X falling weight ball falling ball height) / (thickness of optical film X area of optical film)
  • the specific measuring method of the impact energy can be specified in the following examples. For example, in the following examples, to measure the impact energy
  • the thickness of the optical film according to the present invention can be appropriately adjusted as necessary, for example, it is preferably 10um to 100urn. Also preferably, the optical film according to the present invention exhibits the following phase difference:
  • nx, ny, and nz represent refractive indexes in an x-axis direction, a y-axis direction, and a z-axis direction, respectively, and d means the thickness (nm) of an optical film.
  • the phase difference means that the low phase difference value is satisfied.
  • low retardation values can be realized by using polymethyl methacrylate and polycarbonate as retardation regulators.
  • the present invention provides a polarizing plate comprising the optical film.
  • the optical film according to the present invention may be used as a protective film of the polarizing plate, thereby supplementing the mechanical properties of the polarizing plate, and protecting the polarizing plate from the influence of the external environment, for example, temperature or humidity.
  • the optical film according to the present invention may be attached to one side or both sides of the polarizing plate and used as a polarizing plate protective film.
  • the optical film according to the present invention can be used between the polarizing plate and the liquid crystal cell, in this case it can protect the liquid crystal cell and the polarizing plate at the same time.
  • FIG. 1 An example thereof is shown in FIG. 1.
  • the polarizer / protective film / liquid crystal cell / protective film / polarizer may be configured in this order, and on the other side of each polarizer, a TAC film or an acrylic film may be used as a protective film without limitation. have.
  • the resin composition for an optical material according to the present invention using a polymethyl methacrylate that does not contain a monomer having a ring structure, but using a polycarbonate as a phase difference regulator, low retardation value when produced as an optical film There is a feature that can be implemented.
  • FIG. 1 schematically shows an example in which a protective film according to the present invention is used.
  • Preparation Example 1 Polymethylmethacrylate In a 5 liter reaction vessel, 1000 g of a monomer mixture of 98% by weight of methyl methacrylate and 2% of methyl acrylate are added, 2000 g of distilled water, 8.4 g of a 5% polyvinyl alcohol solution (P0VAL PVA217, kuraray), and dispersion 0.1 g of boric acid was added and dissolved as adjuvants.
  • P0VAL PVA217 polyvinyl alcohol solution
  • n-octyl mercaptan as a chain transfer agent and 1.5 g of 2,2'-azobisisobutyronitrile were added as a polymerization initiator and dispersed in an aqueous phase with stirring at 400 rpm to prepare a suspension. After heating to 80 ° C. for 90 minutes, the mixture was cooled to 30 ° C. The obtained beads were washed with distilled water, dehydrated, and dried to prepare a polymethylmethacrylate resin. The glass transition temperature and molecular weight of the prepared resin were measured, and the glass transition temperature was 116 ° C. and the weight average molecular weight was 120,000. The glass transition temperature was measured under conditions of a rise of 10 ° C./min using a differential scanning calorimeter (DSC) manufactured by Met Tier Toledo.
  • DSC differential scanning calorimeter
  • the sheet was prepared in the same manner as in Example 1, except that 85 wt% of polymethylmethacrylate prepared in Preparation Example 1 and 15% of PC-1 were mixed. Got it. Comparative Example 2
  • a sheet was obtained in the same manner as in Example 1, except that 95 wt3 ⁇ 4 of polymethyl methacrylate prepared in Preparation Example 1 and 5 wt% of PC-2 were mixed. Comparative Example 3
  • a sheet was obtained in the same manner as in Example 1, except that 95% of polymethyl methacrylate prepared in Preparation Example 1 and PC-3 5 wt3 ⁇ 4 were mixed. Comparative Example 4
  • the polymethyl methacrylate prepared in Preparation Example 1 was formulated with an antioxidant (Irganox 1010, BASF) in an amount of 0.5 phr, dry blended, and compounded with a twin extruder to prepare a resin composition.
  • the resin composition was melted at 265 ° C. and extruded into a sheet form through T-Di e to obtain a sheet of 180 urn.
  • a glass transition temperature difference The glass transition temperature of polycarbonate (PC-1, PC-2, or PC-3) and the glass transition temperature of polymethyl methacrylate were calculated.
  • Total light transmittance (Tt) The sheet and total light transmittance were measured using a turbidimeter.
  • Example 1 since the glass transition temperature difference is less than 2 (rc, the polycarbonate content is 10 wt% or less, a transparent sheet having excellent total light transmittance and Haze value was prepared.
  • Comparative Example 1 the glass transition temperature difference is less than 20 ° C, but the polycarbonate content is 10 wt% or more, so that an opaque sheet having a low total light transmittance and a large Haze value was prepared.
  • the content of carbonate is 10 wt% or less, the glass transition temperature difference is 20 ° C or more, and thus an opaque sheet was prepared.
  • Comparative Example 4 the polycarbonate resin was not added, and the transparent sheet having good total light transmittance and Haze value was obtained.
  • Example 1 using the sheets of Example 1 and Comparative Example 4, the transparent sheet was prepared, the following experiment was carried out.
  • the sheet of Example 1 was biaxially stretched at the stretching temperature and the draw ratio as described in Table 2 below to prepare optical films (Examples 2 to 7).
  • the sheet of Comparative Example 4 was biaxially stretched at the stretching temperature and the draw ratio as described in Table 2 below to prepare an optical film (Comparative Example 5).
  • the sheet of Example 1 which was not biaxially stretched was made into the comparative example 6 for comparison. The characteristics were evaluated as follows using the prepared optical film.
  • TTS Temporal of .Thermal Shr inkage: 80 x Samples were prepared in the size of 4.5 mm 3 and measured using a TA TMA (Q400) instrument. Specifically, when the temperature is applied under conditions of a temperature increase rate of 10 ° C / min and a load of 0.02 N, the TTS value of the inflection point of the inflection point where the sample begins to contract after expansion in the MD and TD directions, respectively It was made.
  • Retardation The retardation was measured at a wavelength of 550 nm using a birefringence measuring instrument (AxoScan, Axometr ics). Measured values of the refractive index ( nx ) in the X-axis direction, the refractive index (ny) in the y-axis direction, and the refractive index (nz) in the z-axis direction, and the in-plane phase difference (Rin) and thickness direction phase difference (Rth) values are calculated by the following equation. It was.
  • Rin (nm) (nx-ny) x d
  • Rth (nm) ((nx + ny) / 2-nz) x d
  • Impact strength (kN-m / m 3 ): Measure the thickness of the optical film, fix the film by inserting it into a circular frame of 76 ⁇ diameter, and then use a circular ball (iron ball) with a weight of 16.4 g. Free fall while varying the height was dropped on the film to check the damage of the optical film. The breakage of the optical film was judged as whether or not the fracture was sustained without breaking more than eight times by free-falling a total of ten times at the same height. Using eight times the maximum height, the stratified energy value of the optical film was calculated by the following equation.
  • Example 2 when the resin composition of Example 1 was used, it was confirmed that exhibits low retardation characteristics under any stretching conditions. On the contrary, when the optical film was manufactured using only polymethyl methacrylate as in the resin composition of Comparative Example 4, it was confirmed that the Rth retardation value was high. In addition, when the biaxial stretching was not performed as in Comparative Example 6, it was confirmed that the lamellar energy was low. In addition, when comparing Example 2 and Example 4, it was confirmed that the higher the stretching temperature at the same draw ratio, the higher the TTS value, and the optical film with less dimensional change could be produced.

Abstract

A resin composition for an optical material according to the present invention can realize a low phase-difference value when prepared into an optical film, by using a polycarbonate composition satisfying particular conditions as a phase-difference regulator while using polymethyl methacrylate not comprising a monomer with a ring structure on a polymer main chain.

Description

【명세세  [Specifications
【발명의 명칭】  [Name of invention]
광학 재료용 수지 조성물 및 이를 포함하는 광학 필름  Resin composition for optical materials and optical film comprising same
【기술분야】  Technical Field
관련 출원 (들)과의 상호 인용  Cross Citation with Related Application (s)
본 출원은 2016년 8월 9일자 한국 특허 출원 게 10-2016-0101417호 및 2017년 7월 28일자 한국 특허 출원 게 10-2017-0096362호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다. 본 발명은, 광학 재료용 수지 조성물 및 이를 포함하는 광학 필름에 관한 것이다.  This application claims the benefit of priority based on Korean Patent Application No. 10-2016-0101417 dated August 9, 2016 and Korean Patent Application No. 10-2017-0096362 dated July 28, 2017. All content disclosed in the literature is included as part of this specification. The present invention relates to a resin composition for an optical material and an optical film including the same.
【배경기술】  Background Art
액정 표시 장치는 편광된 빛을 이용하는 것으로 이를 위하여 편광판이 사용되고 있으며, 대표적으로 PVA 소자가 사용되고 있다. 그러나, PVA 소자와 같은 편광판은 자체의 기계적 특성이 약하고 외부 환경, 예를 들어 온도나 습도의 영향을 쉽게 받기 때문에 이를 보호하기 위한 보호 필름이 필요하다. 이러한 보호 필름은 광학적 특성이 우수하여야 하고 기계적 특성이 우수하여야 한다. 편광판에 사용되는 PVA 소자의 보호 필름으로 종래에는 TAC 필름 (Tr i-Acetyl-cel lulose Fi lm)이 사용되어 왔으나, 최근에는 TAC 필름보다 우수한 내열성 및 내흡수성 특성을 가지는 아크릴계 필름이 사용되고 있다. 이러한 편광판 보호용 아크릴계 필름은 연신 가공을 통하여 제조되는데, 고온에서의 치수 변화가 적고 광학적 특성이 안정적으로 유지될 수 있도록, 일반적으로 유리전이온도가 120°C 이상인 아크릴계 수지가 사용된다. 또한, 아크릴계 수지의 치수 안정 과 광학적 특성을 보다 향상시키기 위하여 내열성을 부여하는 고리 (cycl i c) 구조를 갖는 단량체를 도입하고 있다. 그러나, 고리 구조를 갖는 단량체를 도입할 경우, 원료의 단가가 높아질 뿐만 아니라, 보다 고온에서 가공을 하여야 하는 문제가 있다. 한편, 폴리메틸메타크릴레이트 (PMMA)는 투명성이 우수하여 편광판 보호용 필름으로의 가능성이 있으나, 유리전이온도가 낮으며, 이에 따라 고온에서 연신 이력이 풀려 치수 안정성이 나빠지는 문제가 있다. 또한, IPS 모드용 편광판 보호필름으로 사용하기 위해서는 낮은 위상차 값을 구현하기 위하여 별도의 위상차 조절제를 첨가하여야 하는데, 이때 사용되는 위상차 조절제는 폴리메틸메타크릴레이트와 상용성이 우수하여야 하고, 또한 낮은 위상차 값의 구현을 위해 적절한 함량이 포함되어야 한다. 또한, 폴리메틸메타크릴레이트는 연신하여 필름으로 제조하면 연신 방향에 대하여 수직인 방향으로 굴절율이 커지는 부의 복굴절 특성을 가지며, 따라서 낮은 위상차 값의 구현을 위하여 사용되는 위상차 조절제는 연신 방향으로 굴절율이 커지는 정의 복굴절 특성을 가져야 한다. 이러한 정의 굴절 특성을 가지는 물질로는 폴리카보네이트, 폴리에스테르, 페녹시 수지 등이 알려져 있는데, 대부분 폴리메틸메타크릴레이트와의 상용성이 나쁘다는 단점이 있다. 이에 본 발명자들은, 고분자 주쇄에 고리 구조의 단량체를 포함하지 않는 폴리메틸메타크릴레이트를 사용하면서도 낮은 위상차 값을 구현할 수 있는 광학 재료용 수지 조성물을 제조하기 위하여 예의 노력한 결과, 후술할 바와 같이 폴리메틸메타크릴레이트. 말단에 메타크릴산 단량체를 특정량 포함하고 또한 폴리카보네이트를 위상차 조절제로 포함할 경우, 상기를 달성함을 확인하여 본 발명을 완성하였다. The liquid crystal display uses polarized light, and for this purpose, a polarizing plate is used, and a PVA element is typically used. However, since a polarizing plate such as a PVA device has a weak mechanical property and is easily affected by an external environment, for example, temperature or humidity, a protective film is required to protect it. Such protective films should be excellent in optical properties and in mechanical properties. Conventionally, a TAC film (Tr i-Acetyl-cel lulose Film) has been used as a protective film for a PVA device used in a polarizing plate, but recently, an acrylic film having better heat resistance and water absorption resistance than a TAC film has been used. Such a polarizing plate protective acrylic film is manufactured through a stretching process, so that the acrylic resin having a glass transition temperature of 120 ° C or more is generally used so that the dimensional change at high temperature and the optical properties can be stably maintained. In addition, in order to further improve the dimensional stability and optical properties of the acrylic resin having a cyclic structure that imparts heat resistance A monomer is introduced. However, when introducing a monomer having a ring structure, not only the unit cost of the raw material is increased, but also a problem of processing at a higher temperature is required. On the other hand, polymethyl methacrylate (PMMA) is excellent in transparency, there is a potential as a polarizing plate protective film, but the glass transition temperature is low, and thus there is a problem that the dimensional stability is worsened because the draw history is released at high temperatures. In addition, in order to use as a polarizing plate protective film for the IPS mode, a separate phase difference regulator must be added in order to realize a low phase difference value. The phase difference regulator used here should be excellent in compatibility with polymethyl methacrylate, and also have a low phase difference. An appropriate content should be included for the realization of the value. In addition, polymethyl methacrylate has a negative birefringence characteristic that the refractive index increases in the direction perpendicular to the stretching direction when drawn into a film, so that the retardation agent used for the realization of a low retardation value increases the refractive index in the stretching direction Must have positive birefringence properties. As materials having such positive refractive characteristics, polycarbonate, polyester, phenoxy resin, and the like are known, and most have disadvantages of poor compatibility with polymethyl methacrylate. Accordingly, the present inventors have made diligent efforts to prepare a resin composition for an optical material that can realize a low retardation value while using polymethyl methacrylate that does not contain a monomer having a ring structure in a polymer main chain. Methacrylate. When a specific amount of methacrylic acid monomer is included at the terminal and polycarbonate is included as a phase difference regulator, it was confirmed that the above was achieved to complete the present invention.
【발명의 내용】  [Content of invention]
【해결하려는 과제】  [Problem to solve]
본 발명은 우수한 투명성 및 내열성을 가지며, 또한 위상차 값이 작은 광학 재료용 수지 조성물 및 이를 포함하는 필름을 제공하기 위한 것이다. The present invention is to provide a resin composition for an optical material having excellent transparency and heat resistance, and a small retardation value, and a film comprising the same. will be.
또한, 본 발명은 상기 광학용 필름을 포함하는 편광판을 제공하기 위한 것이다.  Moreover, this invention is providing the polarizing plate containing the said optical film.
【과제의 해결 수단】  [Measures of problem]
상기 과제를 해결하기 위하여, 본 발명은 1) 폴리메틸메타크릴레이트 In order to solve the above problems, the present invention is 1) polymethyl methacrylate
90 내지 99 중량 %, 및 2) 폴리카보네이트 1 내지 10 중량 %를 포함하고, 상기 폴리메틸메타크릴레이트는 메타크릴산 단량체를 상기 폴리메틸메타크릴레이트 중량 대비 1 내지 5 중량 % 포함하고, 상기 폴리메틸메타크릴레이트의 유리전이온도는 100 °C 이상 120 °C 미만이고, 상기 폴리카보네이트의 유리전이은도는 125°C 이상 135°C 미만이고, 상기 폴리메틸메타크릴레이트 및 폴리카보네이트의 유리전이온도 차이가 20°C 미만인, 광학 재료용 수지 조성물을 제공한다. 폴리메틸메타크릴레이트 (PMMA)는 투명성이 우수하여 광학용 필름, 특히 편광판 보호용 필름으로 사용할 수 있다. 그러나, 폴리메틸메타크릴레이트를 필름으로 제조할 경우 기계적 강도를 높이기 위하여 연신 공정을 사용하여야 하는데, 폴리메틸메타크릴레이트는 유리전이온도가 낮기 때문에 이를 이용하여 제조한 광학용 필름은 고온에서 사용시 연신 이력이 풀려 치수 안정성이 나빠지는 문제가 있다. 이를 개선하기 위하여, 폴리메틸메타크릴레이트 고분자 주쇄에 고리 구조를 갖는 단량체를 도입하는 방법이 있으나, 제조 공정이 복잡하고, 원료의 단가가 높아질 뿐만 아니라, 보다 높은 온도에서 가공을 해야 하고, 이로 인하여 고분자의 말단기가 분해되거나, 저분자량의 첨가제들이 열분해 되는 문제가 있다. 또한, 폴리메틸메타크릴레이트를 연신하게 되면, 연신 방향에 대하여 수직인 방향으로 굴절율이 커지는 부의 복굴절 특성을 가지며, 따라서 IPS 모드용 편광판의 보호필름과 같이 낮은 위상차 값을 가지기 위해서는, 연신 방향으로 굴절율이 커지는 정의 복굴절 특성을 가지는 위상차 조절제가 필요하다. 이에, 본 발명에서는 후술할 바와 같은 폴리메틸메타크릴레이트와, 위상차 조절제로서 폴리카보네이트를 사용함으로써, 낮은 위상차 값을 구현할 수 있는 광학 소재용 수지 조성물을 제공한다. 이하, 본 발명을 보다상세히 설명한다. 폴리메틸메타크릴레이트 90 to 99% by weight, and 2) 1 to 10% by weight of polycarbonate, wherein the polymethylmethacrylate comprises 1 to 5% by weight of methacrylic acid monomers relative to the weight of the polymethylmethacrylate, and the poly The glass transition temperature of methyl methacrylate is 100 ° C or more and less than 120 ° C. The glass transition degree of the polycarbonate is 125 ° C or more and less than 135 ° C., and the glass transition temperature of the polymethyl methacrylate and polycarbonate. The difference is less than 20 ° C, to provide a resin composition for an optical material. Polymethyl methacrylate (PMMA) is excellent in transparency and can be used as an optical film, especially a polarizing plate protective film. However, when the polymethyl methacrylate is produced as a film, a stretching process should be used to increase the mechanical strength. Since the polymethyl methacrylate has a low glass transition temperature, the optical film prepared using the same is stretched when used at a high temperature. There is a problem that the hysteresis is released and the dimensional stability worsens. In order to improve this, there is a method of introducing a monomer having a ring structure into the polymethyl methacrylate polymer backbone, but the manufacturing process is complicated, the cost of the raw material is not only high, but also must be processed at a higher temperature, There is a problem that the end group of the polymer is decomposed or the low molecular weight additives are pyrolyzed. In addition, when the polymethyl methacrylate is stretched, it has a negative birefringence characteristic in which the refractive index increases in a direction perpendicular to the stretching direction, and therefore, in order to have a low retardation value as in the protective film of the polarizing plate for the IPS mode, the refractive index in the stretching direction It is necessary to have a phase difference regulator having this positive birefringence characteristic. Accordingly, the present invention provides a resin composition for an optical material that can realize a low retardation value by using polymethyl methacrylate, which will be described later, and polycarbonate as a retardation regulator. Hereinafter, the present invention will be described in more detail. Polymethyl methacrylate
본 발명에서 사용하는 용어 '폴리메틸메타크릴레이트 (PolyOiiethyl methacryl ate) ; PMMA) ' 는, 메틸 메타크릴레이트 (Methyl methacryl ate , MMA)를 단량체로 하는 중합체를 의미하며, 특히 본 발명에서는 광학 재료용 수지 조성물의 주성분으로서, 그 말단에 메타크릴산 단량체를 1 내지 5 중량 % 포함하는 것을 의미한다. 상기 메타크릴산은 공중합체의 분해를 억제하여 유리전이온도를 조절하는 역할을 한다. 또한, 상기 폴리메틸메타크릴레이트의 유리전이온도는 100°C 이상 120 °C 미만이고, 바람직하게는 110°C 이상 117°C 이하이다. 상기 유리전이온도가 100°C 미만인 경우에는 필름으로 제조하였을 때 열적 안정성이 떨어지는 문제가 있다. 또한, 상기 유리전이온도가 120°C 이상인 경우에는, 전술한 바와 같이 폴리메틸메타크릴레이트 주쇄에 고리 구조를 갖는 특수한 단량체를 도입하거나, 중합 공정에서 아크릴 고분자 사슬의 입체 규칙성 (tact i ci ty)을 특별히 조절하여야 12C C 이상의 내열성을 갖기 때문에 이로 인하여 원료의 단가가 높아지게 되고 높은 가공 온도에 따른 열분해 등이 발생하여 필름 가공성이 떨어지는 문제가 있다. 상기 폴리메틸메타크릴레이트는 메틸 메타크릴레이트 외에 메타크릴산이 사용되는 점을 제외하고는 공지의 방법으로 제조할 수 있으며, 예를 들어 유화 중합법, 유화 -현탁 중합법, 현탁 중합법 등의 방법으로 제조될 수 있다. 또한, 메타크릴산 단량체를 폴리메틸메타크릴레이트의 말단에 도입하기 위하여, 폴리메틸메타크릴레이트를 먼저 중합한 후 메타크릴산 단량체를 중합할 수 있다. 또한, 상기 폴리메틸메타크릴레이트의 중량평균분자량은 100 , 000 내지 160 , 000이다. 상기 중량평균분자량이 100 , 000 미만인 경우에는 필름으로 제조하였을 때 기계적 물성이 떨어지는 문제가 있고, 상기 중량평균분자량이 160 , 000 초과인 경우에는 연신 가공이 어렵다는 문제가 있다. 폴리카보네이트 The term 'polymethyl methacrylate (PolyOiiethyl methacrylate)) used in the present invention; PMMA) 'means a polymer containing methyl methacrylate (MMA) as a monomer, and in particular, in the present invention, as a main component of the resin composition for an optical material, 1 to 5 weight of a methacrylic acid monomer at its end Means to include%. The methacrylic acid serves to control the glass transition temperature by inhibiting the decomposition of the copolymer. In addition, the glass transition temperature of the polymethyl methacrylate is 100 ° C or more and less than 120 ° C., preferably 110 ° C or more and 117 ° C or less. When the glass transition temperature is less than 100 ° C, there is a problem in that the thermal stability is poor when prepared as a film. In addition, when the glass transition temperature is 120 ° C or more, as described above, a special monomer having a ring structure is introduced into the polymethyl methacrylate main chain, or the stereoregularity of the acrylic polymer chain in the polymerization process (tact i ci ty). ) Has a heat resistance of more than 12C C to be specifically controlled because of this, the unit cost of the raw material is increased and there is a problem that the film workability is inferior due to the thermal decomposition due to the high processing temperature. The polymethyl methacrylate may be prepared by a known method except that methacrylic acid is used in addition to methyl methacrylate, for example, emulsion polymerization, emulsion-suspension polymerization, suspension polymerization, and the like. It can be prepared as. In addition, in order to introduce the methacrylic acid monomer to the terminal of the polymethyl methacrylate, the polymethyl methacrylate is first polymerized Methacrylic acid monomers can be polymerized. In addition, the weight average molecular weight of the polymethyl methacrylate is 100, 000 to 160, 000. If the weight average molecular weight is less than 100, 000, there is a problem that the mechanical properties when the film is produced, and if the weight average molecular weight is more than 160, 000, there is a problem that stretching processing is difficult. Polycarbonate
발명에서 사용하는 용어 '폴리카보네이트' 란, 방향족 디을 화합물 및 카보네이트 전구체가 반웅하여 형성되는 것으로, 계면 중합 또는 용액 중합으로 제조될 수 있다. 일례로, 비스페놀 A와 포스겐을 계면 중합하여 제조할 수 있다. 상기 폴리카보네이트는 위상차 조절을 위해 첨가되며, 또한 폴리메타크릴레이트와 상용성, 광학 필름의 가공성 및 광학 필름의 물성을 위하여 폴리카보네이트의 유리전이온도는 상기 폴리메타크릴레이트에 상웅하여야 한다. 바람직하게는, 상기 폴리카보네이트의 유리전이온도는 125 °C 이상 135 °C 미만이다. 상기 유리전이온도가 125 °C 미만인 경우에는 폴리카보네이트의 Ml가 너무 낮아져 펠렛화가 힘들고, 중합 효율성도 나빠져 제조하기가 어렵다. 또한, 상기 유리전이온도가 135°C 이상인 경우에는, 본 발명의 아크릴 수지와의 상용성이 나빠져 투명한 필름을 얻을 수가 없어 바람직하지 않다. 또한, 상기 폴리메틸메타크릴레이트 및 폴리카보네이트의 유리전이은도 차이가 20°C 미만인 폴리카보네이트를 사용하는 것이 바람직하다. 보다 바람직하게는, 상기 유리전이온도 차이가 19 °C 이하이다. 상기 유리전이은도 차이가 2(rc 이상이면, 폴리메틸메타크릴레이트와의 상용성이 떨어져 전체적으로 불투명한 조성물이 되어 바람직하지 않다. 또한, 상기 폴리카보네이트는, 상기 광학 재료용 수지 조성물에서 1 중량 % 내지 10 중량%가 바람직하다. 만약 폴리카보네이트 함량이 1 중량 % 미만이면 부의 복 절 특성이 너무 커서 zero 위상차 구현이 되지 않고, 반대로 폴리카보네이트 함량이 10 증량 %를 초과하면 정의 복굴절 특성이 너무 커져서 마찬가지로 zero 위상차 구현이 어렵고 아크릴과의 상용성도 나빠져 투명성이 저하되는 문제가 있다. 광학재료용수지 조성물 The term 'polycarbonate' used in the present invention refers to an aromatic diol compound and a carbonate precursor formed by reaction, and may be prepared by interfacial polymerization or solution polymerization. For example, bisphenol A and phosgene can be produced by interfacial polymerization. The polycarbonate is added to control the retardation, and the glass transition temperature of the polycarbonate should be comparable to the polymethacrylate for compatibility with the polymethacrylate, processability of the optical film, and physical properties of the optical film. Preferably, the glass transition temperature of the polycarbonate is more than 125 ° C and less than 135 ° C. If the glass transition temperature is less than 125 ° C. Ml of the polycarbonate is too low to be difficult to pelletize, the polymerization efficiency is also poor to manufacture. In addition, when the glass transition temperature is 135 ° C. or more, the compatibility with the acrylic resin of the present invention is poor, it is not preferable to obtain a transparent film. In addition, it is preferable to use a polycarbonate having a difference in glass transition between the polymethyl methacrylate and the polycarbonate of less than 20 ° C. More preferably, the glass transition temperature difference is 19 ° C or less. If the difference in glass transition is 2 (rc or more), compatibility with polymethyl methacrylate is poor, resulting in an overall opaque composition, which is undesirable. In addition, the polycarbonate is preferably 1% by weight to 10% by weight in the resin composition for an optical material. If the polycarbonate content is less than 1% by weight, the negative refraction property is so large that zero phase difference is not realized. On the contrary, if the polycarbonate content is more than 10% by weight, the positive birefringence property is too large to realize zero phase difference. There is also a problem that the compatibility is worsened and the transparency is lowered. Optical material resin composition
본 발명에 따른 광학 재료용 수지 조성물은, 상술한 폴리메틸메타크릴레이트 90 내지 99 중량 %, 및 폴리카보네이트를 1 내지 10 중량 %를 포함한다. 또한, 상기 광학 재료용 수지 조성물은, 상기 폴리메틸메타크릴레이트 및 폴리카보네이트 조성물을 용융 흔련하여 제조할 수 있다. 또한, 상기 광학 재료용 수지 조성물은, 필요에 따라 자외선 흡수제, 열 안정화제, 윤활제 등의 첨가제를 포함할 수 있다. 이때, 상기 첨가제들은 수지 조성물의 물성을 해하지 않는 범위 내에서 적절한 함량으로 포함될 수 있으며, 예를 들면, 전체 광학 재료용 수지 조성물 100 중량부를 기준으로 0. 1 내지 5 중량부로 포함될 수 있다. 광학필름  The resin composition for optical materials which concerns on this invention contains 90-99 weight% of polymethylmethacrylate mentioned above, and 1-10 weight% of polycarbonate. Moreover, the said resin composition for optical materials can be manufactured by melt-stirring the said polymethylmethacrylate and a polycarbonate composition. Moreover, the said resin composition for optical materials may contain additives, such as a ultraviolet absorber, a heat stabilizer, a lubricating agent, as needed. In this case, the additives may be included in an appropriate content within a range that does not impair the physical properties of the resin composition, for example, may be included in 0.1 to 5 parts by weight based on 100 parts by weight of the resin composition for the entire optical material. Optical film
또한, 본 발명은 상술한 광학 재료용 수지 조성물을 포함하는 광학 필름을 제공한다. 본 발명에서 사용하는 용어 "광학 필름" 이란, 상술한 광학 재료용 수지 조성물을 연신하여 제조된 필름을 의미한다. 본 발명에 따른 광학 필름의 제조 시에는 당해 기술분야에 알려진 어떠한 방법, 예를 들면, 용액 캐스터법이나 압출법 등을 이용할 수 있고, 일례로 용융 압출 성형법을 이용할 수 있다. 구체적으로, 상기 광학 재료용 수지 조성물을 진공 건조하여 수분 및 용존 산소를 제거한 후, 원료 호퍼 (hopper )로부터 압출기를 질소 치환한 싱글 또는 트윈 압출기에 공급하고, 고온에서 용융하여 원료 펠렛을 얻고, 얻어진 원료 펠렛을 진공 건조하고, 원료 호퍼로부터 압출기까지를 질소 치환한 싱글 압출기로 용융한 후, 코트 행거 타입의 T—다이에 통과시키고, 크롬 도금 캐스팅 를 및 건조 를 등을 거쳐 필름을 제조할 수 있다. 이때, 필름 성형 온도는 바람직하게는 150°C 내지 350°C , 보다 바람직하게는 200°C 내지 300°C이다. 한편, 상기와 같이, T 다이법으로 필름을 성형하는 경우에는, 공지된 단축 압출기나 2축 압출기의 선단부에 T-다이를 장착하고, 필름 형상으로 압출된 필름을 권취하여 를 형상의 필름을 얻을 수 있다. 특히, 본 발명에 따른 광학 필름은, 상술한 광학 재료용 수지 조성물로 제조된 필름을 MD 방향으로 1.5배 내지 2.5배 및 TD 방향으로 1.5배 내지 3.0배의 2축 연신하여 제조되는 것이 바람직하다. 상기 연신은 상기 광학 재료용 조성물에 포함된 고분자의 분자를 정렬하는 것으로, 연신 정도에 따라 제조되는 광학 필름의 특성에 영향을 미친다. 보다 바람직하게는, 상기 MD 방향의 연신 배율과 TD 방향의 연신 배율의 비 (TD 연신 배율 /MD 연신 배율)이 1.05 이상 1.70 이하이다. 또한, 상기 연신 온도는 상기 폴리메틸메타크릴레이트의 유리전이온도 보다 K C 내지 30°C 높은 온도에서 수행하는 것이 바람직하다. 본 발명에 따른 광학 필름은 치수 안정성이 우수하며, 이러한 열적 치수 안정성을 평가하기 위하여 TTS(Temperature of Thermal Shr inkage)라는 변수를 도입하였다. TTS는 연신 공정으로 제조된 광학 필름이 연신 이력이 완화되면서 급격하게 수축하기 시작하는 온도를 의미한다. 구체적으로, 광학 필름에 온도를 가하였을 때, 온도가 증가함에 따라 팽창후 수축이 시작되는 온도를 의미한다. 바람직하게는, 본 발명에 따른 광학 필름의 MD 방향의 및 TD 방향의 TTS가 각각 100°C 내지 120°C이다. 또한, 본 발명에 따른 광학 필름은 2축 연신 공정을 통하여 고분자 사슬을 배향시켜 제조함으로써, 쉽게 깨지기 쉬운 특성올 개선할 수 있다. 구체적으로, 본 발명에 따른 광학 필름은 하기 수학식 1의 층격 에너지 ( Impact energy) 값이 400 kN - m/m3 이상이라는 특징이 있다: Moreover, this invention provides the optical film containing the resin composition for optical materials mentioned above. The term "optical film" used in the present invention means a film produced by stretching the above-mentioned resin composition for optical materials. In the production of the optical film according to the present invention, any method known in the art, for example, a solution caster method or an extrusion method, may be used, and for example, a melt extrusion method may be used. Specifically, for the optical material After drying the resin composition in vacuo to remove moisture and dissolved oxygen, the extruder is nitrogen-substituted from a raw material hopper to a single or twin extruder, which is melted at high temperature to obtain raw material pellets, and vacuum drying the obtained raw material pellets; After melt | dissolution from a raw material hopper to an extruder with a nitrogen-substituted single extruder, it can pass through the coat hanger type T die | dye, chrome plating casting, drying, etc. can produce a film. At this time, the film forming temperature is preferably 150 ° C to 350 ° C, more preferably 200 ° C to 300 ° C. On the other hand, as described above, in the case of forming a film by the T-die method, a T-die is attached to the tip of a known single screw extruder or twin screw extruder, and the film extruded in the shape of a film is obtained to obtain a film having a shape of. Can be. In particular, the optical film according to the present invention is preferably produced by biaxially stretching a film made of the above-described resin composition for optical materials 1.5 times to 2.5 times in the MD direction and 1.5 times to 3.0 times in the TD direction. The stretching is to align the molecules of the polymer contained in the composition for the optical material, and affects the properties of the optical film produced according to the degree of stretching. More preferably, ratio (TD draw ratio / MD draw ratio) of the draw ratio of the said MD direction and the draw ratio of a TD direction is 1.05 or more and 1.70 or less. In addition, the stretching temperature is preferably carried out at a temperature of KC to 30 ° C higher than the glass transition temperature of the polymethyl methacrylate. The optical film according to the present invention has excellent dimensional stability, and introduced a parameter called TTS (Temperature of Thermal Shr inkage) to evaluate the thermal dimensional stability. TTS refers to the temperature at which the optical film produced by the stretching process begins to shrink rapidly as the stretching history is relaxed. Specifically, when the temperature is applied to the optical film, it means the temperature at which shrinkage starts after expansion as the temperature increases. Preferably, the TTS in the MD direction and the TD direction of the optical film according to the present invention is 100 ° C. to 120 ° C., respectively. In addition, the optical film according to the present invention can be produced by orienting the polymer chain through a biaxial stretching process, it is possible to improve the easily brittle characteristics. Specifically, the optical film according to the present invention is characterized in that the impact energy value of Equation 1 is 400 kN-m / m 3 or more:
[수학식 1]  [Equation 1]
층격 에너지 = (중력가속도 X 낙구 볼의 무게 X 낙구 높이) /(광학 필름의 두께 X 광학 필름의 면적) 상기 충격 에너지의 구체적인 측정 방법은 이하 실시예에서 구체화할 수 있다. 일례로, 이하 실시예에서는, 상기 충격 에너지의 측정을 위하여 Lamination energy = (gravity acceleration X falling weight ball falling ball height) / (thickness of optical film X area of optical film) The specific measuring method of the impact energy can be specified in the following examples. For example, in the following examples, to measure the impact energy
16.4 g의 낙구 볼을 사용하였으며, 총 10회 자유 낙하시켜 8회 이상 파괴되지 않고 버티는 최고 높이를 상기 낙구 높이로 하여 계산하였다. 한편, 본 발명에 따른 광학 필름의 두께는 필요에 따라 적절히 조절할 수 있으며, 일례로 10 um 내지 100 urn인 것이 바람직하다. 또한 바람직하게는, 본 발명에 따른 광학 필름은 하기 위상차를 나타낸다: 16.4 g of a falling ball was used, and the total height of the free fall was not broken more than eight times, and the buttress was calculated using the highest height as the falling ball height. On the other hand, the thickness of the optical film according to the present invention can be appropriately adjusted as necessary, for example, it is preferably 10um to 100urn. Also preferably, the optical film according to the present invention exhibits the following phase difference:
[수학식 2]  [Equation 2]
0 nm < Rin < 10 nm (Rin = (nx-ny) x d)  0 nm <Rin <10 nm (Rin = (nx-ny) x d)
[수학식 3]  [Equation 3]
-10 nm < Rth < 10 nm (Rth = ( (nx+ny)/2-nz) x d)  -10 nm <Rth <10 nm (Rth = ((nx + ny) / 2-nz) x d)
상기 수학식 2 및 3에서,  In Equations 2 and 3,
nx , ny 및 nz는 각각 x축 방향, y축 방향 및 z축 방향의 굴절율을 나타내고, d는 광학 필름의 두께 (nm)를 의미한다. 위상차는 낮은 위상차 값을 만족하는 것을 의미하는 것으로, 상술한 바와 같이 폴리메틸메타크릴레이트와 위상차 조절제로서 폴리카보네이트를 사용함으로써, 낮은 위상차 값을 구현할 수 있다. 또한, 본 발명은 상기 광학 필름을 포함하는 편광판을 제공한다. 상술한 바와 같이 본 발명에 따른 광학 필름은 편광판의 보호 필름으로 사용할 수 있으며, 이에 따라 편광판의 기계적 특성을 보완하고, 외부 환경, 예를 들어 온도나 습도의 영향으로부터 편광판을 보호할 수 있다. 구체적으로, 본 발명에 따른 광학 필름은, 편광판의 일면 또는 양면에 부착되어 편광판 보호필름으로 사용될 수 있다. 또한, 본 발명에 따른 광학 필름이 액정 표시 소자에 적용될 경우, 편광판과 액정샐 사이에 본 발명에 따른 광학 필름이 사용될 수 있으며, 이 경우 액정셀과 편광판을 동시에 보호할 수 있다. 이의 일례를 도 1에 나타내었다. 도 1에 예시된 바와 같이, 편광소자 /보호필름 /액정셀 /보호필름 /편광소자의 순서로 구성될 수 있으며, 각 편광소자의 타면에는 보호필름으로서 TAC 필름, 또는 아크릴 필름을 제한 없이 사용할 수 있다. nx, ny, and nz represent refractive indexes in an x-axis direction, a y-axis direction, and a z-axis direction, respectively, and d means the thickness (nm) of an optical film. The phase difference means that the low phase difference value is satisfied. As described above, low retardation values can be realized by using polymethyl methacrylate and polycarbonate as retardation regulators. In addition, the present invention provides a polarizing plate comprising the optical film. As described above, the optical film according to the present invention may be used as a protective film of the polarizing plate, thereby supplementing the mechanical properties of the polarizing plate, and protecting the polarizing plate from the influence of the external environment, for example, temperature or humidity. Specifically, the optical film according to the present invention may be attached to one side or both sides of the polarizing plate and used as a polarizing plate protective film. In addition, when the optical film according to the present invention is applied to the liquid crystal display device, the optical film according to the present invention can be used between the polarizing plate and the liquid crystal cell, in this case it can protect the liquid crystal cell and the polarizing plate at the same time. An example thereof is shown in FIG. 1. As illustrated in FIG. 1, the polarizer / protective film / liquid crystal cell / protective film / polarizer may be configured in this order, and on the other side of each polarizer, a TAC film or an acrylic film may be used as a protective film without limitation. have.
【발명의 효과】  【Effects of the Invention】
상술한 바와 같이, 본 발명에 따른 광학 재료용 수지 조성물은, 고리 구조를 갖는 단량체를 포함하지 않는 폴리메틸메타크릴레이트를 사용하면서도 폴리카보네이트를 위상차 조절제로 사용하여, 광학 필름으로 제조시 낮은 위상차 값을 구현할수 있다는 특징이 있다.  As described above, the resin composition for an optical material according to the present invention, using a polymethyl methacrylate that does not contain a monomer having a ring structure, but using a polycarbonate as a phase difference regulator, low retardation value when produced as an optical film There is a feature that can be implemented.
【도면의 간단한 설명】  [Brief Description of Drawings]
도 1은, 본 발명에 따른 보호필름이 사용되는 예를 도식적으로 나타낸 것이다.  1 schematically shows an example in which a protective film according to the present invention is used.
【발명을 실시하기 위한 구체적인 내용】  [Specific contents to carry out invention]
이하,ᅳ 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 이에 의해 본 발명의 내용이 한정되는 것은 아니다. 제조예 1: 폴리메틸메타크릴레이트 5리터 반웅기에, 메틸 메타크릴레이트 98 wt% 및 메틸 아크릴레이트 2 %의 단량체 흔합물 1000 g을 넣고, 증류수 2000 g, 5% 폴리비닐알코올 용액 8.4 g(P0VAL PVA217 , kuraray 사), 및 분산 조력제로 붕산 0. 1 g을 투입하고 용해하였다. 여기에, 사슬이동제로 n-옥틸머캡탄 2.5 g, 중합개시제로 2, 2' -아조비스이소부티로니트릴 1.5 g을 투입하고 400 rpm으로 교반하면서 수상에 분산시켜 현탁액을 제조하였다. 80°C로 승온하여 90분 동안 중합시킨 후, 30°C로 냉각시켰다. 얻어진 비드를 증류수로 세척 및 탈수한 후에 건조하여 폴리메틸메타크릴레이트 수지를 제조하였다. 상기 제조된 수지의 유리전이은도와 분자량을 측정한 결과, 유리전이온도 116 °C , 중량평균분자량 120 , 000이었다. 상기 유리전이온도는, Met t ier Toledo 사의 시차주사열량계 (DSC)를 이용하여, 10°C /min의 승은 조건으로 측정하였다. 제조예 2: 폴리카보네이트 Hereinafter, preferred embodiments of the present invention will be presented to assist in understanding the present invention. However, the following examples are merely provided to more easily understand the present invention, and the contents of the present invention are not limited thereto. Preparation Example 1 Polymethylmethacrylate In a 5 liter reaction vessel, 1000 g of a monomer mixture of 98% by weight of methyl methacrylate and 2% of methyl acrylate are added, 2000 g of distilled water, 8.4 g of a 5% polyvinyl alcohol solution (P0VAL PVA217, kuraray), and dispersion 0.1 g of boric acid was added and dissolved as adjuvants. Here, 2.5 g of n-octyl mercaptan as a chain transfer agent and 1.5 g of 2,2'-azobisisobutyronitrile were added as a polymerization initiator and dispersed in an aqueous phase with stirring at 400 rpm to prepare a suspension. After heating to 80 ° C. for 90 minutes, the mixture was cooled to 30 ° C. The obtained beads were washed with distilled water, dehydrated, and dried to prepare a polymethylmethacrylate resin. The glass transition temperature and molecular weight of the prepared resin were measured, and the glass transition temperature was 116 ° C. and the weight average molecular weight was 120,000. The glass transition temperature was measured under conditions of a rise of 10 ° C./min using a differential scanning calorimeter (DSC) manufactured by Met Tier Toledo. Preparation Example 2 Polycarbonate
폴리카보네이트로, 유리전이온도가 134°C인 폴리카보네이트 수지 (UFPolycarbonate, polycarbonate resin with glass transition temperature of 134 ° C (UF
1004A, 주식회사 엘지화학, 이하 'PC-1' 으로 명명), 유리전이온도가 143°C인 폴리카보네이트 수지 (LUP0Y 1080 DVD , 주식회사 엘지화학, 이하 'PC-2' 로 명명), 및 유리전이온도가 148 °C인 폴리카보네이트 수지 (UF 1004C, 주식회사 엘지화학, 이하 'PC-3' 로 명명)를 사용하였다. 실시예 1 1004A, LG Chem, Inc., hereinafter referred to as 'PC-1'), Polycarbonate resin with a glass transition temperature of 143 ° C (LUP0Y 1080 DVD, LG Chem, Inc., hereinafter referred to as 'PC-2'), and Glass transition temperature Polycarbonate resin having a 148 ° C. (UF 1004C, LG Chem, Inc., hereinafter referred to as 'PC-3') was used. Example 1
제조예 1에서 제조한 폴리메틸메타크릴레이트 95 wt%와 PC-1 5 wt%를 흔합하고, 여기에 산화방지제 ( Irganox 1010 , BASF 사)를 0.5 phr의 함량으로 처방하여 드라이 블렌드하고, 트원 압출기로 컴파운딩하여 수지 조성물을 제조하였다. 상기 수지 조성물을 265°C에서 용융시키고, T-Die를 통하여 시트 형태로 압출 캐스팅하여 두게 180 um의 시트를 얻었다. 비교예 1 95 wt% of polymethyl methacrylate prepared in Preparation Example 1 and 5 wt% of PC-1 are mixed, and dry blended with 0.5 phr of an antioxidant (Irganox 1010, BASF Co., Ltd.). Compounding was performed to prepare a resin composition. The resin composition was melted at 265 ° C. and extruded into a sheet form through T-Die to obtain a sheet of 180 um thick. Comparative Example 1
제조예 1에서 제조한 폴리메틸메타크릴레이트 85 wt%와 PC-1 15 %를 흔합한 것을 제외하고 상기 실시예 1과 동일한 방법으로 시트를 얻었다. 비교예 2 The sheet was prepared in the same manner as in Example 1, except that 85 wt% of polymethylmethacrylate prepared in Preparation Example 1 and 15% of PC-1 were mixed. Got it. Comparative Example 2
제조예 1에서 제조한 폴리메틸메타크릴레이트 95 wt¾와 PC-2 5 wt%를 흔합한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 시트를 얻었다. 비교예 3  A sheet was obtained in the same manner as in Example 1, except that 95 wt¾ of polymethyl methacrylate prepared in Preparation Example 1 and 5 wt% of PC-2 were mixed. Comparative Example 3
제조예 1에서 제조한 폴리메틸메타크릴레이트 95 %와 PC-3 5 wt¾를 흔합한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 시트를 얻었다. 비교예 4  A sheet was obtained in the same manner as in Example 1, except that 95% of polymethyl methacrylate prepared in Preparation Example 1 and PC-3 5 wt¾ were mixed. Comparative Example 4
제조예 1에서 제조한 폴리메틸메타크릴레이트에 산화방지제 ( Irganox 1010 , BASF 사)를 0.5 phr의 함량으로 처방하여 드라이 블렌드하고, 트뷘 압출기로 컴파운딩하여 수지 조성물을 제조하였다. 상기 수지 조성물을 265°C에서 용융시키고, T-Di e를 통하여 시트 형태로 압출 캐스팅하여 두게 180 urn의 시트를 얻었다. 실험예 1 The polymethyl methacrylate prepared in Preparation Example 1 was formulated with an antioxidant (Irganox 1010, BASF) in an amount of 0.5 phr, dry blended, and compounded with a twin extruder to prepare a resin composition. The resin composition was melted at 265 ° C. and extruded into a sheet form through T-Di e to obtain a sheet of 180 urn. Experimental Example 1
상기 실시예 및 비교예에서 얻은 시트를 이용하여 하기와 같이 특성을 평가하였다.  The properties were evaluated as follows using the sheets obtained in the above Examples and Comparative Examples.
1) 유리전이온도 차이 (ATg) : 폴리카보네이트 (PC-1 , PC-2 , 또는 PC- 3)의 유리전이온도와, 폴리메틸메타크릴레이트의 유리전이온도 차이를 계산하였다. 1) Glass transition temperature difference (ATg): The glass transition temperature of polycarbonate (PC-1, PC-2, or PC-3) and the glass transition temperature of polymethyl methacrylate were calculated.
2) 전광선 투과율 (Tt ) : 탁도계를 사용하여 시트와 전광선 투과율을 측정하였다.  2) Total light transmittance (Tt): The sheet and total light transmittance were measured using a turbidimeter.
3) Haze : Hazemeter丽 -150을사용하여 측정하였다. 상기 결과를 하기 표 1에 나타내었다. 【표 1】 3) Haze: Hazemeter was measured using -150. The results are shown in Table 1 below. Table 1
Figure imgf000014_0001
상기 표 1에 나타난 바와 같이, 실시예 1은 유리전이온도 차이가 2(rc 미만이고, 폴리카보네이트의 함량이 10 wt% 이하이기 때문에, 전광선 투과율과 Haze 값이 우수한 투명 시트가 제조되었다. 반면, 비교예 1은 유리전이온도 차이가 20°C 미만이지만, 폴리카보네이트의 함량이 10 wt% 이상이기 때문에, 전광선 투과율이 낮고 Haze 값이 큰 불투명 시트가 제조되었다. 또한, 비교예 2 및 3은 폴리카보네이트의 함량이 10 wt% 이하이지만, 유리전이온도 차이가 20°C 이상이어서, 불투명 시트가 제조되었다. 비교예 4는, 폴리카보네이트 수지를 첨가하지 않았으며, 전광선 투과율과 Haze 값이 양호한투명 시트가 제조되었다. 실험예 2
Figure imgf000014_0001
As shown in Table 1, in Example 1, since the glass transition temperature difference is less than 2 (rc, the polycarbonate content is 10 wt% or less, a transparent sheet having excellent total light transmittance and Haze value was prepared. In Comparative Example 1, the glass transition temperature difference is less than 20 ° C, but the polycarbonate content is 10 wt% or more, so that an opaque sheet having a low total light transmittance and a large Haze value was prepared. Although the content of carbonate is 10 wt% or less, the glass transition temperature difference is 20 ° C or more, and thus an opaque sheet was prepared. In Comparative Example 4, the polycarbonate resin was not added, and the transparent sheet having good total light transmittance and Haze value was obtained. Experimental Example 2
상기 실험예 1에서, 투명 시트가 제조된 실시예 1 및 비교예 4의 시트를 이용하여, 하기의 실험을 실시하였다. 실시예 1의 시트를, 이하 표 2에 기재된 바와 같은 연신온도 및 연신배율로 2축 연신하여 광학필름 (실시예 2 내지 7)을 제조하였다. 또한, 비교예 4의 시트를, 이하 표 2에 기재된 바와 같은 연신온도 및 연신배율로 2축 연신하여 광학필름 (비교예 5)을 제조하였다. 또한 비교를 위하여, 2축 연신하지 않은 실시예 1의 시트를 비교예 6으로 하였다. 상기 제조한 광학필름을 이용하여 하기와 같이 특성을 평가하였다.  In Experimental Example 1, using the sheets of Example 1 and Comparative Example 4, the transparent sheet was prepared, the following experiment was carried out. The sheet of Example 1 was biaxially stretched at the stretching temperature and the draw ratio as described in Table 2 below to prepare optical films (Examples 2 to 7). In addition, the sheet of Comparative Example 4 was biaxially stretched at the stretching temperature and the draw ratio as described in Table 2 below to prepare an optical film (Comparative Example 5). In addition, the sheet of Example 1 which was not biaxially stretched was made into the comparative example 6 for comparison. The characteristics were evaluated as follows using the prepared optical film.
1) TTS (Temperature of .Thermal Shr inkage) : 광학용 필름을 80 x 4.5 醒의 치수로 샘플을 제조한 후, TA TMA(Q400) 장비를 이용하여 측정하였다. 구체적으로, 승온 속도 10°C /min 및 하중 0.02 N의 조건으로 온도를 가하였을 때, 상기 샘플이 MD 및 TD 방향으로 각각 팽창 후 수축이 시작되는 변곡점의 은도 (접선 기을기가 0)를 TTS 값으로 하였다. 1) TTS (Temperature of .Thermal Shr inkage): 80 x Samples were prepared in the size of 4.5 mm 3 and measured using a TA TMA (Q400) instrument. Specifically, when the temperature is applied under conditions of a temperature increase rate of 10 ° C / min and a load of 0.02 N, the TTS value of the inflection point of the inflection point where the sample begins to contract after expansion in the MD and TD directions, respectively It was made.
2) 위상차: 복굴절 측정기 (AxoScan, Axometr ics 사)를 이용하여 550 nm의 파장에서 위상차를 측정하였다. X축 방향의 굴절율 (nx) 및 y축 방향의 굴절율 (ny) , z축 방향의 굴절률 (nz)의 측정값으로, 이하 수학식으로 면내 위상차 (Rin) 및 두께 방향 위상차 (Rth) 값을 계산하였다. 2) Retardation: The retardation was measured at a wavelength of 550 nm using a birefringence measuring instrument (AxoScan, Axometr ics). Measured values of the refractive index ( nx ) in the X-axis direction, the refractive index (ny) in the y-axis direction, and the refractive index (nz) in the z-axis direction, and the in-plane phase difference (Rin) and thickness direction phase difference (Rth) values are calculated by the following equation. It was.
Rin(nm) = (nx-ny) x d  Rin (nm) = (nx-ny) x d
Rth(nm) = ( (nx+ny)/2 - nz) x d  Rth (nm) = ((nx + ny) / 2-nz) x d
상기에서,' (!는 광학용 필름의 두께 (nm)를 의미한다. In the above, ' (! ' Means the thickness (nm) of the optical film.
3) 열수축율: 광학용 필름을 20 X 200 誦의 치수로 샘플을 제조한 후, 85°C의 오븐에서 100시간 체류 후 초기 길이 대비 변화한 길이를 측정하였다. 변화한 길이를 초기 길이 대비 백분율 값을 치수 변화 값으로 하였다. 3) Heat Shrinkage: After preparing a sample of the optical film to the dimensions of 20 X 200 mm, the length changed after the initial 100 hours in an 85 ° C oven was measured. The changed length was regarded as the percentage change value relative to the initial length.
4) 층격 에너지 ( impact strength, kN - m/m3): 광학필름의 두께를 측정하고, 직경 76 瞧의 원형 프레임에 끼워 필름을 고정한 후, 중량 16.4 g의 원형 볼 (쇠구슬)을 이용하여 높이를 변화시켜 가면서 자유 낙하시켜 필름 위에 떨어뜨려 광학필름의 파손 여부를 확인하였다. 광학필름의 파손은 동일 높이에서 총 10회 자유 낙하시켜 8회 이상 파괴되지 않고 버티는지 여부로 판단하였다. 8회 이상 버티는 최고 높이를 이용하여, 하기의 식으로 광학필름의 층격 에너지 값을 계산하였다. 4) Impact strength (kN-m / m 3 ): Measure the thickness of the optical film, fix the film by inserting it into a circular frame of 76 직경 diameter, and then use a circular ball (iron ball) with a weight of 16.4 g. Free fall while varying the height was dropped on the film to check the damage of the optical film. The breakage of the optical film was judged as whether or not the fracture was sustained without breaking more than eight times by free-falling a total of ten times at the same height. Using eight times the maximum height, the stratified energy value of the optical film was calculated by the following equation.
충격 에너지 = (중력가속도 X 낙구 볼의 무게 X 낙구 높이) /(편광판보호필름의 두께 X 필름 면적) 상기 결과를 하기 표 2에 나타내었다. 【표 2] Impact energy = (gravity acceleration X weight of falling ball X falling ball height) / (thickness X film area of polarizing plate protective film) The results are shown in Table 2 below. [Table 2]
Figure imgf000016_0001
상기 표 2에 나타난 바와 같이, 실시예 1의 수지 조성물을 사용한 경우에는 어떠한 연신 조건에서도 낮은 위상차 특성을 나타냄을 확인할 수 있었다. 반면, 비교예 4의 수지 조성물과 같이 폴리메틸메타크릴레이트 만으로 광학필름을 제조한 경우에는 Rth 위상차 값이 높음을 확인할 수 있었다. 또한, 비교예 6과 같이 2축 연신을 하지 않을 경우에는 층격 에너지가 낮음을 확인할 수 있었다. 또한, 실시예 2와 실시예 4를 비교하면, 동일한 연신 배율에서 연신 온도를 높게 할수록 높은 TTS 값을 나타내며, 치수 변화도 적은 광학용 필름을 제조할 수 있음을 확인할 수 있었다. 반면, 동일한 연신 온도 조건에서 MD 방향의 연신 배율과 TD 방향의 연신배율이 큰 실시예 3 및 실시예 5의 경우에는, 연신 배율이 큰 TD 방향의 값이 작아지고 열수축율도 커져, 편광판으로 제조시 수축 웅령에 의하여 컬 (cur l )이나 벤딩 (bending)이 발생할 수 있다. 또한, 동일한 연신 배율에 대해서 연신 온도가 낮은 실시예 6 및 실시예 7의 경우에도, 동일하게 TTS 값이 작아지고 열수축율도 커지는 경향을 나타냄을 확인할 수 있었다.
Figure imgf000016_0001
As shown in Table 2, when the resin composition of Example 1 was used, it was confirmed that exhibits low retardation characteristics under any stretching conditions. On the contrary, when the optical film was manufactured using only polymethyl methacrylate as in the resin composition of Comparative Example 4, it was confirmed that the Rth retardation value was high. In addition, when the biaxial stretching was not performed as in Comparative Example 6, it was confirmed that the lamellar energy was low. In addition, when comparing Example 2 and Example 4, it was confirmed that the higher the stretching temperature at the same draw ratio, the higher the TTS value, and the optical film with less dimensional change could be produced. On the other hand, in the case of Examples 3 and 5 in which the draw ratio in the MD direction and the draw ratio in the TD direction are large under the same draw temperature conditions, the value in the TD direction in which the draw ratio is large is decreased and the heat shrinkage ratio is also increased, and when manufacturing a polarizing plate Curling or bending may occur due to shrinkage. In addition, in the case of Example 6 and Example 7 in which extending | stretching temperature is low about the same draw ratio, it also confirmed that TTS value became small and thermal contraction rate also tended to increase.

Claims

【특허청구범위】 【Patent Claims】
【청구항 1】 【Claim 1】
1) 폴리메틸메타크릴레이트 90 내지 99 중량 %, 및 1) 90 to 99% by weight of polymethyl methacrylate, and
2) 폴리카보네이트 1 내지 10 중량 %를 포함하고, 2) Contains 1 to 10% by weight of polycarbonate,
상기 폴리메틸메타크릴레이트는 메타크릴산 단량체를 상기 폴리메틸메타크릴레이트 중량 대비 1 내지 5 중량 ¾>포함하고, The polymethyl methacrylate contains 1 to 5 weight ¾ of methacrylic acid monomer relative to the weight of the polymethyl methacrylate,
상기 폴리메틸메타크릴레이트의 유리전이온도는 100°C 이상 120°C 미만이고, The glass transition temperature of the polymethyl methacrylate is 100 ° C or more and less than 120 ° C,
상기 폴리카보네이트의 유리전이온도는 125°C 이상 135°C 미만이고, 상기 폴리메틸메타크릴레이트 및 폴리카보네이트의 유리전이온도 차이가 20 °C 미만인, The glass transition temperature of the polycarbonate is 125 ° C or more and less than 135 ° C, and the glass transition temperature difference between the polymethyl methacrylate and polycarbonate is less than 20 ° C,
광학 재료용 수지 조성물. Resin composition for optical materials.
【청구항 2] [Claim 2]
게 1항에 있어서, In paragraph 1,
상기 폴리메틸메타크릴레이트의 유리전이온도는 110°C 이상 irrc 이하인 것을 특징으로 하는, The glass transition temperature of the polymethyl methacrylate is characterized in that it is 110 ° C or more and irrc or less,
광학 재료용 수지 조성물. Resin composition for optical materials.
【청구항 3】 【Claim 3】
제 1항에 있어서, According to clause 1,
상기 폴리카보네이트의 유리전이온도는 135°C 미만인 것을 특징으로 하는, Characterized in that the glass transition temperature of the polycarbonate is less than 135 ° C.
광학 재료용 수지 조성물. Resin composition for optical materials.
【청구항 4】 【Claim 4】
제 1항에 있어서, In clause 1,
상기 폴리메틸메타크릴레이트의 중량평균분자량은 100 , 000 내지 160 , 000인 것을 특징으로 하는, Characterized in that the weight average molecular weight of the polymethyl methacrylate is 100,000 to 160,000,
광학 재료용 수지 조성물. Resin composition for optical materials.
【청구항 5] [Claim 5]
제 1항 내지 제 4항 중 어느 한 항의 광학 재료용 수지 조성물을 포함하는, 광학 필름ᅳ Optical film comprising the resin composition for optical materials of any one of claims 1 to 4.
【청구항 6】 【Claim 6】
거 15항에 있어서, In paragraph 15,
상기 광학 필름은, 상기 광학 재료용 수지 조성물을 MD 방향으로 1.5배 내지 2.5배 및 TD 방향으로 1.5배 내지 3.0배의 2축 연신하여 제조되는 것을 특징으로 하는, The optical film is characterized in that it is manufactured by biaxially stretching the resin composition for optical materials 1.5 to 2.5 times in the MD direction and 1.5 to 3.0 times in the TD direction.
광학 필름. Optical film.
【청구항 7] [Claim 7]
게 6항에 있어서, In paragraph 6,
상기 MD 방향의 연신 배율과 TD 방향의 연신 배율의 비 (TD 연신 배율 /MD 연신 배율)이 1.05 이상 1.70 이하인 것을 특징으로 하는, Characterized in that the ratio of the draw ratio in the MD direction and the draw ratio in the TD direction (TD draw ratio/MD draw ratio) is 1.05 or more and 1.70 or less,
광학용 필름. Optical film.
【청구항 8】 【Claim 8】
게 6항에 있어서, In clause 6,
상기 연신은 상기 폴리메틸메타크릴레이트의 유리전이온도 보다 C 내지 3(rc 높은 온도에서 수행하는 것을 특징으로 하는, Characterized in that the stretching is performed at a temperature C to 3 (rc) higher than the glass transition temperature of the polymethyl methacrylate,
광학 필름. Optical film.
【청구항 9】 【Claim 9】
게 5항에 있어서, In paragraph 5,
상기 광학 필름의 MD 방향의 nS 및 TD 방향의 가 각각 100 °C 내지 120°C인 것을 특징으로 하는, Characterized in that nS in the MD direction and TD direction of the optical film are respectively 100 ° C to 120 ° C,
광학 필름. Optical film.
【청구항 10】 【Claim 10】
거 15항에 있어서, In paragraph 15,
상기 광학 필름은 하기 수학식 1의 층격 에너지 값이 400 kN - m/m3 이상인 것을 특징으로 하는, The optical film is characterized in that the impact energy value of Equation 1 below is 400 kN - m/m 3 or more,
광학 필름: Optical film:
[수학식 1] [Equation 1]
층격 에너지 = (중력가속도 X 낙구 볼의 무게 X 낙구 높이) /(광학 필름의 두께 X 광학 필름의 면적) Impact energy = (gravitational acceleration
【청구항 11】 【Claim 11】
게 5항에 있어서, In paragraph 5,
상기 광학 필름은 하기 수학식 2 및 3의 위상차를 나타내는 것을 특징으로 하는, The optical film is characterized in that it exhibits a phase difference of the following equations 2 and 3,
광학 필름: Optical film:
[수학식 2] [Equation 2]
0 nm < Rin < 10 nm (Rin = (nx-ny) x d) 0 nm < Rin < 10 nm (Rin = (nx-ny) x d)
[수학식 3] [Equation 3]
-10 nm < Rth < 10 nm (Rth = ( (nx+ny)/2-nz) x d) -10 nm < Rth < 10 nm (Rth = ( (nx+ny)/2-nz) x d)
상기 수학식 1 및 2에세 Equations 1 and 2 above
nx , ny 및 nz는 각각 x축 방향, y축 방향 및 z축 방향의 굴절율을 나타내고, nx, ny and nz represent the refractive indices in the x-axis direction, y-axis direction and z-axis direction, respectively,
d는 광학 필름의 두께 (nm)를 의미한다. d means the thickness of the optical film (nm).
【청구항 12] [Claim 12]
거 15항의 광학 필름을 포함하는, 편광판. A polarizing plate comprising the optical film of item 15.
PCT/KR2017/008566 2016-08-09 2017-08-08 Resin composition for optical material and optical film comprising same WO2018030759A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/765,298 US10633530B2 (en) 2016-08-09 2017-08-08 Resin composition for optical material and optical film comprising the same
EP17839777.4A EP3333224B1 (en) 2016-08-09 2017-08-08 Resin composition for optical material and optical film comprising same
JP2018513453A JP6587165B2 (en) 2016-08-09 2017-08-08 Resin composition for optical material and optical film containing the same
CN201780003543.0A CN108137897B (en) 2016-08-09 2017-08-08 Resin composition for optical material and optical film comprising same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0101417 2016-08-09
KR20160101417 2016-08-09
KR10-2017-0096362 2017-07-28
KR1020170096362A KR20180018334A (en) 2016-08-09 2017-07-28 Resin composition for optical material and optical film comprising the same

Publications (1)

Publication Number Publication Date
WO2018030759A1 true WO2018030759A1 (en) 2018-02-15

Family

ID=61163124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/008566 WO2018030759A1 (en) 2016-08-09 2017-08-08 Resin composition for optical material and optical film comprising same

Country Status (1)

Country Link
WO (1) WO2018030759A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112812347A (en) * 2021-02-23 2021-05-18 深圳市新纶科技股份有限公司 Optical thin film material, preparation method thereof and polarizer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1153981A2 (en) * 2000-05-10 2001-11-14 Bayer Corporation A compatible blend of polycarbonate with vinyl (co)polymer
US20100292368A1 (en) * 2008-01-30 2010-11-18 Takashi Takebe Acrylic-resin-containing film, polarizing plate and liquid crystal display device using the same
JP2010274505A (en) * 2009-05-28 2010-12-09 Sumitomo Chemical Co Ltd Multilayered oriented film
KR20150039089A (en) * 2013-09-30 2015-04-09 주식회사 엘지화학 Resin compositions for optical film, optical films formed by using the same, polarizing plate and display device comprising the same
WO2015159552A1 (en) * 2014-04-18 2015-10-22 株式会社クラレ Methacrylic resin composition, molded body, film and polarizing plate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1153981A2 (en) * 2000-05-10 2001-11-14 Bayer Corporation A compatible blend of polycarbonate with vinyl (co)polymer
US20100292368A1 (en) * 2008-01-30 2010-11-18 Takashi Takebe Acrylic-resin-containing film, polarizing plate and liquid crystal display device using the same
JP2010274505A (en) * 2009-05-28 2010-12-09 Sumitomo Chemical Co Ltd Multilayered oriented film
KR20150039089A (en) * 2013-09-30 2015-04-09 주식회사 엘지화학 Resin compositions for optical film, optical films formed by using the same, polarizing plate and display device comprising the same
WO2015159552A1 (en) * 2014-04-18 2015-10-22 株式会社クラレ Methacrylic resin composition, molded body, film and polarizing plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112812347A (en) * 2021-02-23 2021-05-18 深圳市新纶科技股份有限公司 Optical thin film material, preparation method thereof and polarizer

Similar Documents

Publication Publication Date Title
JP6389261B2 (en) Optical film resin composition, optical film formed using the same, polarizing plate including the same, and image display device
JP6587165B2 (en) Resin composition for optical material and optical film containing the same
US10928557B2 (en) Optical film having high slip property, and polarizing plate comprising the same
US11040480B2 (en) Optical film with high slip property and excellent property of blocking UV light, and polarizing plate comprising the same
KR20140099511A (en) Optical film, resin material for optical film, and image display device
TWI695772B (en) Optical film and polarization plate comprising the same
TWI647243B (en) Optical thermoplastic resin and formed body
JP2010054750A (en) Method for manufacturing retardation film
WO2018030759A1 (en) Resin composition for optical material and optical film comprising same
KR102034735B1 (en) Polarizer comprising optical film
KR101613781B1 (en) Resin compositions having property of self winding and optical films formed by using the same
KR101304589B1 (en) Composition for optical film having excellent transparency, strength and heat resistance and optical film comprising the same
WO2018056671A1 (en) Optical film exhibiting excellent slippage properties and polarizing plate comprising same
WO2018056673A1 (en) Optical film having excellent slip property and uv ray blocking function and polarizing plate comprising same
WO2017222203A1 (en) Optical film and polarizing film comprising same
JP2011118145A (en) Phase difference film

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017839777

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018513453

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15765298

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE