WO2018030408A1 - Method for producing 1-chloro-2, 3, 3, 3-tetrafluoropropene - Google Patents

Method for producing 1-chloro-2, 3, 3, 3-tetrafluoropropene Download PDF

Info

Publication number
WO2018030408A1
WO2018030408A1 PCT/JP2017/028779 JP2017028779W WO2018030408A1 WO 2018030408 A1 WO2018030408 A1 WO 2018030408A1 JP 2017028779 W JP2017028779 W JP 2017028779W WO 2018030408 A1 WO2018030408 A1 WO 2018030408A1
Authority
WO
WIPO (PCT)
Prior art keywords
palladium
catalyst
hydrogen
catalyst layer
gas
Prior art date
Application number
PCT/JP2017/028779
Other languages
French (fr)
Japanese (ja)
Inventor
真吾 野村
岡本 秀一
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN201780048497.6A priority Critical patent/CN109563010B/en
Priority to JP2018533502A priority patent/JP6881457B2/en
Publication of WO2018030408A1 publication Critical patent/WO2018030408A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/23Preparation of halogenated hydrocarbons by dehalogenation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/18Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to a method for producing 1-chloro-2,3,3,3-tetrafluoropropene.
  • CF 3 CF CHCl, HCFO-1224yd; hereinafter also referred to as 1224yd
  • CF 3 CF CHCl, HCFO-1224yd
  • 1224yd 3,3-dichloro-1,1,1,2,2 -Pentafluoropropane
  • CF 3 -CF 2 -CHCl 2 , HCFC-225ca 3,3-dichloro-1,1,2,2,3-pentafluoropropane
  • ClF 2 -CF 2 -CHClF, HCFC-225cb 1,3-dichloro-1,1,2,2,3-pentafluoropropane
  • GWP global warming potential
  • Patent Document 1 1,1-dichloro-2,3,3,3-tetrafluoropropene (CF 3 CF ⁇ CCl 2 , CFO-1214ya; hereinafter also referred to as 1214ya). Is reduced by reacting with hydrogen in the presence of a palladium catalyst to obtain 2,3,3,3-tetrafluoropropene (CF 3 CF ⁇ CH 2 , HFO-1234yf), thereby obtaining 1224yd as an intermediate. It is described that In Patent Document 1, 1224yd obtained as an intermediate in the above reaction is used as a raw material compound for HFO-1234yf together with 1214ya.
  • Patent Document 1 there is a description of conditions and means for obtaining HFO-1234yf as a target substance in a high yield in a method of reducing 1214ya by reacting with hydrogen, but 1224yd, which is positioned as a byproduct, is efficiently obtained. There is no description of how to obtain. That is, in the method of Patent Document 1, 1224yd is also produced to some extent, but for 1224yd, HFO-1234yf, which is a hyperreductant, and 1,1,1,2-tetrafluoropropane (CF 3 CHFCH, which is a reductant thereof, are also used.
  • HFO-1234yf which is a hyperreductant
  • CF 3 CHFCH 1,1,1,2-tetrafluoropropane
  • the present invention reduces 1,1-dichloro-2,3,3,3-tetrafluoropropene (CFO-1214ya; hereinafter also referred to as 1214ya) to give 1-chloro-2,3,3,3-tetra
  • CFO-1214ya 1,1-dichloro-2,3,3,3-tetrafluoropropene
  • 1224yd 1,1,1-trifluoropropane
  • HFO 3,3,3-trifluoropropene which are perreducts are used.
  • An object of the present invention is to provide an efficient method for producing 1-chloro-2,3,3,3-tetrafluoropropene with reduced by-products such as ⁇ 1243zf).
  • 1224yd has a Z isomer and an E isomer, which are geometric isomers, depending on the position of the substituent on the double bond.
  • a compound name or abbreviation of a compound is used without particular notice, at least one selected from a Z-form and an E-form is shown, and (E) or ( When Z) is attached, it indicates that each compound is an E-form or a Z-form.
  • 1224yd (Z) indicates the Z isomer
  • 1224yd (E) indicates the E isomer.
  • the present invention provides a method for producing 1224yd having the following configuration.
  • Reacting 1,1-dichloro-2,3,3,3-tetrafluoropropene with hydrogen in the gas phase in the presence of a carrier to obtain 1-chloro-2,3,3,3-tetrafluoropropene.
  • a method for producing 1-chloro-2,3,3,3-tetrafluoropropene which is characterized.
  • the production method of the present invention is a method of obtaining 1224yd by reducing 1214ya for which a stable production method has been established, and is a method that is industrially easy to implement and can be carried out stably.
  • the method for producing 1224yd of the present invention it is possible to efficiently produce 1224yd with excellent selectivity while reducing by-products such as HFC-263fb and HFO-1243zf which are hyperreductants.
  • the production method of 1224yd according to the present invention uses a palladium catalyst having a palladium-containing metal and chlorine, and having a ratio of the number of moles of chlorine atoms to the number of moles of palladium atoms (Cl / Pd) of 2.0 or more.
  • a supported palladium catalyst support 1214ya is reacted with hydrogen (hereinafter also referred to as H 2 ) in the gas phase.
  • H 2 hydrogen
  • 1224yd obtained by the production method of the present invention may be a mixture of a Z-form and an E-form, may be a Z-form alone, or may be an E-form alone. 1224yd has a high proportion of halogen that suppresses flammability and has a carbon-carbon double bond in the molecule that is easily decomposed by OH radicals in the atmosphere. There is little influence and GWP is small. Therefore, it is highly useful for cleaning agents, refrigerants, foaming agents, solvents, and aerosol applications.
  • the manufacturing method of 1224yd of the present invention uses 1214ya as a raw material.
  • 1214ya can be produced by a known method.
  • the method for obtaining 1214ya is not particularly limited.
  • HCFC-225ca can be produced by a dehydrofluorination reaction by contacting it with an alkaline aqueous solution in the presence of a phase transfer catalyst. .
  • the HCFC-225ca used in the reaction of the formula (2) can be used in the form of a dichloropentafluoropropane (HCFC-225) isomer mixture containing HCFC-225ca and its isomer.
  • HCFC-225 dichloropentafluoropropane
  • the phase transfer catalyst tetrabutylammonium bromide (TBAB) is preferred.
  • the HCFC-225 isomer mixture containing HCFC-225ca can be produced, for example, by reacting tetrafluoroethylene and dichlorofluoromethane in the presence of a catalyst such as aluminum chloride.
  • the HCFC-225 isomer mixture obtained by the reaction contains HCFC-225ca and HCFC-225cb as main components, and 2,2-dichloro-1,1,3,3,3-pentafluoropropane ( CHF 2 CCl 2 CF 3 , HCFC-225aa), 2,3-dichloro-1,1,2,3,3-pentafluoropropane (CHF 2 CClFCClF 2 , HCFC-225bb) and the like are included in a small amount.
  • HCFC-225 isomer mixture containing HCFC-225ca a commercially available product may be used.
  • commercially available products include Asahiklin AK225 (manufactured by Asahi Glass Co., Ltd., trade name: 48 mol% of HCFC-225ca and 52 mol% of HCFC-225cb).
  • ⁇ Palladium catalyst support> 1214ya obtained by the above-described method and the like, hydrogen, a metal containing palladium and chlorine, and the ratio of the number of moles of chlorine atoms to the number of moles of palladium atoms (Cl / Pd) is The reaction is carried out in the gas phase in the presence of a palladium catalyst-supported carrier in which a palladium catalyst of 2.0 or more is supported on the carrier.
  • palladium having a palladium catalyst which has a palladium-containing metal and chlorine, and on which a palladium catalyst having a ratio of the number of moles of chlorine atoms to the number of moles of palladium atoms (Cl / Pd) of 2.0 or more is supported.
  • the catalyst support is also referred to as “palladium catalyst support (X)”.
  • the palladium catalyst is also referred to as “Pd catalyst”.
  • the by-product such as HFC-263fb and HFO-1243zf which are overreduced substances, is reduced and the selectivity is increased. This makes it possible to produce excellent and efficient 1224yd.
  • the palladium catalyst in the palladium catalyst-supported carrier (X) has a metal containing palladium and chlorine, and the ratio of the number of moles of chlorine atoms to the number of moles of palladium atoms (Cl / Pd) is 2.0 or more.
  • the metal containing palladium is also referred to as metal (M).
  • the metal (M) may be composed only of palladium, or may include a metal other than palladium (hereinafter also referred to as “other metal”).
  • the metal (M) is mainly composed of palladium, specifically, the ratio of the other metal to 100 parts by mass of palladium in the metal (M) is 50 parts by mass or less.
  • the proportion of the other metal with respect to 100 parts by mass of palladium is preferably 30 parts by mass or less, and more preferably 10 parts by mass or less from the viewpoint of reducing by-products.
  • the metal (M) does not contain any metal other than palladium, that is, it is particularly preferable that it is a simple substance of palladium because a high catalytic activity is obtained.
  • metals include Group 8 elements such as iron, ruthenium and osmium; Group 9 elements such as cobalt, rhodium and iridium; Group 10 elements such as nickel and platinum; Group 11 elements such as gold, silver and copper Elements: rhenium, zinc, cadmium, tin, lead, antimony, bismuth and the like. These other metals may be one kind or two or more kinds.
  • the metal (M) may be an alloy of palladium and other metals, that is, a palladium alloy, or a mixture of palladium and other metals. Examples of the palladium alloy include a palladium / platinum alloy and a palladium / rhodium alloy. When a metal (M) containing other metals in addition to palladium is used, the catalyst durability is higher than when a metal (M) made of palladium alone is used.
  • the palladium catalyst in the palladium catalyst support (X) has a metal containing palladium and chlorine, and the ratio of the number of moles of chlorine atoms to the number of moles of palladium atoms (Cl / Pd) is 2.0 or more.
  • Cl / Pd of the palladium catalyst is preferably 2.0 to 10.0, more preferably 2.0 to 5.0, from the viewpoint of further increasing the selectivity of 1224yd.
  • Cl / Pd of the palladium catalyst in the palladium catalyst-supported carrier (X) is calculated by the following method based on the type of the carrier and the hydrogen chloride treatment for obtaining the carrier. The calculation is carried out by treating a palladium-supported carrier (Y 0 ) on which 0.5% by mass of palladium is supported on the surface of silicon dioxide with a predetermined amount of hydrogen chloride and supporting a palladium catalyst having palladium and chlorine.
  • the carrier (Y) is used as a standard.
  • a palladium-supported carrier (Y 0 ) having 0.5 mass% palladium supported on the surface of silicon dioxide and silicon dioxide are prepared.
  • XPS X-ray photoelectron spectroscopy
  • hydrogen chloride throughput correction coefficient c is the palladium catalyst support (X) based on the hydrogen chloride throughput per unit mass (300 mL / min, 120 minutes) when producing the palladium catalyst support (Y) This is a value obtained by dividing the amount of hydrogen chloride treated per unit mass at the time of manufacturing by the above criteria.
  • Palladium carrying amount correction coefficient d is a coefficient given by the difference in the carrier between the palladium catalyst carrying carrier (Y) and the palladium catalyst carrying carrier (X).
  • the support of the palladium catalyst-supported carrier (X) is coconut shell activated carbon
  • the coconut shell activated carbon can support 1.4 times the mass of palladium with respect to silicon dioxide which is the support of the palladium catalyst-supported carrier (Y).
  • the correction coefficient d is 1.4.
  • the above d is a value obtained by multiplying the content ratio of palladium with respect to the metal (M) by the formula (4 ).
  • the palladium catalyst is used as a palladium catalyst-supported carrier (X) supported on a carrier.
  • the carrier include activated carbon and metal oxides such as alumina, zirconia, silica, and titania. Among these, activated carbon is preferable from the viewpoint of catalytic activity, durability, and reaction selectivity.
  • Examples of the activated carbon include those prepared using wood, charcoal, fruit husk, coconut husk, peat, lignite, coal, etc. as raw materials, those obtained from plant materials are preferred over mineral materials, and coconut shell activated carbon is particularly preferred. preferable.
  • Examples of the shape of the activated carbon include formed coal having a length of about 2 to 5 mm, crushed coal having a size of about 4 to 50 mesh, and granular coal. Of these, 4-20 mesh crushed coal or formed coal is preferable.
  • the amount of palladium catalyst supported on the palladium catalyst-supported carrier (X) is preferably 0.1 to 10% by mass, more preferably 0.5 to 1% by mass, based on the carrier, as the amount of metal (M).
  • the amount of the palladium catalyst supported is equal to or greater than the lower limit, the reaction rate between 1214ya and hydrogen is improved. If the supported amount of the palladium catalyst is not more than the upper limit, it is easy to suppress an excessive temperature rise of the catalyst layer (described later) due to reaction heat, and it is easy to reduce the production of by-products.
  • the palladium catalyst-supported carrier (X) is a metal (M) -supported carrier on which the metal (M) is supported, and Cl / Pd in the obtained palladium catalyst-supported carrier (X) falls within the above predetermined range.
  • a method of supporting the metal (M) on the support a method of supporting a metal catalyst on the support can be used without any particular limitation.
  • the activated carbon when palladium alone is a metal (M) and the carrier is activated carbon, the activated carbon is impregnated with an aqueous solution of a palladium salt such as palladium chloride (II), palladium nitrate (II), tetraamine palladium (II) chloride and dried.
  • a palladium salt such as palladium chloride (II), palladium nitrate (II), tetraamine palladium (II) chloride and dried.
  • the hydrogen chloride gas treatment for obtaining the palladium catalyst-supported carrier (X) from the metal (M) -supported carrier can be performed, for example, under heating.
  • a metal (M) -supported carrier is filled in a reactor similar to that used in the production of 1224yd, and hydrogen chloride gas is supplied to the reactor while adjusting the temperature of the reactor with an oil bath or the like.
  • the palladium catalyst-supported carrier (X) can be prepared with The heating temperature is preferably 10 to 80 ° C. as the temperature of the oil bath or the like.
  • the treatment time in this case depends on the filling amount of the metal (M) -supported carrier in the reactor, the flow rate of hydrogen chloride gas, the temperature of the oil bath, etc., but the Cl / Pd in the palladium catalyst is reduced by approximately 1 to 20 hours.
  • a palladium catalyst-supported carrier (X) adjusted to the above range is obtained.
  • the reactor filled with the palladium catalyst-supported carrier (X) can be used as it is for the production of the following 1224yd. .
  • the catalyst layer is usually formed by filling the reactor with a palladium catalyst-supported carrier (X).
  • the packing density of the palladium catalyst-loaded support (X) in the catalyst layer is preferably 0.3 ⁇ 1g / cm 3, more preferably 0.4 ⁇ 0.8g / cm 3. If the packing density of the palladium catalyst-carrying support (X) is equal to or higher than the lower limit, the amount of palladium catalyst-carrying support (X) per unit volume is large, and the amount of gas to be reacted can be increased, thereby improving productivity. To do.
  • the packing density of the palladium catalyst-carrying support (X) is not more than the upper limit value, it is easy to suppress an excessive temperature rise of the catalyst layer due to the heat of reaction, and it is easy to reduce the production of by-products.
  • gaseous 1214ya and hydrogen are introduced from one side of the catalyst layer.
  • the introduced 1214ya and hydrogen gas react in the gas phase while passing through the catalyst layer to produce 1224yd.
  • the product gas containing 1224yd is discharged from the side of the catalyst layer opposite to the side where 1214ya and hydrogen are introduced.
  • the side of the catalyst layer where 1214ya and hydrogen are introduced is referred to as a “gas introduction part”, and the side where the product gas is discharged is referred to as a “gas discharge part”.
  • the ratio of 1214ya and hydrogen introduced into the catalyst layer is the ratio between the number of moles of 1214ya and the number of moles of hydrogen (H 2 / 1214ya), and the value is preferably 1.4 or less.
  • the molar ratio (H 2 / 1214ya) is preferably 0.2 or more, more preferably 0.4 or more, and most preferably 0.5 or more, from the viewpoint of the yield of 1224yd.
  • the molar ratio (H 2 / 1214ya) is preferably 0.2 or more and 1.4 or less, from the viewpoint of reducing by-products such as HFC-263fb and HFO-1243zf, and the yield of 1224yd, and is preferably 0.4 or more. 1.2 or less is more preferable, and 0.5 or more and 1.0 or less is most preferable.
  • the ratio of 1214ya introduced into the catalyst layer and the total amount of hydrogen introduced into the catalyst layer is 1214ya and the molar ratio of hydrogen (H 2 / 1214ya).
  • the molar ratio of 1214ya to hydrogen (H 2 / 1214ya) is preferably 0.2 or more, more preferably 0.4 or more, and most preferably 0.5 or more.
  • the molar ratio of 1214ya to hydrogen is preferably 0.2 or more and 1.4 or less, more preferably 0.4 or more and 1.2 or less, and 0.5 or more and 1.0 or less. Most preferred.
  • the reaction temperature at which 1214ya reacts with hydrogen is a gas phase reaction, and therefore a mixed gas of 1214ya and hydrogen used for the reaction, but when an inert gas is used, The temperature exceeds the dew point of the active gas mixture.
  • the reaction temperature is preferably 200 ° C. or less, more preferably 190 ° C. or less, and particularly preferably 150 to 190 ° C. from the viewpoint of suppressing the formation of by-products.
  • the reaction temperature in the production method of the present invention is specifically indicated by the temperature in the reaction zone of the catalyst layer described below.
  • the temperature of the reaction zone of the catalyst layer that is, the maximum temperature of the catalyst layer, within the above reaction temperature range, it is possible to improve the reactivity and suppress the production of by-products.
  • the temperature of the catalyst layer gradually decreases with the progress of catalyst deterioration, and there is a problem that the reaction rate decreases. Therefore, it is preferable to perform an operation of keeping the temperature of the catalyst layer at a predetermined temperature so that a high reaction rate can be maintained.
  • the temperature of the heat medium is preferably 40 to 100 ° C, more preferably 80 to 100 ° C.
  • perfluoroether, nitrate, silicone oil, water and the like are preferable, and perfluoroether or water is more preferable.
  • the temperature of the catalyst layer refers to the temperature of the catalyst layer that is maintained by external heating or the like.
  • 1214ya and hydrogen react in a partial region of the catalyst layer, and the reaction zone (region where 1214ya and hydrogen react) becomes higher in temperature than the other catalyst layer regions due to the generation of reaction heat.
  • the reaction zone usually gradually moves from the vicinity of the gas introduction portion to the downstream side in the gas flow direction.
  • a product gas having a high temperature generated in the reaction zone flows on the downstream side of the reaction zone, and usually becomes higher than the temperature of the catalyst layer, and gradually decreases as the distance from the reaction zone increases.
  • the temperature of the catalyst layer refers to the temperature on the upstream side of the reaction zone, that is, the temperature of the catalyst layer that is heated from the outside with a heating medium or the like to maintain the temperature.
  • the maximum temperature of the catalyst layer is not more than the upper limit value of the reaction temperature.
  • the temperature in the reaction zone where 1214ya reacts with hydrogen and the downstream region thereof become higher than the temperature of the catalyst layer in the other region due to the heat of reaction.
  • the maximum temperature of the catalyst layer during the reaction means the maximum temperature of the catalyst layer region that is higher than the other regions due to the generation of the reaction heat.
  • the following measuring method using an insertion type thermometer is mentioned, for example.
  • the catalyst in the vicinity of the gas introduction part into which these are introduced in a gaseous state contributes to the reaction, and when the catalyst in the vicinity of the gas introduction part deteriorates, the downstream catalyst reacts. As it contributes, the reaction zone in the catalyst layer gradually moves toward the gas discharge side. That is, since the portion showing the maximum temperature of the catalyst layer moves with the movement of the reaction zone of 1214ya and hydrogen, the measurement part of the insertion type thermometer is positioned in the gas introduction part of the catalyst layer in advance. The maximum temperature of the catalyst layer can be measured by moving the measuring unit as the reaction proceeds.
  • Hydrogen split introduction means introduction of 1214ya and hydrogen into the gas introduction part of the catalyst layer and introduction of hydrogen from at least one place between the gas introduction part and the gas discharge part of the catalyst layer. That is, hydrogen is introduced from at least one location of the catalyst layer other than the gas introduction portion, that is, from a total of 2 or more locations.
  • the amount of 1214ya and hydrogen introduced into the gas introduction part of the catalyst layer is a part of the hydrogen introduced into the catalyst layer and the total amount of 1214ya.
  • Residual hydrogen is introduced into the catalyst layer downstream in the gas flow direction from the hydrogen introduction part, and hydrogen (usually a product gas after a part of 1214ya has reacted with hydrogen) flowing through the catalyst layer at the introduction position is hydrogen.
  • the unreacted 1214ya reacts with hydrogen in the catalyst layer downstream from the hydrogen introduction position, and is generated from the gas discharge part of the catalyst layer (located on the most downstream side in the gas flow direction in the catalyst layer). Exhaust the gas.
  • the hydrogen introduction part on the most downstream side in the gas flow direction is a catalyst layer between the hydrogen introduction part and the gas discharge part, and the position where hydrogen introduced from the hydrogen introduction part can sufficiently react with 1214ya. It is preferable to provide in.
  • the introduction of hydrogen in the method (A) may be divided and introduced into two places or may be introduced into three or more places. From the viewpoint of simplifying the process, it is preferable to introduce hydrogen from two places. It is preferable that the amount of hydrogen introduced separately in two or more places in the catalyst layer is equal to the amount of each hydrogen introduced separately in that the maximum temperature of the catalyst layer can be easily maintained low.
  • hydrogen can be dividedly introduced by introducing a part of hydrogen into the catalyst layer on the most upstream side (first stage) together with 1214ya and the remaining part downstream from the first stage.
  • paragraph of the side is mentioned.
  • method (B) As a method for controlling the maximum temperature of the catalyst layer other than the method (A), there is a method (method (B)) in which an inert gas is allowed to flow through the catalyst layer together with 1214ya and hydrogen.
  • an inert gas By causing the inert gas to flow and adjusting the concentration of 1214ya and hydrogen flowing in the catalyst layer, an excessive temperature rise of the catalyst layer due to reaction heat can be suppressed.
  • a diluent gas other than the inert gas can be used instead of the inert gas or together with the inert gas.
  • inert gas examples include nitrogen, rare gases (such as helium and argon), carbon dioxide, and chlorofluorocarbons inert to the hydrogenation reaction.
  • the amount of the inert gas introduced into the catalyst layer is less than 1 mol of 1214ya because it is easy to maintain the maximum temperature of the catalyst layer low, to easily reduce the formation of by-products, and to suppress deterioration of the catalyst. 0.5 mol or more is preferable, and 1.0 mol or more is more preferable. Further, the introduction amount of the inert gas is preferably 10.0 mol or less and more preferably 4.0 mol or less with respect to 1 mol of 1214ya from the viewpoint of the recovery rate of the inert gas.
  • the temperature of the catalyst layer is set to a lower temperature with the dew point of the mixed gas of 1214ya and hydrogen used for the reaction as the lower limit.
  • a method (method (C)) is mentioned.
  • the temperature is set to a lower temperature with the dew point of the mixed gas of 1214ya, hydrogen and inert gas as the lower limit.
  • the lower the temperature of the catalyst layer the more advantageous it is to suppress the production of by-products that are difficult to separate from the target product 1224yd, and in the reaction in a state where the raw material is liquefied
  • the temperature of the catalyst layer is preferably higher than the dew point of the above mixed gas from the viewpoint that the yield of 1224yd decreases due to an increase in the production of by-products in which 1224yd is excessively reduced. More preferably, it is higher than the dew point and lower than 50 ° C., more preferably higher than the dew point and not higher than 30 ° C.
  • the reaction pressure is preferably normal pressure from the viewpoint of handleability.
  • the reaction time is preferably 0.4 to 400 seconds, more preferably 1 to 400 seconds, and most preferably 4 to 400 seconds.
  • the reaction time is specifically the contact time of 1214ya with respect to the palladium catalyst-supported support (X). This contact time is calculated from the volume of 1214ya introduced into the reactor and the volume of the catalyst layer.
  • the linear velocity u of 1214ya represented by the following formula (5) in the catalyst layer is preferably 0.1 to 100 cm / sec, more preferably 0.1 to 30 cm / sec, Most preferred is ⁇ 10 cm / sec.
  • productivity is improved and 1214ya tends to flow uniformly through the catalyst layer.
  • the linear velocity u is 100 cm / sec or less, the reaction rate between 1214ya and hydrogen is improved, and if the linear velocity u is 30 cm / sec or less, temperature control near the reaction point by heat generation becomes easy.
  • the linear velocity u is calculated by the following equation (5) from the gas amount of 1214ya introduced into the reactor and the volume of the catalyst layer.
  • u (W / 100) ⁇ V / S
  • W 1214ya concentration (mol%) in the total gas flowing through the catalyst layer
  • V Flow rate of all gases flowing through the catalyst layer (cm 3 / sec)
  • S Cross-sectional area of the catalyst layer with respect to the gas flow direction (cm 2 )
  • the gaseous components to be introduced into the catalyst layer include, in addition to 1214ya, hydrogen, an inert gas as an optional component, and a dilution gas, other components within a range that does not impair the effects of the present invention. It may be included. Examples of the other components include a component that is brought together with 1214ya as an impurity when 1214ya is prepared.
  • Examples of the reactor used in the production method of the present invention include known reactors that can be filled with a catalyst-supporting carrier to form a catalyst layer.
  • Examples of the material for the reactor include glass, iron, nickel, and alloys containing these as main components.
  • the product gas after the reaction includes unreacted raw materials, HFO-1234yf, HFC-254eb, HFC-263fb, HFO-1243zf, etc., and hydrogen chloride (HCl), in addition to the target 1224yd. included.
  • the HCl contained in the product gas can be removed by, for example, blowing the product gas into an alkaline aqueous solution to neutralize it.
  • alkali used in the alkaline aqueous solution include sodium hydroxide and potassium hydroxide.
  • the amount of HCl contained in the product gas is small and does not particularly affect Cl / Pd of the palladium catalyst-supported carrier.
  • a method for recovering 1224yd from the product gas for example, a known method such as fractional distillation can be employed.
  • the obtained 1224yd is usually a mixture of E-form and Z-form of 1224yd.
  • a separation and purification method such as distillation may be used.
  • a palladium catalyst having a metal containing palladium and chlorine, and the ratio of the number of moles of chlorine atoms to the number of moles of palladium atoms (Cl / Pd) is 2.0 or more.
  • a by-product such as HFO-1234yf, HFC-254eb, HFC-263fb, HFO-1243zf, etc., which are overreduced substances Is reduced.
  • the effect of suppressing by-production of HFC-263fb and HFO-1243zf is particularly remarkable.
  • Examples 1 to 4 are examples, and examples 5 to 6 are comparative examples.
  • the palladium catalyst-supported carrier used in each example was prepared as follows.
  • the palladium catalyst support (X1) and (X2) are the palladium catalyst support according to the present invention
  • the palladium catalyst support (Cf1) is the palladium catalyst support for the comparative example.
  • palladium-supported activated carbon in which 0.5% by mass of palladium was supported on 100% by mass of coconut shell activated carbon having a particle size of 4 to 8 mesh (manufactured by N.E. Hereinafter referred to as “palladium-supported activated carbon (A)”).
  • Preparation Example 2 A palladium catalyst-supported carrier (X2) was obtained in the same manner as in Preparation Example 1 except that the hydrogen chloride treatment time in Preparation Example 1 was changed from 2 hours to 8 hours.
  • the Cl / Pd of the palladium catalyst in the obtained palladium catalyst-supported carrier (X2) was calculated by the above calculation method and found to be 4.6.
  • X1 palladium catalyst-supported support
  • the reaction apparatus 100 has a 1214ya gas storage container 1, a hydrogen gas storage container 2, and a nitrogen gas storage container 3, and each container is connected to the inlet 7 of the reaction tube 8 through pipes 4, 5, and 6, respectively. ing.
  • the gas discharged from the outlet 11 of the reaction tube 8 is transferred to the alkali cleaning tank 14 through the pipe 13 and is recovered in the product gas storage container 16 through the pipe 15 after the alkali cleaning.
  • the gas discharged from the outlet 11 of the reaction tube 8 is referred to as “outlet gas”, and the gas obtained by alkali cleaning of the outlet gas is referred to as “product gas”.
  • reaction tube 8 was immersed in an oil bath 9 whose temperature was adjusted to 45 ° C. so that the catalyst layer 10 was all immersed, and the catalyst layer 10 was heated to 45 ° C.
  • 1214ya gas, hydrogen gas and nitrogen gas were passed through the reaction tube 8, and the discharged outlet gas was washed with alkali to obtain a product gas.
  • the contact time of 1214ya gas with respect to the palladium catalyst support (X1) packed in the catalyst layer 10 is 12 seconds, and the ratio between the number of moles of 1214ya gas and the number of moles of the total amount of hydrogen gas introduced into the catalyst layer ( H 2 / 1214ya) was set to 1.0.
  • the ratio (N 2 / 1214ya) between the number of moles of 1214ya gas and the number of moles of the total amount of nitrogen gas introduced into the catalyst layer was 2.0.
  • the linear velocity u of 1214ya was 0.8 cm / second.
  • reaction temperature the maximum temperature (reaction temperature) of the catalyst layer 10 during the reaction was measured by a plug-in thermometer 12 inserted in the catalyst layer, and was 171 ° C.
  • the alkali cleaning of the outlet gas was performed with a 20 mass% sodium hydroxide aqueous solution at a temperature of 15 ° C.
  • Example 2 A product gas was obtained in the same manner as in Example 1 except that the temperature of the oil bath 9 was changed to 80 ° C. It was 183 degreeC when the maximum temperature of the catalyst layer 10 during reaction was measured with the insertion type thermometer 12 inserted in the catalyst layer.
  • Example 4 A product gas was obtained in the same manner as in Example 3 except that the temperature of the oil bath 9 was changed to 80 ° C. The maximum temperature of the catalyst layer 10 during the reaction was measured by a plug-in thermometer 12 inserted into the catalyst layer, and found to be 171 ° C.
  • Example 6 A product gas was obtained in the same manner as in Example 5 except that the temperature of the oil bath 9 was changed to 80 ° C. The maximum temperature of the catalyst layer 10 during the reaction was measured by a plug-in thermometer 12 inserted into the catalyst layer, and found to be 171 ° C.
  • Table 1 shows the area ratio in the GC analysis of the product gas as a molar ratio (unit: mol%).
  • support carrier in Table 1 shows only a code
  • Examples 1 to 4 which are examples of the present invention, have a ratio of the number of moles of chlorine atoms to the number of moles of palladium atoms in the palladium catalyst-supported carrier (Cl / Pd). Compared with Examples 5 to 6, which are outside the scope of the present invention, higher results were obtained for the sum of the selectivity X to 1224yd (Z) and the selectivity Y to 1224yd (E), and the yield of 1224yd. Further, in Examples 1 to 4, the by-products of the hyperreductants HFC-263fb and HFO-1243zf were remarkably suppressed.
  • high purity 1224yd can be produced by suppressing the production of reductants such as HFC-263fb and HFO-1243zf in the method of obtaining 1224yd by reducing 1214ya.
  • 1224yd obtained by the method of the present invention has a small global warming potential (GWP), and is useful as a substitute for chlorofluorocarbons for cleaning agents, refrigerants, foaming agents, solvents, aerosols, and the like.
  • GWP global warming potential

Abstract

Provided is an efficient method for producing 1-chloro-2, 3, 3, 3-tetrafluoropropene by reducing 1,1-dichloro-2, 3, 3, 3-tetrafluoropropene, the method generating fewer by-products such as 1, 1, 1-trifluoropropane and 3, 3, 3-trifluoropropene that are products of over-reduction. The method for producing 1-chloro-2, 3, 3, 3-tetrafluoropropene is characterized by obtaining 1-chloro-2, 3, 3, 3-tetrafluoropropene by reacting, in a vapor phase, 1,1-dichloro-2, 3, 3, 3-tetrafluoropropene with hydrogen in the presence of a palladium catalyst-supporting carrier that is obtained by having a carrier support a palladium catalyst that comprises chlorine and a metal containing palladium so that the ratio of the number of moles of chlorine atoms to the number of moles of palladium atoms, namely Cl/Pd, is 2.0 or more.

Description

1-クロロ-2,3,3,3-テトラフルオロプロペンの製造方法Process for producing 1-chloro-2,3,3,3-tetrafluoropropene
 本発明は、1-クロロ-2,3,3,3-テトラフルオロプロペンを製造する方法に関する。 The present invention relates to a method for producing 1-chloro-2,3,3,3-tetrafluoropropene.
 1-クロロ-2,3,3,3-テトラフルオロプロペン(CFCF=CHCl、HCFO-1224yd。以下、1224ydとも記す。)は、3,3-ジクロロ-1,1,1,2,2-ペンタフルオロプロパン(CF-CF-CHCl、HCFC-225ca)や1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン(CClF-CF-CHClF、HCFC-225cb)等のクロロフルオロカーボンに代わって、新たに洗浄剤、冷媒、発泡剤、溶剤、およびエアゾール用途等に有用とされる、地球温暖化係数(GWP)が小さく地球環境に負荷の少ない化合物である。 1-chloro-2,3,3,3-tetrafluoropropene (CF 3 CF = CHCl, HCFO-1224yd; hereinafter also referred to as 1224yd) is 3,3-dichloro-1,1,1,2,2 -Pentafluoropropane (CF 3 -CF 2 -CHCl 2 , HCFC-225ca) and 1,3-dichloro-1,1,2,2,3-pentafluoropropane (CClF 2 -CF 2 -CHClF, HCFC-225cb) It is a compound with a low global warming potential (GWP) and less burden on the global environment, which is newly useful for cleaning agents, refrigerants, foaming agents, solvents, aerosols and the like in place of chlorofluorocarbons such as).
 1224ydの製造例としては、例えば、特許文献1に、1,1-ジクロロ-2,3,3,3-テトラフルオロプロペン(CFCF=CCl、CFO-1214ya。以下、1214yaとも記す。)をパラジウム触媒の存在下、水素と反応させて還元することで2,3,3,3-テトラフルオロプロペン(CFCF=CH、HFO-1234yf)を得る際に、中間体として1224ydが得られることが記載されている。特許文献1では、上記反応において中間体として得られる1224ydを1214yaとともに、HFO-1234yfの原料化合物として使用している。 As an example of production of 1224yd, for example, in Patent Document 1, 1,1-dichloro-2,3,3,3-tetrafluoropropene (CF 3 CF═CCl 2 , CFO-1214ya; hereinafter also referred to as 1214ya). Is reduced by reacting with hydrogen in the presence of a palladium catalyst to obtain 2,3,3,3-tetrafluoropropene (CF 3 CF═CH 2 , HFO-1234yf), thereby obtaining 1224yd as an intermediate. It is described that In Patent Document 1, 1224yd obtained as an intermediate in the above reaction is used as a raw material compound for HFO-1234yf together with 1214ya.
 上記特許文献1には、1214yaを水素と反応させて還元する方法において、目的物質であるHFO-1234yfを高収率で得る条件や手段の記載はあるが、副生物として位置づけられる1224ydを効率よく得る方法について記載はない。すなわち、特許文献1の方法では、1224ydも多少生成されるが、1224ydにとっては過還元体であるHFO-1234yfやさらにその還元体である1,1,1,2-テトラフルオロプロパン(CFCHFCH、HFC-254eb)、1,1,1-トリフルオロプロパン(CFCHCH、HFC-263fb)、3,3,3-トリフルオロプロペン(CFCH=CH、HFO-1243zf)等が多量に副生する問題がある。 In the above Patent Document 1, there is a description of conditions and means for obtaining HFO-1234yf as a target substance in a high yield in a method of reducing 1214ya by reacting with hydrogen, but 1224yd, which is positioned as a byproduct, is efficiently obtained. There is no description of how to obtain. That is, in the method of Patent Document 1, 1224yd is also produced to some extent, but for 1224yd, HFO-1234yf, which is a hyperreductant, and 1,1,1,2-tetrafluoropropane (CF 3 CHFCH, which is a reductant thereof, are also used. 3 , HFC-254eb), 1,1,1-trifluoropropane (CF 3 CH 2 CH 3 , HFC-263fb), 3,3,3-trifluoropropene (CF 3 CH═CH 2 , HFO-1243zf) There is a problem that a large amount of etc. are by-produced.
国際公開第2011/162341号International Publication No. 2011/162341
 本発明は、1,1-ジクロロ-2,3,3,3-テトラフルオロプロペン(CFO-1214ya。以下、1214yaとも記す。)を還元して1-クロロ-2,3,3,3-テトラフルオロプロペン(HCFO-1224yd。以下、1224ydとも記す。)を得る方法において、過還元体である1,1,1-トリフルオロプロパン(HFC-263fb)や3,3,3-トリフルオロプロペン(HFO-1243zf)等の副生を低減した効率的な1-クロロ-2,3,3,3-テトラフルオロプロペンの製造方法を提供することを目的とする。 The present invention reduces 1,1-dichloro-2,3,3,3-tetrafluoropropene (CFO-1214ya; hereinafter also referred to as 1214ya) to give 1-chloro-2,3,3,3-tetra In a method for obtaining fluoropropene (HCFO-1224yd; hereinafter also referred to as 1224yd), 1,1,1-trifluoropropane (HFC-263fb) and 3,3,3-trifluoropropene (HFO) which are perreducts are used. An object of the present invention is to provide an efficient method for producing 1-chloro-2,3,3,3-tetrafluoropropene with reduced by-products such as −1243zf).
 本明細書において、ハロゲン化炭化水素については、化合物名の後の括弧内にその化合物の略称を記すが、本明細書では必要に応じて化合物名に代えてその略称を用いる。 In this specification, for halogenated hydrocarbons, the abbreviations of the compounds are shown in parentheses after the compound names. In the present specification, the abbreviations are used instead of the compound names as necessary.
 1224ydは二重結合上の置換基の位置により、幾何異性体であるZ体とE体が存在する。本明細書中では特に断らずに化合物名や化合物の略称を用いた場合には、Z体およびE体から選ばれる少なくとも1種を示し、化合物名や化合物の略称の後ろに(E)または(Z)を付した場合には、其々の化合物のE体またはZ体であることを示す。例えば、1224yd(Z)はZ体を示し、1224yd(E)はE体を示す。 1224yd has a Z isomer and an E isomer, which are geometric isomers, depending on the position of the substituent on the double bond. In the present specification, when a compound name or abbreviation of a compound is used without particular notice, at least one selected from a Z-form and an E-form is shown, and (E) or ( When Z) is attached, it indicates that each compound is an E-form or a Z-form. For example, 1224yd (Z) indicates the Z isomer, and 1224yd (E) indicates the E isomer.
 本発明は、以下に示す構成の1224ydの製造方法を提供する。
 [1]パラジウムを含む金属と塩素とを有し、パラジウム原子のモル数に対する塩素原子のモル数の比(Cl/Pd)が2.0以上であるパラジウム触媒を担体に担持させたパラジウム触媒担持担体の存在下、気相で1,1-ジクロロ-2,3,3,3-テトラフルオロプロペンを水素と反応させて1-クロロ-2,3,3,3-テトラフルオロプロペンを得ることを特徴とする1-クロロ-2,3,3,3-テトラフルオロプロペンの製造方法。
 [2]前記パラジウム原子のモル数に対する塩素原子のモル数の比(Cl/Pd)が2.0~5.0である、[1]に記載の製造方法。
 [3]前記パラジウムを含む金属におけるパラジウム100質量部に対するパラジウム以外の金属の割合が50質量部以下である、[1]または[2]に記載の製造方法。
 [4]前記担体に対する前記パラジウムを含む金属の質量割合が、0.1~10質量%である[1]~[3]のいずれかに記載の製造方法。
 [5]前記パラジウムを含む金属がパラジウム単体である[1]~[4]のいずれかに記載の製造方法。
 [6]前記担体が活性炭である[1]~[5]のいずれかに記載の製造方法。
 [7]前記活性炭がヤシ殻活性炭である、[6]に記載の製造方法。
 [8]前記1,1-ジクロロ-2,3,3,3-テトラフルオロプロペンのモル数に対する前記水素のモル数の比(H/1214ya)が1.4以下である、[1]~[7]のいずれかに記載の製造方法。
 [9]前記1,1-ジクロロ-2,3,3,3-テトラフルオロプロペンを水素と反応させる反応温度が200℃以下である、[1]~[8]のいずれかに記載の製造方法。
The present invention provides a method for producing 1224yd having the following configuration.
[1] A palladium catalyst carrying a palladium catalyst having a palladium-containing metal and chlorine and having a ratio of the number of moles of chlorine to the number of moles of palladium (Cl / Pd) of 2.0 or more. Reacting 1,1-dichloro-2,3,3,3-tetrafluoropropene with hydrogen in the gas phase in the presence of a carrier to obtain 1-chloro-2,3,3,3-tetrafluoropropene. A method for producing 1-chloro-2,3,3,3-tetrafluoropropene, which is characterized.
[2] The production method according to [1], wherein the ratio of the number of moles of chlorine atoms to the number of moles of palladium atoms (Cl / Pd) is 2.0 to 5.0.
[3] The production method according to [1] or [2], wherein a ratio of a metal other than palladium to 100 parts by mass of palladium in the metal containing palladium is 50 parts by mass or less.
[4] The production method according to any one of [1] to [3], wherein a mass ratio of the metal containing palladium to the carrier is 0.1 to 10% by mass.
[5] The production method according to any one of [1] to [4], wherein the metal containing palladium is palladium alone.
[6] The production method according to any one of [1] to [5], wherein the carrier is activated carbon.
[7] The production method according to [6], wherein the activated carbon is coconut shell activated carbon.
[8] The ratio of the number of moles of hydrogen to the number of moles of 1,1-dichloro-2,3,3,3-tetrafluoropropene (H 2 / 1214ya) is 1.4 or less. [7] The production method according to any one of [7].
[9] The production method according to any one of [1] to [8], wherein the reaction temperature for reacting the 1,1-dichloro-2,3,3,3-tetrafluoropropene with hydrogen is 200 ° C. or lower. .
 本発明の製造方法は、安定した製造方法が確立されている1214yaを還元して1224ydを得る方法であり、工業的に実施しやすく、安定に実施可能な方法である。また、本発明の1224ydの製造方法によれば、過還元体であるHFC-263fbやHFO-1243zf等の副生を低減した、選択率に優れた効率的な1224ydの製造が可能である。 The production method of the present invention is a method of obtaining 1224yd by reducing 1214ya for which a stable production method has been established, and is a method that is industrially easy to implement and can be carried out stably. In addition, according to the method for producing 1224yd of the present invention, it is possible to efficiently produce 1224yd with excellent selectivity while reducing by-products such as HFC-263fb and HFO-1243zf which are hyperreductants.
実施例に使用した反応装置を示した模式図である。It is the schematic diagram which showed the reaction apparatus used for the Example.
 本発明の1224ydの製造方法は、パラジウムを含む金属と塩素とを有し、パラジウム原子のモル数に対する塩素原子のモル数の比(Cl/Pd)が2.0以上であるパラジウム触媒を担体に担持させたパラジウム触媒担持担体の存在下、気相で1214yaを水素(以下、Hとも記す。)と反応させることを特徴とする。
 本発明の1224ydの製造方法に係る1214yaと水素の反応は下式(1)で示される。
The production method of 1224yd according to the present invention uses a palladium catalyst having a palladium-containing metal and chlorine, and having a ratio of the number of moles of chlorine atoms to the number of moles of palladium atoms (Cl / Pd) of 2.0 or more. In the presence of a supported palladium catalyst support, 1214ya is reacted with hydrogen (hereinafter also referred to as H 2 ) in the gas phase.
The reaction of 1214ya and hydrogen according to the production method of 1224yd of the present invention is represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 本発明の製造方法で得られる1224ydは、Z体およびE体の混合物であってもよく、Z体のみであってもよく、E体のみでもよい。1224ydは、燃焼性を抑えるハロゲンの割合が高いうえに、大気中のOHラジカルによって分解され易い炭素-炭素二重結合を分子内に有していることから、燃焼性が低く、オゾン層への影響が少なく、かつGWPが小さい。したがって、洗浄剤、冷媒、発泡剤、溶剤、およびエアゾール用途として有用性が高い。 1224yd obtained by the production method of the present invention may be a mixture of a Z-form and an E-form, may be a Z-form alone, or may be an E-form alone. 1224yd has a high proportion of halogen that suppresses flammability and has a carbon-carbon double bond in the molecule that is easily decomposed by OH radicals in the atmosphere. There is little influence and GWP is small. Therefore, it is highly useful for cleaning agents, refrigerants, foaming agents, solvents, and aerosol applications.
<1214ya>
 本発明の1224ydの製造方法は1214yaを原料とする。1214yaは、公知の方法により製造できる。1214yaの入手方法は特に限定されず、例えば、式(2)に示されるとおり、HCFC-225caを相間移動触媒の存在下にアルカリ水溶液と接触させて脱フッ化水素反応させる方法により製造可能である。
<1214ya>
The manufacturing method of 1224yd of the present invention uses 1214ya as a raw material. 1214ya can be produced by a known method. The method for obtaining 1214ya is not particularly limited. For example, as shown in formula (2), HCFC-225ca can be produced by a dehydrofluorination reaction by contacting it with an alkaline aqueous solution in the presence of a phase transfer catalyst. .
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 なお、式(2)の反応に用いるHCFC-225caは、HCFC-225caとその異性体を含むジクロロペンタフルオロプロパン(HCFC-225)異性体混合物の状態で使用できる。HCFC-225異性体混合物を用いる場合、相間移動触媒によりHCFC-225異性体混合物中のHCFC-225caのみが選択的に脱フッ化水素される。反応後、得られた1214yaは蒸留等の公知の方法により分離回収できる。相間移動触媒としては、テトラブチルアンモニウムブロマイド(TBAB)が好ましい。 The HCFC-225ca used in the reaction of the formula (2) can be used in the form of a dichloropentafluoropropane (HCFC-225) isomer mixture containing HCFC-225ca and its isomer. When the HCFC-225 isomer mixture is used, only the HCFC-225ca in the HCFC-225 isomer mixture is selectively dehydrofluorinated by the phase transfer catalyst. After the reaction, the obtained 1214ya can be separated and recovered by a known method such as distillation. As the phase transfer catalyst, tetrabutylammonium bromide (TBAB) is preferred.
 HCFC-225caを含むHCFC-225異性体混合物は、例えば、テトラフルオロエチレンとジクロロフルオロメタンを、塩化アルミニウム等の触媒の存在下で反応させることにより製造できる。該反応により得られるHCFC-225異性体混合物には、HCFC-225caとHCFC-225cbが主成分として含まれ、他に2,2-ジクロロ-1,1,3,3,3-ペンタフルオロプロパン(CHFCClCF、HCFC-225aa)、2,3-ジクロロ-1,1,2,3,3-ペンタフルオロプロパン(CHFCClFCClF、HCFC-225bb)等が少量含まれる。 The HCFC-225 isomer mixture containing HCFC-225ca can be produced, for example, by reacting tetrafluoroethylene and dichlorofluoromethane in the presence of a catalyst such as aluminum chloride. The HCFC-225 isomer mixture obtained by the reaction contains HCFC-225ca and HCFC-225cb as main components, and 2,2-dichloro-1,1,3,3,3-pentafluoropropane ( CHF 2 CCl 2 CF 3 , HCFC-225aa), 2,3-dichloro-1,1,2,3,3-pentafluoropropane (CHF 2 CClFCClF 2 , HCFC-225bb) and the like are included in a small amount.
 HCFC-225caを含むHCFC-225異性体混合物は、市販品を用いてもよい。市販品としては、アサヒクリンAK225(旭硝子社製、商品名、HCFC-225caの48モル%と、HCFC-225cbの52モル%の混合物)等が挙げられる。 As the HCFC-225 isomer mixture containing HCFC-225ca, a commercially available product may be used. Examples of commercially available products include Asahiklin AK225 (manufactured by Asahi Glass Co., Ltd., trade name: 48 mol% of HCFC-225ca and 52 mol% of HCFC-225cb).
<パラジウム触媒担持担体>
 本発明の製造方法においては、上記の方法等で入手した1214yaと水素を、パラジウムを含む金属と塩素とを有し、パラジウム原子のモル数に対する塩素原子のモル数の比(Cl/Pd)が2.0以上であるパラジウム触媒を担体に担持させたパラジウム触媒担持担体の存在下、気相で反応させる。本明細書において、パラジウムを含む金属と塩素とを有し、パラジウム原子のモル数に対する塩素原子のモル数の比(Cl/Pd)が2.0以上であるパラジウム触媒を担体に担持させたパラジウム触媒担持担体を「パラジウム触媒担持担体(X)」ともいう。パラジウム触媒を「Pd触媒」とも記載する。
<Palladium catalyst support>
In the production method of the present invention, 1214ya obtained by the above-described method and the like, hydrogen, a metal containing palladium and chlorine, and the ratio of the number of moles of chlorine atoms to the number of moles of palladium atoms (Cl / Pd) is The reaction is carried out in the gas phase in the presence of a palladium catalyst-supported carrier in which a palladium catalyst of 2.0 or more is supported on the carrier. In the present specification, palladium having a palladium catalyst, which has a palladium-containing metal and chlorine, and on which a palladium catalyst having a ratio of the number of moles of chlorine atoms to the number of moles of palladium atoms (Cl / Pd) of 2.0 or more is supported. The catalyst support is also referred to as “palladium catalyst support (X)”. The palladium catalyst is also referred to as “Pd catalyst”.
 本発明は、上記式(1)の反応をパラジウム触媒担持担体(X)の存在下で行うことで、過還元体であるHFC-263fbやHFO-1243zf等の副生を低減した、選択率に優れた効率的な1224ydの製造を可能とするものである。 In the present invention, by performing the reaction of the above formula (1) in the presence of the palladium catalyst-supporting carrier (X), the by-product such as HFC-263fb and HFO-1243zf, which are overreduced substances, is reduced and the selectivity is increased. This makes it possible to produce excellent and efficient 1224yd.
 本発明において、パラジウム触媒担持担体(X)におけるパラジウム触媒は、パラジウムを含む金属と塩素とを有し、パラジウム原子のモル数に対する塩素原子のモル数の比(Cl/Pd)が2.0以上である触媒である。上記パラジウムを含む金属を以下、金属(M)ともいう。金属(M)は、パラジウムのみからなってもよく、パラジウム以外の金属(以下、「その他の金属」ともいう。)を含んでもよい。金属(M)はパラジウムを主体とする、具体的には金属(M)におけるパラジウム100質量部に対するその他の金属の割合が50質量部以下であることが、副生物を低減させる観点から好ましい。パラジウム100質量部に対するその他の金属の割合は、副生物を低減させる観点から30質量部以下が好ましく、10質量部以下がさらに好ましい。金属(M)はパラジウム以外の金属を含有しない、すなわちパラジウム単体であることが高い触媒活性が得られる点で特に好ましい。 In the present invention, the palladium catalyst in the palladium catalyst-supported carrier (X) has a metal containing palladium and chlorine, and the ratio of the number of moles of chlorine atoms to the number of moles of palladium atoms (Cl / Pd) is 2.0 or more. Is a catalyst. Hereinafter, the metal containing palladium is also referred to as metal (M). The metal (M) may be composed only of palladium, or may include a metal other than palladium (hereinafter also referred to as “other metal”). It is preferable from the viewpoint of reducing by-products that the metal (M) is mainly composed of palladium, specifically, the ratio of the other metal to 100 parts by mass of palladium in the metal (M) is 50 parts by mass or less. The proportion of the other metal with respect to 100 parts by mass of palladium is preferably 30 parts by mass or less, and more preferably 10 parts by mass or less from the viewpoint of reducing by-products. The metal (M) does not contain any metal other than palladium, that is, it is particularly preferable that it is a simple substance of palladium because a high catalytic activity is obtained.
 その他の金属としては、鉄、ルテニウム、オスミウム等の第8族元素;コバルト、ロジウム、イリジウム等の第9族元素;ニッケル、白金等の第10族元素;金、銀、銅等の第11族元素;レニウム、亜鉛、カドミウム、錫、鉛、アンチモン、ビスマス等が挙げられる。これらその他の金属は、1種であっても、2種以上であってもよい。金属(M)は、パラジウムとその他の金属との合金、すなわち、パラジウム合金であってもよく、パラジウムとその他の金属との混合物であってもよい。パラジウム合金としては、パラジウム/白金合金やパラジウム/ロジウム合金などが挙げられる。パラジウムに加えてその他の金属を含有する金属(M)を用いた場合、パラジウム単体からなる金属(M)を用いた場合に比べて触媒耐久性が高くなる。 Other metals include Group 8 elements such as iron, ruthenium and osmium; Group 9 elements such as cobalt, rhodium and iridium; Group 10 elements such as nickel and platinum; Group 11 elements such as gold, silver and copper Elements: rhenium, zinc, cadmium, tin, lead, antimony, bismuth and the like. These other metals may be one kind or two or more kinds. The metal (M) may be an alloy of palladium and other metals, that is, a palladium alloy, or a mixture of palladium and other metals. Examples of the palladium alloy include a palladium / platinum alloy and a palladium / rhodium alloy. When a metal (M) containing other metals in addition to palladium is used, the catalyst durability is higher than when a metal (M) made of palladium alone is used.
 パラジウム触媒担持担体(X)におけるパラジウム触媒は、パラジウムを含む金属と塩素とを有し、パラジウム原子のモル数に対する塩素原子のモル数の比(Cl/Pd)が2.0以上である。パラジウム触媒のCl/Pdは、1224ydの選択率をより高める観点から2.0~10.0が好ましく、2.0~5.0がより好ましい。 The palladium catalyst in the palladium catalyst support (X) has a metal containing palladium and chlorine, and the ratio of the number of moles of chlorine atoms to the number of moles of palladium atoms (Cl / Pd) is 2.0 or more. Cl / Pd of the palladium catalyst is preferably 2.0 to 10.0, more preferably 2.0 to 5.0, from the viewpoint of further increasing the selectivity of 1224yd.
 なお、本明細書において、パラジウム触媒担持担体(X)におけるパラジウム触媒のCl/Pdは、担体の種類と、担体を得るための塩化水素処理に基づいて、以下の方法で算出される。該算出は、二酸化ケイ素表面に0.5質量%のパラジウムが担持されたパラジウム担持担体(Y)を所定量の塩化水素で処理してパラジウムと塩素を有するパラジウム触媒が担持されたパラジウム触媒担持担体(Y)を標準として行う。 In the present specification, Cl / Pd of the palladium catalyst in the palladium catalyst-supported carrier (X) is calculated by the following method based on the type of the carrier and the hydrogen chloride treatment for obtaining the carrier. The calculation is carried out by treating a palladium-supported carrier (Y 0 ) on which 0.5% by mass of palladium is supported on the surface of silicon dioxide with a predetermined amount of hydrogen chloride and supporting a palladium catalyst having palladium and chlorine. The carrier (Y) is used as a standard.
[Cl/Pdの算出方法]
 (i)二酸化ケイ素表面に0.5質量%パラジウムが担持されたパラジウム担持担体(Y)および、二酸化ケイ素を準備する。
 (ii)パラジウム担持担体(Y)70gを秤量し、SUS314製の内径21.4cmのU字管に充填し、塩化水素ガスを45℃、ガス流量300mL/分の条件で120分間流す。次いで、U字管に窒素ガスを45℃、ガス流量300mL/分の条件で30分間流し、減圧乾燥を行う。U字管内から上述の処理により得られたパラジウムと塩素を有するパラジウム触媒が担持されたパラジウム触媒担持担体(Y)を回収し、その表面における塩素原子の含有率(atom%;式(3)中の「a」である。)、およびパラジウム原子の含有率(atom%;式(3)中の「e」である。)をX線光電子分光(XPS)ワイドスペクトル測定により求める。
 (iii)二酸化ケイ素70gを秤量し、上記(ii)と同様の処理を行った後、その表面における塩素原子の含有率(atom%;式(3)中の「b」である。)をX線光電子分光(XPS)ワイドスペクトル測定により求める。
[Calculation method of Cl / Pd]
(I) A palladium-supported carrier (Y 0 ) having 0.5 mass% palladium supported on the surface of silicon dioxide and silicon dioxide are prepared.
(Ii) 70 g of palladium-supported carrier (Y 0 ) is weighed and filled into a U-tube made of SUS314 having an inner diameter of 21.4 cm, and hydrogen chloride gas is allowed to flow for 120 minutes at 45 ° C. and a gas flow rate of 300 mL / min. Next, nitrogen gas is passed through the U-shaped tube at 45 ° C. and a gas flow rate of 300 mL / min for 30 minutes to perform vacuum drying. The palladium catalyst-supported carrier (Y) on which the palladium catalyst containing palladium and chlorine obtained by the above-described treatment was recovered from the inside of the U-shaped tube, and the content of chlorine atoms on the surface (atom%; in the formula (3) And the palladium atom content (atom%; “e” in formula (3)) are determined by X-ray photoelectron spectroscopy (XPS) wide spectrum measurement.
(Iii) After weighing 70 g of silicon dioxide and carrying out the same treatment as in (ii) above, the chlorine atom content (atom%; “b” in formula (3)) on the surface is X. It is determined by linear photoelectron spectroscopy (XPS) wide spectrum measurement.
 上記(ii)および(iii)で測定された値から以下の式(3)によりパラジウム触媒担持担体(Y)のCl/Pd(式(3)中、[Cl/Pd](y)で示す。)を得る。
 [Cl/Pd](y) = (a-b)/e    式(3)
a:XPSワイドスペクトルから得たパラジウム触媒担持担体(Y)表面のCl含有率(atom%)
b:XPSワイドスペクトルから得た二酸化ケイ素表面のCl含有率(atom%)
e:XPSワイドスペクトルから得たパラジウム触媒担持担体(Y)表面のPd含有率(atom%)
From the values measured in the above (ii) and (iii), Cl / Pd of the palladium catalyst-supported carrier (Y) is represented by the following formula (3) (in formula (3), [Cl / Pd] (y) . )
[Cl / Pd] (y) = (ab) / e Formula (3)
a: Cl content (atom%) on the surface of the palladium catalyst-supported carrier (Y) obtained from the XPS wide spectrum
b: Cl content (atom%) of silicon dioxide surface obtained from XPS wide spectrum
e: Pd content (atom%) on the surface of the palladium catalyst-supported support (Y) obtained from the XPS wide spectrum
 パラジウム触媒担持担体(X)のCl/Pd(式(4)中、[Cl/Pd](x)で示す。)は、上記[Cl/Pd](y)に、パラジウム触媒担持担体(X)に用いた担体の種類により与えられるパラジウム担持量補正係数およびパラジウム触媒担持担体(X)作製時の塩化水素処理量に基づく補正係数を乗じた以下の式(4)で算出される。
 [Cl/Pd](x) = [Cl/Pd](y)×c×d   式(4)
Cl / Pd (denoted by [Cl / Pd] (x) in the formula (4) ) of the palladium catalyst-supported support (X) is added to the palladium catalyst-supported support (X) in the above [Cl / Pd] (y ). The following equation (4) is obtained by multiplying the palladium loading correction coefficient given by the type of the carrier used in the above and the correction coefficient based on the amount of hydrogen chloride treated when the palladium catalyst carrying carrier (X) is produced.
[Cl / Pd] (x) = [Cl / Pd] (y) × c × d Equation (4)
c:塩化水素処理量補正係数
 cは、パラジウム触媒担持担体(Y)を製造する際の単位質量当たりの塩化水素処理量(300mL/分、120分間)を基準として、パラジウム触媒担持担体(X)を製造した際の単位質量当たりの塩化水素処理量を上記基準で除した値である。
c: hydrogen chloride throughput correction coefficient c is the palladium catalyst support (X) based on the hydrogen chloride throughput per unit mass (300 mL / min, 120 minutes) when producing the palladium catalyst support (Y) This is a value obtained by dividing the amount of hydrogen chloride treated per unit mass at the time of manufacturing by the above criteria.
d:パラジウム担持量補正係数
 dはパラジウム触媒担持担体(Y)とパラジウム触媒担持担体(X)において担体の違いにより与えられる係数である。例えば、パラジウム触媒担持担体(X)の担体がヤシ殻活性炭である場合、パラジウム触媒担持担体(Y)の担体である二酸化ケイ素に対してヤシ殻活性炭はパラジウムを質量で1.4倍担持できることから、補正係数dは1.4となる。
d: Palladium carrying amount correction coefficient d is a coefficient given by the difference in the carrier between the palladium catalyst carrying carrier (Y) and the palladium catalyst carrying carrier (X). For example, when the support of the palladium catalyst-supported carrier (X) is coconut shell activated carbon, the coconut shell activated carbon can support 1.4 times the mass of palladium with respect to silicon dioxide which is the support of the palladium catalyst-supported carrier (Y). The correction coefficient d is 1.4.
 なお、パラジウム触媒担持担体(X)において、担体に担持させる金属(M)がパラジウムとその他の金属からなる場合、上記、dは金属(M)に対するパラジウムの含有割合を乗じた数値として式(4)に用いられる。 In the palladium catalyst-supported carrier (X), when the metal (M) supported on the carrier is composed of palladium and other metals, the above d is a value obtained by multiplying the content ratio of palladium with respect to the metal (M) by the formula (4 ).
 本発明の製造方法において、上記パラジウム触媒は、担体に担持されたパラジウム触媒担持担体(X)として用いられる。担体としては、活性炭や、アルミナ、ジルコニア、シリカ、チタニア等の金属酸化物等が挙げられる。これらのうちでも触媒活性、耐久性、反応選択性の観点から活性炭が好ましい。 In the production method of the present invention, the palladium catalyst is used as a palladium catalyst-supported carrier (X) supported on a carrier. Examples of the carrier include activated carbon and metal oxides such as alumina, zirconia, silica, and titania. Among these, activated carbon is preferable from the viewpoint of catalytic activity, durability, and reaction selectivity.
 活性炭としては、木材、木炭、果実殻、ヤシ殻、泥炭、亜炭、石炭等を原料として調製したものが挙げられ、鉱物質原料よりも植物原料から得られたものが好ましく、ヤシ殻活性炭が特に好ましい。活性炭の形状としては、長さ2~5mm程度の成形炭、4~50メッシュ程度の破砕炭、粒状炭等が挙げられる。なかでも、4~20メッシュの破砕炭、または成形炭が好ましい。 Examples of the activated carbon include those prepared using wood, charcoal, fruit husk, coconut husk, peat, lignite, coal, etc. as raw materials, those obtained from plant materials are preferred over mineral materials, and coconut shell activated carbon is particularly preferred. preferable. Examples of the shape of the activated carbon include formed coal having a length of about 2 to 5 mm, crushed coal having a size of about 4 to 50 mesh, and granular coal. Of these, 4-20 mesh crushed coal or formed coal is preferable.
 パラジウム触媒担持担体(X)におけるパラジウム触媒の担持量は、金属(M)の量として、担体に対して、0.1~10質量%が好ましく、0.5~1質量%がより好ましい。上記パラジウム触媒の担持量が下限値以上であれば、1214yaと水素の反応率が向上する。上記パラジウム触媒の担持量が上限値以下であれば、反応熱による触媒層(後述する)の過剰な温度上昇を抑制しやすく、副生物の生成を低減しやすい。 The amount of palladium catalyst supported on the palladium catalyst-supported carrier (X) is preferably 0.1 to 10% by mass, more preferably 0.5 to 1% by mass, based on the carrier, as the amount of metal (M). When the amount of the palladium catalyst supported is equal to or greater than the lower limit, the reaction rate between 1214ya and hydrogen is improved. If the supported amount of the palladium catalyst is not more than the upper limit, it is easy to suppress an excessive temperature rise of the catalyst layer (described later) due to reaction heat, and it is easy to reduce the production of by-products.
 パラジウム触媒担持担体(X)は、具体的には、金属(M)を担持させた金属(M)担持担体を、得られるパラジウム触媒担持担体(X)におけるCl/Pdが上記所定の範囲となるように塩化水素ガスで処理することで調製できる。金属(M)を担体に担持させる方法としては、一般に金属触媒を担体に担持させる方法が特に制限なく使用可能である。例えば、パラジウム単体を金属(M)とし担体を活性炭とする場合、塩化パラジウム(II)、硝酸パラジウム(II)、塩化テトラアミンパラジウム(II)等のパラジウム塩の水溶液を活性炭に含浸させ、乾燥することで活性炭の表面にパラジウム塩を析出させた後、パラジウム塩中のパラジウムイオンを水素ガスにより還元することでパラジウム担持活性炭が得られる。 Specifically, the palladium catalyst-supported carrier (X) is a metal (M) -supported carrier on which the metal (M) is supported, and Cl / Pd in the obtained palladium catalyst-supported carrier (X) falls within the above predetermined range. Thus, it can prepare by processing with hydrogen chloride gas. As a method of supporting the metal (M) on the support, a method of supporting a metal catalyst on the support can be used without any particular limitation. For example, when palladium alone is a metal (M) and the carrier is activated carbon, the activated carbon is impregnated with an aqueous solution of a palladium salt such as palladium chloride (II), palladium nitrate (II), tetraamine palladium (II) chloride and dried. Thus, after depositing a palladium salt on the surface of the activated carbon, palladium ions in the palladium salt are reduced with hydrogen gas to obtain a palladium-supported activated carbon.
 金属(M)担持担体からパラジウム触媒担持担体(X)を得るための塩化水素ガス処理は、例えば加熱下で行うことができる。具体的には、1224ydの製造時に使用するのと同様の反応器に金属(M)担持担体を充填し、該反応器を油浴等で温度調整しながら塩化水素ガスを反応器に供給することでパラジウム触媒担持担体(X)を調製できる。加熱温度は、油浴等の温度として10~80℃が好ましい。この場合の処理時間は、反応器における金属(M)担持担体の充填量、塩化水素ガスの流量、油浴の温度等によるが、概ね1~20時間とすることでパラジウム触媒におけるCl/Pdが上記範囲に調整されたパラジウム触媒担持担体(X)が得られる。 The hydrogen chloride gas treatment for obtaining the palladium catalyst-supported carrier (X) from the metal (M) -supported carrier can be performed, for example, under heating. Specifically, a metal (M) -supported carrier is filled in a reactor similar to that used in the production of 1224yd, and hydrogen chloride gas is supplied to the reactor while adjusting the temperature of the reactor with an oil bath or the like. The palladium catalyst-supported carrier (X) can be prepared with The heating temperature is preferably 10 to 80 ° C. as the temperature of the oil bath or the like. The treatment time in this case depends on the filling amount of the metal (M) -supported carrier in the reactor, the flow rate of hydrogen chloride gas, the temperature of the oil bath, etc., but the Cl / Pd in the palladium catalyst is reduced by approximately 1 to 20 hours. A palladium catalyst-supported carrier (X) adjusted to the above range is obtained.
 このようにして反応器を用いてパラジウム触媒担持担体(X)を作製した場合には、パラジウム触媒担持担体(X)が充填された反応器をそのまま以下の1224ydの製造に用いることが可能である。 When the palladium catalyst-supported carrier (X) is produced using the reactor in this manner, the reactor filled with the palladium catalyst-supported carrier (X) can be used as it is for the production of the following 1224yd. .
<1224ydの製造>
 本発明の製造方法において、パラジウム触媒担持担体(X)の存在下、気相で1214yaを水素と反応させる方法として、具体的には、パラジウム触媒担持担体(X)を充填した触媒層を形成し、該触媒層に1214yaと水素をガス状で導入する方法が挙げられる。
<Manufacture of 1224yd>
In the production method of the present invention, as a method of reacting 1214ya with hydrogen in the gas phase in the presence of the palladium catalyst-supported support (X), specifically, a catalyst layer filled with the palladium catalyst-supported support (X) is formed. And a method of introducing 1214ya and hydrogen into the catalyst layer in a gaseous state.
 本発明において触媒層は、通常、パラジウム触媒担持担体(X)を反応器に充填することによって形成される。触媒層におけるパラジウム触媒担持担体(X)の充填密度は、0.3~1g/cmが好ましく、0.4~0.8g/cmがより好ましい。パラジウム触媒担持担体(X)の充填密度が下限値以上であれば、単位容積あたりのパラジウム触媒担持担体(X)の充填量が多く、反応させるガス量を多くすることができるため生産性が向上する。パラジウム触媒担持担体(X)の充填密度が上限値以下であれば、反応熱による触媒層の過剰な温度上昇を抑制しやすく、副生物の生成を低減しやすい。パラジウム触媒担持担体(X)の充填部分、すなわち触媒層は、反応器内に1つあってもよく、2つ以上あってもよい。 In the present invention, the catalyst layer is usually formed by filling the reactor with a palladium catalyst-supported carrier (X). The packing density of the palladium catalyst-loaded support (X) in the catalyst layer is preferably 0.3 ~ 1g / cm 3, more preferably 0.4 ~ 0.8g / cm 3. If the packing density of the palladium catalyst-carrying support (X) is equal to or higher than the lower limit, the amount of palladium catalyst-carrying support (X) per unit volume is large, and the amount of gas to be reacted can be increased, thereby improving productivity. To do. If the packing density of the palladium catalyst-carrying support (X) is not more than the upper limit value, it is easy to suppress an excessive temperature rise of the catalyst layer due to the heat of reaction, and it is easy to reduce the production of by-products. There may be one packed portion of the palladium catalyst-supporting support (X), that is, the catalyst layer in the reactor, or two or more.
 このような触媒層を用いて本発明の製造方法を行うには、上記触媒層の一方の側からガス状の1214yaと水素を導入する。該導入された1214yaと水素のガスは触媒層を通過しながら気相で反応し1224ydを生成する。そして、触媒層の1214yaと水素が導入された側とは反対側から1224ydを含む生成ガスが排出される。以下、触媒層を用いた場合を例に本発明の製造方法を説明する。触媒層の1214yaと水素が導入される側を「ガス導入部」、生成ガスが排出される側を「ガス排出部」という。 In order to perform the production method of the present invention using such a catalyst layer, gaseous 1214ya and hydrogen are introduced from one side of the catalyst layer. The introduced 1214ya and hydrogen gas react in the gas phase while passing through the catalyst layer to produce 1224yd. Then, the product gas containing 1224yd is discharged from the side of the catalyst layer opposite to the side where 1214ya and hydrogen are introduced. Hereinafter, the production method of the present invention will be described by taking the case of using a catalyst layer as an example. The side of the catalyst layer where 1214ya and hydrogen are introduced is referred to as a “gas introduction part”, and the side where the product gas is discharged is referred to as a “gas discharge part”.
 触媒層に導入する1214yaと水素の割合は、過還元体であるHFC-263fbやHFO-1243zf等の副生を低減する点から、1214yaのモル数と水素のモル数との比(H/1214ya)で表わして、その値を1.4以下とすることが好ましい。1214yaと水素のモル比(H/1214ya)は、小さいほどHFC-263fb、HFO-1243zf等の副生を低減しやすく、1.2以下がより好ましく、1.0以下がさらに好ましい。また、モル比(H/1214ya)は、1224ydの収率の点から、0.2以上が好ましく、0.4以上がより好ましく、0.5以上が最も好ましい。モル比(H/1214ya)は、HFC-263fb、HFO-1243zf等の副生を低減する観点と、1224ydの収率の点から、0.2以上1.4以下が好ましく、0.4以上1.2以下がより好ましく、0.5以上1.0以下が最も好ましい。 The ratio of 1214ya and hydrogen introduced into the catalyst layer is the ratio between the number of moles of 1214ya and the number of moles of hydrogen (H 2 / 1214ya), and the value is preferably 1.4 or less. The smaller the molar ratio of 1214ya and hydrogen (H 2 / 1214ya), the easier it is to reduce by-products such as HFC-263fb and HFO-1243zf, and it is more preferably 1.2 or less and even more preferably 1.0 or less. Further, the molar ratio (H 2 / 1214ya) is preferably 0.2 or more, more preferably 0.4 or more, and most preferably 0.5 or more, from the viewpoint of the yield of 1224yd. The molar ratio (H 2 / 1214ya) is preferably 0.2 or more and 1.4 or less, from the viewpoint of reducing by-products such as HFC-263fb and HFO-1243zf, and the yield of 1224yd, and is preferably 0.4 or more. 1.2 or less is more preferable, and 0.5 or more and 1.0 or less is most preferable.
 後述の方法(A)のように水素を分割導入する場合、同様に、触媒層に導入する1214yaと触媒層に導入する水素の総量との割合は、1214yaと水素のモル比(H/1214ya)を1.4以下とする割合が好ましく、1.2以下がより好ましく、1.0以下がさらに好ましい。また、1214yaと水素のモル比(H/1214ya)は、0.2以上が好ましく、0.4以上がより好ましく、0.5以上が最も好ましい。1214yaと水素のモル比(H/1214ya)は同様の観点から、0.2以上1.4以下が好ましく、0.4以上1.2以下がより好ましく、0.5以上1.0以下が最も好ましい。 When hydrogen is dividedly introduced as in the method (A) described later, similarly, the ratio of 1214ya introduced into the catalyst layer and the total amount of hydrogen introduced into the catalyst layer is 1214ya and the molar ratio of hydrogen (H 2 / 1214ya). ) Is preferably 1.4 or less, more preferably 1.2 or less, and even more preferably 1.0 or less. Further, the molar ratio of 1214ya to hydrogen (H 2 / 1214ya) is preferably 0.2 or more, more preferably 0.4 or more, and most preferably 0.5 or more. From the same viewpoint, the molar ratio of 1214ya to hydrogen (H 2 / 1214ya) is preferably 0.2 or more and 1.4 or less, more preferably 0.4 or more and 1.2 or less, and 0.5 or more and 1.0 or less. Most preferred.
 本発明の製造方法において、1214yaを水素と反応させる反応温度は、気相反応であることより、反応に用いる1214yaと水素の混合ガス、ただし不活性ガスを用いる場合には、1214yaと水素と不活性ガスの混合ガスの露点を越える温度とする。また、本発明の製造方法では、副生物の生成を抑制する観点から、反応温度は200℃以下が好ましく、190℃以下がより好ましく、150~190℃が特に好ましい。 In the production method of the present invention, the reaction temperature at which 1214ya reacts with hydrogen is a gas phase reaction, and therefore a mixed gas of 1214ya and hydrogen used for the reaction, but when an inert gas is used, The temperature exceeds the dew point of the active gas mixture. In the production method of the present invention, the reaction temperature is preferably 200 ° C. or less, more preferably 190 ° C. or less, and particularly preferably 150 to 190 ° C. from the viewpoint of suppressing the formation of by-products.
 本発明の製造方法における反応温度は、具体的には、以下に説明する触媒層の反応域の温度で示される。本発明の製造方法においては、触媒層の反応域の温度すなわち触媒層の最高温度を上記反応温度の範囲内に制御することで、反応性の向上と副生物の生成抑制が可能となる。 The reaction temperature in the production method of the present invention is specifically indicated by the temperature in the reaction zone of the catalyst layer described below. In the production method of the present invention, by controlling the temperature of the reaction zone of the catalyst layer, that is, the maximum temperature of the catalyst layer, within the above reaction temperature range, it is possible to improve the reactivity and suppress the production of by-products.
 触媒層の温度は、初期温度を所定の温度に設定しても、触媒の劣化の進行に伴い次第に低下し、反応率が低下するという問題がある。そのため、高い反応率を維持できるよう、触媒層の温度を所定の温度に保つ操作を行うことが好ましい。例えば、触媒層を熱媒などで外部から加熱してその温度を維持している場合は、熱媒の温度を徐々に上げることで、触媒層の温度低下を防ぐことができる。熱媒の温度は、40~100℃が好ましく、80~100℃がより好ましい。熱媒としては、パーフルオロエーテル、硝酸塩、シリコーンオイル、水等が好ましく、パーフルオロエーテルまたは水がより好ましい。 Even if the initial temperature is set to a predetermined temperature, the temperature of the catalyst layer gradually decreases with the progress of catalyst deterioration, and there is a problem that the reaction rate decreases. Therefore, it is preferable to perform an operation of keeping the temperature of the catalyst layer at a predetermined temperature so that a high reaction rate can be maintained. For example, when the temperature is maintained by heating the catalyst layer from the outside with a heating medium or the like, the temperature drop of the catalyst layer can be prevented by gradually increasing the temperature of the heating medium. The temperature of the heat medium is preferably 40 to 100 ° C, more preferably 80 to 100 ° C. As the heat medium, perfluoroether, nitrate, silicone oil, water and the like are preferable, and perfluoroether or water is more preferable.
 なお、触媒層の温度とは、外部からの加熱等により維持される触媒層の温度をいう。通常、1214yaと水素は触媒層の一部の領域で反応し、反応熱の発生により反応域(1214yaと水素が反応している領域)は他の触媒層領域よりも高温となる。この反応域の触媒活性は経時的に低下することにより、通常、反応域はガス導入部付近からガスの流れ方向の下流側に徐々に移動していく。また、反応域の下流側では反応域で生成した温度の高い生成ガスが流れ、通常、触媒層の温度よりも高温となり、反応域から離れるほど徐々に温度が低下していく。本発明において触媒層の温度とは反応域の上流側の温度、すなわち、熱媒などで外部から加熱してその温度を維持している触媒層の温度をいう。 The temperature of the catalyst layer refers to the temperature of the catalyst layer that is maintained by external heating or the like. Usually, 1214ya and hydrogen react in a partial region of the catalyst layer, and the reaction zone (region where 1214ya and hydrogen react) becomes higher in temperature than the other catalyst layer regions due to the generation of reaction heat. As the catalytic activity of the reaction zone decreases with time, the reaction zone usually gradually moves from the vicinity of the gas introduction portion to the downstream side in the gas flow direction. Further, a product gas having a high temperature generated in the reaction zone flows on the downstream side of the reaction zone, and usually becomes higher than the temperature of the catalyst layer, and gradually decreases as the distance from the reaction zone increases. In the present invention, the temperature of the catalyst layer refers to the temperature on the upstream side of the reaction zone, that is, the temperature of the catalyst layer that is heated from the outside with a heating medium or the like to maintain the temperature.
 また、本発明の製造方法では、1214yaと水素の反応熱による触媒層の過剰な温度上昇を抑制して、触媒層の最高温度を上記反応温度の上限値以下にすることが好ましい。上記のように、1214yaと水素が反応している反応域およびその下流側の領域における温度は、反応熱により他の領域の触媒層の温度よりも高くなる。反応中の触媒層の最高温度とはこの反応熱の発生により他の領域よりも高温となった触媒層領域の最高温度をいう。なお、反応中の触媒層の最高温度の測定法としては、例えば、挿し込み型の温度計を用いた下記測定法が挙げられる。 In the production method of the present invention, it is preferable to suppress an excessive temperature rise of the catalyst layer due to the reaction heat of 1214ya and hydrogen so that the maximum temperature of the catalyst layer is not more than the upper limit value of the reaction temperature. As described above, the temperature in the reaction zone where 1214ya reacts with hydrogen and the downstream region thereof become higher than the temperature of the catalyst layer in the other region due to the heat of reaction. The maximum temperature of the catalyst layer during the reaction means the maximum temperature of the catalyst layer region that is higher than the other regions due to the generation of the reaction heat. In addition, as a measuring method of the maximum temperature of the catalyst layer in reaction, the following measuring method using an insertion type thermometer is mentioned, for example.
 触媒層における1214yaと水素の反応は、まず、これらがガス状で導入されるガス導入部付近の触媒が反応に寄与し、該ガス導入部付近の触媒が劣化するとその下流側の触媒が反応に寄与するというように、触媒層における反応域がガス排出側に向かって徐々に移動していく。つまり、触媒層の最高温度を示す部分は、1214yaと水素の反応域の移動と共に移動していくため、予め挿し込み型の温度計の計測部を触媒層のガス導入部に位置させておき、反応の進行と共に該計測部を移動させることで触媒層の最高温度を測定できる。 In the reaction of 1214ya and hydrogen in the catalyst layer, first, the catalyst in the vicinity of the gas introduction part into which these are introduced in a gaseous state contributes to the reaction, and when the catalyst in the vicinity of the gas introduction part deteriorates, the downstream catalyst reacts. As it contributes, the reaction zone in the catalyst layer gradually moves toward the gas discharge side. That is, since the portion showing the maximum temperature of the catalyst layer moves with the movement of the reaction zone of 1214ya and hydrogen, the measurement part of the insertion type thermometer is positioned in the gas introduction part of the catalyst layer in advance. The maximum temperature of the catalyst layer can be measured by moving the measuring unit as the reaction proceeds.
 反応中の触媒層の最高温度を上記反応温度の上限値以下に維持する方法としては、触媒層の最高温度を低く制御しつつ、生産性を高く維持しやすい点から、触媒層に水素を分割して導入する方法(方法(A))が好ましい。水素を触媒層の複数個所に分割して導入すれば、1214yaの導入量を変化させずに触媒層の反応域を分散させられるため、反応熱の発生が一箇所に集中しない。そのため、生産性を低下させずに、触媒層の局所的な過剰発熱を容易に抑制できる。 As a method of maintaining the maximum temperature of the catalyst layer during the reaction below the upper limit of the above reaction temperature, hydrogen is divided into the catalyst layer from the viewpoint of easily maintaining high productivity while controlling the maximum temperature of the catalyst layer low. Thus, the method of introduction (method (A)) is preferred. If hydrogen is divided and introduced into a plurality of portions of the catalyst layer, the reaction zone of the catalyst layer can be dispersed without changing the amount of introduction of 1214ya, so that the generation of reaction heat is not concentrated in one place. Therefore, local excessive heat generation of the catalyst layer can be easily suppressed without reducing productivity.
 水素の分割導入とは、1214yaと水素を触媒層のガス導入部に導入するとともに、触媒層のガス導入部とガス排出部との間の少なくとも1か所から水素を導入することをいう。すなわち、ガス導入部以外に触媒層の少なくとも1箇所、すなわち、合計2箇所以上、から水素を導入することをいう。 Hydrogen split introduction means introduction of 1214ya and hydrogen into the gas introduction part of the catalyst layer and introduction of hydrogen from at least one place between the gas introduction part and the gas discharge part of the catalyst layer. That is, hydrogen is introduced from at least one location of the catalyst layer other than the gas introduction portion, that is, from a total of 2 or more locations.
 具体的には、触媒層のガス導入部(触媒層においてガスの流れ方向の最上流側に位置する)に導入する1214yaと水素の量は、触媒層に導入する水素の一部と1214yaの全量とする。残余の水素はガスの流れ方向下流の触媒層に水素導入部から導入し、その導入位置の触媒層を流れるガス(通常は、1214yaの一部が水素と反応した後の、生成ガス)に水素を混入し、該水素の導入位置から下流側の触媒層で未反応の1214yaを水素と反応させ、触媒層のガス排出部(触媒層においてガスの流れ方向の最下流側に位置する)から生成ガスを排出する。 Specifically, the amount of 1214ya and hydrogen introduced into the gas introduction part of the catalyst layer (located on the most upstream side in the gas flow direction in the catalyst layer) is a part of the hydrogen introduced into the catalyst layer and the total amount of 1214ya. And Residual hydrogen is introduced into the catalyst layer downstream in the gas flow direction from the hydrogen introduction part, and hydrogen (usually a product gas after a part of 1214ya has reacted with hydrogen) flowing through the catalyst layer at the introduction position is hydrogen. The unreacted 1214ya reacts with hydrogen in the catalyst layer downstream from the hydrogen introduction position, and is generated from the gas discharge part of the catalyst layer (located on the most downstream side in the gas flow direction in the catalyst layer). Exhaust the gas.
 ガス導入部とガスの流れ方向の最上流側の水素導入部との間で、ガス導入部から導入された水素の少なくとも一部は1214yaと反応していることが好ましい。また、ガスの流れ方向の最下流側の水素導入部は、その水素導入部とガス排出部との間の触媒層で、該水素導入部から導入された水素と1214yaとが十分反応しうる位置に設けることが好ましい。 It is preferable that at least a part of hydrogen introduced from the gas introduction part reacts with 1214ya between the gas introduction part and the hydrogen introduction part on the most upstream side in the gas flow direction. Further, the hydrogen introduction part on the most downstream side in the gas flow direction is a catalyst layer between the hydrogen introduction part and the gas discharge part, and the position where hydrogen introduced from the hydrogen introduction part can sufficiently react with 1214ya. It is preferable to provide in.
 方法(A)における水素の導入は、2箇所に分割導入しても、3箇所以上に分割導入してもよく、プロセスを簡略化できるという観点から、2箇所から分割導入することが好ましい。触媒層の2箇所以上に分割導入する水素は、触媒層の最高温度を低く維持しやすい点から、分割導入される各々の水素の量を等量とすることが好ましい。 The introduction of hydrogen in the method (A) may be divided and introduced into two places or may be introduced into three or more places. From the viewpoint of simplifying the process, it is preferable to introduce hydrogen from two places. It is preferable that the amount of hydrogen introduced separately in two or more places in the catalyst layer is equal to the amount of each hydrogen introduced separately in that the maximum temperature of the catalyst layer can be easily maintained low.
 反応器内に触媒層が2つ以上ある場合、水素の分割導入は、例えば、水素の一部を1214yaと共に最も上流側(1段目)の触媒層に導入し、残部を1段目より下流側の2段目以降の触媒層に導入する方法が挙げられる。 When there are two or more catalyst layers in the reactor, for example, hydrogen can be dividedly introduced by introducing a part of hydrogen into the catalyst layer on the most upstream side (first stage) together with 1214ya and the remaining part downstream from the first stage. The method of introduce | transducing into the catalyst layer after the 2nd step | paragraph of the side is mentioned.
 また、方法(A)以外の触媒層の最高温度の制御方法としては、1214yaおよび水素と共に触媒層に不活性ガスを流通させる方法(方法(B))が挙げられる。不活性ガスを流通させ、触媒層中を流通する1214yaおよび水素の濃度を調節することで、反応熱による触媒層の過剰な温度上昇を抑制できる。また、不活性ガス以外の希釈ガスを不活性ガスの代わりにまたは不活性ガスとともに使用することもできる。 Further, as a method for controlling the maximum temperature of the catalyst layer other than the method (A), there is a method (method (B)) in which an inert gas is allowed to flow through the catalyst layer together with 1214ya and hydrogen. By causing the inert gas to flow and adjusting the concentration of 1214ya and hydrogen flowing in the catalyst layer, an excessive temperature rise of the catalyst layer due to reaction heat can be suppressed. Further, a diluent gas other than the inert gas can be used instead of the inert gas or together with the inert gas.
 不活性ガスとしては、窒素、希ガス(ヘリウム、アルゴン等)、二酸化炭素、水素化反応に不活性なフロン類等が挙げられる。 Examples of the inert gas include nitrogen, rare gases (such as helium and argon), carbon dioxide, and chlorofluorocarbons inert to the hydrogenation reaction.
 触媒層への不活性ガスの導入量は、触媒層の最高温度を低く維持しやすく、副生物の生成を低減しやすい点、および触媒の劣化を抑制しやすい点から、1214yaの1モルに対して、0.5モル以上が好ましく、1.0モル以上がより好ましい。また、不活性ガスの導入量は、該不活性ガスの回収率の点から、1214yaの1モルに対して、10.0モル以下が好ましく、4.0モル以下がより好ましい。副生物の生成を低減しやすい点、および触媒の劣化を抑制しやすい点ならびに不活性ガスの回収率の点から、1214yaの1モルに対して、0.5モル以上10.0モル以下が好ましく、1.0モル以上4.0モル以下がより好ましい。 The amount of the inert gas introduced into the catalyst layer is less than 1 mol of 1214ya because it is easy to maintain the maximum temperature of the catalyst layer low, to easily reduce the formation of by-products, and to suppress deterioration of the catalyst. 0.5 mol or more is preferable, and 1.0 mol or more is more preferable. Further, the introduction amount of the inert gas is preferably 10.0 mol or less and more preferably 4.0 mol or less with respect to 1 mol of 1214ya from the viewpoint of the recovery rate of the inert gas. From the point that it is easy to reduce the production of by-products, the point that it is easy to suppress deterioration of the catalyst, and the point of the recovery rate of the inert gas, 0.5 mol or more and 10.0 mol or less are preferable with respect to 1 mol of 1214ya 1.0 mol or more and 4.0 mol or less is more preferable.
 また、方法(A)、方法(B)以外の触媒層の最高温度の制御方法としては、触媒層の温度を、反応に用いる1214yaと水素の混合ガスの露点を下限として、より低い温度とする方法(方法(C))が挙げられる。不活性ガスを用いる場合には、1214yaと水素と不活性ガスの混合ガスの露点を下限として、より低い温度とする。触媒層の温度を低く保つことで、反応熱のより迅速な除熱が可能となり、触媒層の過剰な温度上昇を抑制できる。 As a method for controlling the maximum temperature of the catalyst layer other than the method (A) and the method (B), the temperature of the catalyst layer is set to a lower temperature with the dew point of the mixed gas of 1214ya and hydrogen used for the reaction as the lower limit. A method (method (C)) is mentioned. When an inert gas is used, the temperature is set to a lower temperature with the dew point of the mixed gas of 1214ya, hydrogen and inert gas as the lower limit. By keeping the temperature of the catalyst layer low, it is possible to remove the heat of reaction more quickly and suppress an excessive increase in temperature of the catalyst layer.
 方法(C)においては、触媒層が低い温度であるほど目的物である1224ydと分離困難な副生物の生成を抑制するのに有利である点、および、原料が液化した状態での反応では、1224ydが過剰に還元された副生物の生成が増加することにより1224ydの収率が低下する点から、触媒層の温度は、上記混合ガスの露点よりも高いことが好ましい。より好ましくは露点よりも高くかつ50℃未満、さらに好ましくは、露点よりも高くかつ30℃以下である。 In the method (C), the lower the temperature of the catalyst layer, the more advantageous it is to suppress the production of by-products that are difficult to separate from the target product 1224yd, and in the reaction in a state where the raw material is liquefied, The temperature of the catalyst layer is preferably higher than the dew point of the above mixed gas from the viewpoint that the yield of 1224yd decreases due to an increase in the production of by-products in which 1224yd is excessively reduced. More preferably, it is higher than the dew point and lower than 50 ° C., more preferably higher than the dew point and not higher than 30 ° C.
 触媒層の最高温度の制御には、方法(A)、方法(B)、方法(C)をそれぞれ単独で用いる、またはこれらの2つ、または3つを併用することが好ましい。 For controlling the maximum temperature of the catalyst layer, it is preferable to use the method (A), the method (B), and the method (C), respectively, or use two or three of them together.
 反応圧力は、取り扱い性の点から、常圧が好ましい。反応時間は0.4~400秒が好ましく、1~400秒がより好ましく、4~400秒が最も好ましい。本発明の製造方法において、反応時間は、具体的には、1214yaのパラジウム触媒担持担体(X)に対する接触時間である。この接触時間は、反応器に導入される1214yaの体積と触媒層の体積から計算される。 The reaction pressure is preferably normal pressure from the viewpoint of handleability. The reaction time is preferably 0.4 to 400 seconds, more preferably 1 to 400 seconds, and most preferably 4 to 400 seconds. In the production method of the present invention, the reaction time is specifically the contact time of 1214ya with respect to the palladium catalyst-supported support (X). This contact time is calculated from the volume of 1214ya introduced into the reactor and the volume of the catalyst layer.
 本発明の製造方法では、触媒層における下式(5)で表される1214yaの線速度uは、0.1~100cm/秒が好ましく、0.1~30cm/秒がより好ましく、0.1~10cm/秒が最も好ましい。線速度uが0.1cm/秒以上であれば、生産性が向上し、1214yaが触媒層を均一に流れやすい。線速度uが100cm/秒以下であれば、1214yaと水素の反応率が向上し、線速度uが30cm/秒以下であれば発熱による反応点付近の温度制御が容易になる。 In the production method of the present invention, the linear velocity u of 1214ya represented by the following formula (5) in the catalyst layer is preferably 0.1 to 100 cm / sec, more preferably 0.1 to 30 cm / sec, Most preferred is ˜10 cm / sec. When the linear velocity u is 0.1 cm / second or more, productivity is improved and 1214ya tends to flow uniformly through the catalyst layer. If the linear velocity u is 100 cm / sec or less, the reaction rate between 1214ya and hydrogen is improved, and if the linear velocity u is 30 cm / sec or less, temperature control near the reaction point by heat generation becomes easy.
 線速度uは、反応器に導入される1214yaのガス量と触媒層の体積とから、下式(5)によって計算される。
 u=(W/100)×V/S   式(5)
W:触媒層を流通する全ガス中の1214yaの濃度(モル%)
V:触媒層を流通する全ガスの流量(cm/秒)
S:触媒層のガスの流通方向に対する断面積(cm
The linear velocity u is calculated by the following equation (5) from the gas amount of 1214ya introduced into the reactor and the volume of the catalyst layer.
u = (W / 100) × V / S Formula (5)
W: 1214ya concentration (mol%) in the total gas flowing through the catalyst layer
V: Flow rate of all gases flowing through the catalyst layer (cm 3 / sec)
S: Cross-sectional area of the catalyst layer with respect to the gas flow direction (cm 2 )
 なお、本発明の製造方法において、触媒層に導入するガス状成分には、1214ya、水素、任意成分としての不活性ガス、希釈ガスの他に、本発明の効果を損なわない範囲でその他成分が含まれていてもよい。その他成分としては、例えば、1214yaを準備する際に不純物として1214yaとともに持ち込まれる成分等が挙げられる。 In the production method of the present invention, the gaseous components to be introduced into the catalyst layer include, in addition to 1214ya, hydrogen, an inert gas as an optional component, and a dilution gas, other components within a range that does not impair the effects of the present invention. It may be included. Examples of the other components include a component that is brought together with 1214ya as an impurity when 1214ya is prepared.
 本発明の製造方法に用いる反応器としては、触媒担持担体を充填して触媒層を形成できる公知の反応器が挙げられる。反応器の材質としては、例えば、ガラス、鉄、ニッケル、またはこれらを主成分とする合金等が挙げられる。 Examples of the reactor used in the production method of the present invention include known reactors that can be filled with a catalyst-supporting carrier to form a catalyst layer. Examples of the material for the reactor include glass, iron, nickel, and alloys containing these as main components.
 反応後の生成ガスには、目的物である1224ydの他に、未反応の原料、過還元体であるHFO-1234yf、HFC-254eb、HFC-263fb、HFO-1243zf等および塩化水素(HCl)が含まれる。 The product gas after the reaction includes unreacted raw materials, HFO-1234yf, HFC-254eb, HFC-263fb, HFO-1243zf, etc., and hydrogen chloride (HCl), in addition to the target 1224yd. included.
 生成ガスに含まれるHClは、例えば、該生成ガスをアルカリ水溶液に吹き込んで中和することにより除去できる。上記アルカリ水溶液に用いるアルカリとしては、水酸化ナトリウム、水酸化カリウム等が挙げられる。なお、生成ガスに含まれるHClは少量であり、パラジウム触媒担持担体のCl/Pdに特に影響を及ぼすものではない。生成ガスからの1224ydの回収方法としては、例えば、分留等の公知の方法を採用できる。得られる1224ydは、通常、1224ydのE体とZ体の混合物である。該混合物から1224ydのE体およびZ体の分離が必要な場合には、蒸留等の分離精製方法を用いればよい。 The HCl contained in the product gas can be removed by, for example, blowing the product gas into an alkaline aqueous solution to neutralize it. Examples of the alkali used in the alkaline aqueous solution include sodium hydroxide and potassium hydroxide. Note that the amount of HCl contained in the product gas is small and does not particularly affect Cl / Pd of the palladium catalyst-supported carrier. As a method for recovering 1224yd from the product gas, for example, a known method such as fractional distillation can be employed. The obtained 1224yd is usually a mixture of E-form and Z-form of 1224yd. When separation of E-form and Z-form of 1224yd from the mixture is necessary, a separation and purification method such as distillation may be used.
 以上説明した本発明の製造方法によれば、パラジウムを含む金属と塩素とを有し、パラジウム原子のモル数に対する塩素原子のモル数の比(Cl/Pd)が2.0以上であるパラジウム触媒を担体に担持させたパラジウム触媒担持担体の存在下、気相で1214yaを水素と反応させることで、過還元体であるHFO-1234yf、HFC-254eb、HFC-263fb、HFO-1243zf等の副生が低減される。本発明の製造方法によれば、特に、HFC-263fb、HFO-1243zfの副生を抑制する効果が顕著である。このようにして副生物の生成が抑制され、結果的に、生成ガス中の目的物である1224ydの量が増えるので、選択率に優れた効率的な1224ydの製造が可能である。また、反応に用いる1214yaについては、入手が容易な原料から安定した製造方法が確立されている化合物であるため、本発明の製造方法は、工業的に実施しやすく、安定に実施可能な方法といえる。 According to the production method of the present invention described above, a palladium catalyst having a metal containing palladium and chlorine, and the ratio of the number of moles of chlorine atoms to the number of moles of palladium atoms (Cl / Pd) is 2.0 or more. By reacting 1214ya with hydrogen in the gas phase in the presence of a palladium catalyst-carrying carrier on which the carrier is supported, a by-product such as HFO-1234yf, HFC-254eb, HFC-263fb, HFO-1243zf, etc., which are overreduced substances Is reduced. According to the production method of the present invention, the effect of suppressing by-production of HFC-263fb and HFO-1243zf is particularly remarkable. In this way, the production of by-products is suppressed, and as a result, the amount of the target product 1224yd in the product gas increases, so that it is possible to efficiently produce 1224yd with excellent selectivity. Moreover, about 1214ya used for reaction, since it is a compound with which the stable manufacturing method was established from the easily available raw material, the manufacturing method of this invention is industrially easy to implement, and the method which can be implemented stably. I can say that.
 以下、実施例および比較例を示して本発明を詳細に説明する。ただし、本発明は以下の記載によっては限定されない。例1~4は実施例、例5~6は比較例である。 Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples. However, the present invention is not limited by the following description. Examples 1 to 4 are examples, and examples 5 to 6 are comparative examples.
 まず、各例に用いたパラジウム触媒担持担体を以下のようにして調製した。パラジウム触媒担持担体(X1)、(X2)は本発明に係るパラジウム触媒担持担体であり、パラジウム触媒担持担体(Cf1)は比較例用のパラジウム触媒担持担体である。また、各パラジウム触媒担持担体の調製には、粒度が4~8メッシュのヤシ殻活性炭100質量%に対して0.5質量%のパラジウム単体が担持されたパラジウム担持活性炭(エヌ・イーケムキャット社製;以下「パラジウム担持活性炭(A)」という。)を用いた。 First, the palladium catalyst-supported carrier used in each example was prepared as follows. The palladium catalyst support (X1) and (X2) are the palladium catalyst support according to the present invention, and the palladium catalyst support (Cf1) is the palladium catalyst support for the comparative example. In addition, for preparing each palladium catalyst-supported carrier, palladium-supported activated carbon in which 0.5% by mass of palladium was supported on 100% by mass of coconut shell activated carbon having a particle size of 4 to 8 mesh (manufactured by N.E. Hereinafter referred to as “palladium-supported activated carbon (A)”).
 また、パラジウム触媒担持担体のCl/Pdを算出するために、上記の(ii)および(iii)の測定を行い、式(3)により[Cl/Pd](y)を得た。[Cl/Pd](y)と各パラジウム触媒担持担体における、担体、塩化水素処理の条件等から式(4)により各パラジウム触媒担持担体のCl/Pdを算出した。 Further, in order to calculate Cl / Pd of the palladium catalyst-supported carrier, the above measurements (ii) and (iii) were performed, and [Cl / Pd] (y) was obtained from the equation (3). Cl / Pd of each palladium catalyst-supported carrier was calculated according to the equation (4) from [Cl / Pd] (y) and the conditions of the carrier and hydrogen chloride treatment in each palladium catalyst-supported carrier.
 パラジウム担持活性炭(A)における、Cl/Pdを上記算出方法で算出すると、塩化水素処理を施していないためCl/Pdは0.0である。パラジウム担持活性炭(A)をパラジウム触媒担持担体(Cf1)とした。 When Cl / Pd in the palladium-supported activated carbon (A) is calculated by the above calculation method, Cl / Pd is 0.0 because hydrogen chloride treatment is not performed. Palladium-supported activated carbon (A) was used as a palladium catalyst-supported carrier (Cf1).
[調製例1]
 パラジウム担持活性炭(A)を以下の反応装置と同様の装置の反応管に充填した。該反応管が浸漬された油浴の温度を45℃に維持しながら、パラジウム担持活性炭(A)に対して塩化水素を流速300mL/秒で2時間流通させることによりパラジウム触媒担持担体(X1)を得た。得られたパラジウム触媒担持担体(X1)におけるパラジウム触媒のCl/Pdを上記算出方法により算出したところ2.2であった。
[Preparation Example 1]
Palladium-supported activated carbon (A) was filled in a reaction tube of the same apparatus as the following reaction apparatus. While maintaining the temperature of the oil bath in which the reaction tube was immersed at 45 ° C., the palladium catalyst-supported support (X1) was allowed to flow through the palladium-supported activated carbon (A) at a flow rate of 300 mL / second for 2 hours. Obtained. It was 2.2 when Cl / Pd of the palladium catalyst in the obtained palladium catalyst support (X1) was calculated by the above calculation method.
[調製例2]
 調製例1における塩化水素処理の時間を2時間から8時間に変更すること以外は調製例1と同様に行い、パラジウム触媒担持担体(X2)を得た。得られたパラジウム触媒担持担体(X2)におけるパラジウム触媒のCl/Pdを上記算出方法により算出したところ4.6であった。
[Preparation Example 2]
A palladium catalyst-supported carrier (X2) was obtained in the same manner as in Preparation Example 1 except that the hydrogen chloride treatment time in Preparation Example 1 was changed from 2 hours to 8 hours. The Cl / Pd of the palladium catalyst in the obtained palladium catalyst-supported carrier (X2) was calculated by the above calculation method and found to be 4.6.
[例1]
 1224ydの製造には、図1に模式図を示す反応装置100を用いた。反応装置100は、図1に示すように、1本の反応管8と、それを浸漬する油浴9を備えている。反応管8としては、内径2.14cm、全長70cmのSUS304製のU字型の反応管を用いた。反応管8は、その出口11側に上記で調製されたパラジウム触媒担持担体(X1)(Cl/Pd=2.2)が充填密度0.73g/cmで充填された、高さ40cmの触媒層10を有する。油浴に用いる熱媒はパーフルオロエーテルFOMBLIN(R)YLVAC(ソルベイ社)を使用した。
[Example 1]
For the production of 1224yd, the reaction apparatus 100 schematically shown in FIG. 1 was used. As shown in FIG. 1, the reaction apparatus 100 includes a single reaction tube 8 and an oil bath 9 in which the reaction tube 8 is immersed. As the reaction tube 8, a U-shaped reaction tube made of SUS304 having an inner diameter of 2.14 cm and a total length of 70 cm was used. The reaction tube 8 is a catalyst having a height of 40 cm in which the palladium catalyst-supported support (X1) (Cl / Pd = 2.2) prepared above is packed at a packing density of 0.73 g / cm 3 on the outlet 11 side. It has a layer 10. Perfluoroether FOMBLIN (R) YLVAC (Solvay) was used as the heating medium for the oil bath.
 また、反応装置100は、1214yaガス収容容器1、水素ガス収容容器2および窒素ガス収容容器3を有し、各容器はそれぞれ配管4、5、6を介して反応管8の入口7に接続されている。反応管8の出口11から排出されるガスについては、配管13によりアルカリ洗浄槽14に移送され、アルカリ洗浄後、配管15を介して生成ガス収容容器16に回収される。以下の説明において、反応管8の出口11から排出されるガスを「出口ガス」、出口ガスをアルカリ洗浄して得られたガスを「生成ガス」という。 The reaction apparatus 100 has a 1214ya gas storage container 1, a hydrogen gas storage container 2, and a nitrogen gas storage container 3, and each container is connected to the inlet 7 of the reaction tube 8 through pipes 4, 5, and 6, respectively. ing. The gas discharged from the outlet 11 of the reaction tube 8 is transferred to the alkali cleaning tank 14 through the pipe 13 and is recovered in the product gas storage container 16 through the pipe 15 after the alkali cleaning. In the following description, the gas discharged from the outlet 11 of the reaction tube 8 is referred to as “outlet gas”, and the gas obtained by alkali cleaning of the outlet gas is referred to as “product gas”.
 まず、触媒層10が全て浸漬されるように、反応管8を45℃に温度調整した油浴9中に浸漬し、触媒層10を45℃に加熱した。次いで、1214yaガス、水素ガスおよび窒素ガスを反応管8に流通させ、排出された出口ガスをアルカリ洗浄して生成ガスを得た。 First, the reaction tube 8 was immersed in an oil bath 9 whose temperature was adjusted to 45 ° C. so that the catalyst layer 10 was all immersed, and the catalyst layer 10 was heated to 45 ° C. Next, 1214ya gas, hydrogen gas and nitrogen gas were passed through the reaction tube 8, and the discharged outlet gas was washed with alkali to obtain a product gas.
 触媒層10に充填されたパラジウム触媒担持担体(X1)に対する1214yaガスの接触時間は12秒とし、1214yaガスのモル数と、触媒層に導入する水素ガスの総導入量のモル数との比(H/1214ya)は1.0とした。また、1214yaガスのモル数と、触媒層に導入する窒素ガスの総導入量のモル数との比(N/1214ya)は2.0とした。1214yaの線速度uは0.8cm/秒とした。 The contact time of 1214ya gas with respect to the palladium catalyst support (X1) packed in the catalyst layer 10 is 12 seconds, and the ratio between the number of moles of 1214ya gas and the number of moles of the total amount of hydrogen gas introduced into the catalyst layer ( H 2 / 1214ya) was set to 1.0. The ratio (N 2 / 1214ya) between the number of moles of 1214ya gas and the number of moles of the total amount of nitrogen gas introduced into the catalyst layer was 2.0. The linear velocity u of 1214ya was 0.8 cm / second.
 また、反応中の触媒層10の最高温度(反応温度)を、触媒層に挿入した差し込み型の温度計12により測定したところ、171℃であった。出口ガスのアルカリ洗浄は、温度15℃の20質量%水酸化ナトリウム水溶液により行った。 Further, the maximum temperature (reaction temperature) of the catalyst layer 10 during the reaction was measured by a plug-in thermometer 12 inserted in the catalyst layer, and was 171 ° C. The alkali cleaning of the outlet gas was performed with a 20 mass% sodium hydroxide aqueous solution at a temperature of 15 ° C.
[例2]
 油浴9の温度を80℃に変更した以外は、例1と同様にして生成ガスを得た。反応中の触媒層10の最高温度を、触媒層に挿入した差し込み型の温度計12により測定したところ、183℃であった。
[Example 2]
A product gas was obtained in the same manner as in Example 1 except that the temperature of the oil bath 9 was changed to 80 ° C. It was 183 degreeC when the maximum temperature of the catalyst layer 10 during reaction was measured with the insertion type thermometer 12 inserted in the catalyst layer.
[例3]
 パラジウム触媒担持担体(X1)(Cl/Pd=2.2)をパラジウム触媒担持担体(X2)(Cl/Pd=4.6)に変更した以外は、例1と同様にして生成ガスを得た。反応中の触媒層10の最高温度を、触媒層に挿入した差し込み型の温度計12により測定したところ、153℃であった。
[Example 3]
A product gas was obtained in the same manner as in Example 1 except that the palladium catalyst-supported support (X1) (Cl / Pd = 2.2) was changed to the palladium catalyst-supported support (X2) (Cl / Pd = 4.6). . It was 153 degreeC when the maximum temperature of the catalyst layer 10 during reaction was measured with the insertion type thermometer 12 inserted in the catalyst layer.
[例4]
 油浴9の温度を80℃に変更した以外は、例3と同様にして生成ガスを得た。反応中の触媒層10の最高温度を、触媒層に挿入した差し込み型の温度計12により測定したところ、171℃であった。
[Example 4]
A product gas was obtained in the same manner as in Example 3 except that the temperature of the oil bath 9 was changed to 80 ° C. The maximum temperature of the catalyst layer 10 during the reaction was measured by a plug-in thermometer 12 inserted into the catalyst layer, and found to be 171 ° C.
[例5]
 パラジウム触媒担持担体(X1)(Cl/Pd=2.2)をパラジウム触媒担持担体(Cf1)(Cl/Pd=0.0)に変更した以外は、例1と同様にして生成ガスを得た。反応中の触媒層10の最高温度を、触媒層に挿入した差し込み型の温度計12により測定したところ、153℃であった。
[Example 5]
A product gas was obtained in the same manner as in Example 1 except that the palladium catalyst-supported support (X1) (Cl / Pd = 2.2) was changed to the palladium catalyst-supported support (Cf1) (Cl / Pd = 0.0). . It was 153 degreeC when the maximum temperature of the catalyst layer 10 during reaction was measured with the insertion type thermometer 12 inserted in the catalyst layer.
[例6]
 油浴9の温度を80℃に変更した以外は、例5と同様にして生成ガスを得た。反応中の触媒層10の最高温度を、触媒層に挿入した差し込み型の温度計12により測定したところ、171℃であった。
[Example 6]
A product gas was obtained in the same manner as in Example 5 except that the temperature of the oil bath 9 was changed to 80 ° C. The maximum temperature of the catalyst layer 10 during the reaction was measured by a plug-in thermometer 12 inserted into the catalyst layer, and found to be 171 ° C.
[分析方法]
 各例で得られた生成ガスをガスクロマトグラフィー(GC)にて分析し、下式(6)、(7)により、1214yaの1224yd(Z)への選択率X(単位:%)、および1224yd(E)への選択率Y(単位:%)をそれぞれ算出した。
[Analysis method]
The product gas obtained in each example was analyzed by gas chromatography (GC), and the selectivity X (unit:%) of 1214ya to 1224yd (Z) and 1224yd according to the following formulas (6) and (7) The selectivity Y (unit:%) to (E) was calculated.
 X=[a/(a+b+c)]×100  式(6)
 Y=[b/(a+b+c)]×100  式(7)
 (ただし、式(6)、(7)中「a」は1224yd(Z)のモル数、「b」は1224yd(E)のモル数、「c」は過還元体(HFO-1234yf、HFC-254eb、HFC-263fb、HFO-1243zf、その他)の合計モル数を示す。)
X = [a / (a + b + c)] × 100 Formula (6)
Y = [b / (a + b + c)] × 100 Formula (7)
(In the formulas (6) and (7), “a” is the number of moles of 1224yd (Z), “b” is the number of moles of 1224yd (E), and “c” is a hyperreductant (HFO-1234yf, HFC- 254eb, HFC-263fb, HFO-1243zf, etc.)
 また、1224yd(Z体およびE体)の収率を下式(8)により算出した。
1224yd(Z体およびE体)の収率= [A×(X+Y)]/100  式(8)
(ただし、式(8)中、「A」は1214yaの反応率を示す。)
Moreover, the yield of 1224yd (Z body and E body) was computed by the following Formula (8).
Yield of 1224yd (Z-form and E-form) = [A × (X + Y)] / 100 Formula (8)
(However, in Formula (8), "A" shows the reaction rate of 1214ya.)
 分析結果を、反応条件等とともに表1に示す。また、生成ガスのGC分析における面積比をモル比(単位:モル%)として表2に示す。なお、表1におけるパラジウム触媒担持担体の種類は符号のみを示す。 The analysis results are shown in Table 1 together with the reaction conditions. Table 2 shows the area ratio in the GC analysis of the product gas as a molar ratio (unit: mol%). In addition, the kind of palladium catalyst carrying | support carrier in Table 1 shows only a code | symbol.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1および表2に示すように、本発明の実施例である例1~4は、パラジウム触媒担持担体におけるパラジウム触媒のパラジウム原子のモル数に対する塩素原子のモル数の比(Cl/Pd)が本発明の範囲外である例5~6に比べて、1224yd(Z)への選択率Xと1224yd(E)への選択率Yの合計、ならびに1224ydの収率について高い結果が得られた。また、例1~4において過還元体であるHFC-263fbおよびHFO-1243zfの副生を顕著に抑制した。 As shown in Tables 1 and 2, Examples 1 to 4, which are examples of the present invention, have a ratio of the number of moles of chlorine atoms to the number of moles of palladium atoms in the palladium catalyst-supported carrier (Cl / Pd). Compared with Examples 5 to 6, which are outside the scope of the present invention, higher results were obtained for the sum of the selectivity X to 1224yd (Z) and the selectivity Y to 1224yd (E), and the yield of 1224yd. Further, in Examples 1 to 4, the by-products of the hyperreductants HFC-263fb and HFO-1243zf were remarkably suppressed.
 本発明の製造方法によれば、1214yaを還元して1224ydを得る方法において、HFC-263fb、HFO-1243zf等の還元体の生成を抑制することで高純度の1224ydを製造することができる。そして、本発明の方法で得られる1224ydは、地球温暖化係数(GWP)が小さく、クロロフルオロカーボン類に代わる化合物として、洗浄剤、冷媒、発泡剤、溶剤、およびエアゾール用途等に有用である。 According to the production method of the present invention, high purity 1224yd can be produced by suppressing the production of reductants such as HFC-263fb and HFO-1243zf in the method of obtaining 1224yd by reducing 1214ya. And 1224yd obtained by the method of the present invention has a small global warming potential (GWP), and is useful as a substitute for chlorofluorocarbons for cleaning agents, refrigerants, foaming agents, solvents, aerosols, and the like.
 100…反応装置、1…1214yaガス収容容器、2…水素ガス収容容器、3…窒素ガス収容容器、7…反応管入口、8…反応管、9…油浴、10…触媒層、11…反応管出口、12…温度計、14…アルカリ洗浄槽、16…生成ガス収容容器。 DESCRIPTION OF SYMBOLS 100 ... Reaction apparatus, 1 ... 1214ya gas storage container, 2 ... Hydrogen gas storage container, 3 ... Nitrogen gas storage container, 7 ... Reaction tube inlet, 8 ... Reaction tube, 9 ... Oil bath, 10 ... Catalyst layer, 11 ... Reaction Pipe outlet, 12 ... thermometer, 14 ... alkaline washing tank, 16 ... generated gas storage container.

Claims (9)

  1.  パラジウムを含む金属と塩素とを有し、パラジウム原子のモル数に対する塩素原子のモル数の比(Cl/Pd)が2.0以上であるパラジウム触媒を担体に担持させたパラジウム触媒担持担体の存在下、気相で1,1-ジクロロ-2,3,3,3-テトラフルオロプロペンを水素と反応させて1-クロロ-2,3,3,3-テトラフルオロプロペンを得ることを特徴とする1-クロロ-2,3,3,3-テトラフルオロプロペンの製造方法。 Existence of a palladium catalyst-supported carrier comprising a palladium catalyst having a palladium-containing metal and chlorine, and a palladium catalyst having a ratio of the number of moles of chlorine to the number of moles of palladium (Cl / Pd) of 2.0 or more. In the gas phase, 1,1-dichloro-2,3,3,3-tetrafluoropropene is reacted with hydrogen to obtain 1-chloro-2,3,3,3-tetrafluoropropene. A method for producing 1-chloro-2,3,3,3-tetrafluoropropene.
  2.  前記パラジウム原子のモル数に対する塩素原子のモル数の比(Cl/Pd)が2.0~5.0である、請求項1に記載の製造方法。 The production method according to claim 1, wherein the ratio of the number of moles of chlorine atoms to the number of moles of palladium atoms (Cl / Pd) is 2.0 to 5.0.
  3.  前記パラジウムを含む金属におけるパラジウム100質量部に対するパラジウム以外の金属の割合が50質量部以下である、請求項1または2に記載の製造方法。 The production method according to claim 1 or 2, wherein a ratio of a metal other than palladium to 100 parts by mass of palladium in the metal containing palladium is 50 parts by mass or less.
  4.  前記担体に対する前記パラジウムを含む金属の質量割合が、0.1~10質量%である請求項1~3のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 3, wherein a mass ratio of the metal containing palladium to the carrier is 0.1 to 10 mass%.
  5.  前記パラジウムを含む金属がパラジウム単体である請求項1~4のいずれか一項に記載の製造方法。 The method according to any one of claims 1 to 4, wherein the metal containing palladium is palladium alone.
  6.  前記担体が活性炭である請求項1~5のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 5, wherein the carrier is activated carbon.
  7.  前記活性炭がヤシ殻活性炭である、請求項6に記載の製造方法。 The production method according to claim 6, wherein the activated carbon is coconut shell activated carbon.
  8.  前記1,1-ジクロロ-2,3,3,3-テトラフルオロプロペンのモル数に対する前記水素のモル数の比(H/1214ya)が1.4以下である、請求項1~7のいずれか一項に記載の製造方法。 The ratio of the number of moles of hydrogen to the number of moles of 1,1-dichloro-2,3,3,3-tetrafluoropropene (H 2 / 1214ya) is 1.4 or less. The manufacturing method according to claim 1.
  9.  前記1,1-ジクロロ-2,3,3,3-テトラフルオロプロペンを水素と反応させる反応温度が200℃以下である、請求項1~8のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 8, wherein a reaction temperature at which the 1,1-dichloro-2,3,3,3-tetrafluoropropene is reacted with hydrogen is 200 ° C or lower.
PCT/JP2017/028779 2016-08-09 2017-08-08 Method for producing 1-chloro-2, 3, 3, 3-tetrafluoropropene WO2018030408A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780048497.6A CN109563010B (en) 2016-08-09 2017-08-08 Process for producing 1-chloro-2, 3,3, 3-tetrafluoropropene
JP2018533502A JP6881457B2 (en) 2016-08-09 2017-08-08 Method for producing 1-chloro-2,3,3,3-tetrafluoropropene

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016156693 2016-08-09
JP2016-156693 2016-08-09

Publications (1)

Publication Number Publication Date
WO2018030408A1 true WO2018030408A1 (en) 2018-02-15

Family

ID=61162281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028779 WO2018030408A1 (en) 2016-08-09 2017-08-08 Method for producing 1-chloro-2, 3, 3, 3-tetrafluoropropene

Country Status (3)

Country Link
JP (1) JP6881457B2 (en)
CN (1) CN109563010B (en)
WO (1) WO2018030408A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020213600A1 (en) * 2019-04-16 2020-10-22 Agc株式会社 Method for producing 1-chloro-2,3,3,3-tetrafluoropropene

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107759440B (en) * 2017-11-07 2020-07-03 中国民航大学 Method for replacing fluorine on double bond of fluorine-containing olefin by hydrogen
CN111500378B (en) * 2020-07-02 2020-10-30 北京宇极科技发展有限公司 Cleaning agent composed of cyclic hydrochlorofluoroolefin and chain hydrochlorofluoroolefin
CN114436764B (en) * 2020-11-04 2023-10-03 浙江省化工研究院有限公司 Preparation method of 1-chloro-2, 3-tetrafluoropropene and intermediate thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05507028A (en) * 1990-05-22 1993-10-14 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Activation of noble metal catalysts for use in the hydrodehalogenation of halogen-substituted hydrocarbons containing fluorine and at least one other halogen
US20150299072A1 (en) * 2014-04-16 2015-10-22 E I Du Pont De Nemours And Company Conversion of Chlorofluororopanes and Chlorofluropropenes to More Desirable Fluoropropanes and Fluororopenes
WO2016031778A1 (en) * 2014-08-25 2016-03-03 旭硝子株式会社 Method for producing hydrofluoroolefin
WO2016031777A1 (en) * 2014-08-25 2016-03-03 旭硝子株式会社 Process for producing hydrofluoroolefin

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920701092A (en) * 1989-07-21 1992-08-11 후루모또 지로 Method for preparing dichloropentafluoropropane
JP3778298B2 (en) * 1995-01-13 2006-05-24 ダイキン工業株式会社 Method for producing hexafluoropropene
TW200837036A (en) * 2006-11-15 2008-09-16 Du Pont Process for producing 2,3,3,3-tetrafluoropropene
WO2010013576A1 (en) * 2008-07-30 2010-02-04 Daikin Industries, Ltd. Process for producing fluorine-containing propene compound
JP5581858B2 (en) * 2009-07-21 2014-09-03 セントラル硝子株式会社 Process for producing 2-chloro-3,3,3-trifluoropropene
TW201219111A (en) * 2010-06-23 2012-05-16 Asahi Glass Co Ltd Process for producing 2, 3, 3, 3-tetrafluoropropene
WO2011162339A1 (en) * 2010-06-23 2011-12-29 旭硝子株式会社 Process for producing 2,3,3,3-tetrafluoropropene
CN102958879B (en) * 2010-06-23 2014-12-10 旭硝子株式会社 Method for manufacturing 2,3,3,3-tetrafluoropropene
CN104014335B (en) * 2013-03-01 2017-07-07 中化蓝天集团有限公司 Catalyst, its preparation method and the application of a fluoromethane are prepared for monofluorodichloromethane hydrogenation-dechlorination

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05507028A (en) * 1990-05-22 1993-10-14 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Activation of noble metal catalysts for use in the hydrodehalogenation of halogen-substituted hydrocarbons containing fluorine and at least one other halogen
US20150299072A1 (en) * 2014-04-16 2015-10-22 E I Du Pont De Nemours And Company Conversion of Chlorofluororopanes and Chlorofluropropenes to More Desirable Fluoropropanes and Fluororopenes
WO2016031778A1 (en) * 2014-08-25 2016-03-03 旭硝子株式会社 Method for producing hydrofluoroolefin
WO2016031777A1 (en) * 2014-08-25 2016-03-03 旭硝子株式会社 Process for producing hydrofluoroolefin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020213600A1 (en) * 2019-04-16 2020-10-22 Agc株式会社 Method for producing 1-chloro-2,3,3,3-tetrafluoropropene

Also Published As

Publication number Publication date
CN109563010B (en) 2021-05-28
JPWO2018030408A1 (en) 2019-06-13
CN109563010A (en) 2019-04-02
JP6881457B2 (en) 2021-06-02

Similar Documents

Publication Publication Date Title
JP5570219B2 (en) Method for producing 2,3,3,3-tetrafluoropropene
WO2017146189A1 (en) 1-chloro-2,3,3,3-tetrafluoropropene manufacturing method
JP5713020B2 (en) Method for producing 2,3,3,3-tetrafluoropropene
US8133406B2 (en) Processes for producing 2,3,3,3-tetrafluoropropene and/or 1,2,3,3-tetrafluoropropene
WO2018030408A1 (en) Method for producing 1-chloro-2, 3, 3, 3-tetrafluoropropene
JP5786858B2 (en) Method for producing 2,3,3,3-tetrafluoropropene
CN106660908B (en) Process for producing hydrofluoroolefin
JP5713017B2 (en) Method for producing 2,3,3,3-tetrafluoropropene
JP2019196411A (en) Method for producing hydrofluoroolefin
WO2010082662A1 (en) Process for preparation of 1,1-dichloro-2,2,3,3,3–penta- fluoropropane
JP6696431B2 (en) Method for producing hydrofluoroolefin
JP5713018B2 (en) Method for producing 2,3,3,3-tetrafluoropropene
JP5817591B2 (en) Method for producing 2,3,3,3-tetrafluoropropene
WO2020213600A1 (en) Method for producing 1-chloro-2,3,3,3-tetrafluoropropene
JP2022068119A (en) Method for producing 1-chloro-2,3,3,3-tetrafluoropropene

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17839478

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018533502

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17839478

Country of ref document: EP

Kind code of ref document: A1