WO2018030445A1 - Chemically amplified resist material, and method for forming resist pattern - Google Patents

Chemically amplified resist material, and method for forming resist pattern Download PDF

Info

Publication number
WO2018030445A1
WO2018030445A1 PCT/JP2017/028854 JP2017028854W WO2018030445A1 WO 2018030445 A1 WO2018030445 A1 WO 2018030445A1 JP 2017028854 W JP2017028854 W JP 2017028854W WO 2018030445 A1 WO2018030445 A1 WO 2018030445A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
acid
irradiated
component
sensitive
Prior art date
Application number
PCT/JP2017/028854
Other languages
French (fr)
Japanese (ja)
Inventor
精一 田川
大島 明博
誠司 永原
恭志 中川
岳彦 成岡
永井 智樹
Original Assignee
国立大学法人大阪大学
東京エレクトロン株式会社
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学, 東京エレクトロン株式会社, Jsr株式会社 filed Critical 国立大学法人大阪大学
Publication of WO2018030445A1 publication Critical patent/WO2018030445A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/38Treatment before imagewise removal, e.g. prebaking

Definitions

  • the present invention relates to a chemically amplified resist material and a resist pattern forming method.
  • EUV (extreme ultraviolet light) lithography has attracted attention as one of the elemental technologies for manufacturing next-generation semiconductor devices.
  • EUV lithography is a pattern formation technique that uses EUV light having a wavelength of 13.5 nm as an exposure light source. According to EUV lithography, it has been demonstrated that an extremely fine pattern (for example, 20 nm or less) can be formed in the exposure step of the semiconductor device manufacturing process.
  • the present invention has been made based on the circumstances as described above, and has an object of ionizing radiation such as EUV light, electron beam, ion beam, or a wavelength of 250 nm or less such as KrF excimer laser and ArF excimer laser.
  • an object of ionizing radiation such as EUV light, electron beam, ion beam, or a wavelength of 250 nm or less such as KrF excimer laser and ArF excimer laser.
  • the invention made in order to solve the above problems includes (1) a polymer component that is soluble or insoluble in a developer by the action of an acid, and (2) a component that generates a radiation-sensitive sensitizer and an acid upon exposure. And (3) a component that is relatively basic with respect to the acid generated by the component (2), the component (2) is the following component (a), and the following components (a) to (c): Contains any two of the components, or all of the following components (a) to (c), and the component (a) or component (c) has a first compound having a radiation-sensitive acid generating group.
  • the component (3) is a chemically amplified resist material containing the second compound as the component (d) below.
  • a radiation-sensitive sensitizer generating agent that does not substantially generate the radiation-sensitive sensitizer when only the second radiation is irradiated.
  • C When the first radiation is irradiated and the second radiation is not irradiated, an acid is generated, and the first radiation is not irradiated and only the second radiation is irradiated.
  • a radiation-sensitive acid generator that does not substantially generate acid.
  • the component (2) is Radiation sensitivity that retains basicity with respect to the acid generated by the component (2) when the basic acid with respect to the generated acid is lost and only the second radiation is irradiated without irradiation with the first radiation.
  • Photodegradable base satisfies the following conditions (i) and (ii).
  • (Ii) a compound represented by the following formula (z) in which the monovalent anion represented by A ⁇ in the following formula (x) is replaced with a nonafluorobutanesulfonate anion, and the following formula (y)
  • the reduction potential of the monovalent onium cation represented by M + in the following formula (z) is higher than the reduction potential of the triphenylsulfonium cation.
  • a ⁇ is a monovalent anion.
  • M + is a monovalent onium cation.
  • M + has the same meaning as in formula (x).
  • Another invention made to solve the above problems is as follows: (1) a polymer component that becomes soluble or insoluble in a developer by the action of an acid; (2) a component that generates a radiation-sensitive sensitizer and an acid upon exposure; (3) a component that is relatively basic to the acid generated by the component (2), and Including at least one of the component (2) and the component (3) as a structural unit of the polymer of the polymer component (1),
  • the component (2) contains the following component (a), any two components in the following components (a) to (c), or all of the following components (a) to (c):
  • the component (a) or the component (c) has a first compound having a radiation-sensitive acid generating group, A chemically amplified resist material wherein the component (3) contains a second compound which is the following component (d).
  • a radiation-sensitive sensitizer generating agent that does not substantially generate the radiation-sensitive sensitizer when only the second radiation is irradiated.
  • C When the first radiation is irradiated and the second radiation is not irradiated, an acid is generated, and the first radiation is not irradiated and only the second radiation is irradiated.
  • a radiation-sensitive acid generator that does not substantially generate acid.
  • M + has the same meaning as in formula (x).
  • A represents the formula (x)' - is a monovalent group comprising a monovalent anion.
  • M + is synonymous with the formula (x). * Shows the site
  • * is synonymous with the formula (x ′).
  • M + has the same meaning as in formula (x). * Is synonymous with the formula (x ′).
  • another invention made to solve the above problems includes a film formation step of forming a resist material film on at least one surface of a substrate using the chemically amplified resist material, and a 250 nm thickness on the resist material film.
  • a pattern exposure step of irradiating radiation having the following wavelengths a batch exposure step of irradiating the resist material film after the pattern exposure step with radiation having a wavelength exceeding 250 nm, and the resist material film after the batch exposure step
  • a resist pattern forming method comprising: a baking process for heating the resist film; and a developing process for bringing the resist material film after the baking process into contact with a developer.
  • another invention made in order to solve the said subject is: (1) a polymer component that becomes soluble or insoluble in a developer by the action of an acid; (2) a component that generates a radiation-sensitive sensitizer and an acid upon exposure; (3) a component that is relatively basic to the acid generated by the component (2), and
  • the component (2) contains the following component (a), any two components in the following components (a) to (c), or all of the following components (a) to (c):
  • the component (a) or the component (c) has a first compound having a radiation-sensitive acid generating group, A chemically amplified resist material wherein the component (3) contains a second compound which is the following component (d).
  • a radiation-sensitive sensitizer generating agent that does not substantially generate the radiation-sensitive sensitizer when only the second radiation is irradiated.
  • C When the first radiation is irradiated and the second radiation is not irradiated, an acid is generated, and the first radiation is not irradiated and only the second radiation is irradiated.
  • a radiation-sensitive acid generator that does not substantially generate acid.
  • the component (2) is Radiation sensitivity that retains basicity with respect to the acid generated by the component (2) when the basic acid with respect to the generated acid is lost and only the second radiation is irradiated without irradiation with the first radiation.
  • Photodegradable base is a compound represented by the following formula (x), and the reduction potential of M + in the following formula (x) is higher than the reduction potential of the triphenylsulfonium cation.
  • a ⁇ is a monovalent anion.
  • M + is a monovalent onium cation.
  • another invention made in order to solve the said subject is: (1) a polymer component that becomes soluble or insoluble in a developer by the action of an acid; (2) a component that generates a radiation-sensitive sensitizer and an acid upon exposure; (3) a component that is relatively basic to the acid generated by the component (2), and
  • the component (2) contains the following component (a), any two components in the following components (a) to (c), or all of the following components (a) to (c):
  • the component (a) or the component (c) has a first compound having a radiation-sensitive acid generating group, A chemically amplified resist material wherein the component (3) contains a second compound which is the following component (d).
  • a radiation-sensitive sensitizer generating agent that does not substantially generate the radiation-sensitive sensitizer when only the second radiation is irradiated.
  • C When the first radiation is irradiated and the second radiation is not irradiated, an acid is generated, and the first radiation is not irradiated and only the second radiation is irradiated.
  • a radiation-sensitive acid generator that does not substantially generate acid.
  • the component (2) is Radiation sensitivity that retains basicity with respect to the acid generated by the component (2) when the basic acid with respect to the generated acid is lost and only the second radiation is irradiated without irradiation with the first radiation.
  • Photodegradable base satisfies the following conditions (i) and (ii).
  • the reduction potential of M + in the following formula (x) is higher than the reduction potential of the triphenylsulfonium cation.
  • the first radiation is not irradiated and only the second radiation is irradiated, the acid and the radiation-sensitive sensitizer are not substantially generated
  • the first radiation is not irradiated and the second radiation is not irradiated.
  • the radiation-sensitive sensitizer is not substantially generated when only the radiation is irradiated "and" the acid is not substantially generated when only the second radiation is irradiated without irradiating the first radiation ".
  • the chemically amplified resist material of the present invention uses ionizing radiation such as EUV light, electron beam, ion beam, or non-ionizing radiation having a wavelength of 250 nm or less, such as KrF excimer laser and ArF excimer laser, as pattern exposure light. High sensitivity and excellent lithographic performance can be obtained. Further, the chemically amplified resist material can be suitably used for the resist pattern forming method.
  • ionizing radiation such as EUV light, electron beam, ion beam, or non-ionizing radiation having a wavelength of 250 nm or less, such as KrF excimer laser and ArF excimer laser
  • FIG. B is a conceptual diagram showing the radiation-sensitive sensitizer concentration distribution and acid concentration distribution as a graph by the resist pattern forming method using the chemically amplified resist material according to the present embodiment. It is sectional drawing explaining an example of the manufacturing process of the semiconductor device which concerns on one Embodiment of this invention, (a) is sectional drawing which shows a resist pattern formation process, (b) is sectional drawing which shows an etching process. (C) is sectional drawing which shows a resist pattern removal process. It is a typical top view at the time of seeing a line pattern from the upper part. It is typical sectional drawing of a line pattern shape.
  • the chemically amplified resist material comprises (1) a polymer component that is soluble or insoluble in a developer by the action of an acid, (2) a component that generates a radiation-sensitive sensitizer and an acid upon exposure, (3 And (2) a component having a basicity relative to the acid generated by the component.
  • the chemically amplified resist material contains a normal solvent in addition to (1) the polymer component, (2) component and (3) component, and (1) a polymer component other than the polymer component, an acid diffusion controller, a radical It may further contain a scavenger, a crosslinking agent, other additives and the like.
  • the component (2) includes any of the components (a), (a) to (c) described later, or any two components (a) to (c). Moreover, (a) component or (c) component has the 1st compound which has a radiation sensitive acid generating group, and the said (3) component contains the 2nd compound which is (d) component mentioned later.
  • At least one of the component (2) and the component (3) may be included as a structural unit of the polymer of the polymer component (1), and is a component different from the polymer component (1). May be. In this case, even if a part of the component (2), the component (3) or the combination thereof is a component different from the (1) polymer component, the component (2), the component (3) or the combination thereof is all (1) A component different from the polymer component may be used.
  • the upper limit of the wavelength of the first radiation is preferably 250 nm, and more preferably 200 nm.
  • the lower limit of the wavelength of the second radiation is preferably more than 250 nm, and more preferably 300 nm.
  • the upper limit of the wavelength of the second radiation is preferably 500 nm, and more preferably 400 nm.
  • the polymer component is a component that becomes soluble or insoluble in the developer by the action of an acid.
  • the polymer component has, for example, a structural unit (hereinafter also referred to as “structural unit (I)”) containing a group that generates a polar group by the action of an acid (hereinafter also referred to as “acid-dissociable group”). Examples thereof include a first polymer (hereinafter also referred to as “[A] polymer”).
  • a polymer component other than the polymer component may further include a second polymer not containing the structural unit (I) (hereinafter also referred to as “[B] polymer”).
  • [A] polymer or [B] polymer is a structural unit containing a fluorine atom (hereinafter also referred to as “structural unit (II)”, a structural unit (III) containing a phenolic hydroxyl group, a lactone structure, a cyclic carbonate structure. , May further have a structural unit (IV) containing a sultone structure or a combination thereof, and may further have other structural units other than the structural unit (I) to the structural unit (IV).
  • the polymer is a polymer having the structural unit (I). [A] The polymer may further have structural units (II) to (IV) and other structural units. [B] The polymer is a polymer different from the [A] polymer. [B] The polymer preferably has structural unit (II), and has structural unit (III) and structural unit (IV), and other structural units other than structural unit (III) to structural unit (IV). May be.
  • the structural unit (I) is a structural unit containing an acid dissociable group.
  • the structural unit (I) includes a structural unit represented by the following formula (a-1) (hereinafter also referred to as “structural unit (I-1)”) and a structure represented by the following formula (a-2).
  • a unit hereinafter also referred to as “structural unit (I-2)”.
  • groups represented by —CR A2 R A3 R A4 and —CR A6 R A7 R A8 are acid-dissociable groups.
  • R A1 represents a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • R A2 is a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • R A3 and R A4 each independently represent a monovalent hydrocarbon group having 1 to 20 carbon atoms, or have 3 to 20 ring members composed of these groups together with the carbon atom to which they are bonded.
  • R A5 represents a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • R A6 is a hydrogen atom, a monovalent hydrocarbon group having 1 to 20 carbon atoms, or a monovalent oxyhydrocarbon group having 1 to 20 carbon atoms.
  • R A7 and R A8 are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms or a monovalent oxyhydrocarbon group having 1 to 20 carbon atoms.
  • L A is a single bond, —O—, —COO— or —CONH—.
  • Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R A2 , R A6 , R A7 and R A8 include, for example, a chain hydrocarbon group having 1 to 30 carbon atoms, and a group having 3 to 30 carbon atoms. Examples thereof include an alicyclic hydrocarbon group and an aromatic hydrocarbon group having 6 to 30 carbon atoms.
  • Examples of the monovalent chain hydrocarbon group having 1 to 30 carbon atoms include alkyl groups such as a methyl group, an ethyl group, an n-propyl group, and an i-propyl group; An alkenyl group such as an ethenyl group, a propenyl group, a butenyl group; Examples thereof include alkynyl groups such as ethynyl group, propynyl group and butynyl group.
  • Examples of the monovalent alicyclic hydrocarbon group having 3 to 30 carbon atoms include a saturated simple group such as cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cyclopentyl group, cyclooctyl group, cyclodecyl group, and cyclododecyl group.
  • a cyclic hydrocarbon group Unsaturated monocyclic hydrocarbon groups such as cyclopropenyl group, cyclobutenyl group, cyclopentenyl group, cyclohexenyl group, cyclooctenyl group, cyclodecenyl group; Saturated polycyclic hydrocarbon groups such as bicyclo [2.2.1] heptanyl group, bicyclo [2.2.2] octanyl group, tricyclo [3.3.1.1 3,7 ] decanyl group; And unsaturated polycyclic hydrocarbon groups such as a bicyclo [2.2.1] heptenyl group and a bicyclo [2.2.2] octenyl group.
  • Unsaturated monocyclic hydrocarbon groups such as cyclopropenyl group, cyclobutenyl group, cyclopentenyl group, cyclohexenyl group, cyclooctenyl group, cyclodecenyl group
  • Examples of the monovalent aromatic hydrocarbon group having 6 to 30 carbon atoms include aryl groups such as a phenyl group, a tolyl group, a xylyl group, a mesityl group, a naphthyl group, a methylnaphthyl group, an anthryl group, and a methylanthryl group; Examples thereof include aralkyl groups such as benzyl group, phenethyl group, naphthylmethyl group and anthrylmethyl group.
  • R A2 is preferably a chain hydrocarbon group and a cycloalkyl group, more preferably an alkyl group and a cycloalkyl group, and a methyl group, an ethyl group, a propyl group, a cyclopentyl group, a cyclohexyl group, a cyclooctyl group, and an adamantyl group. Further preferred.
  • Examples of the monovalent chain hydrocarbon group having 1 to 20 carbon atoms and the monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms represented by R A3 and R A4 include the above R A2 and R A6. , Groups similar to those exemplified for R A7 and R A8 .
  • Examples of the alicyclic structure having 3 to 20 ring members composed of the R A3 and R A4 groups together with the carbon atom to which they are bonded include, for example, a cyclopropane structure, a cyclobutane structure, a cyclopentane structure, a cyclopentene structure, a cyclopentane structure, Monocyclic cycloalkane structures such as pentadiene structure, cyclohexane structure, cyclooctane structure, cyclodecane structure; Examples thereof include polycyclic cycloalkane structures such as a norbornane structure, an adamantane structure, a tricyclodecane structure, and a tetracyclododecane structure.
  • an alkyl group, a monocyclic cycloalkane structure, a norbornane structure, and an adamantane structure constituted by combining these groups are preferable, and a methyl group, an ethyl group, a cyclopentane structure, a cyclohexane structure, and An adamantane structure is more preferred.
  • Examples of the monovalent oxyhydrocarbon group having 1 to 20 carbon atoms represented by R A6 , R A7 and R A8 include 1 to 20 carbon atoms of R A2 , R A6 , R A7 and R A8.
  • Examples of the valent hydrocarbon group include groups containing an oxygen atom between carbon and carbon.
  • R ⁇ A6> , R ⁇ A7> and R ⁇ A8> a chain hydrocarbon group and an alicyclic hydrocarbon group containing an oxygen atom are preferable.
  • a single bond and -COO- is more preferably a single bond.
  • R A1 is preferably a hydrogen atom and a methyl group, more preferably a methyl group, from the viewpoint of copolymerization of the monomer that gives the structural unit (I).
  • R A5 is preferably a hydrogen atom and a methyl group, and more preferably a hydrogen atom, from the viewpoint of copolymerization of the monomer that gives the structural unit (I).
  • Examples of the structural unit (I-1) include structural units represented by the following formulas (a-1-a) to (a-1-d) (hereinafter referred to as “structural units (I-1-a) to (I -1-d) ”) and the like.
  • Examples of the structural unit (I-2) include a structural unit represented by the following formula (a-2-a) (hereinafter also referred to as “structural unit (I-2-a)”).
  • R A1 to R A4 have the same meaning as in the above formula (a-1).
  • n a is an integer of 1-4.
  • R A5 to R A8 have the same meaning as in the above formula (a-2).
  • n a preferably 1, 2 and 4, more preferably 1.
  • Examples of the structural units (I-1-a) to (I-1-d) include structural units represented by the following formulas.
  • R A1 has the same meaning as in the above formula (a-1).
  • Examples of the structural unit (I-2-a) include a structural unit represented by the following formula.
  • R A5 has the same meaning as in the above formula (a-2).
  • structural units (I-1-a) to (I-1-d) are preferable, and a structural unit derived from 2-methyl-2-adamantyl (meth) acrylate, 2-ipropyl-2
  • a structural unit derived from acrylate is more preferred.
  • the upper limit of the content is preferably 80 mol%, more preferably 70 mol%, further preferably 65 mol%, particularly preferably 60 mol%.
  • the structural unit (II) is a structural unit containing a fluorine atom (except for those corresponding to the structural unit (I)).
  • the structural unit (II) usually does not contain a salt structure.
  • the lower limit of the content ratio of the structural unit (II) to all structural units constituting the [A] polymer is preferably 3 mol%, and 5 mol% More preferred is 10 mol%.
  • an upper limit of the said content rate 40 mol% is preferable, 35 mol% is more preferable, and 30 mol% is further more preferable.
  • the lower limit of the structural unit (II) with respect to all the structural units constituting the [B] polymer Is preferably 3 mol%, more preferably 5 mol%, still more preferably 10 mol%.
  • the said content rate 40 mol% is preferable, 35 mol% is more preferable, and 30 mol% is further more preferable.
  • the structural unit (III) is a structural unit containing a phenolic hydroxyl group (except for those corresponding to the structural unit (I) and the structural unit (II)). Since the [A] polymer or the [B] polymer has the structural unit (III), the sensitivity in the case of irradiation with KrF excimer laser light, EUV (extreme ultraviolet), electron beam or the like in the pattern exposure process described later is further increased. Can be improved.
  • Part or all of the hydrogen atoms of the aromatic ring containing the phenolic hydroxyl group may be substituted with a substituent.
  • substituents include the same groups as those exemplified for R F5 and R F8 above.
  • structural unit (III) examples include structural units represented by the following formulas (h-1) to (h-6) (hereinafter also referred to as “structural units (III-1) to (III-6)”) and the like. Can be mentioned.
  • R AF1 is a hydrogen atom or a methyl group.
  • RAF1 a hydrogen atom is preferable.
  • structural unit (III) structural units (III-1) and (III-2) are preferable, and (III-1) is more preferable.
  • the lower limit of the content ratio of the structural unit (III) with respect to all the structural units constituting the [A] polymer is preferably 1 mol%, preferably 30 mol%. More preferred is 50 mol%.
  • an upper limit of the said content rate 90 mol% is preferable, 80 mol% is more preferable, and 75 mol% is further more preferable.
  • the content ratio of the structural unit (III) to all the structural units constituting the [B] polymer Is preferably 1 mol%, more preferably 30 mol%, and even more preferably 50 mol%.
  • the content rate of structural unit (III) is preferably 1 mol%, more preferably 30 mol%, and even more preferably 50 mol%.
  • 90 mol% is preferable, 80 mol% is more preferable, and 75 mol% is further more preferable.
  • the structural unit (III) is obtained by polymerizing a monomer in which a hydrogen atom of an —OH group of an aromatic ring containing a phenolic hydroxyl group is substituted with an acetyl group, and then hydrolyzing the resulting polymer in the presence of an amine. It can be formed by a reaction method or the like.
  • the structural unit (IV) is a structural unit containing a lactone structure, a cyclic carbonate structure, a sultone structure, or a combination thereof (except for those corresponding to the structural unit (I) to the structural unit (III)).
  • the polymer and the [B] polymer can further adjust the solubility in the developer by further including the structural unit (IV), and as a result, the chemically amplified resist
  • the lithographic performance of the material can be further improved. Adhesion between the resist material film formed from the chemically amplified resist material and the substrate can be improved.
  • the lactone structure refers to a structure having one ring (lactone ring) including a group represented by —O—C (O) —.
  • the cyclic carbonate structure refers to a structure having one ring (cyclic carbonate ring) containing a group represented by —O—C (O) —O—.
  • the sultone structure refers to a structure having one ring (sultone ring) including a group represented by —O—S (O) 2 —.
  • a structural unit containing a norbornane lactone structure a structural unit containing an oxanorbornane lactone structure, a structural unit containing a ⁇ -butyrolactone structure, a structural unit containing an ethylene carbonate structure, and a structural unit containing a norbornane sultone structure
  • the lower limit of the content ratio of the structural unit (IV) to all structural units constituting the [A] polymer is preferably 1 mol%, and 10 mol% More preferably, 20 mol% is more preferable, and 25 mol% is particularly preferable.
  • the upper limit of the content is preferably 70 mol%, more preferably 65 mol%, still more preferably 60 mol%, and particularly preferably 55 mol%.
  • the content ratio of the structural unit (IV) with respect to all the structural units constituting the [B] polymer is preferably 1 mol%, more preferably 10 mol%, further preferably 20 mol%, particularly preferably 25 mol%.
  • the upper limit of the content is preferably 70 mol%, more preferably 65 mol%, still more preferably 60 mol%, and particularly preferably 55 mol%.
  • the [A] polymer and the [B] polymer may have other structural units in addition to the structural units (I) to (IV).
  • Examples of other structural units include a structural unit containing a polar group and a structural unit containing a non-dissociable hydrocarbon group.
  • Examples of the polar group include an alcoholic hydroxyl group, a carboxy group, a cyano group, a nitro group, and a sulfonamide group.
  • Examples of the non-dissociable hydrocarbon group include a linear alkyl group.
  • the lower limit of the total content of the [A] polymer and the [B] polymer is preferably 70% by mass, more preferably 75% by mass, and more preferably 80% by mass in the total solid content of the chemically amplified resist material. preferable.
  • total solid content refers to components other than the solvent of the chemically amplified resist material.
  • the weight average molecular weight (Mw) in terms of polystyrene by gel permeation chromatography (GPC) of the polymer is not particularly limited, but the lower limit thereof is preferably 1,000, more preferably 2,000, and 3,000. Is more preferable, and 5,000 is particularly preferable.
  • the upper limit of the Mw of the [A] polymer is preferably 50,000, more preferably 30,000, still more preferably 20,000, and particularly preferably 15,000.
  • the lower limit of the ratio (Mw / Mn) of Mw to the number average molecular weight (Mn) in terms of polystyrene by GPC of the polymer is usually 1.
  • the upper limit of the ratio is usually 5, preferably 3 and more preferably 2.
  • the weight average molecular weight (Mw) in terms of polystyrene by gel permeation chromatography (GPC) of the polymer is not particularly limited, but the lower limit thereof is preferably 1,000, more preferably 2,000, and 2,500. Is more preferable, and 3,000 is particularly preferable.
  • the upper limit of the Mw of the [B] polymer is preferably 50,000, more preferably 30,000, still more preferably 20,000, and particularly preferably 15,000.
  • the lower limit of the ratio (Mw / Mn) of Mw to the number average molecular weight (Mn) in terms of polystyrene by GPC of the polymer is preferably 1.
  • the upper limit of the ratio is preferably 5, more preferably 3, and even more preferably 2.
  • Mw and Mn of the polymer in this specification are values measured using gel permeation chromatography (GPC) under the following conditions.
  • GPC column 2 G2000HXL, 1 G3000HXL, 1 G4000HXL (above, Tosoh Corporation) Column temperature: 40 ° C
  • Elution solvent Tetrahydrofuran Flow rate: 1.0 mL / min Sample concentration: 1.0% by mass
  • Sample injection volume 100 ⁇ L
  • Detector Differential refractometer Standard material: Monodisperse polystyrene
  • the [A] polymer and the [B] polymer may contain a low molecular weight component having a molecular weight of 1,000 or less.
  • the upper limit of the content of the low molecular weight component in the polymer is preferably 1.0% by mass, more preferably 0.5% by mass, and still more preferably 0.3% by mass. As a minimum of the above-mentioned content, it is 0.01 mass%, for example.
  • the content of the low molecular weight component of the polymer in the present specification is a value measured using high performance liquid chromatography (HPLC) under the following conditions.
  • HPLC high performance liquid chromatography
  • the lower limit of the fluorine atom content in the [A] polymer and the [B] polymer is preferably 1% by mass, more preferably 2% by mass, further preferably 4% by mass, and particularly preferably 7% by mass.
  • an upper limit of the said content rate 60 mass% is preferable, 40 mass% is more preferable, and 30 mass% is further more preferable.
  • the fluorine atom content (% by mass) of the polymer can be calculated from the structure of the polymer determined by 13 C-NMR spectrum measurement.
  • the [A] polymer and the [B] polymer are obtained by polymerizing monomers corresponding to predetermined respective structural units in a suitable polymerization reaction solvent using a polymerization initiator such as a radical polymerization initiator. Can be manufactured.
  • a polymerization initiator such as a radical polymerization initiator.
  • radical polymerization initiator examples include azobisisobutyronitrile (AIBN), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2,2′-azobis (2-cyclopropylpropylene). Pionitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), azo radical initiators such as dimethyl 2,2′-azobisisobutyrate; benzoyl peroxide, t-butyl hydroperoxide, And peroxide radical initiators such as cumene hydroperoxide.
  • AIBN and dimethyl 2,2'-azobisisobutyrate are preferred as the radical polymerization initiator, and AIBN is more preferred.
  • These radical initiators can be used alone or in combination of two or more.
  • the solvent used for the polymerization for example, the same solvent as that which may be contained in the chemical amplification resist material described later can be used.
  • the lower limit of the reaction temperature in the polymerization is preferably 40 ° C, more preferably 50 ° C.
  • the upper limit of the reaction temperature is preferably 150 ° C, more preferably 120 ° C.
  • the lower limit of the reaction time in the polymerization is preferably 1 hour.
  • the upper limit of the reaction time is preferably 48 hours, more preferably 24 hours.
  • [A] polymer and [B] polymer are preferably recovered by a reprecipitation method. That is, after completion of the reaction, the target polymer is recovered as a powder by introducing the reaction solution into a reprecipitation solvent.
  • a reprecipitation solvent alcohols, alkanes and the like can be used singly or in combination of two or more.
  • the polymer can be recovered by removing low molecular components such as monomers and oligomers by a liquid separation operation, a column operation, an ultrafiltration operation, or the like.
  • the component (2) is a component that generates a radiation-sensitive sensitizer and an acid upon exposure (radiation irradiation).
  • the component (3) is a component that is relatively basic with respect to the acid generated by the component (2).
  • the component (2) comprises (a) a radiation-sensitive acid-sensitizer generator, (b) a radiation-sensitive sensitizer generator, and (c) a radiation-sensitive acid generator.
  • Component a), component (a) and component (b), component (a) and component (c), component (b) and component (c), or all components (a) to (c) are contained.
  • the component (a) or the component (c) has a first compound having a radiation-sensitive acid generating group (hereinafter also referred to as “[C1] compound”).
  • the (a) radiation-sensitive acid-sensitizer generator or the (c) radiation-sensitive acid generator may have one or more [C1] compounds.
  • (3) The component is relatively basic with respect to the acid generated by the component (2). Moreover, (3) component contains the 2nd compound (henceforth "[C2] compound") which is (d) a radiation sensitive photodegradable base.
  • the (d) radiation-sensitive photodegradable base may have one or more [C2] compounds.
  • the second compound having a radiation-sensitive photodegradable base included in the component (d) is contained in the compound. It may be contained in the form of a radiation-sensitive photodegradable base from which one hydrogen atom of C—H bond contained in is extracted.
  • the radiation-sensitive photodegradable base is irradiated with the second radiation when the first radiation is irradiated and the second radiation is not irradiated, and after the first radiation is irradiated.
  • the component (2) is generated. Retains basicity.
  • the radiation-sensitive photodegradable base is a compound represented by the following formula (x), and the reduction potential of M + in the following formula (x) is higher than the reduction potential of the triphenylsulfonium cation.
  • a ⁇ is a monovalent anion.
  • M + is a monovalent onium cation.
  • the radiation sensitive light decay base is a compound represented by the formula (x), A in the formula (x) A monovalent onium cation represented by M + in the following formula (z) when the compound represented by the formula (z) is compared with triphenylsulfonium nonafluorobutane sulfonate represented by the following formula (y)
  • the reduction potential of is higher than the reduction potential of the triphenylsulfonium cation.
  • the radiation-sensitive photodegradable base may be in the form of a group that is included as a structural unit of the polymer (1) polymer component and incorporated as part of the polymer.
  • the radiation-sensitive photodegradable base exists in a form in which a group obtained by removing one hydrogen atom from the [C2] compound is bonded to the polymer, and the radiation-sensitive photodegradable base is represented by the following formula (x ')
  • the reduction potential of the monovalent onium cation represented by M + in the following formula (x ′) is higher than the reduction potential of the triphenylsulfonium cation.
  • A represents the formula (x)' - is a monovalent group comprising a monovalent anion.
  • M + is synonymous with the formula (x). * Shows the site
  • the radiation-sensitive light decay bases ' is represented by the above formula (x the formula (x)' A in) - was replaced by a monovalent octafluorobutane sulfonate group a group containing a monovalent anion represented by
  • the group represented by the above formula (z ′) and the triphenylsulfonium octafluorobutanesulfonate group represented by the following formula (y ′) are represented by M + in the following formula (z ′) when compared.
  • the reduction potential of the monovalent onium cation is higher than the reduction potential of the triphenylsulfonium cation.
  • the chemical amplification resist material contains the above components, high sensitivity and excellent lithography performance can be obtained when radiation having a wavelength of 250 nm or less such as EUV is used as pattern exposure light.
  • the reason why the chemically amplified resist material has the above-described configuration provides the above-mentioned effect is not clear, it can be presumed as follows, for example. That is, although a sensitizer is generated in the pattern exposure unit, exposure to the second radiation in this state allows the photodisintegrating base to receive energy from the sensitizer more efficiently and promote decomposition. Thus, it is considered that excellent lithography performance can be obtained by improving the sensitivity and the contrast of generation of acid between the exposed and unexposed portions in pattern exposure.
  • the reduction potential of the monovalent onium cation represented by M + of the radiation-sensitive photodegradable base is higher than the reduction potential of the triphenylsulfonium cation under the above conditions.
  • the decomposition of the radiation-sensitive photodisintegratable base is promoted, and the contrast of acid generation between the exposed and unexposed areas in pattern exposure is improved.
  • the lower limit of the content of the component (2) with respect to the total solid content of the chemically amplified resist material is preferably 10% by mass, and 15% by mass. % Is more preferable.
  • the upper limit of the content is preferably 40% by mass, and more preferably 35% by mass.
  • the lower limit of the amount of the (d) radiation-sensitive photodegradable base to 100 parts by mass of the polymer component (1) is 0.1. Part by mass is preferable, and 1 part by mass is more preferable. On the other hand, as an upper limit of the said compounding quantity, 50 mass parts is preferable and 30 mass parts is more preferable.
  • “Content of (3) component” means the total content of components different from (1) the polymer component among the (3) components.
  • a radiation-sensitive photodegradable base is contained as a structural unit of the polymer of (1) polymer component
  • the content rate of a base 0.01 mol is preferred, 0.02 mol is more preferred, and 0.1 mol is still more preferred.
  • the upper limit of the content ratio is preferably 0.5 mol, more preferably 0.3 mol.
  • the blending amount or content ratio is smaller than the lower limit, the sensitivity may decrease.
  • the said compounding quantity or content rate exceeds the said upper limit, there exists a possibility that it may become difficult to form a resist material film, and there exists a possibility that the rectangularity in the cross-sectional shape of a resist pattern may fall.
  • the compound [C1] includes a first onium cation (hereinafter also referred to as “cation (I)”) and a first anion (hereinafter also referred to as “anion (I)”).
  • the compound may include a second onium cation (hereinafter also referred to as “cation (II)”) and a second anion (hereinafter also referred to as “anion (II)”) different from the anion (I). .
  • the cation (I) and the cation (II) are preferably onium cations.
  • the cation (I) and the cation (II) are onium cations, and the energy required for reducing the cation (I) and the cation (II) is both ⁇ 1.2 eV (using a standard hydrogen electrode) or more. preferable.
  • the reduction potential can be measured by cyclic voltammetry.
  • the energy required for reducing the cation (I) and the cation (II) is both set to ⁇ 1.2 eV or more, so that the [C1] compound and the [C2] compound are decomposed at the pattern exposure portion during the second radiation irradiation. Can be further promoted.
  • the lower limit of the reduction potential of the cation (I) and the cation (II) is preferably ⁇ 1.2V, more preferably ⁇ 1.0V, and further preferably ⁇ 0.9V. .
  • the upper limit of the reduction potential is preferably 0.0 V, more preferably -0.2 V. If the reduction potential is smaller than the lower limit, the strength of the acid generated is insufficient, and the shape of the pattern formed may be poor. On the other hand, when the reduction potential exceeds the upper limit, the strength of the generated acid becomes excessive, and the acid may easily diffuse to the pattern unexposed area.
  • the lower limit of the energy released when reduced to the cation (I) and cation (II) radicals is preferably 5.0 eV, more preferably 5.1 eV, and even more preferably 5.2 eV. If the energy to be released is smaller than the lower limit, the amount of acid generated is insufficient, and the shape of the pattern formed may be poor.
  • the upper limit of the released energy is preferably 6.0 eV, more preferably 5.9 eV, and even more preferably 5.8 eV. If the energy released exceeds the upper limit, the stability of the acid diffusion controller may be reduced.
  • the cation (I) and the cation (II) have the same structure.
  • the lithography performance can be further improved.
  • the lower limit of the total content of the cation (I) and the cation (II) with respect to all onium cations in the chemically amplified resist material is preferably 80 mol%, more preferably 85 mol%, and even more preferably 90 mol%. preferable.
  • a monovalent onium cation represented by X + is used as the cation (I) and the cation (II).
  • Examples of the monovalent onium cation represented by X + include cations represented by the following formulas (X-1), (X-2), (X-3) and (X-4) (hereinafter referred to as “ Cation (X-1) "and” cation (X-2) ").
  • Anion (I) and anion (II) are different anions.
  • the logarithmic value (pKa) of the reciprocal of the acid dissociation constant of the acid generated by the [C1] compound is smaller than the pKa of the acid generated by the [C2] compound.
  • the [C1] compound having a smaller pKa of the generated acid functions as (1) an acid generating compound that makes the polymer component soluble or insoluble in the developer.
  • the [C2] compound having a larger pKa of the generated acid functions as an acid diffusion controller.
  • the upper limit of the pKa of the acid generated from the [C1] compound is preferably 0, more preferably -0.5. Further, the lower limit is preferably ⁇ 7, more preferably ⁇ 5. [C2]
  • the upper limit of the pKa of the acid generated from the compound is preferably 11.0, and more preferably 10.5. Moreover, as said minimum, 0 is preferable, 1 is more preferable, and 2 is further more preferable. By setting the pKa of the acid within the above range, more excellent lithography performance can be exhibited.
  • the pKa is a calculated value obtained by ACD / ChemSketch (ACD / Labs 8.00 Release Product Version: 8.08).
  • anion (I) and the anion (II) include a sulfonate anion, a carboxylate anion, a bis (alkylsulfonyl) amide anion, and a tris (alkylsulfonyl) methide anion.
  • the anion (I), which has a small logarithmic value (pKa) of the reciprocal of the acid dissociation constant of the generated acid and functions as an anion of the [C1] compound that is an acid generating compound, is represented by the following general formulas (XX), (XXI) and An anion of an acid represented by (XXII) is preferred, and an anion of an acid represented by the following general formula (XX) is more preferred.
  • R 18 to R 21 each independently represents an organic group.
  • the organic group include an alkyl group, an aryl group, and a group in which a plurality of these groups are linked.
  • an alkyl group substituted with a fluorine atom or a fluoroalkyl group and a phenyl group substituted with a fluorine atom or a fluoroalkyl group are preferable.
  • the organic group has a fluorine atom or a fluoroalkyl group, the acidity of the acid generated by exposure increases, and the sensitivity tends to be improved.
  • the terminal substituent not on the side of the bond of the organic group does not contain a fluorine atom.
  • the acid anion of the [C1] compound that functions as an acid generating compound preferably has a structure represented by the following formula (1).
  • R p1 is a monovalent group containing a ring structure having 6 or more ring members.
  • R p2 is a divalent linking group.
  • R p3 and R p4 are each independently a hydrogen atom, a fluorine atom, a monovalent hydrocarbon group having 1 to 20 carbon atoms or a monovalent fluorinated hydrocarbon group having 1 to 20 carbon atoms.
  • R p5 and R p6 are each independently a fluorine atom or a monovalent fluorinated hydrocarbon group having 1 to 20 carbon atoms.
  • n p1 is an integer of 0 to 10.
  • n p2 is an integer of 0 to 10.
  • n p3 is an integer of 1 to 10.
  • the plurality of R p2 may be the same or different.
  • the plurality of R p3 may be the same or different, and the plurality of R p4 may be the same or different.
  • the plurality of R p5 may be the same or different, and the plurality of R p6 may be the same or different.
  • X + is cation (I) and cation (II).
  • the “number of ring members” refers to the number of atoms constituting a ring of an aromatic ring structure, aromatic heterocyclic structure, alicyclic structure and aliphatic heterocyclic structure, and in the case of a polycyclic ring structure, The number of atoms that make up the ring.
  • the “hydrocarbon group” includes a chain hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group.
  • the “hydrocarbon group” may be a saturated hydrocarbon group or an unsaturated hydrocarbon group.
  • the “chain hydrocarbon group” refers to a hydrocarbon group that does not include a cyclic structure but includes only a chain structure, and includes both a linear hydrocarbon group and a branched hydrocarbon group.
  • alicyclic hydrocarbon group refers to a hydrocarbon group that includes only an alicyclic structure as a ring structure and does not include an aromatic ring structure, and includes a monocyclic alicyclic hydrocarbon group and a polycyclic alicyclic group. Includes both hydrocarbon groups. However, it is not necessary to be composed only of the alicyclic structure, and a part thereof may include a chain structure.
  • “Aromatic hydrocarbon group” refers to a hydrocarbon group containing an aromatic ring structure as a ring structure. However, it is not necessary to be composed only of an aromatic ring structure, and a part thereof may include a chain structure or an alicyclic structure.
  • Examples of the [C1] compound and the [C2] compound include 4,4′-di (t-butylphenyl) iodonium 6- (adamantan-1-ylcarboxyoxy) -1,1,2,2-tetrafluorohexane- 1-sulfonate, 4,4′-di (t-butylphenyl) iodonium 4-trifluoromethyl salicylate, 4,4′-di (t-butylphenyl) iodonium adamantane-1-yloxycarbonylcarboxylate, 4 , 4′-di (t-butylphenyl) iodonium 1,2 di (cyclohexyloxycarbonyl) ethane-1-sulfonate, 4,4′-di (t-butylphenyl) iodonium trifluoromethanesulfonate, 4,4′-di (T-butylphenyl) iodonium nonaflu
  • Examples of the [C1] compound and the [C2] compound include, for example, JP-A-2016-054772, JP-A-2014-063160, JP-A-2014-191061, JP-A-2006-215202, and JP-A-2006. And the compounds described in JP-A No. -215271 and JP-A No. 2004-004557.
  • Specific examples of the [C1] compound and [C2] compound include compounds represented by the following formulas (C-1-1) to (C-2-7) (hereinafter referred to as “compound (C-1-1)”). To (C-2-7) ”) and the like.
  • the lower limit of the content of the [C1] compound with respect to 100 parts by mass of the component (a) or the component (c) is preferably 50% by mass, and more preferably 60% by mass.
  • an upper limit of content of the said [C1] compound 90 mass% is preferable and 80 mass% is more preferable.
  • [C2] compound examples include JP-A-2016-045472, JP-A-2014-063160, JP-A-2014-191061, JP-A-2006-215202, JP-A-2006-215271.
  • compounds having a reduction potential higher than the reduction potential of the triphenylsulfonium cation can be selected and used. It preferably contains a group having an electron-withdrawing substituent as defined in paragraph [0045] of JP-A-2004-004557.
  • Examples of the electron-withdrawing substituent include a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom), cyano group, nitro group, arylcarbonyl group, and alkylcarbonyl group.
  • halogen atom fluorine atom, chlorine atom, bromine atom, iodine atom
  • cyano group nitro group, arylcarbonyl group, and alkylcarbonyl group.
  • the lower limit of the content of the [C2] compound with respect to 100 parts by mass of the component (a) or the component (c) is preferably 5% by mass, and more preferably 10% by mass.
  • the upper limit of the content is preferably 50% by mass, and more preferably 40% by mass.
  • the radiation-sensitive acid-sensitizer generator is irradiated with a first radiation that is a radiation having a wavelength of 250 nm or less, such as KrF, ArF, EUV, or an electron beam, and is a radiation having a wavelength exceeding 250 nm.
  • a first radiation that is a radiation having a wavelength of 250 nm or less, such as KrF, ArF, EUV, or an electron beam
  • a radiation having a wavelength exceeding 250 nm When no second radiation is irradiated, an acid and a radiation-sensitive sensitizer that absorbs the second radiation are generated, and only the second radiation is not irradiated with the first radiation. When irradiated, the acid and radiation-sensitive sensitizer are not substantially generated.
  • Examples of the [C1] compound that serves as the radiation sensitive acid-sensitizer generator (a) include, for example, the cation portion or the anion portion of the onium salt compound among the above-mentioned [C1] compound and [C2] compound. And (b) a compound substituted with a radiation-sensitive sensitizer generating compound described later.
  • an onium salt compound a sulfonium salt compound, an iodonium salt compound, etc. are mentioned, for example.
  • Examples of the cation (I) and cation (II) in the above [C1] compound include 4,4'-di (t-butylphenyl) iodonium cation and 4-methylsulfonylphenyldiphenylsulfonium cation.
  • the radiation-sensitive acid-sensitizer generator may have a compound other than the above [C1] compound and [C2] compound, and other than the [C1] compound and the [C2] compound (a )
  • the radiation sensitive acid-sensitizer generator include other onium salt compounds.
  • the onium salt compound include a sulfonium salt compound, a tetrahydrothiophenium salt compound, and an iodonium salt compound.
  • the radiation-sensitive acid-sensitizer generator may be in the form of (1) a group included as a polymer structural unit of a polymer component and incorporated as part of the polymer.
  • the radiation-sensitive acid-sensitizer generator is present in a form in which a group obtained by removing one hydrogen atom from the above compound is bonded to the polymer.
  • the radiation-sensitive acid-sensitizer generator is a component different from (1) the polymer component
  • (a) generation of (a) radiation-sensitive acid-sensitizer with respect to 100 parts by mass of the polymer component As a minimum of the compounding quantity of an agent, 0.005 mass part is preferred and 0.1 mass part is more preferred. On the other hand, as an upper limit of the said compounding quantity, 50 mass parts is preferable and 30 mass parts is more preferable.
  • a radiation-sensitive acid-sensitizer generator is included as a structural unit of the polymer of (1) the polymer component, (a) (a) the radiation-sensitive acid per mole of the polymer component -
  • the lower limit of the content of the sensitizer generator is preferably 0.001 mol, more preferably 0.002 mol, and still more preferably 0.01 mol.
  • the upper limit of the content ratio is preferably 0.5 mol, more preferably 0.3 mol.
  • the blending amount or content ratio is smaller than the lower limit, the sensitivity may decrease.
  • the said compounding quantity or content rate exceeds the said upper limit, there exists a possibility that it may become difficult to form a resist material film, and there exists a possibility that the rectangularity in the cross-sectional shape of a resist pattern may fall.
  • the radiation-sensitive sensitizer generating agent generates a radiation-sensitive sensitizer that absorbs the second radiation when irradiated with the first radiation and not irradiated with the second radiation. And a component that does not substantially generate the radiation-sensitive sensitizer when the first radiation is not irradiated and only the second radiation is irradiated. It is different from the body generator.
  • the chemical structure of the radiation-sensitive sensitizer generating agent is converted by direct or indirect reaction upon irradiation with the first radiation, and acid is generated upon irradiation with the second radiation.
  • Produce an auxiliary radiation-sensitive sensitizer Since this radiation-sensitive sensitizer easily absorbs the second radiation as compared with the (b) radiation-sensitive sensitizer generating agent, the radiation-sensitive sensitization is performed when pattern exposure is performed with the first radiation. The absorption amount of the second radiation is greatly different between the exposed portion where the body is generated and the non-exposed portion where the radiation-sensitive sensitizer is not generated, and the contrast of the absorption amount is easily obtained.
  • the free energy ( ⁇ G (Qu) ) is preferably 0 kcal / mol or less.
  • the free energy ( ⁇ G (PAG) ) is preferably 0 kcal / mol or less.
  • ⁇ G (Qu) and ⁇ G (PAG) are changes in the free energy of the cast.
  • the reduction potential is 2000_03_Seiji Nagahara_Ph_D_Thesis. pdf, 3.2.3. Measure the reduction potential by cyclic voltammetry under an Ar atmosphere using a measurement of reduction potential of acid generator, using platinum as the working electrode, platinum wire as the counter electrode, and a saturated calomel electrode (SCE) as the reference electrode. be able to.
  • SCE saturated calomel electrode
  • the radiation-sensitive sensitizer generator is preferably a carbonyl compound having a carbonyl group that absorbs the second radiation when irradiated with the first radiation.
  • the carbonyl compound include aldehyde, ketone, carboxylic acid, carboxylic acid ester and the like.
  • an alcohol compound represented by the following formula (VI) is more preferable, and a secondary alcohol compound may be used.
  • the alcohol compound does not mean only a compound having an alcoholic hydroxyl group, but includes a ketal compound, an acetal compound, an orthoester compound, etc., in which a hydrogen atom of the alcoholic hydroxyl group is substituted. May be.
  • the radiation-sensitive sensitizer generator is a ketal compound or an acetal compound, heating is performed after pattern exposure and before batch exposure in order to accelerate the hydrolysis reaction to the carbonyl compound by the acid catalyst generated by pattern exposure. May be.
  • R 8 , R 9 and R 10 are each independently a hydrogen atom; phenyl group; naphthyl group; anthracenyl group; alkoxy group having 1 to 5 carbon atoms; alkylthio group having 1 to 5 carbon atoms A phenoxy group; a naphthoxy group; an anthracenoxy group; an amino group; an amide group; a halogen atom; a linear, branched or cyclic saturated or unsaturated hydrocarbon having 1 to 30 carbon atoms (preferably 1 to 5 carbon atoms); A group (preferably an alkyl group); a linear, branched or cyclic saturated or unsaturated hydrocarbon group (preferably an alkyl group) having 1 to 30 carbon atoms (preferably 1 to 5 carbon atoms), 1 carbon atom An alkoxy group having 1 to 5 carbon atoms, substituted with an alkoxy group having 5 to 5 alkoxy groups, an amino group, an amide group, or a hydroxyl group; a
  • the alcohol compound may be a thiol compound in which the alcoholic hydroxyl group (hydroxyl group) in formula (VI) is a thiol group.
  • the hydrogen atom of the hydroxyl group or thiol group is a phenyl group; a halogen atom; a straight-chain, branched-chain or cyclic saturated group having 1 to 30 carbon atoms (preferably 1 to 5 carbon atoms) or An unsaturated hydrocarbon group (preferably an alkyl group); or a linear, branched or cyclic saturated or unsaturated hydrocarbon group (preferably an alkyl group) having 1 to 30 carbon atoms (preferably 1 to 5 carbon atoms).
  • any two or more groups of R 8 , R 9 and R 10 are each a single bond or a double bond, or —CH 2 —, —O—, —S—, —SO 2 —, — SO 2 NH—, —C ( ⁇ O) —, —C ( ⁇ O) O—, —NHCO—, —NHC ( ⁇ O) NH—, —CHR g —, —CR g 2 —, —NH— or A ring structure may be formed through a bond containing —NR g —.
  • R g is a phenyl group; a phenoxy group; a halogen atom; a linear, branched or cyclic saturated or unsaturated hydrocarbon group having 1 to 30 carbon atoms (preferably 1 to 5 carbon atoms) (preferably an alkyl group).
  • R 8 , R 9 and R 10 are preferably each independently substituted with a hydrogen atom; a phenyl group; a phenoxy group; an alkoxy group having 1 to 5 carbon atoms, a hydroxyl group, or an alkyl group having 1 to 5 carbon atoms. Or a phenyl group substituted with an alkoxy group having 1 to 5 carbon atoms or a hydroxyl group.
  • the radiation-sensitive sensitizer generating agent may be a compound represented by the following formula (XXXVI).
  • XXXVI the radiation-sensitive sensitizer generating agent
  • R 9 and R 10 are the same meanings as R 9 and R 10 in formula (VI).
  • R 9 and R 10 may form a similarly ring structure with R 9 and R 10 in formula (VI).
  • R 23 and R 24 are each independently a phenyl group; a halogen atom; a linear, branched or cyclic saturated group having 1 to 30 carbon atoms (preferably 1 to 5 carbon atoms). Or an unsaturated hydrocarbon group (preferably an alkyl group); or a linear, branched or cyclic saturated or unsaturated hydrocarbon group (preferably an alkyl group) having 1 to 30 carbon atoms (preferably 1 to 5 carbon atoms).
  • a ring structure may be formed through a bond containing O) O—, —NHCO—, NHC ( ⁇ O) NH—, —CHR g —, —CR g 2 , —NH— or —NR g —. .
  • R g has the same meaning as R g in the formula (VI).
  • the ketal compound or acetal compound may be a thioketal compound or a thioacetal compound in which the oxygen atom bonded to R 23 and / or R 24 in formula (XXXVI) is replaced with sulfur.
  • a ketal compound and an acetal compound can be obtained by reacting a carbonyl compound with an alcohol.
  • the above reaction can be referred to as a reaction for protecting a carbonyl group that contributes to radiosensitization, and R 23 and R 24 in the above formula (XXXVI) can be referred to as a protecting group for a carbonyl group.
  • the reaction in which (b) the radiation-sensitive sensitizer generator becomes a radiation-sensitive sensitizer by radiation or the like can be referred to as a deprotection reaction. Examples of the reactivity of the protecting group (ease of deprotection reaction) are shown below. The reactivity of the protecting group increases as it goes to the right and decreases as it goes to the left.
  • the deprotection reaction when a methoxy group is used as a protecting group for a carbonyl group, the reactivity of the deprotection reaction is high, and the deprotection reaction tends to proceed under an acid catalyst even at room temperature. As described above, the deprotection reaction proceeds at room temperature, so that there is an advantage that blurring of the image can be prevented. On the other hand, if a deprotection reaction occurs in a pattern unexposed portion at the time of pattern exposure and a radiation-sensitive sensitizer is generated, the contrast of the resist may be deteriorated.
  • a protecting group can be selected so as to increase the activation energy of the deprotection reaction (decrease the reactivity of the protecting group).
  • a cyclic protecting group in which R 23 and R 24 in formula (XXXVI) are bonded to each other to form a ring structure is more preferable.
  • the ring structure include a 6-membered ring and a 5-membered ring, and a 5-membered ring is preferable.
  • the resist material When a protective group having low reactivity is used, the resist material preferably contains a first scavenger described later, and the resist material film is preferably baked after pattern exposure and before batch exposure.
  • the resist material film is preferably baked after pattern exposure and before batch exposure.
  • unnecessary acid in the unexposed portion of the pattern is neutralized by the capturing agent, and the contrast of the latent image can be improved.
  • the baking can compensate for the decrease in the reactivity of the protecting group, and the roughness of the latent image of the acid in the resist material film can be reduced by the diffusion of the substance by baking.
  • the ketal type (b) radiation-sensitive sensitizer generating agent may be a compound represented by the following formulas (XXVII) to (XXX).
  • R 23 and R 24 are the same meanings as R 23 and R 24 in the formula (XXXVI).
  • the hydrogen atom of the aromatic ring may be substituted with an alkoxy group having 1 to 5 carbon atoms or an alkyl group having 1 to 5 carbon atoms, and the aromatic ring is bonded to another aromatic ring Thus, a naphthalene ring or an anthracene ring may be formed.
  • R 25 represents an alkyl group having 1 to 5 carbon atoms.
  • the compound represented by a following formula (XLVI) is preferable. That is, (b) the radiation-sensitive sensitizer generating agent may be a compound represented by the following formula (XLVI).
  • R 9 has the same meaning as R 9 in the formula (VI).
  • R 38 to R 40 are each independently a phenyl group; a halogen atom; a linear, branched or cyclic saturated group having 1 to 30 carbon atoms (preferably 1 to 5 carbon atoms). Or an unsaturated hydrocarbon (preferably an alkyl group); or a linear, branched or cyclic saturated or unsaturated hydrocarbon group (preferably an alkyl group) having 1 to 30 carbon atoms (preferably 1 to 5 carbon atoms). ), A phenyl group substituted with an alkoxy group having 1 to 5 carbon atoms or a hydroxyl group.
  • R 38 to R 40 are each a single bond or a double bond, or —CH 2 —, —O—, —S—, —SO 2 —, —SO 2 NH—, —C ( ⁇ O) —, —C
  • a ring structure is formed through a bond including ( ⁇ O) O—, —NHCO—, —NHC ( ⁇ O) NH—, —CHR g —, —CR g 2 , —NH— or —NR g —. May be.
  • R g has the same meaning as R g in the formula (VI).
  • the ortho ester compound is decomposed by a deprotection reaction in pattern exposure, and becomes, for example, a carboxylic acid ester or carboxylic acid containing a carbonyl group.
  • the carboxyl group part of the radiation-sensitive sensitizer having a carboxyl group is OBO (for example, 4-methyl 2,6,7-trioxabicyclo [2.2.2] octane-1-yl).
  • OBO for example, 4-methyl 2,6,7-trioxabicyclo [2.2.2] octane-1-yl.
  • the OBO ester compound represented by the following formula (XLVII) substituted (protected) with is preferable.
  • the (b) radiation-sensitive sensitizer generating agent having a carboxyl group protected with OBO generates carboxylic acid by an acid catalyst generated during pattern exposure, shifts the absorption wavelength of radiation, and radiation-sensitive sensitization during batch exposure. Work as a body.
  • the carboxylic acid is generated from the radiation-sensitive sensitizer generating agent, the polarity of the resist changes, for example, from nonpolar to polar in the pattern exposure portion. For this reason, the ortho ester compound also functions as a dissolution accelerator in the development process, and contributes to an improvement in resist contrast.
  • the radiation-sensitive sensitizer generator contains an OBO ester compound, it is possible to simultaneously generate the radiation-sensitive sensitizer and cause a polarity change reaction.
  • R 41 and R 42 each independently represent a hydrogen atom; a phenyl group; a naphthyl group; an anthracenyl group; a phenoxy group; a naphthoxy group; an anthracenoxy group; an amino group;
  • a linear, branched or cyclic saturated or unsaturated hydrocarbon group preferably an alkyl group) having 1 to 30 (preferably 1 to 5 carbon atoms); an alkoxy group having 1 to 5 carbon atoms, a hydroxyl group, amino Group, amide group, or phenoxy group substituted with an alkyl group having 1 to 5 carbon atoms; linear, branched or cyclic saturated or unsaturated having 1 to 30 carbon atoms (preferably 1 to 5 carbon atoms)
  • a phenyl group substituted by a hydrocarbon group preferably an alkyl group
  • R 41 and R 42 are preferably each independently a hydrogen atom; a phenyl group; a phenoxy group; a phenoxy group substituted with an alkoxy group having 1 to 5 carbon atoms, a hydroxyl group, or an alkyl group having 1 to 5 carbon atoms. Or a phenyl group substituted with an alkoxy group having 1 to 5 carbon atoms or a hydroxyl group;
  • Examples of the radiation-sensitive sensitizer generating agent include compounds represented by the following formulas. These compounds are alcohol compounds in which the hydrogen atom of the alcoholic hydroxyl group is not substituted, and change into a ketone compound by a reaction during pattern exposure.
  • the following compounds are examples of ketal compounds or acetal compounds in which the carbonyl group of the radiation-sensitive sensitizer is protected. These compounds become radiation-sensitive sensitizers containing ketones in the pattern exposure part by the catalytic action of the acid generated by pattern exposure.
  • the following compound is an example of an ortho ester compound having a carbon atom substituted with three alkoxy groups.
  • the ortho ester compound is deprotected by an acid catalyst generated during pattern exposure to produce an ester having a carbonyl group (methyl carboxylate in the following example).
  • the carboxyl group part of the radiation-sensitive sensitizer having a carboxyl group is represented by OBO (for example, 4-methyl-2,6,7-trioxabicyclo [2.2.2] octane-1-yl). It is an example of the OBO ester compound which is a protected derivative.
  • OBO for example, 4-methyl-2,6,7-trioxabicyclo [2.2.2] octane-1-yl
  • the OBO ester compound generates the following carboxylic acid by an acid catalyst generated during pattern exposure.
  • Examples of the radiation-sensitive sensitizer generated by exposure from the component (2) include, for example: Chalcone and derivatives thereof, 1,2-diketone and derivatives thereof, benzoin and derivatives thereof, benzophenone and derivatives thereof, fluorene and derivatives thereof, naphthoquinone and derivatives thereof, anthraquinone and derivatives thereof, xanthene and derivatives thereof, thioxanthene and derivatives thereof, Xanthone and derivatives thereof, thioxanthone and derivatives thereof, cyanine and derivatives thereof, merocyanine and derivatives thereof, naphthalocyanine and derivatives thereof, subphthalocyanine and derivatives thereof, pyrylium and derivatives thereof, thiopyrylium and derivatives thereof, tetraphylline and derivatives thereof, Len and derivatives thereof, spiropy
  • produces from said (2) component by exposure contains a carbonyl compound.
  • the carbonyl compound preferably contains ketone, aldehyde, carboxylic acid, ester, amide, enone, carboxylic acid chloride, carboxylic acid anhydride and the like as a carbonyl group.
  • the carbonyl compound is preferably a compound that absorbs radiation on the longer wavelength side exceeding 250 nm from the viewpoint of increasing the contrast of the resist by sufficiently separating the wavelength of radiation at the time of batch exposure from the wavelength of radiation at the time of pattern exposure.
  • the carbonyl compound examples include benzophenone derivatives, xanthone derivatives, thioxanthone derivatives, coumarin derivatives, and acridone derivatives.
  • the carbonyl compound may be a naphthalene derivative or an anthracene derivative, or an acridone derivative.
  • the hydrogen of the aromatic ring is preferably substituted with an electron donating group. When the hydrogen in the aromatic ring of the radiation-sensitive sensitizer is replaced with an electron-donating group, the electron transfer efficiency due to the sensitization reaction during batch exposure is improved, and the resist sensitivity tends to be improved.
  • the difference between the radiation absorption wavelength of the radiation-sensitive sensitizer and the radiation absorption wavelength of the radiation-sensitive sensitizer can be increased, and the radiation sensitivity can be more selectively at the time of batch exposure. Since the sensitizer can be excited, the contrast of the latent image of the acid in the resist material tends to be improved.
  • the electron donating group include a hydroxyl group, a methoxy group, an alkoxy group, an amino group, an alkylamino group, and an alkyl group.
  • benzophenone and its derivatives include the following compounds.
  • thioxanthone and derivatives thereof include the following compounds.
  • xanthone and derivatives thereof include the following compounds.
  • acridone and its derivatives include the following compounds.
  • Examples of coumarin and its derivatives include the following compounds.
  • the radiation-sensitive sensitizer may contain the following compound.
  • the radiation-sensitive sensitizer examples include acetophenone, 2,2-dimethoxy-2-phenylacetophenone, diethoxyacetophenone, 1-hydroxycyclohexyl phenyl ketone, 1,2-hydroxy-2-methyl-1-phenyl.
  • the radiation-sensitive sensitizer generator may be in the form of (1) a group that is included as a polymer structural unit of a polymer component and incorporated as part of the polymer.
  • the radiation-sensitive sensitizer generator is present in a form in which a group obtained by removing one hydrogen atom from the above compound is bonded to the polymer.
  • the blending amount of the (b) radiation-sensitive sensitizer generator with respect to 100 parts by mass of the polymer component (1) is preferably 0.005 parts by mass, more preferably 0.1 parts by mass.
  • an upper limit of the said compounding quantity 50 mass parts is preferable and 30 mass parts is more preferable.
  • the blending amount or content ratio is smaller than the lower limit, the sensitivity may decrease.
  • the said compounding quantity or content rate exceeds the said upper limit, there exists a possibility that it may become difficult to form a resist material film, and there exists a possibility that the rectangularity in the cross-sectional shape of a resist pattern may fall.
  • the radiation-sensitive acid generator generates an acid when the first radiation is irradiated and the second radiation is not irradiated, and the second radiation is not irradiated with the first radiation. It is a component that does not substantially generate the acid when irradiated with radiation alone, and is different from the (a) radiation-sensitive acid-sensitizer generating agent. (C) Since the radiation-sensitive acid generator has the above properties, it can generate an acid only at the pattern exposure portion of the resist material film by a radiation sensitization reaction during batch exposure.
  • Examples of the cation (I) in the [C1] compound contained in the radiation-sensitive acid generator include the monovalent onium cation represented by X + as the cation (I) and the cation (II). And decomposed by exposure light exposure. In the exposed portion, sulfonic acid is generated from protons generated by the decomposition of the onium cation and the sulfonate anion. This cation does not generate a radiation-sensitive sensitizer.
  • Examples of the monovalent onium cation represented by X + include cations represented by the above formulas (X-1), (X-2), (X-3) and (X-4).
  • anion (I) in the above [C1] compound examples include the same anions as those exemplified as the above-mentioned anion (I), for example, an iodonium salt compound and a sulfonium salt compound which are the above-mentioned onium salt compounds. .
  • Examples of such a (C) compound [C1] that serves as a radiation-sensitive acid generator include JP-A-2016-054772, JP-A-2014-063160, JP-A-2014-191061, and JP-A-2006-. And radiation sensitive acid generator compounds described in JP-A-215202, JP-A-2006-215271, and JP-A-2004-004557.
  • Specific examples of the [C1] compound include the following compounds.
  • (C) As a radiation sensitive acid generator you may also have compounds other than the said [C1] compound, (c) As a radiation sensitive acid generator other than a [C1] compound, other onium salt, for example A compound, a sulfonimide compound, a diazomethane compound, etc. are mentioned. Examples of other onium salt compounds include other sulfonium salt compounds.
  • the radiation-sensitive acid generator may be in the form of (1) a group included as a polymer structural unit of a polymer component and incorporated as part of the polymer.
  • the radiation sensitive acid generator is present in a form in which a group obtained by removing one hydrogen atom from the above compound is bonded to the polymer.
  • Specific examples of the (c) radiation sensitive acid generator in the form of a group incorporated as a part of the polymer include the following compounds.
  • the radiation-sensitive acid generator is a component different from (1) the polymer component
  • an upper limit of the said compounding quantity 50 mass parts is preferable and 30 mass parts is more preferable.
  • the radiation sensitive acid generator When (c) the radiation sensitive acid generator is included as a structural unit of the polymer of (1) polymer component, (c) the content of (c) the radiation sensitive acid generator with respect to 1 mol of the polymer component As a minimum of a rate, 0.01 mol is preferred, 0.02 mol is more preferred, and 0.1 mol is still more preferred. On the other hand, the upper limit of the content ratio is preferably 0.5 mol, more preferably 0.3 mol.
  • the blending amount or content ratio is smaller than the lower limit, the sensitivity may decrease.
  • the said compounding quantity or content rate exceeds the said upper limit, there exists a possibility that it may become difficult to form a resist material film, and there exists a possibility that the rectangularity in the cross-sectional shape of a resist pattern may fall.
  • the (a) radiation-sensitive acid-sensitizer generator or the (c) radiation-sensitive acid generator in the chemically amplified resist material was generated from the (b) radiation-sensitive sensitizer generator.
  • Specific examples of such components include the following compounds.
  • the chemically amplified resist material may further contain (g) a radiation-sensitive photodegradable base-radiation-sensitive sensitizer generating agent.
  • a radiation-sensitive photodegradable base-radiosensitive sensitizer generating agent absorbs the second radiation when irradiated with the first radiation and not with the second radiation. A radiation sensitizer is generated and loses basicity with respect to the acid generated from the component (2).
  • irradiation with the first radiation irradiation with the second radiation is performed. The radiation sensitizer absorbs the second radiation and loses basicity to the acid generated from the component (2).
  • the radiation-sensitive photodegradable base-radiosensitive sensitizer generating agent is a radiation-sensitive sensitizer that is irradiated with only the second radiation without being irradiated with the first radiation. The basicity is maintained with respect to the acid generated from the component (2). Further, (g) the radiation-sensitive photodegradable base-radiosensitive sensitizer generator has a reduction potential higher than that of triphenylsulfonium.
  • the chemically amplified resist material may contain an acid diffusion controller other than the [C2] compound. Other acid diffusion control agents capture acids and cations and function as quenchers.
  • the chemical amplification resist material contains another acid diffusion control agent, so that the excess acid generated in the resist material film is neutralized, and an acid latent image between the pattern exposed portion and the pattern non-exposed portion is obtained. Can increase the chemical contrast.
  • the acid diffusion controller is classified into a compound having radiation sensitivity and a compound having no radiation sensitivity.
  • the compound having no radiation sensitivity is a basic compound having basicity to the acid generated from the (a) radiation-sensitive acid-sensitizer generator or (c) the radiation-sensitive acid generator.
  • the basic compound include a hydroxide compound, a carboxylate compound, an amine compound, an imine compound, an amide compound, and the like. More specifically, primary to tertiary aliphatic amines, aromatic amines, Heterocyclic amines, nitrogen-containing compounds having a carboxyl group, nitrogen-containing compounds having a sulfonyl group, nitrogen-containing compounds having a hydroxyl group, nitrogen-containing compounds having a hydroxyphenyl group, alcoholic nitrogen-containing compounds, amide compounds, imide compounds, etc. Can be mentioned.
  • the basic compounds include: Troger's base; hindered amines such as diazabicycloundecene (DBU) and diazabicyclononene (DBM); tetrabutylammonium hydroxide (TBAH) and tetrabutylammonium lactate It may be an ionic quencher.
  • DBU diazabicycloundecene
  • DBM diazabicyclononene
  • TBAH tetrabutylammonium hydroxide
  • lactate It may be an ionic quencher.
  • Examples of the primary aliphatic amine include ammonia, methylamine, ethylamine, n-propylamine, isopropylamine, n-butylamine, isobutylamine, sec-butylamine, tert-butylamine, pentylamine, tert-amylamine, and cyclopentylamine. Hexylamine, cyclohexylamine, heptylamine, octylamine, nonylamine, decylamine, dodecylamine, cetylamine, methylenediamine, ethylenediamine, tetraethylenepentamine and the like.
  • Examples of the secondary aliphatic amine include dimethylamine, diethylamine, di-n-propylamine, diisopropylamine, di-n-butylamine, diisobutylamine, di-sec-butylamine, dipentylamine, dicyclopentylamine, and diheptyl.
  • tertiary aliphatic amine examples include trimethylamine, triethylamine, tri-n-propylamine, triisopropylamine, tri-n-butylamine, triisobutylamine, tri-sec-butylamine, tripentylamine, tricyclopentylamine, Trihexylamine, tricyclohexylamine, triheptylamine, trioctylamine, trinonylamine, tridecylamine, tridodecylamine, tricetylamine, N, N, N ′, N′-tetramethylmethylenediamine, N, N , N ′, N′-tetramethylethylenediamine, N, N, N ′, N′-tetramethyltetraethylenepentamine and the like.
  • aromatic amine and heterocyclic amine examples include aniline, N-methylaniline, N-ethylaniline, N-propylaniline, N, N-dimethylaniline, 2-methylaniline, 3-methylaniline and 4-methylaniline.
  • Ethylaniline, propylaniline trimethylaniline, 2-nitroaniline, 3-nitroaniline, 4-nitroaniline, 2,4-dinitroaniline, 2,6-dinitroaniline, 3,5-dinitroaniline, N, N- Aniline derivatives such as dimethyltoluidine; diphenyl (p-tolyl) amine; methyldiphenylamine; triphenylamine; phenylenediamine; naphthylamine; diaminonaphthalene; pyrrole, 2H-pyrrole, 1-methylpyrrole, 2,4-dimethylpyrrole, 2, 5-dimethyl Pyrrole derivatives such as roll and N-methylpyrrole; oxazole derivatives such as oxazole and isoxazole; thiazole derivatives such as thiazole and isothiazole; imidazole derivatives such as imidazole, 4-methylimidazole and 4-methyl-2-phenylimidazole; pyr
  • nitrogen-containing compound having a carboxy group examples include aminobenzoic acid; indolecarboxylic acid; nicotinic acid, alanine, arginine, aspartic acid, glutamic acid, glycine, histidine, isoleucine, glycylleucine, leucine, methionine, phenylalanine, threonine,
  • Examples include amino acid derivatives such as lysine, 3-aminopyrazine-2-carboxylic acid, and methoxyalanine.
  • Examples of the nitrogen-containing compound having a sulfonyl group include 3-pyridinesulfonic acid and pyridinium p-toluenesulfonate.
  • Examples of the nitrogen-containing compound having a hydroxyl group, the nitrogen-containing compound having a hydroxyphenyl group, and the alcoholic nitrogen-containing compound include 2-hydroxypyridine, aminocresol, 2,4-quinolinediol, 3-indolemethanol hydrate, Monoethanolamine, diethanolamine, triethanolamine, N-ethyldiethanolamine, N, N-diethylethanolamine, triisopropanolamine, 2,2'-iminodiethanol, 2-aminoethanol, 3-amino-1-propanol, 4- Amino-1-butanol, 4- (2-hydroxyethyl) morpholine, 2- (2-hydroxyethyl) pyridine, 1- (2-hydroxyethyl) piperazine, 1- [2- (2-hydroxyethoxy) ethyl] pipera Piperidine ethanol, 1- (2-hydroxyethyl) pyrrolidine, 1- (2-hydroxyethyl) -2-pyrrolidinone, 3-piperidino-1,
  • amide compound examples include formamide, N-methylformamide, N, N-dimethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, propionamide, benzamide, 1-cyclohexylpyrrolidone and the like.
  • imide compound examples include phthalimide, succinimide, maleimide and the like.
  • the above-mentioned compounds having radiation sensitivity are classified into compounds that are decomposed by radiation and lose acid diffusion control ability (radiolysis type compounds) and compounds that are generated by radiation and obtain acid diffusion control ability (radiation generation type compounds).
  • the radiation-decomposable compound is decomposed only in the pattern exposure part in the pattern exposure step, so that the action of capturing the acid and cation is reduced in the pattern exposure part, and the action of capturing the acid and cation is maintained in the pattern non-exposed part.
  • the chemical contrast of the latent image of the acid between the exposed part and the non-exposed part can be improved.
  • the radiolytic compound sulfonates and carboxylates of radiolytic cation other than the [C1] compound and the [C2] compound are preferable.
  • the sulfonic acid in the sulfonate is preferably a weak acid, more preferably a hydrocarbon group having 1 to 10 carbon atoms, and the hydrocarbon group not containing fluorine.
  • examples of such sulfonic acids include sulfonic acids such as alkyl sulfonic acids, benzene sulfonic acids, and 10-camphor sulfonic acids.
  • the carboxylic acid in the carboxylate is preferably a weak acid, more preferably a carboxylic acid having 1 to 20 carbon atoms.
  • carboxylic acids examples include carboxylic acids such as formic acid, acetic acid, propionic acid, tartaric acid, succinic acid, cyclohexyl carboxylic acid, benzoic acid, and salicylic acid.
  • the radiolytic cation in the carboxylate of the radiolytic cation is preferably an onium cation, and examples of the onium cation include an iodonium cation.
  • the radiation generating compound is generated only in the pattern exposure part in the pattern exposure step, so that the action of capturing the acid and cation occurs in the pattern exposure part and does not occur in the pattern non-exposure part.
  • the radiation generating compound may be generated in a batch exposure process without being generated in the pattern exposure process.
  • a radiation-sensitive sensitizer can be efficiently generated in the exposed portion of the pattern exposure step, and unnecessary acids and cations can be captured in the non-exposed portion of the batch exposure step.
  • the radiation-generating compound a compound that generates a base upon exposure (a radiation-sensitive base generator) is preferable, and a nitrogen-containing organic compound that generates an amino group is more preferable.
  • Examples of the radiation sensitive base generator include, for example, JP-A-4-151156, JP-A-4-162040, JP-A-5-197148, JP-A-5-5995, JP-A-6-194634, JP-A-8-146608, No. 10-83079 and compounds described in European Patent No. 622682.
  • the radiation sensitive base generator examples include a compound containing a carbamate group (urethane bond), a compound containing an acyloxyimino group, an ionic compound (anion-cation complex), a compound containing a carbamoyloxyimino group, and the like.
  • a compound having a ring structure in the molecule is preferable.
  • this ring structure include benzene, naphthalene, anthracene, xanthone, thioxanthone, anthraquinone, fluorene, and the like.
  • Examples of the radiation sensitive base generator include 2-nitrobenzyl carbamate, 2,5-dinitrobenzyl cyclohexyl carbamate, N-cyclohexyl-4-methylphenylsulfonamide, 1,1-dimethyl-2-phenylethyl. -N-isopropyl carbamate and the like.
  • the acid diffusion control agent may be a compound (heat generation type compound) that is generated by a thermal reaction and obtains acid diffusion control ability.
  • it is preferable to generate in the baking process after the batch exposure process.
  • the heating temperature in the baking process mentioned later is higher than the heating temperature in another process from a viewpoint that an acid diffusion control agent acquires acid diffusion control ability in a baking process.
  • the acid diffusion control agent that has a reduction potential lower than that of the triphenylsulfonium cation include the following compounds.
  • the lower limit of the content of the acid diffusion control agent with respect to 100 parts by mass of the polymer component is preferably 0.001 part by mass, 0.01 parts by weight is more preferable.
  • an upper limit of the said content 20 mass parts is preferable and 10 mass parts is more preferable.
  • the radical scavenger traps free radicals.
  • the chemically amplified resist material contains the radical scavenger, the generation of radiation-sensitive sensitizers via reaction by radicals in the pattern non-exposed portion is reduced, and the pattern exposed portion after the batch exposure step described later and The contrast of the acid concentration with the non-exposed part can be further improved.
  • the radical scavenger include compounds such as phenolic compounds, quinone compounds, and amine compounds, and natural antioxidants such as rubber.
  • the cross-linking agent is used to cause a cross-linking reaction between polymer components by an acid catalyst reaction in a baking step after collective exposure, to increase the molecular weight of the polymer component, and to insolubilize in the developer. 1) It is different from the polymer component. Since the resist material contains a cross-linking agent, the polar part becomes nonpolar at the same time as the cross-linking and becomes insoluble in the developer, so that a negative resist material can be provided.
  • the crosslinking agent is a compound having two or more functional groups.
  • the functional group is preferably at least one selected from the group consisting of a (meth) acryloyl group, a hydroxymethyl group, an alkoxymethyl group, an epoxy group, and a vinyl ether group.
  • additives examples include surfactants, antioxidants, dissolution inhibitors, plasticizers, stabilizers, colorants, antihalation agents, and dyes.
  • surfactant for example, an ionic or nonionic fluorine-based surfactant, a silicon-based surfactant, or the like can be used.
  • Antioxidants include, for example, phenolic antioxidants, antioxidants composed of organic acid derivatives, sulfur-containing antioxidants, phosphorus antioxidants, amine antioxidants, and antioxidants composed of amine-aldehyde condensates. And an antioxidant comprising an amine-ketone condensate.
  • the solvent is for dissolving the composition of the resist material and facilitating the formation of the resist material film by a coating machine using a spin coating method or the like.
  • the compound included in said (b) radiation sensitive sensitizer generator etc. shall be remove
  • the solvent examples include ketones such as cyclohexanone and methyl-2-amylketone; 3-methoxybutanol, 3-methyl-3-methoxybutanol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol and the like Alcohols; ethers such as propylene glycol monomethyl ether, ethylene glycol monomethyl ether, propylene glycol monoethyl ether, ethylene glycol monoethyl ether, propylene glycol dimethyl ether, diethylene glycol dimethyl ether; and propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, Ethyl lactate, ethyl pyruvate, butyl acetate, methyl 3-methoxypropionate, 3-ethoxypropionic acid Chill acetate tert- butyl, tert- butyl propionate, propylene glycol monomethyl ether acetate, and est
  • the chemically amplified resist material can be prepared, for example, by mixing (1) a polymer component, (2) component, and other optional components as necessary at a predetermined ratio.
  • the chemically amplified resist material is preferably filtered after mixing with, for example, a filter having a pore diameter of about 0.2 ⁇ m.
  • the lower limit of the total solid content concentration of the chemically amplified resist material is usually 0.1% by mass, preferably 0.5% by mass, and more preferably 1% by mass.
  • the upper limit of the total solid content is usually 50% by mass, preferably 30% by mass, and more preferably 20% by mass.
  • the resist material is preferably used in a two-step exposure lithography process. That is, the lithography process (resist pattern forming method) according to the present embodiment includes a film forming step of forming a resist material film formed using the resist material on a substrate, and a mask formed on the resist material film. A pattern exposure step of irradiating the first radiation; a batch exposure step of irradiating the resist material film after the pattern exposure step with a second radiation; and a baking step of heating the resist material film after the batch exposure step; And a step of bringing the resist material film after the baking step into contact with a developer.
  • the lithography process resist pattern forming method according to the present embodiment includes a film forming step of forming a resist material film formed using the resist material on a substrate, and a mask formed on the resist material film.
  • FIG. 1 is a process diagram showing a lithography process according to this embodiment.
  • FIG. 2 is a process diagram showing an example of a resist pattern forming method using a conventional chemically amplified resist material.
  • the lithography process includes the following steps.
  • Step S1 Step of preparing a substrate to be processed
  • Step S2 Step of forming a lower layer film and a resist material film (film formation step)
  • Step S3 A step of generating an acid in the exposed portion by pattern exposure (pattern exposure step)
  • Step S4 a step of multiplying acid only in the pattern exposure portion by batch exposure (collective exposure step)
  • Step S5 A step of causing a polarity change reaction by an acid catalyst in the pattern exposed portion by baking after exposure (baking step).
  • Step S6 Step of forming a resist pattern by development processing (development step)
  • Step S7 Step of transferring pattern by etching (etching step)
  • the substrate to be processed (substrate to be processed) in the following steps may be composed of a semiconductor wafer such as a silicon substrate, a silicon dioxide substrate, a glass substrate, and an ITO substrate, and is insulated on the semiconductor wafer.
  • a film layer may be formed.
  • the resist material film is formed using the resist material of this embodiment.
  • the method for forming the resist material film include a method of applying a liquid resist material by spin coating or the like, a method of attaching a film-like (solid) resist material, and the like.
  • the solvent in the resist material may be volatilized by heating (pre-baking) after application.
  • the formation conditions of the resist material film are appropriately selected according to the properties of the resist material and the thickness of the resist material film to be obtained.
  • the average thickness of the resist material film is preferably 1 nm to 5,000 nm, more preferably 10 nm to 1,000 nm, and even more preferably 30 nm to 200 nm.
  • a lower layer film (an antireflection film, a film for improving resist adhesion, a film for improving resist shape, etc.) may be formed on the substrate.
  • an antireflection film it is possible to suppress the occurrence of standing waves due to radiation reflected by the substrate or the like in the pattern exposure step.
  • a film for improving the resist adhesion By forming a film for improving the resist adhesion, the adhesion between the substrate and the resist material film can be improved.
  • the resist shape after development can be further improved. That is, by forming a film for improving the resist shape, it is possible to reduce the skirt shape or constriction shape of the resist.
  • the lower layer film is preferably a film that does not absorb the radiation for batch exposure. If the lower layer film absorbs the radiation of the batch exposure, a radiation sensitization reaction may occur in the resist material film due to energy transfer or electron transfer from the lower layer film, which may generate acid in the pattern unexposed area. . For this reason, a buffer layer that does not propagate the radiation sensitization reaction may be disposed between the resist material film and the lower layer film to prevent sensitization from the lower layer film that has absorbed the radiation.
  • a protective film may be further formed on the resist material film.
  • the protective film has at least one wavelength of non-ionizing radiation that is directly absorbed by the component (a) or (c) (radiation sensitive acid generator) in order to prevent an acid generation reaction in an unexposed portion in the batch exposure process.
  • An absorption film that absorbs the portion may be used.
  • the absorption film By using the absorption film, it is possible to suppress the entry of out-of-band light (OOB light), which is ultraviolet radiation generated during EUV exposure, into the resist material film, and the radiation-sensitive acid generator in the pattern unexposed area or The decomposition of the radiation sensitive acid generating group can also be prevented. Further, when the absorption film is directly formed on the resist material film, the wavelength of the second radiation in the batch exposure process is used to suppress acid generation in the resist material film due to the radiation sensitization reaction in the pattern unexposed area. It is preferable that it does not induce a radiosensitization reaction from the protective film.
  • OOB light out-of-band light
  • the wavelength of the second radiation in the batch exposure process is used to suppress acid generation in the resist material film due to the radiation sensitization reaction in the pattern unexposed area. It is preferable that it does not induce a radiosensitization reaction from the protective film.
  • a buffer layer is disposed between the resist material film and the protective film to absorb the radiation so that the radiation-sensitive sensitizer in the resist material film is not sensitized by energy transfer or electron transfer from the protective film. Sensitization from the absorbing film may be prevented.
  • Pattern exposure process In the pattern exposure step S3, a light shielding mask having a predetermined pattern is arranged on the resist material film formed in the film formation step S2. Thereafter, the resist material film is irradiated with the first radiation (pattern exposure) through the mask from an exposure apparatus (radiation irradiation module) having a projection lens, an electron optical system mirror, or a reflection mirror.
  • an exposure apparatus radiation irradiation module having a projection lens, an electron optical system mirror, or a reflection mirror.
  • the first radiation used for pattern exposure is ionizing radiation or non-ionizing radiation having a wavelength of 250 nm or less.
  • the upper limit of the wavelength of the non-ionizing radiation is 250 nm, and preferably 200 nm.
  • the lower limit of the wavelength of the non-ionizing radiation is preferably 150 nm, and more preferably 190 nm.
  • ionizing radiation is radiation having sufficient energy to ionize atoms or molecules.
  • non-ionizing radiation is radiation that does not have sufficient energy to ionize atoms or molecules.
  • the ionizing radiation include gamma rays, X-rays, alpha rays, heavy particle rays, proton rays, beta rays, ion beams, electron beams, EUV, and the like.
  • the ionizing radiation used for pattern exposure is preferably an electron beam, EUV or ion beam, more preferably an electron beam or EUV.
  • Non-ionizing radiation includes non-ionizing radiation having a wavelength of 250 nm or less, such as KrF excimer laser light and ArF excimer laser light.
  • a light source for pattern exposure for example, an electron beam of 1 keV to 200 keV, EUV having a wavelength of 13.5 nm, excimer laser light of 193 nm (ArF excimer laser light), and excimer laser light of 248 nm (KrF excimer laser light) are used. There are many cases.
  • the exposure amount in pattern exposure may be smaller than in the case of batch exposure using the chemically amplified resist of the present embodiment.
  • groups represented by the components (a) to (c) in the resist material film are decomposed to generate an acid and a radiation-sensitive sensitizer that absorbs the second radiation.
  • a step-and-scan type exposure apparatus called a “scanner” is widely used.
  • a pattern for each shot is formed by performing scanning exposure while synchronizing the mask and the substrate. By this exposure, a selective reaction occurs at the exposed portion in the resist.
  • the radiation-sensitive acid generator in the component (a) or (c) Prior to performing the following batch exposure step S4, the radiation-sensitive acid generator in the component (a) or (c) is directly absorbed on the resist material film in the post-pattern exposure step S3.
  • An absorption film that absorbs at least a part of the wavelength of the ionizing radiation may be formed.
  • the resist material film is formed until the following batch exposure step S4 is performed after the pattern exposure step S3. It is preferable to place in a reduced-pressure atmosphere or an inert atmosphere containing nitrogen or argon.
  • a reduced-pressure atmosphere or an inert atmosphere containing nitrogen or argon By placing the resist material film in the above atmosphere, the exposure of the resist material film to oxygen during exposure and the termination of radical reaction by this oxygen can be suppressed, and the acid quenching by a small amount of basic compound can be suppressed. Since the chin can be suppressed, the process tends to be further stabilized.
  • the upper limit of the time (storage time) until the collective exposure step S4 is performed after the pattern exposure step S3 is preferably 30 minutes, and more preferably 10 minutes. There exists a tendency which can suppress the fall of a sensitivity because storage time is 30 minutes or less.
  • a radiation-sensitive sensitizer generating agent that is, a ketal compound, an acetal compound or an orthoester compound
  • the atmosphere in which the resist material film exists is in the atmosphere cleaned with an amine removal filter.
  • the above-mentioned (b) radiation-sensitive sensitizer generating agent When the above-mentioned (b) radiation-sensitive sensitizer generating agent is used, it may be treated in the atmosphere cleaned with an amine removing filter because it is not easily affected by oxygen as described above. By placing the resist material film in the above atmosphere, acid quenching by a small amount of a basic compound can be suppressed, so that the process tends to be further stabilized.
  • the upper limit of the time (storage time) until the collective exposure step S4 is performed after the pattern exposure step S3 is preferably 30 minutes, and more preferably 10 minutes. There exists a tendency which can suppress the fall of a sensitivity because storage time is 30 minutes or less.
  • the substrate is transferred from the exposure apparatus that performs the pattern exposure step S3 to the exposure device that performs the batch exposure step S4. You may further provide the process. Further, the batch exposure may be performed in a coating and developing apparatus connected inline or in a module corresponding to an interface with the exposure machine.
  • the resist pattern forming method of this embodiment is performed after the pattern exposure step S3 and before the following batch exposure step S4, followed by a baking step S3a (post Pattern exposure bake (also referred to as PPEB or PEB)) (see FIG. 3).
  • the heating temperature in the baking step is preferably 30 ° C. or higher and 150 ° C. or lower, more preferably 50 ° C. or higher and 120 ° C. or lower, and further preferably 60 ° C. or higher and 100 ° C. or lower.
  • the heating time is preferably 5 seconds to 3 minutes, more preferably 10 seconds to 60 seconds.
  • the resist pattern forming method includes the baking step S3a, it is possible to accelerate the generation of a radiation-sensitive sensitizer due to a hydrolysis reaction from an acetal compound, an ortho ester compound, a ketal compound or the like to a carbonyl compound.
  • Process S4 Batch exposure process
  • a high-sensitivity module exposure device or light source having a projection lens (or light source) on the entire resist material film after the pattern exposure step S3 (the entire surface including the pattern exposed portion and the pattern unexposed portion).
  • the second radiation is irradiated (collective exposure) from a radiation irradiation module.
  • the entire wafer surface may be exposed at one time, a combination of local exposures, or overlapping exposure.
  • a light source for batch exposure a general light source can be used. In addition to ultraviolet rays from mercury lamps and xenon lamps controlled to a desired wavelength by passing through a pan-pass filter or a cut-off filter, LEDs are used.
  • Narrow-band ultraviolet light from a light source, laser diode, laser light source, or the like may be used.
  • the radiation-sensitive sensitizer generated at the pattern exposure portion in the resist material film absorbs radiation.
  • the batch exposure radiation is selectively absorbed in the pattern exposure portion. Therefore, during the batch exposure, the acid can be continuously generated only in the pattern exposure part, and the sensitivity can be greatly improved.
  • the sensitivity can be improved while maintaining the chemical contrast in the resist material film.
  • the second radiation used for the collective exposure is a non-ionizing radiation having a wavelength longer than the wavelength of the non-ionizing radiation in the first radiation and having a wavelength exceeding 250 nm, and a near ultraviolet ray (wavelength of 250 to 450 nm). ) Is preferred.
  • the wavelength of the non-ionizing radiation may be 350 nm or more.
  • the wavelength of the non-ionizing radiation is too long, the efficiency of the radiation sensitization reaction is reduced, so the wavelength of radiation that can be absorbed by the polymer component, the radiation sensitive acid generator, and the radiation sensitive sensitizer generator. It is preferable to use non-ionizing radiation having a wavelength as short as possible that can be absorbed by the radiation-sensitive sensitizer. From such a viewpoint, the upper limit of the wavelength of the non-ionizing radiation is preferably 450 nm, and more preferably 400 nm.
  • the pattern exposure step S3 and / or the batch exposure step S4 may be performed by immersion lithography (immersion exposure), or may be performed by dry lithography (dry exposure).
  • Immersion lithography refers to exposure performed with a liquid interposed between a resist material film and a projection lens.
  • dry lithography refers to exposure performed in a state where a gas is interposed between a resist material film and a projection lens, under reduced pressure, or in a vacuum.
  • a liquid having a refractive index of 1.0 or more is applied between the resist material film or the protective film formed in the film formation step S2 and the projection lens. You may carry out in the state interposed.
  • the protective film is preferably for preventing reflection or improving reaction stability.
  • the protective film preferably prevents liquid penetration, enhances water repellency on the film surface, and prevents defects due to liquid in immersion exposure.
  • the liquid absorbs at least part of the wavelength of the second radiation directly absorbed by the component (a) or (c) (the radiation-sensitive acid generator).
  • the radiation-sensitive acid generator remaining in the resist material film after the pattern exposure step S4 by irradiation with the second radiation in the batch exposure step S4 or The direct acid generation from the radiation sensitive acid generating group can be further suppressed.
  • the pattern exposure step S3 and / or the batch exposure step S4 can be performed in the air, in a reduced pressure atmosphere, or in an inert atmosphere, but include a reduced pressure atmosphere or nitrogen or argon. It is preferable to carry out in an inert atmosphere.
  • the upper limit of the concentration of the basic compound in the atmosphere during the implementation is preferably 20 ppb, more preferably 5 ppb, and even more preferably 1 ppb.
  • the resist material film after the batch exposure step S4 is heated (hereinafter also referred to as “post-flood exposure baking (PFEB)” or “post-exposure baking (PEB)”).
  • PFEB post-flood exposure baking
  • PEB post-exposure baking
  • the baking step S3a is referred to as a 1st PEB step
  • the baking step S5 is referred to as a 2nd PEB step. Yes (see FIG. 3).
  • the heating condition can be, for example, 50 ° C. or higher and 200 ° C.
  • the acid generated in the pattern exposure step S3 and the batch exposure step S4 causes (1) a polarity change reaction such as a deprotection reaction of the polymer component and a crosslinking reaction.
  • a polarity change reaction such as a deprotection reaction of the polymer component and a crosslinking reaction.
  • Step S6 Development step
  • the developer can be divided into a positive developer and a negative developer.
  • An alkaline developer is preferable as the positive developer.
  • the alkaline developer selectively dissolves the highly polar part of the resist material film after exposure.
  • Examples of the alkaline developer include potassium hydroxide, sodium hydroxide, sodium carbonate, potassium carbonate, sodium phosphate, sodium silicate, ammonia, amines (ethanolamine, etc.), and tetraalkylammonium hydroxide (TAAH). .
  • TAAH is preferred as the alkaline developer.
  • TAAH tetramethylammonium hydroxide
  • TMAH tetramethylammonium hydroxide
  • tetraethylammonium hydroxide tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, methyltriethylammonium hydroxide, trimethylethylammonium hydroxide, dimethyldiethylammonium hydroxide, water Trimethyl (2-hydroxyethyl) ammonium oxide (ie, choline), triethyl (2-hydroxyethyl) ammonium hydroxide, dimethyldi (2-hydroxyethyl) ammonium hydroxide, diethyldi (2-hydroxyethyl) ammonium hydroxide, hydroxylated Methyltri (2-hydroxyethyl) ammonium, ethyltri (2-hydroxyethyl) ammonium hydroxide, tetra (2-hydroxyethyl) ammonium
  • TMAH tetramethylammonium hydroxide
  • a pattern is formed by utilizing a phenomenon in which carboxylic acid or hydroxyl group generated in a resist material film after exposure is ionized and dissolved in an alkali developer.
  • a water washing process called rinsing is performed.
  • the negative developer is preferably an organic developer.
  • the organic developer selectively dissolves the low polarity portion of the resist material film after exposure.
  • the organic developer is used to improve the resolution performance and the process window by removing patterns such as holes and trenches. In this case, the dissolution contrast between the pattern exposed portion and the pattern unexposed portion is obtained by the difference in affinity between the solvent in the resist material film and the organic developer.
  • the portion with high polarity has low solubility in an organic developer, and remains as a resist pattern.
  • organic developers examples include 2-octanone, 2-nonanone, 2-heptanone, 3-heptanone, 4-heptanone, 2-hexanone, 3-hexanone, diisobutyl ketone, methylcyclohexanone, acetophenone, methyl Acetophenone, propyl acetate, butyl acetate, isobutyl acetate, amyl acetate, butenyl acetate, isoamyl acetate, propyl formate, butyl formate, isobutyl formate, amyl formate, isoamyl formate, methyl valerate, methyl pentenoate, methyl crotonic acid, ethyl crotonic acid , Methyl propionate, ethyl propionate, ethyl 3-ethoxypropionate, methyl lactate, ethyl lactate, propyl lactate, butyl lactate, isobutyl lac
  • the resist pattern after the development step S6 may be heated (sometimes referred to as post-baking).
  • the post-baking can vaporize and remove the rinsing liquid remaining after the rinsing process, and can cure the resist pattern.
  • step S7 a pattern is formed by etching or ion implantation of the underlying substrate using the resist pattern after the developing step S6 as a mask.
  • the etching may be dry etching under an atmosphere such as plasma excitation, or may be wet etching immersed in a chemical solution. After the pattern is formed on the substrate by etching, the resist pattern is removed.
  • the resist pattern forming method of the present embodiment includes the pattern exposure step S3 and the batch exposure step S4, so that the acid generated after the exposure can be greatly increased only in the pattern exposed portion.
  • FIG. 4 is a graph showing the absorbance of the pattern exposed portion and the unexposed portion of the resist material film at the time of batch exposure.
  • the portion of the resist material film that is not subjected to pattern exposure absorbs ultraviolet rays having a relatively short wavelength, but does not absorb ultraviolet rays having a long wavelength.
  • an acid and a radiation-sensitive sensitizer are generated in the pattern-exposed portion (pattern exposed portion) of the resist material film.
  • the generated radiation-sensitive sensitizer absorbs non-ionizing radiation having a wavelength exceeding 200 nm, and absorbs ultraviolet rays having a relatively long wavelength.
  • the entire surface of the resist material film is irradiated without using a mask as in the pattern exposure, but the second radiation is not absorbed in the batch exposure step S4 in the pattern unexposed portion. Accordingly, in the batch exposure step S4, the above-described third to fifth and seventh acid generation mechanisms mainly occur in the pattern exposure unit. For this reason, an acid can be continuously generated only in the pattern exposure part during the batch exposure, and the sensitivity can be improved while maintaining the lithography characteristics.
  • FIG. 5 (a) is a conceptual diagram showing, as a graph, an acid concentration distribution by a resist pattern forming method using a conventional chemically amplified resist material.
  • FIG. 5B is a conceptual diagram showing, as a graph, the radiation-sensitive sensitizer concentration distribution and the acid concentration distribution obtained by the resist pattern forming method using the chemically amplified resist material according to the present embodiment.
  • the amount of acid can be increased only in the pattern exposure area by the radiation-sensitive sensitizer generated by pattern exposure, and sensitivity can be reduced with low exposure while maintaining an excellent latent image of the resist pattern. Can be improved. Since the acid generation mechanism by the radiation-sensitive sensitizer at the time of batch exposure occurs at room temperature, there is little bleeding of the latent image at the time of acid generation, and it is possible to greatly increase the sensitivity while maintaining the resolution.
  • FIG. 6 is a cross-sectional view showing an example of the manufacturing process of the semiconductor device of this embodiment.
  • FIG. 6A is a cross-sectional view showing a resist pattern forming step.
  • the semiconductor wafer 1, the film to be etched 3 formed on the semiconductor wafer 1, and the film to be etched 3 by the resist pattern forming method are shown. It is sectional drawing with the formed resist pattern 2 (equivalent after completion
  • the film to be etched include an active layer, a lower insulating film, a gate electrode film, and an upper insulating film.
  • an antireflection film, a lower layer film for improving resist adhesion, and a lower layer film for improving the resist shape may be provided.
  • a multilayer mask structure may be adopted.
  • FIG. 6B is a cross-sectional view showing the etching process, and is a cross-sectional view of the semiconductor wafer 1, the resist pattern 2, and the etching target film 3 etched using the resist pattern 2 as a mask.
  • the etched film 3 is etched along the shape of the opening of the resist pattern 2.
  • FIG. 6C is a cross-sectional view of the pattern substrate 10 including the semiconductor wafer 1 and the pattern of the etched film 3 that has been etched after the resist pattern 2 is removed.
  • a semiconductor device can be formed using a substrate having the pattern of the film 3 to be etched.
  • a method for forming this semiconductor device for example, a method of embedding wiring between the patterns of the film to be etched 3 from which the resist pattern 2 has been removed and further laminating device elements on the substrate can be cited.
  • the lithography mask according to this embodiment is manufactured by processing a substrate using the resist pattern formed by the above method.
  • Examples of the method for producing the lithography mask include a method of etching a glass substrate surface or a hard mask formed on the glass substrate surface using a resist pattern.
  • the lithography mask includes a transmissive mask using ultraviolet rays or an electron beam, a reflective mask using EUV light, and the like.
  • the lithography mask is a transmissive mask, it can be manufactured by masking the light shielding portion or the phase shift portion with a resist pattern and processing by etching.
  • the lithography mask is a reflective mask, it can be manufactured by processing the light absorber by etching using the resist pattern as a mask.
  • the nanoimprint template according to the present embodiment can also be manufactured using the resist pattern formed by the above method.
  • Examples of the manufacturing method include a method of forming a resist pattern on a glass substrate surface or a hard mask surface formed on the glass substrate surface, and processing by etching.
  • Mw and Mn of the polymer were measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the measurement uses GPC columns (2 G2000HXL, 1 G3000HXL, and 1 G4000HXL, Tosoh Corporation), flow rate 1.0 mL / min, elution solvent tetrahydrofuran, sample concentration 1.0 mass%, sample injection amount 100 ⁇ L, Under analysis conditions with a column temperature of 40 ° C., a differential refractometer was used as a detector, and monodisperse polystyrene was used as a standard substance.
  • the 13 C-NMR analysis for determining the content of the structural unit of the polymer uses a nuclear magnetic resonance apparatus (“JNM-ECX400” manufactured by JEOL Ltd.), uses CDCl 3 as a measurement solvent, and uses tetramethylsilane ( TMS) was performed as an internal standard.
  • JNM-ECX400 nuclear magnetic resonance apparatus
  • TMS tetramethylsilane
  • the compounds (M-1), (M-4) and (M-6) are structural units (I), and the compounds (M-2) and (M-7) are structural units (IV) ( M-3) and (M-5) give the structural unit (III), and the compound (M-8) gives the structural unit (II).
  • the polymer (A-1) had Mw of 7,000 and Mw / Mn of 2.10.
  • the content of each structural unit derived from the compound (M-1) and the compound (M-2) was 52 mol% and 48 mol%, respectively.
  • the polymer (A-2) had Mw of 6,000 and Mw / Mn of 1.90. Further, as a result of 13 C-NMR analysis, the content ratio of the p-hydroxystyrene structural unit obtained by deacetylation of the structural unit derived from (M-3) and the structural unit derived from the compound (M-1) Were 50 mol% and 50 mol%, respectively.
  • the monomer solution prepared above was dropped over 3 hours, and further aged for 3 hours.
  • the polymerization reaction liquid was cooled with water and cooled to 30 ° C. or lower.
  • This polymerization reaction liquid was put into 400 g of hexane, and the precipitated solid content was separated by filtration.
  • the solid content after filtration was washed twice with 80 g of hexane, further filtered, and dried at 50 ° C. for 17 hours. This solid content was put into a 100 mL eggplant flask containing 20 g of propylene glycol monomethyl ether and dissolved.
  • the structural unit content of M-3 in the table indicates the content as a p-hydroxystyrene structural unit obtained by deacetylating the structural unit derived from M-3.
  • Table 2 shows the component (b) and the sensitizer derived from the component (b). Moreover, the sensitizer derived from these (b) component and (b) component was prepared so that it might become a 0.0001 mass% cyclohexane solution, respectively. The absorbance of this prepared solution was measured using a spectrophotometer (“V-670” manufactured by JASCO Corporation) using cyclohexane as a reference solvent.
  • V-670 manufactured by JASCO Corporation
  • the above-mentioned absorbance was obtained by subtracting the absorbance of the reference solvent from the absorbance of the measurement solution at each wavelength of 360 nm to 450 nm.
  • the measured value of the absorbance in the entire wavelength region of the wavelength of 360 nm or more and 450 nm or less is less than 0.01, it is evaluated as “transparent”, and the wavelength at which the absorbance is 0.01 or more in the entire wavelength region is small was evaluated as “absorbed”.
  • the evaluation results are shown in Table 3 below.
  • permeability of the cyclohexane which is a solvent used for the measurement of absorption spectrometry was 95% or more in all the wavelength ranges of wavelength 250 nm or more and 600 nm or less.
  • oxidation potential of sensitizer The oxidation potential of the sensitizer was measured by cyclic voltammetry in an Ar atmosphere using platinum as the working electrode, platinum wire as the counter electrode, and a saturated calomel electrode (SCE) as the reference electrode. In addition, ferrocene purified by sublimation was used as an external standard, and [n-Bu 4 N] [ClO 4 ] was added to a 1 mM sensitizer dissolved in acetonitrile to a concentration of 0.1 M as a supporting electrolyte. The oxidation potential was measured.
  • [(C) Radiation sensitive acid generator] (C) The following [C1] compound (first compound) and [C2] compound (second compound) were used as the radiation-sensitive acid generator. (Acid generating compound)
  • the [C1] compound shown in Table 4 below is a compound having a smaller pKa of the generated acid. Was used as the acid generating compound.
  • the oxidation potential of the sensitizer was measured by cyclic voltammetry in an Ar atmosphere using platinum as the working electrode, platinum wire as the counter electrode, and a saturated calomel electrode (SCE) as the reference electrode.
  • SCE saturated calomel electrode
  • [n-Bu 4 N] [ClO 4 ] as a supporting electrolyte was added to 0.1 mM to 1 mM [C1] compound dissolved in acetonitrile. The reduction potential was measured.
  • the oxidation potential of the sensitizer was measured by cyclic voltammetry in an Ar atmosphere using platinum as the working electrode, platinum wire as the counter electrode, and a saturated calomel electrode (SCE) as the reference electrode.
  • SCE saturated calomel electrode
  • [n-Bu 4 N] [ClO 4 ] as a supporting electrolyte was added to 1 mM [C2] compound dissolved in acetonitrile so as to be 0.1M. The reduction potential was measured.
  • [Example 1] [A] 100 parts by mass of polymer (A-1), (b) 5 parts by mass of radiation-sensitive sensitizer generator (B-1), (c) [C1] compound (C -1-1) Mixing 15 parts by weight, 5.0 parts by weight of [C2] compound (C-2-1), 4,300 parts by weight of solvent (G-1) and 1,900 parts by weight of (G-2) did. Next, the obtained mixed solution was filtered through a membrane filter having a pore diameter of 0.20 ⁇ m to prepare a chemically amplified resist material (R-1).
  • Example 2 to 19 and Comparative Examples 1 to 6 The chemical amplification resist materials (R-2) to (R-25) and the reference resist material (R-2 ′) were prepared in the same manner as in Example 1 except that the components of the types and blending amounts shown in Table 6 were used. ) To (R-25 ′) were prepared. “-” In the table indicates that the corresponding component was not added.
  • E Oxi (PS) represents the oxidation potential of the sensitizer derived from the component (b)
  • E Red (PAG) represents the reduction potential of the [C1] compound
  • E Red ( Qu) represents the reduction potential of the [C2] compound
  • E * represents the energy required to excite the sensitizer derived from component (b).
  • ⁇ Formation of resist pattern> In the “Clean Track ACT-8” of Tokyo Electron Co., Ltd., after spin-coating the chemically amplified resist material prepared above on a silicon wafer, PB is performed at 110 ° C. for 60 seconds, and the resist material has an average thickness of 50 nm. A film was formed. Next, the resist material film is irradiated with an electron beam using a simple electron beam lithography apparatus (“HL800D” manufactured by Hitachi, Ltd., output 50 KeV, current density 5.0 A / cm 2 ). Patterning was performed.
  • a simple electron beam lithography apparatus (“HL800D” manufactured by Hitachi, Ltd., output 50 KeV, current density 5.0 A / cm 2 ). Patterning was performed.
  • a mask was used, and a line-and-space pattern (1L1S) composed of a line portion having a line width of 150 nm and a space portion having a spacing of 150 nm formed by adjacent line portions was used.
  • L1S line-and-space pattern
  • Optimum exposure amount (Eop) for forming a line-and-space pattern (1L1S) having a line width of 150 nm and a space portion having a space of 150 nm formed by adjacent line portions in a one-to-one line width. was measured.
  • the optimal exposure of the reference material is measured first, and then the optimal exposure of the evaluation material (the amount of acid diffusion control agent is increased compared to the reference material, and the sensitivity is low compared to the reference material without batch exposure)
  • the collective exposure amount that was equivalent to the reference material was measured.
  • the material whose collective exposure at this time is 1.0 J / cm 2 or less is “AA (very good)”, and the material which exceeds 1.0 J / cm 2 and is 2.0 J / cm 2 or less is “A (good) )”did.
  • a material having a collective exposure exceeding 2.0 J / cm 2 is not preferable in terms of process, and therefore a material exceeding 2.0 J / cm 2 is determined to be “B (defect)”.
  • Table 7 shows the evaluation results of sensitivity.
  • the nano edge roughness of the evaluation material is reduced by 10% or more compared to the nano edge roughness of the reference material was judged as “AA (particularly good)”, “A (good)” when it decreased by 5% or more and less than 10%, and “B (bad)” when the decrease was less than 5% or increased.
  • Table 7 shows the evaluation results of the nano edge roughness.
  • Example 1 As shown in Table 7, in Examples 1 to 19 containing the [C1] compound which is a radiation-sensitive acid generating compound and the [C2] compound which is a radiation-sensitive photodegradable base, 250 nm or less It was confirmed that high sensitivity and excellent lithography performance can be obtained when non-ionizing radiation having a wavelength of 1 is used as pattern exposure light.
  • Example 1, Example 6, Example 9, Example 12 and Example 15 in which the onium cation of the first compound and the onium cation of the second compound have the same structure are excellent in both sensitivity and lithography performance. It was.
  • ionizing radiation such as EUV light, electron beam, ion beam, or wavelength of 250 nm or less such as KrF excimer laser and ArF excimer laser is used.
  • the non-ionizing radiation as pattern exposure light, it is possible to obtain high sensitivity and excellent lithography performance.
  • the chemically amplified resist material can be suitably used for the resist pattern forming method.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials For Photolithography (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

Provided are: a chemically amplified resist material which can have high sensitivity and excellent lithographic performance; and a method for forming a resist pattern using the chemically amplified resist material. The chemically amplified resist material according to the present invention comprises (1) a polymer component which becomes soluble or insoluble in a developing solution by the action of an acid, (2) a component which can generate a radiation-sensitive sensitizer and an acid upon the exposure to light and (3) a component which has basicity relative to the acid generated from the component (2), wherein the component (2) contains a component (a) as mentioned below or any two or all of components (a) to (c) as mentioned below, the component (a) or the component (c) comprises a first compound having a radiation-sensitive acid generating group, and the component (3) contains a second compound that is a component (d) as mentioned below: (a) a radiation-sensitive acid-sensitizer generator; (b) a radiation-sensitive sensitizer generator; (c) a radiation-sensitive acid generator; and (d) a radiation-sensitive and photo-degradable base.

Description

化学増幅型レジスト材料及びレジストパターン形成方法Chemically amplified resist material and resist pattern forming method
本発明は、化学増幅型レジスト材料及びレジストパターン形成方法に関する。 The present invention relates to a chemically amplified resist material and a resist pattern forming method.
 次世代の半導体デバイスを製造するための要素技術の一つとして、EUV(極紫外線光)リソグラフィが注目されている。EUVリソグラフィは、露光光源として波長13.5nmのEUV光を利用するパターン形成技術である。EUVリソグラフィによれば、半導体デバイス製造プロセスの露光工程において、極めて微細なパターン(例えば20nm以下)を形成できることが実証されている。 EUV (extreme ultraviolet light) lithography has attracted attention as one of the elemental technologies for manufacturing next-generation semiconductor devices. EUV lithography is a pattern formation technique that uses EUV light having a wavelength of 13.5 nm as an exposure light source. According to EUV lithography, it has been demonstrated that an extremely fine pattern (for example, 20 nm or less) can be formed in the exposure step of the semiconductor device manufacturing process.
 しかし、現時点で開発されているEUV光源は出力が低いため、露光処理に長時間を要する。そのため、EUVリソグラフィは実用性に乏しいという不都合がある。この不都合に対し、感光性樹脂であるレジスト材料の感度を向上させる技術が開発されている(特開2002-174894号公報参照)。 However, the EUV light source currently being developed has a low output, so that the exposure process takes a long time. Therefore, EUV lithography has a disadvantage that it is not practical. In response to this inconvenience, a technique for improving the sensitivity of a resist material, which is a photosensitive resin, has been developed (see Japanese Patent Application Laid-Open No. 2002-174894).
特開2002-174894号公報JP 2002-174894 A
 しかしながら、上記技術におけるレジスト材料であってもEUV光に対する感度は不十分であり、またEUV光に対する感度を向上させると、ナノエッジラフネス等のリソグラフィ性能が低下し易いという不都合がある。この不都合は、照射光として電子線等を用いる場合にも同様に存在する。 However, even the resist material in the above technique has insufficient sensitivity to EUV light, and if the sensitivity to EUV light is improved, there is a disadvantage that lithography performance such as nano edge roughness tends to deteriorate. This inconvenience also exists when an electron beam or the like is used as irradiation light.
 本発明は以上のような事情に基づいてなされたものであり、その目的は、EUV光、電子線、イオンビーム等の電離放射線、又はKrFエキシマレーザー及びArFエキシマレーザー等の250nm以下の波長を有する非電離放射線をパターン露光光として用いた場合において高い感度及び優れたリソグラフィ性能を得ることが可能な化学増幅型レジスト材料及びこの化学増幅型レジスト材料を用いたレジストパターン形成方法を提供することにある。 The present invention has been made based on the circumstances as described above, and has an object of ionizing radiation such as EUV light, electron beam, ion beam, or a wavelength of 250 nm or less such as KrF excimer laser and ArF excimer laser. To provide a chemically amplified resist material capable of obtaining high sensitivity and excellent lithography performance when non-ionizing radiation is used as pattern exposure light, and a resist pattern forming method using this chemically amplified resist material. .
 上記課題を解決するためになされた発明は、(1)酸の作用により現像液に可溶又は不溶となる重合体成分と、(2)露光により感放射線性増感体及び酸を発生する成分と、(3)上記(2)成分が発生する酸に対して相対的に塩基性を有する成分とを含み、上記(2)成分が、下記(a)成分、下記(a)~(c)成分中の任意の2つの成分、又は下記(a)~(c)成分の全てを含有し、上記(a)成分又は(c)成分が、感放射線性酸発生基を有する第1化合物を有し、上記(3)成分が、下記(d)成分である第2化合物を含有する化学増幅型レジスト材料である。
 (a)250nm以下の波長を有する放射線である第1の放射線を照射し、250nmを超える波長を有する放射線である第2の放射線を照射しない場合に、酸と、上記第2の放射線を吸収する感放射線性増感体とを発生し、かつ上記第1の放射線を照射せず上記第2の放射線のみを照射した場合に上記酸及び感放射線性増感体を実質的に発生しない感放射線性酸-増感体発生剤。
 (b)上記第1の放射線を照射し、上記第2の放射線を照射しない場合に、上記第2の放射線を吸収する感放射線性増感体を発生し、かつ上記第1の放射線を照射せず上記第2の放射線のみを照射した場合に上記感放射線性増感体を実質的に発生しない感放射線性増感体発生剤。
 (c)上記第1の放射線を照射し、上記第2の放射線を照射しない場合に、酸を発生し、かつ上記第1の放射線を照射せず上記第2の放射線のみを照射した場合に上記酸を実質的に発生しない感放射線性酸発生剤。
 (d)上記第1の放射線を照射し、上記第2の放射線を照射しない場合、及び上記第1の放射線を照射した後、上記第2の放射線を照射した場合に、上記(2)成分が発生する酸に対する塩基性を失い、かつ上記第1の放射線を照射せず上記第2の放射線のみを照射した場合には上記(2)成分が発生する酸に対して塩基性を保持する感放射線性光崩壊性塩基。但し、上記感放射線性光崩壊塩基は下記条件(i)及び(ii)を満たす。
(i)下記式(x)で表される。
(ii)下記式(x)におけるAで表される1価のアニオンをノナフルオロブタンスルホン酸アニオンに置き換えた下記式(z)で表される化合物と、下記式(y)で表されるトリフェニルスルホニウムノナフルオロブタンスルホネートとを比較した場合の下記式(z)におけるMで表される1価のオニウムカチオンの還元電位は、トリフェニルスルホニウムカチオンの還元電位よりも高い。  
Figure JPOXMLDOC01-appb-C000005
(式(x)中、Aは1価のアニオンである。Mは、1価のオニウムカチオンである。
 式(z)中、Mは、式(x)と同義である。)
The invention made in order to solve the above problems includes (1) a polymer component that is soluble or insoluble in a developer by the action of an acid, and (2) a component that generates a radiation-sensitive sensitizer and an acid upon exposure. And (3) a component that is relatively basic with respect to the acid generated by the component (2), the component (2) is the following component (a), and the following components (a) to (c): Contains any two of the components, or all of the following components (a) to (c), and the component (a) or component (c) has a first compound having a radiation-sensitive acid generating group. The component (3) is a chemically amplified resist material containing the second compound as the component (d) below.
(A) When the first radiation that is radiation having a wavelength of 250 nm or less is irradiated and the second radiation that is radiation having a wavelength exceeding 250 nm is not irradiated, the acid and the second radiation are absorbed. A radiation-sensitive sensitizer and, when only the second radiation is irradiated without irradiation with the first radiation, the acid and radiation-sensitive sensitizer are not substantially generated. Acid-sensitizer generator.
(B) When the first radiation is irradiated and the second radiation is not irradiated, a radiation-sensitive sensitizer that absorbs the second radiation is generated, and the first radiation is irradiated. A radiation-sensitive sensitizer generating agent that does not substantially generate the radiation-sensitive sensitizer when only the second radiation is irradiated.
(C) When the first radiation is irradiated and the second radiation is not irradiated, an acid is generated, and the first radiation is not irradiated and only the second radiation is irradiated. A radiation-sensitive acid generator that does not substantially generate acid.
(D) When the first radiation is irradiated and the second radiation is not irradiated, and when the second radiation is irradiated after the first radiation is irradiated, the component (2) is Radiation sensitivity that retains basicity with respect to the acid generated by the component (2) when the basic acid with respect to the generated acid is lost and only the second radiation is irradiated without irradiation with the first radiation. Photodegradable base. However, the radiation-sensitive photodegradable base satisfies the following conditions (i) and (ii).
(I) It is represented by the following formula (x).
(Ii) a compound represented by the following formula (z) in which the monovalent anion represented by A in the following formula (x) is replaced with a nonafluorobutanesulfonate anion, and the following formula (y) When compared with triphenylsulfonium nonafluorobutanesulfonate, the reduction potential of the monovalent onium cation represented by M + in the following formula (z) is higher than the reduction potential of the triphenylsulfonium cation.
Figure JPOXMLDOC01-appb-C000005
(In formula (x), A is a monovalent anion. M + is a monovalent onium cation.
In formula (z), M + has the same meaning as in formula (x). )
 上記課題を解決するためになされた別の発明は、
 (1)酸の作用により現像液に可溶又は不溶となる重合体成分と、
 (2)露光により感放射線性増感体及び酸を発生する成分と、
 (3)上記(2)成分が発生する酸に対して相対的に塩基性を有する成分と
 を含み、
 上記(2)成分及び上記(3)成分の少なくともいずれかを上記(1)重合体成分の重合体の構造単位として含み、
 上記(2)成分が、下記(a)成分、下記(a)~(c)成分中の任意の2つの成分、又は下記(a)~(c)成分の全てを含有し、
 上記(a)成分又は上記(c)成分が、感放射線性酸発生基を有する第1化合物を有し、
 上記(3)成分が、下記(d)成分である第2化合物を含有する化学増幅型レジスト材料。
(a)250nm以下の波長を有する放射線である第1の放射線を照射し、250nmを超える波長を有する放射線である第2の放射線を照射しない場合に、酸と、上記第2の放射線を吸収する感放射線性増感体とを発生し、かつ上記第1の放射線を照射せず上記第2の放射線のみを照射した場合に上記酸及び感放射線性増感体を実質的に発生しない感放射線性酸-増感体発生剤。
(b)上記第1の放射線を照射し、上記第2の放射線を照射しない場合に、上記第2の放射線を吸収する感放射線性増感体を発生し、かつ上記第1の放射線を照射せず上記第2の放射線のみを照射した場合に上記感放射線性増感体を実質的に発生しない感放射線性増感体発生剤。
(c)上記第1の放射線を照射し、上記第2の放射線を照射しない場合に、酸を発生し、かつ上記第1の放射線を照射せず上記第2の放射線のみを照射した場合に上記酸を実質的に発生しない感放射線性酸発生剤。
(d)上記第1の放射線を照射し、上記第2の放射線を照射しない場合、及び上記第1の放射線を照射した後、上記第2の放射線を照射した場合に、上記(2)成分より発生する酸に対する塩基性を失い、かつ上記第1の放射線を照射せず上記第2の放射線のみを照射した場合には上記(2)成分より発生する酸に対して塩基性を保持する感放射線性光崩壊性塩基。但し、上記感放射線性光崩壊塩基は下記条件(i)並びに(ii)又は(ii)を満たす。
(i)下記式(x)で表され、下記式(x)におけるAで表される1価のアニオンをノナフルオロブタンスルホン酸アニオンに置き換えた下記式(z)で表される化合物と、下記式(y)で表されるトリフェニルスルホニウムノナフルオロブタンスルホネートとを比較した場合の下記式(z)におけるMで表される1価のオニウムカチオンの還元電位は、トリフェニルスルホニウムカチオンの還元電位よりも高い。
(ii)下記式(x’)で表され、下記式(x’)におけるAで表される1価のアニオンを含む1価の基をオクタフルオロブタンスルホネート基に置き換えた上記式(z’)で表される基と、下記式(y’)で表されるトリフェニルスルホニウムオクタフルオロブタンスルホネート基とを比較した場合の下記式(z’)におけるMで表される1価のオニウムカチオンの還元電位は、トリフェニルスルホニウムカチオンの還元電位よりも高い。
Figure JPOXMLDOC01-appb-C000006
(式(x)中、Aは1価のアニオンである。Mは、1価のオニウムカチオンである。
 式(z)中、Mは、式(x)と同義である。
 式(x’)中、A’は、1価のアニオンを含む1価の基である。Mは、式(x)と同義である。*は、重合体に結合する部位を示す。
 式(y’)中、*は、式(x’)と同義である。
 式(z’)中、Mは、式(x)と同義である。*は、式(x’)と同義である。)
Another invention made to solve the above problems is as follows:
(1) a polymer component that becomes soluble or insoluble in a developer by the action of an acid;
(2) a component that generates a radiation-sensitive sensitizer and an acid upon exposure;
(3) a component that is relatively basic to the acid generated by the component (2), and
Including at least one of the component (2) and the component (3) as a structural unit of the polymer of the polymer component (1),
The component (2) contains the following component (a), any two components in the following components (a) to (c), or all of the following components (a) to (c):
The component (a) or the component (c) has a first compound having a radiation-sensitive acid generating group,
A chemically amplified resist material wherein the component (3) contains a second compound which is the following component (d).
(A) When the first radiation that is radiation having a wavelength of 250 nm or less is irradiated and the second radiation that is radiation having a wavelength exceeding 250 nm is not irradiated, the acid and the second radiation are absorbed. A radiation-sensitive sensitizer and, when only the second radiation is irradiated without irradiation with the first radiation, the acid and radiation-sensitive sensitizer are not substantially generated. Acid-sensitizer generator.
(B) When the first radiation is irradiated and the second radiation is not irradiated, a radiation-sensitive sensitizer that absorbs the second radiation is generated, and the first radiation is irradiated. A radiation-sensitive sensitizer generating agent that does not substantially generate the radiation-sensitive sensitizer when only the second radiation is irradiated.
(C) When the first radiation is irradiated and the second radiation is not irradiated, an acid is generated, and the first radiation is not irradiated and only the second radiation is irradiated. A radiation-sensitive acid generator that does not substantially generate acid.
(D) When the first radiation is irradiated and the second radiation is not irradiated, and when the second radiation is irradiated after the first radiation is irradiated, the component (2) Radiation sensitivity that retains basicity with respect to the acid generated from the component (2) when the basic acid with respect to the acid generated is lost and only the second radiation is irradiated without irradiation with the first radiation. Photodegradable base. However, the radiation-sensitive photodegradable base satisfies the following conditions (i) and (ii) or (ii).
(I) a compound represented by the following formula (x) and represented by the following formula (z) in which the monovalent anion represented by A in the following formula (x) is replaced with a nonafluorobutanesulfonate anion; When the triphenylsulfonium nonafluorobutanesulfonate represented by the following formula (y) is compared, the reduction potential of the monovalent onium cation represented by M + in the following formula (z) is the reduction of the triphenylsulfonium cation. Higher than the potential.
(Ii) The above formula (z ′) in which a monovalent group containing a monovalent anion represented by A in the following formula (x ′) is replaced with an octafluorobutanesulfonate group. ) And a triphenylsulfonium octafluorobutanesulfonate group represented by the following formula (y ′) and a monovalent onium cation represented by M + in the following formula (z ′) The reduction potential of is higher than the reduction potential of the triphenylsulfonium cation.
Figure JPOXMLDOC01-appb-C000006
(In formula (x), A is a monovalent anion. M + is a monovalent onium cation.
In formula (z), M + has the same meaning as in formula (x).
', A represents the formula (x)' - is a monovalent group comprising a monovalent anion. M + is synonymous with the formula (x). * Shows the site | part couple | bonded with a polymer.
In the formula (y ′), * is synonymous with the formula (x ′).
In formula (z ′), M + has the same meaning as in formula (x). * Is synonymous with the formula (x ′). )
 また、上記課題を解決するためになされた別の発明は、基板の少なくとも一方の面に当該化学増幅型レジスト材料を使用してレジスト材料膜を形成する膜形成工程と、上記レジスト材料膜に250nm以下の波長を有する放射線を照射するパターン露光工程と、上記パターン露光工程後の上記レジスト材料膜に250nmを超える波長を有する放射線を照射する一括露光工程と、上記一括露光工程後の上記レジスト材料膜を加熱するベーク工程と、上記ベーク工程後の上記レジスト材料膜を現像液に接触させる現像工程とを備えるレジストパターン形成方法である。 Further, another invention made to solve the above problems includes a film formation step of forming a resist material film on at least one surface of a substrate using the chemically amplified resist material, and a 250 nm thickness on the resist material film. A pattern exposure step of irradiating radiation having the following wavelengths, a batch exposure step of irradiating the resist material film after the pattern exposure step with radiation having a wavelength exceeding 250 nm, and the resist material film after the batch exposure step A resist pattern forming method comprising: a baking process for heating the resist film; and a developing process for bringing the resist material film after the baking process into contact with a developer.
 また、上記課題を解決するためになされた別の発明は、
 (1)酸の作用により現像液に可溶又は不溶となる重合体成分と、
 (2)露光により感放射線性増感体及び酸を発生する成分と、
 (3)上記(2)成分が発生する酸に対して相対的に塩基性を有する成分と
 を含み、
 上記(2)成分が、下記(a)成分、下記(a)~(c)成分中の任意の2つの成分、又は下記(a)~(c)成分の全てを含有し、
 上記(a)成分又は(c)成分が、感放射線性酸発生基を有する第1化合物を有し、
 上記(3)成分が、下記(d)成分である第2化合物を含有する化学増幅型レジスト材料。
 (a)250nm以下の波長を有する放射線である第1の放射線を照射し、250nmを超える波長を有する放射線である第2の放射線を照射しない場合に、酸と、上記第2の放射線を吸収する感放射線性増感体とを発生し、かつ上記第1の放射線を照射せず上記第2の放射線のみを照射した場合に上記酸及び感放射線性増感体を実質的に発生しない感放射線性酸-増感体発生剤。
 (b)上記第1の放射線を照射し、上記第2の放射線を照射しない場合に、上記第2の放射線を吸収する感放射線性増感体を発生し、かつ上記第1の放射線を照射せず上記第2の放射線のみを照射した場合に上記感放射線性増感体を実質的に発生しない感放射線性増感体発生剤。
 (c)上記第1の放射線を照射し、上記第2の放射線を照射しない場合に、酸を発生し、かつ上記第1の放射線を照射せず上記第2の放射線のみを照射した場合に上記酸を実質的に発生しない感放射線性酸発生剤。
 (d)上記第1の放射線を照射し、上記第2の放射線を照射しない場合、及び上記第1の放射線を照射した後、上記第2の放射線を照射した場合に、上記(2)成分が発生する酸に対する塩基性を失い、かつ上記第1の放射線を照射せず上記第2の放射線のみを照射した場合には上記(2)成分が発生する酸に対して塩基性を保持する感放射線性光崩壊性塩基。但し、上記感放射線性光崩壊塩基は、下記式(x)で表される化合物であり、下記式(x)におけるMの還元電位は、トリフェニルスルホニウムカチオンの還元電位よりも高い。
Figure JPOXMLDOC01-appb-C000007
(式(x)中、Aは1価のアニオンである。Mは、1価のオニウムカチオンである。
Moreover, another invention made in order to solve the said subject is:
(1) a polymer component that becomes soluble or insoluble in a developer by the action of an acid;
(2) a component that generates a radiation-sensitive sensitizer and an acid upon exposure;
(3) a component that is relatively basic to the acid generated by the component (2), and
The component (2) contains the following component (a), any two components in the following components (a) to (c), or all of the following components (a) to (c):
The component (a) or the component (c) has a first compound having a radiation-sensitive acid generating group,
A chemically amplified resist material wherein the component (3) contains a second compound which is the following component (d).
(A) When the first radiation that is radiation having a wavelength of 250 nm or less is irradiated and the second radiation that is radiation having a wavelength exceeding 250 nm is not irradiated, the acid and the second radiation are absorbed. A radiation-sensitive sensitizer and, when only the second radiation is irradiated without irradiation with the first radiation, the acid and radiation-sensitive sensitizer are not substantially generated. Acid-sensitizer generator.
(B) When the first radiation is irradiated and the second radiation is not irradiated, a radiation-sensitive sensitizer that absorbs the second radiation is generated, and the first radiation is irradiated. A radiation-sensitive sensitizer generating agent that does not substantially generate the radiation-sensitive sensitizer when only the second radiation is irradiated.
(C) When the first radiation is irradiated and the second radiation is not irradiated, an acid is generated, and the first radiation is not irradiated and only the second radiation is irradiated. A radiation-sensitive acid generator that does not substantially generate acid.
(D) When the first radiation is irradiated and the second radiation is not irradiated, and when the second radiation is irradiated after the first radiation is irradiated, the component (2) is Radiation sensitivity that retains basicity with respect to the acid generated by the component (2) when the basic acid with respect to the generated acid is lost and only the second radiation is irradiated without irradiation with the first radiation. Photodegradable base. However, the radiation-sensitive photodegradable base is a compound represented by the following formula (x), and the reduction potential of M + in the following formula (x) is higher than the reduction potential of the triphenylsulfonium cation.
Figure JPOXMLDOC01-appb-C000007
(In formula (x), A is a monovalent anion. M + is a monovalent onium cation.
 また、上記課題を解決するためになされた別の発明は、
 (1)酸の作用により現像液に可溶又は不溶となる重合体成分と、
 (2)露光により感放射線性増感体及び酸を発生する成分と、
 (3)上記(2)成分が発生する酸に対して相対的に塩基性を有する成分と
 を含み、
 上記(2)成分が、下記(a)成分、下記(a)~(c)成分中の任意の2つの成分、又は下記(a)~(c)成分の全てを含有し、
 上記(a)成分又は(c)成分が、感放射線性酸発生基を有する第1化合物を有し、
 上記(3)成分が、下記(d)成分である第2化合物を含有する化学増幅型レジスト材料。
 (a)250nm以下の波長を有する放射線である第1の放射線を照射し、250nmを超える波長を有する放射線である第2の放射線を照射しない場合に、酸と、上記第2の放射線を吸収する感放射線性増感体とを発生し、かつ上記第1の放射線を照射せず上記第2の放射線のみを照射した場合に上記酸及び感放射線性増感体を実質的に発生しない感放射線性酸-増感体発生剤。
 (b)上記第1の放射線を照射し、上記第2の放射線を照射しない場合に、上記第2の放射線を吸収する感放射線性増感体を発生し、かつ上記第1の放射線を照射せず上記第2の放射線のみを照射した場合に上記感放射線性増感体を実質的に発生しない感放射線性増感体発生剤。
 (c)上記第1の放射線を照射し、上記第2の放射線を照射しない場合に、酸を発生し、かつ上記第1の放射線を照射せず上記第2の放射線のみを照射した場合に上記酸を実質的に発生しない感放射線性酸発生剤。
 (d)上記第1の放射線を照射し、上記第2の放射線を照射しない場合、及び上記第1の放射線を照射した後、上記第2の放射線を照射した場合に、上記(2)成分が発生する酸に対する塩基性を失い、かつ上記第1の放射線を照射せず上記第2の放射線のみを照射した場合には上記(2)成分が発生する酸に対して塩基性を保持する感放射線性光崩壊性塩基。但し、上記感放射線性光崩壊塩基は下記条件(i)及び(ii)を満たす。
(i)下記式(x)で表される化合物の場合、下記式(x)におけるMの還元電位は、トリフェニルスルホニウムカチオンの還元電位よりも高い。
(ii)下記式(x’)で表される基の場合、下記式(x’)におけるMで表される1価のオニウムカチオンの還元電位は、トリフェニルスルホニウムカチオンの還元電位よりも高い。
Figure JPOXMLDOC01-appb-C000008
(式(x)中、Aは1価のアニオンである。Mは、1価のオニウムカチオンである。
 式(x’)中、A’は、1価のアニオンを含む1価の基である。Mは、式(x)と同義である。*は、重合体に結合する部位を示す。)
Moreover, another invention made in order to solve the said subject is:
(1) a polymer component that becomes soluble or insoluble in a developer by the action of an acid;
(2) a component that generates a radiation-sensitive sensitizer and an acid upon exposure;
(3) a component that is relatively basic to the acid generated by the component (2), and
The component (2) contains the following component (a), any two components in the following components (a) to (c), or all of the following components (a) to (c):
The component (a) or the component (c) has a first compound having a radiation-sensitive acid generating group,
A chemically amplified resist material wherein the component (3) contains a second compound which is the following component (d).
(A) When the first radiation that is radiation having a wavelength of 250 nm or less is irradiated and the second radiation that is radiation having a wavelength exceeding 250 nm is not irradiated, the acid and the second radiation are absorbed. A radiation-sensitive sensitizer and, when only the second radiation is irradiated without irradiation with the first radiation, the acid and radiation-sensitive sensitizer are not substantially generated. Acid-sensitizer generator.
(B) When the first radiation is irradiated and the second radiation is not irradiated, a radiation-sensitive sensitizer that absorbs the second radiation is generated, and the first radiation is irradiated. A radiation-sensitive sensitizer generating agent that does not substantially generate the radiation-sensitive sensitizer when only the second radiation is irradiated.
(C) When the first radiation is irradiated and the second radiation is not irradiated, an acid is generated, and the first radiation is not irradiated and only the second radiation is irradiated. A radiation-sensitive acid generator that does not substantially generate acid.
(D) When the first radiation is irradiated and the second radiation is not irradiated, and when the second radiation is irradiated after the first radiation is irradiated, the component (2) is Radiation sensitivity that retains basicity with respect to the acid generated by the component (2) when the basic acid with respect to the generated acid is lost and only the second radiation is irradiated without irradiation with the first radiation. Photodegradable base. However, the radiation-sensitive photodegradable base satisfies the following conditions (i) and (ii).
(I) In the case of a compound represented by the following formula (x), the reduction potential of M + in the following formula (x) is higher than the reduction potential of the triphenylsulfonium cation.
(Ii) In the case of a group represented by the following formula (x ′), the reduction potential of the monovalent onium cation represented by M + in the following formula (x ′) is higher than the reduction potential of the triphenylsulfonium cation. .
Figure JPOXMLDOC01-appb-C000008
(In formula (x), A is a monovalent anion. M + is a monovalent onium cation.
', A represents the formula (x)' - is a monovalent group comprising a monovalent anion. M + is synonymous with the formula (x). * Shows the site | part couple | bonded with a polymer. )
 ここで、「第1の放射線を照射せず第2の放射線のみを照射した場合に上記酸及び感放射線性増感体が実質的に発生しない」、「第1の放射線を照射せず第2の放射線のみを照射した場合に上記感放射線性増感体を実質的に発生しない」及び「第1の放射線を照射せず第2の放射線のみを照射した場合に上記酸を実質的に発生しない」とは、第2の放射線の照射によっては酸や感放射線性増感体が発生しないか、又は第2の放射線の照射によって酸や感放射線性増感体が発生した場合であっても、第1の放射線を照射するパターン露光における露光部と非露光部との間における酸や感放射線性増感体の濃度の差をパターン形成可能な程度の大きさに維持できる程度に第2の放射線による上記パターン露光における非露光部の酸や感放射線性増感体の発生量が少なく、その結果、現像後に上記パターン露光における露光部又は非露光部のいずれかのみを現像液に溶解できる程度に酸や感放射線性増感体の発生量が少ないことを意味する。 Here, “when the first radiation is not irradiated and only the second radiation is irradiated, the acid and the radiation-sensitive sensitizer are not substantially generated”, “the first radiation is not irradiated and the second radiation is not irradiated. The radiation-sensitive sensitizer is not substantially generated when only the radiation is irradiated "and" the acid is not substantially generated when only the second radiation is irradiated without irradiating the first radiation ". "When an acid or radiation-sensitive sensitizer is not generated by irradiation with the second radiation, or even when an acid or radiation-sensitive sensitizer is generated by irradiation with the second radiation, The second radiation to such an extent that the difference in the concentration of the acid and the radiation-sensitive sensitizer between the exposed portion and the non-exposed portion in the pattern exposure for irradiating the first radiation can be maintained at a size that allows pattern formation. Acid and radiation sensitivity of non-exposed areas in the above pattern exposure by The amount of sensitizer generated is small, and as a result, the amount of acid or radiation-sensitive sensitizer generated is small enough to dissolve only the exposed or non-exposed portion of the pattern exposure in the developer after development. means.
 本発明の化学増幅型レジスト材料は、EUV光、電子線、イオンビーム等の電離放射線、又はKrFエキシマレーザー及びArFエキシマレーザー等の250nm以下の波長を有する非電離放射線をパターン露光光として用いた場合における高い感度及び優れたリソグラフィ性能を得ることが可能である。また、当該化学増幅型レジスト材料は、当該レジストパターン形成方法に好適に用いることができる。 The chemically amplified resist material of the present invention uses ionizing radiation such as EUV light, electron beam, ion beam, or non-ionizing radiation having a wavelength of 250 nm or less, such as KrF excimer laser and ArF excimer laser, as pattern exposure light. High sensitivity and excellent lithographic performance can be obtained. Further, the chemically amplified resist material can be suitably used for the resist pattern forming method.
本発明に係る化学増幅型レジスト材料を使用したレジストパターン形成方法の一実施形態を示す工程図である。It is process drawing which shows one Embodiment of the resist pattern formation method using the chemically amplified resist material which concerns on this invention. 従来の化学増幅型レジスト材料を使用したレジストパターン形成方法の一例を示す工程図である。It is process drawing which shows an example of the resist pattern formation method using the conventional chemically amplified resist material. 本発明に係る化学増幅型レジスト材料を使用したレジストパターン形成方法の別の実施形態を示す工程図である。It is process drawing which shows another embodiment of the resist pattern formation method using the chemically amplified resist material which concerns on this invention. レジスト材料膜のパターン露光部の吸光度と、未露光部の吸光度とをグラフとして示す概念図である。It is a conceptual diagram which shows the light absorbency of the pattern exposure part of a resist material film, and the light absorbency of an unexposed part as a graph. (a)は従来の化学増幅型レジスト材料を使用したレジストパターン形成方法による酸濃度分布をグラフとして示す概念図である。(b)は本実施形態に係る化学増幅型レジスト材料を使用したレジストパターン形成方法による感放射線性増感体濃度分布及び酸濃度分布をグラフとして示す概念図である。(A) is a conceptual diagram which shows the acid concentration distribution by the resist pattern formation method using the conventional chemically amplified resist material as a graph. (B) is a conceptual diagram showing the radiation-sensitive sensitizer concentration distribution and acid concentration distribution as a graph by the resist pattern forming method using the chemically amplified resist material according to the present embodiment. 本発明の一実施形態に係る半導体デバイスの製造工程の一例を説明する断面図であり、(a)はレジストパターン形成工程を示す断面図であり、(b)はエッチング工程を示す断面図であり、(c)はレジストパターン除去工程を示す断面図である。It is sectional drawing explaining an example of the manufacturing process of the semiconductor device which concerns on one Embodiment of this invention, (a) is sectional drawing which shows a resist pattern formation process, (b) is sectional drawing which shows an etching process. (C) is sectional drawing which shows a resist pattern removal process. ラインパターンを上方から見た際の模式的な平面図である。It is a typical top view at the time of seeing a line pattern from the upper part. ラインパターン形状の模式的な断面図である。It is typical sectional drawing of a line pattern shape.
 以下、本発明の実施形態について詳細に説明する。なお、本発明は以下の実施形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail. In addition, this invention is not limited to the following embodiment.
<化学増幅型レジスト材料>
 当該化学増幅型レジスト材料は、(1)酸の作用により現像液に可溶又は不溶となる重合体成分と、(2)露光により感放射線性増感体及び酸を発生する成分と、(3)上記(2)成分が発生する酸に対して相対的に塩基性を有する成分とを含む。
<Chemically amplified resist material>
The chemically amplified resist material comprises (1) a polymer component that is soluble or insoluble in a developer by the action of an acid, (2) a component that generates a radiation-sensitive sensitizer and an acid upon exposure, (3 And (2) a component having a basicity relative to the acid generated by the component.
 当該化学増幅型レジスト材料は、(1)重合体成分、(2)成分及び(3)成分以外に、通常溶媒を含み、(1)重合体成分以外の重合体成分、酸拡散制御剤、ラジカル捕捉剤、架橋剤、その他の添加剤等をさらに含んでもよい。 The chemically amplified resist material contains a normal solvent in addition to (1) the polymer component, (2) component and (3) component, and (1) a polymer component other than the polymer component, an acid diffusion controller, a radical It may further contain a scavenger, a crosslinking agent, other additives and the like.
 上記(2)成分は、後述する(a)成分、(a)~(c)成分中の任意の2つの成分、又は(a)~(c)成分の全てを含有する。また、(a)成分又は(c)成分が、感放射線性酸発生基を有する第1化合物を有し、上記(3)成分が、後述する(d)成分である第2化合物を含有する。 The component (2) includes any of the components (a), (a) to (c) described later, or any two components (a) to (c). Moreover, (a) component or (c) component has the 1st compound which has a radiation sensitive acid generating group, and the said (3) component contains the 2nd compound which is (d) component mentioned later.
 上記(2)成分及び上記(3)成分の少なくともいずれかは、上記(1)重合体成分の重合体の構造単位として含まれていてもよく、(1)重合体成分とは異なる成分であってもよい。この場合、(2)成分、(3)成分又はこれらの組み合わせの一部が(1)重合体成分と異なる成分であっても、(2)成分、(3)成分又はこれらの組み合わせの全部が(1)重合体成分と異なる成分であってもよい。 At least one of the component (2) and the component (3) may be included as a structural unit of the polymer of the polymer component (1), and is a component different from the polymer component (1). May be. In this case, even if a part of the component (2), the component (3) or the combination thereof is a component different from the (1) polymer component, the component (2), the component (3) or the combination thereof is all (1) A component different from the polymer component may be used.
 第1の放射線の波長の上限としては、250nmが好ましく、200nmがより好ましい。一方、第2の放射線の波長の下限としては、250nmを超えることが好ましく、300nmがより好ましい。第2の放射線の波長の上限としては、500nmが好ましく、400nmがより好ましい。 The upper limit of the wavelength of the first radiation is preferably 250 nm, and more preferably 200 nm. On the other hand, the lower limit of the wavelength of the second radiation is preferably more than 250 nm, and more preferably 300 nm. The upper limit of the wavelength of the second radiation is preferably 500 nm, and more preferably 400 nm.
[(1)重合体成分及び(1)重合体成分以外の重合体成分]
 (1)重合体成分は、酸の作用により現像液に可溶又は不溶となる成分である。(1)重合体成分としては、例えば酸の作用により極性基を生じる基(以下、「酸解離性基」ともいう)を含む構造単位(以下、「構造単位(I)」ともいう)を有する第1重合体(以下、「[A]重合体」ともいう)等が挙げられる。また、(1)重合体成分以外の重合体成分として、構造単位(I)を含まない第2重合体(以下、「[B]重合体」ともいう)をさらに含んでもよい。
[(1) Polymer component and (1) Polymer component other than polymer component]
(1) The polymer component is a component that becomes soluble or insoluble in the developer by the action of an acid. (1) The polymer component has, for example, a structural unit (hereinafter also referred to as “structural unit (I)”) containing a group that generates a polar group by the action of an acid (hereinafter also referred to as “acid-dissociable group”). Examples thereof include a first polymer (hereinafter also referred to as “[A] polymer”). Further, (1) a polymer component other than the polymer component may further include a second polymer not containing the structural unit (I) (hereinafter also referred to as “[B] polymer”).
 [A]重合体又は[B]重合体は、フッ素原子を含む構造単位(以下、「構造単位(II)ともいう」、及びフェノール性水酸基を含む構造単位(III)及びラクトン構造、環状カーボネート構造、スルトン構造又はこれらの組み合わせを含む構造単位(IV)をさらに有してもよく、構造単位(I)~構造単位(IV)以外のその他の構造単位をさらに有してもよい。 [A] polymer or [B] polymer is a structural unit containing a fluorine atom (hereinafter also referred to as “structural unit (II)”, a structural unit (III) containing a phenolic hydroxyl group, a lactone structure, a cyclic carbonate structure. , May further have a structural unit (IV) containing a sultone structure or a combination thereof, and may further have other structural units other than the structural unit (I) to the structural unit (IV).
[[A]重合体及び[B]重合体]
 [A]重合体は、構造単位(I)を有する重合体である。[A]重合体は、構造単位(II)~構造単位(IV)や、その他の構造単位をさらに有してもよい。[B]重合体は、[A]重合体と異なる重合体である。[B]重合体は、構造単位(II)を有するとよく、構造単位(III)及び構造単位(IV)や、構造単位(III)~構造単位(IV)以外のその他の構造単位を有してもよい。
[[A] polymer and [B] polymer]
[A] The polymer is a polymer having the structural unit (I). [A] The polymer may further have structural units (II) to (IV) and other structural units. [B] The polymer is a polymer different from the [A] polymer. [B] The polymer preferably has structural unit (II), and has structural unit (III) and structural unit (IV), and other structural units other than structural unit (III) to structural unit (IV). May be.
(構造単位(I))
 構造単位(I)は、酸解離性基を含む構造単位である。[A]重合体が構造単位(I)を有することで、当該化学増幅型レジスト材料の感度及びリソグラフィ性能をより向上させることができる。構造単位(I)としては、例えば下記式(a-1)で表される構造単位(以下、「構造単位(I-1)」ともいう)、下記式(a-2)で表される構造単位(以下、「構造単位(I-2)」ともいう)等が挙げられる。下記式(a-1)及び(a-2)中、-CRA2A3A4及び-CRA6A7A8で表される基は酸解離性基である。
(Structural unit (I))
The structural unit (I) is a structural unit containing an acid dissociable group. [A] Since the polymer has the structural unit (I), the sensitivity and lithography performance of the chemically amplified resist material can be further improved. Examples of the structural unit (I) include a structural unit represented by the following formula (a-1) (hereinafter also referred to as “structural unit (I-1)”) and a structure represented by the following formula (a-2). A unit (hereinafter also referred to as “structural unit (I-2)”). In the following formulas (a-1) and (a-2), groups represented by —CR A2 R A3 R A4 and —CR A6 R A7 R A8 are acid-dissociable groups.
 上記式(a-1)中、RA1は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。RA2は、炭素数1~20の1価の炭化水素基である。RA3及びRA4は、それぞれ独立して炭素数1~20の1価の炭化水素基であるか、又はこれらの基が互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の環構造を表す。
 上記式(a-2)中、RA5は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。RA6は、水素原子又は炭素数1~20の1価の炭化水素基又は炭素数1~20の1価のオキシ炭化水素基である。RA7及びRA8は、それぞれ独立して、炭素数1~20の1価の炭化水素基又は炭素数1~20の1価のオキシ炭化水素基である。Lは、単結合、-O-、-COO-又は-CONH-である。
In the above formula (a-1), R A1 represents a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group. R A2 is a monovalent hydrocarbon group having 1 to 20 carbon atoms. R A3 and R A4 each independently represent a monovalent hydrocarbon group having 1 to 20 carbon atoms, or have 3 to 20 ring members composed of these groups together with the carbon atom to which they are bonded. Represents the ring structure of
In the above formula (a-2), R A5 represents a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group. R A6 is a hydrogen atom, a monovalent hydrocarbon group having 1 to 20 carbon atoms, or a monovalent oxyhydrocarbon group having 1 to 20 carbon atoms. R A7 and R A8 are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms or a monovalent oxyhydrocarbon group having 1 to 20 carbon atoms. L A is a single bond, —O—, —COO— or —CONH—.
 上記RA2、RA6、RA7及びRA8で表される炭素数1~20の1価の炭化水素基としては、例えば炭素数1~30の鎖状炭化水素基、炭素数3~30の脂環式炭化水素基、炭素数6~30の芳香族炭化水素基等が挙げられる。 Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R A2 , R A6 , R A7 and R A8 include, for example, a chain hydrocarbon group having 1 to 30 carbon atoms, and a group having 3 to 30 carbon atoms. Examples thereof include an alicyclic hydrocarbon group and an aromatic hydrocarbon group having 6 to 30 carbon atoms.
 上記炭素数1~30の1価の鎖状炭化水素基としては、例えば
 メチル基、エチル基、n-プロピル基、i-プロピル基等のアルキル基;
 エテニル基、プロペニル基、ブテニル基等のアルケニル基;
 エチニル基、プロピニル基、ブチニル基等のアルキニル基などが挙げられる。
Examples of the monovalent chain hydrocarbon group having 1 to 30 carbon atoms include alkyl groups such as a methyl group, an ethyl group, an n-propyl group, and an i-propyl group;
An alkenyl group such as an ethenyl group, a propenyl group, a butenyl group;
Examples thereof include alkynyl groups such as ethynyl group, propynyl group and butynyl group.
 上記炭素数3~30の1価の脂環式炭化水素基としては、例えば
 シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロペンチル基、シクロオクチル基、シクロデシル基、シクロドデシル基等の飽和単環炭化水素基;
 シクロプロペニル基、シクロブテニル基、シクロペンテニル基、シクロヘキセニル基、シクロオクテニル基、シクロデセニル基等の不飽和単環炭化水素基;
 ビシクロ[2.2.1]ヘプタニル基、ビシクロ[2.2.2]オクタニル基、トリシクロ[3.3.1.13,7]デカニル基等の飽和多環炭化水素基;
 ビシクロ[2.2.1]ヘプテニル基、ビシクロ[2.2.2]オクテニル基等の不飽和多環炭化水素基などが挙げられる。
Examples of the monovalent alicyclic hydrocarbon group having 3 to 30 carbon atoms include a saturated simple group such as cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cyclopentyl group, cyclooctyl group, cyclodecyl group, and cyclododecyl group. A cyclic hydrocarbon group;
Unsaturated monocyclic hydrocarbon groups such as cyclopropenyl group, cyclobutenyl group, cyclopentenyl group, cyclohexenyl group, cyclooctenyl group, cyclodecenyl group;
Saturated polycyclic hydrocarbon groups such as bicyclo [2.2.1] heptanyl group, bicyclo [2.2.2] octanyl group, tricyclo [3.3.1.1 3,7 ] decanyl group;
And unsaturated polycyclic hydrocarbon groups such as a bicyclo [2.2.1] heptenyl group and a bicyclo [2.2.2] octenyl group.
 上記炭素数6~30の1価の芳香族炭化水素基としては、例えば
 フェニル基、トリル基、キシリル基、メシチル基、ナフチル基、メチルナフチル基、アントリル基、メチルアントリル基等のアリール基;
 ベンジル基、フェネチル基、ナフチルメチル基、アントリルメチル基等のアラルキル基などが挙げられる。
Examples of the monovalent aromatic hydrocarbon group having 6 to 30 carbon atoms include aryl groups such as a phenyl group, a tolyl group, a xylyl group, a mesityl group, a naphthyl group, a methylnaphthyl group, an anthryl group, and a methylanthryl group;
Examples thereof include aralkyl groups such as benzyl group, phenethyl group, naphthylmethyl group and anthrylmethyl group.
 上記RA2としては、鎖状炭化水素基及びシクロアルキル基が好ましく、アルキル基及びシクロアルキル基がより好ましく、メチル基、エチル基、プロピル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基及びアダマンチル基がさらに好ましい。 R A2 is preferably a chain hydrocarbon group and a cycloalkyl group, more preferably an alkyl group and a cycloalkyl group, and a methyl group, an ethyl group, a propyl group, a cyclopentyl group, a cyclohexyl group, a cyclooctyl group, and an adamantyl group. Further preferred.
 上記RA3並びにRA4で表される炭素数1~20の1価の鎖状炭化水素基及び炭素数3~20の1価の脂環式炭化水素基としては、例えば上記RA2、RA6、RA7及びRA8で例示したものと同様の基等が挙げられる。 Examples of the monovalent chain hydrocarbon group having 1 to 20 carbon atoms and the monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms represented by R A3 and R A4 include the above R A2 and R A6. , Groups similar to those exemplified for R A7 and R A8 .
 上記RA3及びRA4の基が互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の脂環構造としては、例えば
 シクロプロパン構造、シクロブタン構造、シクロペンタン構造、シクロペンテン構造、シクロペンタジエン構造、シクロヘキサン構造、シクロオクタン構造、シクロデカン構造等の単環のシクロアルカン構造;
 ノルボルナン構造、アダマンタン構造、トリシクロデカン構造、テトラシクロドデカン構造等の多環のシクロアルカン構造などが挙げられる。
Examples of the alicyclic structure having 3 to 20 ring members composed of the R A3 and R A4 groups together with the carbon atom to which they are bonded include, for example, a cyclopropane structure, a cyclobutane structure, a cyclopentane structure, a cyclopentene structure, a cyclopentane structure, Monocyclic cycloalkane structures such as pentadiene structure, cyclohexane structure, cyclooctane structure, cyclodecane structure;
Examples thereof include polycyclic cycloalkane structures such as a norbornane structure, an adamantane structure, a tricyclodecane structure, and a tetracyclododecane structure.
 上記RA3及びRA4としては、アルキル基、これらの基が互いに合わせられ構成される単環のシクロアルカン構造、ノルボルナン構造及びアダマンタン構造が好ましく、メチル基、エチル基、シクロペンタン構造、シクロヘキサン構造及びアダマンタン構造がより好ましい。 As R A3 and R A4 , an alkyl group, a monocyclic cycloalkane structure, a norbornane structure, and an adamantane structure constituted by combining these groups are preferable, and a methyl group, an ethyl group, a cyclopentane structure, a cyclohexane structure, and An adamantane structure is more preferred.
 上記RA6、RA7及びRA8で表される炭素数1~20の1価のオキシ炭化水素基としては、例えば上記RA2、RA6、RA7及びRA8の炭素数1~20の1価の炭化水素基として例示したものの炭素-炭素間に酸素原子を含む基等が挙げられる。 Examples of the monovalent oxyhydrocarbon group having 1 to 20 carbon atoms represented by R A6 , R A7 and R A8 include 1 to 20 carbon atoms of R A2 , R A6 , R A7 and R A8. Examples of the valent hydrocarbon group include groups containing an oxygen atom between carbon and carbon.
 上記RA6、RA7及びRA8としては、鎖状炭化水素基と、酸素原子を含む脂環式炭化水素基とが好ましい。 As said R <A6> , R <A7> and R <A8> , a chain hydrocarbon group and an alicyclic hydrocarbon group containing an oxygen atom are preferable.
 上記Lとしては、単結合及び-COO-が好ましく、単結合がより好ましい。 As the L A, a single bond and -COO- is more preferably a single bond.
 上記RA1としては、構造単位(I)を与える単量体の共重合性の観点から、水素原子及びメチル基が好ましく、メチル基がより好ましい。 R A1 is preferably a hydrogen atom and a methyl group, more preferably a methyl group, from the viewpoint of copolymerization of the monomer that gives the structural unit (I).
 上記RA5としては、構造単位(I)を与える単量体の共重合性の観点から、水素原子及びメチル基が好ましく、水素原子がより好ましい。 R A5 is preferably a hydrogen atom and a methyl group, and more preferably a hydrogen atom, from the viewpoint of copolymerization of the monomer that gives the structural unit (I).
 構造単位(I-1)としては、例えば下記式(a-1-a)~(a-1-d)で表される構造単位(以下、「構造単位(I-1-a)~(I-1-d)」ともいう)等が挙げられる。構造単位(I-2)としては、下記式(a-2-a)で表される構造単位(以下、「構造単位(I-2-a)」ともいう)等が挙げられる。 Examples of the structural unit (I-1) include structural units represented by the following formulas (a-1-a) to (a-1-d) (hereinafter referred to as “structural units (I-1-a) to (I -1-d) ”) and the like. Examples of the structural unit (I-2) include a structural unit represented by the following formula (a-2-a) (hereinafter also referred to as “structural unit (I-2-a)”).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 上記式(a-1-a)~(a-1-d)中、RA1~RA4は、上記式(a-1)と同義である。nは、1~4の整数である。上記式(a-2-a)中、RA5~RA8は、上記式(a-2)と同義である。 In the above formulas (a-1-a) to (a-1-d), R A1 to R A4 have the same meaning as in the above formula (a-1). n a is an integer of 1-4. In the above formula (a-2-a), R A5 to R A8 have the same meaning as in the above formula (a-2).
 nとしては、1、2及び4が好ましく、1がより好ましい。 The n a, preferably 1, 2 and 4, more preferably 1.
 構造単位(I-1-a)~(I-1-d)としては、例えば下記式で表される構造単位等が挙げられる。 Examples of the structural units (I-1-a) to (I-1-d) include structural units represented by the following formulas.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 上記式中、RA1は、上記式(a-1)と同義である。 In the above formula, R A1 has the same meaning as in the above formula (a-1).
 構造単位(I-2-a)としては、例えば下記式で表される構造単位等が挙げられる。 Examples of the structural unit (I-2-a) include a structural unit represented by the following formula.
 上記式中、RA5は上記式(a-2)と同義である。 In the above formula, R A5 has the same meaning as in the above formula (a-2).
 構造単位(I)としては構造単位(I-1-a)~(I-1-d)が好ましく、2-メチル-2-アダマンチル(メタ)アクリレートに由来する構造単位、2-iプロピル-2-アダマンチル(メタ)アクリレートに由来する構造単位、1-メチル-1-シクロペンチル(メタ)アクリレートに由来する構造単位、1-エチル-1-シクロヘキシル(メタ)アクリレートに由来する構造単位、1-iプロピル-1-シクロペンチル(メタ)アクリレートに由来する構造単位、2-シクロヘキシルプロパン-2-イル(メタ)アクリレートに由来する構造単位、及び2-(アダマンタン-1-イル)プロパン-2-イル(メタ)アクリレートに由来する構造単位がより好ましい。 As the structural unit (I), structural units (I-1-a) to (I-1-d) are preferable, and a structural unit derived from 2-methyl-2-adamantyl (meth) acrylate, 2-ipropyl-2 A structural unit derived from adamantyl (meth) acrylate, a structural unit derived from 1-methyl-1-cyclopentyl (meth) acrylate, a structural unit derived from 1-ethyl-1-cyclohexyl (meth) acrylate, 1-ipropyl Structural units derived from 1-cyclopentyl (meth) acrylate, structural units derived from 2-cyclohexylpropan-2-yl (meth) acrylate, and 2- (adamantan-1-yl) propan-2-yl (meth) A structural unit derived from acrylate is more preferred.
 [A]重合体を構成する全構造単位に対する構造単位(I)の含有割合の下限としては、10モル%が好ましく、20モル%がより好ましく、25モル%がさらに好ましく、30モル%が特に好ましい。一方、上記含有割合の上限としては、80モル%が好ましく、70モル%がより好ましく、65モル%がさらに好ましく、60モル%が特に好ましい。上記含有割合を上記範囲とすることで、当該化学増幅型レジスト材料から形成されるレジスト材料膜のパターン露光部と非露光部との現像液に対する溶解コントラストを十分に確保することができ、その結果、解像性等が向上する。 [A] As a minimum of the content rate of structural unit (I) with respect to all the structural units which constitute a polymer, 10 mol% is preferred, 20 mol% is more preferred, 25 mol% is still more preferred, and 30 mol% is especially preferable. On the other hand, the upper limit of the content is preferably 80 mol%, more preferably 70 mol%, further preferably 65 mol%, particularly preferably 60 mol%. By setting the content ratio within the above range, it is possible to sufficiently ensure the dissolution contrast of the resist material film formed from the chemically amplified resist material with respect to the developer in the pattern exposed portion and the non-exposed portion, as a result. , Resolution and the like are improved.
(構造単位(II))
 構造単位(II)は、フッ素原子を含む構造単位である(但し、構造単位(I)に該当するものを除く)。構造単位(II)は、通常塩構造を含まない。
(Structural unit (II))
The structural unit (II) is a structural unit containing a fluorine atom (except for those corresponding to the structural unit (I)). The structural unit (II) usually does not contain a salt structure.
 [A]重合体が構造単位(II)を有する場合、[A]重合体を構成する全構造単位に対する構造単位(II)の含有割合の下限としては、3モル%が好ましく、5モル%がより好ましく、10モル%がさらに好ましい。一方、上記含有割合の上限としては、40モル%が好ましく、35モル%がより好ましく、30モル%がさらに好ましい。上記含有割合を上記範囲とすることで、EUV等をパターン露光光とした場合における感度をより向上できる。一方、上記含有割合が上記上限を超えると、レジストパターンの断面形状における矩形性が低下するおそれがある。 [A] When the polymer has the structural unit (II), the lower limit of the content ratio of the structural unit (II) to all structural units constituting the [A] polymer is preferably 3 mol%, and 5 mol% More preferred is 10 mol%. On the other hand, as an upper limit of the said content rate, 40 mol% is preferable, 35 mol% is more preferable, and 30 mol% is further more preferable. By making the said content rate into the said range, the sensitivity in case EUV etc. are used as pattern exposure light can be improved more. On the other hand, when the said content rate exceeds the said upper limit, there exists a possibility that the rectangularity in the cross-sectional shape of a resist pattern may fall.
 (1)重合体成分が[B]重合体を含み、[B]重合体が構造単位(II)を有する場合、[B]重合体を構成する全構造単位に対する構造単位(II)の下限としては、3モル%が好ましく、5モル%がより好ましく、10モル%がさらに好ましい。一方、上記含有割合の上限としては、40モル%が好ましく、35モル%がより好ましく、30モル%がさらに好ましい。上記含有割合を上記範囲とすることで、EUV等をパターン露光光とした場合における感度をより向上できる。一方、上記含有割合が上記上限を超えると、レジストパターンの断面形状における矩形性が低下するおそれがある。 (1) When the polymer component includes the [B] polymer and the [B] polymer has the structural unit (II), the lower limit of the structural unit (II) with respect to all the structural units constituting the [B] polymer Is preferably 3 mol%, more preferably 5 mol%, still more preferably 10 mol%. On the other hand, as an upper limit of the said content rate, 40 mol% is preferable, 35 mol% is more preferable, and 30 mol% is further more preferable. By making the said content rate into the said range, the sensitivity in case EUV etc. are used as pattern exposure light can be improved more. On the other hand, when the said content rate exceeds the said upper limit, there exists a possibility that the rectangularity in the cross-sectional shape of a resist pattern may fall.
(構造単位(III))
 構造単位(III)は、フェノール性水酸基を含む構造単位である(但し、構造単位(I)及び構造単位(II)に該当するものを除く)。[A]重合体又は[B]重合体が構造単位(III)を有することで、後述するパターン露光工程においてKrFエキシマレーザー光、EUV(極端紫外線)、電子線等を照射する場合における感度をより向上することができる。
(Structural unit (III))
The structural unit (III) is a structural unit containing a phenolic hydroxyl group (except for those corresponding to the structural unit (I) and the structural unit (II)). Since the [A] polymer or the [B] polymer has the structural unit (III), the sensitivity in the case of irradiation with KrF excimer laser light, EUV (extreme ultraviolet), electron beam or the like in the pattern exposure process described later is further increased. Can be improved.
 上記フェノール性水酸基を含む芳香環の有する水素原子の一部又は全部は、置換基により置換されていてもよい。この置換基としては、例えば上記RF5及びRF8において例示した基と同様のもの等が挙げられる。 Part or all of the hydrogen atoms of the aromatic ring containing the phenolic hydroxyl group may be substituted with a substituent. Examples of this substituent include the same groups as those exemplified for R F5 and R F8 above.
 構造単位(III)としては、下記式(h-1)~(h-6)で表される構造単位(以下、「構造単位(III-1)~(III-6)」ともいう)等が挙げられる。 Examples of the structural unit (III) include structural units represented by the following formulas (h-1) to (h-6) (hereinafter also referred to as “structural units (III-1) to (III-6)”) and the like. Can be mentioned.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 上記式(h-1)~(h-6)中、RAF1は、水素原子又はメチル基である。 In the above formulas (h-1) to (h-6), R AF1 is a hydrogen atom or a methyl group.
 上記RAF1としては、水素原子が好ましい。 As said RAF1 , a hydrogen atom is preferable.
 構造単位(III)としては、構造単位(III-1)及び(III-2)が好ましく、(III-1)がより好ましい。 As the structural unit (III), structural units (III-1) and (III-2) are preferable, and (III-1) is more preferable.
 [A]重合体が構造単位(III)を有する場合、[A]重合体を構成する全構造単位に対する構造単位(III)の含有割合の下限としては、1モル%が好ましく、30モル%がより好ましく、50モル%がさらに好ましい。一方、上記含有割合の上限としては、90モル%が好ましく、80モル%がより好ましく、75モル%がさらに好ましい。構造単位(III)の含有割合を上記範囲とすることで、当該化学増幅型レジスト材料の感度をより向上させることができる。 [A] When the polymer has the structural unit (III), the lower limit of the content ratio of the structural unit (III) with respect to all the structural units constituting the [A] polymer is preferably 1 mol%, preferably 30 mol%. More preferred is 50 mol%. On the other hand, as an upper limit of the said content rate, 90 mol% is preferable, 80 mol% is more preferable, and 75 mol% is further more preferable. By making the content rate of structural unit (III) into the said range, the sensitivity of the said chemically amplified resist material can be improved more.
 (1)重合体成分が[B]重合体を含み、[B]重合体が構造単位(III)を有する場合、[B]重合体を構成する全構造単位に対する構造単位(III)の含有割合の下限としては、1モル%が好ましく、30モル%がより好ましく、50モル%がさらに好ましい。一方、上記含有割合の上限としては、90モル%が好ましく、80モル%がより好ましく、75モル%がさらに好ましい。構造単位(III)の含有割合を上記範囲とすることで、当該化学増幅型レジスト材料の感度をより向上させることができる。 (1) When the polymer component includes the [B] polymer and the [B] polymer has the structural unit (III), the content ratio of the structural unit (III) to all the structural units constituting the [B] polymer Is preferably 1 mol%, more preferably 30 mol%, and even more preferably 50 mol%. On the other hand, as an upper limit of the said content rate, 90 mol% is preferable, 80 mol% is more preferable, and 75 mol% is further more preferable. By making the content rate of structural unit (III) into the said range, the sensitivity of the said chemically amplified resist material can be improved more.
 なお、構造単位(III)は、フェノール性水酸基を含む芳香環の-OH基の水素原子をアセチル基等で置換した単量体を重合した後、得られた重合体をアミン存在下で加水分解反応する方法等により形成することができる。 The structural unit (III) is obtained by polymerizing a monomer in which a hydrogen atom of an —OH group of an aromatic ring containing a phenolic hydroxyl group is substituted with an acetyl group, and then hydrolyzing the resulting polymer in the presence of an amine. It can be formed by a reaction method or the like.
(構造単位(IV))
 構造単位(IV)は、ラクトン構造、環状カーボネート構造、スルトン構造又はこれらの組み合わせを含む構造単位である(但し、構造単位(I)~構造単位(III)に該当するものを除く)。[A]重合体及び[B]重合体は、構造単位(IV)をさらに有することで、現像液への溶解性をより適度なものに調整することができ、その結果、当該化学増幅型レジスト材料のリソグラフィ性能をより向上させることができる。当該化学増幅型レジスト材料から形成されるレジスト材料膜と基板との密着性を向上させることができる。ここで、ラクトン構造とは、-O-C(O)-で表される基を含む1つの環(ラクトン環)を有する構造をいう。環状カーボネート構造とは、-O-C(O)-O-で表される基を含む1つの環(環状カーボネート環)を有する構造をいう。スルトン構造とは、-O-S(O)-で表される基を含む1つの環(スルトン環)を有する構造をいう。
(Structural unit (IV))
The structural unit (IV) is a structural unit containing a lactone structure, a cyclic carbonate structure, a sultone structure, or a combination thereof (except for those corresponding to the structural unit (I) to the structural unit (III)). [A] The polymer and the [B] polymer can further adjust the solubility in the developer by further including the structural unit (IV), and as a result, the chemically amplified resist The lithographic performance of the material can be further improved. Adhesion between the resist material film formed from the chemically amplified resist material and the substrate can be improved. Here, the lactone structure refers to a structure having one ring (lactone ring) including a group represented by —O—C (O) —. The cyclic carbonate structure refers to a structure having one ring (cyclic carbonate ring) containing a group represented by —O—C (O) —O—. The sultone structure refers to a structure having one ring (sultone ring) including a group represented by —O—S (O) 2 —.
 構造単位(IV)としては、ノルボルナンラクトン構造を含む構造単位、オキサノルボルナンラクトン構造を含む構造単位、γ-ブチロラクトン構造を含む構造単位、エチレンカーボネート構造を含む構造単位、及びノルボルナンスルトン構造を含む構造単位が好ましく、ノルボルナンラクトン-イル(メタ)アクリレートに由来する構造単位、オキサノルボルナンラクトン-イル(メタ)アクリレートに由来する構造単位、シアノ置換ノルボルナンラクトン-イル(メタ)アクリレートに由来する構造単位、ノルボルナンラクトン-イルオキシカルボニルメチル(メタ)アクリレートに由来する構造単位、ブチロラクトン-3-イル(メタ)アクリレートに由来する構造単位、ブチロラクトン-4-イル(メタ)アクリレートに由来する構造単位、3,5-ジメチルブチロラクトン-3-イル(メタ)アクリレートに由来する構造単位、4,5-ジメチルブチロラクトン-4-イル(メタ)アクリレートに由来する構造単位、1-(ブチロラクトン-3-イル)シクロヘキサン-1-イル(メタ)アクリレートに由来する構造単位、エチレンカーボネート-イルメチル(メタ)アクリレートに由来する構造単位、シクロヘキセンカーボネート-イルメチル(メタ)アクリレートに由来する構造単位、ノルボルナンスルトン-イル(メタ)アクリレートに由来する構造単位、及びノルボルナンスルトン-イルオキシカルボニルメチル(メタ)アクリレートに由来する構造単位がより好ましい。 As the structural unit (IV), a structural unit containing a norbornane lactone structure, a structural unit containing an oxanorbornane lactone structure, a structural unit containing a γ-butyrolactone structure, a structural unit containing an ethylene carbonate structure, and a structural unit containing a norbornane sultone structure A structural unit derived from norbornanelactone-yl (meth) acrylate, a structural unit derived from oxanorbornanelactone-yl (meth) acrylate, a structural unit derived from cyano-substituted norbornanelactone-yl (meth) acrylate, norbornane lactone -Structural units derived from yloxycarbonylmethyl (meth) acrylate, structural units derived from butyrolactone-3-yl (meth) acrylate, derived from butyrolactone-4-yl (meth) acrylate A structural unit derived from 3,5-dimethylbutyrolactone-3-yl (meth) acrylate, a structural unit derived from 4,5-dimethylbutyrolactone-4-yl (meth) acrylate, 1- (butyrolactone-3- Yl) structural units derived from cyclohexane-1-yl (meth) acrylate, structural units derived from ethylene carbonate-ylmethyl (meth) acrylate, structural units derived from cyclohexene carbonate-ylmethyl (meth) acrylate, norbornane sultone-yl ( A structural unit derived from (meth) acrylate and a structural unit derived from norbornane sultone-yloxycarbonylmethyl (meth) acrylate are more preferred.
 [A]重合体が構造単位(IV)を有する場合、[A]重合体を構成する全構造単位に対する構造単位(IV)の含有割合の下限としては、1モル%が好ましく、10モル%がより好ましく、20モル%がさらに好ましく、25モル%が特に好ましい。一方、上記含有割合の上限としては、70モル%が好ましく、65モル%がより好ましく、60モル%がさらに好ましく、55モル%が特に好ましい。上記含有割合を上記範囲とすることで、当該化学増幅型レジスト材料から形成されるレジスト材料膜と基板との密着性をより向上させることができる。 [A] When the polymer has a structural unit (IV), the lower limit of the content ratio of the structural unit (IV) to all structural units constituting the [A] polymer is preferably 1 mol%, and 10 mol% More preferably, 20 mol% is more preferable, and 25 mol% is particularly preferable. On the other hand, the upper limit of the content is preferably 70 mol%, more preferably 65 mol%, still more preferably 60 mol%, and particularly preferably 55 mol%. By making the said content rate into the said range, the adhesiveness of the resist material film | membrane formed from the said chemically amplified resist material and a board | substrate can be improved more.
 (1)重合体成分が[B]重合体を含み、[B]重合体が構造単位(IV)を有する場合、[B]重合体を構成する全構造単位に対する構造単位(IV)の含有割合の下限としては、1モル%が好ましく、10モル%がより好ましく、20モル%がさらに好ましく、25モル%が特に好ましい。一方、上記含有割合の上限としては、70モル%が好ましく、65モル%がより好ましく、60モル%がさらに好ましく、55モル%が特に好ましい。上記含有割合を上記範囲とすることで、当該化学増幅型レジスト材料から形成されるレジスト材料膜と基板との密着性をより向上させることができる。 (1) When the polymer component includes the [B] polymer, and the [B] polymer has the structural unit (IV), the content ratio of the structural unit (IV) with respect to all the structural units constituting the [B] polymer. Is preferably 1 mol%, more preferably 10 mol%, further preferably 20 mol%, particularly preferably 25 mol%. On the other hand, the upper limit of the content is preferably 70 mol%, more preferably 65 mol%, still more preferably 60 mol%, and particularly preferably 55 mol%. By making the said content rate into the said range, the adhesiveness of the resist material film | membrane formed from the said chemically amplified resist material and a board | substrate can be improved more.
[その他の構造単位]
 [A]重合体及び[B]重合体は、構造単位(I)~(IV)以外にその他の構造単位を有してもよい。その他の構造単位としては、例えば極性基を含む構造単位、非解離性の炭化水素基を含む構造単位等が挙げられる。上記極性基としては、例えばアルコール性水酸基、カルボキシ基、シアノ基、ニトロ基、スルホンアミド基等が挙げられる。上記非解離性の炭化水素基としては、例えば直鎖状のアルキル基等が挙げられる。[A]重合体を構成する全構造単位に対する上記その他の構造単位の含有割合の上限としては、20モル%が好ましく、10モル%がより好ましい。
[Other structural units]
The [A] polymer and the [B] polymer may have other structural units in addition to the structural units (I) to (IV). Examples of other structural units include a structural unit containing a polar group and a structural unit containing a non-dissociable hydrocarbon group. Examples of the polar group include an alcoholic hydroxyl group, a carboxy group, a cyano group, a nitro group, and a sulfonamide group. Examples of the non-dissociable hydrocarbon group include a linear alkyl group. [A] As an upper limit of the content rate of the said other structural unit with respect to all the structural units which comprise a polymer, 20 mol% is preferable and 10 mol% is more preferable.
 [A]重合体及び[B]重合体の合計含有量の下限としては、当該化学増幅型レジスト材料の全固形分中、70質量%が好ましく、75質量%がより好ましく、80質量%がさらに好ましい。ここで「全固形分」とは、当該化学増幅型レジスト材料の溶媒以外の成分をいう。 The lower limit of the total content of the [A] polymer and the [B] polymer is preferably 70% by mass, more preferably 75% by mass, and more preferably 80% by mass in the total solid content of the chemically amplified resist material. preferable. Here, “total solid content” refers to components other than the solvent of the chemically amplified resist material.
 [A]重合体のゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算重量平均分子量(Mw)は特に限定されないが、その下限としては、1,000が好ましく、2,000がより好ましく、3,000がさらに好ましく、5,000が特に好ましい。一方、[A]重合体のMwの上限としては、50,000が好ましく、30,000がより好ましく、20,000がさらに好ましく、15,000が特に好ましい。[A]重合体のMwを上記範囲とすることで、当該化学増幅型レジスト材料の塗布性及び現像欠陥抑制性が向上する。[A]重合体のMwが上記下限より小さい場合、十分な耐熱性を有するレジスト材料膜が得られないおそれがある。逆に、[A]重合体のMwが上記上限を超える場合、レジスト材料膜の現像性が低下するおそれがある。 [A] The weight average molecular weight (Mw) in terms of polystyrene by gel permeation chromatography (GPC) of the polymer is not particularly limited, but the lower limit thereof is preferably 1,000, more preferably 2,000, and 3,000. Is more preferable, and 5,000 is particularly preferable. On the other hand, the upper limit of the Mw of the [A] polymer is preferably 50,000, more preferably 30,000, still more preferably 20,000, and particularly preferably 15,000. [A] By making Mw of a polymer into the said range, the applicability | paintability and development defect inhibitory property of the said chemically amplified resist material improve. [A] When Mw of the polymer is smaller than the lower limit, a resist material film having sufficient heat resistance may not be obtained. Conversely, when the Mw of the [A] polymer exceeds the above upper limit, the developability of the resist material film may be lowered.
 [A]重合体のGPCによるポリスチレン換算数平均分子量(Mn)に対するMwの比(Mw/Mn)の下限としては、通常1である。一方、上記比の上限としては、通常5であり、3が好ましく、2がさらに好ましい。 [A] The lower limit of the ratio (Mw / Mn) of Mw to the number average molecular weight (Mn) in terms of polystyrene by GPC of the polymer is usually 1. On the other hand, the upper limit of the ratio is usually 5, preferably 3 and more preferably 2.
 [B]重合体のゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算重量平均分子量(Mw)は特に限定されないが、その下限としては、1,000が好ましく、2,000がより好ましく、2,500がさらに好ましく、3,000が特に好ましい。一方、[B]重合体のMwの上限としては、50,000が好ましく、30,000がより好ましく、20,000がさらに好ましく、15,000が特に好ましい。[B]重合体のMwを上記範囲とすることで、当該化学増幅型レジスト材料の塗布性及び現像欠陥抑制性が向上する。[B]重合体のMwが上記下限より小さい場合、十分な耐熱性を有するレジスト材料膜が得られないおそれがある。逆に、[B]重合体のMwが上記上限を超える場合、レジスト材料膜の現像性が低下するおそれがある。 [B] The weight average molecular weight (Mw) in terms of polystyrene by gel permeation chromatography (GPC) of the polymer is not particularly limited, but the lower limit thereof is preferably 1,000, more preferably 2,000, and 2,500. Is more preferable, and 3,000 is particularly preferable. On the other hand, the upper limit of the Mw of the [B] polymer is preferably 50,000, more preferably 30,000, still more preferably 20,000, and particularly preferably 15,000. [B] By making Mw of a polymer into the said range, the applicability | paintability and development defect inhibitory property of the said chemically amplified resist material improve. [B] If the Mw of the polymer is smaller than the lower limit, a resist material film having sufficient heat resistance may not be obtained. Conversely, if the Mw of the [B] polymer exceeds the above upper limit, the developability of the resist material film may be reduced.
 [B]重合体のGPCによるポリスチレン換算数平均分子量(Mn)に対するMwの比(Mw/Mn)の下限としては、1が好ましい。一方、上記比の上限としては、5が好ましく、3がより好ましく、2がさらに好ましい。 [B] The lower limit of the ratio (Mw / Mn) of Mw to the number average molecular weight (Mn) in terms of polystyrene by GPC of the polymer is preferably 1. On the other hand, the upper limit of the ratio is preferably 5, more preferably 3, and even more preferably 2.
 なお、本明細書における重合体のMw及びMnは、以下の条件によるゲルパーミエーションクロマトグラフィー(GPC)を用いて測定される値である。
 GPCカラム:G2000HXL 2本、G3000HXL 1本、G4000HXL 1本(以上、東ソー社)
 カラム温度:40℃
 溶出溶媒:テトラヒドロフラン
 流速:1.0mL/分
 試料濃度:1.0質量%
 試料注入量:100μL
 検出器:示差屈折計
 標準物質:単分散ポリスチレン
In addition, Mw and Mn of the polymer in this specification are values measured using gel permeation chromatography (GPC) under the following conditions.
GPC column: 2 G2000HXL, 1 G3000HXL, 1 G4000HXL (above, Tosoh Corporation)
Column temperature: 40 ° C
Elution solvent: Tetrahydrofuran Flow rate: 1.0 mL / min Sample concentration: 1.0% by mass
Sample injection volume: 100 μL
Detector: Differential refractometer Standard material: Monodisperse polystyrene
 [A]重合体及び[B]重合体は、分子量1,000以下の低分子量成分を含んでもよい。[A]重合体における低分子量成分の含有量の上限としては、1.0質量%が好ましく、0.5質量%がより好ましく、0.3質量%がさらに好ましい。上記含有量の下限としては、例えば0.01質量%である。[A]重合体及び[B]重合体の低分子量成分の含有量を上記範囲とすることで、当該化学増幅型レジスト材料のリソグラフィ性能をより向上させることができる。 The [A] polymer and the [B] polymer may contain a low molecular weight component having a molecular weight of 1,000 or less. [A] The upper limit of the content of the low molecular weight component in the polymer is preferably 1.0% by mass, more preferably 0.5% by mass, and still more preferably 0.3% by mass. As a minimum of the above-mentioned content, it is 0.01 mass%, for example. By setting the content of the low molecular weight component of the [A] polymer and the [B] polymer in the above range, the lithography performance of the chemically amplified resist material can be further improved.
 なお、本明細書における重合体の低分子量成分の含有量は、以下の条件による高速液体クロマトグラフィー(HPLC)を用いて測定される値である。
 カラム:ジーエルサイエンス社の「Inertsil ODA-25μmカラム」(4.6mmφ×250mm)
 溶離液:アクリロニトリル/0.1質量%リン酸水溶液
 流量:1.0mL/分
 試料濃度:1.0質量%
 試料注入量:100μL
 検出器:示差屈折計
In addition, the content of the low molecular weight component of the polymer in the present specification is a value measured using high performance liquid chromatography (HPLC) under the following conditions.
Column: GL Science's “Inertsil ODA-25 μm column” (4.6 mmφ × 250 mm)
Eluent: Acrylonitrile / 0.1% by mass phosphoric acid aqueous solution Flow rate: 1.0 mL / min Sample concentration: 1.0% by mass
Sample injection volume: 100 μL
Detector: Differential refractometer
 [A]重合体及び[B]重合体におけるフッ素原子含有率の下限としては、1質量%が好ましく、2質量%がより好ましく、4質量%がさらに好ましく、7質量%が特に好ましい。一方、上記含有率の上限としては、60質量%が好ましく、40質量%がより好ましく、30質量%がさらに好ましい。ここで重合体のフッ素原子含有率(質量%)は、13C-NMRスペクトル測定により求められる重合体の構造から算出することができる。 The lower limit of the fluorine atom content in the [A] polymer and the [B] polymer is preferably 1% by mass, more preferably 2% by mass, further preferably 4% by mass, and particularly preferably 7% by mass. On the other hand, as an upper limit of the said content rate, 60 mass% is preferable, 40 mass% is more preferable, and 30 mass% is further more preferable. Here, the fluorine atom content (% by mass) of the polymer can be calculated from the structure of the polymer determined by 13 C-NMR spectrum measurement.
([A]重合体及び[B]重合体の合成方法)
 [A]重合体及び[B]重合体は、例えば所定の各構造単位に対応する単量体をラジカル重合開始剤等の重合開始剤を使用し、適当な重合反応溶媒中で重合することにより製造できる。具体的な合成方法としては、例えば単量体及びラジカル重合開始剤を含有する溶液を重合反応溶媒又は単量体を含有する溶液に滴下して重合反応させる方法、単量体を含有する溶液と、ラジカル重合開始剤を含有する溶液とを各別に重合反応溶媒又は単量体を含有する溶液に滴下して重合反応させる方法、各々の単量体を含有する複数種の溶液と、ラジカル重合開始剤を含有する溶液とを各別に重合反応溶媒又は単量体を含有する溶液に滴下して重合反応させる方法等が挙げられる。
([A] Polymer and [B] Polymer Synthesis Method)
The [A] polymer and the [B] polymer are obtained by polymerizing monomers corresponding to predetermined respective structural units in a suitable polymerization reaction solvent using a polymerization initiator such as a radical polymerization initiator. Can be manufactured. As a specific synthesis method, for example, a method of dropping a solution containing a monomer and a radical polymerization initiator into a polymerization reaction solvent or a solution containing a monomer to cause a polymerization reaction, a solution containing a monomer, , A method of dropping a solution containing a radical polymerization initiator separately into a polymerization reaction solvent or a solution containing a monomer to cause a polymerization reaction, a plurality of types of solutions containing each monomer, and initiation of radical polymerization Examples thereof include a method in which a solution containing an agent is dropped into a solution containing a polymerization reaction solvent or a monomer separately to cause a polymerization reaction.
 上記ラジカル重合開始剤としては、アゾビスイソブチロニトリル(AIBN)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-シクロプロピルプロピオニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、ジメチル2,2’-アゾビスイソブチレート等のアゾ系ラジカル開始剤;ベンゾイルパーオキサイド、t-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド等の過酸化物系ラジカル開始剤などが挙げられる。上記ラジカル重合開始剤としては、これらの中で、AIBN及びジメチル2,2’-アゾビスイソブチレートが好ましく、AIBNがより好ましい。これらのラジカル開始剤は、1種単独で又は2種以上を混合して用いることができる。 Examples of the radical polymerization initiator include azobisisobutyronitrile (AIBN), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2,2′-azobis (2-cyclopropylpropylene). Pionitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), azo radical initiators such as dimethyl 2,2′-azobisisobutyrate; benzoyl peroxide, t-butyl hydroperoxide, And peroxide radical initiators such as cumene hydroperoxide. Of these, AIBN and dimethyl 2,2'-azobisisobutyrate are preferred as the radical polymerization initiator, and AIBN is more preferred. These radical initiators can be used alone or in combination of two or more.
 上記重合に使用される溶媒としては、例えば後述する当該化学増幅型レジスト材料が含有してもよい溶媒と同様のものを使用できる。 As the solvent used for the polymerization, for example, the same solvent as that which may be contained in the chemical amplification resist material described later can be used.
 上記重合における反応温度の下限としては、40℃が好ましく、50℃がより好ましい。一方、上記反応温度の上限としては、150℃が好ましく、120℃がより好ましい。上記重合における反応時間の下限としては、1時間が好ましい。一方、上記反応時間の上限としては、48時間が好ましく、24時間がより好ましい。 The lower limit of the reaction temperature in the polymerization is preferably 40 ° C, more preferably 50 ° C. On the other hand, the upper limit of the reaction temperature is preferably 150 ° C, more preferably 120 ° C. The lower limit of the reaction time in the polymerization is preferably 1 hour. On the other hand, the upper limit of the reaction time is preferably 48 hours, more preferably 24 hours.
 [A]重合体及び[B]重合体は、再沈殿法により回収することが好ましい。すなわち、反応終了後、反応液を再沈溶媒に投入することにより、目的の重合体を粉体として回収する。再沈溶媒としては、アルコール類やアルカン類等を1種単独で又は2種以上を混合して使用することができる。再沈殿法の他に、分液操作やカラム操作、限外ろ過操作等により、単量体、オリゴマー等の低分子成分を除去して重合体を回収することもできる。 [A] polymer and [B] polymer are preferably recovered by a reprecipitation method. That is, after completion of the reaction, the target polymer is recovered as a powder by introducing the reaction solution into a reprecipitation solvent. As the reprecipitation solvent, alcohols, alkanes and the like can be used singly or in combination of two or more. In addition to the reprecipitation method, the polymer can be recovered by removing low molecular components such as monomers and oligomers by a liquid separation operation, a column operation, an ultrafiltration operation, or the like.
[(2)成分及び(3)成分]
 (2)成分は、露光(放射線照射)により感放射線性増感体及び酸を発生する成分である。(3)成分は、上記(2)成分が発生する酸に対して相対的に塩基性を有する成分である。(2)成分は、(a)感放射線性酸-増感体発生剤、(b)感放射線性増感体発生剤、及び(c)感放射線性酸発生剤の3つの成分のうち、(a)成分、(a)成分及び(b)成分、(a)成分及び(c)成分、(b)成分及び(c)成分、又は(a)~(c)成分の全てを含有する。(a)成分又は(c)成分が、感放射線性酸発生基を有する第1化合物(以下、「[C1]化合物」ともいう)を有する。上記(a)感放射線性酸-増感体発生剤又は上記(c)感放射線性酸発生剤は、[C1]化合物を1種単独で又は2種以上有していてもよい。
[(2) component and (3) component]
The component (2) is a component that generates a radiation-sensitive sensitizer and an acid upon exposure (radiation irradiation). The component (3) is a component that is relatively basic with respect to the acid generated by the component (2). The component (2) comprises (a) a radiation-sensitive acid-sensitizer generator, (b) a radiation-sensitive sensitizer generator, and (c) a radiation-sensitive acid generator. Component a), component (a) and component (b), component (a) and component (c), component (b) and component (c), or all components (a) to (c) are contained. The component (a) or the component (c) has a first compound having a radiation-sensitive acid generating group (hereinafter also referred to as “[C1] compound”). The (a) radiation-sensitive acid-sensitizer generator or the (c) radiation-sensitive acid generator may have one or more [C1] compounds.
 上記(2)成分が上記(1)重合体成分の重合体の構造単位として含まれている場合、上記(a)成分又は(c)成分が有する感放射線性酸発生基を有する第1化合物は、その化合物中に含まれるC-H結合の水素が1つ引き抜かれた感放射線性酸発生基の形態として含まれていても良い。 When the component (2) is contained as a structural unit of the polymer of the polymer component (1), the first compound having a radiation-sensitive acid generating group that the component (a) or (c) has Further, it may be contained in the form of a radiation-sensitive acid generating group in which one hydrogen of C—H bond contained in the compound is extracted.
 (3)成分は、上記(2)成分が発生する酸に対して相対的に塩基性を有する。また、(3)成分は、(d)感放射線性光崩壊性塩基である第2化合物(以下、「[C2]化合物」ともいう)を含有する。上記(d)感放射線性光崩壊性塩基は、[C2]化合物を1種単独で又は2種以上有していてもよい。 (3) The component is relatively basic with respect to the acid generated by the component (2). Moreover, (3) component contains the 2nd compound (henceforth "[C2] compound") which is (d) a radiation sensitive photodegradable base. The (d) radiation-sensitive photodegradable base may have one or more [C2] compounds.
 上記(3)成分が上記(1)重合体成分の重合体の構造単位として含まれている場合、上記(d)成分が有する感放射線性光崩壊性塩基を有する第2化合物は、その化合物中に含まれるC-H結合の水素が1つ引き抜かれた感放射線性光崩壊性塩基の形態として含まれていても良い。 When the component (3) is contained as a structural unit of the polymer of the polymer component (1), the second compound having a radiation-sensitive photodegradable base included in the component (d) is contained in the compound. It may be contained in the form of a radiation-sensitive photodegradable base from which one hydrogen atom of C—H bond contained in is extracted.
 (d)感放射線性光崩壊性塩基は、上記第1の放射線を照射し、上記第2の放射線を照射しない場合、及び上記第1の放射線を照射した後、上記第2の放射線を照射した場合に、上記(2)成分が発生する酸に対する塩基性を失い、かつ上記第1の放射線を照射せず上記第2の放射線のみを照射した場合には上記(2)成分が発生する酸に対して塩基性を保持する。但し、上記感放射線性光崩壊塩基は、下記式(x)で表される化合物であり、下記式(x)におけるMの還元電位は、トリフェニルスルホニウムカチオンの還元電位よりも高い。 (D) The radiation-sensitive photodegradable base is irradiated with the second radiation when the first radiation is irradiated and the second radiation is not irradiated, and after the first radiation is irradiated. In this case, when the basic component of the acid generated by the component (2) is lost and only the second radiation is irradiated without irradiating the first radiation, the component (2) is generated. Retains basicity. However, the radiation-sensitive photodegradable base is a compound represented by the following formula (x), and the reduction potential of M + in the following formula (x) is higher than the reduction potential of the triphenylsulfonium cation.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 上記式(x)中、Aは1価のアニオンである。Mは、1価のオニウムカチオンである。 In the formula (x), A is a monovalent anion. M + is a monovalent onium cation.
 例えば上記感放射線性光崩壊塩基が、上記式(x)で表される化合物であり、上記式(x)におけるAで表される1価のアニオンをノナフルオロブタンスルホン酸アニオンに置き換えた下記式(z)で表される化合物と、下記式(y)で表されるトリフェニルスルホニウムノナフルオロブタンスルホネートとを比較した場合の下記式(z)におけるMで表される1価のオニウムカチオンの還元電位は、トリフェニルスルホニウムカチオンの還元電位よりも高い。 Below replacing the monovalent anion represented by the nonafluorobutanesulfonate anion - e.g. the radiation sensitive light decay base is a compound represented by the formula (x), A in the formula (x) A monovalent onium cation represented by M + in the following formula (z) when the compound represented by the formula (z) is compared with triphenylsulfonium nonafluorobutane sulfonate represented by the following formula (y) The reduction potential of is higher than the reduction potential of the triphenylsulfonium cation.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 上記式(z)中、M+は、式(x)と同義である。 In the above formula (z), M + is synonymous with the formula (x).
 (d)感放射線性光崩壊性塩基は、(1)重合体成分の重合体の構造単位として含まれ、重合体の一部として組み込まれた基の形態でもよい。この場合、(d)感放射線性光崩壊性塩基は、[C2]化合物から水素原子1つを除いた基が重合体に結合する形で存在し、感放射線性光崩壊塩基が下記式(x’)で表される。但し、下記式(x’)におけるMで表される1価のオニウムカチオンの還元電位は、トリフェニルスルホニウムカチオンの還元電位よりも高い。
Figure JPOXMLDOC01-appb-C000017
(D) The radiation-sensitive photodegradable base may be in the form of a group that is included as a structural unit of the polymer (1) polymer component and incorporated as part of the polymer. In this case, (d) the radiation-sensitive photodegradable base exists in a form in which a group obtained by removing one hydrogen atom from the [C2] compound is bonded to the polymer, and the radiation-sensitive photodegradable base is represented by the following formula (x ') However, the reduction potential of the monovalent onium cation represented by M + in the following formula (x ′) is higher than the reduction potential of the triphenylsulfonium cation.
Figure JPOXMLDOC01-appb-C000017
 式(x’)中、A’は、1価のアニオンを含む1価の基である。Mは、式(x)と同義である。*は、重合体に結合する部位を示す。 ', A represents the formula (x)' - is a monovalent group comprising a monovalent anion. M + is synonymous with the formula (x). * Shows the site | part couple | bonded with a polymer.
 例えば感放射線性光崩壊塩基が上記式(x’)で表され、上記式(x’)におけるAで表される1価のアニオンを含む1価の基をオクタフルオロブタンスルホネート基に置き換えた上記式(z’)で表される基と、下記式(y’)で表されるトリフェニルスルホニウムオクタフルオロブタンスルホネート基とを比較した場合の下記式(z’)におけるMで表される1価のオニウムカチオンの還元電位は、トリフェニルスルホニウムカチオンの還元電位よりも高い。 For example the radiation-sensitive light decay bases 'is represented by the above formula (x the formula (x)' A in) - was replaced by a monovalent octafluorobutane sulfonate group a group containing a monovalent anion represented by The group represented by the above formula (z ′) and the triphenylsulfonium octafluorobutanesulfonate group represented by the following formula (y ′) are represented by M + in the following formula (z ′) when compared. The reduction potential of the monovalent onium cation is higher than the reduction potential of the triphenylsulfonium cation.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 式(y’)中、*は、重合体に結合する部位を示す。 In the formula (y ′), * represents a site bonded to the polymer.
 式(z’)中、Mは、式(x)と同義である。*は、式(y’)と同義である。 In formula (z ′), M + has the same meaning as in formula (x). * Is synonymous with the formula (y ′).
 当該化学増幅型レジスト材料は、上記のような成分を含むことで、EUV等の250nm以下の波長を有する放射線をパターン露光光として用いた場合において高い感度及び優れたリソグラフィ性能を得ることができる。当該化学増幅型レジスト材料が上記構成を備えることで上記効果を奏する理由については明確ではないが、例えば以下のように推察することができる。すなわち、パターン露光部において増感体が発生するが、この状態において第2の放射線を露光することにより、光崩壊性塩基が増感体からのエネルギーをより効率的に受け取り、分解が促進されることにより、優れた感度及びパターン露光における露光部と未露光部との酸の発生のコントラストが向上することによる優れたリソグラフィ性能を得ることができると考えられる。 Since the chemical amplification resist material contains the above components, high sensitivity and excellent lithography performance can be obtained when radiation having a wavelength of 250 nm or less such as EUV is used as pattern exposure light. Although the reason why the chemically amplified resist material has the above-described configuration provides the above-mentioned effect is not clear, it can be presumed as follows, for example. That is, although a sensitizer is generated in the pattern exposure unit, exposure to the second radiation in this state allows the photodisintegrating base to receive energy from the sensitizer more efficiently and promote decomposition. Thus, it is considered that excellent lithography performance can be obtained by improving the sensitivity and the contrast of generation of acid between the exposed and unexposed portions in pattern exposure.
 また、(d)感放射線性光崩壊性塩基のMで表される1価のオニウムカチオンの還元電位が、上記条件においてトリフェニルスルホニウムカチオンの還元電位よりも高い結果、パターン露光における露光部における感放射線性光崩壊性塩基の分解が促進されてパターン露光における露光部と未露光部との酸の発生のコントラストが向上する。 Further, (d) the reduction potential of the monovalent onium cation represented by M + of the radiation-sensitive photodegradable base is higher than the reduction potential of the triphenylsulfonium cation under the above conditions. The decomposition of the radiation-sensitive photodisintegratable base is promoted, and the contrast of acid generation between the exposed and unexposed areas in pattern exposure is improved.
 (2)成分が(1)重合体成分とは異なる成分である場合、当該化学増幅型レジスト材料の全固形分に対する(2)成分の含有量の下限としては、10質量%が好ましく、15質量%がより好ましい。一方、上記含有量の上限としては、40質量%が好ましく、35質量%がより好ましい。(2)成分の含有量を上記範囲とすることで、当該化学増幅型レジスト材料の感度及びリソグラフィ性能をより向上できる。「(2)成分の含有量」とは、(2)成分のうち(1)重合体成分と異なる成分の合計含有量をいう。 When the component (2) is a component different from the (1) polymer component, the lower limit of the content of the component (2) with respect to the total solid content of the chemically amplified resist material is preferably 10% by mass, and 15% by mass. % Is more preferable. On the other hand, the upper limit of the content is preferably 40% by mass, and more preferably 35% by mass. (2) By making content of a component into the said range, the sensitivity and lithography performance of the said chemically amplified resist material can be improved more. “Content of (2) component” means the total content of components different from (1) the polymer component among the (2) components.
 (3)成分が(1)重合体成分とは異なる成分である場合、(1)重合体成分100質量部に対する(d)感放射線性光崩壊性塩基の配合量の下限としては、0.1質量部が好ましく、1質量部がより好ましい。一方、上記配合量の上限としては、50質量部が好ましく、30質量部がより好ましい。「(3)成分の含有量」とは、(3)成分のうち(1)重合体成分と異なる成分の合計含有量をいう。 When the component (3) is a component different from the (1) polymer component, the lower limit of the amount of the (d) radiation-sensitive photodegradable base to 100 parts by mass of the polymer component (1) is 0.1. Part by mass is preferable, and 1 part by mass is more preferable. On the other hand, as an upper limit of the said compounding quantity, 50 mass parts is preferable and 30 mass parts is more preferable. "Content of (3) component" means the total content of components different from (1) the polymer component among the (3) components.
 (d)感放射線性光崩壊性塩基が、(1)重合体成分の重合体の構造単位として含まれている場合、(1)重合体成分の1モルに対する(d)感放射線性光崩壊性塩基の含有割合の下限としては、0.01モルが好ましく、0.02モルがより好ましく、0.1モルがさらに好ましい。一方、上記含有割合の上限としては、0.5モルが好ましく、0.3モルがより好ましい。 (D) When a radiation-sensitive photodegradable base is contained as a structural unit of the polymer of (1) polymer component, (d) (d) radiation-sensitive photodegradable with respect to 1 mol of the polymer component. As a minimum of the content rate of a base, 0.01 mol is preferred, 0.02 mol is more preferred, and 0.1 mol is still more preferred. On the other hand, the upper limit of the content ratio is preferably 0.5 mol, more preferably 0.3 mol.
 上記配合量又は含有割合が上記下限より小さいと、感度が低下するおそれがある。逆に、上記配合量又は含有割合が上記上限を超えると、レジスト材料膜を形成し難くなるおそれや、レジストパターンの断面形状における矩形性が低下するおそれがある。 If the blending amount or content ratio is smaller than the lower limit, the sensitivity may decrease. On the contrary, when the said compounding quantity or content rate exceeds the said upper limit, there exists a possibility that it may become difficult to form a resist material film, and there exists a possibility that the rectangularity in the cross-sectional shape of a resist pattern may fall.
([C1]化合物及び[C2]化合物)
 [C1]化合物は、第1オニウムカチオン(以下、「カチオン(I)」ともいう)と第1アニオン(以下、「アニオン(I)」ともいう)とを含む。[C2]化合物は、第2オニウムカチオン(以下、「カチオン(II)」ともいう)と上記アニオン(I)と異なる第2アニオン(以下、「アニオン(II)」ともいう)とを含むとよい。また、カチオン(I)及びカチオン(II)は、オニウムカチオンであると好ましい。
([C1] compound and [C2] compound)
The compound [C1] includes a first onium cation (hereinafter also referred to as “cation (I)”) and a first anion (hereinafter also referred to as “anion (I)”). [C2] The compound may include a second onium cation (hereinafter also referred to as “cation (II)”) and a second anion (hereinafter also referred to as “anion (II)”) different from the anion (I). . The cation (I) and the cation (II) are preferably onium cations.
(カチオン)
 カチオン(I)及びカチオン(II)は、オニウムカチオンであり、カチオン(I)及びカチオン(II)を還元するのに必要なエネルギーは、共に-1.2eV(標準水素電極使用)以上であると好ましい。還元電位の測定は、サイクリックボルタモトメトリーにより行うことができる。カチオン(I)及びカチオン(II)を還元するのに必要なエネルギーを共に-1.2eV以上とすることで、[C1]化合物及び[C2]化合物の第2放射線照射時のパターン露光部における分解をさらに促進することができる。
(Cation)
The cation (I) and the cation (II) are onium cations, and the energy required for reducing the cation (I) and the cation (II) is both −1.2 eV (using a standard hydrogen electrode) or more. preferable. The reduction potential can be measured by cyclic voltammetry. The energy required for reducing the cation (I) and the cation (II) is both set to −1.2 eV or more, so that the [C1] compound and the [C2] compound are decomposed at the pattern exposure portion during the second radiation irradiation. Can be further promoted.
 上記カチオン(I)及びカチオン(II)の還元電位の下限としては、-1.2Vが好ましく、-1.0Vがより好ましく、-0.9Vがさらに好ましい。。一方、上記還元電位の上限としては、0.0Vが好ましく、-0.2Vがより好ましい。上記還元電位が上記下限より小さいと、発生する酸の強度が不十分となり、形成されるパターンの形状が不良となるおそれがある。逆に、上記還元電位が上記上限を超えると、発生する酸の強度が過剰となり、パターン未露光部へ酸が拡散し易くなるおそれがある。 The lower limit of the reduction potential of the cation (I) and the cation (II) is preferably −1.2V, more preferably −1.0V, and further preferably −0.9V. . On the other hand, the upper limit of the reduction potential is preferably 0.0 V, more preferably -0.2 V. If the reduction potential is smaller than the lower limit, the strength of the acid generated is insufficient, and the shape of the pattern formed may be poor. On the other hand, when the reduction potential exceeds the upper limit, the strength of the generated acid becomes excessive, and the acid may easily diffuse to the pattern unexposed area.
 上記カチオン(I)及びカチオン(II)のラジカルに還元される際に放出するエネルギーの下限としては、5.0eVが好ましく、5.1eVがより好ましく、5.2eVがさらに好ましい。上記放出するエネルギーが上記下限より小さいと、発生する酸の量が不十分となり、形成されるパターンの形状が不良となるおそれがある。一方、上記放出するエネルギーの上限としては、6.0eVが好ましく、5.9eVがより好ましく、5.8eVがさらに好ましい。上記放出するエネルギーが上記上限を超えると、酸拡散制御剤の安定性が低下するおそれがある。 The lower limit of the energy released when reduced to the cation (I) and cation (II) radicals is preferably 5.0 eV, more preferably 5.1 eV, and even more preferably 5.2 eV. If the energy to be released is smaller than the lower limit, the amount of acid generated is insufficient, and the shape of the pattern formed may be poor. On the other hand, the upper limit of the released energy is preferably 6.0 eV, more preferably 5.9 eV, and even more preferably 5.8 eV. If the energy released exceeds the upper limit, the stability of the acid diffusion controller may be reduced.
 上記カチオン(I)とカチオン(II)とが同一の構造であるとより好ましい。上記カチオン(I)とカチオン(II)とが同一の構造であることにより、リソグラフィ性能をより向上させることができる。 It is more preferable that the cation (I) and the cation (II) have the same structure. When the cation (I) and the cation (II) have the same structure, the lithography performance can be further improved.
 上記化学増幅型レジスト材料中の全オニウムカチオンに対する上記カチオン(I)及び上記カチオン(II)の合計含有率の下限としては、80モル%が好ましく、85モル%がより好ましく、90モル%がさらに好ましい。上記カチオン(I)及び上記カチオン(II)の合計含有率を上記範囲とすることで、当該化学増幅型レジスト材料の感度及びリソグラフィ性能をより向上できる。 The lower limit of the total content of the cation (I) and the cation (II) with respect to all onium cations in the chemically amplified resist material is preferably 80 mol%, more preferably 85 mol%, and even more preferably 90 mol%. preferable. By making the total content rate of the said cation (I) and the said cation (II) into the said range, the sensitivity and lithography performance of the said chemically amplified resist material can be improved more.
 カチオン(I)及びカチオン(II)としては、例えばXで表される1価のオニウムカチオンである。上記Xで表される1価のオニウムカチオンとしては、例えば下記式(X-1)、(X-2)、(X-3)及び(X-4)で表されるカチオン(以下、「カチオン(X-1)」及び「カチオン(X-2)」ともいう)が挙げられる。 As the cation (I) and the cation (II), for example, a monovalent onium cation represented by X + is used. Examples of the monovalent onium cation represented by X + include cations represented by the following formulas (X-1), (X-2), (X-3) and (X-4) (hereinafter referred to as “ Cation (X-1) "and" cation (X-2) ").
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
(アニオン(I))
 アニオン(I)及びアニオン(II)は、異なるアニオンである。
(Anion (I))
Anion (I) and anion (II) are different anions.
 [C1]化合物が発生する酸の酸解離定数の逆数の対数値(pKa)は、[C2]化合物が発生する酸のpKaよりも小さい。発生する酸のpKaが小さい方の[C1]化合物は、(1)重合体成分を現像液に可溶又は不溶とする酸発生化合物として機能する。また、発生する酸のpKaが大きい方の[C2]化合物が酸拡散制御剤として機能する。 The logarithmic value (pKa) of the reciprocal of the acid dissociation constant of the acid generated by the [C1] compound is smaller than the pKa of the acid generated by the [C2] compound. The [C1] compound having a smaller pKa of the generated acid functions as (1) an acid generating compound that makes the polymer component soluble or insoluble in the developer. In addition, the [C2] compound having a larger pKa of the generated acid functions as an acid diffusion controller.
 [C1]化合物から発生する酸のpKaの上限としては、0が好ましく、-0.5がより好ましい。また、上記下限としては、-7が好ましく、-5がより好ましい。[C2]化合物から発生する酸のpKaの上限としては、11.0が好ましく、10.5がより好ましい。また、上記下限としては、0が好ましく、1がより好ましく、2がさらに好ましい。上記酸のpKaを上記範囲とすることで、より優れたリソグラフィ性能を発揮することができる。なお、上記pKaは、ACD/ChemSketch(ACD/Labs 8.00 Release Product Version:8.08)により求めた計算値である。 The upper limit of the pKa of the acid generated from the [C1] compound is preferably 0, more preferably -0.5. Further, the lower limit is preferably −7, more preferably −5. [C2] The upper limit of the pKa of the acid generated from the compound is preferably 11.0, and more preferably 10.5. Moreover, as said minimum, 0 is preferable, 1 is more preferable, and 2 is further more preferable. By setting the pKa of the acid within the above range, more excellent lithography performance can be exhibited. The pKa is a calculated value obtained by ACD / ChemSketch (ACD / Labs 8.00 Release Product Version: 8.08).
 アニオン(I)及びアニオン(II)としては、例えばスルホン酸アニオン、カルボン酸アニオン、ビス(アルキルスルホニル)アミドアニオン、トリス(アルキルスルホニル)メチドアニオン等が挙げられる。 Examples of the anion (I) and the anion (II) include a sulfonate anion, a carboxylate anion, a bis (alkylsulfonyl) amide anion, and a tris (alkylsulfonyl) methide anion.
 発生する酸の酸解離定数の逆数の対数値(pKa)が小さく、酸発生化合物である[C1]化合物のアニオンとして機能するアニオン(I)としては、下記一般式(XX)、(XXI)及び(XXII)で表される酸のアニオンが好ましく、下記一般式(XX)で表される酸のアニオンがより好ましい。 The anion (I), which has a small logarithmic value (pKa) of the reciprocal of the acid dissociation constant of the generated acid and functions as an anion of the [C1] compound that is an acid generating compound, is represented by the following general formulas (XX), (XXI) and An anion of an acid represented by (XXII) is preferred, and an anion of an acid represented by the following general formula (XX) is more preferred.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 上記一般式(XX)、(XXI)及び(XXII)において、R18~R21は、それぞれ独立して有機基を示す。上記有機基としては、例えばアルキル基、アリール基、これらの複数の基が連結された基等が挙げられる。有機基の1位に結合される置換基としては、がフッ素原子若しくはフロロアルキル基で置換されたアルキル基、及びフッ素原子若しくはフロロアルキル基で置換されたフェニル基が好ましい。有機基がフッ素原子又はフロロアルキル基を有することにより、露光によって発生する酸の酸性度が上がり、感度が向上する傾向がある。但し、上記有機基の結合手側でない末端の置換基としては、フッ素原子を含有しないことが好ましい。 In the general formulas (XX), (XXI) and (XXII), R 18 to R 21 each independently represents an organic group. Examples of the organic group include an alkyl group, an aryl group, and a group in which a plurality of these groups are linked. As the substituent bonded to the 1-position of the organic group, an alkyl group substituted with a fluorine atom or a fluoroalkyl group and a phenyl group substituted with a fluorine atom or a fluoroalkyl group are preferable. When the organic group has a fluorine atom or a fluoroalkyl group, the acidity of the acid generated by exposure increases, and the sensitivity tends to be improved. However, it is preferable that the terminal substituent not on the side of the bond of the organic group does not contain a fluorine atom.
 発生する酸の酸解離定数の逆数の対数値(pKa)が小さく、酸発生化合物として機能する[C1]化合物としては、下記式(1)で表されるものが好ましい。すなわち、酸発生化合物として機能する[C1]化合物の酸のアニオンとしては、下記式(1)に記載の構造を有することが好ましい。 As the [C1] compound having a small logarithmic value (pKa) of the reciprocal of the acid dissociation constant of the generated acid and functioning as an acid generating compound, those represented by the following formula (1) are preferable. That is, the acid anion of the [C1] compound that functions as an acid generating compound preferably has a structure represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 上記式(1)中、Rp1は、環員数6以上の環構造を含む1価の基である。Rp2は、2価の連結基である。Rp3及びRp4は、それぞれ独立して、水素原子、フッ素原子、炭素数1~20の1価の炭化水素基又は炭素数1~20の1価のフッ素化炭化水素基である。Rp5及びRp6は、それぞれ独立して、フッ素原子又は炭素数1~20の1価のフッ素化炭化水素基である。np1は、0~10の整数である。np2は、0~10の整数である。np3は、1~10の整数である。np1が2以上の場合、複数のRp2は同一でも異なっていてもよい。np2が2以上の場合、複数のRp3は同一でも異なっていてもよく、複数のRp4は同一でも異なっていてもよい。np3が2以上の場合、複数のRp5は同一でも異なっていてもよく、複数のRp6は同一でも異なっていてもよい。Xは、カチオン(I)及びカチオン(II)である。 In the above formula (1), R p1 is a monovalent group containing a ring structure having 6 or more ring members. R p2 is a divalent linking group. R p3 and R p4 are each independently a hydrogen atom, a fluorine atom, a monovalent hydrocarbon group having 1 to 20 carbon atoms or a monovalent fluorinated hydrocarbon group having 1 to 20 carbon atoms. R p5 and R p6 are each independently a fluorine atom or a monovalent fluorinated hydrocarbon group having 1 to 20 carbon atoms. n p1 is an integer of 0 to 10. n p2 is an integer of 0 to 10. n p3 is an integer of 1 to 10. When n p1 is 2 or more, the plurality of R p2 may be the same or different. When n p2 is 2 or more, the plurality of R p3 may be the same or different, and the plurality of R p4 may be the same or different. When n p3 is 2 or more, the plurality of R p5 may be the same or different, and the plurality of R p6 may be the same or different. X + is cation (I) and cation (II).
 ここで、「環員数」とは、芳香環構造、芳香族複素環構造、脂環構造及び脂肪族複素環構造の環を構成する原子数をいい、多環の環構造の場合は、この多環を構成する原子数をいう。「炭化水素基」とは、鎖状炭化水素基、脂環式炭化水素基及び芳香族炭化水素基が含まれる。この「炭化水素基」は、飽和炭化水素基でも不飽和炭化水素基でもよい。「鎖状炭化水素基」とは、環状構造を含まず、鎖状構造のみで構成された炭化水素基をいい、直鎖状炭化水素基及び分岐状炭化水素基の両方を含む。「脂環式炭化水素基」とは、環構造としては脂環構造のみを含み、芳香環構造を含まない炭化水素基をいい、単環の脂環式炭化水素基及び多環の脂環式炭化水素基の両方を含む。但し、脂環構造のみで構成されている必要はなく、その一部に鎖状構造を含んでいてもよい。「芳香族炭化水素基」とは、環構造として芳香環構造を含む炭化水素基をいう。但し、芳香環構造のみで構成されている必要はなく、その一部に鎖状構造や脂環構造を含んでいてもよい。 Here, the “number of ring members” refers to the number of atoms constituting a ring of an aromatic ring structure, aromatic heterocyclic structure, alicyclic structure and aliphatic heterocyclic structure, and in the case of a polycyclic ring structure, The number of atoms that make up the ring. The “hydrocarbon group” includes a chain hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group. The “hydrocarbon group” may be a saturated hydrocarbon group or an unsaturated hydrocarbon group. The “chain hydrocarbon group” refers to a hydrocarbon group that does not include a cyclic structure but includes only a chain structure, and includes both a linear hydrocarbon group and a branched hydrocarbon group. The term “alicyclic hydrocarbon group” refers to a hydrocarbon group that includes only an alicyclic structure as a ring structure and does not include an aromatic ring structure, and includes a monocyclic alicyclic hydrocarbon group and a polycyclic alicyclic group. Includes both hydrocarbon groups. However, it is not necessary to be composed only of the alicyclic structure, and a part thereof may include a chain structure. “Aromatic hydrocarbon group” refers to a hydrocarbon group containing an aromatic ring structure as a ring structure. However, it is not necessary to be composed only of an aromatic ring structure, and a part thereof may include a chain structure or an alicyclic structure.
 [C1]化合物及び[C2]化合物としては、例えば4,4’-ジ(t-ブチルフェニル)ヨードニウム6-(アダマンタン-1-イルカルボキシオキシ)-1,1,2,2-テトラフルオロヘキサン-1-スルホネート、4,4’-ジ(t-ブチルフェニル)ヨードニウム4-トリフルオロメチルサリチレート、4,4’-ジ(t-ブチルフェニル)ヨードニウムアダマンタン-1-イルオキシカルボニルカルボキシレート、4,4’-ジ(t-ブチルフェニル)ヨードニウム1,2ジ(シクロヘキシルオキシカルボニル)エタン-1-スルホネート、4,4’-ジ(t-ブチルフェニル)ヨードニウムトリフルオロメタンスルホネート、4,4’-ジ(t-ブチルフェニル)ヨードニウムノナフルオロ-n-ブタンスルホネート、4,4’-ジ(t-ブチルフェニル)ヨードニウム2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエタンスルホネート、4,4’-ジ(t-ブチルフェニル)ヨードニウムパーフルオロ-n-オクタンスルホネート、4,4’-ジ(t-ブチルフェニル)ヨードニウム4-メチルスルホニルフェニルジフェニルスルホニウム1,2ジ(シクロヘキシルオキシカルボニル)エタン-1-スルホネート、4-メチルスルホニルフェニルジフェニルスルホニウム4-トリフルオロメチルサリチレート、4-メチルスルホニルフェニルジフェニルスルホニウム6-(アダマンタン-1-イルカルボキシオキシ)-1,1,2,2-テトラフルオロヘキサン-1-スルホネート、4-メチルスルホニルフェニルジフェニルスルホニウムアダマンタン-1-イルオキシカルボニルカルボキシレート、4-メチルスルホニルフェニルジフェニルスルホニウムトリフルオロメタンスルホネート、4-メチルスルホニルフェニルジフェニルスルホニウムノナフルオロ-n-ブタンスルホネート、4-メチルスルホニルフェニルジフェニルスルホニウム2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエタンスルホネート、4-メチルスルホニルフェニルジフェニルスルホニウムパーフルオロ-n-オクタンスルホネート等が挙げられる。 Examples of the [C1] compound and the [C2] compound include 4,4′-di (t-butylphenyl) iodonium 6- (adamantan-1-ylcarboxyoxy) -1,1,2,2-tetrafluorohexane- 1-sulfonate, 4,4′-di (t-butylphenyl) iodonium 4-trifluoromethyl salicylate, 4,4′-di (t-butylphenyl) iodonium adamantane-1-yloxycarbonylcarboxylate, 4 , 4′-di (t-butylphenyl) iodonium 1,2 di (cyclohexyloxycarbonyl) ethane-1-sulfonate, 4,4′-di (t-butylphenyl) iodonium trifluoromethanesulfonate, 4,4′-di (T-butylphenyl) iodonium nonafluoro-n-butanesulfonate, 4, '-Di (t-butylphenyl) iodonium 2-bicyclo [2.2.1] hept-2-yl-1,1,2,2-tetrafluoroethanesulfonate, 4,4'-di (t-butylphenyl) ) Iodonium perfluoro-n-octanesulfonate, 4,4'-di (t-butylphenyl) iodonium 4-methylsulfonylphenyldiphenylsulfonium 1,2 di (cyclohexyloxycarbonyl) ethane-1-sulfonate, 4-methylsulfonylphenyl Diphenylsulfonium 4-trifluoromethyl salicylate, 4-methylsulfonylphenyl diphenylsulfonium 6- (adamantan-1-ylcarboxyoxy) -1,1,2,2-tetrafluorohexane-1-sulfonate, 4-methylsulfonyl Phenyldiphenyl Rufonium adamantane-1-yloxycarbonylcarboxylate, 4-methylsulfonylphenyldiphenylsulfonium trifluoromethanesulfonate, 4-methylsulfonylphenyldiphenylsulfonium nonafluoro-n-butanesulfonate, 4-methylsulfonylphenyldiphenylsulfonium 2-bicyclo [2 2.1] hept-2-yl-1,1,2,2-tetrafluoroethanesulfonate, 4-methylsulfonylphenyldiphenylsulfonium perfluoro-n-octanesulfonate, and the like.
 また、[C1]化合物及び[C2]化合物としては、例えば特開2016-045472号公報、特開2014-063160号公報、特開2014-191061号公報、特開2006-215202号公報、特開2006-215271号公報、特開2004-004557号公報に記載されている化合物等が挙げられる。[C1]化合物及び[C2]化合物の具体例としては、例えば下記式(C-1-1)~(C-2-7)で表される化合物(以下、「化合物(C-1-1)~(C-2-7)」ともいう)等が挙げられる。 Examples of the [C1] compound and the [C2] compound include, for example, JP-A-2016-054772, JP-A-2014-063160, JP-A-2014-191061, JP-A-2006-215202, and JP-A-2006. And the compounds described in JP-A No. -215271 and JP-A No. 2004-004557. Specific examples of the [C1] compound and [C2] compound include compounds represented by the following formulas (C-1-1) to (C-2-7) (hereinafter referred to as “compound (C-1-1)”). To (C-2-7) ”) and the like.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 上記(a)成分又は上記(c)成分の100質量部に対する[C1]化合物の含有量の下限としては、50質量%が好ましく、60質量%がより好ましい。一方、上記[C1]化合物の含有量の上限としては、90質量%が好ましく、80質量%がより好ましい。 The lower limit of the content of the [C1] compound with respect to 100 parts by mass of the component (a) or the component (c) is preferably 50% by mass, and more preferably 60% by mass. On the other hand, as an upper limit of content of the said [C1] compound, 90 mass% is preferable and 80 mass% is more preferable.
 [C2]化合物の具体例としては、上記特開2016-045472号公報、特開2014-063160号公報、特開2014-191061号公報、特開2006-215202号公報、特開2006-215271号公報、特開2004-004557号公報に記載されている化合物の中で、トリフェニルスルホニウムカチオンの還元電位より高い還元電位を有する化合物を選択して使用することができるが、カチオン(II)は、特開2004-004557の段落[0045]で定義される電子吸引性の置換基を有する基を含むことが好ましい。電子吸引性の置換基としては、例えばハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、ニトロ基、アリールカルボニル基、アルキルカルボニル基が挙げられる。 Specific examples of the [C2] compound include JP-A-2016-045472, JP-A-2014-063160, JP-A-2014-191061, JP-A-2006-215202, JP-A-2006-215271. Among the compounds described in JP-A-2004-004557, compounds having a reduction potential higher than the reduction potential of the triphenylsulfonium cation can be selected and used. It preferably contains a group having an electron-withdrawing substituent as defined in paragraph [0045] of JP-A-2004-004557. Examples of the electron-withdrawing substituent include a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom), cyano group, nitro group, arylcarbonyl group, and alkylcarbonyl group.
 上記(a)成分又は上記(c)成分の100質量部に対する[C2]化合物の含有量の下限としては、5質量%が好ましく、10質量%がより好ましい。一方、上記含有量の上限としては、50質量%が好ましく、40質量%がより好ましい。発生する酸のpKaが小さい方の化合物及び上記pKaが大きい方の化合物の含有量を上記範囲とすることで、当該化学増幅型レジスト材料の感度及びリソグラフィ性能をより向上できる。 The lower limit of the content of the [C2] compound with respect to 100 parts by mass of the component (a) or the component (c) is preferably 5% by mass, and more preferably 10% by mass. On the other hand, the upper limit of the content is preferably 50% by mass, and more preferably 40% by mass. By setting the contents of the compound having a smaller pKa of the generated acid and the compound having a larger pKa within the above range, the sensitivity and lithography performance of the chemically amplified resist material can be further improved.
((a)感放射線性酸-増感体発生剤)
 (a)感放射線性酸-増感体発生剤は、KrF、ArF、EUV、電子線等の250nm以下の波長を有する放射線である第1の放射線を照射し、250nmを超える波長を有する放射線である第2の放射線を照射しない場合に、酸と、上記第2の放射線を吸収する感放射線性増感体とを発生し、かつ上記第1の放射線を照射せず上記第2の放射線のみを照射した場合に上記酸及び感放射線性増感体を実質的に発生しない。
((A) Radiation sensitive acid-sensitizer generator)
(A) The radiation-sensitive acid-sensitizer generator is irradiated with a first radiation that is a radiation having a wavelength of 250 nm or less, such as KrF, ArF, EUV, or an electron beam, and is a radiation having a wavelength exceeding 250 nm. When no second radiation is irradiated, an acid and a radiation-sensitive sensitizer that absorbs the second radiation are generated, and only the second radiation is not irradiated with the first radiation. When irradiated, the acid and radiation-sensitive sensitizer are not substantially generated.
 このような(a)感放射線性酸-増感体発生剤となる[C1]化合物としては、例えば上述の[C1]化合物及び[C2]化合物のうちのオニウム塩化合物のカチオン部またはアニオン部が、後述する(b)感放射線性増感体発生剤化合物により置換された化合物が挙げられる。また、オニウム塩化合物としては、例えばスルホニウム塩化合物、ヨードニウム塩化合物等が挙げられる。 Examples of the [C1] compound that serves as the radiation sensitive acid-sensitizer generator (a) include, for example, the cation portion or the anion portion of the onium salt compound among the above-mentioned [C1] compound and [C2] compound. And (b) a compound substituted with a radiation-sensitive sensitizer generating compound described later. Moreover, as an onium salt compound, a sulfonium salt compound, an iodonium salt compound, etc. are mentioned, for example.
 上記[C1]化合物におけるカチオン(I)及びカチオン(II)としては、例えば4,4’-ジ(t-ブチルフェニル)ヨードニウムカチオン及び4-メチルスルホニルフェニルジフェニルスルホニウムカチオン等が挙げられる。 Examples of the cation (I) and cation (II) in the above [C1] compound include 4,4'-di (t-butylphenyl) iodonium cation and 4-methylsulfonylphenyldiphenylsulfonium cation.
 (a)感放射線性酸-増感体発生剤としては、上記[C1]化合物及び[C2]化合物以外の化合物も有していてもよく、[C1]化合物及び[C2]化合物以外の(a)感放射線性酸-増感体発生剤としては、例えばその他のオニウム塩化合物等が挙げられる。オニウム塩化合物としては、例えばスルホニウム塩化合物、テトラヒドロチオフェニウム塩化合物、ヨードニウム塩化合物等が挙げられる。 (A) The radiation-sensitive acid-sensitizer generator may have a compound other than the above [C1] compound and [C2] compound, and other than the [C1] compound and the [C2] compound (a ) Examples of the radiation sensitive acid-sensitizer generator include other onium salt compounds. Examples of the onium salt compound include a sulfonium salt compound, a tetrahydrothiophenium salt compound, and an iodonium salt compound.
 (a)感放射線性酸-増感体発生剤は、(1)重合体成分の重合体の構造単位として含まれ、重合体の一部として組み込まれた基の形態でもよい。この場合、(a)感放射線性酸-増感体発生剤は、上記化合物から水素原子1つを除いた基が重合体に結合する形で存在する。 (A) The radiation-sensitive acid-sensitizer generator may be in the form of (1) a group included as a polymer structural unit of a polymer component and incorporated as part of the polymer. In this case, (a) the radiation-sensitive acid-sensitizer generator is present in a form in which a group obtained by removing one hydrogen atom from the above compound is bonded to the polymer.
 (a)感放射線性酸-増感体発生剤が(1)重合体成分とは異なる成分である場合、(1)重合体成分100質量部に対する(a)感放射線性酸-増感体発生剤の配合量の下限としては、0.005質量部が好ましく、0.1質量部がより好ましい。一方、上記配合量の上限としては、50質量部が好ましく、30質量部がより好ましい。 When (a) the radiation-sensitive acid-sensitizer generator is a component different from (1) the polymer component, (a) generation of (a) radiation-sensitive acid-sensitizer with respect to 100 parts by mass of the polymer component As a minimum of the compounding quantity of an agent, 0.005 mass part is preferred and 0.1 mass part is more preferred. On the other hand, as an upper limit of the said compounding quantity, 50 mass parts is preferable and 30 mass parts is more preferable.
 (a)感放射線性酸-増感体発生剤が(1)重合体成分の重合体の構造単位として含まれている場合、(1)重合体成分の1モルに対する(a)感放射線性酸-増感体発生剤の含有割合の下限としては、0.001モルが好ましく、0.002モルがより好ましく、0.01モルがさらに好ましい。一方、上記含有割合の上限としては、0.5モルが好ましく、0.3モルがより好ましい。 When (a) a radiation-sensitive acid-sensitizer generator is included as a structural unit of the polymer of (1) the polymer component, (a) (a) the radiation-sensitive acid per mole of the polymer component -The lower limit of the content of the sensitizer generator is preferably 0.001 mol, more preferably 0.002 mol, and still more preferably 0.01 mol. On the other hand, the upper limit of the content ratio is preferably 0.5 mol, more preferably 0.3 mol.
 上記配合量又は含有割合が上記下限より小さいと、感度が低下するおそれがある。逆に、上記配合量又は含有割合が上記上限を超えると、レジスト材料膜を形成し難くなるおそれや、レジストパターンの断面形状における矩形性が低下するおそれがある。 If the blending amount or content ratio is smaller than the lower limit, the sensitivity may decrease. On the contrary, when the said compounding quantity or content rate exceeds the said upper limit, there exists a possibility that it may become difficult to form a resist material film, and there exists a possibility that the rectangularity in the cross-sectional shape of a resist pattern may fall.
((b)感放射線性増感体発生剤)
 (b)感放射線性増感体発生剤は、上記第1の放射線を照射し、上記第2の放射線を照射しない場合に、上記第2の放射線を吸収する感放射線性増感体を発生し、かつ上記第1の放射線を照射せず上記第2の放射線のみを照射した場合に上記感放射線性増感体を実質的に発生しない成分であり、上記(a)感放射線性酸-増感体発生剤とは異なるものである。
((B) Radiation-sensitive sensitizer generating agent)
(B) The radiation-sensitive sensitizer generating agent generates a radiation-sensitive sensitizer that absorbs the second radiation when irradiated with the first radiation and not irradiated with the second radiation. And a component that does not substantially generate the radiation-sensitive sensitizer when the first radiation is not irradiated and only the second radiation is irradiated. It is different from the body generator.
 当該化学増幅型レジスト材料では、第1の放射線の照射により(b)感放射線性増感体発生剤の化学構造が直接的又は間接的な反応により変換し、第2の放射線照射時に酸発生を補助する感放射線性増感体を生成する。この感放射線性増感体は、(b)感放射線性増感体発生剤と比べ第2の放射線を吸収し易いため、第1の放射線によりパターン露光を行った場合に、感放射線性増感体が発生する露光部と感放射線性増感体が発生しないパターン非露光部との間における第2の放射線の吸収量が大きく異なり、吸収量のコントラストが得られ易くなる。 In the chemically amplified resist material, (b) the chemical structure of the radiation-sensitive sensitizer generating agent is converted by direct or indirect reaction upon irradiation with the first radiation, and acid is generated upon irradiation with the second radiation. Produce an auxiliary radiation-sensitive sensitizer. Since this radiation-sensitive sensitizer easily absorbs the second radiation as compared with the (b) radiation-sensitive sensitizer generating agent, the radiation-sensitive sensitization is performed when pattern exposure is performed with the first radiation. The absorption amount of the second radiation is greatly different between the exposed portion where the body is generated and the non-exposed portion where the radiation-sensitive sensitizer is not generated, and the contrast of the absorption amount is easily obtained.
 上記第2の放射線を吸収する感放射線性増感体を励起するのに必要なエネルギー(E)の値と、上記第2の放射線を吸収する感放射線性増感体を酸化するのに必要なエネルギー(EOxi(PS))の値と、上記第2の化合物を還元するのに必要なエネルギー(ERed(Qu))の値により下記式(I)から求められる光増感エネルギー移動の自由エネルギー(ΔG(Qu))としては、0kcal/mol以下が好ましい。 Necessary to oxidize the value of energy (E * ) necessary to excite the radiation-sensitive sensitizer that absorbs the second radiation and the radiation-sensitive sensitizer that absorbs the second radiation. Of the photosensitized energy transfer obtained from the following formula (I) based on the value of the effective energy (E Oxi (PS) ) and the value of the energy necessary to reduce the second compound (E Red (Qu) ) The free energy (ΔG (Qu) ) is preferably 0 kcal / mol or less.
 ΔG(Qu)=(EOxi(PS)-ERed(Qu))-E (I) ΔG (Qu) = (E Oxi (PS) −E Red (Qu) ) −E * (I)
 ΔG(Qu)が0kcal/mol以下であることにより、感放射線性増感体の第2放射線露光による励起と、その励起体が酸化されつつ感放射線性崩壊性塩基への電子移動、すなわち分解が起こることが熱力学的に有利となるので、露光部と非露光部との間における酸の潜像の化学コントラストをより向上させることができる。 When ΔG (Qu) is 0 kcal / mol or less, excitation by the second radiation exposure of the radiation-sensitive sensitizer and electron transfer to the radiation-sensitive disintegrating base, that is, decomposition, while the exciter is oxidized are performed. Since this is thermodynamically advantageous, it is possible to further improve the chemical contrast of the latent image of the acid between the exposed portion and the non-exposed portion.
 上記第2の放射線を吸収する感放射線性増感体を励起するのに必要なエネルギー(E)の値と、上記第2の放射線を吸収する感放射線性増感体を酸化するのに必要なエネルギー(EOxi(PS))の値と、上記第1の化合物を還元するのに必要なエネルギー(ERed(PAG))の値により下記式(II)から求められる光増感エネルギー移動の自由エネルギー(ΔG(PAG))としては、0kcal/mol以下が好ましい。 Necessary to oxidize the value of energy (E * ) necessary to excite the radiation-sensitive sensitizer that absorbs the second radiation and the radiation-sensitive sensitizer that absorbs the second radiation. Of the photosensitized energy transfer obtained from the following formula (II) based on the value of the effective energy (E Oxi (PS) ) and the value of the energy necessary to reduce the first compound (E Red (PAG) ) The free energy (ΔG (PAG) ) is preferably 0 kcal / mol or less.
 ΔG(PAG)=(EOxi(PS)-ERed(PAG))-E (II) ΔG (PAG) = (E Oxi (PS) −E Red (PAG) ) −E * (II)
 ΔG(PAG)が0kcal/mol以下であることにより、感放射線性増感体の第2放射線露光による励起と、その励起体が酸化されつつ感放射線性酸発生剤への電子移動、すなわち酸発生が起こることが熱力学的に有利となるので、露光部と非露光部との間における酸の潜像の化学コントラストをより向上させることができる。 When ΔG (PAG) is 0 kcal / mol or less, excitation of the radiation-sensitive sensitizer by the second radiation exposure and electron transfer to the radiation-sensitive acid generator while the exciter is oxidized, that is, acid generation Since this is thermodynamically advantageous, the chemical contrast of the latent image of the acid between the exposed area and the non-exposed area can be further improved.
 ここで、上記式(1)及び式(2)において、ΔG(Qu)及びΔG(PAG)は、ギプスの自由エネルギー変化である。
 上記還元電位は、2000_03_SeijiNagahara_Ph_D_Thesis.pdf、3.2.3.Measurement of Reduction Potential of Acid Generator を参照して、作用電極として白金を、対電極として白金ワイヤを、参照電極として飽和カロメル電極(SCE)を用いてAr雰囲気下でサイクリックボルタンメトリーにより還元電位を測定することができる。なお酸発生剤は還元により分解してしまうため不可逆であり、還元ピークのみ観察される。
Here, in the above formulas (1) and (2), ΔG (Qu) and ΔG (PAG) are changes in the free energy of the cast.
The reduction potential is 2000_03_Seiji Nagahara_Ph_D_Thesis. pdf, 3.2.3. Measure the reduction potential by cyclic voltammetry under an Ar atmosphere using a measurement of reduction potential of acid generator, using platinum as the working electrode, platinum wire as the counter electrode, and a saturated calomel electrode (SCE) as the reference electrode. be able to. In addition, since an acid generator decomposes | disassembles by reduction | restoration, it is irreversible and only a reduction peak is observed.
 (b)感放射線性増感体発生剤は、第1の放射線の照射によって、第2の放射線を吸収するカルボニル基を有するカルボニル化合物となるものが好ましい。カルボニル化合物としては、例えばアルデヒド、ケトン、カルボン酸、カルボン酸エステル等が挙げられる。上記反応により、パターン露光部の(b)感放射線性増感体発生剤でのみ放射線の吸収波長のピークのシフトが起こる。従って、パターン露光後に、パターン露光部だけが吸収できる波長の放射線で一括露光を行えば、パターン露光部だけを選択的に増感できる。(b)感放射線性増感体発生剤としては下記式(VI)で表されるアルコール化合物がより好ましく、第2級アルコール化合物であってもよい。なお、本明細書において、アルコール化合物とは、アルコール性水酸基を有している化合物のみを指すものではなく、アルコール性水酸基の水素原子が置換されたケタール化合物及びアセタール化合物並びにオルトエステル化合物等であってもよい。(b)感放射線性増感体発生剤がケタール化合物又はアセタール化合物である場合、パターン露光で発生した酸触媒によるカルボニル化合物への加水分解反応を加速するために、パターン露光後一括露光前に加熱してもよい。 (B) The radiation-sensitive sensitizer generator is preferably a carbonyl compound having a carbonyl group that absorbs the second radiation when irradiated with the first radiation. Examples of the carbonyl compound include aldehyde, ketone, carboxylic acid, carboxylic acid ester and the like. The above reaction causes a shift in the peak of the absorption wavelength of radiation only in the (b) radiation-sensitive sensitizer generating agent in the pattern exposure portion. Therefore, if pattern exposure is performed with radiation having a wavelength that can be absorbed only by the pattern exposure portion after pattern exposure, only the pattern exposure portion can be selectively sensitized. (B) As the radiation-sensitive sensitizer generator, an alcohol compound represented by the following formula (VI) is more preferable, and a secondary alcohol compound may be used. In the present specification, the alcohol compound does not mean only a compound having an alcoholic hydroxyl group, but includes a ketal compound, an acetal compound, an orthoester compound, etc., in which a hydrogen atom of the alcoholic hydroxyl group is substituted. May be. (B) When the radiation-sensitive sensitizer generator is a ketal compound or an acetal compound, heating is performed after pattern exposure and before batch exposure in order to accelerate the hydrolysis reaction to the carbonyl compound by the acid catalyst generated by pattern exposure. May be.
Figure JPOXMLDOC01-appb-C000023
 式(VI)中、R、R及びR10は、それぞれ独立して、水素原子;フェニル基;ナフチル基;アントラセニル基;炭素数1~5のアルコキシ基;炭素数1~5のアルキルチオ基;フェノキシ基;ナフトキシ基;アントラセノキシ基;アミノ基;アミド基;ハロゲン原子;炭素数1~30(好ましくは炭素数1~5)の直鎖状、分岐鎖状若しくは環状の飽和若しくは不飽和炭化水素基(好ましくはアルキル基);炭素数1~30(好ましくは炭素数1~5)の直鎖状、分岐鎖状若しくは環状の飽和若しくは不飽和炭化水素基(好ましくはアルキル基)、炭素数1~5のアルコキシ基、アミノ基、アミド基、若しくはヒドロキシル基で置換された、炭素数1~5のアルコキシ基;炭素数1~30(好ましくは炭素数1~5)の直鎖状、分岐鎖状若しくは環状の飽和若しくは不飽和炭化水素基(好ましくはアルキル基)、炭素数1~5のアルコキシ基、アミノ基、アミド基、若しくはヒドロキシル基で置換された、炭素数1~5のアルキルチオ基;炭素数1~5のアルコキシ基、ヒドロキシル基、アミノ基、アミド基、若しくは炭素数1~5のアルキル基で置換されたフェノキシ基;炭素数1~30(好ましくは炭素数1~5)の直鎖状、分岐鎖状若しくは環状の飽和若しくは不飽和炭化水素基(好ましくはアルキル基)、炭素数1~5のアルコキシ基、アミノ基、アミド基、若しくはヒドロキシル基で置換されたフェニル基;炭素数1~5のアルコキシ基、炭素数1~5のアルキル基、アミノ基、アミド基、若しくはヒドロキシル基で置換されたナフトキシ基;炭素数1~5のアルコキシ基、炭素数1~5のアルキル基、アミノ基、アミド基、若しくはヒドロキシル基で置換されたアントラセノキシ基;炭素数1~5のアルコキシ基、フェノキシ基、ナフトキシ基、アントラセノキシ基、アミノ基、アミド基、若しくはヒドロキシル基で置換された、炭素数1~30(好ましくは炭素数1~5)の直鎖状、分岐鎖状若しくは環状の飽和若しくは不飽和炭化水素基(好ましくはアルキル基);又は炭素数1~12のアルキル基が結合したカルボニル基を示す。アルコール化合物は、式(VI)中のアルコール性水酸基(ヒドロキシル基)がチオール基となったチオール化合物であってもよい。上記式(VI)中、ヒドロキシル基又はチオール基の水素原子は、フェニル基;ハロゲン原子;炭素数1~30(好ましくは炭素数1~5)の直鎖状、分岐鎖状若しくは環状の飽和若しくは不飽和炭化水素基(好ましくはアルキル基);又は炭素数1~30(好ましくは炭素数1~5)の直鎖状、分岐鎖状若しくは環状の飽和若しくは不飽和炭化水素基(好ましくはアルキル基)、炭素数1~5のアルコキシ基、若しくはヒドロキシル基で置換されたフェニル基で置換されていてもよい。式中、R、R及びR10のうち任意の2つ以上の基は、単結合若しくは二重結合により、又は-CH-、-O-、-S-、-SO-、-SONH-、-C(=O)-、-C(=O)O-、-NHCO-、-NHC(=O)NH-、-CHR-、-CR -、-NH-若しくは-NR-を含む結合を介して環構造を形成してもよい。Rは、フェニル基;フェノキシ基;ハロゲン原子;炭素数1~30(好ましくは炭素数1~5)の直鎖状、分岐鎖状若しくは環状の飽和若しくは不飽和炭化水素基(好ましくはアルキル基);炭素数1~5のアルコキシ基、ヒドロキシル基、若しくは炭素数1~5のアルキル基で置換されたフェノキシ基;又は炭素数1~30(好ましくは炭素数1~5)の直鎖状、分岐鎖状若しくは環状の飽和若しくは不飽和炭化水素基(好ましくはアルキル基)、炭素数1~5のアルコキシ基、若しくはヒドロキシル基で置換されたフェニル基を示す。R、R及びR10は、それぞれ独立して、好ましくは水素原子;フェニル基;フェノキシ基;炭素数1~5のアルコキシ基、ヒドロキシル基、若しくは炭素数1~5のアルキル基で置換されたフェノキシ基;又は炭素数1~5のアルコキシ基、若しくはヒドロキシル基で置換されたフェニル基を示す。
Figure JPOXMLDOC01-appb-C000023
In formula (VI), R 8 , R 9 and R 10 are each independently a hydrogen atom; phenyl group; naphthyl group; anthracenyl group; alkoxy group having 1 to 5 carbon atoms; alkylthio group having 1 to 5 carbon atoms A phenoxy group; a naphthoxy group; an anthracenoxy group; an amino group; an amide group; a halogen atom; a linear, branched or cyclic saturated or unsaturated hydrocarbon having 1 to 30 carbon atoms (preferably 1 to 5 carbon atoms); A group (preferably an alkyl group); a linear, branched or cyclic saturated or unsaturated hydrocarbon group (preferably an alkyl group) having 1 to 30 carbon atoms (preferably 1 to 5 carbon atoms), 1 carbon atom An alkoxy group having 1 to 5 carbon atoms, substituted with an alkoxy group having 5 to 5 alkoxy groups, an amino group, an amide group, or a hydroxyl group; a linear or branched group having 1 to 30 carbon atoms (preferably 1 to 5 carbon atoms) Alkylthio having 1 to 5 carbon atoms substituted with a branched or cyclic saturated or unsaturated hydrocarbon group (preferably an alkyl group), an alkoxy group having 1 to 5 carbon atoms, an amino group, an amide group, or a hydroxyl group Group: a phenoxy group substituted by an alkoxy group having 1 to 5 carbon atoms, a hydroxyl group, an amino group, an amide group, or an alkyl group having 1 to 5 carbon atoms; 1 to 30 carbon atoms (preferably 1 to 5 carbon atoms) A phenyl group substituted with a linear, branched or cyclic saturated or unsaturated hydrocarbon group (preferably an alkyl group), an alkoxy group having 1 to 5 carbon atoms, an amino group, an amide group, or a hydroxyl group; A naphthoxy group substituted by an alkoxy group having 1 to 5 carbon atoms, an alkyl group having 1 to 5 carbon atoms, an amino group, an amide group, or a hydroxyl group; An anthracenoxy group substituted with a alkoxy group, an alkyl group having 1 to 5 carbon atoms, an amino group, an amide group, or a hydroxyl group; an alkoxy group having 1 to 5 carbon atoms, a phenoxy group, a naphthoxy group, an anthracenoxy group, an amino group, an amide A linear, branched or cyclic saturated or unsaturated hydrocarbon group (preferably an alkyl group) having 1 to 30 carbon atoms (preferably 1 to 5 carbon atoms) substituted with a group or a hydroxyl group; or A carbonyl group to which an alkyl group having 1 to 12 carbon atoms is bonded is shown. The alcohol compound may be a thiol compound in which the alcoholic hydroxyl group (hydroxyl group) in formula (VI) is a thiol group. In the above formula (VI), the hydrogen atom of the hydroxyl group or thiol group is a phenyl group; a halogen atom; a straight-chain, branched-chain or cyclic saturated group having 1 to 30 carbon atoms (preferably 1 to 5 carbon atoms) or An unsaturated hydrocarbon group (preferably an alkyl group); or a linear, branched or cyclic saturated or unsaturated hydrocarbon group (preferably an alkyl group) having 1 to 30 carbon atoms (preferably 1 to 5 carbon atoms). ), An alkoxy group having 1 to 5 carbon atoms, or a phenyl group substituted with a hydroxyl group. In the formula, any two or more groups of R 8 , R 9 and R 10 are each a single bond or a double bond, or —CH 2 —, —O—, —S—, —SO 2 —, — SO 2 NH—, —C (═O) —, —C (═O) O—, —NHCO—, —NHC (═O) NH—, —CHR g —, —CR g 2 —, —NH— or A ring structure may be formed through a bond containing —NR g —. R g is a phenyl group; a phenoxy group; a halogen atom; a linear, branched or cyclic saturated or unsaturated hydrocarbon group having 1 to 30 carbon atoms (preferably 1 to 5 carbon atoms) (preferably an alkyl group). ); A phenoxy group substituted with an alkoxy group having 1 to 5 carbon atoms, a hydroxyl group, or an alkyl group having 1 to 5 carbon atoms; or a straight chain having 1 to 30 carbon atoms (preferably 1 to 5 carbon atoms), A phenyl group substituted with a branched or cyclic saturated or unsaturated hydrocarbon group (preferably an alkyl group), an alkoxy group having 1 to 5 carbon atoms, or a hydroxyl group. R 8 , R 9 and R 10 are preferably each independently substituted with a hydrogen atom; a phenyl group; a phenoxy group; an alkoxy group having 1 to 5 carbon atoms, a hydroxyl group, or an alkyl group having 1 to 5 carbon atoms. Or a phenyl group substituted with an alkoxy group having 1 to 5 carbon atoms or a hydroxyl group.
 なお、式(VI)中のヒドロキシル基の水素原子が置換されたケタール化合物又はアセタール化合物としては、下記式(XXXVI)で表される化合物が好ましい。すなわち、(b)感放射線性増感体発生剤は下記式(XXXVI)で表される化合物であってもよい。R又はR10のいずれか一方が水素原子である場合、下記式(XXXVI)で表される化合物はアセタール化合物であるということができる。 In addition, as a ketal compound or acetal compound in which the hydrogen atom of the hydroxyl group in formula (VI) is substituted, a compound represented by the following formula (XXXVI) is preferable. That is, (b) the radiation-sensitive sensitizer generating agent may be a compound represented by the following formula (XXXVI). When either one of R 9 and R 10 is a hydrogen atom, it can be said that the compound represented by the following formula (XXXVI) is an acetal compound.
Figure JPOXMLDOC01-appb-C000024
 式(XXXVI)中、R及びR10は上記式(VI)中のR及びR10とそれぞれ同義である。R及びR10は、上記式(VI)中のR及びR10と同様に環構造を形成していてもよい。式(XXXVI)中、R23及びR24は、それぞれ独立して、フェニル基;ハロゲン原子;炭素数1~30(好ましくは炭素数1~5)の直鎖状、分岐鎖状若しくは環状の飽和若しくは不飽和炭化水素基(好ましくはアルキル基);又は炭素数1~30(好ましくは炭素数1~5)の直鎖状、分岐鎖状若しくは環状の飽和若しくは不飽和炭化水素基(好ましくはアルキル基)、炭素数1~5のアルコキシ基、若しくはヒドロキシル基で置換されたフェニル基を示す。R23及びR24は、単結合、二重結合、-CH-、-O-、-S-、-SO-、-SONH-、-C(=O)-、-C(=O)O-、-NHCO-、NHC(=O)NH-、-CHR-、-CR 、-NH-又は-NR-を含む結合を介して環構造を形成していてもよい。Rは上記式(VI)中のRと同義である。ケタール化合物又はアセタール化合物は、式(XXXVI)中のR23及び/又はR24と結合する酸素原子が硫黄に置き換えられたチオケタール化合物又はチオアセタール化合物であってもよい。
Figure JPOXMLDOC01-appb-C000024
Wherein (XXXVI), R 9 and R 10 are the same meanings as R 9 and R 10 in formula (VI). R 9 and R 10, may form a similarly ring structure with R 9 and R 10 in formula (VI). In formula (XXXVI), R 23 and R 24 are each independently a phenyl group; a halogen atom; a linear, branched or cyclic saturated group having 1 to 30 carbon atoms (preferably 1 to 5 carbon atoms). Or an unsaturated hydrocarbon group (preferably an alkyl group); or a linear, branched or cyclic saturated or unsaturated hydrocarbon group (preferably an alkyl group) having 1 to 30 carbon atoms (preferably 1 to 5 carbon atoms). Group), an alkoxy group having 1 to 5 carbon atoms, or a phenyl group substituted with a hydroxyl group. R 23 and R 24 are a single bond, a double bond, —CH 2 —, —O—, —S—, —SO 2 —, —SO 2 NH—, —C (═O) —, —C (= A ring structure may be formed through a bond containing O) O—, —NHCO—, NHC (═O) NH—, —CHR g —, —CR g 2 , —NH— or —NR g —. . R g has the same meaning as R g in the formula (VI). The ketal compound or acetal compound may be a thioketal compound or a thioacetal compound in which the oxygen atom bonded to R 23 and / or R 24 in formula (XXXVI) is replaced with sulfur.
 ケタール化合物及びアセタール化合物は、カルボニル化合物をアルコールと反応させることで得ることができる。上記反応は、放射線増感作用に寄与するカルボニル基を保護する反応ということができ、上記式(XXXVI)におけるR23及びR24はカルボニル基の保護基ということができる。この場合、放射線等により(b)感放射線性増感体発生剤が感放射線性増感体となる反応を脱保護反応ということができる。保護基の反応性(脱保護反応の起こりやすさ)の例を下記に示す。保護基の反応性は右に行くほど高く、左に行くほど低い。例えばメトキシ基をカルボニル基の保護基として使用すると、脱保護反応の反応性は高く、常温でも酸触媒下で脱保護反応が進む傾向がある。このように常温で脱保護反応が進むことで、像のにじみを防ぐことができるというメリットがある。一方、パターン露光の時点で、パターン未露光部において脱保護反応が起こり感放射線性増感体が生成すると、レジストのコントラストが劣化するおそれがある。パターン未露光部における感放射線性増感体の生成を防ぐために、脱保護反応の活性化エネルギーを上げる(保護基の反応性を下げる)ように保護基を選択することもできる。保護基の反応性を下げる観点からは、式(XXXVI)中のR23及びR24が互いに結合して環構造を形成した環状の保護基がより好ましい。上記環構造としては6員環及び5員環が挙げられ、5員環が好ましい。反応性が低い保護基を用いる場合は、レジスト材料は後述する第1の捕捉剤を含むことが好ましく、かつパターン露光後一括露光前にレジスト材料膜をベークすることが好ましい。ベークを行うことにより、パターン未露光部の不要な酸が捕捉剤によって中和され、潜像のコントラストを向上させることができる。また、上記ベークにより保護基の反応性の低下を補うことができると共に、ベークによる物質の拡散によりレジスト材料膜中の酸の潜像のラフネスを低減できる。 A ketal compound and an acetal compound can be obtained by reacting a carbonyl compound with an alcohol. The above reaction can be referred to as a reaction for protecting a carbonyl group that contributes to radiosensitization, and R 23 and R 24 in the above formula (XXXVI) can be referred to as a protecting group for a carbonyl group. In this case, the reaction in which (b) the radiation-sensitive sensitizer generator becomes a radiation-sensitive sensitizer by radiation or the like can be referred to as a deprotection reaction. Examples of the reactivity of the protecting group (ease of deprotection reaction) are shown below. The reactivity of the protecting group increases as it goes to the right and decreases as it goes to the left. For example, when a methoxy group is used as a protecting group for a carbonyl group, the reactivity of the deprotection reaction is high, and the deprotection reaction tends to proceed under an acid catalyst even at room temperature. As described above, the deprotection reaction proceeds at room temperature, so that there is an advantage that blurring of the image can be prevented. On the other hand, if a deprotection reaction occurs in a pattern unexposed portion at the time of pattern exposure and a radiation-sensitive sensitizer is generated, the contrast of the resist may be deteriorated. In order to prevent the formation of a radiation-sensitive sensitizer in the pattern unexposed area, a protecting group can be selected so as to increase the activation energy of the deprotection reaction (decrease the reactivity of the protecting group). From the viewpoint of lowering the reactivity of the protecting group, a cyclic protecting group in which R 23 and R 24 in formula (XXXVI) are bonded to each other to form a ring structure is more preferable. Examples of the ring structure include a 6-membered ring and a 5-membered ring, and a 5-membered ring is preferable. When a protective group having low reactivity is used, the resist material preferably contains a first scavenger described later, and the resist material film is preferably baked after pattern exposure and before batch exposure. By performing baking, unnecessary acid in the unexposed portion of the pattern is neutralized by the capturing agent, and the contrast of the latent image can be improved. The baking can compensate for the decrease in the reactivity of the protecting group, and the roughness of the latent image of the acid in the resist material film can be reduced by the diffusion of the substance by baking.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 ケタールタイプの(b)感放射線性増感体発生剤は、下記式(XXVII)~(XXX)で表される化合物であってもよい。 The ketal type (b) radiation-sensitive sensitizer generating agent may be a compound represented by the following formulas (XXVII) to (XXX).
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 式(XXVII)~(XXX)中、R23及びR24は、式(XXXVI)中のR23及びR24とそれぞれ同義である。式(XXVII)~(XXX)中、芳香環の水素原子は炭素数1~5のアルコキシ基又は炭素数1~5のアルキル基で置換されていてもよく、芳香環は別の芳香環と結合してナフタレン環又はアントラセン環を形成していてもよい。R25は炭素数1~5のアルキル基を示す。(b)感放射線性増感体発生剤として上記式(XXVII)~(XXX)で表される化合物を用いた場合、(b)感放射線性増感体発生剤から感放射線性増感体となったときの放射線の吸収波長のシフトがより大きく、パターン露光部でのより選択的な増感反応を起こすことができる。 Wherein (XXVII) ~ (XXX), R 23 and R 24 are the same meanings as R 23 and R 24 in the formula (XXXVI). In formulas (XXVII) to (XXX), the hydrogen atom of the aromatic ring may be substituted with an alkoxy group having 1 to 5 carbon atoms or an alkyl group having 1 to 5 carbon atoms, and the aromatic ring is bonded to another aromatic ring Thus, a naphthalene ring or an anthracene ring may be formed. R 25 represents an alkyl group having 1 to 5 carbon atoms. (B) When the compounds represented by the above formulas (XXVII) to (XXX) are used as the radiation-sensitive sensitizer generating agent, (b) from the radiation-sensitive sensitizer generating agent to the radiation-sensitive sensitizer and The shift of the absorption wavelength of the radiation at that time is larger, and a more selective sensitization reaction can be caused in the pattern exposure part.
 なお、式(VI)中のヒドロキシル基の水素原子が置換されたオルトエステル化合物としては、下記式(XLVI)で表される化合物が好ましい。すなわち、(b)感放射線性増感体発生剤は下記式(XLVI)で表される化合物であってもよい。 In addition, as an orthoester compound by which the hydrogen atom of the hydroxyl group in Formula (VI) was substituted, the compound represented by a following formula (XLVI) is preferable. That is, (b) the radiation-sensitive sensitizer generating agent may be a compound represented by the following formula (XLVI).
Figure JPOXMLDOC01-appb-C000027
 式(XLVI)中、Rは上記式(VI)中のRと同義である。式(XLVI)中、R38~R40は、それぞれ独立して、フェニル基;ハロゲン原子;炭素数1~30(好ましくは炭素数1~5)の直鎖状、分岐鎖状若しくは環状の飽和若しくは不飽和炭化水素(好ましくはアルキル基);又は炭素数1~30(好ましくは炭素数1~5)の直鎖状、分岐鎖状若しくは環状の飽和若しくは不飽和炭化水素基(好ましくはアルキル基)、炭素数1~5のアルコキシ基、若しくはヒドロキシル基で置換されたフェニル基を示す。R38~R40は、単結合若しくは二重結合により、又は-CH-、-O-、-S-、-SO-、-SONH-、-C(=O)-、-C(=O)O-、-NHCO-、-NHC(=O)NH-、-CHR-、-CR 、-NH-若しくは-NR-を含む結合を介して環構造を形成していてもよい。Rは上記式(VI)中のRと同義である。
Figure JPOXMLDOC01-appb-C000027
Wherein (XLVI), R 9 has the same meaning as R 9 in the formula (VI). In the formula (XLVI), R 38 to R 40 are each independently a phenyl group; a halogen atom; a linear, branched or cyclic saturated group having 1 to 30 carbon atoms (preferably 1 to 5 carbon atoms). Or an unsaturated hydrocarbon (preferably an alkyl group); or a linear, branched or cyclic saturated or unsaturated hydrocarbon group (preferably an alkyl group) having 1 to 30 carbon atoms (preferably 1 to 5 carbon atoms). ), A phenyl group substituted with an alkoxy group having 1 to 5 carbon atoms or a hydroxyl group. R 38 to R 40 are each a single bond or a double bond, or —CH 2 —, —O—, —S—, —SO 2 —, —SO 2 NH—, —C (═O) —, —C A ring structure is formed through a bond including (═O) O—, —NHCO—, —NHC (═O) NH—, —CHR g —, —CR g 2 , —NH— or —NR g —. May be. R g has the same meaning as R g in the formula (VI).
 オルトエステル化合物は、パターン露光において脱保護反応で分解し、例えばカルボニル基を含むカルボン酸エステル又はカルボン酸になる。オルトエステル化合物としては、カルボキシル基を有する感放射線性増感体のカルボキシル基の部分をOBO(例えば4-メチル2,6,7-トリオキサビシクロ[2.2.2]オクタン-1-イル)で置換(保護)した、下記式(XLVII)で表されるOBOエステル化合物が好ましい。OBOでカルボキシル基を保護した(b)感放射線性増感体発生剤は、パターン露光時に発生する酸触媒によってカルボン酸を生成し、放射線の吸収波長がシフトし、一括露光時に感放射線性増感体として働く。(b)感放射線性増感体発生剤からカルボン酸が生成することで、パターン露光部で、例えば非極性から極性へとレジストの極性が変わる。このため、オルトエステル化合物は現像工程における溶解促進剤としても機能し、レジストコントラストの向上にも寄与する。(b)感放射線性増感体発生剤がOBOエステル化合物を含むことにより、感放射線性増感体の生成と極性変化反応を同時に起こすことも可能である。 The ortho ester compound is decomposed by a deprotection reaction in pattern exposure, and becomes, for example, a carboxylic acid ester or carboxylic acid containing a carbonyl group. As the ortho ester compound, the carboxyl group part of the radiation-sensitive sensitizer having a carboxyl group is OBO (for example, 4-methyl 2,6,7-trioxabicyclo [2.2.2] octane-1-yl). The OBO ester compound represented by the following formula (XLVII) substituted (protected) with is preferable. The (b) radiation-sensitive sensitizer generating agent having a carboxyl group protected with OBO generates carboxylic acid by an acid catalyst generated during pattern exposure, shifts the absorption wavelength of radiation, and radiation-sensitive sensitization during batch exposure. Work as a body. (B) Since the carboxylic acid is generated from the radiation-sensitive sensitizer generating agent, the polarity of the resist changes, for example, from nonpolar to polar in the pattern exposure portion. For this reason, the ortho ester compound also functions as a dissolution accelerator in the development process, and contributes to an improvement in resist contrast. (B) When the radiation-sensitive sensitizer generator contains an OBO ester compound, it is possible to simultaneously generate the radiation-sensitive sensitizer and cause a polarity change reaction.
Figure JPOXMLDOC01-appb-C000028
 式(XLVII)中、R41及びR42は、それぞれ独立して、水素原子;フェニル基;ナフチル基;アントラセニル基;フェノキシ基;ナフトキシ基;アントラセノキシ基;アミノ基;アミド基;ハロゲン原子;炭素数1~30(好ましくは炭素数1~5)の直鎖状、分岐鎖状若しくは環状の飽和若しくは不飽和炭化水素基(好ましくはアルキル基);炭素数1~5のアルコキシ基、ヒドロキシル基、アミノ基、アミド基、若しくは炭素数1~5のアルキル基で置換されたフェノキシ基;炭素数1~30(好ましくは炭素数1~5)の直鎖状、分岐鎖状若しくは環状の飽和若しくは不飽和炭化水素基(好ましくはアルキル基)、炭素数1~5のアルコキシ基、アミノ基、アミド基、若しくはヒドロキシル基で置換されたフェニル基;炭素数1~5のアルコキシ基、炭素数1~5のアルキル基、若しくはヒドロキシル基で置換されたナフトキシ基;炭素数1~5のアルコキシ基、炭素数1~5のアルキル基、アミノ基、アミド基、若しくはヒドロキシル基で置換されたアントラセノキシ基;炭素数1~5のアルコキシ基、フェノキシ基、ナフトキシ基、アントラセノキシ基、アミノ基、アミド基、若しくはヒドロキシル基で置換された、炭素数1~30(好ましくは炭素数1~5)の直鎖状、分岐鎖状若しくは環状の飽和若しくは不飽和炭化水素基(好ましくはアルキル基);又は炭素数1~12のアルキル基が結合したカルボニル基を示す。R41及びR42は、それぞれ独立して、好ましくは水素原子;フェニル基;フェノキシ基;炭素数1~5のアルコキシ基、ヒドロキシル基、若しくは炭素数1~5のアルキル基で置換されたフェノキシ基;又は炭素数1~5のアルコキシ基、若しくはヒドロキシル基で置換されたフェニル基を示す。
Figure JPOXMLDOC01-appb-C000028
In formula (XLVII), R 41 and R 42 each independently represent a hydrogen atom; a phenyl group; a naphthyl group; an anthracenyl group; a phenoxy group; a naphthoxy group; an anthracenoxy group; an amino group; A linear, branched or cyclic saturated or unsaturated hydrocarbon group (preferably an alkyl group) having 1 to 30 (preferably 1 to 5 carbon atoms); an alkoxy group having 1 to 5 carbon atoms, a hydroxyl group, amino Group, amide group, or phenoxy group substituted with an alkyl group having 1 to 5 carbon atoms; linear, branched or cyclic saturated or unsaturated having 1 to 30 carbon atoms (preferably 1 to 5 carbon atoms) A phenyl group substituted by a hydrocarbon group (preferably an alkyl group), an alkoxy group having 1 to 5 carbon atoms, an amino group, an amide group, or a hydroxyl group; carbon A naphthoxy group substituted by an alkoxy group having 1 to 5 carbon atoms, an alkyl group having 1 to 5 carbon atoms, or a hydroxyl group; an alkoxy group having 1 to 5 carbon atoms, an alkyl group having 1 to 5 carbon atoms, an amino group, an amide group, Or an anthracenoxy group substituted with a hydroxyl group; an alkoxy group having 1 to 5 carbon atoms, a phenoxy group, a naphthoxy group, an anthracenoxy group, an amino group, an amide group, or a hydroxyl group, substituted with 1 to 30 carbon atoms (preferably A linear, branched or cyclic saturated or unsaturated hydrocarbon group (preferably an alkyl group) having 1 to 5 carbon atoms; or a carbonyl group to which an alkyl group having 1 to 12 carbon atoms is bonded. R 41 and R 42 are preferably each independently a hydrogen atom; a phenyl group; a phenoxy group; a phenoxy group substituted with an alkoxy group having 1 to 5 carbon atoms, a hydroxyl group, or an alkyl group having 1 to 5 carbon atoms. Or a phenyl group substituted with an alkoxy group having 1 to 5 carbon atoms or a hydroxyl group;
 (b)感放射線性増感体発生剤としては、例えば下記式で表される化合物等が挙げられる。これらの化合物はアルコール性水酸基の水素原子が置換されていないアルコール化合物であり、パターン露光時の反応によりケトン化合物に変わる。 (B) Examples of the radiation-sensitive sensitizer generating agent include compounds represented by the following formulas. These compounds are alcohol compounds in which the hydrogen atom of the alcoholic hydroxyl group is not substituted, and change into a ketone compound by a reaction during pattern exposure.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 次の化合物は、感放射線性増感体のカルボニル基を保護した、ケタール化合物又はアセタール化合物の例である。これらの化合物は、パターン露光で生成する酸による触媒作用によりパターン露光部においてケトンを含む感放射線性増感体になるものである。 The following compounds are examples of ketal compounds or acetal compounds in which the carbonyl group of the radiation-sensitive sensitizer is protected. These compounds become radiation-sensitive sensitizers containing ketones in the pattern exposure part by the catalytic action of the acid generated by pattern exposure.
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
 次の化合物は、3個のアルコキシ基で置換された炭素原子を有するオルトエステル化合物の例である。 The following compound is an example of an ortho ester compound having a carbon atom substituted with three alkoxy groups.
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
 上記オルトエステル化合物は、パターン露光時に発生する酸触媒によって脱保護し、カルボニル基を有するエステル(以下の例ではカルボン酸メチル)を生成する。 The ortho ester compound is deprotected by an acid catalyst generated during pattern exposure to produce an ester having a carbonyl group (methyl carboxylate in the following example).
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
 次の化学式は、カルボキシル基を有する感放射線性増感体のカルボキシル基部分をOBO(例えば4-メチル-2,6,7-トリオキサビシクロ[2.2.2]オクタン-1-イル)で保護した誘導体であるOBOエステル化合物の例である。 In the following chemical formula, the carboxyl group part of the radiation-sensitive sensitizer having a carboxyl group is represented by OBO (for example, 4-methyl-2,6,7-trioxabicyclo [2.2.2] octane-1-yl). It is an example of the OBO ester compound which is a protected derivative.
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
 上記OBOエステル化合物は、パターン露光時に発生する酸触媒によって以下のようなカルボン酸を生成する。 The OBO ester compound generates the following carboxylic acid by an acid catalyst generated during pattern exposure.
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
 露光により上記(2)成分(すなわち、上記(a)感放射線性酸-増感体発生剤及び(b)感放射線性増感体発生剤)から発生する感放射線性増感体としては、例えばカルコン及びその誘導体、1,2-ジケトン及びその誘導体、ベンゾイン及びその誘導体、ベンゾフェノン及びその誘導体、フルオレン及びその誘導体、ナフトキノン及びその誘導体、アントラキノン及びその誘導体、キサンテン及びその誘導体、チオキサンテン及びその誘導体、キサントン及びその誘導体、チオキサントン及びその誘導体、シアニン及びその誘導体、メロシアニン及びその誘導体、ナフタロシアニン及びその誘導体、サブフタロシアニン及びその誘導体、ピリリウム及びその誘導体、チオピリリウム及びその誘導体、テトラフィリン及びその誘導体、アヌレン及びその誘導体、スピロピラン及びその誘導体、スピロオキサジン及びその誘導体、チオスピロピラン及びその誘導体、オキソール及びその誘導体、アジン及びその誘導体、チアジン及びその誘導体、オキサジン及びその誘導体、インドリン及びその誘導体、アズレン及びその誘導体、アズレニウム及びその誘導体、スクアリリウム及びその誘導体、ポルフィリン及びその誘導体、ポルフィラジン及びその誘導体、トリアリールメタン及びその誘導体、フタロシアニン及びその誘導体、アクリドン及びその誘導体、クマリン及びその誘導体、ケトクマリン及びその誘導体、キノリノン及びその誘導体、ベンゾオキサゾール及びその誘導体、アクリジン及びその誘導体、チアジン及びその誘導体、ベンゾチアゾール及びその誘導体、フェノチアジン及びその誘導体、ベンゾトリアゾール及びその誘導体、ペリレン及びその誘導体、ナフタレン及びその誘導体、アントラセン及びその誘導体、フェナントレン及びその誘導体、ピレン及びその誘導体、ナフタセン及びその誘導体、ペンタセン及びその誘導体、並びにコロネン及びその誘導体等が挙げられる。また、露光により上記(2)成分から発生する上記感放射線性増感体はカルボニル化合物を含有することが好ましい。カルボニル化合物は、ケトン、アルデヒド、カルボン酸、エステル、アミド、エノン、カルボン酸塩化物、及びカルボン酸無水物等をカルボニル基として含むことが好ましい。上記カルボニル化合物としては、一括露光時の放射線の波長をパターン露光時の放射線の波長から十分に離してレジストのコントラストを上げる観点から、250nmを超える長波長側の放射線を吸収する化合物が好ましい。カルボニル化合物としては、例えばベンゾフェノン誘導体、キサントン誘導体、チオキサントン誘導体、クマリン誘導体、アクリドン誘導体等が挙げられる。上記カルボニル化合物は、ナフタレン誘導体又はアントラセン誘導体であってもよく、アクリドン誘導体であってもよい。感放射線性増感体において、芳香環の水素は電子供与基で置換されていることが好ましい。感放射線性増感体の芳香環の水素が電子供与基で置換されていることで、一括露光時の増感反応による電子移動効率が向上し、レジストの感度が向上する傾向がある。また、(b)感放射線性増感体発生剤の放射線の吸収波長と感放射線性増感体の放射線の吸収波長との差を大きくすることができ、一括露光時により選択的に感放射線性増感体を励起できるため、レジスト材料中の酸の潜像のコントラストが向上する傾向がある。電子供与基としては、例えば水酸基、メトキシ基、アルコキシ基、アミノ基、アルキルアミノ基、アルキル基等が挙げられる。 Examples of the radiation-sensitive sensitizer generated by exposure from the component (2) (that is, the above-mentioned (a) radiation-sensitive acid-sensitizer generator and (b) radiation-sensitive sensitizer generator) include, for example: Chalcone and derivatives thereof, 1,2-diketone and derivatives thereof, benzoin and derivatives thereof, benzophenone and derivatives thereof, fluorene and derivatives thereof, naphthoquinone and derivatives thereof, anthraquinone and derivatives thereof, xanthene and derivatives thereof, thioxanthene and derivatives thereof, Xanthone and derivatives thereof, thioxanthone and derivatives thereof, cyanine and derivatives thereof, merocyanine and derivatives thereof, naphthalocyanine and derivatives thereof, subphthalocyanine and derivatives thereof, pyrylium and derivatives thereof, thiopyrylium and derivatives thereof, tetraphylline and derivatives thereof, Len and derivatives thereof, spiropyran and derivatives thereof, spirooxazine and derivatives thereof, thiospiropyran and derivatives thereof, oxol and derivatives thereof, azine and derivatives thereof, thiazine and derivatives thereof, oxazine and derivatives thereof, indoline and derivatives thereof, azulene and derivatives thereof Derivatives, azulenium and its derivatives, squarylium and its derivatives, porphyrin and its derivatives, porphyrazine and its derivatives, triarylmethane and its derivatives, phthalocyanine and its derivatives, acridone and its derivatives, coumarin and its derivatives, ketocoumarin and its derivatives, Quinolinone and its derivatives, benzoxazole and its derivatives, acridine and its derivatives, thiazine and its derivatives, benzothiazole and its derivatives, Thiazine and derivatives thereof, benzotriazole and derivatives thereof, perylene and derivatives thereof, naphthalene and derivatives thereof, anthracene and derivatives thereof, phenanthrene and derivatives thereof, pyrene and derivatives thereof, naphthacene and derivatives thereof, pentacene and derivatives thereof, and coronene and derivatives thereof Derivatives and the like. Moreover, it is preferable that the said radiation sensitive sensitizer which generate | occur | produces from said (2) component by exposure contains a carbonyl compound. The carbonyl compound preferably contains ketone, aldehyde, carboxylic acid, ester, amide, enone, carboxylic acid chloride, carboxylic acid anhydride and the like as a carbonyl group. The carbonyl compound is preferably a compound that absorbs radiation on the longer wavelength side exceeding 250 nm from the viewpoint of increasing the contrast of the resist by sufficiently separating the wavelength of radiation at the time of batch exposure from the wavelength of radiation at the time of pattern exposure. Examples of the carbonyl compound include benzophenone derivatives, xanthone derivatives, thioxanthone derivatives, coumarin derivatives, and acridone derivatives. The carbonyl compound may be a naphthalene derivative or an anthracene derivative, or an acridone derivative. In the radiation-sensitive sensitizer, the hydrogen of the aromatic ring is preferably substituted with an electron donating group. When the hydrogen in the aromatic ring of the radiation-sensitive sensitizer is replaced with an electron-donating group, the electron transfer efficiency due to the sensitization reaction during batch exposure is improved, and the resist sensitivity tends to be improved. In addition, (b) the difference between the radiation absorption wavelength of the radiation-sensitive sensitizer and the radiation absorption wavelength of the radiation-sensitive sensitizer can be increased, and the radiation sensitivity can be more selectively at the time of batch exposure. Since the sensitizer can be excited, the contrast of the latent image of the acid in the resist material tends to be improved. Examples of the electron donating group include a hydroxyl group, a methoxy group, an alkoxy group, an amino group, an alkylamino group, and an alkyl group.
 ベンゾフェノン及びその誘導体としては、例えば下記の化合物が挙げられる。 Examples of benzophenone and its derivatives include the following compounds.
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
 チオキサントン及びその誘導体としては、例えば下記の化合物が挙げられる。 Examples of thioxanthone and derivatives thereof include the following compounds.
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
 キサントン及びその誘導体としては、例えば下記の化合物が挙げられる。 Examples of xanthone and derivatives thereof include the following compounds.
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
 アクリドン及びその誘導体としては、例えば下記の化合物が挙げられる。 Examples of acridone and its derivatives include the following compounds.
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
 クマリン及びその誘導体としては、例えば下記の化合物が挙げられる。 Examples of coumarin and its derivatives include the following compounds.
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
 上記感放射線性増感体は下記の化合物を含んでいてもよい。 The radiation-sensitive sensitizer may contain the following compound.
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
 上記感放射線性増感体としては、例えばアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、ジエトキシアセトフェノン、1-ヒドロキシシクロへキシルフェニルケトン、1,2-ヒドロオキシ-2-メチル-1-フェニルプロパン-1-オン、α-ヒドロキシシクロへキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパノン、2-ヒドロキシ-2-メチル-1-(4-イソプロピルフェニル)プロパノン、2-ヒドロキシ-2-メチル-1-(4-ドデシルフェニル)プロパノン、2-ヒドロキシ-2-メチル-1-[(2-ヒドロキシエトキシ)フェニル]プロパノン、ベンゾフェノン、2-メチルベンゾフェノン、3-メチルベンゾフェノン、4-メチルベンゾフェノン、4-メトキシベンゾフェノン、2-クロロベンゾフェノン、4-クロロベンゾフェノン、4-ブロモベンゾフェノン、2-カルボキシベンゾフェノン、2-エトキシカルボニルベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルスルフィド、ベンゾフェノンテトラカルボン酸又はそのテトラメチルエステル、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4,4’-ビス(ジシクロへキシルアミノ)ベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、4,4’-ビス(ジヒドロキシエチルアミノ)ベンゾフェノン、4-メトキシ-4’-ジメチルアミノベンゾフェノン、4,4’-ジメトキシベンゾフェノン、4-ジメチルアミノベンゾフェノン、4-ジメチルアミノアセトフェノン、ベンジル、アントラキノン、2-t-ブチルアントラキノン、2-メチルアントラキノン、フェナントラキノン、フルオレノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-1-ブタノン、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-1-プロパノン、2-ヒドロキシ-2-メチル-[4-(1-メチルビニル)フェニル]プロパノールオリゴマー、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾインフェニルエーテル、ベンジルジメチルケタール、アクリドン、クロロアクリドン、N-メチルアクリドン、N-ブチルアクリドン、N-ブチル-クロロアクリドン、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、2,6-ジメトキシベンゾイルジフェニルホスフィンオキサイド、2,6-ジクロロベンゾイルジフェニルホスフィンオキサイド、2,4,6-トリメチルベンゾイルメトキシフェニルホスフィンオキサイド、2,4,6-トリメチルベンゾイルエトキシフェニルホスフィンオキサイド、2,3,5,6-テトラメチルベンゾイルジフェニルホスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)フェニルフォスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-2,5-ジメチルフェニルフォスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-4-プロピルフェニルフォスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-1-ナフチルフォスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)フェニルフォスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,5-ジメチルフェニルフォスフィンオキサイド、ビス-(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド、(2,5,6-トリメチルベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキサイド、2-イソプロピルチオキサントン、4-イソプロピルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジクロロチオキサントン、1-クロロ-4-プロポキシチオキサントン、ベンゾイルジ-(2,6-ジメチルフェニル)ホスホネート、1-[4-(フェニルチオ)フェニル]-1,2-オクタンジオン-2-(O-ベンゾイルオキシム)、1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]エタノン-1-(O-アセチルオキシム)、1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-3-シクロペンチルプロパノン-1-(O-アセチルオキシム)、1-[4-(フェニルチオ)フェニル]-3-シクロペンチルプロパン-1,2-ジオン-2-(O-ベンゾイルオキシム)、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オン、フェニルグリオキシリックアシッドメチルエステル、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、1.2-オクタンジオン,1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)等が挙げられる。 Examples of the radiation-sensitive sensitizer include acetophenone, 2,2-dimethoxy-2-phenylacetophenone, diethoxyacetophenone, 1-hydroxycyclohexyl phenyl ketone, 1,2-hydroxy-2-methyl-1-phenyl. Propan-1-one, α-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropanone, 2-hydroxy-2-methyl-1- (4-isopropylphenyl) propanone, 2-hydroxy -2-methyl-1- (4-dodecylphenyl) propanone, 2-hydroxy-2-methyl-1-[(2-hydroxyethoxy) phenyl] propanone, benzophenone, 2-methylbenzophenone, 3-methylbenzophenone, 4- Methylbenzophenone, 4-methoxyben Phenone, 2-chlorobenzophenone, 4-chlorobenzophenone, 4-bromobenzophenone, 2-carboxybenzophenone, 2-ethoxycarbonylbenzophenone, 4-benzoyl-4'-methyldiphenyl sulfide, benzophenone tetracarboxylic acid or tetramethyl ester thereof, 4 , 4′-bis (dimethylamino) benzophenone, 4,4′-bis (dicyclohexylamino) benzophenone, 4,4′-bis (diethylamino) benzophenone, 4,4′-bis (dihydroxyethylamino) benzophenone, 4- Methoxy-4'-dimethylaminobenzophenone, 4,4'-dimethoxybenzophenone, 4-dimethylaminobenzophenone, 4-dimethylaminoacetophenone, benzyl, anthraquinone, 2-t-butyl Tyranthraquinone, 2-methylanthraquinone, phenanthraquinone, fluorenone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -1-butanone, 2- (dimethylamino) -2-[(4 -Methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-1-propanone, 2-hydroxy -2-Methyl- [4- (1-methylvinyl) phenyl] propanol oligomer, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin phenyl ether, benzyldimethyl ketal, acridone Chloroacridone, N-methylacridone, N-butylacridone, N-butyl-chloroacridone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2,6-dimethoxybenzoyldiphenylphosphine oxide, 2,6- Dichlorobenzoyldiphenylphosphine oxide, 2,4,6-trimethylbenzoylmethoxyphenylphosphine oxide, 2,4,6-trimethylbenzoylethoxyphenylphosphine oxide, 2,3,5,6-tetramethylbenzoyldiphenylphosphine oxide, bis- ( 2,6-dichlorobenzoyl) phenylphosphine oxide, bis- (2,6-dichlorobenzoyl) -2,5-dimethylphenylphosphine oxide, bis- (2,6-dichlorobenzene) Zoyl) -4-propylphenylphosphine oxide, bis- (2,6-dichlorobenzoyl) -1-naphthylphosphine oxide, bis- (2,6-dimethoxybenzoyl) phenylphosphine oxide, bis- (2,6 -Dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide, bis- (2,6-dimethoxybenzoyl) -2,5-dimethylphenylphosphine oxide, bis- (2,4,6-trimethylbenzoyl) Phenylphosphine oxide, (2,5,6-trimethylbenzoyl) -2,4,4-trimethylpentylphosphine oxide, 2-isopropylthioxanthone, 4-isopropylthioxanthone, 2,4-diethylthioxanthone, 2,4-dichloro Thioxa 1-chloro-4-propoxythioxanthone, benzoyldi- (2,6-dimethylphenyl) phosphonate, 1- [4- (phenylthio) phenyl] -1,2-octanedione-2- (O-benzoyloxime), 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl] ethanone-1- (O-acetyloxime), 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl] -3-cyclopentylpropanone-1- (O-acetyloxime), 1- [4- (phenylthio) phenyl] -3-cyclopentylpropane-1,2-dione-2- ( O-benzoyloxime), 2,2-dimethoxy-1,2-diphenylethane-1-one, 1- [4- (2-hydroxyethoxy)- Enyl] -2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-1- {4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] phenyl} -2- Methyl-propan-1-one, phenylglyoxylic acid methyl ester, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1,1.2-octanedione, 1- [4- (phenylthio)-, 2- (O-benzoyloxime)], ethanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl]-, 1- (O-acetyloxime) and the like.
 (b)感放射線性増感体発生剤は、(1)重合体成分の重合体の構造単位として含まれ、重合体の一部として組み込まれた基の形態でもよい。この場合、(b)感放射線性増感体発生剤は、上記化合物から水素原子1つを除いた基が重合体に結合する形で存在する。 (B) The radiation-sensitive sensitizer generator may be in the form of (1) a group that is included as a polymer structural unit of a polymer component and incorporated as part of the polymer. In this case, (b) the radiation-sensitive sensitizer generator is present in a form in which a group obtained by removing one hydrogen atom from the above compound is bonded to the polymer.
 (b)感放射線性増感体発生剤が(1)重合体成分とは異なる成分である場合、(1)重合体成分100質量部に対する(b)感放射線性増感体発生剤の配合量の下限としては、0.005質量部が好ましく、0.1質量部がより好ましい。一方、上記配合量の上限としては、50質量部が好ましく、30質量部がより好ましい。 When the (b) radiation-sensitive sensitizer generator is a component different from the (1) polymer component, the blending amount of the (b) radiation-sensitive sensitizer generator with respect to 100 parts by mass of the polymer component (1) Is preferably 0.005 parts by mass, more preferably 0.1 parts by mass. On the other hand, as an upper limit of the said compounding quantity, 50 mass parts is preferable and 30 mass parts is more preferable.
 (b)感放射線性増感体発生剤が(1)重合体成分の重合体の構造単位として含まれている場合、(1)重合体成分の1モルに対する(b)感放射線性増感体発生剤の含有割合の下限としては、0.001モルが好ましく、0.002モルがより好ましく、0.01モルがさらに好ましい。一方、上記含有割合の上限としては、0.95モルが好ましく、0.3モルがより好ましい。 (B) When a radiation-sensitive sensitizer generator is included as a structural unit of the polymer of (1) polymer component, (b) (b) radiation-sensitive sensitizer for 1 mol of the polymer component As a minimum of the content rate of a generating agent, 0.001 mol is preferred, 0.002 mol is more preferred, and 0.01 mol is still more preferred. On the other hand, as an upper limit of the said content rate, 0.95 mol is preferable and 0.3 mol is more preferable.
 上記配合量又は含有割合が上記下限より小さいと、感度が低下するおそれがある。逆に、上記配合量又は含有割合が上記上限を超えると、レジスト材料膜を形成し難くなるおそれや、レジストパターンの断面形状における矩形性が低下するおそれがある。 If the blending amount or content ratio is smaller than the lower limit, the sensitivity may decrease. On the contrary, when the said compounding quantity or content rate exceeds the said upper limit, there exists a possibility that it may become difficult to form a resist material film, and there exists a possibility that the rectangularity in the cross-sectional shape of a resist pattern may fall.
((c)感放射線性酸発生剤)
 (c)感放射線性酸発生剤は、上記第1の放射線を照射し、上記第2の放射線を照射しない場合に、酸を発生し、かつ上記第1の放射線を照射せず上記第2の放射線のみを照射した場合に上記酸を実質的に発生しない成分であり、上記(a)感放射線性酸-増感体発生剤とは異なるものである。(c)感放射線性酸発生剤は、上記性質を有するので、一括露光時に放射線増感反応によりレジスト材料膜のパターン露光部だけで酸を発生させることができる。
((C) Radiation sensitive acid generator)
(C) The radiation-sensitive acid generator generates an acid when the first radiation is irradiated and the second radiation is not irradiated, and the second radiation is not irradiated with the first radiation. It is a component that does not substantially generate the acid when irradiated with radiation alone, and is different from the (a) radiation-sensitive acid-sensitizer generating agent. (C) Since the radiation-sensitive acid generator has the above properties, it can generate an acid only at the pattern exposure portion of the resist material film by a radiation sensitization reaction during batch exposure.
 (c)感放射線性酸発生剤が含有する[C1]化合物におけるカチオン(I)としては、例えば上述のカチオン(I)及びカチオン(II)としてXで表される1価のオニウムカチオンが挙げられ、露光光の照射により分解する。露光部では、このオニウムカチオンの分解により生成するプロトンと、スルホン酸アニオンとからスルホン酸を生じる。このカチオンは感放射線性増感体を発生しないものである。 (C) Examples of the cation (I) in the [C1] compound contained in the radiation-sensitive acid generator include the monovalent onium cation represented by X + as the cation (I) and the cation (II). And decomposed by exposure light exposure. In the exposed portion, sulfonic acid is generated from protons generated by the decomposition of the onium cation and the sulfonate anion. This cation does not generate a radiation-sensitive sensitizer.
 上記X+で表される1価のオニウムカチオンとしては、例えば上述の式(X-1)、(X-2)、(X-3)及び(X-4)で表されるカチオンが挙げられる。 Examples of the monovalent onium cation represented by X + include cations represented by the above formulas (X-1), (X-2), (X-3) and (X-4).
 上記[C1]化合物におけるアニオン(I)としては、例えば上述のアニオン(I)として例示したものと同様のアニオンが挙げられ、例えば上述のオニウム塩化合物であるヨードニウム塩化合物及びスルホニウム塩化合物が挙げられる。 Examples of the anion (I) in the above [C1] compound include the same anions as those exemplified as the above-mentioned anion (I), for example, an iodonium salt compound and a sulfonium salt compound which are the above-mentioned onium salt compounds. .
 このような(c)感放射線性酸発生剤となる[C1]化合物としては、例えば特開2016-045472号公報、特開2014-063160号公報、特開2014-191061号公報、特開2006-215202号公報、特開2006-215271号公報、特開2004-004557号公報に記載されている感放射線性酸発生剤化合物等が挙げられる。[C1]化合物の具体例としては、例えば以下の化合物が挙げられる。 Examples of such a (C) compound [C1] that serves as a radiation-sensitive acid generator include JP-A-2016-054772, JP-A-2014-063160, JP-A-2014-191061, and JP-A-2006-. And radiation sensitive acid generator compounds described in JP-A-215202, JP-A-2006-215271, and JP-A-2004-004557. Specific examples of the [C1] compound include the following compounds.
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
 (c)感放射線性酸発生剤としては、上記[C1]化合物以外の化合物も有していてもよく[C1]化合物以外の(c)感放射線性酸発生剤としては、例えばその他のオニウム塩化合物、スルホンイミド化合物、ジアゾメタン化合物等が挙げられる。その他のオニウム塩化合物としては、例えばその他のスルホニウム塩化合物等が挙げられる。 (C) As a radiation sensitive acid generator, you may also have compounds other than the said [C1] compound, (c) As a radiation sensitive acid generator other than a [C1] compound, other onium salt, for example A compound, a sulfonimide compound, a diazomethane compound, etc. are mentioned. Examples of other onium salt compounds include other sulfonium salt compounds.
 (c)感放射線性酸発生剤は、(1)重合体成分の重合体の構造単位として含まれ、重合体の一部として組み込まれた基の形態でもよい。この場合、(c)感放射線性酸発生剤は、上記化合物から水素原子1つを除いた基が重合体に結合する形で存在する。重合体の一部として組み込まれた基の形態の(c)感放射線性酸発生剤の具体例としては、例えば以下の化合物が挙げられる。 (C) The radiation-sensitive acid generator may be in the form of (1) a group included as a polymer structural unit of a polymer component and incorporated as part of the polymer. In this case, (c) the radiation sensitive acid generator is present in a form in which a group obtained by removing one hydrogen atom from the above compound is bonded to the polymer. Specific examples of the (c) radiation sensitive acid generator in the form of a group incorporated as a part of the polymer include the following compounds.
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
 (c)感放射線性酸発生剤が(1)重合体成分とは異なる成分である場合、(1)重合体成分100質量部に対する(c)感放射線性酸発生剤の配合量の下限としては、0.1質量部が好ましく、1質量部がより好ましい。一方、上記配合量の上限としては、50質量部が好ましく、30質量部がより好ましい。 When (c) the radiation-sensitive acid generator is a component different from (1) the polymer component, (1) the lower limit of the blending amount of the (c) radiation-sensitive acid generator with respect to 100 parts by mass of the polymer component 0.1 part by mass is preferable, and 1 part by mass is more preferable. On the other hand, as an upper limit of the said compounding quantity, 50 mass parts is preferable and 30 mass parts is more preferable.
 (c)感放射線性酸発生剤が(1)重合体成分の重合体の構造単位として含まれている場合、(1)重合体成分の1モルに対する(c)感放射線性酸発生剤の含有割合の下限としては、0.01モルが好ましく、0.02モルがより好ましく、0.1モルがさらに好ましい。一方、上記含有割合の上限としては、0.5モルが好ましく、0.3モルがより好ましい。 When (c) the radiation sensitive acid generator is included as a structural unit of the polymer of (1) polymer component, (c) the content of (c) the radiation sensitive acid generator with respect to 1 mol of the polymer component As a minimum of a rate, 0.01 mol is preferred, 0.02 mol is more preferred, and 0.1 mol is still more preferred. On the other hand, the upper limit of the content ratio is preferably 0.5 mol, more preferably 0.3 mol.
 上記配合量又は含有割合が上記下限より小さいと、感度が低下するおそれがある。逆に、上記配合量又は含有割合が上記上限を超えると、レジスト材料膜を形成し難くなるおそれや、レジストパターンの断面形状における矩形性が低下するおそれがある。 If the blending amount or content ratio is smaller than the lower limit, the sensitivity may decrease. On the contrary, when the said compounding quantity or content rate exceeds the said upper limit, there exists a possibility that it may become difficult to form a resist material film, and there exists a possibility that the rectangularity in the cross-sectional shape of a resist pattern may fall.
 なお、当該化学増幅型レジスト材料における上記(a)感放射線性酸-増感体発生剤又は上記(c)感放射線性酸発生剤は、(b)感放射線性増感体発生剤から発生した上記第2の放射線を吸収する感放射線性増感体の作用により酸を発生しない成分を更に含有してもよい。このような成分の具体例としては、例えば以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000058
The (a) radiation-sensitive acid-sensitizer generator or the (c) radiation-sensitive acid generator in the chemically amplified resist material was generated from the (b) radiation-sensitive sensitizer generator. You may further contain the component which does not generate | occur | produce an acid by the effect | action of the radiation sensitive sensitizer which absorbs the said 2nd radiation. Specific examples of such components include the following compounds.
Figure JPOXMLDOC01-appb-C000058
 さらに、当該化学増幅型レジスト材料は、(g)感放射線性光崩壊性塩基-感放射線性増感体発生剤をさらに含有してもよい。(g)感放射線性光崩壊性塩基-感放射線性増感体発生剤は、上記第1の放射線を照射し、上記第2の放射線を照射しない場合に、上記第2の放射線を吸収する感放射線性増感体を発生し、上記(2)成分より発生する酸に対する塩基性を失い、一方、上記第1の放射線を照射した後、上記第2の放射線を照射した場合に、発生した感放射線性増感体が第2放射線を吸収し、上記(2)成分より発生する酸に対する塩基性を失う。また、(g)感放射線性光崩壊性塩基-感放射線性増感体発生剤は、上記第1の放射線を照射せずに上記第2の放射線のみを照射した場合に感放射線性増感体を実質的に発生せず、上記(2)成分より発生する酸に対して塩基性を保持する。さらに、(g)感放射線性光崩壊性塩基-感放射線性増感体発生剤は、トリフェニルスルホニウムの還元電位より高い還元電位を有する。 Further, the chemically amplified resist material may further contain (g) a radiation-sensitive photodegradable base-radiation-sensitive sensitizer generating agent. (G) The radiation-sensitive photodegradable base-radiosensitive sensitizer generating agent absorbs the second radiation when irradiated with the first radiation and not with the second radiation. A radiation sensitizer is generated and loses basicity with respect to the acid generated from the component (2). On the other hand, after irradiation with the first radiation, irradiation with the second radiation is performed. The radiation sensitizer absorbs the second radiation and loses basicity to the acid generated from the component (2). In addition, (g) the radiation-sensitive photodegradable base-radiosensitive sensitizer generating agent is a radiation-sensitive sensitizer that is irradiated with only the second radiation without being irradiated with the first radiation. The basicity is maintained with respect to the acid generated from the component (2). Further, (g) the radiation-sensitive photodegradable base-radiosensitive sensitizer generator has a reduction potential higher than that of triphenylsulfonium.
[他の酸拡散制御剤]
 当該化学増幅型レジスト材料は、[C2]化合物以外の他の酸拡散制御剤を配合してもよい。他の酸拡散制御剤は酸及びカチオンを捕捉するものであり、クエンチャーとして機能するものである。当該化学増幅型レジスト材料が他の酸拡散制御剤を含むことで、レジスト材料膜中で発生した余剰の酸を中和して、パターン露光部とパターン非露光部との間における酸の潜像の化学コントラストを上げることができる。
[Other acid diffusion control agents]
The chemically amplified resist material may contain an acid diffusion controller other than the [C2] compound. Other acid diffusion control agents capture acids and cations and function as quenchers. The chemical amplification resist material contains another acid diffusion control agent, so that the excess acid generated in the resist material film is neutralized, and an acid latent image between the pattern exposed portion and the pattern non-exposed portion is obtained. Can increase the chemical contrast.
 上記酸拡散制御剤は、感放射線性を有する化合物と感放射線性を有しない化合物とに分けられる。 The acid diffusion controller is classified into a compound having radiation sensitivity and a compound having no radiation sensitivity.
 上記感放射性を有しない化合物としては、上記(a)感放射線性酸-増感体発生剤又は又は上記(c)感放射線性酸発生剤より発生する酸に対して塩基性を有する塩基性化合物が好ましい。この塩基性化合物としては、例えばヒドロキシド化合物、カルボキシラート化合物、アミン化合物、イミン化合物、アミド化合物等が挙げられ、より具体的には、第1級~第3級脂肪族アミン、芳香族アミン、複素環アミン、カルボキシル基を有する含窒素化合物、スルホニル基を有する含窒素化合物、ヒドロキシル基を有する含窒素化合物、ヒドロキシフェニル基を有する含窒素化合物、アルコール性含窒素化合物、アミド化合物、イミド化合物等が挙げられる。 The compound having no radiation sensitivity is a basic compound having basicity to the acid generated from the (a) radiation-sensitive acid-sensitizer generator or (c) the radiation-sensitive acid generator. Is preferred. Examples of the basic compound include a hydroxide compound, a carboxylate compound, an amine compound, an imine compound, an amide compound, and the like. More specifically, primary to tertiary aliphatic amines, aromatic amines, Heterocyclic amines, nitrogen-containing compounds having a carboxyl group, nitrogen-containing compounds having a sulfonyl group, nitrogen-containing compounds having a hydroxyl group, nitrogen-containing compounds having a hydroxyphenyl group, alcoholic nitrogen-containing compounds, amide compounds, imide compounds, etc. Can be mentioned.
 上記塩基性化合物は、トレーガー(Troger’s)塩基;ジアザビシクロウンデセン(DBU)、ジアザビシクロノネン(DBM)等のヒンダードアミン;テトラブチルアンモニウムヒドロキシド(TBAH)、テトラブチルアンモニウムラクタート等のイオン性クエンチャーであってもよい。 The basic compounds include: Troger's base; hindered amines such as diazabicycloundecene (DBU) and diazabicyclononene (DBM); tetrabutylammonium hydroxide (TBAH) and tetrabutylammonium lactate It may be an ionic quencher.
 上記第1級脂肪族アミンとしては、例えばアンモニア、メチルアミン、エチルアミン、n-プロピルアミン、イソプロピルアミン、n-ブチルアミン、イソブチルアミン、sec-ブチルアミン、tert-ブチルアミン、ペンチルアミン、tert-アミルアミン、シクロペンチルアミン、へキシルアミン、シクロへキシルアミン、へプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ドデシルアミン、セチルアミン、メチレンジアミン、エチレンジアミン、テトラエチレンペンタミン等が挙げられる。 Examples of the primary aliphatic amine include ammonia, methylamine, ethylamine, n-propylamine, isopropylamine, n-butylamine, isobutylamine, sec-butylamine, tert-butylamine, pentylamine, tert-amylamine, and cyclopentylamine. Hexylamine, cyclohexylamine, heptylamine, octylamine, nonylamine, decylamine, dodecylamine, cetylamine, methylenediamine, ethylenediamine, tetraethylenepentamine and the like.
 上記第2級脂肪族アミンとしては、例えばジメチルアミン、ジエチルアミン、ジ-n-プロピルアミン、ジイソプロピルアミン、ジ-n-ブチルアミン、ジイソブチルアミン、ジ-sec-ブチルアミン、ジペンチルアミン、ジシクロペンチルアミン、ジへキシルアミン、ジシクロへキシルアミン、ジへプチルアミン、ジオクチルアミン、ジノニルアミン、ジデシルアミン、ジドデシルアミン、ジセチルアミン、N,N-ジメチルメチレンジアミン、N,N-ジメチルエチレンジアミン、N,N-ジメチルテトラエチレンペンタミン等が挙げられる。 Examples of the secondary aliphatic amine include dimethylamine, diethylamine, di-n-propylamine, diisopropylamine, di-n-butylamine, diisobutylamine, di-sec-butylamine, dipentylamine, dicyclopentylamine, and diheptyl. Xylamine, dicyclohexylamine, diheptylamine, dioctylamine, dinonylamine, didecylamine, didodecylamine, dicetylamine, N, N-dimethylmethylenediamine, N, N-dimethylethylenediamine, N, N-dimethyltetraethylenepentamine, etc. It is done.
 上記第3級脂肪族アミンとしては、例えばトリメチルアミン、トリエチルアミン、トリ-n-プロピルアミン、トリイソプロピルアミン、トリ-n-ブチルアミン、トリイソブチルアミン、トリ-sec-ブチルアミン、トリペンチルアミン、トリシクロペンチルアミン、トリへキシルアミン、トリシクロへキシルアミン、トリへプチルアミン、トリオクチルアミン、トリノニルアミン、トリデシルアミン、トリドデシルアミン、トリセチルアミン、N,N,N’,N’-テトラメチルメチレンジアミン、N,N,N’,N’-テトラメチルエチレンジアミン、N,N,N’,N’-テトラメチルテトラエチレンペンタミン等が挙げられる。 Examples of the tertiary aliphatic amine include trimethylamine, triethylamine, tri-n-propylamine, triisopropylamine, tri-n-butylamine, triisobutylamine, tri-sec-butylamine, tripentylamine, tricyclopentylamine, Trihexylamine, tricyclohexylamine, triheptylamine, trioctylamine, trinonylamine, tridecylamine, tridodecylamine, tricetylamine, N, N, N ′, N′-tetramethylmethylenediamine, N, N , N ′, N′-tetramethylethylenediamine, N, N, N ′, N′-tetramethyltetraethylenepentamine and the like.
 上記芳香族アミン及び複素環アミンとしては、例えばアニリン、N-メチルアニリン、N-エチルアニリン、N-プロピルアニリン、N,N-ジメチルアニリン、2-メチルアニリン、3-メチルアニリン、4-メチルアニリン、エチルアニリン、プロピルアニリン、トリメチルアニリン、2-ニトロアニリン、3-ニトロアニリン、4-ニトロアニリン、2,4-ジニトロアニリン、2,6-ジニトロアニリン、3,5-ジニトロアニリン、N,N-ジメチルトルイジン等のアニリン誘導体;ジフェニル(p-トリル)アミン;メチルジフェニルアミン;トリフェニルアミン;フェニレンジアミン;ナフチルアミン;ジアミノナフタレン;ピロール、2H-ピロール、1-メチルピロール、2,4-ジメチルピロール、2,5-ジメチルピロール、N-メチルピロール等のピロール誘導体;オキサゾール、イソオキサゾール等のオキサゾール誘導体;チアゾール、イソチアゾール等のチアゾール誘導体;イミダゾール、4-メチルイミダゾール、4-メチル-2-フェニルイミダゾール等のイミダゾール誘導体;ピラゾール誘導体;フラザン誘導体;ピロリン、2-メチル-1-ピロリン等のピロリン誘導体;ピロリジン、N-メチルピロリジン、ピロリジノン、N-メチルピロリドン等のピロリジン誘導体;イミダゾリン誘導体;イミダゾリジン誘導体;ピリジン、メチルピリジン、エチルピリジン、プロピルピリジン、ブチルピリジン、4-(1-ブチルペンチル)ピリジン、ジメチルピリジン、トリメチルピリジン、トリエチルピリジン、フェニルピリジン、3-メチル-2-フェニルピリジン、4-tert-ブチルピリジン、ジフェニルピリジン、ベンジルピリジン、メトキシピリジン、ブトキシピリジン、ジメトキシピリジン、4-ピロリジノピリジン、2-(1-エチルプロピル)ピリジン、アミノピリジン、ジメチルアミノピリジン等のピリジン誘導体;ピリダジン誘導体;ピリミジン誘導体;ピラジン誘導体;ピラゾリン誘導体;ピラゾリジン誘導体;ピペリジン誘導体;ピペラジン誘導体;モルホリン誘導体;インドール誘導体;イソインドール誘導体;1H-インダゾール誘導体;インドリン誘導体;キノリン、3-キノリンカルボニトリル等のキノリン誘導体;イソキノリン誘導体;シンノリン誘導体;キナゾリン誘導体;キノキサリン誘導体;フタラジン誘導体;プリン誘導体;プテリジン誘導体;カルバゾール誘導体;フェナントリジン誘導体;アクリジン誘導体;フェナジン誘導体;1,10-フェナントロリン誘導体;アデニン誘導体;アデノシン誘導体;グアニン誘導体;グアノシン誘導体;ウラシル誘導体;ウリジン誘導体などが挙げられる。 Examples of the aromatic amine and heterocyclic amine include aniline, N-methylaniline, N-ethylaniline, N-propylaniline, N, N-dimethylaniline, 2-methylaniline, 3-methylaniline and 4-methylaniline. , Ethylaniline, propylaniline, trimethylaniline, 2-nitroaniline, 3-nitroaniline, 4-nitroaniline, 2,4-dinitroaniline, 2,6-dinitroaniline, 3,5-dinitroaniline, N, N- Aniline derivatives such as dimethyltoluidine; diphenyl (p-tolyl) amine; methyldiphenylamine; triphenylamine; phenylenediamine; naphthylamine; diaminonaphthalene; pyrrole, 2H-pyrrole, 1-methylpyrrole, 2,4-dimethylpyrrole, 2, 5-dimethyl Pyrrole derivatives such as roll and N-methylpyrrole; oxazole derivatives such as oxazole and isoxazole; thiazole derivatives such as thiazole and isothiazole; imidazole derivatives such as imidazole, 4-methylimidazole and 4-methyl-2-phenylimidazole; pyrazole Derivatives; furazane derivatives; pyrroline derivatives such as pyrroline and 2-methyl-1-pyrroline; pyrrolidine derivatives such as pyrrolidine, N-methylpyrrolidine, pyrrolidinone and N-methylpyrrolidone; imidazoline derivatives; imidazolidine derivatives; pyridine, methylpyridine, ethyl Pyridine, propylpyridine, butylpyridine, 4- (1-butylpentyl) pyridine, dimethylpyridine, trimethylpyridine, triethylpyridine, phenylpyridine, 3-methyl 2-phenylpyridine, 4-tert-butylpyridine, diphenylpyridine, benzylpyridine, methoxypyridine, butoxypyridine, dimethoxypyridine, 4-pyrrolidinopyridine, 2- (1-ethylpropyl) pyridine, aminopyridine, dimethylaminopyridine, etc. Pyridazine derivative; pyrimidine derivative; pyrazoline derivative; pyrazolidine derivative; piperidine derivative; piperazine derivative; morpholine derivative; indole derivative; isoindole derivative; 1H-indazole derivative; indoline derivative; quinoline, 3-quinolinecarbonitrile Isoquinoline derivatives; cinnoline derivatives; quinazoline derivatives; quinoxaline derivatives; phthalazine derivatives; purine derivatives; Carbazole derivatives; phenanthridine derivatives; acridine derivatives; phenazine derivatives; 1,10-phenanthroline derivatives; adenine derivatives; adenosine derivatives; guanine derivatives; guanosine derivatives;
 上記カルボキシ基を有する含窒素化合物としては、例えばアミノ安息香酸;インドールカルボン酸;ニコチン酸、アラニン、アルギニン、アスパラギン酸、グルタミン酸、グリシン、ヒスチジン、イソロイシン、グリシルロイシン、ロイシン、メチオニン、フェニルアラニン、スレオニン、リジン、3-アミノピラジン-2-カルボン酸、メトキシアラニン等のアミノ酸誘導体等が挙げられる。 Examples of the nitrogen-containing compound having a carboxy group include aminobenzoic acid; indolecarboxylic acid; nicotinic acid, alanine, arginine, aspartic acid, glutamic acid, glycine, histidine, isoleucine, glycylleucine, leucine, methionine, phenylalanine, threonine, Examples include amino acid derivatives such as lysine, 3-aminopyrazine-2-carboxylic acid, and methoxyalanine.
 上記スルホニル基を有する含窒素化合物としては、例えば3-ピリジンスルホン酸、p-トルエンスルホン酸ピリジニウム等が挙げられる。 Examples of the nitrogen-containing compound having a sulfonyl group include 3-pyridinesulfonic acid and pyridinium p-toluenesulfonate.
 上記ヒドロキシル基を有する含窒素化合物、ヒドロキシフェニル基を有する含窒素化合物、及びアルコール性含窒素化合物としては、例えば2-ヒドロキシピリジン、アミノクレゾール、2,4-キノリンジオール、3-インドールメタノールヒドレート、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、N-エチルジエタノールアミン、N,N-ジエチルエタノールアミン、トリイソプロパノールアミン、2,2’-イミノジエタノール、2-アミノエタノール、3-アミノ-1-プロパノール、4-アミノ-1-ブタノール、4-(2-ヒドロキシエチル)モルホリン、2-(2-ヒドロキシエチル)ピリジン、1-(2-ヒドロキシエチル)ピペラジン、1-[2-(2-ヒドロキシエトキシ)エチル]ピペラジン、ピペリジンエタノール、1-(2-ヒドロキシエチル)ピロリジン、1-(2-ヒドロキシエチル)-2-ピロリジノン、3-ピペリジノ-1,2-プロパンジオール、3-ピロリジノ-1,2-プロパンジオール、8-ヒドロキシユロリジン、3-クイヌクリジノール、3-トロパノール、1-メチル-2-ピロリジンエタノール、1-アジリジンエタノール、N-(2-ヒドロキシエチル)フタルイミド、N-(2-ヒドロキシエチル)イソニコチンアミド等が挙げられる。 Examples of the nitrogen-containing compound having a hydroxyl group, the nitrogen-containing compound having a hydroxyphenyl group, and the alcoholic nitrogen-containing compound include 2-hydroxypyridine, aminocresol, 2,4-quinolinediol, 3-indolemethanol hydrate, Monoethanolamine, diethanolamine, triethanolamine, N-ethyldiethanolamine, N, N-diethylethanolamine, triisopropanolamine, 2,2'-iminodiethanol, 2-aminoethanol, 3-amino-1-propanol, 4- Amino-1-butanol, 4- (2-hydroxyethyl) morpholine, 2- (2-hydroxyethyl) pyridine, 1- (2-hydroxyethyl) piperazine, 1- [2- (2-hydroxyethoxy) ethyl] pipera Piperidine ethanol, 1- (2-hydroxyethyl) pyrrolidine, 1- (2-hydroxyethyl) -2-pyrrolidinone, 3-piperidino-1,2-propanediol, 3-pyrrolidino-1,2-propanediol, 8-hydroxyurolidine, 3-cuincridinol, 3-tropanol, 1-methyl-2-pyrrolidineethanol, 1-aziridineethanol, N- (2-hydroxyethyl) phthalimide, N- (2-hydroxyethyl) iso And nicotinamide.
 上記アミド化合物としては例えばホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、プロピオンアミド、ベンズアミド、1-シクロへキシルピロリドン等が挙げられる。 Examples of the amide compound include formamide, N-methylformamide, N, N-dimethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, propionamide, benzamide, 1-cyclohexylpyrrolidone and the like.
 上記イミド化合物としては、例えばフタルイミド、サクシンイミド、マレイミド等が挙げられる。 Examples of the imide compound include phthalimide, succinimide, maleimide and the like.
 上記感放射線性を有する化合物は、放射線により分解し酸拡散制御能を失う化合物(放射線分解型化合物)及び放射線により生成し酸拡散制御能を得るもの(放射線生成型化合物)に分けられる。 The above-mentioned compounds having radiation sensitivity are classified into compounds that are decomposed by radiation and lose acid diffusion control ability (radiolysis type compounds) and compounds that are generated by radiation and obtain acid diffusion control ability (radiation generation type compounds).
 上記放射線分解型化合物がパターン露光工程においてパターン露光部のみで分解することで、パターン露光部では酸及びカチオンを捕捉する作用が低下し、パターン非露光部では酸及びカチオンを捕捉する作用が維持される。このため、露光部と非露光部との間における酸の潜像の化学コントラストを向上させることができる。 The radiation-decomposable compound is decomposed only in the pattern exposure part in the pattern exposure step, so that the action of capturing the acid and cation is reduced in the pattern exposure part, and the action of capturing the acid and cation is maintained in the pattern non-exposed part. The For this reason, the chemical contrast of the latent image of the acid between the exposed part and the non-exposed part can be improved.
 上記放射線分解型化合物としては、[C1]化合物及び[C2]化合物以外の放射線分解性カチオンのスルホン酸塩及びカルボン酸塩が好ましい。上記スルホン酸塩におけるスルホン酸としては、弱い酸が好ましく、炭素数1~10の炭化水素基を有し、かつ上記炭化水素基がフッ素を含まないものがより好ましい。このようなスルホン酸としては、例えばアルキルスルホン酸、ベンゼンスルホン酸、10-カンファースルホン酸等のスルホン酸が挙げられる。上記カルボン酸塩におけるカルボン酸としては弱酸が好ましく、炭素数1~20のカルボン酸がより好ましい。このようなカルボン酸としては、例えばギ酸、酢酸、プロピオン酸、酒石酸、コハク酸、シクロへキシルカルボン酸、安息香酸、サリチル酸等のカルボン酸が挙げられる。放射線分解性カチオンのカルボン酸塩における放射線分解性カチオンとしてはオニウムカチオンが好ましく、このオニウムカチオンとしては、例えばヨードニウムカチオン等が挙げられる。 As the radiolytic compound, sulfonates and carboxylates of radiolytic cation other than the [C1] compound and the [C2] compound are preferable. The sulfonic acid in the sulfonate is preferably a weak acid, more preferably a hydrocarbon group having 1 to 10 carbon atoms, and the hydrocarbon group not containing fluorine. Examples of such sulfonic acids include sulfonic acids such as alkyl sulfonic acids, benzene sulfonic acids, and 10-camphor sulfonic acids. The carboxylic acid in the carboxylate is preferably a weak acid, more preferably a carboxylic acid having 1 to 20 carbon atoms. Examples of such carboxylic acids include carboxylic acids such as formic acid, acetic acid, propionic acid, tartaric acid, succinic acid, cyclohexyl carboxylic acid, benzoic acid, and salicylic acid. The radiolytic cation in the carboxylate of the radiolytic cation is preferably an onium cation, and examples of the onium cation include an iodonium cation.
 上記放射線生成型化合物がパターン露光工程においてパターン露光部のみで生成することで、パターン露光部では酸及びカチオンの捕捉する作用が発生し、パターン非露光部で発生しない。 The radiation generating compound is generated only in the pattern exposure part in the pattern exposure step, so that the action of capturing the acid and cation occurs in the pattern exposure part and does not occur in the pattern non-exposure part.
 上記放射線生成型化合物は、パターン露光工程において生成せず、一括露光工程において生成するものであってもよい。この場合、パターン露光工程の露光部においては感放射線性増感体を効率よく発生できると共に、一括露光工程の非露光部における不要な酸及びカチオンを捕捉することができる。 The radiation generating compound may be generated in a batch exposure process without being generated in the pattern exposure process. In this case, a radiation-sensitive sensitizer can be efficiently generated in the exposed portion of the pattern exposure step, and unnecessary acids and cations can be captured in the non-exposed portion of the batch exposure step.
 上記放射線生成型化合物としては、露光により塩基を発生する化合物(感放射線性塩基発生剤)が好ましく、アミノ基を発生する含窒素有機化合物がより好ましい。 As the radiation-generating compound, a compound that generates a base upon exposure (a radiation-sensitive base generator) is preferable, and a nitrogen-containing organic compound that generates an amino group is more preferable.
 また、上記感放射線性塩基発生剤としては、例えば特開平4-151156号、同4-162040号、同5-197148号、同5-5995号、同6-194834号、同8-146608号、同10-83079号、及び欧州特許622682号に記載の化合物が挙げられる。 Examples of the radiation sensitive base generator include, for example, JP-A-4-151156, JP-A-4-162040, JP-A-5-197148, JP-A-5-5995, JP-A-6-194634, JP-A-8-146608, No. 10-83079 and compounds described in European Patent No. 622682.
 上記感放射線性塩基発生剤としては、カルバメート基(ウレタン結合)を含有する化合物、アシルオキシイミノ基を含有する化合物、イオン系化合物(アニオン-カチオン複合体)、カルバモイルオキシイミノ基を含有する化合物等が挙げられ、カルバメート基(ウレタン結合)を含有する化合物、アシルオキシイミノ基を含有する化合物、及びイオン系化合物(アニオン-カチオン複合体)が好ましい。 Examples of the radiation sensitive base generator include a compound containing a carbamate group (urethane bond), a compound containing an acyloxyimino group, an ionic compound (anion-cation complex), a compound containing a carbamoyloxyimino group, and the like. Preferred are a compound containing a carbamate group (urethane bond), a compound containing an acyloxyimino group, and an ionic compound (anion-cation complex).
 さらに、感放射線性塩基発生剤としては、分子内に環構造を有する化合物が好ましい。この環構造としては、例えばベンゼン、ナフタレン、アントラセン、キサントン、チオキサントン、アントラキノン、フルオレン等が挙げられる。 Furthermore, as the radiation sensitive base generator, a compound having a ring structure in the molecule is preferable. Examples of this ring structure include benzene, naphthalene, anthracene, xanthone, thioxanthone, anthraquinone, fluorene, and the like.
 感放射線性塩基発生剤としては、例えば2-ニトロベンジルカルバメート、2,5-ジニトロベンジルシクロへキシルカルバメート、N-シクロへキシル-4-メチルフェニルスルホンアミド、1,1-ジメチル-2-フェニルエチル-N-イソプロピルカルバメート等が挙げられる。 Examples of the radiation sensitive base generator include 2-nitrobenzyl carbamate, 2,5-dinitrobenzyl cyclohexyl carbamate, N-cyclohexyl-4-methylphenylsulfonamide, 1,1-dimethyl-2-phenylethyl. -N-isopropyl carbamate and the like.
 酸拡散制御剤は、熱反応により生成して酸拡散制御能を得る化合物(熱生成型化合物)であってもよい。この場合、一括露光工程後のベーク工程において生成することが好ましい。このように、ベーク工程において酸拡散制御剤が酸拡散制御能を得る観点から、後述するベーク工程における加熱温度は、他の工程における加熱温度よりも高いことが好ましい。 The acid diffusion control agent may be a compound (heat generation type compound) that is generated by a thermal reaction and obtains acid diffusion control ability. In this case, it is preferable to generate in the baking process after the batch exposure process. Thus, it is preferable that the heating temperature in the baking process mentioned later is higher than the heating temperature in another process from a viewpoint that an acid diffusion control agent acquires acid diffusion control ability in a baking process.
 上記感放射線性を有する他の酸拡散制御剤のうち、(e)上記第1の放射線を照射し、上記第2の放射線を照射しない場合に、上記(2)成分より発生する酸に対する塩基性を失い、かつトリフェニルスルホニウムカチオンの還元電位より低い還元電位を有する酸拡散制御剤としては、例えば以下の化合物が挙げられる。 Among the other acid diffusion control agents having radiation sensitivity, (e) basicity against acid generated from component (2) when irradiated with the first radiation and not irradiated with the second radiation. Examples of the acid diffusion control agent that has a reduction potential lower than that of the triphenylsulfonium cation include the following compounds.
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
 当該化学増幅型レジスト材料が上記他の酸拡散制御剤を含有する場合、(1)重合体成分100質量部に対する酸拡散制御剤の含有量の下限としては、0.001質量部が好ましく、0.01質量部がより好ましい。一方、上記含有量の上限としては、20質量部が好ましく、10質量部がより好ましい。上記含有量が上記下限より小さい場合、上記酸拡散制御剤が十分に酸及びカチオンを捕捉できないおそれがある。逆に、上記含有量が上記上限を超える場合、感度が過度に低下するおそれがある。 When the chemically amplified resist material contains the other acid diffusion control agent, (1) The lower limit of the content of the acid diffusion control agent with respect to 100 parts by mass of the polymer component is preferably 0.001 part by mass, 0.01 parts by weight is more preferable. On the other hand, as an upper limit of the said content, 20 mass parts is preferable and 10 mass parts is more preferable. When the said content is smaller than the said minimum, there exists a possibility that the said acid diffusion control agent cannot fully capture | acquire an acid and a cation. On the contrary, when the content exceeds the upper limit, the sensitivity may be excessively lowered.
[ラジカル捕捉剤]
 上記ラジカル捕捉剤は、遊離ラジカルを捕捉するものである。当該化学増幅型レジスト材料が上記ラジカル捕捉剤を含むことにより、パターン非露光部においてラジカルによる反応を経由した感放射線性増感体の発生が低減され、後述する一括露光工程後のパターン露光部と非露光部との酸濃度のコントラストをより向上できる。このラジカル捕捉剤としては、例えばフェノール系化合物、キノン系化合物、アミン系化合物等の化合物や、ゴム等の天然由来の酸化防止剤などが挙げられる。
[Radical scavenger]
The radical scavenger traps free radicals. When the chemically amplified resist material contains the radical scavenger, the generation of radiation-sensitive sensitizers via reaction by radicals in the pattern non-exposed portion is reduced, and the pattern exposed portion after the batch exposure step described later and The contrast of the acid concentration with the non-exposed part can be further improved. Examples of the radical scavenger include compounds such as phenolic compounds, quinone compounds, and amine compounds, and natural antioxidants such as rubber.
[架橋剤]
 架橋剤は、一括露光後のベーク工程において、酸触媒反応により重合体成分間で架橋反応を引き起こし、重合体成分の分子量を増加させ、現像液に対して不溶化するためのものであり、上記(1)重合体成分とは異なるものである。レジスト材料が架橋剤を含むことにより、架橋と同時に極性部位が非極性化し、現像液に対して不溶化するため、ネガ型レジスト材料を提供することができる。
[Crosslinking agent]
The cross-linking agent is used to cause a cross-linking reaction between polymer components by an acid catalyst reaction in a baking step after collective exposure, to increase the molecular weight of the polymer component, and to insolubilize in the developer. 1) It is different from the polymer component. Since the resist material contains a cross-linking agent, the polar part becomes nonpolar at the same time as the cross-linking and becomes insoluble in the developer, so that a negative resist material can be provided.
 架橋剤は2つ以上の官能基を有する化合物である。上記官能基は、(メタ)アクリロイル基、ヒドロキシメチル基、アルコキシメチル基、エポキシ基及びビニルエーテル基からなる群より選択される少なくとも1つであることが好ましい。 The crosslinking agent is a compound having two or more functional groups. The functional group is preferably at least one selected from the group consisting of a (meth) acryloyl group, a hydroxymethyl group, an alkoxymethyl group, an epoxy group, and a vinyl ether group.
[その他の添加剤]
 その他の添加剤としては、例えば界面活性剤、酸化防止剤、溶解抑制剤、可塑剤、安定剤、着色剤、ハレーション防止剤、染料等が挙げられる。界面活性剤、酸化防止剤、溶解抑制剤、可塑剤、安定剤、着色剤、ハレーション防止剤及び染料には公知の材料を選択することができる。界面活性剤としては、例えばイオン性や非イオン性のフッ素系界面活性剤、シリコン系界面活性剤等を用いることができる。酸化防止剤としては、例えばフェノール系酸化防止剤、有機酸誘導体からなる酸化防止剤、硫黄含有酸化防止剤、リン系酸化防止剤、アミン系酸化防止剤、アミン-アルデヒド縮合物からなる酸化防止剤、アミン-ケトン縮合物からなる酸化防止剤等が挙げられる。
[Other additives]
Examples of other additives include surfactants, antioxidants, dissolution inhibitors, plasticizers, stabilizers, colorants, antihalation agents, and dyes. Known materials can be selected for the surfactant, antioxidant, dissolution inhibitor, plasticizer, stabilizer, colorant, antihalation agent, and dye. As the surfactant, for example, an ionic or nonionic fluorine-based surfactant, a silicon-based surfactant, or the like can be used. Antioxidants include, for example, phenolic antioxidants, antioxidants composed of organic acid derivatives, sulfur-containing antioxidants, phosphorus antioxidants, amine antioxidants, and antioxidants composed of amine-aldehyde condensates. And an antioxidant comprising an amine-ketone condensate.
[溶媒]
 溶媒としては、レジスト材料の組成物を溶解し、スピンコーティング法等での塗布機によるレジスト材料膜の形成を容易とするためのものである。なお、上記(b)感放射線性増感体発生剤等に包含される化合物は溶媒からは除くものとする。溶媒としては、例えばシクロへキサノン、メチル-2-アミルケトン等のケトン類;3-メトキシブタノール、3-メチル-3-メトキシブタノール、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール等のアルコール類;プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル類;並びにプロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、乳酸エチル、ピルビン酸エチル、酢酸ブチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、酢酸tert-ブチル、プロピオン酸tert-ブチル、酢酸プロピレングリコールモノメチルエーテル、プロピレングリコールモノtert-ブチルエーテルアセテート等のエステル類などが挙げられる。
[solvent]
The solvent is for dissolving the composition of the resist material and facilitating the formation of the resist material film by a coating machine using a spin coating method or the like. In addition, the compound included in said (b) radiation sensitive sensitizer generator etc. shall be remove | excluded from a solvent. Examples of the solvent include ketones such as cyclohexanone and methyl-2-amylketone; 3-methoxybutanol, 3-methyl-3-methoxybutanol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol and the like Alcohols; ethers such as propylene glycol monomethyl ether, ethylene glycol monomethyl ether, propylene glycol monoethyl ether, ethylene glycol monoethyl ether, propylene glycol dimethyl ether, diethylene glycol dimethyl ether; and propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, Ethyl lactate, ethyl pyruvate, butyl acetate, methyl 3-methoxypropionate, 3-ethoxypropionic acid Chill acetate tert- butyl, tert- butyl propionate, propylene glycol monomethyl ether acetate, and esters such as propylene glycol monobutyl tert- butyl ether acetate.
[化学増幅型レジスト材料の調製方法]
 当該化学増幅型レジスト材料は、例えば(1)重合体成分、(2)成分、及び必要に応じてその他の任意成分を所定の割合で混合することにより調製できる。当該化学増幅型レジスト材料は、混合後に例えば孔径0.2μm程度のフィルター等でろ過することが好ましい。当該化学増幅型レジスト材料の全固形分濃度の下限としては、通常0.1質量%であり、0.5質量%が好ましく、1質量%がより好ましい。一方、上記全固形分濃度の上限としては、通常50質量%であり、30質量%が好ましく、20質量%がより好ましい。
[Method of preparing chemically amplified resist material]
The chemically amplified resist material can be prepared, for example, by mixing (1) a polymer component, (2) component, and other optional components as necessary at a predetermined ratio. The chemically amplified resist material is preferably filtered after mixing with, for example, a filter having a pore diameter of about 0.2 μm. The lower limit of the total solid content concentration of the chemically amplified resist material is usually 0.1% by mass, preferably 0.5% by mass, and more preferably 1% by mass. On the other hand, the upper limit of the total solid content is usually 50% by mass, preferably 30% by mass, and more preferably 20% by mass.
<レジストパターン形成方法>
 上記レジスト材料は二段露光リソグラフィプロセスに好適に使用される。すなわち、本実施形態に係るリソグラフィプロセス(レジストパターン形成方法)は、上記レジスト材料を使用して形成されたレジスト材料膜を基板上に形成する膜形成工程と、上記レジスト材料膜にマスクを介して第1の放射線を照射するパターン露光工程と、上記パターン露光工程後のレジスト材料膜に第2の放射線を照射する一括露光工程と、上記一括露光工程後のレジスト材料膜を加熱するベーク工程と、上記ベーク工程後のレジスト材料膜を現像液に接触させる工程とを備える。
<Resist pattern formation method>
The resist material is preferably used in a two-step exposure lithography process. That is, the lithography process (resist pattern forming method) according to the present embodiment includes a film forming step of forming a resist material film formed using the resist material on a substrate, and a mask formed on the resist material film. A pattern exposure step of irradiating the first radiation; a batch exposure step of irradiating the resist material film after the pattern exposure step with a second radiation; and a baking step of heating the resist material film after the batch exposure step; And a step of bringing the resist material film after the baking step into contact with a developer.
 図1は、本実施形態に係るリソグラフィプロセスを示す工程図である。なお、図2は従来の化学増幅型レジスト材料を使用したレジストパターン形成方法の一例を示す工程図である。 FIG. 1 is a process diagram showing a lithography process according to this embodiment. FIG. 2 is a process diagram showing an example of a resist pattern forming method using a conventional chemically amplified resist material.
 図1に示すように、本実施形態に係るリソグラフィプロセスは以下の工程を備える。
 工程S1:加工対象の基板を準備する工程
 工程S2:下層膜及びレジスト材料膜を形成する工程(膜形成工程)
 工程S3:パターン露光により、露光部に酸を発生させる工程(パターン露光工程)
 工程S4:一括露光により、パターン露光部のみに酸を増殖させる工程(一括露光工程)
 工程S5:露光後ベークにより、パターン露光部に酸触媒による極性変化反応を生じさせる工程(ベーク工程)
 工程S6:現像処理によってレジストパターンを形成する工程(現像工程)
 工程S7:エッチングによってパターンを転写する工程(エッチング工程)
As shown in FIG. 1, the lithography process according to this embodiment includes the following steps.
Step S1: Step of preparing a substrate to be processed Step S2: Step of forming a lower layer film and a resist material film (film formation step)
Step S3: A step of generating an acid in the exposed portion by pattern exposure (pattern exposure step)
Step S4: a step of multiplying acid only in the pattern exposure portion by batch exposure (collective exposure step)
Step S5: A step of causing a polarity change reaction by an acid catalyst in the pattern exposed portion by baking after exposure (baking step).
Step S6: Step of forming a resist pattern by development processing (development step)
Step S7: Step of transferring pattern by etching (etching step)
(工程S1)
 以下の工程において加工対象となる基板(被加工基板)は、シリコン基板、二酸化シリコン基板、ガラス基板、及びITO基板等の半導体ウェハから構成されたものであってもよく、上記半導体ウェハ上に絶縁膜層が形成されたものであってもよい。
(Process S1)
The substrate to be processed (substrate to be processed) in the following steps may be composed of a semiconductor wafer such as a silicon substrate, a silicon dioxide substrate, a glass substrate, and an ITO substrate, and is insulated on the semiconductor wafer. A film layer may be formed.
(工程S2:膜形成工程)
 上記レジスト材料膜は本実施形態のレジスト材料を使用して形成される。レジスト材料膜の形成方法としては、例えば液状のレジスト材料をスピンコート等により塗布する方法、フィルム状(固体状)のレジスト材料を貼り付ける方法等が挙げられる。液状のレジスト材料を塗布する場合には、塗布後に加熱(プリベーク)してレジスト材料中の溶媒を揮発させてもよい。レジスト材料膜の形成条件は、レジスト材料の性状及び得られるレジスト材料膜の厚さ等に応じて適宜選択される。レジスト材料膜の平均厚さとしては、1nm以上5,000nm以下が好ましく、10nm以上1,000nm以下がより好ましく、30nm以上200nm以下がさらに好ましい。
(Process S2: Film formation process)
The resist material film is formed using the resist material of this embodiment. Examples of the method for forming the resist material film include a method of applying a liquid resist material by spin coating or the like, a method of attaching a film-like (solid) resist material, and the like. When applying a liquid resist material, the solvent in the resist material may be volatilized by heating (pre-baking) after application. The formation conditions of the resist material film are appropriately selected according to the properties of the resist material and the thickness of the resist material film to be obtained. The average thickness of the resist material film is preferably 1 nm to 5,000 nm, more preferably 10 nm to 1,000 nm, and even more preferably 30 nm to 200 nm.
 基板上にレジスト材料膜を形成するに先立って、上記基板上に下層膜(反射防止膜、レジスト密着性改善のための膜、レジスト形状改善のための膜等)を形成してもよい。反射防止膜を形成することにより、パターン露光工程において放射線が基板等で反射することによる定在波の発生を抑制することができる。レジスト密着性改善のための膜を形成することにより、基板とレジスト材料膜との間の密着性を向上させることができる。レジスト形状改善のための膜を形成することにより、現像後のレジスト形状をさらに向上させることができる。すなわち、レジスト形状改善のための膜を形成することにより、レジストのすそ引き形状又はくびれ形状を低減できる。一方、一括露光の放射線の定在波の発生によるレジスト形状劣化を防ぐために、下層膜の厚さは一括露光の放射線の反射も抑えられるように設計することが好ましい。下層膜は、一括露光の放射線を吸収しない膜であることが好ましい。仮に、下層膜が一括露光の放射線を吸収する場合、下層膜からのエネルギー移動又は電子移動によりレジスト材料膜内で放射線増感反応が生じ、これによりパターン未露光部で酸が発生するおそれがある。そのため、レジスト材料膜と下層膜との間に放射線増感反応を伝搬しないバッファ層を配置し、放射線を吸収した下層膜からの増感を防いでもよい。 Prior to forming the resist material film on the substrate, a lower layer film (an antireflection film, a film for improving resist adhesion, a film for improving resist shape, etc.) may be formed on the substrate. By forming the antireflection film, it is possible to suppress the occurrence of standing waves due to radiation reflected by the substrate or the like in the pattern exposure step. By forming a film for improving the resist adhesion, the adhesion between the substrate and the resist material film can be improved. By forming a film for improving the resist shape, the resist shape after development can be further improved. That is, by forming a film for improving the resist shape, it is possible to reduce the skirt shape or constriction shape of the resist. On the other hand, in order to prevent resist shape deterioration due to the generation of standing wave of batch exposure radiation, it is preferable to design the thickness of the lower layer film so that reflection of the radiation of batch exposure can be suppressed. The lower layer film is preferably a film that does not absorb the radiation for batch exposure. If the lower layer film absorbs the radiation of the batch exposure, a radiation sensitization reaction may occur in the resist material film due to energy transfer or electron transfer from the lower layer film, which may generate acid in the pattern unexposed area. . For this reason, a buffer layer that does not propagate the radiation sensitization reaction may be disposed between the resist material film and the lower layer film to prevent sensitization from the lower layer film that has absorbed the radiation.
 上記レジスト材料膜の上に保護膜をさらに形成してもよい。保護膜を形成することによりパターン露光工程S3で生成する感放射線性増感体、酸、及びこれらの反応中間体の失活を抑え、プロセス安定性を向上させることができる。上記保護膜は、一括露光工程における未露光部での酸発生反応を防ぐために、上記(a)若しくは(c)成分(感放射線性酸発生剤)が直接吸収する非電離放射線の波長の少なくとも一部を吸収する吸収膜であってもよい。上記吸収膜を用いることで、EUV露光時に発生する紫外線領域の放射線であるアウトオブバンド光(OOB光)のレジスト材料膜への進入を抑制し、パターン未露光部における感放射線性酸発生剤又は感放射線性酸発生基の分解を防ぐこともできる。さらに、上記吸収膜が直接レジスト材料膜上に形成される場合は、パターン未露光部における放射線増感反応によるレジスト材料膜中の酸発生を抑えるために、一括露光工程における第2の放射線の波長で保護膜からの放射線増感反応を誘発しないものがよい。また、レジスト材料膜内の感放射線性増感体が保護膜からのエネルギー移動又は電子移動等により増感しないように、レジスト材料膜と保護膜の間にバッファ層を配置し、放射線を吸収した吸収膜からの増感を防いでもよい。パターン露光工程S3後、一括露光工程S4前に上記吸収膜をレジスト材料膜上に形成することにより、一括露光工程S4における第2の放射線の照射によって、パターン露光工程S3後の上記レジスト材料膜に残存する上記感放射線性酸発生剤又は感放射線性酸発生基から直接酸が発生するのをさらに抑制させることができる。 A protective film may be further formed on the resist material film. By forming the protective film, it is possible to suppress the deactivation of the radiation-sensitive sensitizer, acid, and these reaction intermediates generated in the pattern exposure step S3, thereby improving the process stability. The protective film has at least one wavelength of non-ionizing radiation that is directly absorbed by the component (a) or (c) (radiation sensitive acid generator) in order to prevent an acid generation reaction in an unexposed portion in the batch exposure process. An absorption film that absorbs the portion may be used. By using the absorption film, it is possible to suppress the entry of out-of-band light (OOB light), which is ultraviolet radiation generated during EUV exposure, into the resist material film, and the radiation-sensitive acid generator in the pattern unexposed area or The decomposition of the radiation sensitive acid generating group can also be prevented. Further, when the absorption film is directly formed on the resist material film, the wavelength of the second radiation in the batch exposure process is used to suppress acid generation in the resist material film due to the radiation sensitization reaction in the pattern unexposed area. It is preferable that it does not induce a radiosensitization reaction from the protective film. In addition, a buffer layer is disposed between the resist material film and the protective film to absorb the radiation so that the radiation-sensitive sensitizer in the resist material film is not sensitized by energy transfer or electron transfer from the protective film. Sensitization from the absorbing film may be prevented. By forming the absorption film on the resist material film after the pattern exposure step S3 and before the collective exposure step S4, the resist material film after the pattern exposure step S3 is formed by irradiation with the second radiation in the collective exposure step S4. Direct generation of acid from the remaining radiation-sensitive acid generator or radiation-sensitive acid-generating group can be further suppressed.
(工程S3:パターン露光工程)
 パターン露光工程S3では、上記膜形成工程S2で形成されたレジスト材料膜上に、所定のパターンの遮光マスクを配置する。その後、上記レジスト材料膜に、投影レンズ、電子光学系ミラー、又は反射ミラーを有する露光装置(放射線照射モジュール)から、上記マスクを介して第1の放射線が照射(パターン露光)される。
(Process S3: Pattern exposure process)
In the pattern exposure step S3, a light shielding mask having a predetermined pattern is arranged on the resist material film formed in the film formation step S2. Thereafter, the resist material film is irradiated with the first radiation (pattern exposure) through the mask from an exposure apparatus (radiation irradiation module) having a projection lens, an electron optical system mirror, or a reflection mirror.
 パターン露光に用いられる上記第1の放射線は、電離放射線又は250nm以下の波長を有する非電離放射線である。上記非電離放射線の波長の上限としては250nmであり、200nmが好ましい。一方、上記非電離放射線の波長の下限としては、150nmが好ましく、190nmがより好ましい。 The first radiation used for pattern exposure is ionizing radiation or non-ionizing radiation having a wavelength of 250 nm or less. The upper limit of the wavelength of the non-ionizing radiation is 250 nm, and preferably 200 nm. On the other hand, the lower limit of the wavelength of the non-ionizing radiation is preferably 150 nm, and more preferably 190 nm.
 なお、電離放射線は原子又は分子を電離させるのに十分なエネルギーを有する放射線である。これに対し、非電離放射線は、原子又は分子を電離させるのに十分なエネルギーを有しない放射線である。電離放射線としては、例えばガンマ線、エックス線、アルファ線、重粒子線、陽子線、ベータ線、イオンビーム、電子線、EUV等が挙げられる。パターン露光に用いる電離放射線としては電子線、EUV及びイオンビームが好ましく、電子線及びEUVがより好ましい。非電離放射線としては、KrFエキシマレーザー光及びArFエキシマレーザー光等の250nm以下の波長を有する非電離放射線が挙げられる。 Note that ionizing radiation is radiation having sufficient energy to ionize atoms or molecules. In contrast, non-ionizing radiation is radiation that does not have sufficient energy to ionize atoms or molecules. Examples of the ionizing radiation include gamma rays, X-rays, alpha rays, heavy particle rays, proton rays, beta rays, ion beams, electron beams, EUV, and the like. The ionizing radiation used for pattern exposure is preferably an electron beam, EUV or ion beam, more preferably an electron beam or EUV. Non-ionizing radiation includes non-ionizing radiation having a wavelength of 250 nm or less, such as KrF excimer laser light and ArF excimer laser light.
 パターン露光の光源としては、例えば1keVから200keVの電子線、13.5nmの波長を有するEUV、193nmのエキシマレーザー光(ArFエキシマレーザー光)、248nmのエキシマレーザー光(KrFエキシマレーザー光)が用いられることが多い。パターン露光における露光量は本実施形態の化学増幅型レジストを用いて一括露光する場合よりも少ない露光量でよい。上記パターン露光によりレジスト材料膜中の上記(a)~(c)成分で示される基が分解して、酸と第2の放射線を吸収する感放射線性増感体とを発生する。 As a light source for pattern exposure, for example, an electron beam of 1 keV to 200 keV, EUV having a wavelength of 13.5 nm, excimer laser light of 193 nm (ArF excimer laser light), and excimer laser light of 248 nm (KrF excimer laser light) are used. There are many cases. The exposure amount in pattern exposure may be smaller than in the case of batch exposure using the chemically amplified resist of the present embodiment. By the pattern exposure, groups represented by the components (a) to (c) in the resist material film are decomposed to generate an acid and a radiation-sensitive sensitizer that absorbs the second radiation.
 露光には「スキャナ」と呼ばれるステップアンドスキャン方式の露光装置が広く用いられる。この方法では、マスクと基板を同期しながらスキャン露光することで、1ショットごとのパターンが形成される。この露光により、レジスト内で露光された箇所に選択的な反応が起こる。 For exposure, a step-and-scan type exposure apparatus called a “scanner” is widely used. In this method, a pattern for each shot is formed by performing scanning exposure while synchronizing the mask and the substrate. By this exposure, a selective reaction occurs at the exposed portion in the resist.
 また、下記一括露光工程S4を実施するに先立って、パターン露光後工程S3の上記レジスト材料膜の上に、上記(a)若しくは(c)成分中の感放射線性酸発生剤が直接吸収する非電離放射線の波長の少なくとも一部を吸収する吸収膜を形成してもよい。吸収膜を形成することにより、下記一括露光工程S4における第2の放射線の照射により、パターン露光工程S3後の上記レジスト材料膜に残存する上記感放射線性酸発生剤又は感放射線性酸発生基からの直接の酸発生をさらに抑制できる。 Prior to performing the following batch exposure step S4, the radiation-sensitive acid generator in the component (a) or (c) is directly absorbed on the resist material film in the post-pattern exposure step S3. An absorption film that absorbs at least a part of the wavelength of the ionizing radiation may be formed. By forming the absorption film, the radiation sensitive acid generator or the radiation sensitive acid generating group remaining in the resist material film after the pattern exposure step S3 due to the irradiation of the second radiation in the collective exposure step S4 below. The direct acid generation of can be further suppressed.
 水素原子が置換されていないアルコール性水酸基を有する(b)感放射線性増感体発生剤を用いる場合、上記パターン露光工程S3後下記一括露光工程S4を実施するまでの間、上記レジスト材料膜を減圧雰囲気又は窒素若しくはアルゴンを含む不活性雰囲気に置くことが好ましい。レジスト材料膜を上記雰囲気下に置くことにより、露光中のレジスト材料膜の酸素への曝露、及びこの酸素によるラジカル反応の停止を抑制することができ、また、微量の塩基性化合物による酸のクエンチングを抑制することができることから、よりプロセスを安定化できる傾向がある。パターン露光工程S3後、一括露光工程S4を実施するまでの時間(保管時間)の上限としては、30分が好ましく、10分がより好ましい。保管時間が30分以下であることにより、感度の低下を抑制できる傾向がある。一方、水素原子が置換されたアルコール性水酸基を有する(b)感放射線性増感体発生剤(すなわち、ケタール化合物、アセタール化合物又はオルトエステル化合物等)を用いる場合、上記パターン露光工程S3後、下記一括露光工程S4を実施するまでの間、上記レジスト材料膜が存在する雰囲気をアミン除去フィルターで清浄化した大気中とすることが好ましい。上記(b)感放射線性増感体発生剤を用いる場合、上述のような酸素の影響は受けにくいのでアミン除去フィルターで清浄化した大気中で処理してもよい。レジスト材料膜を上記雰囲気下に置くことにより、微量の塩基性化合物による酸のクエンチングを抑制することができることから、よりプロセスを安定化できる傾向がある。パターン露光工程S3後、一括露光工程S4を実施するまでの時間(保管時間)の上限としては、30分が好ましく、10分がより好ましい。保管時間が30分以下であることにより、感度の低下を抑制できる傾向がある。 In the case of using (b) a radiation-sensitive sensitizer generator having an alcoholic hydroxyl group in which hydrogen atoms are not substituted, the resist material film is formed until the following batch exposure step S4 is performed after the pattern exposure step S3. It is preferable to place in a reduced-pressure atmosphere or an inert atmosphere containing nitrogen or argon. By placing the resist material film in the above atmosphere, the exposure of the resist material film to oxygen during exposure and the termination of radical reaction by this oxygen can be suppressed, and the acid quenching by a small amount of basic compound can be suppressed. Since the chin can be suppressed, the process tends to be further stabilized. The upper limit of the time (storage time) until the collective exposure step S4 is performed after the pattern exposure step S3 is preferably 30 minutes, and more preferably 10 minutes. There exists a tendency which can suppress the fall of a sensitivity because storage time is 30 minutes or less. On the other hand, when (b) a radiation-sensitive sensitizer generating agent (that is, a ketal compound, an acetal compound or an orthoester compound) having an alcoholic hydroxyl group substituted with a hydrogen atom is used, after the pattern exposure step S3, the following Until the collective exposure step S4 is performed, it is preferable that the atmosphere in which the resist material film exists is in the atmosphere cleaned with an amine removal filter. When the above-mentioned (b) radiation-sensitive sensitizer generating agent is used, it may be treated in the atmosphere cleaned with an amine removing filter because it is not easily affected by oxygen as described above. By placing the resist material film in the above atmosphere, acid quenching by a small amount of a basic compound can be suppressed, so that the process tends to be further stabilized. The upper limit of the time (storage time) until the collective exposure step S4 is performed after the pattern exposure step S3 is preferably 30 minutes, and more preferably 10 minutes. There exists a tendency which can suppress the fall of a sensitivity because storage time is 30 minutes or less.
 本実施形態のレジストパターン形成方法は、上記パターン露光工程S3後、下記一括露光工程S4前に、パターン露光工程S3を実施する露光装置から一括露光工程S4を実施する露光装置に上記基板を搬送する工程をさらに備えていてもよい。また、一括露光をインライン接続された塗布現像装置の中、又は露光機とのインターフェースに相当するモジュールで行ってよい。なお、上記(2)成分がケタール化合物、アセタール化合物又はオルトエステル化合物を含む場合、本実施形態のレジストパターン形成方法は、上記パターン露光工程S3後、下記一括露光工程S4前にベーク工程S3a(ポストパターンエクスポージャーベーク(PPEB又はPEB)と言うこともある)を備えていてもよい(図3参照)。上記ベーク工程における加熱の温度としては、30℃以上150℃以下が好ましく、50℃以上120℃以下がより好ましく、60℃以上100℃以下がさらに好ましい。加熱時間としては、5秒以上3分以下が好ましく、10秒以上60秒以下がより好ましい。また上記ベークは、湿度を制御した環境下で行うことが好ましい。感放射線性増感体を生成する脱保護反応として加水分解反応を用いた場合、湿度が反応速度に影響するからである。レジストパターン形成方法が上記ベーク工程S3aを備えることにより、アセタール化合物、オルトエステル化合物、又はケタール化合物等からカルボニル化合物への加水分解反応による感放射線性増感体発生を加速することができる。 In the resist pattern forming method of this embodiment, after the pattern exposure step S3 and before the following batch exposure step S4, the substrate is transferred from the exposure apparatus that performs the pattern exposure step S3 to the exposure device that performs the batch exposure step S4. You may further provide the process. Further, the batch exposure may be performed in a coating and developing apparatus connected inline or in a module corresponding to an interface with the exposure machine. When the component (2) includes a ketal compound, an acetal compound or an orthoester compound, the resist pattern forming method of this embodiment is performed after the pattern exposure step S3 and before the following batch exposure step S4, followed by a baking step S3a (post Pattern exposure bake (also referred to as PPEB or PEB)) (see FIG. 3). The heating temperature in the baking step is preferably 30 ° C. or higher and 150 ° C. or lower, more preferably 50 ° C. or higher and 120 ° C. or lower, and further preferably 60 ° C. or higher and 100 ° C. or lower. The heating time is preferably 5 seconds to 3 minutes, more preferably 10 seconds to 60 seconds. Moreover, it is preferable to perform the said baking in the environment which controlled humidity. This is because when the hydrolysis reaction is used as the deprotection reaction for generating the radiation-sensitive sensitizer, the humidity affects the reaction rate. When the resist pattern forming method includes the baking step S3a, it is possible to accelerate the generation of a radiation-sensitive sensitizer due to a hydrolysis reaction from an acetal compound, an ortho ester compound, a ketal compound or the like to a carbonyl compound.
(工程S4:一括露光工程)
 一括露光工程S4では、上記パターン露光工程S3後のレジスト材料膜全面(パターン露光部とパターン未露光部とを併せた全面)に、投影レンズ(又は光源)を有する高感度化モジュール(露光装置又は放射線照射モジュールということもある)から第2の放射線が照射(一括露光)される。この一括露光としてはウェハ全面を一度に露光してもよく、局所的な露光を組み合わせたものでもよく、又は重ね合わせて露光してもよい。一括露光用の光源には、一般的な光源を用いることができ、パンドパスフィルターやカットオフフィルターを通すことで、所望とする波長に制御した水銀ランプ及びキセノンランプ等からの紫外線の他、LED光源、レーザーダイオード、レーザー光源等による帯域の狭い紫外線であってもよい。上記一括露光では、レジスト材料膜中のパターン露光部で発生した感放射線性増感体のみが放射線を吸収する。このため、一括露光では、パターン露光部において選択的に放射線の吸収が起こる。よって、一括露光中、パターン露光部においてのみ酸を継続的に発生させることができ、感度を大きく向上させることが可能となる。一方、パターン未露光部には酸が発生しないことから、レジスト材料膜中の化学コントラストを維持しつつ感度を向上させることができる。
(Process S4: Batch exposure process)
In the batch exposure step S4, a high-sensitivity module (exposure device or light source) having a projection lens (or light source) on the entire resist material film after the pattern exposure step S3 (the entire surface including the pattern exposed portion and the pattern unexposed portion). The second radiation is irradiated (collective exposure) from a radiation irradiation module. As this collective exposure, the entire wafer surface may be exposed at one time, a combination of local exposures, or overlapping exposure. As a light source for batch exposure, a general light source can be used. In addition to ultraviolet rays from mercury lamps and xenon lamps controlled to a desired wavelength by passing through a pan-pass filter or a cut-off filter, LEDs are used. Narrow-band ultraviolet light from a light source, laser diode, laser light source, or the like may be used. In the collective exposure, only the radiation-sensitive sensitizer generated at the pattern exposure portion in the resist material film absorbs radiation. For this reason, in the batch exposure, radiation is selectively absorbed in the pattern exposure portion. Therefore, during the batch exposure, the acid can be continuously generated only in the pattern exposure part, and the sensitivity can be greatly improved. On the other hand, since no acid is generated in the pattern unexposed area, the sensitivity can be improved while maintaining the chemical contrast in the resist material film.
 一括露光に用いられる上記第2の放射線は、上記第1の放射線における非電離放射線の波長よりも長い波長を有し、250nmを超える波長を有する非電離放射線であり、近紫外線(波長250~450nm)が好ましい。 The second radiation used for the collective exposure is a non-ionizing radiation having a wavelength longer than the wavelength of the non-ionizing radiation in the first radiation and having a wavelength exceeding 250 nm, and a near ultraviolet ray (wavelength of 250 to 450 nm). ) Is preferred.
 一括露光工程S4では、パターン未露光部での酸発生反応を抑えるために、(1)重合体成分、感放射線性酸発生剤、感放射線性増感体発生剤が吸収可能な放射線の波長よりも長い波長を有する放射線で露光する必要がある。これらを考慮すると、一括露光における非電離放射線の波長の下限としては、280nmが好ましく、320nmがより好ましい。より長い波長の放射線を吸収可能な感放射線性増感体を発生する場合、上記非電離放射線の波長は350nm以上であってもよい。但し、上記非電離放射線の波長が長すぎる場合は、放射線増感反応の効率が落ちるため、重合体成分、感放射線性酸発生剤、感放射線性増感体発生剤が吸収可能な放射線の波長を避けつつも、感放射線性増感体が吸収可能なできるだけ短い波長の非電離放射線を用いることが好ましい。このような観点から、上記非電離放射線の波長の上限としては、450nmが好ましく、400nmがより好ましい。 In the collective exposure step S4, in order to suppress the acid generation reaction in the pattern unexposed area, (1) from the wavelength of radiation that can be absorbed by the polymer component, the radiation sensitive acid generator, and the radiation sensitive sensitizer generator. It is necessary to expose with radiation having a long wavelength. Considering these, the lower limit of the wavelength of non-ionizing radiation in the batch exposure is preferably 280 nm, and more preferably 320 nm. When generating a radiation-sensitive sensitizer capable of absorbing longer wavelength radiation, the wavelength of the non-ionizing radiation may be 350 nm or more. However, if the wavelength of the non-ionizing radiation is too long, the efficiency of the radiation sensitization reaction is reduced, so the wavelength of radiation that can be absorbed by the polymer component, the radiation sensitive acid generator, and the radiation sensitive sensitizer generator. It is preferable to use non-ionizing radiation having a wavelength as short as possible that can be absorbed by the radiation-sensitive sensitizer. From such a viewpoint, the upper limit of the wavelength of the non-ionizing radiation is preferably 450 nm, and more preferably 400 nm.
 パターン露光工程S3及び/又は一括露光工程S4は液浸リソグラフィ(液浸露光)によって実施されてもよく、ドライリソグラフィ(ドライ露光)によって実施されてもよい。液浸リソグラフィとは、レジスト材料膜と投影レンズとの間に液体を介在させた状態で行う露光をいう。これに対し、ドライリソグラフィとは、レジスト材料膜と投影レンズとの間に気体を介在させた状態、減圧下、又は真空中で行う露光をいう。 The pattern exposure step S3 and / or the batch exposure step S4 may be performed by immersion lithography (immersion exposure), or may be performed by dry lithography (dry exposure). Immersion lithography refers to exposure performed with a liquid interposed between a resist material film and a projection lens. On the other hand, dry lithography refers to exposure performed in a state where a gas is interposed between a resist material film and a projection lens, under reduced pressure, or in a vacuum.
 また、パターン露光工程S3及び/又は一括露光工程S4における上記液浸リソグラフィは、上記膜形成工程S2において形成したレジスト材料膜又は保護膜と投影レンズとの間に屈折率1.0以上の液体を介在させた状態で行ってもよい。上記保護膜は反射防止又は反応安定性向上のためのものであることが好ましい。また、上記保護膜は液体の浸透を防ぎ、膜表面における撥水性を高め、液浸露光における液体に起因する欠陥を防止可能なものであることが好ましい。 In the immersion lithography in the pattern exposure step S3 and / or the batch exposure step S4, a liquid having a refractive index of 1.0 or more is applied between the resist material film or the protective film formed in the film formation step S2 and the projection lens. You may carry out in the state interposed. The protective film is preferably for preventing reflection or improving reaction stability. The protective film preferably prevents liquid penetration, enhances water repellency on the film surface, and prevents defects due to liquid in immersion exposure.
 一括露光工程S4における上記液浸リソグラフィでは、上記液体が上記(a)若しくは(c)成分(感放射線性酸発生剤が直接吸収する第2の放射線の波長の少なくとも一部を吸収するものであってもよい。上記液浸リソグラフィに上記液体を用いることにより、一括露光工程S4における第2の放射線の照射によって、パターン露光工程S4後の上記レジスト材料膜に残存する上記感放射線性酸発生剤又は感放射線性酸発生基からの直接の酸発生をさらに抑制できる。 In the immersion lithography in the collective exposure step S4, the liquid absorbs at least part of the wavelength of the second radiation directly absorbed by the component (a) or (c) (the radiation-sensitive acid generator). By using the liquid in the immersion lithography, the radiation-sensitive acid generator remaining in the resist material film after the pattern exposure step S4 by irradiation with the second radiation in the batch exposure step S4 or The direct acid generation from the radiation sensitive acid generating group can be further suppressed.
 上記パターン露光工程S3及び/又は上記一括露光工程S4をドライリソグラフィにて実施する場合、大気中、減圧雰囲気下及び不活性雰囲気下のいずれにおいても実施できるが、減圧雰囲気下又は窒素若しくはアルゴンを含む不活性雰囲気下で実施することが好ましく、さらに、実施の際の雰囲気における塩基性化合物濃度の上限としては20ppbが好ましく、5ppbがより好ましく、1ppbがさらに好ましい。 When the pattern exposure step S3 and / or the batch exposure step S4 is performed by dry lithography, the pattern exposure step S3 and / or the batch exposure step S4 can be performed in the air, in a reduced pressure atmosphere, or in an inert atmosphere, but include a reduced pressure atmosphere or nitrogen or argon. It is preferable to carry out in an inert atmosphere. Furthermore, the upper limit of the concentration of the basic compound in the atmosphere during the implementation is preferably 20 ppb, more preferably 5 ppb, and even more preferably 1 ppb.
(工程S5:ベーク工程)
 ベーク工程S5では、上記一括露光工程S4後のレジスト材料膜が加熱(以下、「ポストフラッドエクスポージャベーク(PFEB)」又は「ポストエスポージャーベーク(PEB)」ともいう。)される。なお、本実施形態のレジストパターン形成方法が、上記パターン露光工程S3後上記一括露光工程S4前にベーク工程S3aを備える場合、上記ベーク工程S3aを1stPEB工程、上記ベーク工程S5を2ndPEB工程ということがある(図3参照)。加熱条件としては、例えば大気中、窒素やアルゴン等の不活性ガス雰囲気下で、50℃以上200℃以下、10秒以上300秒以下とすることができる。加熱条件を上記範囲とすることにより、酸の拡散を制御でき、また、半導体ウェハの処理速度を確保できる傾向がある。ベーク工程S5では、上記パターン露光工程S3及び一括露光工程S4で発生した酸により、(1)重合体成分の脱保護反応等の極性変化反応及び架橋反応等が起こる。また、レジスト材料膜内における放射線の定在波の影響によりレジスト側壁が波打つことがあるが、ベーク工程S5では反応物の拡散により上記波打ちを低減できる。
(Process S5: Baking process)
In the baking step S5, the resist material film after the batch exposure step S4 is heated (hereinafter also referred to as “post-flood exposure baking (PFEB)” or “post-exposure baking (PEB)”). When the resist pattern forming method of the present embodiment includes the baking step S3a after the pattern exposure step S3 and before the batch exposure step S4, the baking step S3a is referred to as a 1st PEB step, and the baking step S5 is referred to as a 2nd PEB step. Yes (see FIG. 3). The heating condition can be, for example, 50 ° C. or higher and 200 ° C. or lower and 10 seconds or longer and 300 seconds or shorter in an atmosphere of an inert gas such as nitrogen or argon. By setting the heating condition within the above range, acid diffusion can be controlled, and the processing speed of the semiconductor wafer tends to be ensured. In the baking step S5, the acid generated in the pattern exposure step S3 and the batch exposure step S4 causes (1) a polarity change reaction such as a deprotection reaction of the polymer component and a crosslinking reaction. Further, although the resist side wall may be wavy due to the influence of the standing wave of radiation in the resist material film, the waviness can be reduced by diffusion of reactants in the baking step S5.
(工程S6:現像工程)
 現像工程S6では、上記ベーク工程S5後のレジスト材料膜を現像液に接触させる。上記ベーク工程S5におけるレジスト材料膜内の反応により、パターン露光部で選択的に現像液への溶解性が変わることを利用して現像し、レジストパターンが形成される。現像液はポジ型現像液とネガ型現像液とに分けることができる。
(Step S6: Development step)
In the developing step S6, the resist material film after the baking step S5 is brought into contact with a developer. Development is performed by utilizing the fact that the solubility in the developer is selectively changed in the pattern exposure portion by the reaction in the resist material film in the baking step S5, so that a resist pattern is formed. The developer can be divided into a positive developer and a negative developer.
 ポジ型現像液としてはアルカリ現像液が好ましい。アルカリ現像液は、露光後のレジスト材料膜の極性が高い部分を選択的に溶かす。アルカリ現像液としては、例えば水酸化カリウム、水酸化ナトリウム、炭酸ナトリウム、炭酸カリウム、リン酸ナトリウム、ケイ酸ナトリウム、アンモニア、アミン類(エタノールアミン等)、水酸化テトラアルキルアンモニウム(TAAH)が挙げられる。アルカリ現像液としてはTAAHが好ましい。TAAHとしては、例えば水酸化テトラメチルアンモニウム(TMAH)、水酸化テトラエチルアンモニウム、水酸化テトラプロピルアンモニウム、水酸化テトラブチルアンモニウム、水酸化メチルトリエチルアンモニウム、水酸化トリメチルエチルアンモニウム、水酸化ジメチルジエチルアンモニウム、水酸化トリメチル(2-ヒドロキシエチル)アンモニウム(即ち、コリン)、水酸化トリエチル(2-ヒドロキシエチル)アンモニウム、水酸化ジメチルジ(2-ヒドロキシエチル)アンモニウム、水酸化ジエチルジ(2-ヒドロキシエチル)アンモニウム、水酸化メチルトリ(2-ヒドロキシエチル)アンモニウム、水酸化エチルトリ(2-ヒドロキシエチル)アンモニウム、水酸化テトラ(2-ヒドロキシエチル)アンモニウム等が挙げられる。 An alkaline developer is preferable as the positive developer. The alkaline developer selectively dissolves the highly polar part of the resist material film after exposure. Examples of the alkaline developer include potassium hydroxide, sodium hydroxide, sodium carbonate, potassium carbonate, sodium phosphate, sodium silicate, ammonia, amines (ethanolamine, etc.), and tetraalkylammonium hydroxide (TAAH). . TAAH is preferred as the alkaline developer. As TAAH, for example, tetramethylammonium hydroxide (TMAH), tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, methyltriethylammonium hydroxide, trimethylethylammonium hydroxide, dimethyldiethylammonium hydroxide, water Trimethyl (2-hydroxyethyl) ammonium oxide (ie, choline), triethyl (2-hydroxyethyl) ammonium hydroxide, dimethyldi (2-hydroxyethyl) ammonium hydroxide, diethyldi (2-hydroxyethyl) ammonium hydroxide, hydroxylated Methyltri (2-hydroxyethyl) ammonium, ethyltri (2-hydroxyethyl) ammonium hydroxide, tetra (2-hydroxyethyl) ammonium hydroxide, etc. It is below.
 ポジ型現像液には水酸化テトラメチルアンモニウム(TMAH)の2.38質量%水溶液が広く用いられている。 A 2.38% by mass aqueous solution of tetramethylammonium hydroxide (TMAH) is widely used as a positive developer.
 アルカリ現像では、露光後にレジスト材料膜中で生成するカルボン酸や水酸基がアルカリ現像液中でイオン化し溶け出す現象を利用してパターンが形成される。現像後は、基板上に残留している現像液を除去するために、リンスと呼ばれる水洗処理が行われる。 In alkali development, a pattern is formed by utilizing a phenomenon in which carboxylic acid or hydroxyl group generated in a resist material film after exposure is ionized and dissolved in an alkali developer. After the development, in order to remove the developer remaining on the substrate, a water washing process called rinsing is performed.
 ネガ型現像液としては有機現像液が好ましい。有機現像液は、露光後のレジスト材料膜の極性が低い部分を選択的に溶かす。有機現像液はホールやトレンチ(溝)などの抜きパターンで解像性能とプロセスウィンドウを向上するために用いられる。この場合、レジスト材料膜中の溶媒と有機現像液との親和性の違いでパターン露光部とパターン未露光部の溶解コントラストを得る。極性が高い部分は有機現像液への溶解性が低く、レジストパターンとして残る。有機現像液としては、例えば2-オクタノン、2-ノナノン、2-へプタノン、3-へプタノン、4-へプタノン、2-へキサノン、3-へキサノン、ジイソブチルケトン、メチルシクロへキサノン、アセトフェノン、メチルアセトフェノン、酢酸プロピル、酢酸ブチル、酢酸イソブチル、酢酸アミル、酢酸ブテニル、酢酸イソアミル、蟻酸プロピル、蟻酸ブチル、蟻酸イソブチル、蟻酸アミル、蟻酸イソアミル、吉草酸メチル、ペンテン酸メチル、クロトン酸メチル、クロトン酸エチル、プロピオン酸メチル、プロピオン酸エチル、3-エトキシプロピオン酸エチル、乳酸メチル、乳酸エチル、乳酸プロピル、乳酸ブチル、乳酸イソブチル、乳酸アミル、乳酸イソアミル、2-ヒドロキシイソ酪酸メチル、2-ヒドロキシイソ酪酸エチル、安息香酸メチル、安息香酸エチル、酢酸フェニル、酢酸ベンジル、フェニル酢酸メチル、蟻酸ベンジル、蟻酸フェニルエチル、3-フェニルプロピオン酸メチル、プロピオン酸ベンジル、フェニル酢酸エチル、酢酸2-フェニルエチル等が挙げられる。 The negative developer is preferably an organic developer. The organic developer selectively dissolves the low polarity portion of the resist material film after exposure. The organic developer is used to improve the resolution performance and the process window by removing patterns such as holes and trenches. In this case, the dissolution contrast between the pattern exposed portion and the pattern unexposed portion is obtained by the difference in affinity between the solvent in the resist material film and the organic developer. The portion with high polarity has low solubility in an organic developer, and remains as a resist pattern. Examples of organic developers include 2-octanone, 2-nonanone, 2-heptanone, 3-heptanone, 4-heptanone, 2-hexanone, 3-hexanone, diisobutyl ketone, methylcyclohexanone, acetophenone, methyl Acetophenone, propyl acetate, butyl acetate, isobutyl acetate, amyl acetate, butenyl acetate, isoamyl acetate, propyl formate, butyl formate, isobutyl formate, amyl formate, isoamyl formate, methyl valerate, methyl pentenoate, methyl crotonic acid, ethyl crotonic acid , Methyl propionate, ethyl propionate, ethyl 3-ethoxypropionate, methyl lactate, ethyl lactate, propyl lactate, butyl lactate, isobutyl lactate, amyl lactate, isoamyl lactate, methyl 2-hydroxyisobutyrate, ethyl 2-hydroxyisobutyrate , Examples include methyl benzoate, ethyl benzoate, phenyl acetate, benzyl acetate, methyl phenylacetate, benzyl formate, phenylethyl formate, methyl 3-phenylpropionate, benzyl propionate, ethyl phenylacetate, 2-phenylethyl acetate, and the like. .
 現像工程S6(リンス処理を含む)後のレジストパターンを加熱(ポストベークということもある)することもある。ポストベークにより、リンス処理後に残るリンス液を気化し除去することができ、レジストパターンを硬化させることができる。 The resist pattern after the development step S6 (including rinse treatment) may be heated (sometimes referred to as post-baking). The post-baking can vaporize and remove the rinsing liquid remaining after the rinsing process, and can cure the resist pattern.
(工程S7)
 工程S7では、上記現像工程S6後のレジストパターンをマスクとして下地である基板がエッチング又はイオン注入されることによってパターンが形成される。エッチングはプラズマ励起等の雰囲気下でのドライエッチングであってもよく、薬液中に浸漬するウェットエッチングであってもよい。エッチングにより基板にパターンが形成された後、レジストパターンが除去される。
(Process S7)
In step S7, a pattern is formed by etching or ion implantation of the underlying substrate using the resist pattern after the developing step S6 as a mask. The etching may be dry etching under an atmosphere such as plasma excitation, or may be wet etching immersed in a chemical solution. After the pattern is formed on the substrate by etching, the resist pattern is removed.
 本実施形態のレジストパターン形成方法は、上記パターン露光工程S3及び上記一括露光工程S4を備えることにより、露光後に発生する酸をパターン露光された部分にのみ大幅に増加させることができる。 The resist pattern forming method of the present embodiment includes the pattern exposure step S3 and the batch exposure step S4, so that the acid generated after the exposure can be greatly increased only in the pattern exposed portion.
 図4は一括露光時のレジスト材料膜のパターン露光部の吸光度と、未露光部の吸光度とを示すグラフである。レジスト材料膜のパターン露光されていない部分(パターン未露光部)では比較的短い波長を有する紫外線には吸収を示すものの、長い波長を有する紫外線には吸収を示さない。一方、レジスト材料膜のパターン露光された部分(パターン露光部)では上述のように、酸及び感放射線性増感体が発生する。発生した感放射線性増感体は200nmを超える波長を有する非電離放射線を吸収するものであり、比較的長い波長を有する紫外線に吸収を示すものである。一括露光ではパターン露光のようにマスクを用いずにレジスト材料膜の全面に対して放射線が照射されるが、パターン未露光部では一括露光工程S4における第2の放射線の吸収は少ない。従って、一括露光工程S4では、パターン露光部において主に上述の第3~5及び第7の酸発生機構が起こる。このため、一括露光中にパターン露光部のみで酸を継続的に発生させることができ、リソグラフィ特性を維持しながら感度を向上させることができる。 FIG. 4 is a graph showing the absorbance of the pattern exposed portion and the unexposed portion of the resist material film at the time of batch exposure. The portion of the resist material film that is not subjected to pattern exposure (pattern unexposed portion) absorbs ultraviolet rays having a relatively short wavelength, but does not absorb ultraviolet rays having a long wavelength. On the other hand, as described above, an acid and a radiation-sensitive sensitizer are generated in the pattern-exposed portion (pattern exposed portion) of the resist material film. The generated radiation-sensitive sensitizer absorbs non-ionizing radiation having a wavelength exceeding 200 nm, and absorbs ultraviolet rays having a relatively long wavelength. In the batch exposure, the entire surface of the resist material film is irradiated without using a mask as in the pattern exposure, but the second radiation is not absorbed in the batch exposure step S4 in the pattern unexposed portion. Accordingly, in the batch exposure step S4, the above-described third to fifth and seventh acid generation mechanisms mainly occur in the pattern exposure unit. For this reason, an acid can be continuously generated only in the pattern exposure part during the batch exposure, and the sensitivity can be improved while maintaining the lithography characteristics.
 図5(a)は従来の化学増幅型レジスト材料を使用したレジストパターン形成方法による酸濃度分布をグラフとして示す概念図である。図2のようにEUV等でパターン露光のみを行った場合、十分な酸を発生させることができず感度が低くなる。感度を向上させるために露光量を上げると、レジストパターンの潜像が劣化(リソグラフィ特性が低下)することから、感度とリソグラフィ特性との両立が困難である。図5(b)は本実施形態に係る化学増幅型レジスト材料を使用したレジストパターン形成方法による感放射線性増感体濃度分布及び酸濃度分布をグラフとして示す概念図である。パターン露光では、レジストパターンの潜像に優れるものの十分な酸が発生していない。しかし、一括露光後には、パターン露光で発生した感放射線性増感体によりパターン露光部でのみ酸の量を増加させることができ、レジストパターンの優れた潜像を維持しながら少ない露光量で感度を向上させることができる。一括露光時の感放射線性増感体による酸発生機構は室温で起こるため、酸発生時の潜像のにじみが少なく、解像度を維持したまま大幅な高感度化が可能となる。 FIG. 5 (a) is a conceptual diagram showing, as a graph, an acid concentration distribution by a resist pattern forming method using a conventional chemically amplified resist material. When only pattern exposure is performed by EUV or the like as shown in FIG. 2, sufficient acid cannot be generated and sensitivity is lowered. When the exposure amount is increased in order to improve the sensitivity, the latent image of the resist pattern is deteriorated (lithography characteristics are lowered), so that it is difficult to achieve both sensitivity and lithography characteristics. FIG. 5B is a conceptual diagram showing, as a graph, the radiation-sensitive sensitizer concentration distribution and the acid concentration distribution obtained by the resist pattern forming method using the chemically amplified resist material according to the present embodiment. In pattern exposure, although a resist pattern latent image is excellent, sufficient acid is not generated. However, after batch exposure, the amount of acid can be increased only in the pattern exposure area by the radiation-sensitive sensitizer generated by pattern exposure, and sensitivity can be reduced with low exposure while maintaining an excellent latent image of the resist pattern. Can be improved. Since the acid generation mechanism by the radiation-sensitive sensitizer at the time of batch exposure occurs at room temperature, there is little bleeding of the latent image at the time of acid generation, and it is possible to greatly increase the sensitivity while maintaining the resolution.
<半導体デバイス>
 本実施形態に係る半導体デバイスは、上記方法によって形成されたパターンを用いて製造される。図6は本実施形態の半導体デバイスの製造工程の一例を示した断面図である。
<Semiconductor devices>
The semiconductor device according to the present embodiment is manufactured using the pattern formed by the above method. FIG. 6 is a cross-sectional view showing an example of the manufacturing process of the semiconductor device of this embodiment.
 図6(a)はレジストパターン形成工程を示す断面図であり、半導体ウェハ1と、上記半導体ウェハ1上に形成された被エッチング膜3と、上記レジストパターン形成方法により上記被エッチング膜3上に形成されたレジストパターン2との断面図である(現像工程S6終了後に相当)。被エッチング膜としては、例えばアクティブレイヤー、下層絶縁膜、ゲート電極膜、上層絶縁膜等が挙げられる。被エッチング膜3とレジストパターン2との間には、反射防止膜、レジスト密着性改善のための下層膜、レジスト形状改善のための下層膜が設けられていてもよい。また、多層マスク構造を採用してもよい。図6(b)はエッチング工程を示す断面図であり、半導体ウェハ1と、レジストパターン2と、レジストパターン2をマスクとしてエッチングされた被エッチング膜3の断面図である。被エッチング膜3がレジストパターン2の開口部の形状に沿ってエッチングされている。図6(c)は、半導体ウェハ1と、レジストパターン2が除去された後のエッチングされた被エッチング膜3のパターンとを備えるパターン基板10の断面図である。 FIG. 6A is a cross-sectional view showing a resist pattern forming step. The semiconductor wafer 1, the film to be etched 3 formed on the semiconductor wafer 1, and the film to be etched 3 by the resist pattern forming method are shown. It is sectional drawing with the formed resist pattern 2 (equivalent after completion | finish of image development process S6). Examples of the film to be etched include an active layer, a lower insulating film, a gate electrode film, and an upper insulating film. Between the etching target film 3 and the resist pattern 2, an antireflection film, a lower layer film for improving resist adhesion, and a lower layer film for improving the resist shape may be provided. A multilayer mask structure may be adopted. FIG. 6B is a cross-sectional view showing the etching process, and is a cross-sectional view of the semiconductor wafer 1, the resist pattern 2, and the etching target film 3 etched using the resist pattern 2 as a mask. The etched film 3 is etched along the shape of the opening of the resist pattern 2. FIG. 6C is a cross-sectional view of the pattern substrate 10 including the semiconductor wafer 1 and the pattern of the etched film 3 that has been etched after the resist pattern 2 is removed.
 この被エッチング膜3のパターンを備える基板を用い、半導体デバイスを形成できる。この半導体デバイスの形成方法としては、例えばレジストパターン2が除去された被エッチング膜3のパターン間に配線を埋め込み、さらにデバイス素子を基板上に積層する方法等が挙げられる。 A semiconductor device can be formed using a substrate having the pattern of the film 3 to be etched. As a method for forming this semiconductor device, for example, a method of embedding wiring between the patterns of the film to be etched 3 from which the resist pattern 2 has been removed and further laminating device elements on the substrate can be cited.
<リソグラフィ用マスク>
 本実施形態に係るリソグラフィ用マスクは、上記方法によって形成されたレジストパターンを用い、基板を加工して製造される。このリソグラフィ用マスクの製造方法としては、例えばガラス基板表面又はガラス基板表面に形成されたハードマスクを、レジストパターンを用いてエッチングする方法が挙げられる。ここで、リソグラフィ用マスクには、紫外線又は電子線を用いた透過型マスク、EUV光を用いた反射型マスク等が含まれる。リソグラフィ用マスクが透過型マスクの場合、遮光部又は位相シフト部をレジストパターンでマスクして、エッチングで加工することで製造できる。また、リソグラフィ用マスクが反射型のマスクの場合、レジストパターンをマスクにして、エッチングで吸光体を加工することで製造できる。
<Lithography mask>
The lithography mask according to this embodiment is manufactured by processing a substrate using the resist pattern formed by the above method. Examples of the method for producing the lithography mask include a method of etching a glass substrate surface or a hard mask formed on the glass substrate surface using a resist pattern. Here, the lithography mask includes a transmissive mask using ultraviolet rays or an electron beam, a reflective mask using EUV light, and the like. When the lithography mask is a transmissive mask, it can be manufactured by masking the light shielding portion or the phase shift portion with a resist pattern and processing by etching. Further, when the lithography mask is a reflective mask, it can be manufactured by processing the light absorber by etching using the resist pattern as a mask.
<ナノインプリント用テンプレート>
 本実施形態に係るナノインプリント用テンプレートも、上記方法によって形成されたレジストパターンを用いて製造できる。この製造方法としては、例えばガラス基板表面又はガラス基板表面形成されたハードマスク表面にレジストパターンを形成し、エッチングで加工する方法等が挙げられる。
<Template for nanoimprint>
The nanoimprint template according to the present embodiment can also be manufactured using the resist pattern formed by the above method. Examples of the manufacturing method include a method of forming a resist pattern on a glass substrate surface or a hard mask surface formed on the glass substrate surface, and processing by etching.
 以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。本実施例における物性値の測定方法を以下に示す。 Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited to these examples. The measuring method of the physical property value in a present Example is shown below.
[重量平均分子量(Mw)及び数平均分子量(Mn)]
 重合体のMw及びMnは、ゲルパーミエーションクロマトグラフィー(GPC)により測定した。測定は、GPCカラム(G2000HXL 2本、G3000HXL 1本、及びG4000HXL 1本、以上東ソー社)を用い、流量1.0mL/分、溶出溶媒テトラヒドロフラン、試料濃度1.0質量%、試料注入量100μL、カラム温度40℃の分析条件で、検出器として示差屈折計を使用し、単分散ポリスチレンを標準物質として行った。
[Weight average molecular weight (Mw) and number average molecular weight (Mn)]
Mw and Mn of the polymer were measured by gel permeation chromatography (GPC). The measurement uses GPC columns (2 G2000HXL, 1 G3000HXL, and 1 G4000HXL, Tosoh Corporation), flow rate 1.0 mL / min, elution solvent tetrahydrofuran, sample concentration 1.0 mass%, sample injection amount 100 μL, Under analysis conditions with a column temperature of 40 ° C., a differential refractometer was used as a detector, and monodisperse polystyrene was used as a standard substance.
13C-NMR分析]
 重合体の構造単位の含有割合を求めるための13C-NMR分析は、核磁気共鳴装置(日本電子社の「JNM-ECX400」)を使用し、測定溶媒としてCDClを用い、テトラメチルシラン(TMS)を内部標準として行った。
[ 13 C-NMR analysis]
The 13 C-NMR analysis for determining the content of the structural unit of the polymer uses a nuclear magnetic resonance apparatus (“JNM-ECX400” manufactured by JEOL Ltd.), uses CDCl 3 as a measurement solvent, and uses tetramethylsilane ( TMS) was performed as an internal standard.
<(1)重合体成分の合成>
 (1)重合体成分の合成に用いた単量体を下記に示す。
<(1) Synthesis of polymer component>
(1) The monomers used for the synthesis of the polymer component are shown below.
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
 なお、上記化合物(M-1)、(M-4)及び(M-6)は構造単位(I)を、化合物(M-2)及び(M-7)は構造単位(IV)を、(M-3)及び(M-5)は構造単位(III)を、化合物(M-8)は、構造単位(II)をそれぞれ与える。 The compounds (M-1), (M-4) and (M-6) are structural units (I), and the compounds (M-2) and (M-7) are structural units (IV) ( M-3) and (M-5) give the structural unit (III), and the compound (M-8) gives the structural unit (II).
[合成例1](重合体(A-1)の合成)
 上記化合物(M-1)45g(50モル%)、上記化合物(M-2)55g(50モル%)及びアゾビスイソブチロニトリル(AIBN)3gを、メチルエチルケトン300gに溶解した後、窒素雰囲気下、反応温度を78℃に保持して、6時間重合させた。重合後、反応溶液を2,000gのメタノール中に滴下して、重合体を凝固させた。次いで、この重合体を300gのメタノールで2回洗浄し、得られた白色粉末をろ過して、減圧下50℃で一晩乾燥し、[A]重合体としての重合体(A-1)を得た。重合体(A-1)は、Mwが7,000、Mw/Mnが2.10であった。また、13C-NMR分析の結果、化合物(M-1)及び化合物(M-2)に由来する各構造単位の含有割合は、それぞれ52モル%及び48モル%であった。
[Synthesis Example 1] (Synthesis of polymer (A-1))
After dissolving 45 g (50 mol%) of the above compound (M-1), 55 g (50 mol%) of the above compound (M-2) and 3 g of azobisisobutyronitrile (AIBN) in 300 g of methyl ethyl ketone, the mixture was dissolved in a nitrogen atmosphere. The polymerization was carried out for 6 hours while maintaining the reaction temperature at 78 ° C. After the polymerization, the reaction solution was dropped into 2,000 g of methanol to solidify the polymer. Next, this polymer was washed twice with 300 g of methanol, and the resulting white powder was filtered and dried overnight at 50 ° C. under reduced pressure to obtain [A] polymer (A-1) as a polymer. Obtained. The polymer (A-1) had Mw of 7,000 and Mw / Mn of 2.10. As a result of 13 C-NMR analysis, the content of each structural unit derived from the compound (M-1) and the compound (M-2) was 52 mol% and 48 mol%, respectively.
[合成例2](重合体(A-2)の合成)
 上記化合物(M-1)45g(44モル%)、上記化合物(M-3)55g(56モル%)、AIBN3g及びt-ドデシルメルカプタン1gを、プロピレングリコールモノメチルエーテル150gに溶解した後、窒素雰囲気下、反応温度を70℃に保持して、16時間重合させた。重合後、反応溶液を1,000gのn-ヘキサン中に滴下して、重合体を凝固精製した。次いで、この重合体に、再度プロピレングリコールモノメチルエーテル150gを加えた後、さらに、メタノール150g、トリエチルアミン37g及び水7gを加えて、沸点にて還流させながら、8時間加水分解反応を行って、(M-3)に由来する構造単位の脱アセチル化を行った。反応後、溶媒及びトリエチルアミンを減圧留去し、得られた重合体をアセトン150gに溶解した後、2,000gの水中に滴下して凝固させ、生成した白色粉末をろ過して、減圧下50℃で一晩乾燥し、[A]重合体としての重合体(A-2)を得た。重合体(A-2)は、Mwが6,000、Mw/Mnが1.90であった。また、13C-NMR分析の結果、(M-3)に由来する構造単位の脱アセチル化により得られたp-ヒドロキシスチレン構造単位、及び化合物(M-1)に由来する構造単位の含有割合は、それぞれ50モル%及び50モル%であった。
[Synthesis Example 2] (Synthesis of Polymer (A-2))
After 45 g (44 mol%) of the above compound (M-1), 55 g (56 mol%) of the above compound (M-3), 3 g of AIBN and 1 g of t-dodecyl mercaptan were dissolved in 150 g of propylene glycol monomethyl ether, The polymerization was carried out for 16 hours while maintaining the reaction temperature at 70 ° C. After the polymerization, the reaction solution was dropped into 1,000 g of n-hexane to coagulate and purify the polymer. Next, 150 g of propylene glycol monomethyl ether was added to the polymer again, and then 150 g of methanol, 37 g of triethylamine and 7 g of water were further added, and a hydrolysis reaction was performed for 8 hours while refluxing at the boiling point. The structural unit derived from -3) was deacetylated. After the reaction, the solvent and triethylamine were distilled off under reduced pressure, and the obtained polymer was dissolved in 150 g of acetone, then dropped into 2,000 g of water to solidify, and the resulting white powder was filtered and filtered at 50 ° C. under reduced pressure. And dried overnight to obtain a polymer (A-2) as a polymer [A]. The polymer (A-2) had Mw of 6,000 and Mw / Mn of 1.90. Further, as a result of 13 C-NMR analysis, the content ratio of the p-hydroxystyrene structural unit obtained by deacetylation of the structural unit derived from (M-3) and the structural unit derived from the compound (M-1) Were 50 mol% and 50 mol%, respectively.
[合成例3~4](重合体(A-3)~(A-4)の合成)
 表1に示す種類及び量の単量体を用いた以外は合成例2と同様に操作し、(1)重合体成分としての重合体(A-3)~(A-4)を合成した。表1に、得られた各重合体のMw、Mw/Mn及び各構造単位の含有割合について合わせて示す。
[Synthesis Examples 3 to 4] (Synthesis of Polymers (A-3) to (A-4))
Polymers (A-3) to (A-4) as polymer components were synthesized in the same manner as in Synthesis Example 2 except that the types and amounts of monomers shown in Table 1 were used. In Table 1, it shows collectively about the content rate of Mw of each obtained polymer, Mw / Mn, and each structural unit.
 [合成例5](重合体(A-5)の合成)
 化合物(M-1)6.99g(40モル%)、化合物(M-3)6.22g(40モル%)及び化合物(M-8)6.79g(20モル%)をプロピレングリコールモノメチルエーテル40gに溶解し、ラジカル重合開始剤としてのAIBN0.79g(化合物の合計モル数に対して5モル%)を溶解させて単量体溶液を調製した。100mLの3つ口フラスコに20gのプロピレングリコールモノメチルエーテルを投入し、30分窒素パージした後、反応釜を攪拌しながら80℃に加熱した。そこへ、上記調製した単量体溶液を3時間かけて滴下し、さらに3時間熟成した。重合終了後、重合反応液を水冷して30℃以下に冷却した。この重合反応液を400gのヘキサン中に投入し、析出した固形分をろ別した。ろ別した固形分を80gのヘキサンで2回洗浄した後、さらにろ別し、50℃で17時間乾燥させた。プロピレングリコールモノメチルエーテル20gを入れた100mLのナスフラスコにこの固形分を投入し、溶解させた。さらに、トリエチルアミン3.49g、純水0.56gを加えて80℃に加熱し、6時間反応させて加水分解した。加水分解終了後、反応液を水冷して30℃以下に冷却した。この反応液を400gのヘキサン中に投入し、析出した固形分をろ別した。ろ別した固形分を80gのヘキサンで2回洗浄した後、さらにろ別し、50℃で17時間乾燥させ重合体(A-5)を12.2g(収率61%)得た。重合体(A-5)のMwは7,500、Mw/Mnは1.52であった。13C-NMR分析の結果、(M-1)に由来する構造単位、(M-3)に由来する構造単位の脱アセチル化により得られたp-ヒドロキシスチレン構造単位、及び(M-8)に由来する各構造単位の含有割合は、それぞれ40モル%、40モル%、及び20モル%であった。
[Synthesis Example 5] (Synthesis of Polymer (A-5))
Compound (M-1) 6.99 g (40 mol%), compound (M-3) 6.22 g (40 mol%) and compound (M-8) 6.79 g (20 mol%) were added to propylene glycol monomethyl ether 40 g. A monomer solution was prepared by dissolving 0.79 g of AIBN (5 mol% based on the total number of moles of the compound) as a radical polymerization initiator. After putting 20 g of propylene glycol monomethyl ether into a 100 mL three-necked flask and purging with nitrogen for 30 minutes, the reaction kettle was heated to 80 ° C. with stirring. Thereto, the monomer solution prepared above was dropped over 3 hours, and further aged for 3 hours. After completion of the polymerization, the polymerization reaction liquid was cooled with water and cooled to 30 ° C. or lower. This polymerization reaction liquid was put into 400 g of hexane, and the precipitated solid content was separated by filtration. The solid content after filtration was washed twice with 80 g of hexane, further filtered, and dried at 50 ° C. for 17 hours. This solid content was put into a 100 mL eggplant flask containing 20 g of propylene glycol monomethyl ether and dissolved. Further, 3.49 g of triethylamine and 0.56 g of pure water were added, heated to 80 ° C., and reacted for 6 hours for hydrolysis. After completion of hydrolysis, the reaction solution was cooled with water and cooled to 30 ° C. or lower. This reaction solution was put into 400 g of hexane, and the precipitated solid content was separated by filtration. The filtered solid was washed twice with 80 g of hexane, further filtered and dried at 50 ° C. for 17 hours to obtain 12.2 g (yield 61%) of the polymer (A-5). Mw of the polymer (A-5) was 7,500, and Mw / Mn was 1.52. As a result of 13 C-NMR analysis, a structural unit derived from (M-1), a p-hydroxystyrene structural unit obtained by deacetylation of a structural unit derived from (M-3), and (M-8) The content ratio of each structural unit derived from was 40 mol%, 40 mol%, and 20 mol%, respectively.
Figure JPOXMLDOC01-appb-T000061
*表中のM-3の構造単位含有割合は、M-3に由来する構造単位を脱アセチル化することにより得られたp-ヒドロキシスチレン構造単位としての含有割合を示す。
Figure JPOXMLDOC01-appb-T000061
* The structural unit content of M-3 in the table indicates the content as a p-hydroxystyrene structural unit obtained by deacetylating the structural unit derived from M-3.
[合成例6](化合物(A-6)の合成)
 グルタルアルデヒド(50質量%水溶液)10g、3-メトキシフェノール24.8g及びトリフルオロ酢酸37.5gをクロロホルム50mL中に溶解し、48時間還流させた。この溶液をメタノールに加え、析出した沈殿を真空乾燥させることで、メトキシ基で保護された下記式で表される単分子の化合物(M-9)を11.3g得た。次に、この化合物(M-9)8.0gと炭酸カリウム8.2gとテトラブチルアンモニウムブロミド0.064gとをN-メチルピロリドン(NMP)95mLに溶解し、60℃で3時間撹拌させた。この反応液に2-ブロモアセチロキシ-2-メチルアダマンタン4.3g及びNMP5mLの混合溶液を加え、さらに60℃で48時間撹拌させた。この反応液をクロロホルムに注ぎ、0.1Mのシュウ酸水溶液で洗浄した後、硫酸マグネシウムで乾燥後セライトろ過し、ろ液を減圧濃縮した。濃縮後の溶液をメタノールに加えることで固体を析出させ、これを減圧乾燥させることで、化合物(M-9)の18%の水酸基が2-アセチロキシ-2-メチルアダマンタン基で保護された化合物(A-6)を5.9g得た。この化合物(A-6)は(1)重合体成分に該当する。
[Synthesis Example 6] (Synthesis of Compound (A-6))
Glutaraldehyde (50% by mass aqueous solution) 10 g, 3-methoxyphenol 24.8 g and trifluoroacetic acid 37.5 g were dissolved in chloroform 50 mL and refluxed for 48 hours. This solution was added to methanol, and the deposited precipitate was vacuum-dried to obtain 11.3 g of a monomolecular compound (M-9) represented by the following formula protected by a methoxy group. Next, 8.0 g of this compound (M-9), 8.2 g of potassium carbonate, and 0.064 g of tetrabutylammonium bromide were dissolved in 95 mL of N-methylpyrrolidone (NMP) and stirred at 60 ° C. for 3 hours. To this reaction solution, a mixed solution of 4.3 g of 2-bromoacetyloxy-2-methyladamantane and 5 mL of NMP was added and further stirred at 60 ° C. for 48 hours. The reaction solution was poured into chloroform, washed with a 0.1 M aqueous oxalic acid solution, dried over magnesium sulfate, filtered through celite, and the filtrate was concentrated under reduced pressure. The concentrated solution is added to methanol to precipitate a solid, which is dried under reduced pressure, whereby a compound in which 18% of the hydroxyl group of compound (M-9) is protected with a 2-acetyloxy-2-methyladamantane group ( 5.9 g of A-6) was obtained. This compound (A-6) corresponds to (1) a polymer component.
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
<(2)露光により感放射線性増感体と酸を発生する成分>
[(b)感放射線性増感体発生剤]
 (b)感放射線性増感体発生剤としては、以下の化合物を使用した。
 B-1:下記式(B-1)で表される化合物
 B-2:下記式(B-2)で表される化合物
<(2) Component that generates radiation-sensitive sensitizer and acid by exposure>
[(B) Radiation-sensitive sensitizer generating agent]
(B) The following compounds were used as the radiation-sensitive sensitizer generating agent.
B-1: Compound represented by the following formula (B-1) B-2: Compound represented by the following formula (B-2)
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
[(b)成分の吸光度測定]
 表2に、(b)成分及びこの(b)成分に由来する増感剤を併せて示す。また、これらの(b)成分及び(b)成分に由来する増感剤を、それぞれ0.0001質量%のシクロヘキサン溶液となるように調製した。この調製溶液について、シクロヘキサンを参照溶媒として分光光度計(日本分光社の「V-670」)を用いて吸光度を測定した。
[Absorbance measurement of component (b)]
Table 2 shows the component (b) and the sensitizer derived from the component (b). Moreover, the sensitizer derived from these (b) component and (b) component was prepared so that it might become a 0.0001 mass% cyclohexane solution, respectively. The absorbance of this prepared solution was measured using a spectrophotometer (“V-670” manufactured by JASCO Corporation) using cyclohexane as a reference solvent.
 上記吸光度は、波長360nm以上450nm以下の各波長において、測定溶液の吸光度から参照溶媒の吸光度を差し引くことで求めた。波長360nm以上450nm以下の全波長領域における吸光度の測定値が0.01未満である場合は「透明」と評価し、上記全波長領域において吸光度が0.01以上となる波長が少しでもあった場合を「吸収あり」と評価した。上記評価結果を下記表3に示す。なお、吸光分析の測定に用いた溶媒であるシクロヘキサンの透過率は、波長250nm以上600nm以下の各波長領域の全てにおいて95%以上であることを確認した。 The above-mentioned absorbance was obtained by subtracting the absorbance of the reference solvent from the absorbance of the measurement solution at each wavelength of 360 nm to 450 nm. When the measured value of the absorbance in the entire wavelength region of the wavelength of 360 nm or more and 450 nm or less is less than 0.01, it is evaluated as “transparent”, and the wavelength at which the absorbance is 0.01 or more in the entire wavelength region is small Was evaluated as “absorbed”. The evaluation results are shown in Table 3 below. In addition, it confirmed that the transmittance | permeability of the cyclohexane which is a solvent used for the measurement of absorption spectrometry was 95% or more in all the wavelength ranges of wavelength 250 nm or more and 600 nm or less.
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000064
[増感剤の酸化電位の測定]
 作用電極として白金を、対電極として白金ワイヤを、参照電極として飽和カロメル電極(SCE)を用いてAr雰囲気下でサイクリックボルタンメトリーにより上記増感剤の酸化電位を測定した。なお、昇華により精製されたフェロセンを外部標準として使用し、アセトニトリルに溶解した1mMの増感剤に、支持電解質として[n-BuN][ClO]を0.1Mとなるように加えて酸化電位を測定した。
{Fe(C/[Fe(C:E2/1=+0.38V vs SCE,アセトニトリル}
 これから算出される標準水素電極(SHE)換算の酸化電位、および酸化エネルギーを求めた。
 また、増感体を励起するのに必要なエネルギー(E*)についても算出した。
 これらの結果を表3に示す。
Figure JPOXMLDOC01-appb-T000065
[Measurement of oxidation potential of sensitizer]
The oxidation potential of the sensitizer was measured by cyclic voltammetry in an Ar atmosphere using platinum as the working electrode, platinum wire as the counter electrode, and a saturated calomel electrode (SCE) as the reference electrode. In addition, ferrocene purified by sublimation was used as an external standard, and [n-Bu 4 N] [ClO 4 ] was added to a 1 mM sensitizer dissolved in acetonitrile to a concentration of 0.1 M as a supporting electrolyte. The oxidation potential was measured.
{Fe (C 5 H 5 ) 2 / [Fe (C 5 H 5 ) 2 ] + : E 2/1 = + 0.38 V vs SCE, acetonitrile}
The standard hydrogen electrode (SHE) equivalent oxidation potential and oxidation energy calculated from this were determined.
The energy (E *) required to excite the sensitizer was also calculated.
These results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000065
[(c)感放射線性酸発生剤]
 (c)感放射線性酸発生剤として、以下の[C1]化合物(第1化合物)及び[C2]化合物(第2化合物)を用いた。
(酸発生化合物)
 本実施例としては、[C1]化合物(第1化合物)及び[C2]化合物(第2化合物)のうち、発生する酸のpKaが小さい方の化合物である以下の表4に示す[C1]化合物を酸発生化合物として用いた。
[(C) Radiation sensitive acid generator]
(C) The following [C1] compound (first compound) and [C2] compound (second compound) were used as the radiation-sensitive acid generator.
(Acid generating compound)
In this example, among the [C1] compound (first compound) and the [C2] compound (second compound), the [C1] compound shown in Table 4 below is a compound having a smaller pKa of the generated acid. Was used as the acid generating compound.
[還元電位の測定]
 作用電極として白金を、対電極として白金ワイヤを、参照電極として飽和カロメル電極(SCE)を用いてAr雰囲気下でサイクリックボルタンメトリーにより上記増感剤の酸化電位を測定した。なお、昇華により精製されたフェロセンを外部標準として使用し、アセトニトリルに溶解した1mMの[C1]化合物に、支持電解質として[n-BuN][ClO]を0.1Mとなるように加えて還元電位を測定した。
{Fe(C/[Fe(C:E2/1=+0.38V vs SCE,アセトニトリル}
 また、これから算出される標準水素電極(SHE)換算の酸化電位、および酸化エネルギーを求めた。結果を表4に示す。なお、酸発生化合物は還元により分解してしまうため不可逆であり、還元ピークのみ観察された。
[Measurement of reduction potential]
The oxidation potential of the sensitizer was measured by cyclic voltammetry in an Ar atmosphere using platinum as the working electrode, platinum wire as the counter electrode, and a saturated calomel electrode (SCE) as the reference electrode. In addition, using ferrocene purified by sublimation as an external standard, [n-Bu 4 N] [ClO 4 ] as a supporting electrolyte was added to 0.1 mM to 1 mM [C1] compound dissolved in acetonitrile. The reduction potential was measured.
{Fe (C 5 H 5 ) 2 / [Fe (C 5 H 5 ) 2 ] + : E 2/1 = + 0.38 V vs SCE, acetonitrile}
In addition, a standard hydrogen electrode (SHE) equivalent oxidation potential and oxidation energy calculated from this were determined. The results are shown in Table 4. The acid generating compound was irreversible because it was decomposed by reduction, and only a reduction peak was observed.
(酸発生化合物([C1]化合物)から発生する酸のpKa)
 [C1]化合物(C-1-1)~(C-1-7)の酸発生化合物について、これらの化合物から発生した酸のpKa(酸の酸解離定数の逆数の対数値)について表4に示す。
(PKa of acid generated from acid generating compound ([C1] compound))
[C1] For the acid generators of compounds (C-1-1) to (C-1-7), the pKa (logarithm of the reciprocal of the acid dissociation constant) of the acid generated from these compounds is shown in Table 4. Show.
(酸発生化合物([C1]化合物)カチオンがラジカルに還元される際に放出するエネルギー)
 また、上記化合物について、これらの化合物におけるカチオンがラジカルに還元される際に放出するエネルギーの計算結果について表4に、示す。ここで、上記エネルギーは各カチオンとラジカルとの構造最適化を実施後に、B3LYP/LANL2DZ法にて各物質のエネルギー準位を求め、カチオンとラジカルのエネルギー差から算出した。
(Energy generating compound ([C1] compound) energy released when a cation is reduced to a radical)
Moreover, about the said compound, it shows in Table 4 about the calculation result of the energy discharge | released when the cation in these compounds is reduce | restored to a radical. Here, the energy was calculated from the energy difference between the cation and the radical after the structure optimization of each cation and the radical was performed, the energy level of each substance was determined by the B3LYP / LANL2DZ method.
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000066
(酸拡散制御剤)
 本実施例としては、[C1]化合物(第1化合物)及び[C2]化合物(第2化合物)のうち、発生する酸のpKaが大きい方の化合物である以下の[C2]化合物を酸拡散制御剤として用いた。[C2]化合物の構造を表5に示す。
(Acid diffusion control agent)
In this example, among the [C1] compound (first compound) and the [C2] compound (second compound), the following [C2] compound, which is the compound with the larger pKa of the generated acid, was controlled for acid diffusion. Used as an agent. The structure of the [C2] compound is shown in Table 5.
[還元電位の測定]
 作用電極として白金を、対電極として白金ワイヤを、参照電極として飽和カロメル電極(SCE)を用いてAr雰囲気下でサイクリックボルタンメトリーにより上記増感剤の酸化電位を測定した。なお、昇華により精製されたフェロセンを外部標準として使用し、アセトニトリルに溶解した1mMの[C2]化合物に、支持電解質として[n-BuN][ClO]を0.1Mとなるように加えて還元電位を測定した。
{Fe(C/[Fe(C:E2/1=+0.38V vs SCE,アセトニトリル}
 また、これから算出される標準水素電極(SHE)換算の還元電位、および還元エネルギーを求めた。結果を表5に示す。なお、酸拡散制御剤は還元されることにより分解してしまうため、還元反応は不可逆であり、還元ピークのみ観察された。
[Measurement of reduction potential]
The oxidation potential of the sensitizer was measured by cyclic voltammetry in an Ar atmosphere using platinum as the working electrode, platinum wire as the counter electrode, and a saturated calomel electrode (SCE) as the reference electrode. In addition, using ferrocene purified by sublimation as an external standard, [n-Bu 4 N] [ClO 4 ] as a supporting electrolyte was added to 1 mM [C2] compound dissolved in acetonitrile so as to be 0.1M. The reduction potential was measured.
{Fe (C 5 H 5 ) 2 / [Fe (C 5 H 5 ) 2 ] + : E 2/1 = + 0.38 V vs SCE, acetonitrile}
Further, the reduction potential and reduction energy in terms of standard hydrogen electrode (SHE) calculated from this were determined. The results are shown in Table 5. In addition, since the acid diffusion controller is decomposed by reduction, the reduction reaction is irreversible, and only the reduction peak was observed.
(酸拡散制御剤([C2]化合物)から発生する酸のpKa)
 上記化合物(C-2-1)~(C-2-7)の酸拡散制御剤について、これらの化合物から発生した酸(アニオン部)のpKa(酸の酸解離定数の逆数の対数値)について表5に示す。
(PKa of acid generated from acid diffusion controller ([C2] compound))
Regarding the acid diffusion controller of the above compounds (C-2-1) to (C-2-7), the pKa (logarithm of the reciprocal of the acid dissociation constant of the acid) of the acid (anion part) generated from these compounds Table 5 shows.
(酸拡散制御剤([C2]化合物)におけるカチオンがラジカルに還元される際に放出するエネルギー)
 [C2]化合物(C-2-1)~(C-2-7)の酸拡散制御剤について、これらの化合物におけるカチオンがラジカルに還元される際に放出するエネルギーの計算結果について表5に示す。上記エネルギーは、上述の酸発生化合物([C1]化合物)と同様の方法を用いて算出した。
(Energy released when cations in acid diffusion controller ([C2] compound) are reduced to radicals)
[C2] Table 5 shows the calculation results of the energy released when cations in these compounds are reduced to radicals for the acid diffusion control agents of compounds (C-2-1) to (C-2-7). . The energy was calculated using the same method as that for the acid generating compound ([C1] compound) described above.
Figure JPOXMLDOC01-appb-T000067
Figure JPOXMLDOC01-appb-T000067
 これらの化合物におけるアニオン部をノナフルオロブタンスルホン酸アニオンに置き換えた化合物の還元電位を下記の測定方法により測定した。 The reduction potential of compounds in which the anion moiety in these compounds was replaced with nonafluorobutanesulfonic acid anions was measured by the following measuring method.
[還元電位の測定]
 作用電極として白金を、対電極として白金ワイヤを使用した以外は、特開2004-004557の実験例に記載の還元電位の測定方法と同様にして測定した。結果を表6に示す。
[Measurement of reduction potential]
Measurement was carried out in the same manner as in the reduction potential measurement method described in the experimental example of JP-A-2004-004557, except that platinum was used as the working electrode and platinum wire was used as the counter electrode. The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000068
Figure JPOXMLDOC01-appb-T000068
(溶媒)
 G-1:酢酸プロピレングリコールモノメチルエーテル
 G-2:シクロヘキサノン
 G-3:乳酸エチル
(solvent)
G-1: Propylene glycol monomethyl ether acetate G-2: Cyclohexanone G-3: Ethyl lactate
[実施例1]
 [A]重合体(A-1)100質量部、(b)感放射線性増感体発生剤(B-1)5質量部、(c)感放射線性酸発生剤として[C1]化合物(C-1-1)15質量部並びに[C2]化合物(C-2-1)5.0質量部及び溶媒(G-1)4,300質量部並びに(G-2)1,900質量部を混合した。次に、得られた混合液を孔径0.20μmのメンブランフィルターでろ過し、化学増幅型レジスト材料(R-1)を調製した。また、(R-1)と対を成す参照材料として、[A]重合体(A-1)100質量部、(b)感放射線性増感体発生剤なし、(c)感放射線性酸発生剤として[C1]化合物(C-1-1)15質量部並びに[C2]化合物(C-2-1)5.0質量部及び溶媒(G-1)4,300質量部並びに(G-2)1,900質量部を混合した。次に、得られた混合液を孔径0.20μmのメンブランフィルターでろ過し、化学増幅型レジスト材料(R-1’)を調製した。
[Example 1]
[A] 100 parts by mass of polymer (A-1), (b) 5 parts by mass of radiation-sensitive sensitizer generator (B-1), (c) [C1] compound (C -1-1) Mixing 15 parts by weight, 5.0 parts by weight of [C2] compound (C-2-1), 4,300 parts by weight of solvent (G-1) and 1,900 parts by weight of (G-2) did. Next, the obtained mixed solution was filtered through a membrane filter having a pore diameter of 0.20 μm to prepare a chemically amplified resist material (R-1). Further, as a reference material paired with (R-1), [A] polymer (A-1) 100 parts by mass, (b) no radiation-sensitive sensitizer generating agent, (c) radiation-sensitive acid generation [C1] Compound (C-1-1) 15 parts by mass, [C2] Compound (C-2-1) 5.0 parts by mass, solvent (G-1) 4,300 parts by mass and (G-2) ) 1,900 parts by mass were mixed. Next, the obtained mixed solution was filtered through a membrane filter having a pore diameter of 0.20 μm to prepare a chemically amplified resist material (R-1 ′).
[実施例2~19及び比較例1~6]
 表6に示す種類及び配合量の各成分を用いた以外は実施例1と同様に操作して化学増幅型レジスト材料(R-2)~(R-25)および参照レジスト材料(R-2’)~(R-25’)を調製した。表中の「-」は該当する成分を添加しなかったことを示す。
[Examples 2 to 19 and Comparative Examples 1 to 6]
The chemical amplification resist materials (R-2) to (R-25) and the reference resist material (R-2 ′) were prepared in the same manner as in Example 1 except that the components of the types and blending amounts shown in Table 6 were used. ) To (R-25 ′) were prepared. “-” In the table indicates that the corresponding component was not added.
[光増感エネルギー移動の自由エネルギー(ΔG)についての計算]
 各実施例、比較例において、下記式(I)及び(II)から求められる光増感エネルギー移動の自由エネルギーΔG(PAG)及びΔG(Qu)を表6に合わせて示す。
 ΔG(PAG)=(EOxi(PS)-ERed(PAG))-E  (I)
 ΔG(Qu)=(EOxi(PS)-ERed(Qu))-E   (II)
 上記式(I)及び(II)において、EOxi(PS)は(b)成分に由来する増感剤の酸化電位を、ERed(PAG)は[C1]化合物の還元電位を、ERed(Qu)は[C2]化合物の還元電位を、E*は(b)成分に由来する増感剤を励起するのに必要なエネルギーを示す。これらの各エネルギー値は表3ないし表5に示した。なお、実施例13については樹脂中に存在する酸発生剤単位によって酸発生を行うものとしており、実施例13のΔG(PAG)の計算においてはトリフェニルスルホニウムカチオンの値(C-1-3)を代用した。
[Calculation of free energy (ΔG) of photosensitized energy transfer]
In each Example and Comparative Example, the free energies ΔG (PAG) and ΔG (Qu) of photosensitized energy transfer obtained from the following formulas (I) and (II) are shown together in Table 6.
ΔG (PAG) = (E Oxi (PS) −E Red (PAG) ) −E * (I)
ΔG (Qu) = (E Oxi (PS) −E Red (Qu) ) −E * (II)
In the above formulas (I) and (II), E Oxi (PS) represents the oxidation potential of the sensitizer derived from the component (b), E Red (PAG) represents the reduction potential of the [C1] compound, and E Red ( Qu) represents the reduction potential of the [C2] compound, and E * represents the energy required to excite the sensitizer derived from component (b). These energy values are shown in Tables 3 to 5. In Example 13, acid generation is performed by the acid generator unit present in the resin. In the calculation of ΔG (PAG) in Example 13, the value of triphenylsulfonium cation (C-1-3) Was substituted.
Figure JPOXMLDOC01-appb-T000069
Figure JPOXMLDOC01-appb-T000069
<レジストパターンの形成>
 東京エレクトロン社の「クリーントラックACT-8」内で、シリコンウェハ上に上記調整した化学増幅型レジスト材料をスピンコートした後、110℃、60秒の条件でPBを行い、平均厚み50nmのレジスト材料膜を形成した。次に、このレジスト材料膜に、簡易型の電子線描画装置(日立製作所社の「HL800D」、出力50KeV、電流密度5.0A/cm)を用いてレジスト材料膜に電子線を照射し、パターニングを行った。このパターニングとしては、マスクを用い、線幅150nmのライン部と、隣り合うライン部によって形成される間隔が150nmのスペース部とからなるライン・アンド・スペースパターン(1L1S)とした。電子線の照射後、続いて以下の(1)~(3)の操作それぞれについて評価を行った。
<Formation of resist pattern>
In the “Clean Track ACT-8” of Tokyo Electron Co., Ltd., after spin-coating the chemically amplified resist material prepared above on a silicon wafer, PB is performed at 110 ° C. for 60 seconds, and the resist material has an average thickness of 50 nm. A film was formed. Next, the resist material film is irradiated with an electron beam using a simple electron beam lithography apparatus (“HL800D” manufactured by Hitachi, Ltd., output 50 KeV, current density 5.0 A / cm 2 ). Patterning was performed. For this patterning, a mask was used, and a line-and-space pattern (1L1S) composed of a line portion having a line width of 150 nm and a space portion having a spacing of 150 nm formed by adjacent line portions was used. After the electron beam irradiation, the following operations (1) to (3) were evaluated.
(操作(1):一括露光なし、参照材料(R-1’)~(R-25’)に対する操作)
 電子線の照射後、上記クリーントラックACT-8内で、110℃、60秒の条件でPEBを行い、次いで上記クリーントラックACT-8内で、2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液を用い、23℃で1分間、パドル法により現像した。現像後、純水での水洗及び乾燥によりポジ型レジストパターンを形成した。
(Operation (1): No batch exposure, operation for reference materials (R-1 ′) to (R-25 ′))
After the electron beam irradiation, PEB was performed in the clean track ACT-8 at 110 ° C. for 60 seconds, and then 2.38 mass% tetramethylammonium hydroxide (TMAH) in the clean track ACT-8. Development was performed by the paddle method at 23 ° C. for 1 minute using an aqueous solution. After development, a positive resist pattern was formed by washing with pure water and drying.
(操作(2):一括露光あり、評価材料(R-1)~(R-25)に対する操作)
 電子線の照射後、UV-LEDライト(東京エレクトロン社、波長365nm)を用いレジスト材料膜の全面を一括露光した。なお、一括露光量については下記の表7の感度の評価結果として記載した。次いで、上記クリーントラックACT-8内で、110℃、60秒の条件でPEBを行った。その後、上記操作(1)と同様にして現像、水洗及び乾燥を行い、ポジ型レジストパターンを形成した。
(Operation (2): Operation for evaluation materials (R-1) to (R-25) with batch exposure)
After the electron beam irradiation, the entire surface of the resist material film was collectively exposed using a UV-LED light (Tokyo Electron, wavelength 365 nm). The collective exposure amount is described as the sensitivity evaluation result in Table 7 below. Next, PEB was performed in the clean track ACT-8 at 110 ° C. for 60 seconds. Thereafter, development, washing and drying were carried out in the same manner as in the above operation (1) to form a positive resist pattern.
<評価>
 上記形成したポジ型レジストパターンについて、下記に示す手順により感度及びナノエッジラフネスについての評価を行った。
<Evaluation>
The positive resist pattern thus formed was evaluated for sensitivity and nanoedge roughness according to the following procedure.
[感度]
 線幅150nmのライン部と、隣り合うライン部によって形成される間隔が150nmのスペース部とからなるライン・アンド・スペースパターン(1L1S)を1対1の線幅に形成する最適露光量(Eop)を測定した。参照材料の最適露光量を最初に測定し、次に評価材料(参照材料に比較して酸拡散制御剤量を多くしており、一括露光無しでは感度が参照材料と比較すると低い)における最適露光量が参照材料と同等となる一括露光量を測定した。この時の一括露光量が1.0J/cm以下である材料は「AA(非常に良好)」、1.0J/cmを越え2.0J/cm以下となるものは「A(良好)」した。また、装置スループットの観点から一括露光量が2.0J/cm超となるものはプロセス的に好ましくないことから、2.0J/cm超となる材料は「B(不良)」と判断した。感度の評価結果を表7に示す。
[sensitivity]
Optimum exposure amount (Eop) for forming a line-and-space pattern (1L1S) having a line width of 150 nm and a space portion having a space of 150 nm formed by adjacent line portions in a one-to-one line width. Was measured. The optimal exposure of the reference material is measured first, and then the optimal exposure of the evaluation material (the amount of acid diffusion control agent is increased compared to the reference material, and the sensitivity is low compared to the reference material without batch exposure) The collective exposure amount that was equivalent to the reference material was measured. The material whose collective exposure at this time is 1.0 J / cm 2 or less is “AA (very good)”, and the material which exceeds 1.0 J / cm 2 and is 2.0 J / cm 2 or less is “A (good) )"did. In addition, from the viewpoint of apparatus throughput, a material having a collective exposure exceeding 2.0 J / cm 2 is not preferable in terms of process, and therefore a material exceeding 2.0 J / cm 2 is determined to be “B (defect)”. . Table 7 shows the evaluation results of sensitivity.
[ナノエッジラフネス]
 上記ライン・アンド・スペースパターン(1L1S)のラインパターンを、高分解能FEB測長装置(日立製作所社の「S-9220」)を用いて観察した。ラインパターンの任意の20点において形状を観察し、それぞれの点について図7及び図8に示すように、基材(シリコンウェハ)11上に形成したパターンにおけるライン部12の横側面12aに沿って生じた凹凸が最も著しい箇所における線幅と、設計線幅150nmとの差「ΔCD」を測定した。20点のΔCDの平均値をナノエッジラフネスの指標とした。なお、図7及び図8で示す凹凸は、実際より誇張して記載している。評価材料に一括露光を施して参照材料と同一の電子線露光感度にした際、評価材料(一括露光あり)のナノエッジラフネスが参照材料のナノエッジラフネスに比べ、10%以上減少している場合を「AA(特に良好)」、5%以上10%未満で減少している場合を「A(良好)」、減少が5%未満もしくは増大している場合を「B(不良)」と判断した。ナノエッジラフネスの評価結果を表7に示す。
[Nano edge roughness]
The line pattern of the line and space pattern (1L1S) was observed using a high-resolution FEB length measuring device (“S-9220”, Hitachi, Ltd.). The shape is observed at 20 arbitrary points of the line pattern, and as shown in FIGS. 7 and 8 for each point, along the lateral side surface 12a of the line part 12 in the pattern formed on the base material (silicon wafer) 11. The difference “ΔCD” between the line width at the place where the generated unevenness was most remarkable and the design line width of 150 nm was measured. The average value of ΔCD of 20 points was used as an index of nano edge roughness. In addition, the unevenness | corrugation shown in FIG.7 and FIG.8 is exaggerated rather than actually. When the evaluation material is subjected to batch exposure to the same electron beam exposure sensitivity as the reference material, the nano edge roughness of the evaluation material (with batch exposure) is reduced by 10% or more compared to the nano edge roughness of the reference material Was judged as “AA (particularly good)”, “A (good)” when it decreased by 5% or more and less than 10%, and “B (bad)” when the decrease was less than 5% or increased. . Table 7 shows the evaluation results of the nano edge roughness.
Figure JPOXMLDOC01-appb-T000070
Figure JPOXMLDOC01-appb-T000070
 表7に示すように、感放射線性の酸発生化合物である[C1]化合物及び感放射線性の光崩壊性塩基である[C2]化合物を含有する実施例1~実施例19においては、250nm以下の波長を有する非電離放射線をパターン露光光として用いた場合における高い感度及び優れたリソグラフィ性能を得られることが確認された。特に、第1化合物のオニウムカチオンと第2化合物のオニウムカチオンとが同一の構造である実施例1、実施例6、実施例9、実施例12及び実施例15は、感度及びリソグラフィ性能が共に優れていた。一方、アニオン部をノナフルオロブタンスルホン酸アニオンに置き換えた場合の化合物の還元電位がトリフェニルスルホニウムノナフルオロブタンスルホネートの還元電位と同じ又は低い[C2]化合物を含有する比較例の場合、リソグラフィ性能が抑制されることが確認された。 As shown in Table 7, in Examples 1 to 19 containing the [C1] compound which is a radiation-sensitive acid generating compound and the [C2] compound which is a radiation-sensitive photodegradable base, 250 nm or less It was confirmed that high sensitivity and excellent lithography performance can be obtained when non-ionizing radiation having a wavelength of 1 is used as pattern exposure light. In particular, Example 1, Example 6, Example 9, Example 12 and Example 15 in which the onium cation of the first compound and the onium cation of the second compound have the same structure are excellent in both sensitivity and lithography performance. It was. On the other hand, in the case of the comparative example containing a [C2] compound in which the reduction potential of the compound when the anion portion is replaced with a nonafluorobutanesulfonate anion is the same as or lower than the reduction potential of triphenylsulfonium nonafluorobutanesulfonate, the lithography performance is It was confirmed that it was suppressed.
 以上説明したように、当該化学増幅型レジスト材料及び当該レジストパターン形成方法によれば、EUV光、電子線、イオンビーム等の電離放射線、又はKrFエキシマレーザー及びArFエキシマレーザー等の250nm以下の波長を有する非電離放射線をパターン露光光として用いた場合において高い感度及び優れたリソグラフィ性能を得ることが可能である。また、当該化学増幅型レジスト材料は、当該レジストパターン形成方法に好適に用いることができる。 As described above, according to the chemically amplified resist material and the resist pattern forming method, ionizing radiation such as EUV light, electron beam, ion beam, or wavelength of 250 nm or less such as KrF excimer laser and ArF excimer laser is used. When using the non-ionizing radiation as pattern exposure light, it is possible to obtain high sensitivity and excellent lithography performance. Further, the chemically amplified resist material can be suitably used for the resist pattern forming method.
1    半導体ウェハ
2、12 レジストパターン
3    被エッチング膜
10   パターン基板
11   基材
12a  レジストパターンの横側面
DESCRIPTION OF SYMBOLS 1 Semiconductor wafer 2, 12 Resist pattern 3 Etching film 10 Pattern board | substrate 11 Base material 12a Side surface of a resist pattern

Claims (20)

  1.  (1)酸の作用により現像液に可溶又は不溶となる重合体成分と、
     (2)露光により感放射線性増感体及び酸を発生する成分と、
     (3)上記(2)成分が発生する酸に対して相対的に塩基性を有する成分と
     を含み、
     上記(2)成分が、下記(a)成分、下記(a)~(c)成分中の任意の2つの成分、又は下記(a)~(c)成分の全てを含有し、 
     上記(a)成分又は(c)成分が、感放射線性酸発生基を有する第1化合物を有し、
     上記(3)成分が、下記(d)成分である第2化合物を含有する化学増幅型レジスト材料。
     (a)250nm以下の波長を有する放射線である第1の放射線を照射し、250nmを超える波長を有する放射線である第2の放射線を照射しない場合に、酸と、上記第2の放射線を吸収する感放射線性増感体とを発生し、かつ上記第1の放射線を照射せず上記第2の放射線のみを照射した場合に上記酸及び感放射線性増感体を実質的に発生しない感放射線性酸-増感体発生剤。
     (b)上記第1の放射線を照射し、上記第2の放射線を照射しない場合に、上記第2の放射線を吸収する感放射線性増感体を発生し、かつ上記第1の放射線を照射せず上記第2の放射線のみを照射した場合に上記感放射線性増感体を実質的に発生しない感放射線性増感体発生剤。
     (c)上記第1の放射線を照射し、上記第2の放射線を照射しない場合に、酸を発生し、かつ上記第1の放射線を照射せず上記第2の放射線のみを照射した場合に上記酸を実質的に発生しない感放射線性酸発生剤。
     (d)上記第1の放射線を照射し、上記第2の放射線を照射しない場合、及び上記第1の放射線を照射した後、上記第2の放射線を照射した場合に、上記(2)成分が発生する酸に対する塩基性を失い、かつ上記第1の放射線を照射せず上記第2の放射線のみを照射した場合には上記(2)成分が発生する酸に対して塩基性を保持する感放射線性光崩壊性塩基。但し、上記感放射線性光崩壊塩基は、下記式(x)で表される化合物であり、下記式(x)におけるA-で表される1価のアニオンをノナフルオロブタンスルホン酸アニオンに置き換えた下記式(z)で表される化合物と、下記式(y)で表されるトリフェニルスルホニウムノナフルオロブタンスルホネートとを比較した場合の下記式(z)におけるM+で表される1価のオニウムカチオンの還元電位は、トリフェニルスルホニウムカチオンの還元電位よりも高い。
    Figure JPOXMLDOC01-appb-C000001
    (式(x)中、Aは1価のアニオンである。Mは、1価のオニウムカチオンである。 式(z)中、Mは、式(x)と同義である。)
    (1) a polymer component that becomes soluble or insoluble in a developer by the action of an acid;
    (2) a component that generates a radiation-sensitive sensitizer and an acid upon exposure;
    (3) a component that is relatively basic to the acid generated by the component (2), and
    The component (2) contains the following component (a), any two components in the following components (a) to (c), or all of the following components (a) to (c):
    The component (a) or the component (c) has a first compound having a radiation-sensitive acid generating group,
    A chemically amplified resist material wherein the component (3) contains a second compound which is the following component (d).
    (A) When the first radiation that is radiation having a wavelength of 250 nm or less is irradiated and the second radiation that is radiation having a wavelength exceeding 250 nm is not irradiated, the acid and the second radiation are absorbed. A radiation-sensitive sensitizer and, when only the second radiation is irradiated without irradiation with the first radiation, the acid and radiation-sensitive sensitizer are not substantially generated. Acid-sensitizer generator.
    (B) When the first radiation is irradiated and the second radiation is not irradiated, a radiation-sensitive sensitizer that absorbs the second radiation is generated, and the first radiation is irradiated. A radiation-sensitive sensitizer generating agent that does not substantially generate the radiation-sensitive sensitizer when only the second radiation is irradiated.
    (C) When the first radiation is irradiated and the second radiation is not irradiated, an acid is generated, and the first radiation is not irradiated and only the second radiation is irradiated. A radiation-sensitive acid generator that does not substantially generate acid.
    (D) When the first radiation is irradiated and the second radiation is not irradiated, and when the second radiation is irradiated after the first radiation is irradiated, the component (2) is Radiation sensitivity that retains basicity with respect to the acid generated by the component (2) when the basic acid with respect to the generated acid is lost and only the second radiation is irradiated without irradiation with the first radiation. Photodegradable base. However, the radiation-sensitive photodegradable base is a compound represented by the following formula (x), and the monovalent anion represented by A- in the following formula (x) was replaced with a nonafluorobutanesulfonic acid anion. The monovalent onium cation represented by M + in the following formula (z) when the compound represented by the following formula (z) is compared with triphenylsulfonium nonafluorobutanesulfonate represented by the following formula (y). The reduction potential of is higher than the reduction potential of the triphenylsulfonium cation.
    Figure JPOXMLDOC01-appb-C000001
    (In formula (x), A is a monovalent anion. M + is a monovalent onium cation. In formula (z), M + has the same meaning as in formula (x).)
  2.  (1)酸の作用により現像液に可溶又は不溶となる重合体成分と、
     (2)露光により感放射線性増感体及び酸を発生する成分と、
     (3)上記(2)成分が発生する酸に対して相対的に塩基性を有する成分と
    を含み、
     上記(2)成分及び上記(3)成分の少なくともいずれかを上記(1)重合体成分の重合体の構造単位として含み、
     上記(2)成分が、下記(a)成分、下記(a)~(c)成分中の任意の2つの成分、又は下記(a)~(c)成分の全てを含有し、
     上記(a)成分又は上記(c)成分が、感放射線性酸発生基を有する第1化合物を有し、
     上記(3)成分が、下記(d)成分である第2化合物を含有する化学増幅型レジスト材料。
     (a)250nm以下の波長を有する放射線である第1の放射線を照射し、250nmを超える波長を有する放射線である第2の放射線を照射しない場合に、酸と、上記第2の放射線を吸収する感放射線性増感体とを発生し、かつ上記第1の放射線を照射せず上記第2の放射線のみを照射した場合に上記酸及び感放射線性増感体を実質的に発生しない感放射線性酸-増感体発生剤。
     (b)上記第1の放射線を照射し、上記第2の放射線を照射しない場合に、上記第2の放射線を吸収する感放射線性増感体を発生し、かつ上記第1の放射線を照射せず上記第2の放射線のみを照射した場合に上記感放射線性増感体を実質的に発生しない感放射線性増感体発生剤。
     (c)上記第1の放射線を照射し、上記第2の放射線を照射しない場合に、酸を発生し、かつ上記第1の放射線を照射せず上記第2の放射線のみを照射した場合に上記酸を実質的に発生しない感放射線性酸発生剤。
     (d)上記第1の放射線を照射し、上記第2の放射線を照射しない場合、及び上記第1の放射線を照射した後、上記第2の放射線を照射した場合に、上記(2)成分より発生する酸に対する塩基性を失い、かつ上記第1の放射線を照射せず上記第2の放射線のみを照射した場合には上記(2)成分より発生する酸に対して塩基性を保持する感放射線性光崩壊性塩基。但し、上記感放射線性光崩壊塩基は下記条件(i)及び(ii)を満たす。
    (i)下記式(x)で表される化合物の場合、下記式(x)におけるAで表される1価のアニオンをノナフルオロブタンスルホン酸アニオンに置き換えた下記式(z)で表される化合物と、下記式(y)で表されるトリフェニルスルホニウムノナフルオロブタンスルホネートとを比較した場合の下記式(z)におけるMで表される1価のオニウムカチオンの還元電位は、トリフェニルスルホニウムカチオンの還元電位よりも高い。
    (ii)下記式(x’)で表される基の場合、下記式(x’)におけるAで表される1価のアニオンを含む1価の基をオクタフルオロブタンスルホネート基に置き換えた上記式(z’)で表される基と、下記式(y’)で表されるトリフェニルスルホニウムオクタフルオロブタンスルホネート基とを比較した場合の下記式(z’)におけるMで表される1価のオニウムカチオンの還元電位は、トリフェニルスルホニウムカチオンの還元電位よりも高い。
    Figure JPOXMLDOC01-appb-C000002
    (式(x)中、Aは1価のアニオンである。Mは、1価のオニウムカチオンである。
     式(z)中、Mは、式(x)と同義である。
     式(x’)中、A’は、1価のアニオンを含む1価の基である。Mは、式(x)と同義である。*は、重合体に結合する部位を示す。
     式(y’)中、*は、式(x’)と同義である。
     式(z’)中、Mは、式(x)と同義である。*は、式(x’)と同義である。)
    (1) a polymer component that becomes soluble or insoluble in a developer by the action of an acid;
    (2) a component that generates a radiation-sensitive sensitizer and an acid upon exposure;
    (3) a component that is relatively basic to the acid generated by the component (2),
    Including at least one of the component (2) and the component (3) as a structural unit of the polymer of the polymer component (1),
    The component (2) contains the following component (a), any two components in the following components (a) to (c), or all of the following components (a) to (c):
    The component (a) or the component (c) has a first compound having a radiation-sensitive acid generating group,
    A chemically amplified resist material wherein the component (3) contains a second compound which is the following component (d).
    (A) When the first radiation that is radiation having a wavelength of 250 nm or less is irradiated and the second radiation that is radiation having a wavelength exceeding 250 nm is not irradiated, the acid and the second radiation are absorbed. A radiation-sensitive sensitizer and, when only the second radiation is irradiated without irradiation with the first radiation, the acid and radiation-sensitive sensitizer are not substantially generated. Acid-sensitizer generator.
    (B) When the first radiation is irradiated and the second radiation is not irradiated, a radiation-sensitive sensitizer that absorbs the second radiation is generated, and the first radiation is irradiated. A radiation-sensitive sensitizer generating agent that does not substantially generate the radiation-sensitive sensitizer when only the second radiation is irradiated.
    (C) When the first radiation is irradiated and the second radiation is not irradiated, an acid is generated, and the first radiation is not irradiated and only the second radiation is irradiated. A radiation-sensitive acid generator that does not substantially generate acid.
    (D) When the first radiation is irradiated and the second radiation is not irradiated, and when the second radiation is irradiated after the first radiation is irradiated, the component (2) Radiation sensitivity that retains basicity with respect to the acid generated from the component (2) when the basic acid with respect to the acid generated is lost and only the second radiation is irradiated without irradiation with the first radiation. Photodegradable base. However, the radiation-sensitive photodegradable base satisfies the following conditions (i) and (ii).
    (I) In the case of a compound represented by the following formula (x), it is represented by the following formula (z) in which the monovalent anion represented by A in the following formula (x) is replaced with a nonafluorobutanesulfonate anion. The reduction potential of the monovalent onium cation represented by M + in the following formula (z) when comparing the above compound with triphenylsulfonium nonafluorobutane sulfonate represented by the following formula (y) is triphenyl It is higher than the reduction potential of the sulfonium cation.
    (Ii) 'In the case of a group represented by the following formula (x formula (x)' A in) - above is replaced with a monovalent group containing a monovalent anion represented by the octafluorobutane sulfonate group 1 represented by M + in the following formula (z ′) when the group represented by the formula (z ′) is compared with the triphenylsulfonium octafluorobutanesulfonate group represented by the following formula (y ′). The reduction potential of the valent onium cation is higher than the reduction potential of the triphenylsulfonium cation.
    Figure JPOXMLDOC01-appb-C000002
    (In formula (x), A is a monovalent anion. M + is a monovalent onium cation.
    In formula (z), M + has the same meaning as in formula (x).
    ', A represents the formula (x)' - is a monovalent group comprising a monovalent anion. M + is synonymous with the formula (x). * Shows the site | part couple | bonded with a polymer.
    In the formula (y ′), * is synonymous with the formula (x ′).
    In formula (z ′), M + has the same meaning as in formula (x). * Is synonymous with the formula (x ′). )
  3.  上記第2の放射線を吸収する感放射線性増感体を励起するのに必要なエネルギー(E)の値と、上記第2の放射線を吸収する感放射線性増感体を酸化するのに必要なエネルギー(EOxi(PS))の値と、上記第2の化合物を還元するのに必要なエネルギー(ERed(Qu))の値により下記式(I)から求められる光増感エネルギー移動の自由エネルギー(ΔG(Qu))が0kcal/mol以下である請求項1又は請求項2に記載の化学増幅型レジスト材料。 
     ΔG(Qu)=(EOxi(PS)-ERed(Qu))-E (I)
    Necessary to oxidize the value of energy (E * ) necessary to excite the radiation-sensitive sensitizer that absorbs the second radiation and the radiation-sensitive sensitizer that absorbs the second radiation. Of the photosensitized energy transfer obtained from the following formula (I) based on the value of the effective energy (E Oxi (PS) ) and the value of the energy necessary to reduce the second compound (E Red (Qu) ) The chemically amplified resist material according to claim 1 or 2, wherein the free energy (ΔG (Qu) ) is 0 kcal / mol or less.
    ΔG (Qu) = (E Oxi (PS) −E Red (Qu) ) −E * (I)
  4.  上記第2の放射線を吸収する感放射線性増感体を励起するのに必要なエネルギー(E)の値と、上記第2の放射線を吸収する感放射線性増感体を酸化するのに必要なエネルギー(EOxi(PS))の値と、上記第1の化合物を還元するのに必要なエネルギー(ERed(PAG))の値により下記式(II)から求められる光増感エネルギー移動の自由エネルギー(ΔG(PAG))が0kcal/mol以下である請求項1から請求項3のいずれか一項に記載の化学増幅型レジスト材料。
     ΔG(PAG)=(EOxi(PS)-ERed(PAG))-E (II)
    Necessary to oxidize the value of energy (E * ) necessary to excite the radiation-sensitive sensitizer that absorbs the second radiation and the radiation-sensitive sensitizer that absorbs the second radiation. Of the photosensitized energy transfer obtained from the following formula (II) based on the value of the effective energy (E Oxi (PS) ) and the value of the energy necessary to reduce the first compound (E Red (PAG) ) The chemically amplified resist material according to any one of claims 1 to 3, wherein a free energy (ΔG (PAG) ) is 0 kcal / mol or less.
    ΔG (PAG) = (E Oxi (PS) −E Red (PAG) ) −E * (II)
  5.  上記第1化合物のカチオンがラジカルに還元される際に放出するエネルギー、および上記第2化合物のカチオンがラジカルに還元される際に放出するエネルギーが共に5.0eV以上である請求項3又は請求項4に記載の化学増幅型レジスト材料。 The energy released when the cation of the first compound is reduced to a radical and the energy released when the cation of the second compound is reduced to a radical are both 5.0 eV or more. 4. The chemically amplified resist material according to 4.
  6.  上記第1化合物が、第1オニウムカチオンと第1アニオンとを含み、上記第2化合物が、第2オニウムカチオンと上記第1アニオンと異なる第2アニオンとを含み、
     上記第1オニウムカチオン及び上記第2オニウムカチオンがラジカルに還元される際に放出するエネルギーが共に5.0eV以上である請求項1から請求項5のいずれか一項に記載の化学増幅型レジスト材料。
    The first compound includes a first onium cation and a first anion, and the second compound includes a second onium cation and a second anion different from the first anion,
    The chemically amplified resist material according to any one of claims 1 to 5, wherein energy released when the first onium cation and the second onium cation are reduced to radicals is 5.0 eV or more. .
  7.  上記第2のオニウムカチオンが電子吸引性の置換基を有する基を含む請求項6に記載の化学増幅型レジスト材料。 The chemically amplified resist material according to claim 6, wherein the second onium cation contains a group having an electron-withdrawing substituent.
  8.  下記(e)成分を更に含有する請求項1から請求項7のいずれか1項に記載の化学増幅型レジスト材料。
    (e)上記第1の放射線を照射し、上記第2の放射線を照射しない場合に、上記(2)成分より発生する酸に対する塩基性を失い、トリフェニルスルホニウムカチオンの還元電位より低い還元電位を有する酸拡散制御剤。
    The chemically amplified resist material according to claim 1, further comprising the following component (e):
    (E) When the first radiation is irradiated and the second radiation is not irradiated, the basicity of the acid generated from the component (2) is lost, and a reduction potential lower than the reduction potential of the triphenylsulfonium cation is obtained. An acid diffusion control agent.
  9.  (f)感放射線性を有さず上記(a)成分又は上記(c)成分より発生する酸に対して塩基性を有する酸拡散制御剤を更に含有する請求項1から請求項8のいずれか1項に記載の化学増幅型レジスト材料。 (F) The acid diffusion control agent according to any one of claims 1 to 8, further comprising an acid diffusion controller having no radiation sensitivity and having basicity with respect to the acid generated from the component (a) or the component (c). 2. The chemically amplified resist material according to item 1.
  10.  (g)感放射線性光崩壊性塩基-感放射線性増感体発生剤をさらに含有し、
     上記(g)成分が、
     上記第1の放射線を照射し、上記第2の放射線を照射しない場合に、上記第2の放射線を吸収する感放射線性増感体を発生し、上記(2)成分より発生する酸に対する塩基性を失い、
     上記第1の放射線を照射した後、上記第2の放射線を照射した場合に、発生した感放射線性増感体が第2放射線を吸収し、上記(2)成分より発生する酸に対する塩基性を失い、
     上記第1の放射線を照射せずに上記第2の放射線のみを照射した場合に感放射線性増感体を実質的に発生せず、上記(2)成分より発生する酸に対して塩基性を保持し、
     トリフェニルスルホニウムの還元電位より高い還元電位を有する請求項1から請求項9のいずれか1項に記載の化学増幅型レジスト材料。
    (G) further containing a radiation sensitive photodegradable base-radiation sensitive sensitizer generator;
    The component (g) is
    When the first radiation is irradiated and the second radiation is not irradiated, a radiation-sensitive sensitizer that absorbs the second radiation is generated, and the basicity against the acid generated from the component (2) is generated. Lost
    When the second radiation is irradiated after the irradiation with the first radiation, the generated radiation-sensitive sensitizer absorbs the second radiation and has basicity against the acid generated from the component (2). Lost,
    When only the second radiation is irradiated without irradiating the first radiation, a radiation-sensitive sensitizer is not substantially generated, and is basic to the acid generated from the component (2). Hold and
    The chemically amplified resist material according to claim 1, which has a reduction potential higher than that of triphenylsulfonium.
  11.  上記化学増幅型レジスト材料中の全オニウムカチオンに対する上記第1オニウムカチオン及び上記第2オニウムカチオンの合計含有率が80モル%以上である請求項6又は請求項7に記載の化学増幅型レジスト材料。 The chemically amplified resist material according to claim 6 or 7, wherein a total content of the first onium cation and the second onium cation with respect to all onium cations in the chemically amplified resist material is 80 mol% or more.
  12.  上記第1オニウムカチオンと上記第2オニウムカチオンとが同一の構造である請求項6、請求項7又は請求項11に記載の化学増幅型レジスト材料。 The chemically amplified resist material according to claim 6, 7 or 11, wherein the first onium cation and the second onium cation have the same structure.
  13.  上記第1化合物から発生する酸の酸解離定数の逆数の対数値が0以下である請求項1から請求項12のいずれか1項に記載の化学増幅型レジスト材料。 The chemically amplified resist material according to any one of claims 1 to 12, wherein a logarithmic value of an inverse number of an acid dissociation constant of an acid generated from the first compound is 0 or less.
  14.  上記(1)重合体成分が、酸の作用により極性基を生じる基を含む構造単位を有する第1重合体を含む請求項1から請求項13のいずれか1項に記載の化学増幅型レジスト材料。 The chemically amplified resist material according to any one of claims 1 to 13, wherein the polymer component (1) includes a first polymer having a structural unit containing a group that generates a polar group by the action of an acid. .
  15.  上記第1重合体がフッ素原子を含む構造単位を有するか、又は上記(1)重合体成分が上記第1重合体とは異なる第2重合体を含み、この第2重合体がフッ素原子を含む構造単位を有する請求項14に記載の化学増幅型レジスト材料。 The first polymer has a structural unit containing a fluorine atom, or the (1) polymer component contains a second polymer different from the first polymer, and the second polymer contains a fluorine atom. The chemically amplified resist material according to claim 14, comprising a structural unit.
  16.  全固形分に対する上記(2)成分の含有量が、全固形分に対して10質量%以上40質量%以下である請求項1から請求項15のいずれか一項に記載の化学増幅型レジスト材料。 The chemically amplified resist material according to any one of claims 1 to 15, wherein the content of the component (2) with respect to the total solid content is 10% by mass or more and 40% by mass or less with respect to the total solid content. .
  17.  基板に請求項1から請求項16のいずれか1項に記載の化学増幅型レジスト材料を使用してレジスト材料膜を形成する膜形成工程と、
     上記レジスト材料膜に250nm以下の波長を有する放射線を照射するパターン露光工程と、
     上記パターン露光工程後の上記レジスト材料膜に250nmを超える波長を有する放射線を照射する一括露光工程と、
     上記一括露光工程後の上記レジスト材料膜を加熱するベーク工程と、
     上記ベーク工程後の上記レジスト材料膜を現像液に接触させる現像工程と
    を備えるレジストパターン形成方法。
    A film forming step of forming a resist material film on the substrate using the chemically amplified resist material according to any one of claims 1 to 16,
    A pattern exposure step of irradiating the resist material film with radiation having a wavelength of 250 nm or less;
    A batch exposure step of irradiating the resist material film after the pattern exposure step with radiation having a wavelength of more than 250 nm;
    A baking step of heating the resist material film after the batch exposure step;
    A resist pattern forming method comprising: a developing step of bringing the resist material film after the baking step into contact with a developer.
  18.  上記250nm以下の波長を有する放射線が、KrF、ArF、EUV、又は電子線のいずれかである請求項17に記載のレジストパターン形成方法。 The resist pattern forming method according to claim 17, wherein the radiation having a wavelength of 250 nm or less is any one of KrF, ArF, EUV, or an electron beam.
  19.  (1)酸の作用により現像液に可溶又は不溶となる重合体成分と、
     (2)露光により感放射線性増感体及び酸を発生する成分と、
     (3)上記(2)成分が発生する酸に対して相対的に塩基性を有する成分と
     を含み、
     上記(2)成分が、下記(a)成分、下記(a)~(c)成分中の任意の2つの成分、又は下記(a)~(c)成分の全てを含有し、
     上記(a)成分又は(c)成分が、感放射線性酸発生基を有する第1化合物を有し、
     上記(3)成分が、下記(d)成分である第2化合物を含有する化学増幅型レジスト材料。
     (a)250nm以下の波長を有する放射線である第1の放射線を照射し、250nmを超える波長を有する放射線である第2の放射線を照射しない場合に、酸と、上記第2の放射線を吸収する感放射線性増感体とを発生し、かつ上記第1の放射線を照射せず上記第2の放射線のみを照射した場合に上記酸及び感放射線性増感体を実質的に発生しない感放射線性酸-増感体発生剤。
     (b)上記第1の放射線を照射し、上記第2の放射線を照射しない場合に、上記第2の放射線を吸収する感放射線性増感体を発生し、かつ上記第1の放射線を照射せず上記第2の放射線のみを照射した場合に上記感放射線性増感体を実質的に発生しない感放射線性増感体発生剤。
     (c)上記第1の放射線を照射し、上記第2の放射線を照射しない場合に、酸を発生し、かつ上記第1の放射線を照射せず上記第2の放射線のみを照射した場合に上記酸を実質的に発生しない感放射線性酸発生剤。
     (d)上記第1の放射線を照射し、上記第2の放射線を照射しない場合、及び上記第1の放射線を照射した後、上記第2の放射線を照射した場合に、上記(2)成分が発生する酸に対する塩基性を失い、かつ上記第1の放射線を照射せず上記第2の放射線のみを照射した場合には上記(2)成分が発生する酸に対して塩基性を保持する感放射線性光崩壊性塩基。但し、上記感放射線性光崩壊塩基は、下記式(x)で表される化合物であり、下記式(x)におけるMの還元電位は、トリフェニルスルホニウムカチオンの還元電位よりも高い。
    Figure JPOXMLDOC01-appb-C000003
    (式(x)中、Aは1価のアニオンである。Mは、1価のオニウムカチオンである。
    (1) a polymer component that becomes soluble or insoluble in a developer by the action of an acid;
    (2) a component that generates a radiation-sensitive sensitizer and an acid upon exposure;
    (3) a component that is relatively basic to the acid generated by the component (2), and
    The component (2) contains the following component (a), any two components in the following components (a) to (c), or all of the following components (a) to (c):
    The component (a) or the component (c) has a first compound having a radiation-sensitive acid generating group,
    A chemically amplified resist material wherein the component (3) contains a second compound which is the following component (d).
    (A) When the first radiation that is radiation having a wavelength of 250 nm or less is irradiated and the second radiation that is radiation having a wavelength exceeding 250 nm is not irradiated, the acid and the second radiation are absorbed. A radiation-sensitive sensitizer and, when only the second radiation is irradiated without irradiation with the first radiation, the acid and radiation-sensitive sensitizer are not substantially generated. Acid-sensitizer generator.
    (B) When the first radiation is irradiated and the second radiation is not irradiated, a radiation-sensitive sensitizer that absorbs the second radiation is generated, and the first radiation is irradiated. A radiation-sensitive sensitizer generating agent that does not substantially generate the radiation-sensitive sensitizer when only the second radiation is irradiated.
    (C) When the first radiation is irradiated and the second radiation is not irradiated, an acid is generated, and the first radiation is not irradiated and only the second radiation is irradiated. A radiation-sensitive acid generator that does not substantially generate acid.
    (D) When the first radiation is irradiated and the second radiation is not irradiated, and when the second radiation is irradiated after the first radiation is irradiated, the component (2) is Radiation sensitivity that retains basicity with respect to the acid generated by the component (2) when the basic acid with respect to the generated acid is lost and only the second radiation is irradiated without irradiation with the first radiation. Photodegradable base. However, the radiation-sensitive photodegradable base is a compound represented by the following formula (x), and the reduction potential of M + in the following formula (x) is higher than the reduction potential of the triphenylsulfonium cation.
    Figure JPOXMLDOC01-appb-C000003
    (In formula (x), A is a monovalent anion. M + is a monovalent onium cation.
  20.  (1)酸の作用により現像液に可溶又は不溶となる重合体成分と、
     (2)露光により感放射線性増感体及び酸を発生する成分と、
     (3)上記(2)成分が発生する酸に対して相対的に塩基性を有する成分と
     を含み、
     上記(2)成分が、下記(a)成分、下記(a)~(c)成分中の任意の2つの成分、又は下記(a)~(c)成分の全てを含有し、
     上記(a)成分又は(c)成分が、感放射線性酸発生基を有する第1化合物を有し、
     上記(3)成分が、下記(d)成分である第2化合物を含有する化学増幅型レジスト材料。
     (a)250nm以下の波長を有する放射線である第1の放射線を照射し、250nmを超える波長を有する放射線である第2の放射線を照射しない場合に、酸と、上記第2の放射線を吸収する感放射線性増感体とを発生し、かつ上記第1の放射線を照射せず上記第2の放射線のみを照射した場合に上記酸及び感放射線性増感体を実質的に発生しない感放射線性酸-増感体発生剤。
     (b)上記第1の放射線を照射し、上記第2の放射線を照射しない場合に、上記第2の放射線を吸収する感放射線性増感体を発生し、かつ上記第1の放射線を照射せず上記第2の放射線のみを照射した場合に上記感放射線性増感体を実質的に発生しない感放射線性増感体発生剤。
     (c)上記第1の放射線を照射し、上記第2の放射線を照射しない場合に、酸を発生し、かつ上記第1の放射線を照射せず上記第2の放射線のみを照射した場合に上記酸を実質的に発生しない感放射線性酸発生剤。
     (d)上記第1の放射線を照射し、上記第2の放射線を照射しない場合、及び上記第1の放射線を照射した後、上記第2の放射線を照射した場合に、上記(2)成分が発生する酸に対する塩基性を失い、かつ上記第1の放射線を照射せず上記第2の放射線のみを照射した場合には上記(2)成分が発生する酸に対して塩基性を保持する感放射線性光崩壊性塩基。但し、上記感放射線性光崩壊塩基は下記条件(i)及び(ii)を満たす。
    (i)下記式(x)で表される化合物の場合、下記式(x)におけるM+の還元電位は、トリフェニルスルホニウムカチオンの還元電位よりも高い。
    (ii)下記式(x’)で表される基の場合、下記式(x’)におけるM+で表される1価のオニウムカチオンの還元電位は、トリフェニルスルホニウムカチオンの還元電位よりも高い。
    Figure JPOXMLDOC01-appb-C000004
    (式(x)中、Aは1価のアニオンである。Mは、1価のオニウムカチオンである。
     式(x’)中、A’は、1価のアニオンを含む1価の基である。Mは、式(x)と同義である。*は、重合体に結合する部位を示す。)
    (1) a polymer component that becomes soluble or insoluble in a developer by the action of an acid;
    (2) a component that generates a radiation-sensitive sensitizer and an acid upon exposure;
    (3) a component that is relatively basic to the acid generated by the component (2), and
    The component (2) contains the following component (a), any two components in the following components (a) to (c), or all of the following components (a) to (c):
    The component (a) or the component (c) has a first compound having a radiation-sensitive acid generating group,
    A chemically amplified resist material wherein the component (3) contains a second compound which is the following component (d).
    (A) When the first radiation that is radiation having a wavelength of 250 nm or less is irradiated and the second radiation that is radiation having a wavelength exceeding 250 nm is not irradiated, the acid and the second radiation are absorbed. A radiation-sensitive sensitizer and, when only the second radiation is irradiated without irradiation with the first radiation, the acid and radiation-sensitive sensitizer are not substantially generated. Acid-sensitizer generator.
    (B) When the first radiation is irradiated and the second radiation is not irradiated, a radiation-sensitive sensitizer that absorbs the second radiation is generated, and the first radiation is irradiated. A radiation-sensitive sensitizer generating agent that does not substantially generate the radiation-sensitive sensitizer when only the second radiation is irradiated.
    (C) When the first radiation is irradiated and the second radiation is not irradiated, an acid is generated, and the first radiation is not irradiated and only the second radiation is irradiated. A radiation-sensitive acid generator that does not substantially generate acid.
    (D) When the first radiation is irradiated and the second radiation is not irradiated, and when the second radiation is irradiated after the first radiation is irradiated, the component (2) is Radiation sensitivity that retains basicity with respect to the acid generated by the component (2) when the basic acid with respect to the generated acid is lost and only the second radiation is irradiated without irradiation with the first radiation. Photodegradable base. However, the radiation-sensitive photodegradable base satisfies the following conditions (i) and (ii).
    (I) In the case of a compound represented by the following formula (x), the reduction potential of M + in the following formula (x) is higher than the reduction potential of the triphenylsulfonium cation.
    (Ii) In the case of the group represented by the following formula (x ′), the reduction potential of the monovalent onium cation represented by M + in the following formula (x ′) is higher than the reduction potential of the triphenylsulfonium cation.
    Figure JPOXMLDOC01-appb-C000004
    (In formula (x), A is a monovalent anion. M + is a monovalent onium cation.
    ', A represents the formula (x)' - is a monovalent group comprising a monovalent anion. M + is synonymous with the formula (x). * Shows the site | part couple | bonded with a polymer. )
PCT/JP2017/028854 2016-08-08 2017-08-08 Chemically amplified resist material, and method for forming resist pattern WO2018030445A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-156024 2016-08-08
JP2016156024A JP2019168475A (en) 2016-08-08 2016-08-08 Chemical amplification type resist material and resist pattern formation method

Publications (1)

Publication Number Publication Date
WO2018030445A1 true WO2018030445A1 (en) 2018-02-15

Family

ID=61162557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028854 WO2018030445A1 (en) 2016-08-08 2017-08-08 Chemically amplified resist material, and method for forming resist pattern

Country Status (2)

Country Link
JP (1) JP2019168475A (en)
WO (1) WO2018030445A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020066630A (en) * 2018-10-22 2020-04-30 住友化学株式会社 Salt, acid generator, resist composition, and method for producing resist pattern
TWI693474B (en) * 2018-04-20 2020-05-11 日商信越化學工業股份有限公司 Resist composition and patterning process
JP7459636B2 (en) 2019-06-14 2024-04-02 Jsr株式会社 Radiation-sensitive resin composition and method for forming resist pattern

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7067081B2 (en) * 2017-02-20 2022-05-16 信越化学工業株式会社 Resist material and pattern forming method
JP2021103233A (en) * 2019-12-25 2021-07-15 東京応化工業株式会社 Resist composition and resist pattern forming method
JP2021103236A (en) * 2019-12-25 2021-07-15 東京応化工業株式会社 Resist composition and resist pattern forming method
WO2021131655A1 (en) 2019-12-27 2021-07-01 富士フイルム株式会社 Actinic-ray-sensitive or radiation-sensitive resin composition, actinic-ray-sensitive or radiation-sensitive film, pattern formation method, and electronic device manufacturing method
JP2021123580A (en) 2020-02-06 2021-08-30 住友化学株式会社 Carboxylate, carboxylic acid generator, resist composition, and method for producing resist pattern
WO2024070964A1 (en) * 2022-09-30 2024-04-04 富士フイルム株式会社 Actinic ray-sensitive or radiation-sensitive resin composition, actinic ray-sensitive or radiation-sensitive film, pattern forming method, and electronic device manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014129556A1 (en) * 2013-02-20 2014-08-28 国立大学法人大阪大学 Method of forming resist pattern, device for forming resist latent image, device for forming resist pattern, and resist material
JP2015172741A (en) * 2014-02-21 2015-10-01 東京エレクトロン株式会社 Photosensitization chemical amplification type resist material, pattern formation method using the same, semiconductor device, mask for lithography and template for nano imprint
JP2017040833A (en) * 2015-08-20 2017-02-23 国立大学法人大阪大学 Chemically amplified resist material
JP2017054116A (en) * 2015-09-10 2017-03-16 Jsr株式会社 Method for forming resist pattern
JP2017054048A (en) * 2015-09-10 2017-03-16 Jsr株式会社 Chemically amplified resist material and method for forming resist pattern
JP2017090914A (en) * 2015-11-09 2017-05-25 Jsr株式会社 Chemically amplified resist material and resist pattern forming method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014129556A1 (en) * 2013-02-20 2014-08-28 国立大学法人大阪大学 Method of forming resist pattern, device for forming resist latent image, device for forming resist pattern, and resist material
JP2015172741A (en) * 2014-02-21 2015-10-01 東京エレクトロン株式会社 Photosensitization chemical amplification type resist material, pattern formation method using the same, semiconductor device, mask for lithography and template for nano imprint
JP2017040833A (en) * 2015-08-20 2017-02-23 国立大学法人大阪大学 Chemically amplified resist material
JP2017054116A (en) * 2015-09-10 2017-03-16 Jsr株式会社 Method for forming resist pattern
JP2017054048A (en) * 2015-09-10 2017-03-16 Jsr株式会社 Chemically amplified resist material and method for forming resist pattern
JP2017090914A (en) * 2015-11-09 2017-05-25 Jsr株式会社 Chemically amplified resist material and resist pattern forming method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI693474B (en) * 2018-04-20 2020-05-11 日商信越化學工業股份有限公司 Resist composition and patterning process
JP2020066630A (en) * 2018-10-22 2020-04-30 住友化学株式会社 Salt, acid generator, resist composition, and method for producing resist pattern
JP7385420B2 (en) 2018-10-22 2023-11-22 住友化学株式会社 Resist composition and resist pattern manufacturing method
JP7459636B2 (en) 2019-06-14 2024-04-02 Jsr株式会社 Radiation-sensitive resin composition and method for forming resist pattern

Also Published As

Publication number Publication date
JP2019168475A (en) 2019-10-03

Similar Documents

Publication Publication Date Title
US10073349B2 (en) Chemically amplified resist material, pattern-forming method, compound, and production method of compound
JP6364361B2 (en) Photosensitized chemically amplified resist material, pattern forming method using the same, semiconductor device, lithography mask, and nanoimprint template manufacturing method
WO2018030445A1 (en) Chemically amplified resist material, and method for forming resist pattern
JP6809843B2 (en) Pattern formation method
KR102627765B1 (en) Chemically amplified resist material
US10018911B2 (en) Chemically amplified resist material and resist pattern-forming method
US9989849B2 (en) Chemically amplified resist material and resist pattern-forming method
JP2017054116A (en) Method for forming resist pattern
JP6586476B2 (en) Photosensitized chemically amplified resist material, pattern forming method using the same, semiconductor device, lithography mask, and nanoimprint template manufacturing method
JP6507958B2 (en) Chemically amplified resist material and resist pattern forming method
JP2018025739A (en) Chemically amplified resist material and method for forming resist pattern
JP2017090914A (en) Chemically amplified resist material and resist pattern forming method
JP2017173420A (en) Radiation-sensitive composition and pattern formation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17839513

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17839513

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP