WO2018030371A1 - Motor unit - Google Patents

Motor unit Download PDF

Info

Publication number
WO2018030371A1
WO2018030371A1 PCT/JP2017/028689 JP2017028689W WO2018030371A1 WO 2018030371 A1 WO2018030371 A1 WO 2018030371A1 JP 2017028689 W JP2017028689 W JP 2017028689W WO 2018030371 A1 WO2018030371 A1 WO 2018030371A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
motor
gear
shaft
reservoir
Prior art date
Application number
PCT/JP2017/028689
Other languages
French (fr)
Japanese (ja)
Inventor
勇樹 石川
山口 康夫
貴之 右田
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN201780049204.6A priority Critical patent/CN109565224B/en
Priority to US16/323,910 priority patent/US10879769B2/en
Priority to JP2018533478A priority patent/JPWO2018030371A1/en
Priority to DE112017003994.0T priority patent/DE112017003994T5/en
Publication of WO2018030371A1 publication Critical patent/WO2018030371A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/203Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil

Definitions

  • the present invention relates to a motor unit.
  • Patent Document 1 discloses a structure in which a coolant is supplied to a motor by a pump provided outside the motor (rotary electric machine) to cool the motor.
  • the refrigerant flows out of the housing and is circulated by a pump. Therefore, piping is required between the pump and the motor, resulting in a problem that the size increases.
  • one aspect of the present invention is to provide a motor unit that cools a motor using a pump and has a reduced overall size.
  • One aspect of the motor unit of the present invention includes a motor having a rotor that rotates about a motor shaft extending in a horizontal direction, a differential device connected to the motor, and a housing that houses the motor and the differential device.
  • a housing provided with a space; oil that accumulates in a vertically lower region of the housing space; and an oil passage that supplies the oil to the motor from a vertically lower region of the housing space,
  • a pump fixed to the outer peripheral surface of the housing is provided in the path of the oil passage, and when viewed from the axial direction of the motor shaft, the pump is located on the opposite side of the differential device across the motor shaft. To position.
  • a motor unit in which the motor is cooled using a pump and the overall dimensions are reduced.
  • FIG. 1 is a conceptual diagram of a motor unit according to an embodiment.
  • FIG. 2 is a perspective view of a motor unit according to an embodiment.
  • FIG. 3 is a side view of the motor unit according to the embodiment. 4 is a cross-sectional view of the motor unit taken along line IV-IV in FIG.
  • FIG. 5 is a cross-sectional view of a rotor according to an embodiment.
  • FIG. 6 is a plan view of the end plate. 7 is a cross-sectional view of the end plate taken along line VII-VII in FIG.
  • FIG. 8 is a cross-sectional view of the end plate of the first modification.
  • FIG. 9 is a plan view of an end plate of a second modification.
  • FIG. 10 is a cross-sectional view of a motor unit according to an embodiment, and is a view showing a second oil passage.
  • FIG. 11 is a perspective view of a motor unit according to an embodiment in which a part of the housing is omitted.
  • FIG. 12 is a plan view of a second reservoir of one embodiment.
  • FIG. 13 is a perspective view of a modified second reservoir.
  • FIG. 14 is a cross-sectional view of a motor unit according to an embodiment, and is a diagram illustrating an outline of a secondary reservoir.
  • FIG. 15 is a front view of a partition wall opening according to an embodiment.
  • FIG. 16 is a graph showing the relationship between the height of the oil level accumulated below the motor chamber and the area of the first region in the motor unit of the embodiment.
  • FIG. 17 is a front view of a partition wall opening according to a modification.
  • FIG. 18 is a graph showing the relationship between the height of the oil level accumulated below the motor chamber and the area of the first region in the motor unit provided with the partition wall opening according to the modified example.
  • FIG. 19 is a side view showing an arrangement of each gear located inside the gear chamber in the motor unit of the embodiment.
  • FIG. 20 is a plan view of a parking mechanism that can be employed in the motor unit of the embodiment.
  • FIG. 21 is a partial cross-sectional view showing a motor unit separating mechanism according to the first modification.
  • FIG. 22 is a conceptual diagram showing a state in which the motor and the speed reducer are connected by the separation mechanism.
  • FIG. 23 is a conceptual diagram showing a state in which the motor and the speed reducer are separated by the separation mechanism.
  • an XYZ coordinate system is appropriately shown as a three-dimensional orthogonal coordinate system.
  • the Z-axis direction indicates the vertical direction (that is, the vertical direction)
  • the + Z direction is the upper side (opposite to the gravity direction)
  • the ⁇ Z direction is the lower side (gravity direction).
  • the X-axis direction is a direction orthogonal to the Z-axis direction and indicates the front-rear direction of the vehicle on which the motor unit 1 is mounted.
  • the + X direction is the front of the vehicle
  • the ⁇ X direction is the rear of the vehicle.
  • the + X direction may be the rear of the vehicle
  • the ⁇ X direction may be the front of the vehicle.
  • the Y-axis direction is a direction orthogonal to both the X-axis direction and the Z-axis direction and is the vehicle width direction (left-right direction).
  • the direction parallel to the motor shaft J2 of the motor 2 (Z-axis direction) is simply referred to as “axial direction”, and the radial direction around the motor shaft J2 is simply referred to as “radial direction”.
  • the circumferential direction around the motor shaft J2, that is, the circumference of the motor shaft J2 is simply referred to as “circumferential direction”.
  • plane view means a state viewed from the axial direction.
  • parallel direction includes a substantially parallel direction.
  • the “orthogonal direction” includes a substantially orthogonal direction.
  • FIG. 1 is a conceptual diagram of a motor unit 1 according to an embodiment.
  • FIG. 2 is a perspective view of the motor unit 1.
  • FIG. 3 is a side view of the motor unit 1.
  • FIG. 4 is a cross-sectional view of the motor unit 1 taken along line IV-IV in FIG. In FIG. 4, a part of the internal structure of the differential device 5 is omitted.
  • the motor unit 1 is mounted on a vehicle using a motor as a power source, such as a hybrid vehicle (HEV), a plug-in hybrid vehicle (PHV), or an electric vehicle (EV), and is used as the power source.
  • a motor such as a hybrid vehicle (HEV), a plug-in hybrid vehicle (PHV), or an electric vehicle (EV), and is used as the power source.
  • HEV hybrid vehicle
  • PHY plug-in hybrid vehicle
  • EV electric vehicle
  • the motor unit 1 includes a motor (main motor) 2, a reduction gear 4, a differential device 5, a housing 6, oil O, and an oil passage 90 that supplies the oil O to the motor 2. And comprising. Further, the motor unit 1 may have a parking mechanism 7 as indicated by a virtual line in FIG.
  • the motor 2 includes a rotor 20 that rotates about a motor shaft J ⁇ b> 2 that extends in the horizontal direction, and a stator 30 that is positioned radially outward of the rotor 20.
  • the reduction gear 4 is connected to the rotor 20 of the motor 2.
  • the differential device 5 is connected to the motor 2 via the speed reducer 4.
  • a housing space 80 for housing the motor 2, the speed reducer 4, and the differential device 5 is provided inside the housing 6.
  • the oil O is used for lubricating the speed reduction device 4 and the differential device 5 and also used for cooling the motor 2.
  • the oil O accumulates in a region below the accommodation space 80 in the vertical direction.
  • the oil path 90 is a path of the oil O that supplies the oil O to the motor 2 from the lower region of the accommodation space 80.
  • the oil passage 90 has a first oil passage 91 and a second oil passage 92.
  • the “oil path” means a path of the oil O that circulates in the accommodation space 80. Therefore, the “oil path” is not only a “flow path” that forms a steady oil flow in one direction in a steady manner, but also a path (for example, a reservoir) for temporarily retaining oil and the oil dripping. It is a concept that includes routes.
  • the accommodation space 80 provided in the housing 6 accommodates the motor 2, the reduction gear 4, and the differential device 5.
  • the housing 6 holds the motor 2, the speed reduction device 4, and the differential device 5 in the accommodation space 80.
  • the housing 6 has a partition wall 61c.
  • the housing space 80 of the housing 6 is partitioned into a motor chamber 81 and a gear chamber 82 by a partition wall 61c.
  • the motor 2 is accommodated in the motor chamber 81.
  • the gear chamber 82 accommodates the reduction gear 4 and the differential 5.
  • an oil reservoir P in which oil O is accumulated is provided in the lower region of the accommodation space 80.
  • the bottom 81 a of the motor chamber 81 is located above the bottom 82 a of the gear chamber 82.
  • a partition opening 68 is provided in a lower region of the partition 61 c that partitions the motor chamber 81 and the gear chamber 82.
  • the partition opening 68 allows the motor chamber 81 and the gear chamber 82 to communicate with each other.
  • the partition opening 68 moves the oil O accumulated in the lower region of the motor chamber 81 to the gear chamber 82. Therefore, in this embodiment, the oil reservoir P is provided in the lower region of the gear chamber 82.
  • a part of the differential 5 is immersed in the oil reservoir P.
  • the oil O accumulated in the oil reservoir P is pumped up by the operation of the differential device 5, a part is supplied to the first oil passage 91, and a part is diffused in the gear chamber 82.
  • the oil O diffused in the gear chamber 82 is supplied to the gears of the reduction gear 4 and the differential device 5 in the gear chamber 82, and spreads the oil O on the gear teeth.
  • the oil O used in the speed reduction device 4 and the differential device 5 is dropped and collected in an oil sump P located below the gear chamber 82.
  • the capacity of the oil reservoir P in the accommodation space 80 is set such that a part of the bearing of the differential device 5 is immersed in the oil O when the motor unit 1 is stopped.
  • the housing 6 is made of, for example, aluminum die casting.
  • the housing 6 constitutes an outer frame of the motor unit 1.
  • the housing 6 includes a motor housing portion 61, a gear housing portion 62, and a closing portion 63.
  • the gear housing part 62 is located on the left side of the motor housing part 61.
  • the closing part 63 is located on the right side of the motor housing part 61.
  • the motor housing portion 61 includes a cylindrical peripheral wall portion 61a that surrounds the motor 2 from the radially outer side, and a side plate portion 61b that is located on one axial side of the peripheral wall portion 61a.
  • a space inside the peripheral wall portion 61 a constitutes the motor chamber 81.
  • the side plate portion 61b has a partition wall 61c and a protruding plate portion 61d.
  • the partition wall 61c covers the opening on one side in the axial direction of the peripheral wall portion 61a.
  • the partition wall 61c is provided with an insertion hole 61f through which the shaft 21 of the motor 2 is inserted in addition to the partition wall opening 68 described above.
  • the side plate portion 61b includes a partition wall 61c and a protruding plate portion 61d that protrudes radially outward with respect to the peripheral wall portion 61a.
  • the protruding plate portion 61d is provided with a first axle passage hole 61e through which a drive shaft (not shown) that supports the wheels passes.
  • the closing part 63 is fixed to the motor housing part 61.
  • the closing part 63 closes the opening on the opposite side in the axial direction of the peripheral wall part 61a. That is, the closing part 63 closes the opening of the cylindrical motor housing part 61.
  • the blocking part 63 includes a blocking part main body 63a and a lid member 63b.
  • the closing portion main body 63 a has a cylindrical protruding portion 63 d that protrudes into the storage space 80 located inside the motor storage portion 61.
  • the protruding portion 63d extends along the inner peripheral surface of the peripheral wall portion 61a.
  • the closing portion main body 63a is provided with a window portion 63c penetrating in the axial direction.
  • the lid member 63b closes the window portion 63c from the outside of the accommodation space 80.
  • the gear housing part 62 is fixed to the side plate part 61 b of the motor housing part 61.
  • the gear accommodating part 62 has a concave shape opened to the side plate part 61b side.
  • the opening of the gear housing portion 62 is covered with the side plate portion 61b.
  • a space between the gear housing portion 62 and the side plate portion 61 b constitutes a gear chamber 82 that houses the speed reduction device 4 and the differential device 5.
  • the gear housing portion 62 is provided with a second axle passage hole 62e.
  • the second axle passage hole 62e overlaps the first axle passage hole 61e when viewed from the axial direction.
  • the gear housing portion 62 includes a first reservoir (reservoir) 93 and a shaft supply channel 94.
  • the first reservoir 93 is located on the surface of the gear housing portion 62 facing the gear chamber 82 side in the axial direction and extends along the axial direction.
  • the first reservoir 93 receives oil O pumped up by the differential 5.
  • the shaft supply channel 94 extends from the bottom of the first reservoir 93 toward the shaft 21 of the motor 2.
  • the shaft supply flow path 94 is a flow path for supplying the oil O received by the first reservoir 93 to the inside of the hollow portion 22 of the shaft 21.
  • the reduction gear 4 has a function of decreasing the rotational speed of the motor 2 and increasing the torque output from the motor 2 in accordance with the reduction ratio.
  • the reduction gear 4 transmits the torque output from the motor 2 to the differential device 5.
  • the reduction gear 4 includes a first gear (intermediate drive gear) 41, a second gear (intermediate gear) 42, a third gear (file null drive gear) 43, and an intermediate shaft 45.
  • Torque output from the motor 2 is transmitted to the ring gear (gear) 51 of the differential device 5 via the shaft 21, the first gear 41, the second gear 42, the intermediate shaft 45 and the third gear 43 of the motor 2.
  • the gear ratio of each gear, the number of gears, and the like can be variously changed according to the required reduction ratio.
  • the reduction gear 4 is a parallel shaft gear type reduction gear in which the shaft cores of the respective gears are arranged in parallel.
  • the first gear 41 is provided on the outer peripheral surface of the shaft 21 of the motor 2.
  • the first gear 41 rotates with the shaft 21 around the motor shaft J2.
  • the intermediate shaft 45 extends along an intermediate axis J4 parallel to the motor axis J2.
  • the intermediate shaft 45 has a cylindrical shape centered on the intermediate axis J4.
  • the intermediate shaft 45 rotates around the intermediate axis J4.
  • the intermediate shaft 45 is rotatably supported by a pair of intermediate shaft holding bearings 87.
  • One of the pair of intermediate shaft holding bearings 87 is held on the surface of the partition wall 61c facing the gear chamber 82 side.
  • the other of the pair of intermediate shaft holding bearings 87 is held by the gear housing portion 62.
  • the second gear 42 and the third gear 43 are provided on the outer peripheral surface of the intermediate shaft 45.
  • the second gear 42 and the third gear 43 are connected via an intermediate shaft 45.
  • the second gear 42 and the third gear 43 rotate around the intermediate shaft J4.
  • the second gear 42 meshes with the first gear 41.
  • the third gear 43 meshes with the ring gear 51 of the differential device 5.
  • the third gear 43 is located on the partition wall 61c side with respect to the second gear 42.
  • the intermediate shaft 45 and the third gear 43 are a single member.
  • the differential device 5 is a device for transmitting torque output from the motor 2 to the wheels of the vehicle.
  • the differential device 5 has a function of transmitting the same torque to the axles 55 of the left and right wheels while absorbing the speed difference between the left and right wheels when the vehicle is turning.
  • the differential device 5 includes a ring gear 51, a gear housing 57, a pair of pinion gears (not shown), a pinion shaft (not shown), and a pair of side gears (not shown).
  • the ring gear 51 rotates around a differential axis J5 parallel to the motor axis J2. Torque output from the motor 2 is transmitted to the ring gear 51 via the reduction gear 4. That is, the ring gear 51 is connected to the motor 2 via another gear.
  • the ring gear 51 is fixed to the outer periphery of the gear housing 57.
  • the gear housing 57 accommodates a pair of pinion gears and a pair of side gears.
  • the gear housing 57 rotates around the differential axis J5 together with the ring gear 51.
  • the pair of pinion gears are bevel gears facing each other.
  • the pair of pinion gears are supported by the pinion shaft.
  • the pair of side gears are bevel gears that mesh at right angles with the pair of pinion gears.
  • Each of the pair of side gears has a fitting portion.
  • Each axle is fitted to the fitting portion.
  • a pair of axles fitted in different fitting parts rotate around the differential axis J5 with the same torque.
  • the motor 2 is an inner rotor type motor that includes a stator 30 and a rotor 20 that is rotatably disposed inside the stator 30.
  • the rotor 20 rotates when electric power is supplied from a battery (not shown) to the stator 30.
  • the torque of the motor 2 is transmitted to the differential device 5 through the speed reducer 4.
  • the stator 30 includes a stator core 32, a coil 31, and an insulator (not shown) interposed between the stator core 32 and the coil 31.
  • the stator 30 is held by the housing 6.
  • the stator core 32 has a plurality of magnetic pole teeth (not shown) radially inward from the inner peripheral surface of the annular yoke.
  • the stator core 32 of the present embodiment has 48 slots formed between the magnetic pole teeth.
  • a coil 31 is formed by winding a coil wire between the magnetic pole teeth.
  • the coil 31 has a coil end 31 a protruding from the axial end surface of the stator core 32. That is, the stator 30 has a coil end 31a.
  • the coil end 31 a protrudes in the axial direction from the end of the rotor core 24 of the rotor 20.
  • the coil end 31 a protrudes on both sides in the axial direction with respect to the rotor core 24.
  • the rotor 20 includes a shaft (motor shaft) 21, a rotor core 24, a rotor magnet (permanent magnet) 25, a pair of plate-like end plates 26, nuts 29, and washers (lid portions) 28.
  • the shaft 21 extends around a motor shaft J2 extending in the horizontal direction and in the vehicle width direction (a direction orthogonal to the vehicle traveling direction).
  • the shaft 21 has a first shaft portion 21A and a second shaft portion 21B that are coaxially connected to each other.
  • the shaft 21 is a hollow shaft provided with a hollow portion 22 having an inner peripheral surface extending along the motor axis J2.
  • the hollow portion 22 includes a first hollow portion 22A located inside the first shaft portion 21A and a second hollow portion 22B located inside the second shaft portion 21B.
  • the first hollow portion 22A and the second hollow portion 22B are arranged along the axial direction and communicate with each other.
  • the first shaft portion 21 ⁇ / b> A is disposed in the motor chamber 81 of the accommodation space 80.
  • 21 A of 1st shaft parts are located in the radial inside of the stator 30, and penetrate the rotor core 24 along the motor shaft J2.
  • 21 A of 1st shaft parts have the 1st end part 21e located in the output side (namely, reduction gear 4 side), and the 2nd end part 21f located in the other side.
  • the first shaft portion 21A is rotatably supported by a pair of first bearings 89.
  • the pair of first bearings 89 support the first end 21e and the second end 21f of the first shaft portion 21A.
  • One of the pair of first bearings 89 is held by the closing portion 63.
  • the other of the pair of first bearings 89 is held on the surface of the partition wall 61c facing the motor chamber 81 side.
  • FIG. 5 is a cross-sectional view of the rotor 20.
  • the second shaft portion 21 ⁇ / b> B is illustrated by an imaginary line.
  • a pair of communication holes 23 is provided in the first shaft portion 21A.
  • the communication hole 23 extends in the radial direction and communicates the outside of the shaft 21 with the hollow portion 22. That is, the shaft 21 is provided with a pair of communication holes 23.
  • the pair of communication holes 23 are arranged along the axial direction. In this specification, a hole that passes from the outer peripheral surface of the shaft 21 through the hollow portion to the outer peripheral surface is defined as one communication hole 23.
  • a flange portion (lid portion) 21c and a screw portion 21d arranged in the axial direction are provided on the outer peripheral surface of the first shaft portion 21A. That is, the flange portion 21 c and the screw portion 21 d are provided on the outer peripheral surface of the shaft 21.
  • the rotor core 24 is located between the flange portion 21c and the screw portion 21d in the axial direction.
  • a nut 29 is fastened to the screw portion 21d.
  • the second shaft portion 21B is positioned coaxially with the first shaft portion 21A.
  • the second shaft portion 21b has a third end portion 21g located on the first shaft portion 21A side and a fourth end portion 21h located on the opposite side.
  • the second shaft portion 21B is connected to the first end portion 21e of the first shaft portion 21A at the third end portion 21g.
  • the second shaft portion 21 ⁇ / b> B is disposed in the gear chamber 82 of the accommodation space 80.
  • the third end portion 21g of the second shaft portion 21B protrudes toward the motor chamber 81 through an insertion hole 61f provided in the partition wall 61c and is connected to the first shaft portion 21A.
  • a first gear 41 is provided on the outer peripheral surface of the second shaft portion 21B.
  • the first gear 41 is a part of the reduction gear 4.
  • the first gear 41 meshes with the second gear 42 and transmits the output of the shaft 21 to the second gear.
  • the second shaft portion 21B is rotatably supported by a pair of second bearings 88.
  • One of the pair of second bearings 88 is held on the surface of the partition wall 61c facing the gear chamber 82 side.
  • the other of the pair of second bearings 88 is held in the gear housing portion 62.
  • the hollow portion 22 opens in the axial direction at the second end portion 21f of the first shaft portion 21A and the fourth end portion 21h of the second shaft portion 21B. Oil O is supplied to the hollow portion 22 from the opening of the fourth end portion 21h. The oil O supplied to the hollow portion 22 flows from the fourth end portion 21h side toward the second end portion 21f side. The oil O supplied to the hollow portion 22 flows out of the shaft 21 through the communication hole 23.
  • the fourth end portion 21h side may be referred to as the upstream side in the flow direction of the hollow portion 22, and the second end portion 21f side may be referred to as the downstream side in the flow direction of the hollow portion 22.
  • the first hollow portion 22A includes a first region 22p having a different inner peripheral diameter, a second region (small-diameter hollow portion) 22q, a third region (large-diameter hollow portion) 22r, Have In the first region 22p, the second region 22q, and the third region 22r, the diameter of the inner peripheral surface increases in this order. That is, the second region 22q has a larger inner diameter than the first region 22p, and the third region 22r has a larger inner diameter than the first region 22p and the third region 22r.
  • the first region 22p, the second region 22q, and the third region 22r are arranged in this order from the downstream side in the flow direction to the upstream side.
  • the first region 22p is located on the second end 21f side.
  • the second region 22q is located between the first region 22p and the third region 22r in the axial direction.
  • the third region 22r is located on the first end 21e side. That is, the third region 22r is located closer to the second shaft portion 21B than the second region 22q.
  • one communication hole 23 on the upstream side in the flow direction of the pair of communication holes 23 opens. Further, the other communication hole 23 on the downstream side in the flow direction of the pair of communication holes 23 opens in the second region 22q.
  • the inner peripheral surface of the first hollow portion 22A is located between the first step surface 22s located between the first region 22p and the second region 22q, and between the second region 22q and the third region 22r. And a second step surface (step surface) 22t.
  • the first step surface 22s and the second step surface 22t face the second shaft portion 21B side. Further, the first step surface 22s and the second step surface 22t are inclined toward the upstream side in the flow direction as going outward in the radial direction.
  • the third end portion 21g of the second shaft portion 21B is inserted into the third region 22r of the first shaft portion 21A.
  • a female spline 22e is provided in the third region 22r.
  • a male spline 22g is provided on the outer peripheral surface of the third end portion 21g of the second shaft portion 21B.
  • the female spline 22e and the male spline 22g are fitted to each other. Thereby, 21 A of 1st shaft parts and the 2nd shaft part 21B are connected.
  • a gap is provided between the end surface of the second shaft portion 21B facing the first shaft portion 21A (that is, the end surface of the third end portion 21g) and the second step surface 22t.
  • the gap between the end surface of the third end portion 21 g and the second step surface 22 t forms a concave groove 22 u on the inner peripheral surface of the hollow portion 22. That is, a concave groove 22u extending in the circumferential direction is provided on the inner peripheral surface of the hollow portion 22, and the concave groove 22u is formed between the end surface of the third end portion 21g of the second shaft portion 21B and the third region. 22r is comprised from the inner peripheral surface and the 2nd level
  • one communication hole 23 located upstream in the flow direction of the oil O opens into the hollow portion 22 in the concave groove 22u. Centrifugal force is applied to the oil O supplied into the hollow portion 22 as the shaft 21 rotates. Since the concave groove 22u is provided on the inner peripheral surface of the hollow portion 22, the oil O accumulates in the concave groove 22u with centrifugal force. According to the present embodiment, since the communication hole 23 opens into the concave groove 22 u, the oil O accumulated in the concave groove 22 u can be efficiently guided to the communication hole 23.
  • the oil O can be accumulated using the gap at the connection portion between the first shaft portion 21A and the second shaft portion 21B as the concave groove 22u. Therefore, it is not necessary to perform special processing to provide the concave groove 22u for storing the oil O.
  • the oil O easily flows into the communication holes 23 located on the downstream side in the flow direction of the oil O and flows into the communication holes 23 on the upstream side in the flow direction of the oil O. Oil O may be insufficient. According to this embodiment, since the communication hole 23 located on the upstream side in the flow direction opens in the concave groove 22u, the oil O can sufficiently flow into the communication hole 23 located on the upstream side in the flow direction.
  • the diameter of the hollow portion 22 gradually decreases from the upstream side toward the downstream side in the flow direction.
  • the oil O is easy to spread from the upstream side of the hollow portion 22 to the downstream side.
  • one of the pair of communication holes 23 on the upstream side opens to the third region 22r, and the other on the downstream side opens to the second region 22q. That is, the opening of the downstream communication hole 23 is provided in a region where the diameter of the hollow portion 22 is smaller than the opening of the upstream communication hole 23. Therefore, the oil O can sufficiently flow into the communication hole 23 located on the downstream side.
  • a part of the female spline 22e is located in the gap between the end surface of the third end portion 21g and the second step surface 22t. Therefore, the inner peripheral surface of the hollow portion 22 is provided with a convex portion and a concave portion that are derived from the female spline 22e and are arranged along the circumferential direction.
  • the cross-sectional shape of the hollow portion is a circle centered on the motor shaft, even if the shaft rotates, the oil O in the hollow portion may idle with respect to the shaft, and centrifugal force may not be applied to the oil O. .
  • the oil O can be rotated with the rotation of the shaft 21, and centrifugal force is applied to the oil O in the hollow portion 22. be able to. Thereby, the oil O can be smoothly guided to the communication hole 23.
  • splines male spline 22g and female spline 22e
  • splines male spline 22g and female spline 22e
  • a part of the spline (female spline 22e) in the third region 22r is located in the concave groove 22u. Therefore, centrifugal force can be applied to the oil O in the hollow portion 22 by using the female spline 22e used for fitting. That is, in order to apply centrifugal force to the oil O, it is not necessary to process the inner peripheral surface of the hollow portion 22 to provide an uneven shape.
  • the rotor core 24 is configured by laminating silicon steel plates.
  • the rotor core 24 is a cylindrical body extending along the axial direction.
  • the rotor core 24 has a pair of axial end faces 24a facing the opposite sides in the axial direction, and an outer peripheral face 24b facing the radially outer side.
  • the rotor core 24 is sandwiched between the nut 29 and the flange portion 21c together with the pair of end plates 26.
  • a washer 28 is interposed between the nut 29 and the end plate 26.
  • the rotor core 24 is provided with one fitting hole 24c, a plurality of magnet holding holes 24d, and a plurality of core through holes 24e that are located in the center when viewed from the axial direction and penetrate along the axial direction.
  • the fitting hole 24c, the magnet holding hole 24d, and the core through hole 24e open in the pair of axial end surfaces 24a.
  • the fitting hole 24c is circular with the motor shaft J2 as the center.
  • the shaft 21 is inserted and fitted into the fitting hole 24c. Therefore, the rotor core 24 surrounds the shaft 21 from the radially outer side.
  • the fitting between the shaft 21 and the fitting hole 24c is a clearance fit. Therefore, deformation of the rotor core 24 due to the fitting of the shaft 21 is suppressed.
  • a protrusion (not shown) protruding radially inward is provided on the inner peripheral surface of the fitting hole 24c. This protrusion fits into a key groove (not shown) provided on the outer peripheral surface of the shaft 21. Thereby, the relative rotation of the rotor core 24 and the shaft 21 is suppressed.
  • the plurality of core through holes 24e are arranged side by side along the circumferential direction.
  • the core through hole 24e is located radially inward from the magnet holding hole 24d.
  • the core through hole 24e plays a role of causing the oil O to flow between the pair of axial end surfaces 24a.
  • the plurality of magnet holding holes 24d are arranged side by side along the circumferential direction.
  • a rotor magnet 25 is inserted into the magnet holding hole 24d.
  • the magnet holding hole 24d holds the rotor magnet 25. That is, the rotor 20 of the present embodiment is an embedded type (IPM (interior / permanent / magnet)) in which the rotor magnet 25 is embedded in the rotor core 24.
  • IPM internalior / permanent / magnet
  • the rotor magnet 25 is a permanent magnet.
  • the plurality of rotor magnets 25 are respectively inserted into the plurality of magnet holding holes 24 d arranged in the circumferential direction and fixed to the rotor core 24.
  • the plurality of rotor magnets 25 are arranged along the circumferential direction.
  • FIG. 6 is a plan view of the end plate 26.
  • FIG. 7 is a cross-sectional view of the end plate 26 taken along line VII-VII in FIG. 6 and 7, other members of the motor unit 1 are indicated by imaginary lines.
  • the end plate 26 is circular in plan view.
  • the end plate 26 is a metal plate.
  • the end plate 26 is provided with a circular central hole 26i penetrating along the axial direction.
  • a key portion 26q is provided on the inner peripheral surface of the central hole 26i.
  • the key portion 26q fits in a key groove 21k provided on the shaft 21. The end plate 26 and the shaft 21 are prevented from rotating relative to each other by the fitting of the key portion 26q and the key groove 21k.
  • the end plate 26 has a first surface 26a and a second surface 26b.
  • the first surface 26 a faces the axial end surface 24 a of the rotor core 24.
  • the second surface 26b faces away from the first surface 26a.
  • the pair of end plates 26 are respectively located on both sides of the rotor core 24 in the axial direction.
  • the pair of end plates 26 are in contact with the pair of axial end faces 24 a of the rotor core 24.
  • One of the pair of end plates 26 (first end plate 26A) is located between one axial end surface 24a of the rotor core 24 and the flange portion 21c.
  • the other of the pair of end plates 26 (second end plate 26 ⁇ / b> B) is located between the other axial end surface 24 a of the rotor core 24 and the washer 28.
  • the end plate 26 contacts the axial end surface 24a on the first surface 26a. Further, the end plate 26 contacts the flange portion 21c or the washer 28 on the second surface 26b.
  • the rotor core 24 and the pair of end plates 26 are sandwiched between the flange portion 21 c and the nut 29.
  • the pair of end plates 26 are pressed against the axial end surface 24a of the rotor core 24 from both axial sides.
  • a frictional force is generated at a contact portion between the first surface 26 a of the end plate 26 and the axial end surface 24 a of the rotor core 24, thereby suppressing relative rotation between the rotor core 24 and the shaft 21.
  • the rotor core 24 is fixed to the shaft 21 via the end plate 26.
  • the fitting between the fitting hole 24c of the rotor core 24 and the shaft 21 can be a clearance fit, the deformation of the rotor core 24 can be suppressed, and the highly efficient motor 2 can be provided.
  • the first surface 26a is provided with a recess 26f and an inclined surface 26e surrounding the recess 26f from the outside in the radial direction.
  • the recess 26f has a circular shape centered on the motor shaft J2 in plan view.
  • the recess 26f has a recess bottom surface 26g and a recess inner peripheral surface 26h.
  • the recess bottom surface 26g is a plane orthogonal to the motor shaft J2.
  • the concave inner peripheral surface 26h is located between the concave bottom surface 26g and the inclined surface 26e.
  • the concave inner peripheral surface 26h is inclined in a direction to make the concave portion 26f shallower from the radially inner side toward the radially outer side.
  • a gap is provided between the recess 26 f and the axial end surface 24 a of the rotor core 24. Oil O accumulates in the gap and cools the axial end surface 24a of the rotor core 24.
  • the inclined surface 26e is provided in a region located on the outermost radial direction in the first surface 26a and extends along the circumferential direction.
  • the inclined surface 26e is inclined at an inclination angle ⁇ toward the rotor core 24 as it goes radially outward.
  • the inclination angle ⁇ is an angle formed between a plane orthogonal to the motor shaft J2 and the inclined surface 26e.
  • the end plate 26 is in contact with the axial end surface 24a of the rotor core 24 at the inclined surface 26e of the first surface 26a. Since the inclined surface 26e is inclined toward the rotor core 24 as it goes outward in the radial direction, the inclined surface 26e is in contact with the axial end surface 24a in the most radially outer region. Thereby, the frictional force generated by the contact between the inclined surface 26e and the axial end surface 24a can be generated on the radially outer side as much as possible. Further, the vertical stress between the inclined surface 26e and the axial end surface 24a can be increased toward the outer side in the radial direction. Thereby, the limit value of a static friction force can be enlarged as it goes to a radial direction outer side.
  • the holding torque that suppresses the relative rotation between the end plate 26 and the rotor core 24 is proportional to the distance from the rotating shaft and the frictional force. Therefore, according to the present embodiment, it is possible to increase the holding torque that suppresses the relative rotation between the end plate 26 and the rotor core 24, and to firmly hold the rotor core 24 against the end plate 26.
  • the inclination angle ⁇ of the inclined surface 26e is preferably 0.1 ° or more and 5 ° or less.
  • the end plate 26 of the present embodiment is in contact with the axial end surface 24a of the rotor core 24 at the inclined surface 26e. For this reason, the contact position of the end plate 26 and the rotor core 24 can be stabilized. Therefore, variation in transmission torque between the end plate 26 and the rotor core 24 can be suppressed, and the rotor core 24 can be reliably fixed to the shaft 21.
  • the end plate 26 is provided with the inclined surface 26e, even if the flatness of the contact portion between the end plate 26 and the axial end surface 24a of the rotor core 24 varies, the end plate 26 is reliably brought into contact. be able to.
  • an oil passage 26t (see FIG. 5) is provided on the radially inner side of the inclined surface 26e. In general, when oil enters between the rotor core and the stator, the rotational efficiency of the rotor core decreases.
  • the inclined surface 26e comes into contact with the axial end surface 24a of the rotor core 24, so that the oil O in the oil passage 26t enters the gap between the outer peripheral surface 24b of the rotor core 24 and the stator 30 from between the end plate 26 and the rotor core 24. This can be suppressed.
  • the inclined surface 26e may be configured such that the inclination angle changes as it goes radially outward.
  • the inclined surface 26e may be a curved surface whose inclination angle changes as it goes radially outward.
  • the inclined surface 26 e closes the opening of the magnet holding hole 24 d of the rotor core 24.
  • the rotor magnet 25 held inside the magnet holding hole 24d is prevented from jumping out of the opening of the magnet holding hole 24d.
  • the second surface 26b is provided with a flat surface portion 26c and a chamfered portion 26d located on the outer edge of the flat surface portion 26c.
  • the flat portion 26c is orthogonal to the motor shaft J2.
  • the chamfered portion 26d is inclined toward the first surface 26a as it goes radially outward.
  • the end plate 26 has two sets of plate through holes 26p, first concave grooves (first concave portions) 26j, and second concave grooves (second concave portions) 26k. Provided. Hereinafter, one set of the two sets of plate through holes 26p, the first concave groove 26j, and the second concave groove 26k will be described, but the other set has the same configuration.
  • the plate through hole 26p extends along the axial direction.
  • the first concave groove 26j is located on the first surface 26a.
  • the first concave groove 26j extends radially inward from the opening of the plate through hole 26p.
  • the first concave groove 26j opens radially inward on the inner peripheral surface of the central hole 26i.
  • the second concave groove 26k is located on the second surface 26b.
  • the second concave groove 26k extends radially outward from the opening of the plate through hole 26p.
  • the second concave groove 26k opens radially outward in the chamfered portion 26d.
  • the opening facing the axial direction of the first concave groove 26j of the end plate 26 is covered with the axial end surface 24a of the rotor core 24. Further, the radial opening of the first concave groove 26 j is connected to the communication hole 23 of the shaft 21.
  • the oil O supplied into the hollow portion 22 of the shaft 21 flows radially outward through the communication hole 23. Further, the oil O flows into the first concave groove 26j from the opening on the radially outer side of the communication hole 23. Further, the oil O passes through the plate through hole 26p, flows to the first surface 26a and the second surface 26b side, and is discharged to the outside of the rotor 20 through the second concave groove 26k. As shown in FIG. 4, a coil end 31 a of the stator 30 is provided outside the end plate 26 in the radial direction. The oil O discharged to the outside of the rotor 20 is supplied to the coil end 31a and cools the coil end 31a.
  • the first concave groove 26j, the plate through hole 26p, and the second concave groove 26k of the end plate 26 function as an oil flow path 26t. That is, the oil flow path 26t includes a first concave groove 26j, a plate through hole 26p, and a second concave groove 26k. Each of the pair of end plates 26 is provided with an oil flow path 26t that communicates with the communication hole 23 and extends and opens in the radial direction.
  • the plate through hole 26p, the first concave groove 26j, and the second concave groove 26k constitute the oil flow path 26t. Therefore, according to the present embodiment, the oil flow path 26t can be configured by inexpensive parts (end plate 26) manufactured by mold molding.
  • the core through hole 24e communicates with the first concave groove 26j of the pair of end plates 26. That is, the core through hole 24e connects the first concave grooves 26j of the pair of end plates 26 to each other. In other words, the core through hole 24e connects the oil flow paths 26t of the pair of end plates 26 to each other. Further, at least a part of the opening of the core through hole is located on the radially outer side from the plate through hole 26p.
  • the core through hole 24e connects the first concave grooves 26j of the pair of end plates 26, a part of the oil O that passes through the first concave groove 26j is used as the core through hole 24e. It can flow. Thereby, the rotor core 24 can be cooled from the inside by the oil O of the core through-hole 24e. Further, the rotor magnet 25 held by the rotor core 24 can be cooled via the rotor core 24.
  • the opening of the core through hole 24e is located on the outer side in the radial direction from the plate through hole 26p of the pair of end plates 26.
  • the oil O can be accumulated inside the core through hole 24e by the centrifugal force of the rotor 20, and the oil O can be supplied from the core through hole 24e to the first concave grooves 26j of the end plates 26 on both sides.
  • the oil O can be supplied from the other side through the core through hole 24e. Therefore, substantially the same amount of oil O can be discharged from each end plate 26 to the coil end 31a, and the coil 31 can be stably cooled.
  • one of the pair of end plates 26 sandwiched between the flange portion 21 c and the rotor core 24 is a first end plate 26 ⁇ / b> A, and is sandwiched between the nut 29 and the rotor core 24.
  • the other is the second end plate 26B.
  • the opening of the second concave groove 26k facing the axial direction entirely faces the outside in the axial direction.
  • the opening facing the axial direction of the second concave groove 26k is entirely exposed as viewed from the axial direction. That is, the second concave groove 26k of the first end plate 26A communicates with the outside through the opening facing in the axial direction.
  • the second concave groove 26k functions as a first opening portion 26s in which a part of the plate through hole 26p and the entire opening facing the axial direction are released from the washer 28.
  • the oil O that has passed through the plate through hole 26p is discharged from the first opening 26s.
  • a washer 28 is interposed between the second end plate 26B and the nut 29.
  • a part on the radially inner side of the opening in the axial direction of the plate through hole 26p and the second concave groove 26k is covered by a washer 28.
  • a portion covered by the washer 28 is called a covering portion, and a portion not covered by the washer 28 is called an opening portion. That is, in the second end plate 26B, the opening facing the axial direction of the second concave groove 26k has a covering portion covered by the washer 28 and a second opening portion 26r not covered by the washer.
  • the second groove 26k of the second end plate 26B faces the outside in the axial direction at the second opening 26r located at the radially outer end of the second groove 26k.
  • the second concave groove 26k of the second end plate 26B is exposed at the second opening 26r when viewed from the axial direction. That is, the second groove 26k of the second end plate 26B communicates with the outside at the second opening 26r.
  • the second opening portion 26r is located at the radially outer end of the second concave groove 26k. In the second end plate 26B, the oil O that has passed through the plate through hole 26p is discharged from the second opening portion 26r.
  • the second surface 26b is provided with the second concave groove 26k, so that the second surface via the plate through hole 26p.
  • the oil O flowing to the 26b side can be moved radially outward along the second concave groove 26k. Therefore, the oil O can be flowed stably to the second open portion 26r, and the oil O can be stably supplied to the coil end 31a of the stator 30.
  • the flange portion 21c or the washer 28 functions as a lid portion that covers the opening in the axial direction with respect to the second concave groove 26k of the first end plate 26A and the second end plate 26B.
  • the rotor 20 has a pair of lid portions (the flange portion 21 c and the washer 28) located at the end portion in the axial direction of the rotor core 24 via the end plate 26.
  • the lid portion (the flange portion 21c and the washer 28) covers the opening facing the axial direction of the plate through-hole 26p from the outside, so that the oil O flowing out from the plate through-hole 26p to the second surface 26b side is second recessed. It is guided to flow along the groove 26k.
  • the behavior of the oil O can be controlled by the lid (the flange portion 21c and the washer 28), and the oil O can be prevented from entering between the rotor core 24 and the stator 30.
  • the opening in the axial direction of the second concave groove 26k is partially covered by the washer 28 and faces the outside in the axial direction at the second opening 26r. That is, in the region reaching the second opening 26r of the second concave groove 26k, the oil O does not overflow in the axial direction, and the oil O can be reliably moved to the second opening 26r. Thereby, the oil O can be stably discharged from the second opening portion 26r, and the oil O can be stably supplied to the coil end 31a.
  • the second concave groove 26k faces the axially outer side in the axial direction at the second opening 26r located at the radial end. Therefore, the oil O that has passed through the second concave groove 26k can be scattered in the axial direction from the second opening 26r. Thereby, the oil O can be scattered toward the coil end 31a protruding in the axial direction from the end of the rotor core 24, and the coil 31 of the coil end 31a can be effectively cooled.
  • a first opening 26s is provided over a part of the plate through hole 26p and the entire opening in the axial direction.
  • the flange portion 21c may cover a part of the opening of the second concave groove 26k facing the axial direction.
  • the first opening portion 26s of the first end plate 26A is located at the radially outer end, similarly to the second opening portion 26r of the second end plate 26B. The same effect as the opening part 26r can be produced.
  • the end plate 26 is provided with a groove-shaped first groove 26j and a second groove 26k.
  • the oil O can be smoothly guided along the radial direction by providing the first concave groove 26j and the second concave groove 26k extending along the radial direction.
  • FIG. 8 is a cross-sectional view of a first modified end plate 126 that can be employed in the present embodiment.
  • the end plate 126 of the first modified example has a first surface 126a that faces the rotor core 24 and a second surface 126b that faces away from the first surface 126a, as in the above-described embodiment.
  • the end plate 126 is provided with a pair of plate through holes 126p, a pair of first concave grooves 126j, and a pair of second concave grooves 126k.
  • the plate through hole 126p extends in the axial direction.
  • the first concave groove 126j is located on the first surface 126a.
  • the first concave groove 126j extends radially inward from the plate through hole 126p.
  • the second concave groove 126k is located on the second surface 126b.
  • the second concave groove 126k extends radially outward from the plate through hole 126p.
  • the opening of the second concave groove 126k facing the axial direction is partially covered by the lid portion 128 and faces the outside in the axial direction at the opening portion 126r.
  • the cover part 128 is the washer 28 or the collar part 21c here (refer FIG. 5).
  • the bottom surface of the second groove 126k is provided with an inclined surface 126u in which the depth of the second groove 126k decreases toward the outside in the radial direction.
  • the inclined surface 126u overlaps with the opening 126r when viewed from the axial direction.
  • an axial component can be imparted to the flow of the oil O by providing the inclined surface 126u in the second concave groove 126k.
  • the oil O can be scattered in the axial direction, and the oil O can be effectively scattered toward the coil end 31 a that protrudes in the axial direction from the end of the rotor core 24.
  • FIG. 9 is a plan view of an end plate 226 of a second modification that can be employed in the present embodiment.
  • the end plate 226 of the second modification example has a first surface 226a and a second surface 226b facing away from the first surface 226a, as in the above-described embodiment.
  • the end plate 226 has a pair of plate through holes 226p, a pair of first concave grooves 226j, and a pair of second concave grooves 226k.
  • the plate through hole 226p extends in the axial direction.
  • the first concave groove 226j is located on the first surface 226a.
  • the first concave groove 226j extends radially inward from the plate through hole 226p.
  • the second groove 226k is located on the second surface 226b.
  • the second concave groove 226k extends radially outward from the plate through hole 226p.
  • the opening of the second groove 226k facing the axial direction is partially covered by the lid 228 and faces the outside in the axial direction at the opening 226r.
  • the cover part 228 is the washer 28 or the collar part 21c here (refer FIG. 5).
  • the second concave groove 226k is a groove extending along the radial direction. Further, when viewed from the axial direction, the extending direction of the second groove 226k is inclined with respect to the radial direction. The second concave groove 226k is curved so as to increase the inclination angle with respect to the radial direction as it goes outward in the radial direction. According to this modification, since the second concave groove 226k is inclined with respect to the radial direction, centrifugal force is applied from the wall surface of the inclined second concave groove 226k to the oil O passing through the second concave groove 226k. Can be granted. Thereby, the speed of the oil O scattered from the open part 226r can be increased, and even when the distance to the coil end 31a is long, the oil O can be reliably applied to the coil end 31a.
  • the pair of second concave grooves 226k of the present modification are different from each other in shape viewed from the axial direction.
  • One second concave groove 226kA of the pair of second concave grooves 226k is slightly curved as viewed from the axial direction with respect to the other second concave groove 226kB, and has a small inclination angle with respect to the radial direction. That is, according to the present embodiment, the extending direction of each of the plurality of second concave grooves 226kA and 226kB when viewed from the axial direction is different in angle with respect to the radial direction.
  • the magnitude of the centrifugal force applied to the oil O by the pair of second concave grooves 226kA and 226kB is different from each other.
  • the oil O scattered from the other second concave groove 226kB is higher in speed than the oil O scattered from the second concave groove 226kA, and is scattered in a farther range. That is, according to this modification, in the plurality of second concave grooves 226kA and 226kB, the oil O can be scattered in different regions, and the oil O can be applied to a wide range of the coil end 31a.
  • the oil passage 90 is located inside the housing 6, that is, in the accommodation space 80.
  • the oil passage 90 is configured to straddle the motor chamber 81 and the gear chamber 82 of the accommodation space 80.
  • the oil path 90 is a path of the oil O that guides the oil O from the oil reservoir P (that is, the region below the accommodation space 80) to the oil reservoir P through the motor 2 again.
  • the oil passage 90 includes a first oil passage (oil passage) 91 that passes through the inside of the motor 2 and a second oil passage (oil passage) 92 that passes through the outside of the motor 2.
  • the oil O cools the motor 2 from inside and outside in the first oil passage 91 and the second oil passage 92.
  • the oil passage 90 constitutes an oil cooling mechanism.
  • Both the first oil path 91 and the second oil path 92 are paths for supplying the oil O from the oil reservoir P to the motor 2 and collecting it in the oil reservoir P again.
  • the oil O drops from the motor 2 and accumulates in the lower region of the motor chamber.
  • the oil O accumulated in the lower region of the motor chamber 81 moves to the lower region of the gear chamber 82 (that is, the oil reservoir P) through the partition opening 68.
  • a cooler 97 for cooling the oil O is provided in the first oil passage 91.
  • the oil O that has passed through the first oil passage 91 and has been cooled by the cooler 97 joins the oil O that has passed through the second oil passage 92 in the oil reservoir P.
  • the oil reservoir P the oil O that has passed through the first oil passage 91 and the second oil passage 92 is mixed with each other and heat exchange is performed. For this reason, the cooling effect of the cooler 97 that is disposed in the path of the first oil path 91 can also be exerted on the oil O that passes through the second oil path 92.
  • using one cooler 97 provided in one of the first oil passage 91 and the second oil passage 92 the oil O in both oil passages is cooled. .
  • a cooler is arrange
  • positions a cooler in the flow path contained in two oil paths can be considered, respectively. In this case, it is necessary to use two coolers, which increases the cost.
  • region which joined two oil paths, and installs a cooler in this flow path can be considered. In this case, since it is necessary to provide a flow path in the area
  • the cooler is provided only in the first oil passage 91, and the oil O passing through the first oil passage 91 and the second oil passage 92 is mixed in the oil reservoir P, whereby the second The oil passage 92 can be indirectly cooled. Accordingly, the oil O in the first oil passage 91 and the second oil passage 92 can be cooled by one cooler 97 without complicating the configuration of the flow passage in the oil passage 90. In addition, such an effect has the cooler 97 which cools the oil O in any one of the 1st oil path 91 and the 2nd oil path 92, and the 1st oil path 91 and the 2nd oil path This is an effect that can be achieved when the oil O flowing through the path 92 merges in the oil reservoir P.
  • the heat of the oil O is radiated mainly through the cooler 97. Part of the heat of the oil O is also radiated through the housing 6 because the oil O contacts the inner surface of the housing 6.
  • corrugated heat sink part 6b may be provided in the outer surface of the housing 6. As shown in FIG. The heat sink portion 6 b promotes cooling of the motor 2 through the housing 6.
  • first oil passage 91 In the first oil passage 91, the oil O is drawn up from the oil reservoir P by the differential device 5 and guided into the rotor 20. The centrifugal force accompanying rotation of the rotor 20 is given to the oil O inside the rotor 20. As a result, the oil O is evenly diffused toward the stator 30 surrounding the rotor 20 from the radially outer side, and cools the stator 30.
  • the first oil passage 91 includes a lifting path 91a, a shaft supply path (oil passage) 91b, an in-shaft path 91c, and an in-rotor path 91d.
  • a first reservoir 93 is provided in the first oil passage 91.
  • the first reservoir 93 is provided in the accommodation space 80 (particularly the gear chamber 82).
  • the scraping path 91a is a path for scooping up the oil O from the oil reservoir P by the rotation of the ring gear 51 of the differential 5 and receiving the oil O by the first reservoir 93 (see FIG. 3).
  • the first reservoir 93 is located above the motor shaft J2, the intermediate shaft J4, and the differential shaft J5 in the vertical direction.
  • the first reservoir 93 is located between the intermediate shaft J4 and the differential shaft J5 in the vehicle front-rear direction (horizontal direction, X-axis direction).
  • the first reservoir 93 is located between the motor shaft J2 and the differential shaft J5 in the vehicle front-rear direction (horizontal direction, X-axis direction).
  • the first reservoir 93 is disposed on the side portion of the first gear 41.
  • the first reservoir 93 opens upward.
  • the “reservoir” means a structure having a function of storing oil in a state where there is no steady liquid flow in one direction.
  • the “reservoir” differs from the “flow path” in that there is no steady liquid flow.
  • a first reservoir 93, a second reservoir 98, and a sub-reservoir 95 are provided in the accommodation space 80 of the motor unit 1 of the present embodiment.
  • the differential shaft J5 that is the rotation center of the ring gear 51 is disposed on the vehicle rear side with respect to the reduction gear 4.
  • the differential device 5 rotates upward in a region opposite to the speed reduction device 4 when the vehicle moves forward.
  • the oil O pumped up by the ring gear 51 of the differential device 5 travels on the opposite side to the speed reduction device 4 and falls on the upper side of the first reservoir 93 and accumulates in the first reservoir 93. That is, the first reservoir 93 receives the oil O lifted up by the ring gear 51.
  • the second gear 42 and the third gear 43 come into contact with the oil O of the oil reservoir P and scoop up the oil O.
  • the first reservoir 93 also receives the oil O that has been scooped up by the second gear 42 and the third gear 43 in addition to the ring gear 51.
  • the housing 6 has a gear chamber ceiling (ceiling) 64 that constitutes the upper wall of the gear chamber 82.
  • the gear chamber ceiling portion 64 is located above the speed reduction device 4 and the differential device 5.
  • an imaginary line (third line segment to be described later) L3 that virtually connects the motor axis J2 and the differential axis J5 as viewed from the axial direction of the motor axis J2 is defined.
  • the gear chamber ceiling portion 64 is substantially parallel to the virtual line L3.
  • the housing 6 can suppress that the housing 6 enlarges to a perpendicular direction by making the gear chamber ceiling part 64 substantially parallel with the virtual line L3.
  • the gear chamber ceiling 64 and the imaginary line L3 are “substantially parallel” when the angle between the gear chamber ceiling 64 and the imaginary line L3 is within 10 °.
  • the gear chamber ceiling portion 64 is curved, the angle formed between the tangent line at all points of the curved line and the virtual line L3 is within 10 °.
  • it is the range within 10 degrees it is preferable that the gear chamber ceiling part 64 approaches the virtual line L3 as it goes to the differential axis J5 side or the motor axis J2 side. Thereby, the housing 6 can be reduced in size.
  • the gear chamber ceiling portion 64 is a curved surface that is slightly curved in a direction approaching the imaginary line L3 side from the differential axis J5 side toward the motor axis J2 side.
  • the curved shape of the gear chamber ceiling portion 64 is substantially the same as the parabola drawn by the oil O that is lifted up by the ring gear 51, or is a curved surface that is slightly separated from the ring gear 51.
  • Part of the oil O pumped up by the ring gear 51 reaches the first reservoir 93 directly.
  • the other part of the oil O that has been lifted up by the ring gear 51 reaches the first reservoir 93 through the gear chamber ceiling 64 of the housing 6. That is, the gear chamber ceiling part 64 plays a role of guiding the oil O to the first reservoir 93.
  • the gear chamber ceiling portion 64 has a convex portion 65 protruding downward.
  • the convex portion 65 is located above the first reservoir 93.
  • the oil O transmitted through the gear chamber ceiling portion 64 becomes a large droplet at the lower end of the convex portion 65, falls downward, and accumulates in the first reservoir 93. That is, the convex portion 65 guides the oil O transmitted through the gear chamber ceiling portion 64 to the first reservoir 93.
  • the motor housing portion 61 and the gear housing portion 62 are fixed to each other by a bolt 67.
  • the convex portion 65 is provided in the gear chamber ceiling portion 64 using a thick portion around the screw hole into which the bolt 67 is inserted. In FIG. 3, other bolts for fixing the motor housing 61 and the gear housing 62 and other thick portions around the screw holes are not shown.
  • the gear chamber ceiling part 64 has a plate-shaped flange part 66 extending along the axial direction.
  • the collar portion 66 protrudes downward.
  • the lower end of the collar portion 66 is located above the first reservoir 93.
  • a part of the oil O that is scooped up and scattered by the ring gear 51 hits the flange 66 and travels along the surface of the flange 66.
  • the oil O that is scooped up and scattered by the second gear 42 and the third gear is received by the flange 66 and propagates through the surface of the flange 66.
  • the oil O becomes a large droplet at the lower end of the flange 66 and falls downward and accumulates in the first reservoir 93.
  • the flange 66 guides the oil O that has been pumped up to the first reservoir 93.
  • the flange portion 66 is inclined from the differential shaft J5 side toward the motor shaft J2 side as it goes from the upper side to the lower side. Since the ring gear 51 has a larger diameter than the second gear 42 and the third gear 43, the scattering angle of the scattered oil O is almost horizontal. By disposing the flange 66 in the above-described direction, the oil O scattered from the ring gear 51 can be smoothly adhered to the surface of the flange 66 and dropped downward.
  • the first reservoir 93 is located immediately above the ring gear 51, the second gear 42, and the third gear 43.
  • the opening of the first reservoir 93 overlaps with the ring gear 51, the second gear 42, and the third gear 43 as viewed from the vertical direction.
  • Most of the oil pumped up by the gears is scattered directly above the gears being pumped up.
  • the first reservoir 93 has a bottom portion 93a, a first side wall portion 93b, and a second side wall portion 93c.
  • the bottom portion 93a, the first side wall portion 93b, and the second side wall portion 93c extend along the axial direction between the wall surfaces of the gear housing portion 62 and the protruding plate portion 61d of the motor housing portion.
  • the first side wall portion 93b and the second side wall portion 93c extend upward from the bottom portion 93a.
  • the first side wall portion 93 b constitutes a wall surface of the first reservoir 93 on the differential device 5 side.
  • the second side wall portion 93 c constitutes the wall surface of the first reservoir 93 on the speed reduction device 4 side.
  • first side wall 93b extends upward from the end of the bottom 93a on the differential axis J5 side
  • the second side wall 93c extends upward from the end of the bottom 93a on the motor shaft J2 side.
  • the first reservoir 93 is in a region surrounded by the bottom 93a, the first side wall 93b, the second side wall 93c, and the wall surfaces of the gear housing 62 and the protruding plate 61d of the motor housing.
  • the oil O is temporarily stored.
  • the height of the upper end portion of the first side wall portion 93b is located below the upper end portion of the second side wall portion 93c.
  • the oil O is lifted up by the differential device 5 and scattered from the opposite side of the speed reducer 4 toward the first reservoir 93.
  • the oil O pumped up by the differential 5 can be efficiently stored in the first reservoir 93 by lowering the height of the upper end portion of the first side wall portion 93b. Further, the oil O that has been scooped up and scattered by the ring gear 51 and that exceeds the first side wall portion 93 b can be directed to the first reservoir 93 by hitting the second side wall portion 93 c.
  • the second side wall portion 93 c extends obliquely upward along the circumferential direction of the first gear 41. That is, the second side wall portion 93c is inclined toward the motor shaft J2 as it goes upward. Accordingly, the second side wall portion 93c can receive the oil O that has been scooped up by the differential device 5 in a wide range. In addition, the second side wall portion 93 c can receive the droplets of the oil O that travels along the ceiling of the accommodation space 80 in a wide range.
  • a shaft supply flow path 94 opens toward the inside of the first reservoir 93 at the boundary between the bottom 93a and the second side wall 93c.
  • the bottom portion 93a is slightly inclined downward toward the motor shaft J2 side in plan view. That is, the bottom portion 93a is slightly inclined so as to be the lower end on the second side wall portion 93c side. Accordingly, the oil O in the first reservoir 93 can be efficiently supplied to the shaft supply flow path 94 by providing the opening of the shaft supply flow path 94 between the bottom portion 93a and the second side wall portion 93c.
  • the shaft supply path 91b guides the oil O from the first reservoir 93 to the motor 2.
  • the shaft supply path 91b includes a shaft supply flow path 94.
  • the shaft supply channel 94 extends from the first reservoir 93 toward the end of the shaft 21.
  • the shaft supply channel 94 extends linearly.
  • the shaft supply channel 94 is inclined downward as it goes from the first reservoir 93 toward the end of the shaft 21.
  • the shaft supply flow path 94 is formed by processing a hole penetrating the gear housing portion 62 in and out of the housing space 80. The opening outside the processed hole is closed by a cap (not shown).
  • the shaft supply flow path 94 guides the oil O accumulated in the first reservoir 93 from the end portion of the shaft 21 to the hollow portion 22.
  • the in-shaft path 91 c is a path through which the oil O passes through the hollow portion 22 of the shaft 21.
  • the in-rotor path 91d is a path that passes from the communication hole 23 of the shaft 21 through the inside of the end plate 26 located on the axial end surface 24a of the rotor core 24 and scatters to the stator 30 (see FIG. 5). That is, the first oil passage 91 has a path that passes through the rotor core 24 from the inside of the shaft 21.
  • the oil O in the second oil passage 92 is pulled up from the oil reservoir P to the upper side of the motor 2 and supplied to the motor 2.
  • the oil O supplied to the motor 2 removes heat from the stator 30 and cools the motor 2 while traveling along the outer peripheral surface of the stator 30.
  • the oil O transmitted along the outer peripheral surface of the stator 30 drops downward and accumulates in the lower region of the motor chamber 81.
  • the oil O in the second oil passage 92 merges with the oil O in the first oil passage 91 in the lower region of the motor chamber 81.
  • the oil O accumulated in the lower region of the motor chamber 81 moves to the lower region of the gear chamber 82 (that is, the oil reservoir P) through the partition opening 68.
  • FIG. 10 is a cross-sectional view of the motor unit 1. 10 is shifted in the axial direction in each region.
  • the second oil path 92 includes a first flow path 92a, a second flow path 92b, and a third flow path 92c.
  • a pump 96, a cooler 97, and a second reservoir 98 are provided in the second oil passage 92.
  • the oil O passes through the respective parts in the order of the first flow path 92a, the pump 96, the second flow path 92b, the cooler 97, the third flow path 92c, and the second reservoir 98. Then, it is supplied to the motor 2.
  • the pump 96 is an electric pump that is driven by electricity.
  • the pump 96 is attached to a pump attachment recess 6 c provided on the outer surface of the housing 6.
  • the pump 96 has a suction port 96a and a discharge port 96b.
  • the suction port 96 a and the discharge port 96 b are connected via an internal flow path of the pump 96.
  • the suction port 96a is connected to the first flow path 92a.
  • the discharge port 96b is connected to the second flow path 92b.
  • the discharge port 96b is located above the suction port 96a.
  • the pump 96 sucks up the oil O from the oil reservoir P through the first flow path 92 a, and the motor 2 through the second flow path 92 b, the cooler 97, the third flow path 92 c, and the second reservoir 98. To supply.
  • the amount of oil O supplied to the motor 2 by the pump 96 is appropriately controlled according to the driving state of the motor 2. Accordingly, when the temperature of the motor 2 is increased, for example, when driving for a long time or a high output is required, the drive output of the pump 96 is increased and the amount of oil O supplied to the motor 2 is increased.
  • the cooler 97 has an inflow port 97a and an outflow port 97b.
  • the inflow port 97 a and the outflow port 97 b are connected via an internal flow path of the cooler 97. Further, the inflow port 97a is connected to the second flow path 92b.
  • the outflow port 97b is connected to the third flow path 92c.
  • the inflow port 97a is located closer to the pump 96 (that is, the lower side) than the outflow port 97b.
  • a cooling water pipe (not shown) through which the cooling water supplied from the radiator passes is provided inside the cooler 97. The oil O passing through the inside of the cooler 97 is cooled by heat exchange with the cooling water.
  • the pump 96 and the cooler 97 are fixed to the outer peripheral surface of the motor housing portion 61 of the housing 6. When viewed from the axial direction of the motor shaft J2, the pump 96 and the cooler 97 are located on the opposite side of the differential device 5 in the horizontal direction across the motor shaft J2. The pump 96 and the cooler 97 are arranged in the vertical direction. The cooler 97 is located above the pump 96. The cooler 97 overlaps with the pump 96 when viewed from the vertical direction.
  • the pump 96 and the cooler 97 are located on the opposite sides with the differential device 5 and the motor shaft J2 interposed therebetween, the space around the motor 2 can be used effectively. Thereby, the dimension along the horizontal direction of the entire motor unit 1 can be reduced, and the motor unit 1 can be downsized.
  • the pump 96 and the cooler 97 are fixed to the outer peripheral surface of the housing 6. For this reason, compared with the case where the pump 96 and the cooler 97 are provided in the exterior of the housing 6, it can contribute to size reduction of the motor unit 1.
  • the pump 96 and the cooler 97 are fixed to the outer peripheral surface of the housing 6, whereby the first flow path 92 a, the second flow path 92 b, and the third flow path that pass through the inside of the wall portion 6 a of the housing 6.
  • the flow path 92c By the flow path 92c, a flow path connecting the accommodation space 80, the pump 96, and the cooler 97 can be configured.
  • the cooler 97 since the cooler 97 is fixed to the outer peripheral surface of the housing 6, the distance between the accommodation space 80 and the cooler 97 can be reduced. Thereby, the 3rd flow path 97c which connects the cooler 97 and the accommodation space 80 can be shortened, and the cooled oil O can be supplied to the accommodation space 80 in a state with low temperature.
  • the first flow path 92 a, the second flow path 92 b, and the third flow path 92 c pass through the inside of the wall portion 6 a of the housing 6 that surrounds the accommodation space 80.
  • the 1st flow path 92a can form the 1st flow path 92a, the 2nd flow path 92b, and the 3rd flow path 92c as a hole formed in the wall part 6a. Therefore, it is not necessary to prepare a separate pipe material, which can contribute to a reduction in the number of parts.
  • the 1st flow path 92a passes through the inside of the part located in the lower side of the motor 2 among the wall parts 6a.
  • the second flow path 92b passes through a portion of the wall portion 6a that is located on the side of the motor 2 in the horizontal direction.
  • the third flow path 92c passes through the inside of the portion of the wall portion 6a located on the upper side of the motor 2.
  • the first flow path 92 a connects the oil reservoir P and the pump 96.
  • the first flow path 92a has a first end 92aa and a second end 92ab.
  • the first end portion 92aa is located on the upstream side of the second oil passage 92 as compared to the second end portion 92ab.
  • the first end 92 aa opens into the accommodation space 80 on the lower side of the differential device 5.
  • the first end portion 92aa overlaps the motor 2 when viewed from the vertical direction.
  • the second end 92ab opens into the pump mounting recess 6c and is connected to the suction port 96a of the pump 96.
  • the differential 5 and the pump 96 are positioned on opposite sides in the horizontal direction across the motor shaft J2.
  • the first flow path 92a extends so as to span the opposite side in the horizontal direction across the motor 2. Further, the first flow path 92 a passes below the motor 2.
  • the size of the motor unit 1 can be reduced by effectively using the lower area of the motor 2. Thereby, size reduction of the motor unit 1 can be achieved.
  • At least a part of the first flow path 92 a overlaps with the second gear 42 and the ring gear 51 when viewed from the axial direction.
  • the dimension of the motor unit 1 when it sees from an axial direction can be made small, and size reduction of the motor unit 1 can be achieved.
  • the plurality of gears (the first gear 41, the second gear 42, the third gear 43, and the ring gear 51) connected between the motor 2 and the differential device 5
  • the case where the second gear 42 and the ring gear 51 overlap the first flow path 92a when viewed from the axial direction has been described.
  • at least one of the plurality of gears connected between the motor 2 and the differential device 5 overlaps the first flow path 92a when viewed from the axial direction, the above-described effects can be achieved. .
  • the first flow path 92a extends from the lower side of the differential 5 to the suction port 96a of the pump 96.
  • the first flow path 92a is inclined upward and extends linearly from the first end 92aa toward the second end 92ab.
  • the suction port 96a of the pump 96 is located above the lower end of the differential device 5 and below the motor shaft J2.
  • the pump 96 is preferably arranged at a position away from the road surface in order to avoid a stepping stone from the road surface colliding with the motor unit 1 mounted on the vehicle.
  • the suction port 96a of the pump 96 below the oil level of the oil reservoir P, it becomes possible to suppress the entrainment of air.
  • the suction port 96a is located below the motor shaft J2. Thereby, the suction port 96a can be easily disposed below the oil level of the oil reservoir P. Further, the suction port 96 a of this embodiment is located above the lower end of the differential device 5. Thereby, the structure which isolate
  • the suction port 96a of the present embodiment is located below the liquid level of the oil reservoir P in the accommodation space 80.
  • the liquid level of the oil reservoir P varies as the oil O is supplied from the oil reservoir P to the first oil passage 91 and the second oil passage 92.
  • the suction port 96a is located below the liquid level even when the liquid level of the oil reservoir P is the lowest.
  • the suction port 96 a is depicted as being located above the liquid level of the oil reservoir P.
  • FIG. 1 is a schematic diagram to the last, and the actual suction port 96a is located below the liquid level of the oil reservoir P.
  • the second flow path 92b connects the pump 96 and the cooler 97.
  • the second flow path 92b has a first end 92ba and a second end 92bb.
  • the first end 92ba opens into the pump mounting recess 6c and is connected to the discharge port 96b of the pump 96.
  • the first end portion 92ba is located on the upstream side of the second oil passage 92 as compared with the second end portion 92bb.
  • the second end portion 92bb is connected to the inlet 97a of the cooler 97.
  • the second end portion 92bb is located above the first end portion 92ba.
  • the second flow path 92b has a first path 92bd and a second path 92be.
  • the first path 92bd extends upward from the pump mounting recess 6c.
  • the second path 92be extends in the horizontal direction from the upper end of the first path 92bd.
  • the first path 92bd and the second path 92be are formed by processing holes that extend from different directions and intersect each other in the wall 6a of the housing 6, respectively.
  • the third flow path 92c connects the cooler 97 and the accommodation space 80.
  • the third flow path 92c extends linearly along the horizontal direction.
  • the third flow path 92c has a first end 92ca and a second end 92cb.
  • the first end portion 92ca is located on the upstream side of the second oil passage 92 as compared to the second end portion 92cb.
  • the first end 92ca is connected to the outlet 97b of the cooler 97.
  • the second end portion 92 cb opens into the accommodation space 80 on the upper side of the motor 2. That is, the third flow path 92 c opens on the upper side of the motor 2 in the accommodation space 80.
  • the second end 92 cb of the third flow path 92 c functions as a supply unit 99 that supplies oil O to the second reservoir 98 located in the accommodation space 80. That is, the second oil passage 92 supplies the oil O to the second reservoir 98 in the supply unit 99.
  • the outlet 97b of the cooler 97 overlaps the motor 2 in the axial direction of the motor shaft J2. That is, the outlet 97b of the cooler 97 is disposed so as to overlap the motor 2 when viewed from the radial direction. In other words, the outlet 97b of the cooler 97 is located between both end portions of the stator 30 in the axial direction. For this reason, the 3rd flow path 92c which connects the outflow port 97b of the cooler 97 and the accommodation space 80 can be shortened, and the cooled oil O can be supplied to the accommodation space 80 in a state with low temperature. Moreover, the axial dimension of the motor unit 1 can be reduced by arranging the third flow path 97c so as to overlap the motor 2 in the radial direction, and the motor unit 1 can be downsized.
  • FIG. 11 is a perspective view of the motor unit 1.
  • FIG. 12 is a plan view of the second reservoir 98.
  • occlusion part 63 of the housing 6 is abbreviate
  • the second reservoir (main reservoir) 98 is located in the motor chamber 81 of the accommodation space 80.
  • the second reservoir 98 is located on the upper side of the motor.
  • the second reservoir 98 includes a bottom portion (first bottom portion 98c and second bottom portion 98g) and side wall portions (first side wall portion 98d, second side wall portion 98e, and third side wall portion) extending upward from the bottom portion. 98f, a fourth side wall 98h, a fifth side wall 98i, a sixth side wall 98j and a seventh side wall 98n).
  • the second reservoir 98 stores the oil O supplied to the motor chamber 81 via the supply part 99 of the third flow path 92c in a space surrounded by the bottom part and the side wall part.
  • the second reservoir 98 includes a plurality of outlets (a first outlet 98r, a second outlet 98o, a third outlet 98x, a fourth outlet 98t, a fifth outlet 98u, and a sixth outlet An outlet 98v).
  • Each outflow port supplies the oil 2 accumulated in the second reservoir 98 to the motor 2. That is, the second reservoir 98 supplies the oil O stored through the outlet to each part of the motor 2 from the upper side.
  • the second reservoir 98 is located on the upper side of the motor 2 and supplies the stored oil O to the upper side of the motor 2 from a plurality of outlets. Since the oil O flows from the upper side to the lower side along the outer peripheral surface of the motor 2 and takes heat of the motor 2, the entire motor 2 can be cooled.
  • the second reservoir 98 has a first end 98p located on the gear chamber 82 side in the axial direction and a second end 98p located on the opposite side of the first end 98p in the axial direction. And an end portion 98q.
  • the second reservoir 98 includes a bowl-shaped first reservoir 98A extending along the axial direction, and a second reservoir located on the second end 98q side with respect to the first reservoir 98A. 98B.
  • the first reservoir 98A includes a first bottom 98c, a first side wall 98d, a second side wall 98e, and a third side wall 98f.
  • the first reservoir 98A is provided with a first outlet 98r, a second outlet 98o, and a third outlet 98x.
  • the first bottom portion 98c has a rectangular shape whose longitudinal direction is the axial direction. Both end portions in the axial direction of the first bottom portion 98 c are positioned above the coil ends 31 a provided at both end portions of the stator 30.
  • a first outlet 98r is provided in the first bottom portion 98c. The first outlet 98r is located in a region on the first end 98p side of the first bottom 98c.
  • the first side wall part 98d and the second side wall part 98e extend along the axial direction. Further, the first and second side wall portions 98e face each other in the circumferential direction of the motor shaft J2.
  • the first side wall 98d is provided with an inflow port 98s.
  • the inflow port 98s is a U-shaped notch that opens upward.
  • a supply unit 99 is connected to the inflow port 98s.
  • the inflow port 98s is located in the middle in the axial direction of the first side wall portion 98d. Thereby, the inflow port 98s can flow the oil O toward the first end portion 98p and the second end portion 98q in the second reservoir 98, respectively.
  • the second side wall part 98e is provided with a convex part 98w that protrudes toward the first side wall part 98d.
  • the convex part 98w is located in front of the inflow port 98s.
  • the convex portion 98w has an inclined surface that lowers the protruding height from the center toward the first end portion 98p side and the second end portion 98q side.
  • the convex portion 98w smoothly diverts the oil O that has flowed from the inflow port 98s into the second reservoir 98 to the first end portion 98p side and the second end portion 98q side.
  • the second side wall 98e is provided with a second outlet 98o.
  • the 2nd outflow port 98o is located in the area
  • the second outlet 98o is located in the vicinity of the first outlet 98r.
  • the third side wall 98 f is located on the first end 98 p side of the second reservoir 98.
  • the third side wall portion 98 f is located above one coil end 31 a of the stator 30.
  • the height of the upper end part of the third side wall part 98f is lower than the heights of the upper end parts of the first side wall part 98d and the second side wall part 98e. Further, the height of the upper end portion of the third side wall portion 98f is substantially equal to the height of the lower end of the opening of the second outlet port 98o.
  • the space above the second side wall 98e functions as a third outlet 98x through which the oil O flows out when the level of the oil O accumulated in the second reservoir 98 becomes high.
  • the second storage portion 98B extends along the circumferential direction of the stator 30.
  • the second reservoir 98B includes a second bottom 98g, a fourth sidewall 98h, a fifth sidewall 98i, a sixth sidewall 98j, a seventh sidewall 98n, and a step 98k.
  • the second reservoir 98B is provided with a fourth outlet 98t, a fifth outlet 98u, a sixth outlet 98v, and an overflow portion 98y.
  • the second bottom 98g is located on the second end 98q side with respect to the first bottom 98c.
  • the second bottom portion 98g is positioned below the first bottom portion 98c.
  • a stepped portion 98k is provided at the boundary between the first bottom portion 98c and the second bottom portion 98g.
  • the second reservoir 98B is located below the first reservoir 98A.
  • the oil O that has flowed toward the second end 98q in the first reservoir 98A is accumulated in the second reservoir 98B.
  • the second bottom portion 98g is located above the one coil end 31a of the stator 30.
  • the second bottom portion 98 g is curved along the outer peripheral surface of the motor 2.
  • the second bottom portion 98g is inclined downwardly from the portion overlapping the motor shaft J2 as viewed in the vertical direction toward the both sides in the circumferential direction.
  • the second reservoir 98B is connected to the first reservoir 98A on one side across the motor shaft J2 as viewed from the top-bottom direction.
  • the second reservoir 98B is an area on one side of the motor shaft J2 as viewed from the top and bottom, and is connected to the first reservoir 98A as the first area 98gA.
  • the other side of the motor shaft J2 is divided into a second region 98gB.
  • the second bottom portion 98g is the highest.
  • the oil O flowing into the second reservoir 98B from the first reservoir 98A first accumulates in the first region 98gA, and when the liquid level accumulated in the first region 98gA reaches the height of the boundary line, the oil O Flows into the second region 98gB.
  • the boundary line functions as a weir 98gC provided at the second bottom portion 98g. That is, the second bottom portion 98g is provided with a weir 98gC that protrudes upward and divides the second reservoir 98B of the second reservoir 98 into the first region 98gA and the second region 98gB.
  • the oil O flows into one region (first region 98gA) and the liquid level exceeds the weir 98gC, and then flows into the other region (second region 98gB).
  • a fourth outlet 98t, a fifth outlet 98u, and a sixth outlet 98v arranged in the circumferential direction are provided in the sixth side wall 98j extending in the circumferential direction.
  • the fifth side wall 98i is provided with an overflow portion 98y.
  • the fourth outflow port 98t and the fifth outflow port 98u open to the first region 98gA
  • the sixth outflow port 98v and the overflow portion 98y open to the second region 98gB. That is, the second reservoir 98 is provided with outlets in a plurality of regions (first region 98gA and second region 98gB) partitioned by the weir 98gC.
  • the oil O flows out only from the fourth outlet port 98t and the fifth outlet port 98u until the liquid level in the first region 98gA exceeds the weir 98gC.
  • the oil O flows out from the fourth outlet 98t, the fifth outlet 98u, the sixth outlet 98v, and the overflow portion 98y after the liquid level in the first region 98gA exceeds the weir 98gC. Therefore, according to the present embodiment, the second reservoir 98 can increase the number of outlets that flow out when the amount of stored oil O increases.
  • the amount of oil O supplied to the second reservoir 98 by the pump 96 increases. Therefore, according to this embodiment, when the motor 2 becomes high temperature, the supply point of the oil O to the motor 2 is increased to widen the cooling range, and the supply amount of the oil O supplied by the motor 2 is increased. be able to.
  • 4th side wall part 98h and 5th side wall part 98i are located in the both ends of the circumferential direction of 2nd storage part 98B.
  • the fourth side wall part 98h and the fifth side wall part 98i oppose each other in the circumferential direction.
  • the fourth sidewall portion 98h and the fifth sidewall portion 98i extend along the axial direction.
  • the fourth side wall portion 98h continues to the first side wall portion 98d and extends toward the second end portion 98q.
  • An overflow portion 98y is provided in the fifth side wall portion 98i.
  • the overflow portion 98y is a portion that is provided at the upper end of the fifth side wall portion 98i and has a locally low height.
  • the overflow portion 98y is located above the lower ends of the openings of the fourth outlet port 98t, the fifth outlet port 98u, and the sixth outlet port 98v of the second reservoir 98B. Therefore, the oil O overflows from the overflow portion 98y after the liquid level in the second storage portion 98B becomes higher than the fourth outlet port 98t, the fifth outlet port 98u, and the sixth outlet port 98v.
  • a sub-reservoir 95 described later is provided below the overflow portion.
  • overflow means that when the liquid in the reservoir reaches a certain liquid level, it flows out of the reservoir. Therefore, when the liquid flows out from the bottom of the reservoir, it does not hit “overflow”.
  • the sixth side wall portion 98j is located on the second end portion 98q side of the second reservoir 98.
  • the sixth side wall portion 96j extends along the circumferential direction.
  • the sixth side wall portion 98j is located above the one coil end 31a of the stator 30.
  • the sixth side wall portion 98j is provided with a fourth outlet port 98t, a fifth outlet port 98u, and a sixth outlet port 98v.
  • the fourth outflow port 98t, the fifth outflow port 98u, and the sixth outflow port 98v are holes provided in the sixth side wall portion 98j and penetrating the inside and the outside of the second reservoir 98.
  • the fourth outlet 98t, the fifth outlet 98u, and the sixth outlet 98v are aligned along the circumferential direction. As shown in FIG. 11, the fourth outlet 98t, the fifth outlet 98u, and the sixth outlet 98v have different heights. Therefore, according to the present embodiment, the number of outlets through which the oil O flows out can be increased according to the level of the oil O in the second reservoir 98. Thereby, the supply point of the oil O supplied to the motor 2 can be increased by increasing the supply point of the oil O to the motor 2 to widen the cooling range. Such an effect is an effect that can be achieved if at least two of the plurality of outlets provided in the second reservoir 98 have different heights.
  • the seventh side wall 98n extends along the circumferential direction.
  • the seventh side wall portion 98n is opposed to the sixth side wall portion 98j in the axial direction.
  • the seventh side wall portion 98n continues to the stepped portion 98k along the circumferential direction.
  • the seventh side wall portion 97n is provided with a housing portion 98na for housing the fixing screw of the stator core 32.
  • the second oil passage 92 supplies the oil O stored in the second reservoir 98 to the motor 2 from a plurality of outlets. Since the respective outlets supply oil O to the motor 2 at a constant flow rate, the cooling efficiency of the motor 2 by the oil O can be increased.
  • the second reservoir 98 has a plurality of outlets (first outlet 98r, second outlet 98o, third outlet 98x, fourth outlet 98t, fifth outlet, An outlet 98u and a sixth outlet 98v). Therefore, the second reservoir 98 can supply the oil O to the motor 2 from a plurality of locations at the same time, and can cool each part of the motor 2 at the same time.
  • the second reservoir 98 extends along the axial direction.
  • the second reservoir 98 is provided with outlets at both ends in the axial direction.
  • reserver 98 is located above the coil end 31a.
  • the coil 31 can be directly cooled by applying the oil O to the coil ends 31 a located at both axial ends of the stator 30. More specifically, the oil O applied to the coil 31 penetrates from the gap between the conducting wires constituting the coil 31. The oil O soaked in the coil 31 removes heat from the coil while penetrating the entire coil 31 by the capillary force and gravity acting on the conductor tube.
  • the oil O accumulates at the lowermost part of the inner peripheral surface of the stator core 32 and drops from the axial ends of the coil 31.
  • the effect of directly cooling the oil O by supplying the oil O directly to the coil end 31 a is that at least two outflow ports out of the plurality of outflow ports are in the axial direction of the second reservoir 98. This is an effect that can be achieved by being positioned at both ends.
  • the supply parts 99 that supply the oil O to the second reservoir 98 are located between the outlets located at both ends of the second reservoir 98 in the axial direction. For this reason, the oil O supplied from the supply part 99 can each flow out the oil O from the outflow port respectively located in both ends.
  • FIG. 13 is a perspective view of a modified second reservoir 198 that can be employed in the present embodiment.
  • the second reservoir 198 of the modified example is a rectangular shallow box shape whose upper side is open.
  • the second reservoir 198 includes a central oil storage unit 198a and four oil supply units 198b located around the central oil storage unit 198a.
  • the central oil storage unit 198a and the four oil supply units 198b are partitioned from each other.
  • the central oil storage unit 198a stores oil O flowing from the supply unit 99.
  • the central oil storage unit 198a is partitioned from the oil supply unit 198b by a circular bottom surface 198ab and a cylindrical wall 198aa extending upward from the bottom surface 198ab.
  • the four oil supply units 198b are disposed so as to surround the central oil storage unit 198a.
  • the oil supply unit 198b has a substantially rectangular shape.
  • an outlet 198c communicating with the inside and outside of the oil supply part 198b is provided.
  • One of the two outlets 198c opens in the axial direction of the motor 2, and the other opens in the circumferential direction. Since each of the four oil supply units 198b has two outlets 198c, the second reservoir 198 has a total of eight outlets 198c.
  • the second reservoir 198 is installed on the upper side of the stator 30 so that the bottom surface is horizontal.
  • the oil O supplied from the supply unit 99 overflows from the cylindrical wall 198aa when it fills the central oil storage unit 198a and flows into the four oil supply units 198b. Since the second reservoir 198 is installed horizontally and the cylindrical wall 198aa has the same height along the entire circumference, the oil O flows equally into the four oil supply portions 198b.
  • the oil O accumulates in the four oil supply units 198b and flows out from the outlet 198c.
  • the length of the second reservoir 198 along the axial direction is longer than the length of the stator core 32 along the axial direction.
  • the oil O is supplied from one oil supply unit 198b to the motor 2 through two outlets 198c facing in the axial direction and the circumferential direction.
  • the second reservoir 198 can supply the oil O to the motor 2 from a plurality of outlets in a plurality of directions.
  • FIG. 14 is a cross-sectional view of the motor unit 1 showing an outline of the auxiliary reservoir 95.
  • occlusion part 63 of the housing 6 is shown with a virtual line.
  • the oil O stored in the auxiliary reservoir 95 is highlighted with a dot pattern.
  • the secondary reservoir 95 receives the oil O overflowing from the second reservoir 98 in the second oil passage 92. That is, a sub reservoir 95 that stores the oil O is provided in the second oil passage 92.
  • the second reservoir 98 functions as a main reservoir with respect to the auxiliary reservoir 95.
  • the second reservoir 98 is located upstream of the second oil passage 92 with respect to the auxiliary reservoir 95.
  • the auxiliary reservoir 95 is located immediately below the overflow portion 98y. That is, the auxiliary reservoir 95 and the overflow portion 98y overlap each other when viewed from the vertical direction. As a result, the oil O overflowing from the second reservoir 98 can be received by the auxiliary reservoir 95.
  • the sub-reservoir 95 has a first portion 95A located on one side in the circumferential direction with respect to the second reservoir 98, and a second portion 95B located on the other side in the circumferential direction.
  • the first portion 95A and the second portion 95B are connected to each other.
  • the secondary reservoir 95 has a total of four outlets 61k, two at each of the first portion 95A and the second portion 95B.
  • the four outlets 61k are arranged along the circumferential direction of the motor 2.
  • the plurality of outlets 61k have different heights.
  • the sub-reservoir 95 includes an inner side surface 61g of the motor accommodating portion 61 and an inner wall surface of the protruding portion 63d of the closing portion 63.
  • the inner side surface 61g of the motor housing portion 61 has an inner peripheral surface 61i facing the radially inner side and a facing surface 61h facing the closing portion 63 side in the axial direction.
  • the facing surface 61h is in contact with the surface of the protruding portion 63d facing the axial direction. Oil O does not flow out from the contact portion between the protruding portion 63d and the facing surface 61h.
  • the auxiliary reservoir 95 is configured as a gap between other members, it is not necessary to use other members, and an increase in the number of parts can be suppressed.
  • the opposing surface 61h is provided with a recess 61j that is aligned along the circumferential direction and recessed in the axial direction.
  • the recessed portion 61j is recessed in the direction of increasing the gap between the inner side surface 61g of the motor accommodating portion 61 and the inner wall surface of the protruding portion 63d.
  • the oil O flows out downward from the recess 61j. That is, the recessed part 61j comprises the outflow port 61k.
  • the outlet 61k is positioned above the coil end 31a of the stator 30. Therefore, the oil O flowing out from the outlet 61k cools the coil 31 of the coil end 31a.
  • the case where the inner surface 61g is provided with the recess 61j in the contact portion between the inner surface 61g of the motor housing 61 and the inner wall surface of the protruding portion 63d is illustrated.
  • a recess may be provided on the inner wall surface of the protrusion 63d.
  • the secondary reservoir 95 is provided in addition to the second reservoir 98, so that the oil O flows out from the outlet 61k of the secondary reservoir 95 in addition to the outlet of the second reservoir 98.
  • the wide range of the motor 2 can be cooled.
  • the plurality of outlets 61k of the auxiliary reservoir 95 are arranged side by side along the circumferential direction. Thereby, the coil end 31a of the stator 30 can be cooled in a wide range.
  • the plurality of outflow ports 61k are different in height from each other, the flow-out timing can be varied according to the liquid level of the oil O accumulated in the sub-reservoir 95.
  • the oil O overflowing from the second reservoir 98 is stored in the auxiliary reservoir 95.
  • the pump 96 increases the supply amount of oil O supplied to the second reservoir 98 when the motor 2 becomes a heavy load and the temperature rises. Therefore, when the motor 2 becomes highly loaded, the oil O overflows from the second reservoir 98, and the oil O can be supplied to the motor 2 also at the outlet 61 k of the sub reservoir 95.
  • the oil O can cool a wide range of the motor 2. That is, by providing the auxiliary reservoir 95, the supply range of the oil O supplied to the motor 2 can be automatically expanded when the operation of the motor 2 changes from the steady state to the high load state.
  • the lower end of the auxiliary reservoir 95 of the present embodiment is located above the motor shaft J2. Therefore, the outlet 61k of the auxiliary reservoir 95 is located above the motor shaft J2.
  • the motor 2 has a substantially cylindrical shape. By setting the lower end of the sub-reservoir 95 above the motor shaft J2, the oil O that has flowed out from the outlet 61k can be transmitted through the surface of the motor 2 to cool the motor 2. Moreover, the motor 2 becomes the widest in the horizontal cross section which passes the motor shaft J2. Since the lower end of the sub-reservoir 95 is positioned above the motor shaft J2, the oil O transmitted through the surface of the motor 2 passes through the region where the horizontal dimension of the motor is widest. Thereby, the motor 2 can be cooled efficiently.
  • FIG. 15 is a front view of the partition wall 61c of the housing 6 as viewed from the motor chamber 81 side.
  • the partition wall opening 68 is located below the insertion hole 61 f through which the shaft 21 is inserted.
  • the partition wall opening 68 includes a first opening 68a and a second opening 68b located above the first opening 68a. The first opening 68a and the second opening 68b allow the motor chamber 81 and the gear chamber 82 to communicate with each other.
  • the lower end of the partition opening 68 (that is, the lower end of the first opening 68a) is located above the lower limit height Lmin of the liquid level of the oil O in the gear chamber 82 when the motor 2 is stationary. To do. Therefore, the partition opening 68 can move as much oil O as possible to the oil reservoir P in a stopped state in which the driving of the motor 2 is stopped.
  • the first opening 68a is circular in plan view.
  • the lower end of the first opening 68 a is located below the lower end of the stator 30.
  • the first opening 68 a is located in the vicinity of the bottom 81 a of the motor chamber 81. Accordingly, the first opening 68a moves the oil O into the gear chamber 82 until the oil O accumulated in the lower region of the motor chamber 81 is almost exhausted.
  • the first opening 68a overlaps the motor shaft J2 when viewed from the up-down direction.
  • the first opening 68a is located in a recess 61q provided on the inner peripheral surface of the peripheral wall 61a.
  • the peripheral wall part 61a and the recessed part 61q are demonstrated.
  • the motor accommodating portion 61 of the housing 6 has a peripheral wall portion 61 a having a cylindrical shape along the outer peripheral surface of the stator 30.
  • the inner peripheral surface of the peripheral wall portion 61a is provided with a concave portion 61q that is recessed outward in the radial direction.
  • the recess 61q extends along the axial direction.
  • the recess 61q is located immediately below the motor shaft J2.
  • the recess 61q overlaps the motor shaft J2 when viewed from the up-down direction. Since the peripheral wall 61a has a cylindrical shape, the oil O in the motor chamber 81 gathers inside the recess 61q along the inner peripheral surface of the peripheral wall 61a. Since the first opening 68a is located in the recess 61q, the oil O in the motor chamber 81 collected in the recess 61q can be efficiently moved to the gear chamber 82.
  • the second opening 68b is located above the first opening 68a.
  • the second opening 68b is a rectangle whose longitudinal direction is the horizontal direction in plan view.
  • the second opening 68b has a larger opening area than the first opening 68a.
  • the second opening 68b has a larger width along the horizontal direction than the first opening 68a.
  • the second opening 68b has a lower end 68c extending along the horizontal direction.
  • the supply amount of oil O supplied from the oil passage 90 that is, the first oil passage 91 and the second oil passage 92
  • the level of the oil O accumulated in the lower region of the motor chamber 81 increases.
  • a region located below the liquid level of the oil O accumulated in the region below the motor chamber 81 is referred to as a first region S, and a region located above the liquid level is a second region R. Call it.
  • the partition opening 68 moves the oil O to the gear chamber 82 in the first region S.
  • the partition opening 68 of the present embodiment is arranged so that the amount of movement of the oil O from the motor chamber 81 to the gear chamber 82 through the partition opening 68 increases when the level of the oil O in the motor chamber 81 becomes high. Is done. For this reason, it is suppressed that the liquid level of the oil O in the motor chamber 81 becomes too high. That is, it is possible to prevent the rotor 20 in the motor chamber 81 from being immersed in the oil O or excessively lifting the oil O. Therefore, it can suppress that the rotational efficiency of the motor 2 falls by the flow resistance of the oil O.
  • the oil in the motor unit 1 is moved to the gear chamber 82 side by moving the oil O in the motor chamber 81 to the gear chamber 82 side according to the height of the liquid level of the oil O in the motor chamber 81.
  • O can be used effectively. Thereby, the usage-amount of the oil O can be suppressed, the motor unit 1 can be reduced in weight, and the energy efficiency required for cooling the oil O can be increased.
  • the lower end of the second opening 68b is the height of the oil level in the gear chamber 82 (upper limit height Lmin and lower limit height Lmin) regardless of whether the motor 2 is stationary or driven. Located on the upper side. Therefore, the second opening 68b is not submerged on the gear chamber 82 side. The second opening 68 b can move the oil O to the gear chamber 82 regardless of the liquid level of the gear chamber 82, and can prevent the rotor 20 from being immersed in the oil O.
  • the liquid level of the oil O accumulated below the motor chamber 81 and reaching the lower end 68c of the second opening 68b is defined as a first liquid level OL. That is, the lower end of the second opening 68b is located at the first liquid level OL.
  • the first liquid level OL is located above the lower end of the stator 30 and below the lower end of the rotor 20.
  • FIG. 16 is a graph showing the relationship between the height of the liquid level of the oil O accumulated under the motor chamber 81 and the area of the first region S.
  • the area of the first region S has a correlation (substantially proportional relationship) with the flow rate of the oil O flowing out from the partition opening 68.
  • Oil O is supplied to the motor 2 as the motor 2 is driven, and begins to accumulate in the lower region of the motor chamber 81.
  • the oil O accumulated in the lower region of the motor chamber 81 moves from the motor chamber 81 to the gear chamber 82 through the first opening 68a.
  • the supply amount of the oil O per unit time supplied to the motor 2 exceeds the flow rate of the oil O moving from the motor chamber 81 to the gear chamber 82 via the first opening 68a, the lower side of the motor chamber 81
  • the level of the oil O accumulated in the region increases.
  • the oil O flows out from the second opening 68b in addition to the first opening 68a.
  • the second opening 68b is wider in the horizontal direction than the first opening 68a, the area of the first region S rapidly increases before and after the liquid level reaches the first liquid level OL. To do. Along with this, the flow rate of the oil O flowing from the motor chamber 81 into the gear chamber 82 via the partition opening 68 increases rapidly. As described above, the first liquid level OL is set below the lower end of the rotor 20. Therefore, according to this embodiment, it can suppress that the rotational efficiency of the rotor 20 in the motor chamber 81 falls by the flow resistance of the oil O.
  • the horizontal width of the second opening 68b is such that the flow rate of the oil O flowing out from the partition opening 68 when the liquid level reaches the upper side of the first liquid level OL is supplied to the motor 2 in the oil passage 90. It is preferable that the width be larger than the oil O. Thereby, it can suppress that the liquid level of the oil O which accumulates in the area
  • the first oil passage 91 includes a scooping path 91a and an in-rotor path 91d.
  • the scooping path 91 a moves the oil O from the gear chamber 82 to the motor chamber 81 by scooping up the oil by the differential device 5.
  • the amount of oil O pumped up by the differential device 5 depends on the rotational speed of the differential device 5.
  • the lifting path 91a increases or decreases the amount of movement of the oil O to the motor chamber 81 depending on the vehicle speed.
  • the in-rotor path 91 d sucks the oil O from the gear chamber 82 side to the motor chamber 81 side by the centrifugal force of the rotor 20.
  • the centrifugal force depends on the rotational speed of the rotor 20.
  • the in-rotor path 91d increases or decreases the amount of movement of the oil O to the motor chamber 81 depending on the vehicle speed. That is, in the first oil passage 91, the amount of movement of the oil O to the motor chamber 81 increases or decreases depending on the vehicle speed.
  • the second oil passage 92 moves the oil O from the gear chamber 82 to the motor chamber 81 by a pump (electric pump) 96.
  • the amount of oil O supplied to the pump 96 is controlled based on the temperature measurement result of the motor 2, for example. Therefore, in the second oil passage 92, the amount of movement of the oil O to the motor chamber 81 increases or decreases without depending on the vehicle speed.
  • the second oil passage 92 stops the supply of oil O to the motor 2 when the motor 2 is stationary. Further, the second oil passage 92 starts the movement of the oil O to the motor chamber 81 when the motor 2 is started. For this reason, at the time of a stop, the liquid level of the oil sump P of the gear chamber 82 can be raised. As a result, the second gear 42, the third gear 43, and the ring gear 51 can be rotated in the oil sump P by the rotation of the motor 2 immediately after startup, and the oil O can be spread over the tooth surface.
  • the second oil passage 92 pulls up the oil O from the oil sump P regardless of the speed of the vehicle. For this reason, the second oil passage 92 can lower the oil level of the oil sump P even when the vehicle travels at a low speed. Accordingly, it is possible to prevent the rotation efficiency of the gear in the gear chamber 82 from being lowered by the oil O in the oil reservoir P during low speed traveling.
  • FIG. 17 is a front view of a partition wall opening 168 of a modified example that can be employed in the present embodiment.
  • the partition wall opening 168 of the modified example includes a long hole portion 168a extending along the vertical direction and a wide extension portion 168b connected to the long hole portion 168a on the upper side of the long hole portion 168a.
  • the lower end of the long hole portion 168 a is located in the vicinity of the bottom portion 81 a of the motor chamber 81.
  • the long hole portion 168a overlaps with the motor shaft J2 when viewed from the vertical direction.
  • the extended portion 168b is wider along the horizontal direction with respect to the long hole portion 168a.
  • the extended portion 168b is a rectangle having a horizontal direction as a longitudinal direction in plan view.
  • the extended portion 168b has a lower end 168c extending along the horizontal direction.
  • the lower end 168c is located at the first liquid level OL described above.
  • a region located below the liquid level of the oil O is referred to as a first region S and a region located above the liquid level is referred to as a second region R.
  • FIG. 18 is a graph showing the relationship between the height of the liquid level of the oil O accumulated below the motor chamber 81 and the area of the first region S in this modification.
  • the oil O flows out of the extended portion 168b in addition to the long hole portion 168a, and the area of the first region S increases rapidly.
  • the flow rate of the oil O flowing from the motor chamber 81 into the gear chamber 82 through the partition opening 168 increases rapidly. Since the first liquid level OL is set below the lower end of the rotor 20, the rotation efficiency of the rotor 20 can be suppressed from decreasing due to the flow resistance of the oil O.
  • the first oil passage 91 supplies the oil O from the oil reservoir P to the motor 2 when the pump 96 is driven in the driving state of the motor 2. Further, the first oil passage 91 supplies the oil O to the inside of the motor 2 by moving the oil O from the oil reservoir P to the first reservoir 93 when the differential device 5 is driven up in the driving state of the motor 2. To do. That is, both the first oil passage 91 and the second oil passage 92 supply oil O from the oil reservoir P to the motor 2 when the motor 2 is driven. Accordingly, in the driving state of the motor 2, the liquid level of the oil sump P located in the lower region of the gear chamber 82 is lowered. In addition, since the oil O supplied to the motor 2 is accumulated in the lower space of the motor chamber 81, the level of the oil O accumulated in the lower region of the motor chamber 81 rises when the motor 2 is driven. .
  • the first oil passage 91 and the second oil passage 92 stop supplying the oil O to the motor 2.
  • the oil O dripped below the motor 2 temporarily accumulates in the lower region of the motor chamber 81 and moves to the oil reservoir P in the lower region of the gear chamber 82 through the partition opening 68. Accordingly, when the motor 2 is stopped, the level of the oil O accumulated in the lower region of the motor chamber is lowered, and the level of the oil reservoir P located in the lower region of the gear chamber 82 is raised.
  • FIG. 19 is a side view showing the arrangement of each gear located inside the gear chamber 82.
  • the gear housing portion 62 of the housing 6 and the bearing that supports each shaft are omitted.
  • the height of the liquid level of the oil O accumulated in the oil reservoir P is such that the oil O is the oil passage 90 (the first oil passage 91 and the second oil passage 92).
  • the first oil passage 91 is provided with a first reservoir 93.
  • the second oil passage 92 is provided with a second reservoir 98 and a secondary reservoir 95 (omitted in FIG. 1, refer to FIG. 14).
  • oil O accumulates in the lower region of the motor chamber 81 where the first oil passage 91 and the second oil passage 92 merge. As described above, in the first oil passage 91 and the second oil passage 92, several places where the oil O is accumulated are provided. As a result, the oil O accumulated in the oil reservoir P by supplying the oil O to the motor 2 moves to the reservoir or the like in the above-described path, and the liquid level of the oil reservoir P is lowered. As a result, the gear in the gear chamber 82 is exposed from the oil O in the oil reservoir P, and the rotation efficiency of the gear can be increased.
  • the lower end of the second gear 42 that has a large diameter and is connected to the motor 2 out of a pair of gears (the second gear 42 and the third gear 43) that rotate about the intermediate shaft J ⁇ b> 4. Is located below the upper limit height Lmax of the liquid level. The lower end of the second gear 42 is located above the lower limit height Lmin of the liquid level.
  • the lower end of the third gear 43 having a small diameter out of the pair of gears (the second gear 42 and the third gear 43) rotating around the intermediate shaft J4 is connected to the differential device 5. It is located below the upper limit height Lmax of the surface. The lower end of the third gear 43 is located above the lower limit height Lmin of the liquid level.
  • the liquid level of the oil reservoir P reaches the upper limit height Lmax when the motor 2 is stopped and the supply of oil O from the oil reservoir P to the motor 2 is stopped.
  • the second gear 42 and a part of the third gear 43 can be immersed in the oil O of the oil reservoir P when the motor 2 is stopped. Thereby, when the motor 2 is driven, the oil O can be immediately distributed to the tooth surfaces of the second gear 42 and the third gear 43, and the transmission efficiency between the gears can be increased.
  • the liquid level of the oil reservoir P reaches the lower limit height Lmin when the motor 2 is driven at a high load and the supply of oil O from the oil reservoir P to the motor 2 is most promoted.
  • the second gear 42 and the third gear 43 are positioned above the liquid level of the oil reservoir P in the driving state of the motor 2, the second gear 42 is caused by the flow resistance of the oil O.
  • the reduction in rotational efficiency of the gear 42 and the third gear 43 can be suppressed. Thereby, the drive efficiency of the motor unit 1 can be improved.
  • the ring gear 51 that is provided in the differential device 5 and is connected to the speed reducer 4 and rotates about the differential axis J5 has a lower end positioned below the liquid level at the upper limit height Lmax and the lower limit height Lmin of the liquid level. .
  • at least a part of the ring gear 51 is located below the liquid level of the oil O in the oil reservoir P. Therefore, even when the motor 2 is driven and the liquid level of the oil sump P becomes low, the ring gear 51 can scoop up the oil O from the oil sump P, and the oil O is removed from each gear in the gear chamber 82.
  • the oil O can be supplied to the tooth surfaces of the gears to increase the torque transmission efficiency between the gears.
  • the motor unit 1 is any one of an engine mode driven only by the engine, a motor mode driven only by the motor 2, and a hybrid mode driven by both the engine and the motor. Drive in one mode.
  • the motor 2 In the engine mode, the motor 2 is stopped, but the differential 5 is driven by the engine, so that the oil O is pumped up from the oil reservoir P.
  • the oil O that has been pumped up is accumulated in the first reservoir 93 but is not scattered toward the stator 30 because the rotor 20 does not rotate.
  • the pump 96 In the engine mode, the pump 96 is not driven and the oil O is not supplied to the second oil passage 92.
  • the second oil passage 92 can adjust the supply amount to the motor 2 by the pump 96 according to the temperature of the motor 2, the driving mode of the vehicle, and the like. According to this embodiment, the energy required for cooling the motor 2 can be made efficient. Such an effect can be exhibited when the pump 96 is an electrically driven pump.
  • the discharge amount of the pump 96 can be managed based on temperature data detected by a temperature sensor provided in the motor 2. In addition, a change in the temperature of the motor 2 can be predicted by using data such as the vehicle operation history, the driving state, the vehicle posture, the outside air temperature, the weight of the passenger and the luggage. You may manage so that the motor 2 may not become a high temperature state based on the predicted value of this temperature change.
  • the oil passage 90 supplies the oil O to the stator 30 from a plurality of locations, the entire stator 30 can be efficiently cooled.
  • the oil O functions as cooling oil and lubricating oil. Therefore, there is no need to separately provide a path as a cooling oil and a path as a lubricating oil, and the cost can be reduced.
  • Oil O used for cooling the motor unit 1 is used for lubricating the differential device 5 and the speed reducer 4. Therefore, the oil O may be contaminated with contaminants such as metal powder generated by mechanical contact. Contamination may deteriorate the fluidity of the oil O in the first oil passage 91 and the second oil passage 92. Contamination is removed by periodic replacement of the oil O. Further, a means for capturing contamination may be provided in one or both of the first oil passage 91 and the second oil passage 92. As an example, as shown in FIG. 9, a permanent magnet 98m may be installed in the second reservoir 98 to capture the contamination magnetically and suppress the diffusion of the contamination. In this case, deterioration of the fluidity of the oil O can be suppressed.
  • the motor shaft J2, the intermediate shaft J4, and the differential shaft J5 extend in parallel to each other along the horizontal direction.
  • the intermediate shaft J4 and the differential shaft J5 are located on the lower side with respect to the motor shaft J2. Therefore, the speed reduction device 4 and the differential device 5 are located below the motor 2.
  • a line segment that virtually connects the motor shaft J2 and the intermediate shaft J4 is defined as a first line segment L1, and a line segment that virtually connects the intermediate shaft J4 and the differential axis J5.
  • a second line segment L2 is a line segment that virtually connects the motor shaft J2 and the differential shaft J5 is a third line segment L3.
  • the second line segment L2 extends along the substantially horizontal direction. That is, the intermediate shaft J4 and the differential shaft J5 are arranged in a substantially horizontal direction. Therefore, the speed reduction device 4 and the differential device 5 can be arranged along the horizontal direction, and the vertical dimension of the motor unit 1 can be reduced. Further, the oil O pumped up by the differential device 5 can be efficiently applied to the reduction gear 4. Thereby, the oil O can be supplied to the tooth surface of the gear constituting the reduction gear 4, and the transmission efficiency of the gear can be increased.
  • the diameters of the gears (second gear 42 and third gear 43) that rotate about the intermediate shaft J4 are smaller than the diameter of the ring gear 51 that rotates about the differential shaft J5.
  • the second line segment L2 extends along the substantially horizontal direction, the intermediate axis J4 and the differential axis J5 are arranged along the substantially horizontal direction. Therefore, depending on the height of the liquid level of the oil reservoir P, only the ring gear 51 is immersed in the oil reservoir P, and the second gear 42 and the third gear 43 are not immersed in the oil reservoir P. Accordingly, it is possible to suppress a decrease in the rotational efficiency of the second gear 42 and the third gear 43 while the ring gear 51 lifts up the oil O of the oil reservoir P.
  • the second line segment L2 is substantially in the horizontal direction within ⁇ 10 ° with respect to the horizontal direction.
  • the angle ⁇ formed by the second line segment L2 and the third line segment L3 is 30 ° ⁇ 5 °.
  • the transmission efficiency of the oil O pumped up by the differential device 5 between the first gear 41 and the second gear 42 can be increased, and a desired gear ratio can be realized.
  • the angle ⁇ exceeds 35 °, it becomes difficult to supply the oil pumped up by the differential device to the gear (first gear) that rotates about the motor shaft. Thereby, there exists a possibility that the transmission efficiency between a 1st gear and a 2nd gear may fall.
  • the angle ⁇ is less than 25 °, the output-side gear in the transmission process cannot be made sufficiently large, and a desired gear ratio is achieved in the three axes (motor shaft, intermediate shaft, and differential shaft). It becomes difficult.
  • the first line segment L1 extends along a substantially vertical direction. That is, the motor shaft J2 and the intermediate shaft J4 are arranged along a substantially vertical direction. Therefore, the motor 2 and the speed reducer 4 can be arranged along the vertical direction, and the horizontal dimension of the motor unit 1 can be reduced. Further, by setting the first line segment L1 in the substantially vertical direction, the motor shaft J2 can be disposed close to the differential shaft J5, and the first gear 41 that rotates about the motor shaft J2 Oil O pumped up by the differential 5 can be supplied. Thereby, the transmission efficiency of the 1st gear 41 and the 2nd gear 42 can be improved.
  • the first line segment L1 has a substantially vertical direction within ⁇ 10 ° with respect to the vertical direction.
  • the length L1 of the first line segment, the length L2 of the second line segment, and the length L3 of the third line segment satisfy the following relationship.
  • L1: L2: L3 1: 1.4 to 1.7: 1.8 to 2.0
  • the reduction ratio in the reduction mechanism from the motor 2 to the differential device 5 is 8 or more and 11 or less.
  • a desired gear ratio (8 or more and 11 or less) can be realized while maintaining the positional relationship among the motor shaft J2, the intermediate shaft J4, and the differential shaft J5 as described above.
  • FIG. 20 is a diagram showing a parking mechanism 7 that can be employed in the motor unit 1 of the present embodiment.
  • the parking mechanism 7 is effective when the motor unit 1 is used for an electric vehicle (EV).
  • EV electric vehicle
  • a manual transmission vehicle driven by an engine in addition to operating the side brake, by setting the transmission to a position other than neutral, it is possible to apply a load to the engine and bring about a braking action.
  • an automatic transmission vehicle in addition to operating the side brake, the transmission can be locked by setting the shift lever to the parking position.
  • the electric vehicle there is no braking mechanism for braking the vehicle other than the side brake, so the motor unit 1 needs the parking mechanism 7.
  • the parking mechanism 7 includes a ring-shaped parking gear 71, a parking pole 72, a parking rod 73, and a parking lever 74.
  • the parking gear 71 is arranged coaxially with the second gear (intermediate gear) 42, the third gear 43 and the intermediate gear.
  • the parking gear 71 is fixed to the intermediate shaft 45.
  • the parking pole 72 has a protrusion 72 a that is engaged with the groove of the parking gear 71 and prevents the parking gear 71 from rotating.
  • the parking rod 73 is connected to the parking pole 72 and moves the protrusion 72a along the radial direction of the parking gear.
  • the parking lever 74 is connected to the parking rod 73 and drives the parking rod 73.
  • the parking pole 72 When the motor 2 is operating, the parking pole 72 is retracted from the parking gear 71. On the other hand, when the shift lever is in the parking position, the parking pole 72 is engaged with the parking gear 71 and prevents the parking gear 71 from rotating.
  • the parking pole 72 is controlled by a parking motor (not shown) connected to the parking lever.
  • a parking motor not shown
  • the parking mechanism 7 can be electrically driven, so that the structural members for driving the parking mechanism 7 can be simplified.
  • the parking pole 72 can be driven by a push button, a paddle lever, or the like, so that the operability for the driver is improved.
  • Such a mechanism is called a shift-by-wire system.
  • the parking mechanism 7 may be a manual type instead of the electric type using a shift-by-wire system. That is, the driver may drive the parking pole by mechanically pulling the wire connected to the parking lever.
  • the parking mechanism 7 is provided on the intermediate shaft 45.
  • the braking torque for preventing the rotation of the parking gear 71 can be reduced as compared with the case where the parking mechanism 7 is provided in the gear subsequent to the intermediate shaft.
  • the structure of the parking mechanism can be reduced in size and weight.
  • the parking mechanism 7 is electrically operated, a small parking motor can be employed.
  • the parking mechanism is a manual type, the burden on the driver's operation can be reduced.
  • the parking mechanism 7 is located below the speed reduction device 4. Accordingly, the parking pole 72 is immersed in the oil O of the oil reservoir P, and the oil O is interposed between the parking gear 71 and the protruding portion 72a of the parking pole 72 so that the protruding portion 72a can be attached and detached smoothly. be able to.
  • the parking mechanism 7 of this embodiment is an example and may employ
  • FIG. 21 is a partial cross-sectional view illustrating the separation mechanism 107 of the motor unit 101 according to the first modification.
  • a motor unit 101 according to a modification in which a separation mechanism 107 is provided in a torque transmission path from the motor 2 to the axle 55 will be described.
  • the motor unit 101 of this modification is mainly different in that a separation mechanism 107 is provided on the shaft 121 of the motor 2.
  • a separation mechanism 107 is provided on the shaft 121 of the motor 2.
  • symbol about the component of the same aspect as the above-mentioned embodiment, it demonstrates using the same code
  • the separation mechanism 107 is provided when the motor unit 101 is mounted on a hybrid vehicle (HEV) and a plug-in hybrid vehicle (PHV).
  • HEV hybrid vehicle
  • PSV plug-in hybrid vehicle
  • the vehicle travels in any one of an engine mode driven only by the engine, a motor mode driven only by the motor 2, and a hybrid mode driven by both the engine and the motor.
  • the separation mechanism 107 is used to drive the power transmission mechanism (the rotor 20 of the motor 2, the speed reduction device 4, and the differential device 5) of the motor unit 101 so that the stopped motor 2 does not become a load in an automobile traveling in the engine mode. Disconnect from 55.
  • the shaft 121 includes a first shaft portion 121A, a connection shaft portion 121C, a second shaft portion 121B, and a connection shaft portion 121C and a second shaft portion 121B that are aligned on the same axis.
  • a separating mechanism 107 located between them.
  • the first shaft portion 121A, the connection shaft portion 121C, and the second shaft portion 121B are arranged in this order along the axial direction. That is, the connection shaft portion 121C is located between the first shaft portion 121A and the second shaft portion 121B.
  • the shaft 121 is a hollow shaft provided with a hollow portion 122 having an inner peripheral surface extending along the motor axis J2.
  • the hollow portion 122 includes a first hollow portion 122A located inside the first shaft portion 121A, a second hollow portion 122B located inside the second shaft portion 121B, and a third located inside the connecting shaft portion 121C. And a hollow portion 122C.
  • the first hollow portion 122A, the second hollow portion 122B, and the third hollow portion 122C are arranged along the axial direction and communicate with each other.
  • the first shaft portion 121 ⁇ / b> A is disposed in the motor chamber 81 of the accommodation space 80.
  • the first shaft portion 121A is located on the radially inner side of the stator 30 and penetrates the rotor core 24 along the motor shaft J2.
  • 121 A of 1st shaft parts have the 1st end part 121e located in the output side (namely, reduction gear 4 side).
  • the first end 121e passes through the insertion hole 61f provided in the partition wall 61c from the motor chamber 81 side.
  • a first hollow portion (second concave portion) 122A opens on the surface of the first end portion 121e facing the axial direction.
  • the first end 121e is rotatably supported by a first bearing 89 held in contact with the surface of the partition wall 61c facing the motor chamber 81 side.
  • the first shaft portion 121A can be aligned at the portion of the housing 6 on the motor chamber 81 side. Thereby, the axial alignment of the first shaft portion 121A with respect to the stator 30 can be performed with high accuracy.
  • the connecting shaft portion 121C is disposed inside the insertion hole 61f.
  • the connecting shaft portion 121C is rotatably supported by a second bearing 188A that is held in contact with the surface of the partition wall 61c facing the gear chamber 82 side.
  • the second bearing 188A is a ball bearing.
  • the connecting shaft portion 121C is provided with a step surface 121q facing the partition wall 61c. The step surface 121q is in contact with the inner ring of the second bearing 188A.
  • connection shaft portion 121C can be assembled to the first shaft portion 121A after the first shaft portion 121A is aligned. Therefore, the assembly process of the connection shaft portion 121C can be simplified.
  • the outer diameter of the second bearing 188A is larger than the outer diameter of the first bearing 89.
  • a great load is applied to the second bearing 188A in the axial direction and the circumferential direction.
  • sufficient strength can be ensured with respect to the load during operation of the separation mechanism 107 by making the diameter larger than that of the first bearing 89. .
  • the connecting shaft portion 121C has a second end portion 121f, a third end portion 121g, and a connecting flange portion 121h.
  • the second end 121f protrudes toward the motor chamber 81.
  • the second end 121f is located on the first shaft 121A side and is connected to the first end 121e of the first shaft 121A.
  • the second end 121f is accommodated in the first hollow portion 122A that opens to the first end 121e.
  • the outer peripheral surface of the second end 121f is fitted to the inner peripheral surface of the first hollow portion 122A.
  • the third end 121g protrudes toward the gear chamber 82 side.
  • the third end 121g is located on the side opposite to the second end 121f and on the second shaft 121B side.
  • a first recess 121p is provided at the end of the third end 121g facing the axial direction.
  • the connection flange portion 121h extends outward in the radial direction of the third end portion 121g.
  • the diameter of the connection flange portion 121h is larger than the smallest diameter portion of the insertion hole 61f.
  • the connecting shaft portion 121C is a separate member from the first shaft portion 121A. Therefore, by assembling the connection shaft portion 121C to the first shaft portion 121A after the assembly process of the motor 2, the assembly can be performed in the same order as the assembly order without the separation mechanism 107. Accordingly, the shape of the parts other than the shaft 121 can be made the same as when the separation mechanism 107 is not provided. That is, according to the present modification, it is possible to share parts between the motor unit 101 including the separation mechanism 107 and the motor unit 1 not including the separation mechanism 107. Moreover, since the assembly order can be made the same regardless of the presence or absence of the separation mechanism 107, the complexity of the component shape and the increase in the number of components can be suppressed. Therefore, according to this modification, the motor unit 101 with high versatility and low cost can be provided.
  • the second shaft portion 121 ⁇ / b> B is disposed in the gear chamber 82 of the accommodation space 80.
  • the second shaft portion 121B has a fourth end 121i and a fifth end 121j.
  • the fourth end 121i is located on the third end 121g side of the connecting shaft 121C. Transmission of power is selectively disconnected by the disconnection mechanism 107 from the fourth end portion 121i and the connection flange portion 121h of the connection shaft portion 121C.
  • the fourth end 121i is accommodated in the first recess 121p provided in the third end 121g.
  • a needle bearing (bearing) 121n is provided in the radial gap between the third end 121g and the fourth end 121i. That is, according to the present modification, the second shaft portion 121B is rotatably supported by the connection shaft portion 121C at the fourth end 121i. Therefore, according to the present modification, when the second shaft portion 121B and the connection shaft portion 121C are separated by the separation mechanism 107, stable holding can be realized without hindering relative rotation. In addition, such an effect is an effect which can be show
  • the needle bearing 121n includes a plurality of cylindrical members arranged in a ring shape, but may be another bearing mechanism such as a ball bearing instead of the needle bearing 121n.
  • the needle bearing it is possible to reduce the size of the motor unit 101 by reducing the radial dimension of the third end 121g and the fourth end 121i.
  • the first shaft portion 121A, the connection shaft portion 121C, and the second shaft portion 121B are provided with the hollow portions 122 that extend in the axial direction and communicate with each other.
  • the hollow portion 122 is supplied with oil O that cools the inside of the motor from the second shaft portion 121B side toward the first shaft portion 121A side.
  • the connecting shaft portion 121C and the second shaft portion 121B are connected via the needle bearing 121n. Therefore, the third hollow portion 122C of the connection shaft portion 121C and the second hollow portion 122B of the second shaft portion 121B can be connected to each other. Thereby, the oil O can be supplied to the hollow part 122 and used as an oil flow path.
  • the fifth end 121j is located on the opposite side of the fourth end 121i.
  • the fifth end is rotatably supported by a third bearing 188B held by the housing. That is, the second shaft portion 121B is supported by the third bearing 188B at the fifth end portion 121j.
  • the second shaft portion 121B is supported by two bearings (needle bearing 121n and third bearing 188B) arranged in the axial direction.
  • the connecting shaft portion 121C is supported by two bearings (second bearing 188A and needle bearing 121n) arranged in the axial direction.
  • the second shaft portion 121B and the connection shaft portion 121C can be stably rotated without causing shaft shake by being rotatably supported at two points aligned in the axial direction.
  • the first gear 41 is provided on the outer peripheral surface of the second shaft portion 121B.
  • the first gear 41 is located between the fourth end 121i and the fifth end 121j.
  • the first gear 41 transmits power to the second gear 42 of the reduction gear 4.
  • the first gear 41 is located between the second bearing 188A and the third bearing 188B. Therefore, the first gear 41 can stably rotate with respect to the motor shaft J2, and the torque generated by the motor 2 can be stably transmitted to the second gear 42.
  • the disconnecting mechanism 107 surrounds the connection flange portion 121h of the connection shaft portion 121C and the fourth end portion 121i of the second shaft portion 121B from the radially outer side.
  • the separation mechanism 107 switches between a state in which the connection flange portion 121h and the fourth end portion 121i are not mechanically coupled and a state in which the connection flange portion 121h and the fourth end portion 121i are coupled using the driving unit 175.
  • the separation mechanism 107 is located between the axial end surface of the motor 2 and the first gear 41 in the axial direction.
  • the motor unit 101 has a three-axis structure including a motor shaft J2, an intermediate shaft J4, and a differential shaft J5.
  • a third gear 43 is located between the axial end surface of the motor 2 and the first gear 41.
  • the second gear 42 rotates in synchronization with the second gear 42 connected to the first gear 41.
  • a gap larger than the thickness of the third gear 43 is provided between the axial end surface of the motor 2 and the first gear 41.
  • the separation mechanism 107 is disposed between the axial end surface of the motor 2 and the first gear 41. That is, the third gear 43 and the separation mechanism 107 are disposed at positions that overlap in the axial direction. Thereby, the internal space of the gear chamber 82 can be effectively used and the motor unit 101 can be downsized.
  • the separation mechanism is provided on the shaft 121 of the motor 2. That is, in the power transmission path from the motor 2 to the axle 55, the separation mechanism 107 is provided at the portion with the smallest torque. According to this modification, since the torque transmitted through the separation mechanism 107 is small, the separation mechanism can be reduced in size.
  • the separation mechanism 107 of this modification is referred to as a rotation synchronization device or a synchromesh mechanism.
  • the separation mechanism 107 is an example.
  • As the separation mechanism for example, a dog clutch mechanism or a multi-stage clutch mechanism may be adopted.
  • the separation mechanism 107 includes a sleeve 171, a clutch hub 172, a synchronizer ring 173, a key 174, and a drive unit (not shown).
  • the clutch hub 172 is fixed to the outer peripheral surface of the second shaft portion 121B.
  • the clutch hub 172 rotates around the motor shaft J2 together with the second shaft portion 121B.
  • An external spline is provided on the outer periphery of the clutch hub 172.
  • the sleeve 171 is movable along the axial direction.
  • the sleeve 171 meshes with an external spline of the clutch hub 172 and rotates integrally with the sleeve 171.
  • a spline is provided on the inner peripheral surface of the sleeve 171.
  • the spline of the sleeve 171 fits into the spline provided on the outer peripheral surface of the connection flange portion 121h after the clutch hub 172 and the connection flange portion 121h rotate synchronously. Thereby, the 2nd shaft part 121B and the connection shaft part 121C are connected.
  • the key 174 is held by the sleeve 171.
  • the key 174 moves in the axial direction together with the sleeve 171.
  • the key 174 matches the phases of the splines provided on the sleeve 171 and the connection flange portion 121h, respectively.
  • the synchronizer ring 173 moves in the axial direction together with the sleeve 171.
  • the synchronizer ring 173 has a tapered surface that increases its inner diameter as it approaches the connection flange portion 121h side.
  • the connection flange portion 121h is provided with a boss portion that protrudes toward the synchronizer ring 173 along the axial direction.
  • the boss portion is provided with a tapered surface facing the synchronizer ring 173.
  • the synchronizer ring 173 and the connection flange portion 121h rotate synchronously by bringing the tapered surfaces into contact with each other.
  • a drive unit (not shown) is connected to the sleeve 171.
  • the drive unit moves the sleeve 171 in the axial direction.
  • FIG. 22 is a conceptual diagram showing a state in which the motor 2 and the speed reduction device 4 are connected by the separation mechanism 107
  • FIG. 23 is a concept showing a state in which the motor 2 and the speed reduction device 4 are separated by the separation mechanism 107.
  • the motor unit 101 including the separation mechanism 107 is mounted on a hybrid vehicle or a plug-in hybrid vehicle. In such a vehicle, when the mode is switched between the mode that travels using only the power of the engine and the mode that travels using the power of the motor 2, the drive unit 175 operates to connect the connecting shaft portion 121C and the second shaft portion 121B. Connection and disconnection to and from are switched.
  • the control related to the separation mechanism 107 will be described.
  • the rotational speed of the second shaft portion 121B is calculated from the rotational speed of the axle 55.
  • the rotation speed of the motor 2 is increased to the calculated rotation speed of the second shaft portion 121B.
  • the sleeve is moved by the drive unit 175, and the connection between the second shaft portion 121B and the connection shaft portion 121C is realized.
  • the position at which the connection between the second shaft portion 121B and the connection shaft portion 121C is completed is calculated from the cumulative number of rotations of the drive portion 175.
  • it is detected that the rotational speed of the motor 2 and the rotational speed of the second shaft portion 121B calculated from the rotational speed of the axle 55 are the same, and it is finally determined that the joined state is completed. Is done.
  • Each element such as the motor 2 of the motor unit 1, the pump 96, the drive unit 175 of the separation mechanism 107 and the parking motor of the parking mechanism 7 is centrally controlled by a micro control unit (MCU).
  • the micro control unit may be provided integrally with the motor unit 1 or provided outside.
  • the motor unit 1 can be applied to any of a hybrid vehicle (HEV), a plug-in hybrid vehicle (PHV), and an electric vehicle (EV).
  • the motor unit 1 can be applied not only to passenger cars but also to lorry vehicles (trucks).
  • the motor unit 1 may be mounted on either the front side or the rear side of the vehicle, but is preferably mounted on the rear side. Since the motor unit 1 of this embodiment has a small vertical dimension, the motor unit 1 can be installed compactly even on the rear side where the installation space is limited due to the restriction between the luggage compartment and the minimum ground clearance.
  • Motor housing 61c Partition wall, 61f ... insertion hole, 61k, 97b, 98r, 98o, 98x, 98t, 98u, 98v, 198c ... outlet, 63 ... closed part, 63d ... projecting part, 64 ... ceiling part (ceiling part) of gear chamber, 65 ... convex part, 66 ... collar part, 68, 168 ... partition opening, 68a ... first opening part, 68b ... second opening part, 80 ... housing space, 81 ... motor chamber, 82 ... gear chamber, 88, 188A 2nd bearing, 89 ... 1st bearing, 90 ... oil path, 91 ...

Abstract

A motor unit that comprises: a motor that has a rotor that rotates around a motor axis that extends in the horizontal direction; a differential device that is connected to the motor; a housing that has provided therein a housing space that houses the motor and the differential device; oil that accumulates in a vertical-direction lower region of the housing space; and an oil passage that supplies oil from the vertical-direction lower region of the housing space to the motor. A pump that is fixed to an outer peripheral surface of the housing is provided on the oil passage. Seen from the axial direction of the motor axis, the pump is positioned on the opposite side of the motor axis from the differential device.

Description

モータユニットMotor unit
 本発明は、モータユニットに関する。 The present invention relates to a motor unit.
 特許文献1には、モータ(回転電機)の外部に設けられたポンプによって冷媒をモータに供給してモータを冷却する構造が開示されている。 Patent Document 1 discloses a structure in which a coolant is supplied to a motor by a pump provided outside the motor (rotary electric machine) to cool the motor.
特許第5911033号公報Japanese Patent No. 5911033
 従来の構造によれば、ハウジングの外部に冷媒を流出させポンプにより冷媒を循環させている。したがって、ポンプとモータとの間に配管が必要となり、結果として寸法が大きくなってしまうという問題があった。 According to the conventional structure, the refrigerant flows out of the housing and is circulated by a pump. Therefore, piping is required between the pump and the motor, resulting in a problem that the size increases.
 本発明の一つの態様は、上記問題点に鑑みて、ポンプを用いてモータを冷却するとともに全体の寸法を小型化したモータユニットの提供を目的の一つとする。 In view of the above problems, one aspect of the present invention is to provide a motor unit that cools a motor using a pump and has a reduced overall size.
 本発明のモータユニットの一つの態様は、水平方向に延びるモータ軸を中心として回転するロータを有するモータと、前記モータに接続された差動装置と、前記モータおよび前記差動装置を収容する収容空間が設けられたハウジングと、前記収容空間の鉛直方向下側の領域に溜るオイルと、前記収容空間の鉛直方向下側の領域から前記オイルを前記モータに供給する油路と、を備え、前記油路の経路中には、前記ハウジングの外周面に固定されたポンプが設けられ、前記モータ軸の軸方向から見て、前記ポンプは、前記モータ軸を挟んで前記差動装置と反対側に位置する。 One aspect of the motor unit of the present invention includes a motor having a rotor that rotates about a motor shaft extending in a horizontal direction, a differential device connected to the motor, and a housing that houses the motor and the differential device. A housing provided with a space; oil that accumulates in a vertically lower region of the housing space; and an oil passage that supplies the oil to the motor from a vertically lower region of the housing space, A pump fixed to the outer peripheral surface of the housing is provided in the path of the oil passage, and when viewed from the axial direction of the motor shaft, the pump is located on the opposite side of the differential device across the motor shaft. To position.
 本発明の一つの態様によれば、ポンプを用いてモータを冷却するとともに全体の寸法を小型化したモータユニットが提供される。 According to one aspect of the present invention, a motor unit is provided in which the motor is cooled using a pump and the overall dimensions are reduced.
図1は、一実施形態のモータユニットの概念図である。FIG. 1 is a conceptual diagram of a motor unit according to an embodiment. 図2は、一実施形態のモータユニットの斜視図である。FIG. 2 is a perspective view of a motor unit according to an embodiment. 図3は、一実施形態のモータユニットの側面図である。FIG. 3 is a side view of the motor unit according to the embodiment. 図4は、図3のIV-IV線に沿うモータユニットの断面図である。4 is a cross-sectional view of the motor unit taken along line IV-IV in FIG. 図5は、一実施形態のロータの断面図である。FIG. 5 is a cross-sectional view of a rotor according to an embodiment. 図6は、エンドプレートの平面図である。FIG. 6 is a plan view of the end plate. 図7は、図6のVII-VII線に沿うエンドプレートの断面図である。7 is a cross-sectional view of the end plate taken along line VII-VII in FIG. 図8は、第1の変形例のエンドプレートの断面図である。FIG. 8 is a cross-sectional view of the end plate of the first modification. 図9は、第2の変形例のエンドプレートの平面図である。FIG. 9 is a plan view of an end plate of a second modification. 図10は、一実施形態のモータユニットの断面図であり、第2の油路を示す図である。FIG. 10 is a cross-sectional view of a motor unit according to an embodiment, and is a view showing a second oil passage. 図11は、ハウジングの一部を省略した一実施形態のモータユニットの斜視図である。FIG. 11 is a perspective view of a motor unit according to an embodiment in which a part of the housing is omitted. 図12は、一実施形態の第2のリザーバの平面図である。FIG. 12 is a plan view of a second reservoir of one embodiment. 図13は、変形例の第2のリザーバの斜視図である。FIG. 13 is a perspective view of a modified second reservoir. 図14は、一実施形態のモータユニットの断面図であり、副リザーバの概略を示す図である。FIG. 14 is a cross-sectional view of a motor unit according to an embodiment, and is a diagram illustrating an outline of a secondary reservoir. 図15は、一実施形態の隔壁開口の正面図である。FIG. 15 is a front view of a partition wall opening according to an embodiment. 図16は、一実施形態のモータユニットにおいてモータ室の下側に溜るオイルの液位の高さと、第1の領域の面積との関係を示すグラフである。FIG. 16 is a graph showing the relationship between the height of the oil level accumulated below the motor chamber and the area of the first region in the motor unit of the embodiment. 図17は、変形例の隔壁開口の正面図である。FIG. 17 is a front view of a partition wall opening according to a modification. 図18は、変形例の隔壁開口が設けられたモータユニットにおいてモータ室の下側に溜るオイルの液位の高さと、第1の領域の面積との関係を示すグラフである。FIG. 18 is a graph showing the relationship between the height of the oil level accumulated below the motor chamber and the area of the first region in the motor unit provided with the partition wall opening according to the modified example. 図19は、一実施形態のモータユニットにおいてギヤ室の内部に位置する各ギヤの配置を示す側面図である。FIG. 19 is a side view showing an arrangement of each gear located inside the gear chamber in the motor unit of the embodiment. 図20は、一実施形態のモータユニットに採用可能なパーキング機構の平面図である。FIG. 20 is a plan view of a parking mechanism that can be employed in the motor unit of the embodiment. 図21は、変形例1のモータユニットの切り離し機構を示す部分断面図である。FIG. 21 is a partial cross-sectional view showing a motor unit separating mechanism according to the first modification. 図22は、切り離し機構によりモータと減速装置とを繋いだ状態を示す概念図である。FIG. 22 is a conceptual diagram showing a state in which the motor and the speed reducer are connected by the separation mechanism. 図23は、切り離し機構によりモータと減速装置とを切り離した状態を示す概念図である。FIG. 23 is a conceptual diagram showing a state in which the motor and the speed reducer are separated by the separation mechanism.
 以下、図面を参照しながら、本発明の実施形態に係るモータについて説明する。なお、本発明の範囲は、以下の実施の形態に限定されず、本発明の技術的思想の範囲内で任意に変更可能である。また、以下の図面においては、各構成をわかりやすくするために、実際の構造と各構造における縮尺や数等を異ならせる場合がある。 Hereinafter, a motor according to an embodiment of the present invention will be described with reference to the drawings. The scope of the present invention is not limited to the following embodiments, and can be arbitrarily changed within the scope of the technical idea of the present invention. Moreover, in the following drawings, in order to make each structure easy to understand, the actual structure may be different from the scale, number, or the like in each structure.
 以下の説明では、モータユニット1が水平な路面上に位置する車両に搭載された場合の位置関係を基に、重力方向を規定して説明する。また、図面においては、適宜3次元直交座標系としてXYZ座標系を示す。XYZ座標系において、Z軸方向は、鉛直方向(すなわち上下方向)を示し、+Z方向が上側(重力方向の反対側)であり、-Z方向が下側(重力方向)である。また、X軸方向は、Z軸方向と直交する方向であってモータユニット1が搭載される車両の前後方向を示し、+X方向が車両前方であり、-X方向が車両後方である。ただし、+X方向が車両後方であり、-X方向が車両前方となることもありうる。Y軸方向は、X軸方向とZ軸方向との両方と直交する方向であって、車両の幅方向(左右方向)である。 In the following description, the direction of gravity will be defined and described based on the positional relationship when the motor unit 1 is mounted on a vehicle located on a horizontal road surface. In the drawings, an XYZ coordinate system is appropriately shown as a three-dimensional orthogonal coordinate system. In the XYZ coordinate system, the Z-axis direction indicates the vertical direction (that is, the vertical direction), the + Z direction is the upper side (opposite to the gravity direction), and the −Z direction is the lower side (gravity direction). The X-axis direction is a direction orthogonal to the Z-axis direction and indicates the front-rear direction of the vehicle on which the motor unit 1 is mounted. The + X direction is the front of the vehicle, and the −X direction is the rear of the vehicle. However, the + X direction may be the rear of the vehicle, and the −X direction may be the front of the vehicle. The Y-axis direction is a direction orthogonal to both the X-axis direction and the Z-axis direction and is the vehicle width direction (left-right direction).
 以下の説明において特に断りのない限り、モータ2のモータ軸J2に平行な方向(Z軸方向)を単に「軸方向」と呼び、モータ軸J2を中心とする径方向を単に「径方向」と呼び、モータ軸J2を中心とする周方向、すなわち、モータ軸J2の軸周りを単に「周方向」と呼ぶ。さらに、以下の説明において、「平面視」とは、軸方向から見た状態を意味する。ただし、上記の「平行な方向」は、略平行な方向も含む。また、上記の「直交する方向」は略直交する方向も含む。 In the following description, unless otherwise specified, the direction parallel to the motor shaft J2 of the motor 2 (Z-axis direction) is simply referred to as “axial direction”, and the radial direction around the motor shaft J2 is simply referred to as “radial direction”. The circumferential direction around the motor shaft J2, that is, the circumference of the motor shaft J2, is simply referred to as “circumferential direction”. Furthermore, in the following description, “plan view” means a state viewed from the axial direction. However, the above “parallel direction” includes a substantially parallel direction. In addition, the “orthogonal direction” includes a substantially orthogonal direction.
 以下、図面を基に本発明の例示的な一実施形態に係るモータユニット(電動駆動装置)1について説明する。
 図1は、一実施形態のモータユニット1の概念図である。図2は、モータユニット1の斜視図である。図3は、モータユニット1の側面図である。図4は、図3のIV-IV線に沿うモータユニット1の断面図である。なお、図4において差動装置5の内部構造の一部は省略されている。
Hereinafter, a motor unit (electric drive device) 1 according to an exemplary embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a conceptual diagram of a motor unit 1 according to an embodiment. FIG. 2 is a perspective view of the motor unit 1. FIG. 3 is a side view of the motor unit 1. FIG. 4 is a cross-sectional view of the motor unit 1 taken along line IV-IV in FIG. In FIG. 4, a part of the internal structure of the differential device 5 is omitted.
 モータユニット1は、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHV)、電気自動車(EV)等、モータを動力源とする車両に搭載され、その動力源として使用される。 The motor unit 1 is mounted on a vehicle using a motor as a power source, such as a hybrid vehicle (HEV), a plug-in hybrid vehicle (PHV), or an electric vehicle (EV), and is used as the power source.
 図1に示すように、モータユニット1は、モータ(メインモータ)2と、減速装置4と、差動装置5と、ハウジング6と、オイルOと、オイルOをモータ2に供給する油路90と、を備える。また、モータユニット1は、図2に仮想線で示すように、パーキング機構7を有していてもよい。 As shown in FIG. 1, the motor unit 1 includes a motor (main motor) 2, a reduction gear 4, a differential device 5, a housing 6, oil O, and an oil passage 90 that supplies the oil O to the motor 2. And comprising. Further, the motor unit 1 may have a parking mechanism 7 as indicated by a virtual line in FIG.
 図1に示すように、モータ2は、水平方向に延びるモータ軸J2を中心として回転するロータ20と、ロータ20の径方向外側に位置するステータ30と、を備える。減速装置4は、モータ2のロータ20に接続される。差動装置5は、減速装置4を介しモータ2に接続される。ハウジング6の内部は、モータ2、減速装置4および差動装置5を収容する収容空間80が設けられる。オイルOは、減速装置4および差動装置5の潤滑用として使用されるとともに、モータ2の冷却用として使用される。オイルOは、収容空間80の鉛直方向下側の領域に溜る。オイルOは、潤滑油および冷却油の機能を奏するため、粘度の低いオートマチックトランスミッション用潤滑油(ATF:Automatic Transmission Fluid)と同等のものを用いることが好ましい。油路90は、収容空間80の下側の領域からオイルOをモータ2に供給するオイルOの経路である。油路90は、第1の油路91と第2の油路92とを有する。 As shown in FIG. 1, the motor 2 includes a rotor 20 that rotates about a motor shaft J <b> 2 that extends in the horizontal direction, and a stator 30 that is positioned radially outward of the rotor 20. The reduction gear 4 is connected to the rotor 20 of the motor 2. The differential device 5 is connected to the motor 2 via the speed reducer 4. A housing space 80 for housing the motor 2, the speed reducer 4, and the differential device 5 is provided inside the housing 6. The oil O is used for lubricating the speed reduction device 4 and the differential device 5 and also used for cooling the motor 2. The oil O accumulates in a region below the accommodation space 80 in the vertical direction. Since the oil O functions as a lubricating oil and a cooling oil, it is preferable to use an oil equivalent to a low-viscosity automatic transmission lubricating oil (ATF). The oil path 90 is a path of the oil O that supplies the oil O to the motor 2 from the lower region of the accommodation space 80. The oil passage 90 has a first oil passage 91 and a second oil passage 92.
 なお、本明細書において、「油路」とは、収容空間80を循環するオイルOの経路を意味する。したがって、「油路」とは、定常的に一方向に向かう定常的なオイルの流動を形成する「流路」のみならず、オイルを一時的に滞留させる経路(例えばリザーバ)およびオイルが滴り落ちる経路をも含む概念である。 In the present specification, the “oil path” means a path of the oil O that circulates in the accommodation space 80. Therefore, the “oil path” is not only a “flow path” that forms a steady oil flow in one direction in a steady manner, but also a path (for example, a reservoir) for temporarily retaining oil and the oil dripping. It is a concept that includes routes.
 <ハウジング>
 ハウジング6の内部に設けられた収容空間80には、モータ2、減速装置4および差動装置5が収容される。ハウジング6は、収容空間80においてモータ2、減速装置4および差動装置5を保持する。ハウジング6は、隔壁61cを有する。ハウジング6の収容空間80は、隔壁61cによってモータ室81とギヤ室82とに区画される。モータ室81には、モータ2が収容される。ギヤ室82には、減速装置4および差動装置5が収容される。
<Housing>
The accommodation space 80 provided in the housing 6 accommodates the motor 2, the reduction gear 4, and the differential device 5. The housing 6 holds the motor 2, the speed reduction device 4, and the differential device 5 in the accommodation space 80. The housing 6 has a partition wall 61c. The housing space 80 of the housing 6 is partitioned into a motor chamber 81 and a gear chamber 82 by a partition wall 61c. The motor 2 is accommodated in the motor chamber 81. The gear chamber 82 accommodates the reduction gear 4 and the differential 5.
 収容空間80の下側の領域には、オイルOが溜るオイル溜りPが設けられる。本実施形態では、モータ室81の底部81aは、ギヤ室82の底部82aより上側に位置する。また、モータ室81とギヤ室82とを区画する隔壁61cの下側の領域には、隔壁開口68が設けられる。隔壁開口68は、モータ室81とギヤ室82とを連通させる。隔壁開口68は、モータ室81の下側の領域に溜ったオイルOをギヤ室82に移動させる。したがって、本実施形態においてオイル溜りPは、ギヤ室82の下側の領域に設けられる。 In the lower region of the accommodation space 80, an oil reservoir P in which oil O is accumulated is provided. In the present embodiment, the bottom 81 a of the motor chamber 81 is located above the bottom 82 a of the gear chamber 82. A partition opening 68 is provided in a lower region of the partition 61 c that partitions the motor chamber 81 and the gear chamber 82. The partition opening 68 allows the motor chamber 81 and the gear chamber 82 to communicate with each other. The partition opening 68 moves the oil O accumulated in the lower region of the motor chamber 81 to the gear chamber 82. Therefore, in this embodiment, the oil reservoir P is provided in the lower region of the gear chamber 82.
 オイル溜りPには、差動装置5の一部が浸かる。オイル溜りPに溜るオイルOは、差動装置5の動作によってかき上げられて、一部が第1の油路91に供給され、一部がギヤ室82内に拡散される。ギヤ室82に拡散されたオイルOは、ギヤ室82内の減速装置4および差動装置5の各ギヤに供給されてギヤの歯面にオイルOを行き渡らせる。減速装置4および差動装置5に使用されたオイルOは、滴下してギヤ室82の下側に位置するオイル溜りPに回収される。収容空間80のオイル溜りPの容量は、モータユニット1の停止時に、差動装置5の軸受の一部がオイルOに浸かる程度に設定される。 A part of the differential 5 is immersed in the oil reservoir P. The oil O accumulated in the oil reservoir P is pumped up by the operation of the differential device 5, a part is supplied to the first oil passage 91, and a part is diffused in the gear chamber 82. The oil O diffused in the gear chamber 82 is supplied to the gears of the reduction gear 4 and the differential device 5 in the gear chamber 82, and spreads the oil O on the gear teeth. The oil O used in the speed reduction device 4 and the differential device 5 is dropped and collected in an oil sump P located below the gear chamber 82. The capacity of the oil reservoir P in the accommodation space 80 is set such that a part of the bearing of the differential device 5 is immersed in the oil O when the motor unit 1 is stopped.
 ハウジング6は、例えばアルミダイカスト製である。ハウジング6は、モータユニット1の外枠を構成する。ハウジング6は、モータ収容部61と、ギヤ収容部62と、閉塞部63と、を有する。ギヤ収容部62は、モータ収容部61の左側に位置する。閉塞部63は、モータ収容部61の右側に位置する。 The housing 6 is made of, for example, aluminum die casting. The housing 6 constitutes an outer frame of the motor unit 1. The housing 6 includes a motor housing portion 61, a gear housing portion 62, and a closing portion 63. The gear housing part 62 is located on the left side of the motor housing part 61. The closing part 63 is located on the right side of the motor housing part 61.
 モータ収容部61は、モータ2を径方向外側から囲む筒状の周壁部61aと、周壁部61aの軸方向一方側に位置する側板部61bと、を有する。周壁部61aの内側の空間がモータ室81を構成する。側板部61bは、隔壁61cと突出板部61dとを有する。隔壁61cは、周壁部61aの軸方向一方側の開口を覆う。隔壁61cには、上述の隔壁開口68に加えて、モータ2のシャフト21を挿通させる挿通孔61fが設けられる。側板部61bは、隔壁61cと、周壁部61aに対して径方向外側に突出する突出板部61dと、を有する。突出板部61dには、車輪を支持するドライブシャフト(図示略)が通過する第1の車軸通過孔61eが設けられる。 The motor housing portion 61 includes a cylindrical peripheral wall portion 61a that surrounds the motor 2 from the radially outer side, and a side plate portion 61b that is located on one axial side of the peripheral wall portion 61a. A space inside the peripheral wall portion 61 a constitutes the motor chamber 81. The side plate portion 61b has a partition wall 61c and a protruding plate portion 61d. The partition wall 61c covers the opening on one side in the axial direction of the peripheral wall portion 61a. The partition wall 61c is provided with an insertion hole 61f through which the shaft 21 of the motor 2 is inserted in addition to the partition wall opening 68 described above. The side plate portion 61b includes a partition wall 61c and a protruding plate portion 61d that protrudes radially outward with respect to the peripheral wall portion 61a. The protruding plate portion 61d is provided with a first axle passage hole 61e through which a drive shaft (not shown) that supports the wheels passes.
 閉塞部63は、モータ収容部61に固定される。閉塞部63は、周壁部61aの軸方向反対側の開口を塞ぐ。すなわち、閉塞部63は、筒状のモータ収容部61の開口を塞ぐ。閉塞部63は、閉塞部本体63aと、蓋部材63bと、を有する。閉塞部本体63aは、モータ収容部61の内側に位置する収容空間80に突出する筒状の突出部63dを有する。突出部63dは、周壁部61aの内周面に沿って延びる。また、閉塞部本体63aには、軸方向に貫通する窓部63cが設けられる。蓋部材63bは、収容空間80の外側から窓部63cを塞ぐ。 The closing part 63 is fixed to the motor housing part 61. The closing part 63 closes the opening on the opposite side in the axial direction of the peripheral wall part 61a. That is, the closing part 63 closes the opening of the cylindrical motor housing part 61. The blocking part 63 includes a blocking part main body 63a and a lid member 63b. The closing portion main body 63 a has a cylindrical protruding portion 63 d that protrudes into the storage space 80 located inside the motor storage portion 61. The protruding portion 63d extends along the inner peripheral surface of the peripheral wall portion 61a. Further, the closing portion main body 63a is provided with a window portion 63c penetrating in the axial direction. The lid member 63b closes the window portion 63c from the outside of the accommodation space 80.
 ギヤ収容部62は、モータ収容部61の側板部61bに固定される。ギヤ収容部62は、側板部61b側に開口する凹形状を有する。ギヤ収容部62の開口は、側板部61bに覆われる。ギヤ収容部62と側板部61bの間の空間は、減速装置4および差動装置5を収容するギヤ室82を構成する。ギヤ収容部62には、第2の車軸通過孔62eが設けられる。第2の車軸通過孔62eは、軸方向から見て第1の車軸通過孔61eと重なる。 The gear housing part 62 is fixed to the side plate part 61 b of the motor housing part 61. The gear accommodating part 62 has a concave shape opened to the side plate part 61b side. The opening of the gear housing portion 62 is covered with the side plate portion 61b. A space between the gear housing portion 62 and the side plate portion 61 b constitutes a gear chamber 82 that houses the speed reduction device 4 and the differential device 5. The gear housing portion 62 is provided with a second axle passage hole 62e. The second axle passage hole 62e overlaps the first axle passage hole 61e when viewed from the axial direction.
 図3に示すように、ギヤ収容部62は、第1のリザーバ(リザーバ)93と、シャフト供給流路94と、を有する。第1のリザーバ93は、ギヤ収容部62の軸方向のギヤ室82側を向く面に位置し、軸方向に沿って延びる。第1のリザーバ93は、差動装置5によってかき上げられたオイルOを受ける。シャフト供給流路94は、第1のリザーバ93の底部からモータ2のシャフト21に向かって延びる。シャフト供給流路94は、第1のリザーバ93で受けたオイルOをシャフト21の中空部22の内側に供給する流路である。 As shown in FIG. 3, the gear housing portion 62 includes a first reservoir (reservoir) 93 and a shaft supply channel 94. The first reservoir 93 is located on the surface of the gear housing portion 62 facing the gear chamber 82 side in the axial direction and extends along the axial direction. The first reservoir 93 receives oil O pumped up by the differential 5. The shaft supply channel 94 extends from the bottom of the first reservoir 93 toward the shaft 21 of the motor 2. The shaft supply flow path 94 is a flow path for supplying the oil O received by the first reservoir 93 to the inside of the hollow portion 22 of the shaft 21.
 <減速装置>
 図4に示すように、減速装置4は、モータ2の回転速度を減じて、モータ2から出力されるトルクを減速比に応じて増大させる機能を有する。減速装置4は、モータ2から出力されるトルクを差動装置5へ伝達する。
<Decelerator>
As shown in FIG. 4, the reduction gear 4 has a function of decreasing the rotational speed of the motor 2 and increasing the torque output from the motor 2 in accordance with the reduction ratio. The reduction gear 4 transmits the torque output from the motor 2 to the differential device 5.
 減速装置4は、第1のギヤ(中間ドライブギヤ)41と、第2のギヤ(中間ギヤ)42と、第3のギヤ(ファイルナルドライブギヤ)43と、中間シャフト45と、を有する。モータ2から出力されるトルクは、モータ2のシャフト21、第1のギヤ41、第2のギヤ42、中間シャフト45および第3のギヤ43を介して差動装置5のリングギヤ(ギヤ)51へ伝達される。各ギヤのギヤ比およびギヤの個数等は、必要とされる減速比に応じて種々変更可能である。減速装置4は、各ギヤの軸芯が平行に配置される平行軸歯車タイプの減速機である。 The reduction gear 4 includes a first gear (intermediate drive gear) 41, a second gear (intermediate gear) 42, a third gear (file null drive gear) 43, and an intermediate shaft 45. Torque output from the motor 2 is transmitted to the ring gear (gear) 51 of the differential device 5 via the shaft 21, the first gear 41, the second gear 42, the intermediate shaft 45 and the third gear 43 of the motor 2. Communicated. The gear ratio of each gear, the number of gears, and the like can be variously changed according to the required reduction ratio. The reduction gear 4 is a parallel shaft gear type reduction gear in which the shaft cores of the respective gears are arranged in parallel.
 第1のギヤ41は、モータ2のシャフト21の外周面に設けられる。第1のギヤ41は、シャフト21とともに、モータ軸J2を中心に回転する。 The first gear 41 is provided on the outer peripheral surface of the shaft 21 of the motor 2. The first gear 41 rotates with the shaft 21 around the motor shaft J2.
 中間シャフト45は、モータ軸J2と平行な中間軸J4に沿って延びる。中間シャフト45は、中間軸J4を中心とする円筒形状である。中間シャフト45は、中間軸J4を中心として回転する。中間シャフト45は、一対の中間シャフト保持ベアリング87によって回転自在に支持される。一対の中間シャフト保持ベアリング87のうち一方は、隔壁61cのギヤ室82側を向く面に保持される。一対の中間シャフト保持ベアリング87のうち他方は、ギヤ収容部62に保持される。 The intermediate shaft 45 extends along an intermediate axis J4 parallel to the motor axis J2. The intermediate shaft 45 has a cylindrical shape centered on the intermediate axis J4. The intermediate shaft 45 rotates around the intermediate axis J4. The intermediate shaft 45 is rotatably supported by a pair of intermediate shaft holding bearings 87. One of the pair of intermediate shaft holding bearings 87 is held on the surface of the partition wall 61c facing the gear chamber 82 side. The other of the pair of intermediate shaft holding bearings 87 is held by the gear housing portion 62.
 第2のギヤ42および第3のギヤ43は、中間シャフト45の外周面に設けられる。第2のギヤ42と第3のギヤ43は、中間シャフト45を介して接続される。第2のギヤ42および第3のギヤ43は、中間軸J4を中心として回転する。第2のギヤ42は、第1のギヤ41に噛み合う。第3のギヤ43は、差動装置5のリングギヤ51と噛み合う。第3のギヤ43は、第2のギヤ42に対して隔壁61c側に位置する。本実施形態において、中間シャフト45と第3のギヤ43は、単一の部材である。 The second gear 42 and the third gear 43 are provided on the outer peripheral surface of the intermediate shaft 45. The second gear 42 and the third gear 43 are connected via an intermediate shaft 45. The second gear 42 and the third gear 43 rotate around the intermediate shaft J4. The second gear 42 meshes with the first gear 41. The third gear 43 meshes with the ring gear 51 of the differential device 5. The third gear 43 is located on the partition wall 61c side with respect to the second gear 42. In the present embodiment, the intermediate shaft 45 and the third gear 43 are a single member.
 <差動装置>
 差動装置5は、モータ2から出力されるトルクを車両の車輪に伝達するための装置である。差動装置5は、車両の旋回時に、左右の車輪の速度差を吸収しつつ、左右両輪の車軸55に同トルクを伝える機能を有する。差動装置5は、リングギヤ51と、ギヤハウジング57と、一対のピニオンギヤ(不図示)と、ピニオンシャフト(不図示)と、一対のサイドギヤ(不図示)と、を有する。
<Differential device>
The differential device 5 is a device for transmitting torque output from the motor 2 to the wheels of the vehicle. The differential device 5 has a function of transmitting the same torque to the axles 55 of the left and right wheels while absorbing the speed difference between the left and right wheels when the vehicle is turning. The differential device 5 includes a ring gear 51, a gear housing 57, a pair of pinion gears (not shown), a pinion shaft (not shown), and a pair of side gears (not shown).
 リングギヤ51は、モータ軸J2と平行な差動軸J5を中心として回転する。リングギヤ51には、モータ2から出力されるトルクが減速装置4を介して伝えられる。すなわち、リングギヤ51は、他のギヤを介してモータ2に接続される。リングギヤ51は、ギヤハウジング57の外周に固定される。 The ring gear 51 rotates around a differential axis J5 parallel to the motor axis J2. Torque output from the motor 2 is transmitted to the ring gear 51 via the reduction gear 4. That is, the ring gear 51 is connected to the motor 2 via another gear. The ring gear 51 is fixed to the outer periphery of the gear housing 57.
 ギヤハウジング57は、一対のピニオンギヤおよび一対のサイドギヤを収容する。ギヤハウジング57は、リングギヤ51にトルクが伝達されるとリングギヤ51とともに、差動軸J5周りを回転する。
 一対のピニオンギヤは、互いに向かい合う傘歯車である。一対のピニオンギヤは、ピニオンシャフトに支持される。
 一対のサイドギヤは、一対のピニオンギヤに直角に噛み合う傘歯車である。一対のサイドギヤは、それぞれ嵌合部を有する。嵌合部には、それぞれ車軸が嵌合される。互いに異なる嵌合部に嵌合された一対の車軸は、差動軸J5周りを同じトルクで回転する。
The gear housing 57 accommodates a pair of pinion gears and a pair of side gears. When torque is transmitted to the ring gear 51, the gear housing 57 rotates around the differential axis J5 together with the ring gear 51.
The pair of pinion gears are bevel gears facing each other. The pair of pinion gears are supported by the pinion shaft.
The pair of side gears are bevel gears that mesh at right angles with the pair of pinion gears. Each of the pair of side gears has a fitting portion. Each axle is fitted to the fitting portion. A pair of axles fitted in different fitting parts rotate around the differential axis J5 with the same torque.
 <モータ>
 図4に示すように、モータ2は、ステータ30と、ステータ30の内側に回転自在に配置されるロータ20と、を備えるインナーロータ型モータである。ロータ20は、図示略のバッテリからステータ30に電力が供給されることで回転する。モータ2のトルクは、減速装置4を介し差動装置5に伝達される。
<Motor>
As shown in FIG. 4, the motor 2 is an inner rotor type motor that includes a stator 30 and a rotor 20 that is rotatably disposed inside the stator 30. The rotor 20 rotates when electric power is supplied from a battery (not shown) to the stator 30. The torque of the motor 2 is transmitted to the differential device 5 through the speed reducer 4.
 (ステータ)
 ステータ30は、ステータコア32と、コイル31と、ステータコア32とコイル31との間に介在するインシュレータ(図示略)とを有する。ステータ30は、ハウジング6に保持される。
(Stator)
The stator 30 includes a stator core 32, a coil 31, and an insulator (not shown) interposed between the stator core 32 and the coil 31. The stator 30 is held by the housing 6.
 ステータコア32は、円環状のヨークの内周面から径方向内方に複数の磁極歯(図示略)を有する。本実施形態のステータコア32は、磁極歯と磁極歯との間に形成されるスロット数は48である。磁極歯の間には、コイル線が掛けまわされることでコイル31が構成される。 The stator core 32 has a plurality of magnetic pole teeth (not shown) radially inward from the inner peripheral surface of the annular yoke. The stator core 32 of the present embodiment has 48 slots formed between the magnetic pole teeth. A coil 31 is formed by winding a coil wire between the magnetic pole teeth.
 コイル31は、ステータコア32の軸方向端面から突出するコイルエンド31aを有する。すなわち、ステータ30は、コイルエンド31aを有する。コイルエンド31aは、ロータ20のロータコア24の端部よりも軸方向に突出する。コイルエンド31aは、ロータコア24に対し軸方向両側に突出する。 The coil 31 has a coil end 31 a protruding from the axial end surface of the stator core 32. That is, the stator 30 has a coil end 31a. The coil end 31 a protrudes in the axial direction from the end of the rotor core 24 of the rotor 20. The coil end 31 a protrudes on both sides in the axial direction with respect to the rotor core 24.
 (ロータ)
 ロータ20は、シャフト(モータシャフト)21と、ロータコア24と、ロータマグネット(永久磁石)25と、一対の板状のエンドプレート26と、ナット29と、ワッシャ(蓋部)28と、を有する。
(Rotor)
The rotor 20 includes a shaft (motor shaft) 21, a rotor core 24, a rotor magnet (permanent magnet) 25, a pair of plate-like end plates 26, nuts 29, and washers (lid portions) 28.
 (シャフト)
 シャフト21は、水平方向かつ車両の幅方向(車両の進行方向と直交する方向)に延びるモータ軸J2を中心として延びる。シャフト21は、同軸上で互いに連結された第1シャフト部21Aおよび第2シャフト部21Bを有する。
(shaft)
The shaft 21 extends around a motor shaft J2 extending in the horizontal direction and in the vehicle width direction (a direction orthogonal to the vehicle traveling direction). The shaft 21 has a first shaft portion 21A and a second shaft portion 21B that are coaxially connected to each other.
 シャフト21は、内部にモータ軸J2に沿って延びる内周面を有する中空部22が設けられた中空シャフトである。中空部22は、第1シャフト部21Aの内部に位置する第1中空部22Aと、第2シャフト部21Bの内部に位置する第2中空部22Bとを含む。第1中空部22Aと第2中空部22Bは、軸方向に沿って並び、互いに連通する。 The shaft 21 is a hollow shaft provided with a hollow portion 22 having an inner peripheral surface extending along the motor axis J2. The hollow portion 22 includes a first hollow portion 22A located inside the first shaft portion 21A and a second hollow portion 22B located inside the second shaft portion 21B. The first hollow portion 22A and the second hollow portion 22B are arranged along the axial direction and communicate with each other.
 第1シャフト部21Aは、収容空間80のモータ室81に配置される。第1シャフト部21Aは、ステータ30の径方向内側に位置し、モータ軸J2に沿ってロータコア24を貫通する。第1シャフト部21Aは、出力側(すなわち、減速装置4側)に位置する第1端部21eと、その反対側に位置する第2端部21fと、を有する。 The first shaft portion 21 </ b> A is disposed in the motor chamber 81 of the accommodation space 80. 21 A of 1st shaft parts are located in the radial inside of the stator 30, and penetrate the rotor core 24 along the motor shaft J2. 21 A of 1st shaft parts have the 1st end part 21e located in the output side (namely, reduction gear 4 side), and the 2nd end part 21f located in the other side.
 第1シャフト部21Aは、一対の第1のベアリング89によって回転自在に支持される。一対の第1のベアリング89は、第1シャフト部21Aの第1端部21eおよび第2端部21fを支持する。一対の第1のベアリング89のうち一方は、閉塞部63に保持される。一対の第1のベアリング89のうち他方は、隔壁61cのモータ室81側を向く面に保持される。 The first shaft portion 21A is rotatably supported by a pair of first bearings 89. The pair of first bearings 89 support the first end 21e and the second end 21f of the first shaft portion 21A. One of the pair of first bearings 89 is held by the closing portion 63. The other of the pair of first bearings 89 is held on the surface of the partition wall 61c facing the motor chamber 81 side.
 図5は、ロータ20の断面図である。なお、図5において第2シャフト部21Bは、仮想線により図示されている。
 第1シャフト部21Aには、一対の連通孔23が設けられる。連通孔23は、径方向に延びてシャフト21の外部と中空部22とを連通させる。すなわち、シャフト21には、一対の連通孔23が設けられる。一対の連通孔23は、軸方向に沿って並ぶ。なお、本明細書では、シャフト21の外周面から中空部を通過し外周面に至る孔を1つの連通孔23とする。
FIG. 5 is a cross-sectional view of the rotor 20. In FIG. 5, the second shaft portion 21 </ b> B is illustrated by an imaginary line.
A pair of communication holes 23 is provided in the first shaft portion 21A. The communication hole 23 extends in the radial direction and communicates the outside of the shaft 21 with the hollow portion 22. That is, the shaft 21 is provided with a pair of communication holes 23. The pair of communication holes 23 are arranged along the axial direction. In this specification, a hole that passes from the outer peripheral surface of the shaft 21 through the hollow portion to the outer peripheral surface is defined as one communication hole 23.
 第1シャフト部21Aの外周面には、軸方向に沿って並ぶ鍔部(蓋部)21cとネジ部21dとが設けられる。すなわち、シャフト21の外周面には、鍔部21cとネジ部21dとが設けられる。ロータコア24は、軸方向において鍔部21cとネジ部21dとの間に位置する。ネジ部21dには、ナット29が締結される。 A flange portion (lid portion) 21c and a screw portion 21d arranged in the axial direction are provided on the outer peripheral surface of the first shaft portion 21A. That is, the flange portion 21 c and the screw portion 21 d are provided on the outer peripheral surface of the shaft 21. The rotor core 24 is located between the flange portion 21c and the screw portion 21d in the axial direction. A nut 29 is fastened to the screw portion 21d.
 図4に示すように、第2シャフト部21Bは、第1シャフト部21Aと同軸上に位置する。第2シャフト部21bは、第1シャフト部21A側に位置する第3端部21gと、その反対側に位置する第4端部21hと、を有する。第2シャフト部21Bは、第3端部21gにおいて、第1シャフト部21Aの第1端部21eに接続される。 As shown in FIG. 4, the second shaft portion 21B is positioned coaxially with the first shaft portion 21A. The second shaft portion 21b has a third end portion 21g located on the first shaft portion 21A side and a fourth end portion 21h located on the opposite side. The second shaft portion 21B is connected to the first end portion 21e of the first shaft portion 21A at the third end portion 21g.
 第2シャフト部21Bは、収容空間80のギヤ室82に配置される。第2シャフト部21Bの第3端部21gは、隔壁61cに設けられた挿通孔61fを介してモータ室81側に突出し第1シャフト部21Aに接続される。第2シャフト部21Bの外周面には、第1のギヤ41が設けられる。第1のギヤ41は、減速装置4の一部である。第1のギヤ41は、第2のギヤ42とかみ合いシャフト21の出力を第2のギヤに伝達する。 The second shaft portion 21 </ b> B is disposed in the gear chamber 82 of the accommodation space 80. The third end portion 21g of the second shaft portion 21B protrudes toward the motor chamber 81 through an insertion hole 61f provided in the partition wall 61c and is connected to the first shaft portion 21A. A first gear 41 is provided on the outer peripheral surface of the second shaft portion 21B. The first gear 41 is a part of the reduction gear 4. The first gear 41 meshes with the second gear 42 and transmits the output of the shaft 21 to the second gear.
 第2シャフト部21Bは、一対の第2のベアリング88によって回転自在に支持される。一対の第2のベアリング88のうち一方は、隔壁61cのギヤ室82側を向く面に保持される。一対の第2のベアリング88のうち他方は、ギヤ収容部62に保持される。 The second shaft portion 21B is rotatably supported by a pair of second bearings 88. One of the pair of second bearings 88 is held on the surface of the partition wall 61c facing the gear chamber 82 side. The other of the pair of second bearings 88 is held in the gear housing portion 62.
 中空部22は、第1シャフト部21Aの第2端部21fおよび第2シャフト部21Bの第4端部21hにおいて軸方向に開口する。中空部22には、第4端部21hの開口からオイルOが供給される。中空部22に供給されたオイルOは、第4端部21h側から第2端部21f側に向かって流れる。中空部22に供給されたオイルOは、連通孔23を介してシャフト21の外部に流出する。
 なお、以下の説明において、第4端部21h側を中空部22の流動方向上流側と呼び、第2端部21f側を中空部22の流動方向下流側と呼ぶ場合がある。
The hollow portion 22 opens in the axial direction at the second end portion 21f of the first shaft portion 21A and the fourth end portion 21h of the second shaft portion 21B. Oil O is supplied to the hollow portion 22 from the opening of the fourth end portion 21h. The oil O supplied to the hollow portion 22 flows from the fourth end portion 21h side toward the second end portion 21f side. The oil O supplied to the hollow portion 22 flows out of the shaft 21 through the communication hole 23.
In the following description, the fourth end portion 21h side may be referred to as the upstream side in the flow direction of the hollow portion 22, and the second end portion 21f side may be referred to as the downstream side in the flow direction of the hollow portion 22.
 図5に示すように、第1中空部22Aは、内周面の直径が異なる第1領域22pと、第2領域(小径中空部)22qと、第3領域(大径中空部)22rと、を有する。第1領域22p、第2領域22qおよび第3領域22rは、この順で内周面の直径が大きくなる。すなわち、第2領域22qは、第1領域22pより内径が大きく、第3領域22rは、第1領域22pおよび第3領域22rより内径が大きい。第1領域22p、第2領域22qおよび第3領域22rは、流動方向下流側から上流側に向かってこの順で並んでいる。第1領域22pは、第2端部21f側に位置する。第2領域22qは、軸方向において第1領域22pと第3領域22rとの間に位置する。第3領域22rは、第1端部21e側に位置する。すなわち、第3領域22rは、第2領域22qより第2シャフト部21B側に位置する。 As shown in FIG. 5, the first hollow portion 22A includes a first region 22p having a different inner peripheral diameter, a second region (small-diameter hollow portion) 22q, a third region (large-diameter hollow portion) 22r, Have In the first region 22p, the second region 22q, and the third region 22r, the diameter of the inner peripheral surface increases in this order. That is, the second region 22q has a larger inner diameter than the first region 22p, and the third region 22r has a larger inner diameter than the first region 22p and the third region 22r. The first region 22p, the second region 22q, and the third region 22r are arranged in this order from the downstream side in the flow direction to the upstream side. The first region 22p is located on the second end 21f side. The second region 22q is located between the first region 22p and the third region 22r in the axial direction. The third region 22r is located on the first end 21e side. That is, the third region 22r is located closer to the second shaft portion 21B than the second region 22q.
 第3領域22rには、一対の連通孔23のうち流動方向上流側の一方の連通孔23が開口する。また、第2領域22qには、一対の連通孔23のうち流動方向下流側の他方の連通孔23が開口する。 In the third region 22r, one communication hole 23 on the upstream side in the flow direction of the pair of communication holes 23 opens. Further, the other communication hole 23 on the downstream side in the flow direction of the pair of communication holes 23 opens in the second region 22q.
 また、第1中空部22Aの内周面は、第1領域22pと第2領域22qとの間に位置する第1段差面22sと、第2領域22qと第3領域22rとの間に位置する第2段差面(段差面)22tと、を有する。第1段差面22sおよび第2段差面22tは、第2シャフト部21B側を向く。また、第1段差面22sおよび第2段差面22tは、径方向外側に向かうに従い流動方向上流側に向かって傾斜する。 The inner peripheral surface of the first hollow portion 22A is located between the first step surface 22s located between the first region 22p and the second region 22q, and between the second region 22q and the third region 22r. And a second step surface (step surface) 22t. The first step surface 22s and the second step surface 22t face the second shaft portion 21B side. Further, the first step surface 22s and the second step surface 22t are inclined toward the upstream side in the flow direction as going outward in the radial direction.
 第1シャフト部21Aの第3領域22rには、第2シャフト部21Bの第3端部21gが挿入される。第3領域22rには、雌スプライン22eが設けられる。一方で、第2シャフト部21Bの第3端部21gの外周面には、雄スプライン22gが設けられる。雌スプライン22eと雄スプライン22gは、互いに嵌合する。これにより、第1シャフト部21Aと第2シャフト部21Bとが接続される。 The third end portion 21g of the second shaft portion 21B is inserted into the third region 22r of the first shaft portion 21A. A female spline 22e is provided in the third region 22r. On the other hand, a male spline 22g is provided on the outer peripheral surface of the third end portion 21g of the second shaft portion 21B. The female spline 22e and the male spline 22g are fitted to each other. Thereby, 21 A of 1st shaft parts and the 2nd shaft part 21B are connected.
 第2シャフト部21Bの第1シャフト部21A側を向く端面(すなわち、第3端部21gの端面)と、第2段差面22tとの間には、隙間が設けられる。第3端部21gの端面と第2段差面22tとの間の隙間は、中空部22の内周面に凹溝22uを構成する。すなわち、中空部22の内周面には、周方向に沿って延びる凹溝22uが設けられており、凹溝22uは、第2シャフト部21Bの第3端部21gの端面と、第3領域22rの内周面と、第2段差面22tと、から構成される。 A gap is provided between the end surface of the second shaft portion 21B facing the first shaft portion 21A (that is, the end surface of the third end portion 21g) and the second step surface 22t. The gap between the end surface of the third end portion 21 g and the second step surface 22 t forms a concave groove 22 u on the inner peripheral surface of the hollow portion 22. That is, a concave groove 22u extending in the circumferential direction is provided on the inner peripheral surface of the hollow portion 22, and the concave groove 22u is formed between the end surface of the third end portion 21g of the second shaft portion 21B and the third region. 22r is comprised from the inner peripheral surface and the 2nd level | step difference surface 22t.
 一対の連通孔23のうち、オイルOの流動方向上流側に位置する一方の連通孔23は、凹溝22uにおいて中空部22に開口する。中空部22内に供給されたオイルOには、シャフト21の回転に伴い遠心力が付与される。中空部22の内周面には、凹溝22uが設けられるため、遠心力に伴いオイルOが凹溝22u内に溜る。本実施形態によれば、連通孔23が凹溝22uに開口するため、凹溝22u内に溜ったオイルOを連通孔23に効率よく誘導することができる。 Among the pair of communication holes 23, one communication hole 23 located upstream in the flow direction of the oil O opens into the hollow portion 22 in the concave groove 22u. Centrifugal force is applied to the oil O supplied into the hollow portion 22 as the shaft 21 rotates. Since the concave groove 22u is provided on the inner peripheral surface of the hollow portion 22, the oil O accumulates in the concave groove 22u with centrifugal force. According to the present embodiment, since the communication hole 23 opens into the concave groove 22 u, the oil O accumulated in the concave groove 22 u can be efficiently guided to the communication hole 23.
 本実施形態によれば、第1シャフト部21Aと第2シャフト部21Bとの接続部分の隙間を凹溝22uとして利用してオイルOを溜めることができる。したがって、オイルOを溜める凹溝22uを設けるために特殊な加工を施す必要がない。 According to the present embodiment, the oil O can be accumulated using the gap at the connection portion between the first shaft portion 21A and the second shaft portion 21B as the concave groove 22u. Therefore, it is not necessary to perform special processing to provide the concave groove 22u for storing the oil O.
 軸方向に沿って並ぶ複数の連通孔23が設けられる場合、オイルOの流動方向下流側に位置する連通孔23にオイルOが流れやすく、オイルOの流動方向上流側の連通孔23に流入するオイルOが不足する場合がある。本実施形態によれば、流動方向上流側に位置する連通孔23が凹溝22uにおいて開口するため、オイルOを流動方向上流側に位置する連通孔23に十分に流入させることができる。 When a plurality of communication holes 23 arranged in the axial direction are provided, the oil O easily flows into the communication holes 23 located on the downstream side in the flow direction of the oil O and flows into the communication holes 23 on the upstream side in the flow direction of the oil O. Oil O may be insufficient. According to this embodiment, since the communication hole 23 located on the upstream side in the flow direction opens in the concave groove 22u, the oil O can sufficiently flow into the communication hole 23 located on the upstream side in the flow direction.
 本実施形態によれば、中空部22は、流動方向上流側から下流側に向かうに従い、直径が段階的に小さくなる。これにより、オイルOが中空部22の上流側から下流側に行き渡らせやすい。また、一対の連通孔23のうち上流側の一方が第3領域22rに開口し、下流側の他方が第2領域22qに開口する。すなわち、下流側の連通孔23の開口は、上流側の連通孔23の開口と比較して、中空部22の直径が小さい領域に設けられる。したがって、下流側に位置する連通孔23にもオイルOを十分に流入させることができる。 According to the present embodiment, the diameter of the hollow portion 22 gradually decreases from the upstream side toward the downstream side in the flow direction. Thereby, the oil O is easy to spread from the upstream side of the hollow portion 22 to the downstream side. Further, one of the pair of communication holes 23 on the upstream side opens to the third region 22r, and the other on the downstream side opens to the second region 22q. That is, the opening of the downstream communication hole 23 is provided in a region where the diameter of the hollow portion 22 is smaller than the opening of the upstream communication hole 23. Therefore, the oil O can sufficiently flow into the communication hole 23 located on the downstream side.
 第3端部21gの端面と第2段差面22tとの間の隙間には、雌スプライン22eの一部が位置する。したがって、中空部22の内周面には、雌スプライン22eに由来して周方向に沿って並ぶ凸部および凹部が設けられる。中空部の断面形状が、モータ軸を中心とする円形である場合には、シャフトが回転しても、中空部内のオイルOがシャフトに対し空転し、オイルOに遠心力が付与されない虞がある。これに対して、中空部22内に周方向に沿って並ぶ凸部および凹部を設けることで、シャフト21の回転に伴いオイルOを回転させることでき中空部22のオイルOに遠心力を付与することができる。これにより、オイルOを連通孔23に円滑に誘導できる。 A part of the female spline 22e is located in the gap between the end surface of the third end portion 21g and the second step surface 22t. Therefore, the inner peripheral surface of the hollow portion 22 is provided with a convex portion and a concave portion that are derived from the female spline 22e and are arranged along the circumferential direction. When the cross-sectional shape of the hollow portion is a circle centered on the motor shaft, even if the shaft rotates, the oil O in the hollow portion may idle with respect to the shaft, and centrifugal force may not be applied to the oil O. . On the other hand, by providing convex portions and concave portions arranged along the circumferential direction in the hollow portion 22, the oil O can be rotated with the rotation of the shaft 21, and centrifugal force is applied to the oil O in the hollow portion 22. be able to. Thereby, the oil O can be smoothly guided to the communication hole 23.
 本実施形態によれば、第2シャフト部21Bの外周面および第3領域22rの内周面には、互いにスプライン嵌合するスプライン(雄スプライン22gおよび雌スプライン22e)が設けられる。また、第3領域22rのスプライン(雌スプライン22e)の一部は、凹溝22u内に位置する。したがって、嵌合に用いる雌スプライン22eを利用して、中空部22内のオイルOに遠心力を付与できる。すなわち、オイルOに遠心力を付与する為に中空部22の内周面に加工を施して凹凸形状を設ける必要がない。 According to the present embodiment, splines (male spline 22g and female spline 22e) that are spline-fitted with each other are provided on the outer peripheral surface of the second shaft portion 21B and the inner peripheral surface of the third region 22r. Further, a part of the spline (female spline 22e) in the third region 22r is located in the concave groove 22u. Therefore, centrifugal force can be applied to the oil O in the hollow portion 22 by using the female spline 22e used for fitting. That is, in order to apply centrifugal force to the oil O, it is not necessary to process the inner peripheral surface of the hollow portion 22 to provide an uneven shape.
 (ロータコア)
 ロータコア24は、珪素鋼板を積層して構成される。ロータコア24は、軸方向に沿って延びる円柱体である。ロータコア24は、軸方向のそれぞれ反対側を向く一対の軸方向端面24aと、径方向外側を向く外周面24bと、を有する。
(Rotor core)
The rotor core 24 is configured by laminating silicon steel plates. The rotor core 24 is a cylindrical body extending along the axial direction. The rotor core 24 has a pair of axial end faces 24a facing the opposite sides in the axial direction, and an outer peripheral face 24b facing the radially outer side.
 ロータコア24は、一対のエンドプレート26とともに、ナット29と鍔部21cとの間に挟み込まれる。ナット29とエンドプレート26との間には、ワッシャ28が介在する。 The rotor core 24 is sandwiched between the nut 29 and the flange portion 21c together with the pair of end plates 26. A washer 28 is interposed between the nut 29 and the end plate 26.
 ロータコア24には、軸方向からみて中央に位置し軸方向に沿って貫通する1つの嵌合孔24c、複数のマグネット保持孔24dおよび複数のコア貫通孔24eが設けられる。嵌合孔24c、マグネット保持孔24dおよびコア貫通孔24eは、一対の軸方向端面24aに開口する。 The rotor core 24 is provided with one fitting hole 24c, a plurality of magnet holding holes 24d, and a plurality of core through holes 24e that are located in the center when viewed from the axial direction and penetrate along the axial direction. The fitting hole 24c, the magnet holding hole 24d, and the core through hole 24e open in the pair of axial end surfaces 24a.
 嵌合孔24cは、モータ軸J2を中心とする円形である。嵌合孔24cには、シャフト21が挿通し嵌合する。したがって、ロータコア24は、シャフト21を径方向外側から囲む。シャフト21と嵌合孔24cとの嵌合は、隙間嵌めである。したがって、シャフト21の嵌合によるロータコア24の変形が抑制される。嵌合孔24cの内周面には、径方向内側に突出する突起(図示略)が設けられる。この突起は、シャフト21の外周面に設けられたキー溝(図示略)に嵌る。これにより、ロータコア24とシャフト21との相対的な回転が抑止される。 The fitting hole 24c is circular with the motor shaft J2 as the center. The shaft 21 is inserted and fitted into the fitting hole 24c. Therefore, the rotor core 24 surrounds the shaft 21 from the radially outer side. The fitting between the shaft 21 and the fitting hole 24c is a clearance fit. Therefore, deformation of the rotor core 24 due to the fitting of the shaft 21 is suppressed. A protrusion (not shown) protruding radially inward is provided on the inner peripheral surface of the fitting hole 24c. This protrusion fits into a key groove (not shown) provided on the outer peripheral surface of the shaft 21. Thereby, the relative rotation of the rotor core 24 and the shaft 21 is suppressed.
 複数のコア貫通孔24eは、周方向に沿って並んで配置される。コア貫通孔24eは、マグネット保持孔24dより径方向内側に位置する。コア貫通孔24eは、一対の軸方向端面24a同士の間でオイルOを流動させる役割を果たす。 The plurality of core through holes 24e are arranged side by side along the circumferential direction. The core through hole 24e is located radially inward from the magnet holding hole 24d. The core through hole 24e plays a role of causing the oil O to flow between the pair of axial end surfaces 24a.
 複数のマグネット保持孔24dは、周方向に沿って並んで配置される。マグネット保持孔24dには、ロータマグネット25が挿入される。マグネット保持孔24dは、ロータマグネット25を保持する。すなわち、本実施形態のロータ20は、ロータコア24の内部にロータマグネット25が埋め込まれた埋込型(IPM(interior permanent magnet))である。 The plurality of magnet holding holes 24d are arranged side by side along the circumferential direction. A rotor magnet 25 is inserted into the magnet holding hole 24d. The magnet holding hole 24d holds the rotor magnet 25. That is, the rotor 20 of the present embodiment is an embedded type (IPM (interior / permanent / magnet)) in which the rotor magnet 25 is embedded in the rotor core 24.
 ロータマグネット25は、永久磁石である。複数のロータマグネット25は、それぞれ周方向に並ぶ複数のマグネット保持孔24dに挿入されてロータコア24に固定される。複数のロータマグネット25は、周方向に沿って並ぶ。 The rotor magnet 25 is a permanent magnet. The plurality of rotor magnets 25 are respectively inserted into the plurality of magnet holding holes 24 d arranged in the circumferential direction and fixed to the rotor core 24. The plurality of rotor magnets 25 are arranged along the circumferential direction.
 (エンドプレート)
 図6は、エンドプレート26の平面図である。図7は、図6のVII-VII線に沿うエンドプレート26の断面図である。なお、図6および図7において、モータユニット1の他の部材を仮想線により示す。
(end plate)
FIG. 6 is a plan view of the end plate 26. FIG. 7 is a cross-sectional view of the end plate 26 taken along line VII-VII in FIG. 6 and 7, other members of the motor unit 1 are indicated by imaginary lines.
 図6に示すように、エンドプレート26は、平面視円形である。エンドプレート26は、金属製の板である。エンドプレート26には、軸方向に沿って貫通する円形の中央孔26iが設けられる。中央孔26iの内周面には、キー部26qが設けられる。キー部26qは、シャフト21に設けられたキー溝21kに嵌る。エンドプレート26とシャフト21とは、キー部26qとキー溝21kとの嵌合により相対的な回転が抑止される。 As shown in FIG. 6, the end plate 26 is circular in plan view. The end plate 26 is a metal plate. The end plate 26 is provided with a circular central hole 26i penetrating along the axial direction. A key portion 26q is provided on the inner peripheral surface of the central hole 26i. The key portion 26q fits in a key groove 21k provided on the shaft 21. The end plate 26 and the shaft 21 are prevented from rotating relative to each other by the fitting of the key portion 26q and the key groove 21k.
 図5に示すように、エンドプレート26は、第1の面26aと、第2の面26bと、を有する。第1の面26aは、ロータコア24の軸方向端面24aと対向する。第2の面26bは、第1の面26aと反対側を向く。 As shown in FIG. 5, the end plate 26 has a first surface 26a and a second surface 26b. The first surface 26 a faces the axial end surface 24 a of the rotor core 24. The second surface 26b faces away from the first surface 26a.
 一対のエンドプレート26は、それぞれロータコア24の軸方向両側に位置する。一対のエンドプレート26は、ロータコア24の一対の軸方向端面24aにそれぞれ接触する。一対のエンドプレート26のうち一方(第1のエンドプレート26A)は、ロータコア24の一方の軸方向端面24aと鍔部21cとの間に位置する。一対のエンドプレート26のうち他方(第2のエンドプレート26B)は、ロータコア24の他方の軸方向端面24aとワッシャ28との間に位置する。エンドプレート26は、第1の面26aにおいて軸方向端面24aと接触する。また、エンドプレート26は、第2の面26bにおいて鍔部21c又はワッシャ28と接触する。 The pair of end plates 26 are respectively located on both sides of the rotor core 24 in the axial direction. The pair of end plates 26 are in contact with the pair of axial end faces 24 a of the rotor core 24. One of the pair of end plates 26 (first end plate 26A) is located between one axial end surface 24a of the rotor core 24 and the flange portion 21c. The other of the pair of end plates 26 (second end plate 26 </ b> B) is located between the other axial end surface 24 a of the rotor core 24 and the washer 28. The end plate 26 contacts the axial end surface 24a on the first surface 26a. Further, the end plate 26 contacts the flange portion 21c or the washer 28 on the second surface 26b.
 本実施形態によれば、ロータコア24および一対のエンドプレート26は、鍔部21cと、ナット29との間に挟み込まれる。これにより、一対のエンドプレート26は、軸方向両側からロータコア24の軸方向端面24aに押し付けられる。エンドプレート26の第1の面26aとロータコア24の軸方向端面24aとの接触部には、摩擦力が生じ、これによりロータコア24とシャフト21との相対的な回転を抑止できる。
 ロータコアとシャフトを圧入によって固定すると、ロータコアが変形してロータコア内を通過する磁路が変化し鉄損が大きくなる。特に本実施形態の様に車両駆動用のモータにおいては、駆動力が大きいため、圧入の締め代を大きく確保する必要があり、ロータコアの鉄損が大きくなりやすい。本実施形態によれば、ロータコア24は、エンドプレート26を介してシャフト21に固定される。このため、ロータコア24の嵌合孔24cとシャフト21との嵌合を隙間嵌めとすることができ、ロータコア24の変形を抑制でき、高効率のモータ2を提供できる。
According to the present embodiment, the rotor core 24 and the pair of end plates 26 are sandwiched between the flange portion 21 c and the nut 29. As a result, the pair of end plates 26 are pressed against the axial end surface 24a of the rotor core 24 from both axial sides. A frictional force is generated at a contact portion between the first surface 26 a of the end plate 26 and the axial end surface 24 a of the rotor core 24, thereby suppressing relative rotation between the rotor core 24 and the shaft 21.
When the rotor core and the shaft are fixed by press fitting, the rotor core is deformed, the magnetic path passing through the rotor core is changed, and the iron loss is increased. In particular, in the motor for driving the vehicle as in the present embodiment, since the driving force is large, it is necessary to secure a large press-fit allowance, and the iron loss of the rotor core tends to increase. According to the present embodiment, the rotor core 24 is fixed to the shaft 21 via the end plate 26. For this reason, the fitting between the fitting hole 24c of the rotor core 24 and the shaft 21 can be a clearance fit, the deformation of the rotor core 24 can be suppressed, and the highly efficient motor 2 can be provided.
 図7に示すように、第1の面26aには、凹部26fと、凹部26fを径方向外側から囲む傾斜面26eと、が設けられる。凹部26fは、平面視でモータ軸J2を中心とする円形である。凹部26fは、凹部底面26gと、凹部内周面26hと、を有する。凹部底面26gは、モータ軸J2に直交する平面である。凹部内周面26hは、凹部底面26gと傾斜面26eとの間に位置する。凹部内周面26hは、径方向内側から径方向外側に向かうに従い凹部26fを浅くする方向に傾斜する。凹部26fとロータコア24の軸方向端面24aとの間には、隙間が設けられる。この隙間には、オイルOが溜り、ロータコア24の軸方向端面24aを冷却する。 As shown in FIG. 7, the first surface 26a is provided with a recess 26f and an inclined surface 26e surrounding the recess 26f from the outside in the radial direction. The recess 26f has a circular shape centered on the motor shaft J2 in plan view. The recess 26f has a recess bottom surface 26g and a recess inner peripheral surface 26h. The recess bottom surface 26g is a plane orthogonal to the motor shaft J2. The concave inner peripheral surface 26h is located between the concave bottom surface 26g and the inclined surface 26e. The concave inner peripheral surface 26h is inclined in a direction to make the concave portion 26f shallower from the radially inner side toward the radially outer side. A gap is provided between the recess 26 f and the axial end surface 24 a of the rotor core 24. Oil O accumulates in the gap and cools the axial end surface 24a of the rotor core 24.
 傾斜面26eは、第1の面26aにおいて最も径方向外側に位置する領域に設けられ、周方向に沿って延びる。傾斜面26eは、径方向外側に向かうに従いロータコア24側に向かって傾斜角度θで傾斜する。なお、ここで傾斜角度θとは、モータ軸J2と直交する平面と傾斜面26eとのなす角度である。 The inclined surface 26e is provided in a region located on the outermost radial direction in the first surface 26a and extends along the circumferential direction. The inclined surface 26e is inclined at an inclination angle θ toward the rotor core 24 as it goes radially outward. Here, the inclination angle θ is an angle formed between a plane orthogonal to the motor shaft J2 and the inclined surface 26e.
 エンドプレート26は、第1の面26aの傾斜面26eにおいてロータコア24の軸方向端面24aと接触する。傾斜面26eは、径方向外側に向かうに従いロータコア24側に傾斜するため、傾斜面26eは、最も径方向外側の領域で、軸方向端面24aと接触する。これにより、傾斜面26eと軸方向端面24aとの接触により生じる摩擦力を、できるだけ径方向外側に生じさせることができる。また、傾斜面26eと軸方向端面24aとの垂直応力を、径方向外側に向かうに従い大きくすることができる。これにより、径方向外側に向かうに従い静止摩擦力の限界値を大きくすることができる。エンドプレート26とロータコア24との相対的な回転を抑止する保持トルクは、回転軸からの距離と摩擦力に比例する。したがって、本実施形態によればエンドプレート26とロータコア24との相対的な回転を抑止する保持トルクを大きくすることができ、エンドプレート26に対してロータコア24を強固に保持できる。このような効果を奏する為に、傾斜面26eの傾斜角度θは、0.1°以上5°以下とすることが好ましい。 The end plate 26 is in contact with the axial end surface 24a of the rotor core 24 at the inclined surface 26e of the first surface 26a. Since the inclined surface 26e is inclined toward the rotor core 24 as it goes outward in the radial direction, the inclined surface 26e is in contact with the axial end surface 24a in the most radially outer region. Thereby, the frictional force generated by the contact between the inclined surface 26e and the axial end surface 24a can be generated on the radially outer side as much as possible. Further, the vertical stress between the inclined surface 26e and the axial end surface 24a can be increased toward the outer side in the radial direction. Thereby, the limit value of a static friction force can be enlarged as it goes to a radial direction outer side. The holding torque that suppresses the relative rotation between the end plate 26 and the rotor core 24 is proportional to the distance from the rotating shaft and the frictional force. Therefore, according to the present embodiment, it is possible to increase the holding torque that suppresses the relative rotation between the end plate 26 and the rotor core 24, and to firmly hold the rotor core 24 against the end plate 26. In order to achieve such an effect, the inclination angle θ of the inclined surface 26e is preferably 0.1 ° or more and 5 ° or less.
 また、本実施形態のエンドプレート26は、傾斜面26eにおいてロータコア24の軸方向端面24aと接触する。このため、エンドプレート26とロータコア24との接触位置を安定させることができる。したがって、エンドプレート26とロータコア24との伝達トルクのばらつきを抑制することができ、シャフト21に対してロータコア24を確実に固定できる。 Further, the end plate 26 of the present embodiment is in contact with the axial end surface 24a of the rotor core 24 at the inclined surface 26e. For this reason, the contact position of the end plate 26 and the rotor core 24 can be stabilized. Therefore, variation in transmission torque between the end plate 26 and the rotor core 24 can be suppressed, and the rotor core 24 can be reliably fixed to the shaft 21.
 また、本実施形態によれば、エンドプレート26に傾斜面26eが設けられることで、エンドプレート26およびロータコア24の軸方向端面24aの接触部の平坦度にバラツキがあっても、確実に接触させることができる。後段において説明するように、傾斜面26eの径方向内側には、オイル流路26t(図5参照)が設けられる。一般的に、オイルがロータコアとステータとの間に侵入すると、ロータコアの回転効率が低下する。傾斜面26eが、ロータコア24の軸方向端面24aと接触することでオイル流路26tのオイルOが、エンドプレート26とロータコア24の間からロータコア24の外周面24bとステータ30との隙間に浸入することを抑制できる。
 なお、傾斜面26eは、径方向外側に向かうに従い傾斜角が変化する構成であってもよい。また、傾斜面26eは、径方向外側に向かうに従い傾斜角度が変化する湾曲面であってもよい。
Further, according to the present embodiment, since the end plate 26 is provided with the inclined surface 26e, even if the flatness of the contact portion between the end plate 26 and the axial end surface 24a of the rotor core 24 varies, the end plate 26 is reliably brought into contact. be able to. As will be described later, an oil passage 26t (see FIG. 5) is provided on the radially inner side of the inclined surface 26e. In general, when oil enters between the rotor core and the stator, the rotational efficiency of the rotor core decreases. The inclined surface 26e comes into contact with the axial end surface 24a of the rotor core 24, so that the oil O in the oil passage 26t enters the gap between the outer peripheral surface 24b of the rotor core 24 and the stator 30 from between the end plate 26 and the rotor core 24. This can be suppressed.
The inclined surface 26e may be configured such that the inclination angle changes as it goes radially outward. The inclined surface 26e may be a curved surface whose inclination angle changes as it goes radially outward.
 図5に示すように、傾斜面26eは、ロータコア24のマグネット保持孔24dの開口を塞ぐ。これにより、マグネット保持孔24dの内部に保持されるロータマグネット25が、マグネット保持孔24dの開口から飛び出ることが抑制される。これにより、収容凹部内の駆動部分にロータマグネット25の一部が侵入することが抑制される。 As shown in FIG. 5, the inclined surface 26 e closes the opening of the magnet holding hole 24 d of the rotor core 24. Thereby, the rotor magnet 25 held inside the magnet holding hole 24d is prevented from jumping out of the opening of the magnet holding hole 24d. Thereby, it is suppressed that a part of rotor magnet 25 penetrate | invades into the drive part in an accommodation recessed part.
 図7に示すように、第2の面26bには、平面部26cと平面部26cの外縁に位置する面取り部26dとが設けられる。平面部26cは、モータ軸J2と直交する。面取り部26dは、径方向外側に向かうに従い第1の面26a側に傾斜する。 As shown in FIG. 7, the second surface 26b is provided with a flat surface portion 26c and a chamfered portion 26d located on the outer edge of the flat surface portion 26c. The flat portion 26c is orthogonal to the motor shaft J2. The chamfered portion 26d is inclined toward the first surface 26a as it goes radially outward.
 図5に示すように、エンドプレート26には、プレート貫通孔26pと、第1の凹溝(第1の凹部)26jと、第2の凹溝(第2の凹部)26kと、が2組設けられる。以下、2組のプレート貫通孔26p、第1の凹溝26jおよび第2の凹溝26kのうち、一方の組について説明するが、他方の組も同様の構成を有する。 As shown in FIG. 5, the end plate 26 has two sets of plate through holes 26p, first concave grooves (first concave portions) 26j, and second concave grooves (second concave portions) 26k. Provided. Hereinafter, one set of the two sets of plate through holes 26p, the first concave groove 26j, and the second concave groove 26k will be described, but the other set has the same configuration.
 プレート貫通孔26pは、軸方向に沿って延びる。第1の凹溝26jは、第1の面26aに位置する。第1の凹溝26jは、プレート貫通孔26pの開口から径方向内側に延びる。第1の凹溝26jは、中央孔26iの内周面において径方向内側に開口する。第2の凹溝26kは、第2の面26bに位置する。第2の凹溝26kは、プレート貫通孔26pの開口から径方向外側に延びる。第2の凹溝26kは、面取り部26dにおいて径方向外側に開口する。 The plate through hole 26p extends along the axial direction. The first concave groove 26j is located on the first surface 26a. The first concave groove 26j extends radially inward from the opening of the plate through hole 26p. The first concave groove 26j opens radially inward on the inner peripheral surface of the central hole 26i. The second concave groove 26k is located on the second surface 26b. The second concave groove 26k extends radially outward from the opening of the plate through hole 26p. The second concave groove 26k opens radially outward in the chamfered portion 26d.
 エンドプレート26の第1の凹溝26jの軸方向を向く開口は、ロータコア24の軸方向端面24aに覆われる。また、第1の凹溝26jの径方向の開口は、シャフト21の連通孔23と繋がる。 The opening facing the axial direction of the first concave groove 26j of the end plate 26 is covered with the axial end surface 24a of the rotor core 24. Further, the radial opening of the first concave groove 26 j is connected to the communication hole 23 of the shaft 21.
 シャフト21の中空部22の内部に供給されたオイルOは、連通孔23を介して径方向外側に流れる。また、オイルOは、連通孔23の径方向外側の開口から第1の凹溝26jに流入する。さらに、オイルOは、プレート貫通孔26pを通過して第1の面26aおよび第2の面26b側に流れ、第2の凹溝26kを介してロータ20の外側に放出される。図4に示すように、エンドプレート26の径方向外側には、ステータ30のコイルエンド31aが設けられる。ロータ20の外側に放出されたオイルOは、コイルエンド31aに供給されて、コイルエンド31aを冷却する。 The oil O supplied into the hollow portion 22 of the shaft 21 flows radially outward through the communication hole 23. Further, the oil O flows into the first concave groove 26j from the opening on the radially outer side of the communication hole 23. Further, the oil O passes through the plate through hole 26p, flows to the first surface 26a and the second surface 26b side, and is discharged to the outside of the rotor 20 through the second concave groove 26k. As shown in FIG. 4, a coil end 31 a of the stator 30 is provided outside the end plate 26 in the radial direction. The oil O discharged to the outside of the rotor 20 is supplied to the coil end 31a and cools the coil end 31a.
 エンドプレート26の第1の凹溝26j、プレート貫通孔26pおよび第2の凹溝26kは、オイル流路26tとして機能する。すなわち、オイル流路26tは、第1の凹溝26j、プレート貫通孔26pおよび第2の凹溝26kから構成される。一対のエンドプレート26には、連通孔23と連通して径方向に沿って延びて開口するオイル流路26tがそれぞれ設けられる。 The first concave groove 26j, the plate through hole 26p, and the second concave groove 26k of the end plate 26 function as an oil flow path 26t. That is, the oil flow path 26t includes a first concave groove 26j, a plate through hole 26p, and a second concave groove 26k. Each of the pair of end plates 26 is provided with an oil flow path 26t that communicates with the communication hole 23 and extends and opens in the radial direction.
 本実施形態のエンドプレート26によれば、プレート貫通孔26pおよび第1の凹溝26jおよび第2の凹溝26kがオイル流路26tを構成する。したがって、本実施形態によれば、金型成型により製造した安価な部品(エンドプレート26)によって、オイル流路26tを構成させることができる。 According to the end plate 26 of the present embodiment, the plate through hole 26p, the first concave groove 26j, and the second concave groove 26k constitute the oil flow path 26t. Therefore, according to the present embodiment, the oil flow path 26t can be configured by inexpensive parts (end plate 26) manufactured by mold molding.
 一対のエンドプレート26の第1の凹溝26jには、コア貫通孔24eが連通する。すなわち、コア貫通孔24eは、一対のエンドプレート26のそれぞれの第1の凹溝26j同士を繋ぐ。言い換えると、コア貫通孔24eは、一対のエンドプレート26のそれぞれのオイル流路26t同士を繋ぐ。また、コア貫通孔の開口の少なくとも一部は、プレート貫通孔26pより径方向外側に位置する。 The core through hole 24e communicates with the first concave groove 26j of the pair of end plates 26. That is, the core through hole 24e connects the first concave grooves 26j of the pair of end plates 26 to each other. In other words, the core through hole 24e connects the oil flow paths 26t of the pair of end plates 26 to each other. Further, at least a part of the opening of the core through hole is located on the radially outer side from the plate through hole 26p.
 本実施形態によれば、コア貫通孔24eは、一対のエンドプレート26の第1の凹溝26j同士を繋ぐため、第1の凹溝26jを通過するオイルOの一部をコア貫通孔24eに流すことができる。これにより、コア貫通孔24eのオイルOによって、ロータコア24を内部から冷却することができる。また、ロータコア24に保持されたロータマグネット25を、ロータコア24を介して冷却することができる。 According to the present embodiment, since the core through hole 24e connects the first concave grooves 26j of the pair of end plates 26, a part of the oil O that passes through the first concave groove 26j is used as the core through hole 24e. It can flow. Thereby, the rotor core 24 can be cooled from the inside by the oil O of the core through-hole 24e. Further, the rotor magnet 25 held by the rotor core 24 can be cooled via the rotor core 24.
 本実施形態によれば、コア貫通孔24eの開口が、一対のエンドプレート26のプレート貫通孔26pより径方向外側に位置する。これにより、ロータ20の遠心力によってコア貫通孔24eの内部にオイルOを溜め、両側のエンドプレート26の第1の凹溝26jに、コア貫通孔24eからオイルOを供給できる。また、一対のエンドプレート26のうち、一方側の第1の凹溝26jにオイルOが不足する場合に、コア貫通孔24eを介し他方側からオイルOを供給できる。したがって、それぞれのエンドプレート26から略同量のオイルOをコイルエンド31aに放出することが可能となり、コイル31の安定的な冷却が可能となる。 According to the present embodiment, the opening of the core through hole 24e is located on the outer side in the radial direction from the plate through hole 26p of the pair of end plates 26. Thereby, the oil O can be accumulated inside the core through hole 24e by the centrifugal force of the rotor 20, and the oil O can be supplied from the core through hole 24e to the first concave grooves 26j of the end plates 26 on both sides. Further, when the oil O is insufficient in the first concave groove 26j on one side of the pair of end plates 26, the oil O can be supplied from the other side through the core through hole 24e. Therefore, substantially the same amount of oil O can be discharged from each end plate 26 to the coil end 31a, and the coil 31 can be stably cooled.
 図5に示すように、一対のエンドプレート26のうち、鍔部21cとロータコア24との間に挟み込まれた一方を第1のエンドプレート26Aとし、ナット29とロータコア24との間に挟み込まれた他方を第2のエンドプレート26Bとする。 As shown in FIG. 5, one of the pair of end plates 26 sandwiched between the flange portion 21 c and the rotor core 24 is a first end plate 26 </ b> A, and is sandwiched between the nut 29 and the rotor core 24. The other is the second end plate 26B.
 第1のエンドプレート26Aにおいて、プレート貫通孔26pの径方向内側の一部は、鍔部21cに覆われる。また、第1のエンドプレート26Aにおいて、第2の凹溝26kの軸方向を向く開口は、その全体が軸方向外側を臨んでいる。換言すると、第1のエンドプレート26Aにおいて、第2の凹溝26kの軸方向を向く開口は、軸方向から見て、その全体が露出している。すなわち、第1のエンドプレート26Aの第2の凹溝26kは、軸方向を向く開口において外部と連通している。第1のエンドプレート26Aにおいて、第2の凹溝26kは、プレート貫通孔26pの一部と軸方向を向く開口の全体が、ワッシャ28から解放された第1の開放部26sとして機能する。第1のエンドプレート26Aにおいて、プレート貫通孔26pを通過したオイルOは、第1の開放部26sから放出される。 In the first end plate 26A, a part of the inner side in the radial direction of the plate through hole 26p is covered with the flange portion 21c. Further, in the first end plate 26A, the opening of the second concave groove 26k facing the axial direction entirely faces the outside in the axial direction. In other words, in the first end plate 26A, the opening facing the axial direction of the second concave groove 26k is entirely exposed as viewed from the axial direction. That is, the second concave groove 26k of the first end plate 26A communicates with the outside through the opening facing in the axial direction. In the first end plate 26A, the second concave groove 26k functions as a first opening portion 26s in which a part of the plate through hole 26p and the entire opening facing the axial direction are released from the washer 28. In the first end plate 26A, the oil O that has passed through the plate through hole 26p is discharged from the first opening 26s.
 第2のエンドプレート26Bとナット29との間には、ワッシャ28が介在する。第2のエンドプレート26Bにおいて、プレート貫通孔26pと第2の凹溝26kの軸方向を向く開口の径方向内側の一部は、ワッシャ28により覆われる。第2の凹溝26kの軸方向を向く開口のうち、ワッシャ28により覆われる部分を被覆部と呼び、ワッシャ28に覆われていない部分を開放部と呼ぶ。すなわち、第2のエンドプレート26Bにおいて、第2の凹溝26kの軸方向を向く開口は、ワッシャ28により覆われる被覆部と、ワッシャに覆われていない第2の開放部26rと、を有する。第2のエンドプレート26Bの第2の凹溝26kは、第2の凹溝26kの径方向外側の端部に位置する第2の開放部26rにおいて軸方向外側を臨む。換言すると、第2のエンドプレート26Bの第2の凹溝26kは、軸方向からみたとき第2の開放部26rにおいて露出している。すなわち、第2のエンドプレート26Bの第2の凹溝26kは、第2の開放部26rにおいて外部と連通している。第2の開放部26rは、第2の凹溝26kの径方向外側の端部に位置する。第2のエンドプレート26Bにおいて、プレート貫通孔26pを通過したオイルOは、第2の開放部26rから放出される。 A washer 28 is interposed between the second end plate 26B and the nut 29. In the second end plate 26B, a part on the radially inner side of the opening in the axial direction of the plate through hole 26p and the second concave groove 26k is covered by a washer 28. Of the opening facing the axial direction of the second concave groove 26k, a portion covered by the washer 28 is called a covering portion, and a portion not covered by the washer 28 is called an opening portion. That is, in the second end plate 26B, the opening facing the axial direction of the second concave groove 26k has a covering portion covered by the washer 28 and a second opening portion 26r not covered by the washer. The second groove 26k of the second end plate 26B faces the outside in the axial direction at the second opening 26r located at the radially outer end of the second groove 26k. In other words, the second concave groove 26k of the second end plate 26B is exposed at the second opening 26r when viewed from the axial direction. That is, the second groove 26k of the second end plate 26B communicates with the outside at the second opening 26r. The second opening portion 26r is located at the radially outer end of the second concave groove 26k. In the second end plate 26B, the oil O that has passed through the plate through hole 26p is discharged from the second opening portion 26r.
 本実施形態の第1のエンドプレート26Aおよび第2のエンドプレート26Bによれば、第2の面26bに第2の凹溝26kが設けられることで、プレート貫通孔26pを介して第2の面26b側に流れるオイルOを、第2の凹溝26kに沿って径方向外側に移動させることができる。したがって、オイルOを第2の開放部26rまでオイルOを安定して流すことが可能となり、オイルOをステータ30のコイルエンド31aに安定的に供給できる。 According to the first end plate 26A and the second end plate 26B of the present embodiment, the second surface 26b is provided with the second concave groove 26k, so that the second surface via the plate through hole 26p. The oil O flowing to the 26b side can be moved radially outward along the second concave groove 26k. Therefore, the oil O can be flowed stably to the second open portion 26r, and the oil O can be stably supplied to the coil end 31a of the stator 30.
 本実施形態によれば、第1のエンドプレート26Aおよび第2のエンドプレート26Bの第2の凹溝26kに対して、それぞれ鍔部21c又はワッシャ28が、軸方向の開口を覆う蓋部として機能する。すなわち、ロータ20は、エンドプレート26を介してロータコア24の軸方向端部に位置する一対の蓋部(鍔部21cおよびワッシャ28)を有する。蓋部(鍔部21cおよびワッシャ28)は、プレート貫通孔26pの軸方向を向く開口を外側から覆うことで、プレート貫通孔26pから第2の面26b側に流出するオイルOを第2の凹溝26kに沿って流れるように誘導する。本実施形態によれば、蓋部(鍔部21cおよびワッシャ28)によりオイルOの挙動を制御して、オイルOがロータコア24とステータ30との間に浸入することを抑制できる。 According to the present embodiment, the flange portion 21c or the washer 28 functions as a lid portion that covers the opening in the axial direction with respect to the second concave groove 26k of the first end plate 26A and the second end plate 26B. To do. That is, the rotor 20 has a pair of lid portions (the flange portion 21 c and the washer 28) located at the end portion in the axial direction of the rotor core 24 via the end plate 26. The lid portion (the flange portion 21c and the washer 28) covers the opening facing the axial direction of the plate through-hole 26p from the outside, so that the oil O flowing out from the plate through-hole 26p to the second surface 26b side is second recessed. It is guided to flow along the groove 26k. According to the present embodiment, the behavior of the oil O can be controlled by the lid (the flange portion 21c and the washer 28), and the oil O can be prevented from entering between the rotor core 24 and the stator 30.
 本実施形態の第2のエンドプレート26Bによれば、第2の凹溝26kの軸方向を向く開口は、ワッシャ28により部分的に覆われ、第2の開放部26rにおいて軸方向外側を臨む。すなわち、第2の凹溝26kの第2の開放部26rに至る領域では、オイルOが軸方向に溢れ出ることがなく、オイルOを第2の開放部26rまで確実に移動させることができる。これにより、オイルOを第2の開放部26rから安定して放出することができ、オイルOをコイルエンド31aに安定して供給できる。 According to the second end plate 26B of the present embodiment, the opening in the axial direction of the second concave groove 26k is partially covered by the washer 28 and faces the outside in the axial direction at the second opening 26r. That is, in the region reaching the second opening 26r of the second concave groove 26k, the oil O does not overflow in the axial direction, and the oil O can be reliably moved to the second opening 26r. Thereby, the oil O can be stably discharged from the second opening portion 26r, and the oil O can be stably supplied to the coil end 31a.
 本実施形態によれば、第2の凹溝26kは、径方向端部に位置する第2の開放部26rにおいて、軸方向に軸方向外側を臨む。したがって、第2の凹溝26kを通過したオイルOを、第2の開放部26rから軸方向に飛散させることができる。これによりオイルOを、ロータコア24の端部よりも軸方向に突出するコイルエンド31aにむけて飛散させることができ、コイルエンド31aのコイル31を効果的に冷却できる。 According to the present embodiment, the second concave groove 26k faces the axially outer side in the axial direction at the second opening 26r located at the radial end. Therefore, the oil O that has passed through the second concave groove 26k can be scattered in the axial direction from the second opening 26r. Thereby, the oil O can be scattered toward the coil end 31a protruding in the axial direction from the end of the rotor core 24, and the coil 31 of the coil end 31a can be effectively cooled.
 なお、本実施形態の第1のエンドプレート26Aにおいて、プレート貫通孔26pの一部と軸方向を向く開口の全体に亘って第1の開放部26sが設けられる。しかしながら、図5に仮想線で示すように、鍔部21cが、第2の凹溝26kの軸方向を向く開口の一部を覆ってもよい。この場合には、第1のエンドプレート26Aの第1の開放部26sは、第2のエンドプレート26Bの第2の開放部26rと同様に、径方向外側の端部に位置し、第2の開放部26rと同様の効果を奏することができる。 In the first end plate 26A of the present embodiment, a first opening 26s is provided over a part of the plate through hole 26p and the entire opening in the axial direction. However, as indicated by a virtual line in FIG. 5, the flange portion 21c may cover a part of the opening of the second concave groove 26k facing the axial direction. In this case, the first opening portion 26s of the first end plate 26A is located at the radially outer end, similarly to the second opening portion 26r of the second end plate 26B. The same effect as the opening part 26r can be produced.
 なお、本実施形態において、エンドプレート26には、溝状の第1の凹溝26jおよび第2の凹溝26kが設けられる。しかしながら、溝状でない凹部であっても上述の一定の効果を奏することができる。なお、径方向に沿って延びる第1の凹溝26jおよび第2の凹溝26kを設けることで、径方向に沿って円滑にオイルOを誘導できる。 In the present embodiment, the end plate 26 is provided with a groove-shaped first groove 26j and a second groove 26k. However, the above-described certain effects can be achieved even with a recess that is not groove-shaped. The oil O can be smoothly guided along the radial direction by providing the first concave groove 26j and the second concave groove 26k extending along the radial direction.
 (エンドプレートの第1の変形例)
 図8は、本実施形態に採用可能な第1の変形例のエンドプレート126の断面図である。なお、上述の実施形態と同一態様の構成要素については、同一符号を用いて説明する。
 第1の変形例のエンドプレート126は、上述の実施形態と同様に、ロータコア24と対向する第1の面126aと、第1の面126aと反対側を向く第2の面126bと、を有する。また、エンドプレート126には、一対のプレート貫通孔126p、一対の第1の凹溝126jおよび一対の第2の凹溝126kが設けられる。プレート貫通孔126pは、軸方向に延びる。第1の凹溝126jは、第1の面126aに位置する。第1の凹溝126jは、プレート貫通孔126pから径方向内側に延びる。第2の凹溝126kは、第2の面126bに位置する。第2の凹溝126kは、プレート貫通孔126pから径方向外側に延びる。第2の凹溝126kの軸方向を向く開口は、蓋部128により部分的に覆われ開放部126rにおいて軸方向外側を臨む。なおここで、蓋部128は、ワッシャ28又は鍔部21cである(図5参照)。
(First variation of end plate)
FIG. 8 is a cross-sectional view of a first modified end plate 126 that can be employed in the present embodiment. In addition, about the component of the same aspect as the above-mentioned embodiment, it demonstrates using the same code | symbol.
The end plate 126 of the first modified example has a first surface 126a that faces the rotor core 24 and a second surface 126b that faces away from the first surface 126a, as in the above-described embodiment. . The end plate 126 is provided with a pair of plate through holes 126p, a pair of first concave grooves 126j, and a pair of second concave grooves 126k. The plate through hole 126p extends in the axial direction. The first concave groove 126j is located on the first surface 126a. The first concave groove 126j extends radially inward from the plate through hole 126p. The second concave groove 126k is located on the second surface 126b. The second concave groove 126k extends radially outward from the plate through hole 126p. The opening of the second concave groove 126k facing the axial direction is partially covered by the lid portion 128 and faces the outside in the axial direction at the opening portion 126r. In addition, the cover part 128 is the washer 28 or the collar part 21c here (refer FIG. 5).
 本変形例において、第2の凹溝126kの底部には、径方向外側に向かうに従い第2の凹溝126kの深さが浅くなる傾斜面126uが設けられる。傾斜面126uは、軸方向から見て開放部126rと重なる。本変形例によれば、第2の凹溝126kに傾斜面126uを設けることで、オイルOの流れに軸方向の成分を付与できる。オイルOを軸方向に飛散させて、ロータコア24の端部よりも軸方向に突出するコイルエンド31aにむけて、オイルOを効果的に飛散させることができる。 In this modification, the bottom surface of the second groove 126k is provided with an inclined surface 126u in which the depth of the second groove 126k decreases toward the outside in the radial direction. The inclined surface 126u overlaps with the opening 126r when viewed from the axial direction. According to this modification, an axial component can be imparted to the flow of the oil O by providing the inclined surface 126u in the second concave groove 126k. The oil O can be scattered in the axial direction, and the oil O can be effectively scattered toward the coil end 31 a that protrudes in the axial direction from the end of the rotor core 24.
 (エンドプレートの第2の変形例)
 図9は、本実施形態に採用可能な第2の変形例のエンドプレート226の平面図である。なお、上述の実施形態と同一態様の構成要素については、同一符号を用いて説明する。
 第2の変形例のエンドプレート226は、上述の実施形態と同様に、第1の面226aと、第1の面226aと反対側を向く第2の面226bと、を有する。また、エンドプレート226には、一対のプレート貫通孔226p、一対の第1の凹溝226jおよび一対の第2の凹溝226kを有する。プレート貫通孔226pは、軸方向に延びる。第1の凹溝226jは、第1の面226aに位置する。第1の凹溝226jは、プレート貫通孔226pから径方向内側に延びる。第2の凹溝226kは、第2の面226bに位置する。第2の凹溝226kは、プレート貫通孔226pから径方向外側に延びる。第2の凹溝226kの軸方向を向く開口は、蓋部228により部分的に覆われ開放部226rにおいて軸方向外側を臨む。なおここで、蓋部228は、ワッシャ28又は鍔部21cである(図5参照)。
(Second modification of the end plate)
FIG. 9 is a plan view of an end plate 226 of a second modification that can be employed in the present embodiment. In addition, about the component of the same aspect as the above-mentioned embodiment, it demonstrates using the same code | symbol.
The end plate 226 of the second modification example has a first surface 226a and a second surface 226b facing away from the first surface 226a, as in the above-described embodiment. The end plate 226 has a pair of plate through holes 226p, a pair of first concave grooves 226j, and a pair of second concave grooves 226k. The plate through hole 226p extends in the axial direction. The first concave groove 226j is located on the first surface 226a. The first concave groove 226j extends radially inward from the plate through hole 226p. The second groove 226k is located on the second surface 226b. The second concave groove 226k extends radially outward from the plate through hole 226p. The opening of the second groove 226k facing the axial direction is partially covered by the lid 228 and faces the outside in the axial direction at the opening 226r. In addition, the cover part 228 is the washer 28 or the collar part 21c here (refer FIG. 5).
 第2の凹溝226kは、径方向に沿って延びる溝である。また、軸方向から見て、第2の凹溝226kの延びる方向は、径方向に対して傾斜する。また、第2の凹溝226kは、径方向外側に向かうに従い、径方向に対して傾斜角度を大きくするように湾曲する。本変形例によれば、第2の凹溝226kが、径方向に対して傾斜するため、第2の凹溝226kを通過するオイルOに、傾斜する第2の凹溝226kの壁面から遠心力を付与できる。これにより、開放部226rから飛散するオイルOの速度を高めることができ、コイルエンド31aまでの距離が遠い場合であっても、確実にオイルOをコイルエンド31aに当てることができる。 The second concave groove 226k is a groove extending along the radial direction. Further, when viewed from the axial direction, the extending direction of the second groove 226k is inclined with respect to the radial direction. The second concave groove 226k is curved so as to increase the inclination angle with respect to the radial direction as it goes outward in the radial direction. According to this modification, since the second concave groove 226k is inclined with respect to the radial direction, centrifugal force is applied from the wall surface of the inclined second concave groove 226k to the oil O passing through the second concave groove 226k. Can be granted. Thereby, the speed of the oil O scattered from the open part 226r can be increased, and even when the distance to the coil end 31a is long, the oil O can be reliably applied to the coil end 31a.
 本変形例の一対の第2の凹溝226kは、軸方向から見た形状が互いに異なる。一対の第2の凹溝226kのうち一方の第2の凹溝226kAは、他方の第2の凹溝226kBに対し、軸方向から見て小さく湾曲し、径方向に対する傾斜角度が小さい。すなわち本実施形態によれば、軸方向から見て複数の第2の凹溝226kA、226kBのそれぞれの溝の延びる方向は、径方向に対する角度が異なる。したがって、一対の第2の凹溝226kA、226kBがオイルOに付与する遠心力の大きさは、互いに異なる。一方の第2の凹溝226kAから飛散するオイルOに対し、他方の第2の凹溝226kBから飛散するオイルOは、より高速となり、より遠い範囲に飛散する。すなわち、本変形例によれば、複数の第2の凹溝226kA、226kBにおいて、互いに異なる領域にオイルOを飛散させることが可能となり、コイルエンド31aの幅広い範囲にオイルOを当てることができる。 The pair of second concave grooves 226k of the present modification are different from each other in shape viewed from the axial direction. One second concave groove 226kA of the pair of second concave grooves 226k is slightly curved as viewed from the axial direction with respect to the other second concave groove 226kB, and has a small inclination angle with respect to the radial direction. That is, according to the present embodiment, the extending direction of each of the plurality of second concave grooves 226kA and 226kB when viewed from the axial direction is different in angle with respect to the radial direction. Therefore, the magnitude of the centrifugal force applied to the oil O by the pair of second concave grooves 226kA and 226kB is different from each other. The oil O scattered from the other second concave groove 226kB is higher in speed than the oil O scattered from the second concave groove 226kA, and is scattered in a farther range. That is, according to this modification, in the plurality of second concave grooves 226kA and 226kB, the oil O can be scattered in different regions, and the oil O can be applied to a wide range of the coil end 31a.
 <油路>
 図1に示すように、油路90は、ハウジング6の内部、すなわち収容空間80に位置する。油路90は、収容空間80のモータ室81とギヤ室82とに跨って構成される。油路90は、オイルOをオイル溜りP(すなわち、収容空間80の下側の領域)からモータ2を経て、再びオイル溜りPに導くオイルOの経路である。油路90は、モータ2の内部を通る第1の油路(油路)91と、モータ2の外部を通る第2の油路(油路)92と、を有する。オイルOは、第1の油路91および第2の油路92において、モータ2を内部および外部から冷却する。油路90は、油冷却機構を構成する。
<Oil channel>
As shown in FIG. 1, the oil passage 90 is located inside the housing 6, that is, in the accommodation space 80. The oil passage 90 is configured to straddle the motor chamber 81 and the gear chamber 82 of the accommodation space 80. The oil path 90 is a path of the oil O that guides the oil O from the oil reservoir P (that is, the region below the accommodation space 80) to the oil reservoir P through the motor 2 again. The oil passage 90 includes a first oil passage (oil passage) 91 that passes through the inside of the motor 2 and a second oil passage (oil passage) 92 that passes through the outside of the motor 2. The oil O cools the motor 2 from inside and outside in the first oil passage 91 and the second oil passage 92. The oil passage 90 constitutes an oil cooling mechanism.
 第1の油路91および第2の油路92は、ともにオイル溜りPからオイルOをモータ2に供給して、再びオイル溜りPに回収する経路である。第1の油路91および第2の油路92において、オイルOは、モータ2から滴下して、モータ室の下側の領域に溜る。モータ室81の下側の領域に溜ったオイルOは、隔壁開口68を介して、ギヤ室82の下側の領域(すなわち、オイル溜りP)に移動する。 Both the first oil path 91 and the second oil path 92 are paths for supplying the oil O from the oil reservoir P to the motor 2 and collecting it in the oil reservoir P again. In the first oil passage 91 and the second oil passage 92, the oil O drops from the motor 2 and accumulates in the lower region of the motor chamber. The oil O accumulated in the lower region of the motor chamber 81 moves to the lower region of the gear chamber 82 (that is, the oil reservoir P) through the partition opening 68.
 第1の油路91の経路中には、オイルOを冷却するクーラー97が設けられる。第1の油路91を通過しクーラー97により冷却されたオイルOは、オイル溜りPにおいて第2の油路92を通過したオイルOと合流する。オイル溜りPにおいて、第1の油路91および第2の油路92を通過したオイルOは、互いに混ざりあって熱交換が行われる。このため、第1の油路91の経路中に配置されてクーラー97の冷却の効果を第2の油路92を通過するオイルOにも及ぼすことができる。本実施形態によれば、第1の油路91および第2の油路92のうち一方の油路中に設けられた1つのクーラー97を用いて、両方の油路中のオイルOを冷却する。 In the first oil passage 91, a cooler 97 for cooling the oil O is provided. The oil O that has passed through the first oil passage 91 and has been cooled by the cooler 97 joins the oil O that has passed through the second oil passage 92 in the oil reservoir P. In the oil reservoir P, the oil O that has passed through the first oil passage 91 and the second oil passage 92 is mixed with each other and heat exchange is performed. For this reason, the cooling effect of the cooler 97 that is disposed in the path of the first oil path 91 can also be exerted on the oil O that passes through the second oil path 92. According to this embodiment, using one cooler 97 provided in one of the first oil passage 91 and the second oil passage 92, the oil O in both oil passages is cooled. .
 一般的にクーラーは、液体が定常的に流れる流路中に配置される。2つの油路を冷却させるために、2つの油路に含まれる流路中にそれぞれクーラーを配置する構成が考えられる。この場合は、2つのクーラーを用いる必要がありコストが高くなる。また、2つの油路を冷却するために、2つの油路を合流させた領域に流路を設け、この流路中にクーラーを設置する構成が考えられる。この場合は、交流した領域に流路を設ける必要があるため、油路中の流路の構成を複雑化する必要があり、結果としてコスト高となる。
 本実施形態によれば、第1の油路91にのみクーラーを設け、第1の油路91および第2の油路92を通過するオイルOをオイル溜りPにおいて混合することで、第2の油路92を間接的に冷却できる。これにより、油路90中の流路の構成を複雑化することなく、1つのクーラー97により第1の油路91および第2の油路92のオイルOを冷却できる。
 なお、このような効果は、第1の油路91および第2の油路92のうち何れか一方に、オイルOを冷却するクーラー97を有し、第1の油路91および第2の油路92を流れるオイルOがオイル溜りPで合流する場合に奏することができる効果である。
Generally, a cooler is arrange | positioned in the flow path through which a liquid steadily flows. In order to cool two oil paths, the structure which arrange | positions a cooler in the flow path contained in two oil paths can be considered, respectively. In this case, it is necessary to use two coolers, which increases the cost. Moreover, in order to cool two oil paths, the structure which provides a flow path in the area | region which joined two oil paths, and installs a cooler in this flow path can be considered. In this case, since it is necessary to provide a flow path in the area | region which exchanged, it is necessary to make the structure of the flow path in an oil path complicated, and it results in high cost as a result.
According to the present embodiment, the cooler is provided only in the first oil passage 91, and the oil O passing through the first oil passage 91 and the second oil passage 92 is mixed in the oil reservoir P, whereby the second The oil passage 92 can be indirectly cooled. Accordingly, the oil O in the first oil passage 91 and the second oil passage 92 can be cooled by one cooler 97 without complicating the configuration of the flow passage in the oil passage 90.
In addition, such an effect has the cooler 97 which cools the oil O in any one of the 1st oil path 91 and the 2nd oil path 92, and the 1st oil path 91 and the 2nd oil path This is an effect that can be achieved when the oil O flowing through the path 92 merges in the oil reservoir P.
 オイルOの熱は、主としてクーラー97を通じて放熱される。また、オイルOの熱の一部は、オイルOがハウジング6の内面に接触するため、ハウジング6を通じても放熱される。なお、図1に示すように、ハウジング6の外側面には、凹凸状のヒートシンク部6bが設けられていてもよい。ヒートシンク部6bは、ハウジング6を介したモータ2の冷却を促進する。 The heat of the oil O is radiated mainly through the cooler 97. Part of the heat of the oil O is also radiated through the housing 6 because the oil O contacts the inner surface of the housing 6. In addition, as shown in FIG. 1, the uneven | corrugated heat sink part 6b may be provided in the outer surface of the housing 6. As shown in FIG. The heat sink portion 6 b promotes cooling of the motor 2 through the housing 6.
 (第1の油路)
 第1の油路91において、オイルOは、オイル溜りPから差動装置5によりかき上げられてロータ20の内部に導かれる。オイルOには、ロータ20の内部で、ロータ20の回転に伴う遠心力が付与される。これにより、オイルOは、ロータ20を径方向外側から囲むステータ30に向かって均等に拡散されステータ30を冷却する。
(First oil passage)
In the first oil passage 91, the oil O is drawn up from the oil reservoir P by the differential device 5 and guided into the rotor 20. The centrifugal force accompanying rotation of the rotor 20 is given to the oil O inside the rotor 20. As a result, the oil O is evenly diffused toward the stator 30 surrounding the rotor 20 from the radially outer side, and cools the stator 30.
 第1の油路91は、かき上げ経路91aと、シャフト供給経路(オイル流路)91bと、シャフト内経路91cと、ロータ内経路91dと、を有する。また、第1の油路91の経路中には、第1のリザーバ93が設けられる。第1のリザーバ93は、収容空間80(特にギヤ室82)に設けられている。 The first oil passage 91 includes a lifting path 91a, a shaft supply path (oil passage) 91b, an in-shaft path 91c, and an in-rotor path 91d. A first reservoir 93 is provided in the first oil passage 91. The first reservoir 93 is provided in the accommodation space 80 (particularly the gear chamber 82).
 かき上げ経路91aは、差動装置5のリングギヤ51の回転によってオイル溜りPからオイルOをかき上げて、第1のリザーバ93(図3参照)でオイルOを受ける経路である。 The scraping path 91a is a path for scooping up the oil O from the oil reservoir P by the rotation of the ring gear 51 of the differential 5 and receiving the oil O by the first reservoir 93 (see FIG. 3).
 図3に示すように、第1のリザーバ93は、鉛直方向においてモータ軸J2、中間軸J4および差動軸J5の上側に位置する。第1のリザーバ93は、車両前後方向(水平方向、X軸方向)において中間軸J4と差動軸J5との間に位置する。第1のリザーバ93は、車両前後方向(水平方向、X軸方向)においてモータ軸J2と差動軸J5との間に位置する。第1のリザーバ93は、第1のギヤ41の側部に配置される。第1のリザーバ93は、上側に開口する。 As shown in FIG. 3, the first reservoir 93 is located above the motor shaft J2, the intermediate shaft J4, and the differential shaft J5 in the vertical direction. The first reservoir 93 is located between the intermediate shaft J4 and the differential shaft J5 in the vehicle front-rear direction (horizontal direction, X-axis direction). The first reservoir 93 is located between the motor shaft J2 and the differential shaft J5 in the vehicle front-rear direction (horizontal direction, X-axis direction). The first reservoir 93 is disposed on the side portion of the first gear 41. The first reservoir 93 opens upward.
 本明細書において、「リザーバ」とは、一方向に向かう定常的な液体の流動がない状態で、オイルを溜める機能を有する構造体を意味する。「リザーバ」は、定常的な液体の流動がないという点で、「流路」とは異なる。本実施形態のモータユニット1の収容空間80には、第1のリザーバ93、第2のリザーバ98および副リザーバ95が設けられる。 In this specification, the “reservoir” means a structure having a function of storing oil in a state where there is no steady liquid flow in one direction. The “reservoir” differs from the “flow path” in that there is no steady liquid flow. In the accommodation space 80 of the motor unit 1 of the present embodiment, a first reservoir 93, a second reservoir 98, and a sub-reservoir 95 are provided.
 本実施形態において、リングギヤ51の回転中心である差動軸J5は、減速装置4に対して車両後方側に配置される。差動装置5は、車両の前進時に減速装置4と逆側の領域で上側に向かって回転する。差動装置5のリングギヤ51によってかき上げられるオイルOは、減速装置4と反対側を回って第1のリザーバ93の上側に降り注ぎ第1のリザーバ93に溜る。すなわち、第1のリザーバ93は、リングギヤ51がかき上げたオイルOを受ける。また、モータ2の駆動直後などオイル溜りPの液面が高い場合、第2のギヤ42および第3のギヤ43は、オイル溜りPのオイルOに接触してオイルOをかき上げる。このような場合には、第1のリザーバ93は、リングギヤ51に加えて第2のギヤ42および第3のギヤ43によってかき上げられたオイルOも受ける。 In the present embodiment, the differential shaft J5 that is the rotation center of the ring gear 51 is disposed on the vehicle rear side with respect to the reduction gear 4. The differential device 5 rotates upward in a region opposite to the speed reduction device 4 when the vehicle moves forward. The oil O pumped up by the ring gear 51 of the differential device 5 travels on the opposite side to the speed reduction device 4 and falls on the upper side of the first reservoir 93 and accumulates in the first reservoir 93. That is, the first reservoir 93 receives the oil O lifted up by the ring gear 51. Further, when the liquid level of the oil reservoir P is high, such as immediately after the motor 2 is driven, the second gear 42 and the third gear 43 come into contact with the oil O of the oil reservoir P and scoop up the oil O. In such a case, the first reservoir 93 also receives the oil O that has been scooped up by the second gear 42 and the third gear 43 in addition to the ring gear 51.
 ハウジング6は、ギヤ室82の上側の壁を構成するギヤ室天井部(天井部)64を有する。ギヤ室天井部64は、減速装置4および差動装置5の上側に位置する。ここで、モータ軸J2の軸方向から見て、モータ軸J2と差動軸J5とを仮想的に結ぶ仮想線(後段に説明する第3の線分)L3を定義する。ギヤ室天井部64は、仮想線L3と略平行である。ギヤ室天井部64を仮想線L3と略平行とすることで、リングギヤ51でかき上げられて仮想線L3が延びる方向に飛散するオイルOが通過する領域を十分に確保して、オイルOを、モータ軸Jを中心に回転する第1のギヤ41に効率的に当てることができる。また、ギヤ室天井部64を仮想線L3と略平行とすることで、ハウジング6が鉛直方向に大型化することを抑制できる。
 なお、ここでギヤ室天井部64と仮想線L3とが「略平行」とは、ギヤ室天井部64と仮想線L3とのなす角が10°以内であるとする。ギヤ室天井部64が湾曲する場合には、湾曲線の全ての点における接線と仮想線L3のなす角度が10°以内となる。
 また、10°以内の範囲であれば、ギヤ室天井部64は、差動軸J5側かモータ軸J2側に向かうに従い仮想線L3に近づくことが好ましい。これにより、ハウジング6を小型化することができる。
The housing 6 has a gear chamber ceiling (ceiling) 64 that constitutes the upper wall of the gear chamber 82. The gear chamber ceiling portion 64 is located above the speed reduction device 4 and the differential device 5. Here, an imaginary line (third line segment to be described later) L3 that virtually connects the motor axis J2 and the differential axis J5 as viewed from the axial direction of the motor axis J2 is defined. The gear chamber ceiling portion 64 is substantially parallel to the virtual line L3. By making the gear chamber ceiling portion 64 substantially parallel to the imaginary line L3, it is possible to sufficiently secure a region through which the oil O that is lifted up by the ring gear 51 and scatters in the extending direction of the imaginary line L3 passes, It can be efficiently applied to the first gear 41 that rotates about the motor shaft J. Moreover, it can suppress that the housing 6 enlarges to a perpendicular direction by making the gear chamber ceiling part 64 substantially parallel with the virtual line L3.
Here, the gear chamber ceiling 64 and the imaginary line L3 are “substantially parallel” when the angle between the gear chamber ceiling 64 and the imaginary line L3 is within 10 °. When the gear chamber ceiling portion 64 is curved, the angle formed between the tangent line at all points of the curved line and the virtual line L3 is within 10 °.
Moreover, if it is the range within 10 degrees, it is preferable that the gear chamber ceiling part 64 approaches the virtual line L3 as it goes to the differential axis J5 side or the motor axis J2 side. Thereby, the housing 6 can be reduced in size.
 また、ギヤ室天井部64は、差動軸J5側からモータ軸J2側に向かうに従い、仮想線L3側に近づく方向にわずかに湾曲する曲面である。ギヤ室天井部64の湾曲形状は、リングギヤ51によってかき上げられるオイルOが描く放物線と略同じか、リングギヤ51から若干離れる曲面である。リングギヤ51でかき上げられたオイルOの一部は、第1のリザーバ93に直接到達する。また、リングギヤ51でかき上げられたオイルOの他の一部は、ハウジング6のギヤ室天井部64を伝って第1のリザーバ93に到達する。すなわち、ギヤ室天井部64は、第1のリザーバ93にオイルOを誘導する役割を担っている。 Further, the gear chamber ceiling portion 64 is a curved surface that is slightly curved in a direction approaching the imaginary line L3 side from the differential axis J5 side toward the motor axis J2 side. The curved shape of the gear chamber ceiling portion 64 is substantially the same as the parabola drawn by the oil O that is lifted up by the ring gear 51, or is a curved surface that is slightly separated from the ring gear 51. Part of the oil O pumped up by the ring gear 51 reaches the first reservoir 93 directly. Further, the other part of the oil O that has been lifted up by the ring gear 51 reaches the first reservoir 93 through the gear chamber ceiling 64 of the housing 6. That is, the gear chamber ceiling part 64 plays a role of guiding the oil O to the first reservoir 93.
 ギヤ室天井部64は、下側に突出する凸部65を有する。凸部65は、第1のリザーバ93の上側に位置する。ギヤ室天井部64を伝うオイルOは、凸部65の下端において大きな液滴となり、下方に落下して第1のリザーバ93に溜る。すなわち、凸部65は、ギヤ室天井部64を伝うオイルOを第1のリザーバ93に誘導する。
 本実施形態において、モータ収容部61とギヤ収容部62とは、ボルト67により互いに固定されている。凸部65は、ギヤ室天井部64において、ボルト67が挿入されるネジ穴周りの肉厚部分を利用して設けられている。なお、図3において、モータ収容部61とギヤ収容部62とを固定する他のボルトおよびネジ穴周りの他の肉厚部分の図示が省略されている。
The gear chamber ceiling portion 64 has a convex portion 65 protruding downward. The convex portion 65 is located above the first reservoir 93. The oil O transmitted through the gear chamber ceiling portion 64 becomes a large droplet at the lower end of the convex portion 65, falls downward, and accumulates in the first reservoir 93. That is, the convex portion 65 guides the oil O transmitted through the gear chamber ceiling portion 64 to the first reservoir 93.
In the present embodiment, the motor housing portion 61 and the gear housing portion 62 are fixed to each other by a bolt 67. The convex portion 65 is provided in the gear chamber ceiling portion 64 using a thick portion around the screw hole into which the bolt 67 is inserted. In FIG. 3, other bolts for fixing the motor housing 61 and the gear housing 62 and other thick portions around the screw holes are not shown.
 ギヤ室天井部64は、軸方向に沿って延びる板状の庇部66を有する。庇部66は下側に突出する。庇部66の下端は、第1のリザーバ93の上側に位置する。リングギヤ51によりかき上げられて飛散するオイルOの一部は、庇部66に当たって庇部66の表面を伝う。同様に、第2のギヤ42および第3のギヤによりかき上げられて飛散するオイルOは、庇部66に受け止められて庇部66の表面を伝う。オイルOは、庇部66の下端において大きな液滴となり下方に落下し第1のリザーバ93に溜る。すなわち、庇部66は、かき上げられたオイルOを第1のリザーバ93に誘導する。
 庇部66は、上側から下側に向かうに従い差動軸J5側からモータ軸J2側に向かって傾斜する。リングギヤ51は、第2のギヤ42および第3のギヤ43と比較して大径であるため、飛散するオイルOの飛散角度が水平に近い。庇部66を上述の方向に傾斜させて配置することで、リングギヤ51から飛散するオイルOを庇部66の表面に円滑に付着させて下側に落下させることができる。
The gear chamber ceiling part 64 has a plate-shaped flange part 66 extending along the axial direction. The collar portion 66 protrudes downward. The lower end of the collar portion 66 is located above the first reservoir 93. A part of the oil O that is scooped up and scattered by the ring gear 51 hits the flange 66 and travels along the surface of the flange 66. Similarly, the oil O that is scooped up and scattered by the second gear 42 and the third gear is received by the flange 66 and propagates through the surface of the flange 66. The oil O becomes a large droplet at the lower end of the flange 66 and falls downward and accumulates in the first reservoir 93. That is, the flange 66 guides the oil O that has been pumped up to the first reservoir 93.
The flange portion 66 is inclined from the differential shaft J5 side toward the motor shaft J2 side as it goes from the upper side to the lower side. Since the ring gear 51 has a larger diameter than the second gear 42 and the third gear 43, the scattering angle of the scattered oil O is almost horizontal. By disposing the flange 66 in the above-described direction, the oil O scattered from the ring gear 51 can be smoothly adhered to the surface of the flange 66 and dropped downward.
 第1のリザーバ93は、リングギヤ51、第2のギヤ42および第3のギヤ43の直上に位置する。第1のリザーバ93の開口は、鉛直方向から見てリングギヤ51、第2のギヤ42および第3のギヤ43と重なる。ギヤによってかき上げられるオイルの大部分は、かき上げるギヤの直上に飛散する。第1のリザーバ93をリングギヤ51、第2のギヤ42および第3のギヤ43の直上に配置することで、各ギヤでかき上げたオイルOを効率的に受けることができる。 The first reservoir 93 is located immediately above the ring gear 51, the second gear 42, and the third gear 43. The opening of the first reservoir 93 overlaps with the ring gear 51, the second gear 42, and the third gear 43 as viewed from the vertical direction. Most of the oil pumped up by the gears is scattered directly above the gears being pumped up. By disposing the first reservoir 93 directly above the ring gear 51, the second gear 42, and the third gear 43, the oil O pumped up by each gear can be efficiently received.
 第1のリザーバ93は、底部93aと第1の側壁部93bと第2の側壁部93cとを有する。底部93a、第1の側壁部93bおよび第2の側壁部93cは、ギヤ収容部62およびモータ収容部の突出板部61dの壁面の間で、軸方向に沿って延びる。第1の側壁部93bおよび第2の側壁部93cは、底部93aから上側に延びる。第1の側壁部93bは、第1のリザーバ93の差動装置5側の壁面を構成する。第2の側壁部93cは、第1のリザーバ93の減速装置4側の壁面を構成する。すなわち、第1の側壁部93bは、底部93aの差動軸J5側の端部から上側に延び、第2の側壁部93cは、底部93aのモータ軸J2側の端部から上側に延びる。第1のリザーバ93は、底部93aと、第1の側壁部93bと、第2の側壁部93cと、ギヤ収容部62およびモータ収容部の突出板部61dの壁面と、に囲まれた領域において、オイルOを一時的に貯留する。 The first reservoir 93 has a bottom portion 93a, a first side wall portion 93b, and a second side wall portion 93c. The bottom portion 93a, the first side wall portion 93b, and the second side wall portion 93c extend along the axial direction between the wall surfaces of the gear housing portion 62 and the protruding plate portion 61d of the motor housing portion. The first side wall portion 93b and the second side wall portion 93c extend upward from the bottom portion 93a. The first side wall portion 93 b constitutes a wall surface of the first reservoir 93 on the differential device 5 side. The second side wall portion 93 c constitutes the wall surface of the first reservoir 93 on the speed reduction device 4 side. That is, the first side wall 93b extends upward from the end of the bottom 93a on the differential axis J5 side, and the second side wall 93c extends upward from the end of the bottom 93a on the motor shaft J2 side. The first reservoir 93 is in a region surrounded by the bottom 93a, the first side wall 93b, the second side wall 93c, and the wall surfaces of the gear housing 62 and the protruding plate 61d of the motor housing. The oil O is temporarily stored.
 第1の側壁部93b上端部の高さは、第2の側壁部93cの上端部より下側に位置する。オイルOは、差動装置5によりかき上げられて、減速装置4の反対側から第1のリザーバ93に向かって飛散する。第1の側壁部93bの上端部の高さを低くすることによって、差動装置5によりかき上げられたオイルOを効率的に第1のリザーバ93に貯留できる。また、リングギヤ51によってかき上げられて飛散するオイルOのうち第1の側壁部93bを超えたオイルOを第2の側壁部93cにあてて第1のリザーバ93に誘導できる。 The height of the upper end portion of the first side wall portion 93b is located below the upper end portion of the second side wall portion 93c. The oil O is lifted up by the differential device 5 and scattered from the opposite side of the speed reducer 4 toward the first reservoir 93. The oil O pumped up by the differential 5 can be efficiently stored in the first reservoir 93 by lowering the height of the upper end portion of the first side wall portion 93b. Further, the oil O that has been scooped up and scattered by the ring gear 51 and that exceeds the first side wall portion 93 b can be directed to the first reservoir 93 by hitting the second side wall portion 93 c.
 第2の側壁部93cは、第1のギヤ41の周方向に沿って斜め上方に向かって延びる。すなわち、第2の側壁部93cは、上側に向かうに従いモータ軸J2に向かって傾斜する。これにより、第2の側壁部93cは、差動装置5にかき上げられたオイルOを幅広い範囲で受けることができる。加えて、第2の側壁部93cは、収容空間80の天井を伝うオイルOの液滴を幅広い範囲で受けることができる。 The second side wall portion 93 c extends obliquely upward along the circumferential direction of the first gear 41. That is, the second side wall portion 93c is inclined toward the motor shaft J2 as it goes upward. Accordingly, the second side wall portion 93c can receive the oil O that has been scooped up by the differential device 5 in a wide range. In addition, the second side wall portion 93 c can receive the droplets of the oil O that travels along the ceiling of the accommodation space 80 in a wide range.
 底部93aと第2の側壁部93cの境界部には、第1のリザーバ93の内部に向かってシャフト供給流路94が開口する。底部93aは、平面視においてモータ軸J2側に向かうに従い下方に向かって若干傾斜する。すなわち、底部93aは、第2の側壁部93c側下端となる様に若干傾斜する。したがって、シャフト供給流路94の開口を底部93aと第2の側壁部93cとの間に設けることで、第1のリザーバ93内のオイルOを効率的にシャフト供給流路94に供給できる。 A shaft supply flow path 94 opens toward the inside of the first reservoir 93 at the boundary between the bottom 93a and the second side wall 93c. The bottom portion 93a is slightly inclined downward toward the motor shaft J2 side in plan view. That is, the bottom portion 93a is slightly inclined so as to be the lower end on the second side wall portion 93c side. Accordingly, the oil O in the first reservoir 93 can be efficiently supplied to the shaft supply flow path 94 by providing the opening of the shaft supply flow path 94 between the bottom portion 93a and the second side wall portion 93c.
 シャフト供給経路91bは、第1のリザーバ93からモータ2にオイルOを誘導する。シャフト供給経路91bは、シャフト供給流路94により構成される。シャフト供給流路94は、第1のリザーバ93からシャフト21端部に向かって延びる。シャフト供給流路94は、直線状に延びる。シャフト供給流路94は、第1のリザーバ93からシャフト21の端部に向かうに従い下側に向かって傾斜する。シャフト供給流路94は、ギヤ収容部62に収容空間80の内外に貫通する孔を加工することで形成される。加工された孔の外側の開口は、キャップ(図示略)により塞がれる。シャフト供給流路94は、第1のリザーバ93に溜ったオイルOをシャフト21の端部から中空部22に誘導する。 The shaft supply path 91b guides the oil O from the first reservoir 93 to the motor 2. The shaft supply path 91b includes a shaft supply flow path 94. The shaft supply channel 94 extends from the first reservoir 93 toward the end of the shaft 21. The shaft supply channel 94 extends linearly. The shaft supply channel 94 is inclined downward as it goes from the first reservoir 93 toward the end of the shaft 21. The shaft supply flow path 94 is formed by processing a hole penetrating the gear housing portion 62 in and out of the housing space 80. The opening outside the processed hole is closed by a cap (not shown). The shaft supply flow path 94 guides the oil O accumulated in the first reservoir 93 from the end portion of the shaft 21 to the hollow portion 22.
 図1に示すように、シャフト内経路91cは、シャフト21の中空部22内をオイルOが通過する経路である。また、ロータ内経路91dは、シャフト21の連通孔23からロータコア24の軸方向端面24aに位置するエンドプレート26の内部を通過して、ステータ30に飛散する経路である(図5参照)。すなわち、第1の油路91は、シャフト21の内部からロータコア24を通過する経路を有する。 As shown in FIG. 1, the in-shaft path 91 c is a path through which the oil O passes through the hollow portion 22 of the shaft 21. The in-rotor path 91d is a path that passes from the communication hole 23 of the shaft 21 through the inside of the end plate 26 located on the axial end surface 24a of the rotor core 24 and scatters to the stator 30 (see FIG. 5). That is, the first oil passage 91 has a path that passes through the rotor core 24 from the inside of the shaft 21.
 シャフト内経路91cにおいて、ロータ20の内部のオイルOには、ロータ20の回転に伴い遠心力が付与される。これにより、オイルOは、エンドプレート26から径方向外側に連続的に飛散する。また、オイルOの飛散に伴い、ロータ20内部の経路中が負圧となり、第1のリザーバ93に溜るオイルOが、ロータ20の内部に吸引され、ロータ20内部の経路にオイルOが満たされる。オイルOは、第1の油路91中における毛細管力によっても、ロータ20内部への移動が促進される。ステータ30に到達したオイルOは、ステータ30から熱を奪う。 In the in-shaft path 91c, centrifugal force is applied to the oil O inside the rotor 20 as the rotor 20 rotates. As a result, the oil O is continuously scattered radially outward from the end plate 26. As the oil O scatters, the pressure inside the rotor 20 becomes negative, and the oil O accumulated in the first reservoir 93 is sucked into the rotor 20 and the oil O fills the path inside the rotor 20. . The movement of the oil O into the rotor 20 is also promoted by the capillary force in the first oil passage 91. The oil O that has reached the stator 30 removes heat from the stator 30.
 (第2の油路)
 図1に示すように、第2の油路92においてオイルOは、オイル溜りPからモータ2の上側まで引き上げられてモータ2に供給される。モータ2に供給されたオイルOは、ステータ30の外周面を伝いながら、ステータ30から熱を奪い、モータ2を冷却する。ステータ30の外周面を伝ったオイルOは、下方に滴下してモータ室81の下側の領域に溜る。第2の油路92のオイルOは、第1の油路91のオイルOとモータ室81の下側の領域で合流する。モータ室81の下側の領域に溜ったオイルOは、隔壁開口68を介して、ギヤ室82の下側の領域(すなわち、オイル溜りP)に移動する。
(Second oil passage)
As shown in FIG. 1, the oil O in the second oil passage 92 is pulled up from the oil reservoir P to the upper side of the motor 2 and supplied to the motor 2. The oil O supplied to the motor 2 removes heat from the stator 30 and cools the motor 2 while traveling along the outer peripheral surface of the stator 30. The oil O transmitted along the outer peripheral surface of the stator 30 drops downward and accumulates in the lower region of the motor chamber 81. The oil O in the second oil passage 92 merges with the oil O in the first oil passage 91 in the lower region of the motor chamber 81. The oil O accumulated in the lower region of the motor chamber 81 moves to the lower region of the gear chamber 82 (that is, the oil reservoir P) through the partition opening 68.
 図10は、モータユニット1の断面図である。なお、図10の切断面は、各領域において軸方向にずらされる。
 第2の油路92は、第1の流路92aと第2の流路92bと第3の流路92cとを有する。第2の油路92の経路中には、ポンプ96と、クーラー97と、第2のリザーバ98と、が設けられる。第2の油路92において、オイルOは、第1の流路92a、ポンプ96、第2の流路92b、クーラー97、第3の流路92c、第2のリザーバ98の順で各部を通過して、モータ2に供給される。
FIG. 10 is a cross-sectional view of the motor unit 1. 10 is shifted in the axial direction in each region.
The second oil path 92 includes a first flow path 92a, a second flow path 92b, and a third flow path 92c. A pump 96, a cooler 97, and a second reservoir 98 are provided in the second oil passage 92. In the second oil passage 92, the oil O passes through the respective parts in the order of the first flow path 92a, the pump 96, the second flow path 92b, the cooler 97, the third flow path 92c, and the second reservoir 98. Then, it is supplied to the motor 2.
 ポンプ96は、電気により駆動する電動ポンプである。ポンプ96は、ハウジング6の外側面に設けられたポンプ取付凹部6cに取り付けられる。ポンプ96は、吸入口96aと吐出口96bとを有する。吸入口96aおよび吐出口96bは、ポンプ96の内部流路を介して繋がる。また、吸入口96aは、第1の流路92aに繋がる。吐出口96bは、第2の流路92bに繋がる。吐出口96bは、吸入口96aより上側に位置する。ポンプ96は、第1の流路92aを介してオイル溜りPからオイルOを吸い上げて、第2の流路92b、クーラー97、第3の流路92cおよび第2のリザーバ98を介してモータ2に供給する。 The pump 96 is an electric pump that is driven by electricity. The pump 96 is attached to a pump attachment recess 6 c provided on the outer surface of the housing 6. The pump 96 has a suction port 96a and a discharge port 96b. The suction port 96 a and the discharge port 96 b are connected via an internal flow path of the pump 96. The suction port 96a is connected to the first flow path 92a. The discharge port 96b is connected to the second flow path 92b. The discharge port 96b is located above the suction port 96a. The pump 96 sucks up the oil O from the oil reservoir P through the first flow path 92 a, and the motor 2 through the second flow path 92 b, the cooler 97, the third flow path 92 c, and the second reservoir 98. To supply.
 ポンプ96によるモータ2へのオイルOの供給量は、モータ2の駆動状態に応じて適宜制御される。したがって、長時間の駆動や高い出力が必要な場合などモータ2の温度が高まることで、ポンプ96の駆動出力が高められてモータ2へのオイルOの供給量が増加される。 The amount of oil O supplied to the motor 2 by the pump 96 is appropriately controlled according to the driving state of the motor 2. Accordingly, when the temperature of the motor 2 is increased, for example, when driving for a long time or a high output is required, the drive output of the pump 96 is increased and the amount of oil O supplied to the motor 2 is increased.
 クーラー97は、流入口97aと流出口97bとを有する。流入口97aと流出口97bは、クーラー97の内部流路を介して繋がる。また、流入口97aは、第2の流路92bに繋がる。流出口97bは、第3の流路92cに繋がる。流入口97aは、流出口97bと比較して、ポンプ96に近い側(すなわち、下側)に位置する。また、クーラー97の内部には、ラジエータから供給された冷却水が通過する冷却水用配管(図示略)が設けられる。クーラー97の内部を通過するオイルOは、冷却水との間で熱交換されて冷却される。 The cooler 97 has an inflow port 97a and an outflow port 97b. The inflow port 97 a and the outflow port 97 b are connected via an internal flow path of the cooler 97. Further, the inflow port 97a is connected to the second flow path 92b. The outflow port 97b is connected to the third flow path 92c. The inflow port 97a is located closer to the pump 96 (that is, the lower side) than the outflow port 97b. Further, inside the cooler 97, a cooling water pipe (not shown) through which the cooling water supplied from the radiator passes is provided. The oil O passing through the inside of the cooler 97 is cooled by heat exchange with the cooling water.
 ポンプ96およびクーラー97は、ハウジング6のモータ収容部61の外周面に固定される。モータ軸J2の軸方向から見て、ポンプ96およびクーラー97は、モータ軸J2を挟んで差動装置5と水平方向の反対側に位置する。また、ポンプ96およびクーラー97は、上下方向に並ぶ。クーラー97は、ポンプ96の上側に位置する。クーラー97は、鉛直方向から見てポンプ96と重なる。 The pump 96 and the cooler 97 are fixed to the outer peripheral surface of the motor housing portion 61 of the housing 6. When viewed from the axial direction of the motor shaft J2, the pump 96 and the cooler 97 are located on the opposite side of the differential device 5 in the horizontal direction across the motor shaft J2. The pump 96 and the cooler 97 are arranged in the vertical direction. The cooler 97 is located above the pump 96. The cooler 97 overlaps with the pump 96 when viewed from the vertical direction.
 本実施形態によれば、ポンプ96およびクーラー97が、差動装置5とモータ軸J2を挟んで反対側に位置することで、モータ2の周りの空間を有効に利用できる。これにより、モータユニット1全体の水平方向に沿う寸法を小さくすることが可能となり、モータユニット1の小型化を図ることができる。 According to the present embodiment, since the pump 96 and the cooler 97 are located on the opposite sides with the differential device 5 and the motor shaft J2 interposed therebetween, the space around the motor 2 can be used effectively. Thereby, the dimension along the horizontal direction of the entire motor unit 1 can be reduced, and the motor unit 1 can be downsized.
 本実施形態によれば、ポンプ96およびクーラー97が、ハウジング6の外周面に固定される。このため、ポンプ96およびクーラー97が、ハウジング6の外部に設けられる場合と比較して、モータユニット1の小型化に寄与できる。加えて、ポンプ96およびクーラー97が、ハウジング6の外周面に固定されることで、ハウジング6の壁部6aの内部を通過する第1の流路92a、第2の流路92bおよび第3の流路92cにより、収容空間80とポンプ96およびクーラー97とを繋ぐ流路を構成することができる。 According to the present embodiment, the pump 96 and the cooler 97 are fixed to the outer peripheral surface of the housing 6. For this reason, compared with the case where the pump 96 and the cooler 97 are provided in the exterior of the housing 6, it can contribute to size reduction of the motor unit 1. FIG. In addition, the pump 96 and the cooler 97 are fixed to the outer peripheral surface of the housing 6, whereby the first flow path 92 a, the second flow path 92 b, and the third flow path that pass through the inside of the wall portion 6 a of the housing 6. By the flow path 92c, a flow path connecting the accommodation space 80, the pump 96, and the cooler 97 can be configured.
 本実施形態によれば、クーラー97がハウジング6の外周面に固定されるため、収容空間80とクーラー97との距離を近づけることができる。これにより、クーラー97と収容空間80とを繋ぐ第3の流路97cを短くすることができ、冷却したオイルOを温度が低い状態で収容空間80に供給できる。 According to this embodiment, since the cooler 97 is fixed to the outer peripheral surface of the housing 6, the distance between the accommodation space 80 and the cooler 97 can be reduced. Thereby, the 3rd flow path 97c which connects the cooler 97 and the accommodation space 80 can be shortened, and the cooled oil O can be supplied to the accommodation space 80 in a state with low temperature.
 第1の流路92a、第2の流路92bおよび第3の流路92cは、収容空間80を囲むハウジング6の壁部6aの内部を通過する。第1の流路92aは、壁部6aに形成した孔として第1の流路92a、第2の流路92bおよび第3の流路92cを形成できる。したがって、別途管材を用意する必要がなく部品点数減少に寄与できる。
 なお、第1の流路92aは、壁部6aのうちモータ2の下側に位置する部分の内部を通過する。第2の流路92bは、壁部6aのうちモータ2の水平方向側方に位置する部分の内部を通過する。また、第3の流路92cは、壁部6aのうちモータ2の上側に位置する部分の内部を通過する。
The first flow path 92 a, the second flow path 92 b, and the third flow path 92 c pass through the inside of the wall portion 6 a of the housing 6 that surrounds the accommodation space 80. The 1st flow path 92a can form the 1st flow path 92a, the 2nd flow path 92b, and the 3rd flow path 92c as a hole formed in the wall part 6a. Therefore, it is not necessary to prepare a separate pipe material, which can contribute to a reduction in the number of parts.
In addition, the 1st flow path 92a passes through the inside of the part located in the lower side of the motor 2 among the wall parts 6a. The second flow path 92b passes through a portion of the wall portion 6a that is located on the side of the motor 2 in the horizontal direction. The third flow path 92c passes through the inside of the portion of the wall portion 6a located on the upper side of the motor 2.
 第1の流路92aは、オイル溜りPとポンプ96とを繋ぐ。第1の流路92aは、第1の端部92aaと第2の端部92abとを有する。
 第1の端部92aaは、第2の端部92abと比較して、第2の油路92の上流側に位置する。第1の端部92aaは、差動装置5の下側において収容空間80に開口する。第1の端部92aaは、鉛直方向から見て、モータ2と重なる。
 第2の端部92abは、ポンプ取付凹部6c内に開口してポンプ96の吸入口96aに繋がる。
The first flow path 92 a connects the oil reservoir P and the pump 96. The first flow path 92a has a first end 92aa and a second end 92ab.
The first end portion 92aa is located on the upstream side of the second oil passage 92 as compared to the second end portion 92ab. The first end 92 aa opens into the accommodation space 80 on the lower side of the differential device 5. The first end portion 92aa overlaps the motor 2 when viewed from the vertical direction.
The second end 92ab opens into the pump mounting recess 6c and is connected to the suction port 96a of the pump 96.
 上述したように、差動装置5とポンプ96とは、モータ軸J2を挟んで互いに水平方向反対側に位置する。第1の流路92aは、モータ2を挟んで水平方向反対側に架け渡すように延びる。また、第1の流路92aは、モータ2の下側を通過する。 As described above, the differential 5 and the pump 96 are positioned on opposite sides in the horizontal direction across the motor shaft J2. The first flow path 92a extends so as to span the opposite side in the horizontal direction across the motor 2. Further, the first flow path 92 a passes below the motor 2.
 本実施形態によれば、第1の流路92aがモータ2の下側を通過するため、モータ2の下側の領域を有効利用して、モータユニット1の寸法を小さくすることができる。これにより、モータユニット1の小型化を図ることができる。 According to the present embodiment, since the first flow path 92a passes below the motor 2, the size of the motor unit 1 can be reduced by effectively using the lower area of the motor 2. Thereby, size reduction of the motor unit 1 can be achieved.
 第1の流路92aは、軸方向から見て少なくとも一部が、第2のギヤ42およびリングギヤ51と重なる。これにより、軸方向から見た場合の、モータユニット1の寸法を小さくすることができ、モータユニット1の小型化を図ることができる。
 なお、本実施形態では、モータ2と差動装置5との間に接続される複数のギヤ(第1のギヤ41、第2のギヤ42、第3のギヤ43およびリングギヤ51)のうち、第2のギヤ42およびリングギヤ51が、軸方向から見て第1の流路92aと重なる場合について説明した。しかしながら、モータ2と差動装置5との間に接続される複数のギヤのうち、少なくとも1つが、軸方向から見て第1の流路92aと重なれば、上述の効果を奏することができる。
At least a part of the first flow path 92 a overlaps with the second gear 42 and the ring gear 51 when viewed from the axial direction. Thereby, the dimension of the motor unit 1 when it sees from an axial direction can be made small, and size reduction of the motor unit 1 can be achieved.
In the present embodiment, among the plurality of gears (the first gear 41, the second gear 42, the third gear 43, and the ring gear 51) connected between the motor 2 and the differential device 5, The case where the second gear 42 and the ring gear 51 overlap the first flow path 92a when viewed from the axial direction has been described. However, if at least one of the plurality of gears connected between the motor 2 and the differential device 5 overlaps the first flow path 92a when viewed from the axial direction, the above-described effects can be achieved. .
 第1の流路92aは、差動装置5の下側からポンプ96の吸入口96aまで延びる。第1の流路92aは、第1の端部92aaから第2の端部92abに向かうに従い上側に向かって傾斜しかつ、直線的に延びる。また、ポンプ96の吸入口96aは、差動装置5の下端より上側、かつモータ軸J2より下側に位置する。 The first flow path 92a extends from the lower side of the differential 5 to the suction port 96a of the pump 96. The first flow path 92a is inclined upward and extends linearly from the first end 92aa toward the second end 92ab. The suction port 96a of the pump 96 is located above the lower end of the differential device 5 and below the motor shaft J2.
 ポンプ96は、モータユニット1を車両に搭載した状態で、路面からの飛び石が衝突することを避けるために、路面から離れた位置に配置することが好ましい。一方で、ポンプ96の吸入口96aは、オイル溜りPの油面より下側に配置することで、空気の巻き込みを抑制することが可能となる。 The pump 96 is preferably arranged at a position away from the road surface in order to avoid a stepping stone from the road surface colliding with the motor unit 1 mounted on the vehicle. On the other hand, by arranging the suction port 96a of the pump 96 below the oil level of the oil reservoir P, it becomes possible to suppress the entrainment of air.
 本実施形態の吸入口96aは、モータ軸J2より下側に位置する。これにより、吸入口96aをオイル溜りPの油面より下側に配置させやすい。また、本実施形態の吸入口96aは、差動装置5の下端より上側に位置する。これにより、ポンプ96を路面から離す構造が実現できる。また、吸入口96aをモータ軸J2より下側に配置することで、第1の流路92aを直線状に構成しやすくなる。したがって、第1の流路92aを、ハウジング6の壁部6aの内部を通過させる構造を採用した場合に、第1の流路92aの加工容易性を高めることができる。 In the present embodiment, the suction port 96a is located below the motor shaft J2. Thereby, the suction port 96a can be easily disposed below the oil level of the oil reservoir P. Further, the suction port 96 a of this embodiment is located above the lower end of the differential device 5. Thereby, the structure which isolate | separates the pump 96 from a road surface is realizable. Further, by arranging the suction port 96a below the motor shaft J2, the first flow path 92a can be easily formed in a straight line. Therefore, when the structure that allows the first flow path 92a to pass through the inside of the wall portion 6a of the housing 6 is adopted, the processability of the first flow path 92a can be enhanced.
 本実施形態の吸入口96aは、収容空間80のオイル溜りPの液面より下側に位置する。なお、オイル溜りPの液面の高さは、オイル溜りPから第1の油路91および第2の油路92にオイルOが供給されることで変動する。吸入口96aは、オイル溜りPの液面の高さが最も低い場合においても、液面より下側に位置する。
 図1において、吸入口96aは、オイル溜りPの液面の上側に位置して描かれている。しかしながら、図1は、あくまで模式的な図であり、実際の吸入口96aは、オイル溜りPの液面より下側に位置する。
The suction port 96a of the present embodiment is located below the liquid level of the oil reservoir P in the accommodation space 80. The liquid level of the oil reservoir P varies as the oil O is supplied from the oil reservoir P to the first oil passage 91 and the second oil passage 92. The suction port 96a is located below the liquid level even when the liquid level of the oil reservoir P is the lowest.
In FIG. 1, the suction port 96 a is depicted as being located above the liquid level of the oil reservoir P. However, FIG. 1 is a schematic diagram to the last, and the actual suction port 96a is located below the liquid level of the oil reservoir P.
 第2の流路92bは、ポンプ96とクーラー97とを繋ぐ。第2の流路92bは、第1の端部92baと第2の端部92bbとを有する。第1の端部92baは、ポンプ取付凹部6c内に開口してポンプ96の吐出口96bに繋がる。第1の端部92baは、第2の端部92bbと比較して、第2の油路92の上流側に位置する。第2の端部92bbは、クーラー97の流入口97aに繋がる。第2の端部92bbは、第1の端部92baより上側に位置する。 The second flow path 92b connects the pump 96 and the cooler 97. The second flow path 92b has a first end 92ba and a second end 92bb. The first end 92ba opens into the pump mounting recess 6c and is connected to the discharge port 96b of the pump 96. The first end portion 92ba is located on the upstream side of the second oil passage 92 as compared with the second end portion 92bb. The second end portion 92bb is connected to the inlet 97a of the cooler 97. The second end portion 92bb is located above the first end portion 92ba.
 第2の流路92bは、第1路92bdおよび第2路92beを有する。第1路92bdは、ポンプ取付凹部6cから上側に延びる。第2路92beは、第1路92bdの上端から水平方向に延びる。第1路92bdおよび第2路92beは、それぞれハウジング6の壁部6aに別方向から延びて互いに交差する孔を加工することで形成される。 The second flow path 92b has a first path 92bd and a second path 92be. The first path 92bd extends upward from the pump mounting recess 6c. The second path 92be extends in the horizontal direction from the upper end of the first path 92bd. The first path 92bd and the second path 92be are formed by processing holes that extend from different directions and intersect each other in the wall 6a of the housing 6, respectively.
 第3の流路92cは、クーラー97と収容空間80とを繋ぐ。第3の流路92cは、水平方向に沿って直線状に延びる。第3の流路92cは、第1の端部92caと第2の端部92cbとを有する。第1の端部92caは、第2の端部92cbと比較して、第2の油路92の上流側に位置する。第1の端部92caは、クーラー97の流出口97bに繋がる。第2の端部92cbは、モータ2の上側で収容空間80に開口する。すなわち、第3の流路92cは、収容空間80においてモータ2の上側で開口する。第3の流路92cの第2の端部92cbは、収容空間80に位置する第2のリザーバ98にオイルOを供給する供給部99として機能する。すなわち、第2の油路92は、供給部99において第2のリザーバ98にオイルOを供給する。 The third flow path 92c connects the cooler 97 and the accommodation space 80. The third flow path 92c extends linearly along the horizontal direction. The third flow path 92c has a first end 92ca and a second end 92cb. The first end portion 92ca is located on the upstream side of the second oil passage 92 as compared to the second end portion 92cb. The first end 92ca is connected to the outlet 97b of the cooler 97. The second end portion 92 cb opens into the accommodation space 80 on the upper side of the motor 2. That is, the third flow path 92 c opens on the upper side of the motor 2 in the accommodation space 80. The second end 92 cb of the third flow path 92 c functions as a supply unit 99 that supplies oil O to the second reservoir 98 located in the accommodation space 80. That is, the second oil passage 92 supplies the oil O to the second reservoir 98 in the supply unit 99.
 クーラー97の流出口97bは、モータ軸J2の軸方向においてモータ2と重なる。すなわち、クーラー97の流出口97bは、径方向から見てモータ2と重なって配置される。換言すると、クーラー97の流出口97bは、軸方向において、ステータ30の両端部の間に位置する。このため、クーラー97の流出口97bと収容空間80とを繋ぐ第3の流路92cを短くすることができ、冷却したオイルOを温度が低い状態で収容空間80に供給できる。また、第3の流路97cをモータ2と径方向に重ねて配置することで、モータユニット1の軸方向寸法を小さくすることができ、モータユニット1の小型化を図ることできる。 The outlet 97b of the cooler 97 overlaps the motor 2 in the axial direction of the motor shaft J2. That is, the outlet 97b of the cooler 97 is disposed so as to overlap the motor 2 when viewed from the radial direction. In other words, the outlet 97b of the cooler 97 is located between both end portions of the stator 30 in the axial direction. For this reason, the 3rd flow path 92c which connects the outflow port 97b of the cooler 97 and the accommodation space 80 can be shortened, and the cooled oil O can be supplied to the accommodation space 80 in a state with low temperature. Moreover, the axial dimension of the motor unit 1 can be reduced by arranging the third flow path 97c so as to overlap the motor 2 in the radial direction, and the motor unit 1 can be downsized.
 (第2のリザーバ)
 図11は、モータユニット1の斜視図である。また、図12は、第2のリザーバ98の平面図である。なお、図11において、ハウジング6のモータ収容部61および閉塞部63の図示を省略する。
(Second reservoir)
FIG. 11 is a perspective view of the motor unit 1. FIG. 12 is a plan view of the second reservoir 98. In addition, in FIG. 11, illustration of the motor accommodating part 61 and the obstruction | occlusion part 63 of the housing 6 is abbreviate | omitted.
 図11に示すように、第2のリザーバ(主リザーバ)98は、収容空間80のモータ室81に位置する。第2のリザーバ98は、モータの上側に位置する。第2のリザーバ98は、底部(第1の底部98cおよび第2の底部98g)と、底部から上側に延びる側壁部(第1の側壁部98d、第2の側壁部98e、第3の側壁部98f、第4の側壁部98h、第5の側壁部98i、第6の側壁部98jおよび第7の側壁部98n、)と、を有する。第2のリザーバ98は、第3の流路92cの供給部99を介してモータ室81に供給されたオイルOを底部および側壁部に囲まれる空間において貯留する。第2のリザーバ98は、複数の流出口(第1の流出口98r、第2の流出口98o、第3の流出口98x、第4の流出口98t、第5の流出口98uおよび第6の流出口98v)を有する。各流出口は、第2のリザーバ98内に溜ったオイルOをモータ2に供給する。すなわち、第2のリザーバ98は、流出口を介して貯留したオイルOをモータ2の各部に上側から供給する。 As shown in FIG. 11, the second reservoir (main reservoir) 98 is located in the motor chamber 81 of the accommodation space 80. The second reservoir 98 is located on the upper side of the motor. The second reservoir 98 includes a bottom portion (first bottom portion 98c and second bottom portion 98g) and side wall portions (first side wall portion 98d, second side wall portion 98e, and third side wall portion) extending upward from the bottom portion. 98f, a fourth side wall 98h, a fifth side wall 98i, a sixth side wall 98j and a seventh side wall 98n). The second reservoir 98 stores the oil O supplied to the motor chamber 81 via the supply part 99 of the third flow path 92c in a space surrounded by the bottom part and the side wall part. The second reservoir 98 includes a plurality of outlets (a first outlet 98r, a second outlet 98o, a third outlet 98x, a fourth outlet 98t, a fifth outlet 98u, and a sixth outlet An outlet 98v). Each outflow port supplies the oil 2 accumulated in the second reservoir 98 to the motor 2. That is, the second reservoir 98 supplies the oil O stored through the outlet to each part of the motor 2 from the upper side.
 本実施形態によれば、第2のリザーバ98が、モータ2の上側に位置し、貯留したオイルOを複数の流出口からモータ2の上側に供給する。オイルOは、上側から下側に向かってモータ2の外周面を伝って流れてモータ2の熱を奪うため、モータ2全体を冷却することができる。 According to this embodiment, the second reservoir 98 is located on the upper side of the motor 2 and supplies the stored oil O to the upper side of the motor 2 from a plurality of outlets. Since the oil O flows from the upper side to the lower side along the outer peripheral surface of the motor 2 and takes heat of the motor 2, the entire motor 2 can be cooled.
 図12に示すように、第2のリザーバ98は、軸方向においてギヤ室82側に位置する第1の端部98pと、軸方向において第1の端部98pと反対側に位置する第2の端部98qと、を有する。また、第2のリザーバ98は、軸方向に沿って延びる樋状の第1の貯留部98Aと、第1の貯留部98Aに対して第2の端部98q側に位置する第2の貯留部98Bとを有する。 As shown in FIG. 12, the second reservoir 98 has a first end 98p located on the gear chamber 82 side in the axial direction and a second end 98p located on the opposite side of the first end 98p in the axial direction. And an end portion 98q. The second reservoir 98 includes a bowl-shaped first reservoir 98A extending along the axial direction, and a second reservoir located on the second end 98q side with respect to the first reservoir 98A. 98B.
 第1の貯留部98Aは、第1の底部98cと、第1の側壁部98dと、第2の側壁部98eと、第3の側壁部98fと、を有する。また、第1の貯留部98Aには、第1の流出口98r、第2の流出口98oおよび第3の流出口98xが設けられる。 The first reservoir 98A includes a first bottom 98c, a first side wall 98d, a second side wall 98e, and a third side wall 98f. The first reservoir 98A is provided with a first outlet 98r, a second outlet 98o, and a third outlet 98x.
 第1の底部98cは、軸方向を長手方向とする矩形状である。第1の底部98cの軸方向の両端部は、ステータ30の両端部に設けられたコイルエンド31aの上側に位置する。第1の底部98cには、第1の流出口98rが設けられる。第1の流出口98rは、第1の底部98cの第1の端部98p側の領域に位置する。 The first bottom portion 98c has a rectangular shape whose longitudinal direction is the axial direction. Both end portions in the axial direction of the first bottom portion 98 c are positioned above the coil ends 31 a provided at both end portions of the stator 30. A first outlet 98r is provided in the first bottom portion 98c. The first outlet 98r is located in a region on the first end 98p side of the first bottom 98c.
 第1の側壁部98dおよび第2の側壁部98eは、軸方向に沿って延びる。また、第1と第2の側壁部98eとは、モータ軸J2の周方向において対向する。
 第1の側壁部98dには、流入口98sが設けられる。流入口98sは、上側に開口するU字状の切欠である。流入口98sには、供給部99が接続される。流入口98sは、第1の側壁部98dの軸方向の中程に位置する。これにより、流入口98sは、第2のリザーバ98において第1の端部98pおよび第2の端部98q側にそれぞれオイルOを流すことができる。
The first side wall part 98d and the second side wall part 98e extend along the axial direction. Further, the first and second side wall portions 98e face each other in the circumferential direction of the motor shaft J2.
The first side wall 98d is provided with an inflow port 98s. The inflow port 98s is a U-shaped notch that opens upward. A supply unit 99 is connected to the inflow port 98s. The inflow port 98s is located in the middle in the axial direction of the first side wall portion 98d. Thereby, the inflow port 98s can flow the oil O toward the first end portion 98p and the second end portion 98q in the second reservoir 98, respectively.
 第2の側壁部98eには、第1の側壁部98d側に突出する凸部98wが設けられる。凸部98wは、流入口98sの正面に位置する。凸部98wは、中央から第1の端部98p側および第2の端部98q側に向かうに従い突出高さを低くする傾斜面を有する。凸部98wは、流入口98sから第2のリザーバ98に流れたオイルOを第1の端部98p側と第2の端部98q側とにスムーズに分流させる。 The second side wall part 98e is provided with a convex part 98w that protrudes toward the first side wall part 98d. The convex part 98w is located in front of the inflow port 98s. The convex portion 98w has an inclined surface that lowers the protruding height from the center toward the first end portion 98p side and the second end portion 98q side. The convex portion 98w smoothly diverts the oil O that has flowed from the inflow port 98s into the second reservoir 98 to the first end portion 98p side and the second end portion 98q side.
 第2の側壁部98eには、第2の流出口98oが設けられる。第2の流出口98oは、第2の側壁部98eの第1の端部98p側の領域に位置する。第2の流出口98oは、第1の流出口98rの近傍に位置する。 The second side wall 98e is provided with a second outlet 98o. The 2nd outflow port 98o is located in the area | region by the side of the 1st edge part 98p of the 2nd side wall part 98e. The second outlet 98o is located in the vicinity of the first outlet 98r.
 図11に示すように、第3の側壁部98fは、第2のリザーバ98の第1の端部98p側に位置する。第3の側壁部98fは、ステータ30の一方のコイルエンド31aの上側に位置する。第3の側壁部98fの上端部の高さは、第1の側壁部98dおよび第2の側壁部98eの上端部の高さより低い。また、第3の側壁部98fの上端部の高さは、第2の流出口98oの開口下端の高さと略等しい。第2の側壁部98eの上側の空間は、第2のリザーバ98に溜るオイルOの液位が高くなった場合にオイルOが流出する第3の流出口98xとして機能する。 As shown in FIG. 11, the third side wall 98 f is located on the first end 98 p side of the second reservoir 98. The third side wall portion 98 f is located above one coil end 31 a of the stator 30. The height of the upper end part of the third side wall part 98f is lower than the heights of the upper end parts of the first side wall part 98d and the second side wall part 98e. Further, the height of the upper end portion of the third side wall portion 98f is substantially equal to the height of the lower end of the opening of the second outlet port 98o. The space above the second side wall 98e functions as a third outlet 98x through which the oil O flows out when the level of the oil O accumulated in the second reservoir 98 becomes high.
 第2の貯留部98Bは、ステータ30の周方向に沿って延びる。第2の貯留部98Bは、第2の底部98gと、第4の側壁部98hと、第5の側壁部98iと、第6の側壁部98jと、第7の側壁部98n、段差部98kと、を有する。
 また、第2の貯留部98Bには、第4の流出口98t、第5の流出口98u、第6の流出口98vおよび溢出部98yが設けられる。
The second storage portion 98B extends along the circumferential direction of the stator 30. The second reservoir 98B includes a second bottom 98g, a fourth sidewall 98h, a fifth sidewall 98i, a sixth sidewall 98j, a seventh sidewall 98n, and a step 98k. Have.
The second reservoir 98B is provided with a fourth outlet 98t, a fifth outlet 98u, a sixth outlet 98v, and an overflow portion 98y.
 第2の底部98gは、第1の底部98cに対し第2の端部98q側に位置する。第2の底部98gは、第1の底部98cより下側に位置する。第1の底部98cと第2の底部98gとの境界には、段差部98kが設けられる。第2の貯留部98Bは、第1の貯留部98Aより下側に位置する。第1の貯留部98Aにおいて第2の端部98q側に流れたオイルOは、第2の貯留部98Bに溜る。 The second bottom 98g is located on the second end 98q side with respect to the first bottom 98c. The second bottom portion 98g is positioned below the first bottom portion 98c. A stepped portion 98k is provided at the boundary between the first bottom portion 98c and the second bottom portion 98g. The second reservoir 98B is located below the first reservoir 98A. The oil O that has flowed toward the second end 98q in the first reservoir 98A is accumulated in the second reservoir 98B.
 第2の底部98gは、ステータ30の一方のコイルエンド31aの上側に位置する。第2の底部98gは、モータ2の外周面に沿って湾曲する。これにより、モータユニット1の寸法を大きくすることなく、第2のリザーバ98に貯留するオイルOの容量を大きくすることができる。第2の底部98gは、上下方向から見てモータ軸J2と重なる部分から周方向両側に向かうに従って下側に傾斜する。第2の貯留部98Bは、上下方向から見てモータ軸J2を挟んで一方側において第1の貯留部98Aと接続される。 The second bottom portion 98g is located above the one coil end 31a of the stator 30. The second bottom portion 98 g is curved along the outer peripheral surface of the motor 2. As a result, the capacity of the oil O stored in the second reservoir 98 can be increased without increasing the size of the motor unit 1. The second bottom portion 98g is inclined downwardly from the portion overlapping the motor shaft J2 as viewed in the vertical direction toward the both sides in the circumferential direction. The second reservoir 98B is connected to the first reservoir 98A on one side across the motor shaft J2 as viewed from the top-bottom direction.
 図12に示すように、第2の貯留部98Bは、上下方向から見てモータ軸J2を挟んで一方側の領域であり第1の貯留部98Aと接続される領域を第1領域98gAと、モータ軸J2を挟んで他方側の領域を第2領域98gBと、に区画される。第1領域98gAと第2領域98gBとの境界線において、第2の底部98gは、最も高くなる。第1の貯留部98Aから第2の貯留部98Bに流れ込んだオイルOは、まず第1領域98gAに溜り、第1領域98gAに溜る液位が境界線の高さに達した時点で、オイルOが第2領域98gBに流れる。このように境界線は、第2の底部98gに設けられた堰98gCとして機能する。すなわち、第2の底部98gには、上側に突出して第2のリザーバ98の第2の貯留部98Bを第1領域98gAおよび第2領域98gBに区画する堰98gCが設けられる。オイルOは、一方の領域(第1領域98gA)に流入して液位が堰98gCを超えることで他方の領域(第2領域98gB)に流入する。 As shown in FIG. 12, the second reservoir 98B is an area on one side of the motor shaft J2 as viewed from the top and bottom, and is connected to the first reservoir 98A as the first area 98gA. The other side of the motor shaft J2 is divided into a second region 98gB. In the boundary line between the first region 98gA and the second region 98gB, the second bottom portion 98g is the highest. The oil O flowing into the second reservoir 98B from the first reservoir 98A first accumulates in the first region 98gA, and when the liquid level accumulated in the first region 98gA reaches the height of the boundary line, the oil O Flows into the second region 98gB. Thus, the boundary line functions as a weir 98gC provided at the second bottom portion 98g. That is, the second bottom portion 98g is provided with a weir 98gC that protrudes upward and divides the second reservoir 98B of the second reservoir 98 into the first region 98gA and the second region 98gB. The oil O flows into one region (first region 98gA) and the liquid level exceeds the weir 98gC, and then flows into the other region (second region 98gB).
 後述するように、周方向に沿って延びる第6の側壁部98jには、周方向に沿って並ぶ第4の流出口98t、第5の流出口98u、第6の流出口98vが設けられる。また、第5の側壁部98iには、溢出部98yが設けられる。第4の流出口98tおよび第5の流出口98uは、第1領域98gAに開口し、第6の流出口98vおよび溢出部98yは、第2領域98gBに開口する。すなわち、第2のリザーバ98は、堰98gCに区画された複数の領域(第1領域98gAおよび第2領域98gB)に、それぞれ流出口が設けられる。このため、オイルOは、第1領域98gAの液位が堰98gCを超えるまでは、第4の流出口98tおよび第5の流出口98uのみから流出する。また、オイルOは、第1領域98gAの液位が堰98gCを超えた後には、第4の流出口98t、第5の流出口98u、第6の流出口98vおよび溢出部98yから流出する。したがって、本実施形態によれば、第2のリザーバ98は、オイルOの貯留量が多くなると流出させる流出口の数を増加させることができる。特に、モータ2の負荷が大きくなりモータ2が高温となると、ポンプ96により第2のリザーバ98に供給されるオイルOの供給量が多くなる。したがって、本実施形態によれば、モータ2が高温となった場合に、モータ2に対するオイルOの供給点を増加させて冷却範囲を広げるとともに、モータ2の供給するオイルOの供給量を増加させることができる。 As will be described later, a fourth outlet 98t, a fifth outlet 98u, and a sixth outlet 98v arranged in the circumferential direction are provided in the sixth side wall 98j extending in the circumferential direction. The fifth side wall 98i is provided with an overflow portion 98y. The fourth outflow port 98t and the fifth outflow port 98u open to the first region 98gA, and the sixth outflow port 98v and the overflow portion 98y open to the second region 98gB. That is, the second reservoir 98 is provided with outlets in a plurality of regions (first region 98gA and second region 98gB) partitioned by the weir 98gC. Therefore, the oil O flows out only from the fourth outlet port 98t and the fifth outlet port 98u until the liquid level in the first region 98gA exceeds the weir 98gC. The oil O flows out from the fourth outlet 98t, the fifth outlet 98u, the sixth outlet 98v, and the overflow portion 98y after the liquid level in the first region 98gA exceeds the weir 98gC. Therefore, according to the present embodiment, the second reservoir 98 can increase the number of outlets that flow out when the amount of stored oil O increases. In particular, when the load on the motor 2 increases and the motor 2 becomes hot, the amount of oil O supplied to the second reservoir 98 by the pump 96 increases. Therefore, according to this embodiment, when the motor 2 becomes high temperature, the supply point of the oil O to the motor 2 is increased to widen the cooling range, and the supply amount of the oil O supplied by the motor 2 is increased. be able to.
 第4の側壁部98hおよび第5の側壁部98iは、第2の貯留部98Bの周方向の両端部に位置する。第4の側壁部98hと第5の側壁部98iは、周方向に対向する。第4の側壁部98hおよび第5の側壁部98iは、軸方向に沿って延びる。第4の側壁部98hは、第1の側壁部98dと連続して第2の端部98q側に延びる。 4th side wall part 98h and 5th side wall part 98i are located in the both ends of the circumferential direction of 2nd storage part 98B. The fourth side wall part 98h and the fifth side wall part 98i oppose each other in the circumferential direction. The fourth sidewall portion 98h and the fifth sidewall portion 98i extend along the axial direction. The fourth side wall portion 98h continues to the first side wall portion 98d and extends toward the second end portion 98q.
 第5の側壁部98iには、溢出部98yが設けられる。溢出部98yは、第5の側壁部98iの上端に設けられ局所的に高さが低い部分である。溢出部98yは、第2の貯留部98Bの第4の流出口98t、第5の流出口98uおよび第6の流出口98vの開口の下端より上側に位置する。したがって、オイルOは、第2の貯留部98Bにおける液位が第4の流出口98t、第5の流出口98uおよび第6の流出口98vより高くなった後に、溢出部98yから溢れ出る。溢出部の下側には、後述する副リザーバ95が設けられる。溢出部98yから溢れ出るオイルOは、副リザーバ95に貯留される。
 なお、本明細書において、「溢れ出る」とは、リザーバ内の液体が一定の液位に達した場合に、リザーバから流出することを意味する。したがって、リザーバの底部から液体が流出する場合などは、「溢れ出る」には当たらない。
An overflow portion 98y is provided in the fifth side wall portion 98i. The overflow portion 98y is a portion that is provided at the upper end of the fifth side wall portion 98i and has a locally low height. The overflow portion 98y is located above the lower ends of the openings of the fourth outlet port 98t, the fifth outlet port 98u, and the sixth outlet port 98v of the second reservoir 98B. Therefore, the oil O overflows from the overflow portion 98y after the liquid level in the second storage portion 98B becomes higher than the fourth outlet port 98t, the fifth outlet port 98u, and the sixth outlet port 98v. A sub-reservoir 95 described later is provided below the overflow portion. The oil O overflowing from the overflow portion 98y is stored in the auxiliary reservoir 95.
In this specification, “overflow” means that when the liquid in the reservoir reaches a certain liquid level, it flows out of the reservoir. Therefore, when the liquid flows out from the bottom of the reservoir, it does not hit “overflow”.
 第6の側壁部98jは、第2のリザーバ98の第2の端部98q側に位置する。第6の側壁部96jは、周方向に沿って延びる。第6の側壁部98jは、ステータ30の一方のコイルエンド31aの上側に位置する。第6の側壁部98jには、第4の流出口98t、第5の流出口98uおよび第6の流出口98vが設けられる。第4の流出口98t、第5の流出口98uおよび第6の流出口98vは、第6の側壁部98jに設けられ第2のリザーバ98の内外を貫通する孔である。第4の流出口98t、第5の流出口98uおよび第6の流出口98vは、周方向に沿って並んでいる。図11に示すように、第4の流出口98t、第5の流出口98uおよび第6の流出口98vは、それぞれ高さが異なる。したがって、本実施形態によれば、第2のリザーバ98内のオイルOの液位に応じて、オイルOを流出する流出口の数を増加させることができる。これにより、モータ2に対するオイルOの供給点を増加させて冷却範囲を広げるとともに、モータ2の供給するオイルOの供給量を増加させることができる。
 なおこのような効果は、第2のリザーバ98に設けられた複数の流出口のうち、少なくとも2つの流出口が、高さが互いに異なれば、奏することができる効果である。
The sixth side wall portion 98j is located on the second end portion 98q side of the second reservoir 98. The sixth side wall portion 96j extends along the circumferential direction. The sixth side wall portion 98j is located above the one coil end 31a of the stator 30. The sixth side wall portion 98j is provided with a fourth outlet port 98t, a fifth outlet port 98u, and a sixth outlet port 98v. The fourth outflow port 98t, the fifth outflow port 98u, and the sixth outflow port 98v are holes provided in the sixth side wall portion 98j and penetrating the inside and the outside of the second reservoir 98. The fourth outlet 98t, the fifth outlet 98u, and the sixth outlet 98v are aligned along the circumferential direction. As shown in FIG. 11, the fourth outlet 98t, the fifth outlet 98u, and the sixth outlet 98v have different heights. Therefore, according to the present embodiment, the number of outlets through which the oil O flows out can be increased according to the level of the oil O in the second reservoir 98. Thereby, the supply point of the oil O supplied to the motor 2 can be increased by increasing the supply point of the oil O to the motor 2 to widen the cooling range.
Such an effect is an effect that can be achieved if at least two of the plurality of outlets provided in the second reservoir 98 have different heights.
 第7の側壁部98nは、周方向に沿って延びる。第7の側壁部98nは、第6の側壁部98jと軸方向に対向する。第7の側壁部98nは、段差部98kに周方向に沿って連続する。第7の側壁部97nには、ステータコア32の固定ネジを収容する収容部98naが設けられる。 The seventh side wall 98n extends along the circumferential direction. The seventh side wall portion 98n is opposed to the sixth side wall portion 98j in the axial direction. The seventh side wall portion 98n continues to the stepped portion 98k along the circumferential direction. The seventh side wall portion 97n is provided with a housing portion 98na for housing the fixing screw of the stator core 32.
 本実施形態によれば、第2の油路92は、第2のリザーバ98において貯留したオイルOを複数の流出口からモータ2に供給する。それぞれの流出口は、オイルOを一定流量でモータ2に供給するため、オイルOによるモータ2の冷却効率を高めることができる。 According to the present embodiment, the second oil passage 92 supplies the oil O stored in the second reservoir 98 to the motor 2 from a plurality of outlets. Since the respective outlets supply oil O to the motor 2 at a constant flow rate, the cooling efficiency of the motor 2 by the oil O can be increased.
 本実施形態によれば、第2のリザーバ98は、複数の流出口(第1の流出口98r、第2の流出口98o、第3の流出口98x、第4の流出口98t、第5の流出口98uおよび第6の流出口98v)を有する。したがって、第2のリザーバ98は、同時に複数か所からモータ2にオイルOを供給することができ、モータ2の各部を同時に冷却できる。 According to this embodiment, the second reservoir 98 has a plurality of outlets (first outlet 98r, second outlet 98o, third outlet 98x, fourth outlet 98t, fifth outlet, An outlet 98u and a sixth outlet 98v). Therefore, the second reservoir 98 can supply the oil O to the motor 2 from a plurality of locations at the same time, and can cool each part of the motor 2 at the same time.
 本実施形態によれば、第2のリザーバ98は、軸方向に沿って延びる。また、第2のリザーバ98には、軸方向の両端部にそれぞれ流出口が設けられる。また、第2のリザーバ98の軸方向両端部に位置する流出口は、コイルエンド31aの上側に位置する。これにより、ステータ30の軸方向両端に位置するコイルエンド31aにオイルOをかけてコイル31を直接的に冷却できる。より具体的には、コイル31にかけられたオイルOは、コイル31を構成する導線同士の隙間から浸み込む。コイル31に浸みこんだオイルOは、導線管に作用する毛細管力および重力によってコイル31の全体に浸透しながらコイルから熱を奪う。さらに、オイルOは、ステータコア32の内周面の最下部に溜り、コイル31の軸方向両端より滴り落ちる。
 なお、コイルエンド31aに直接的にオイルOを供給することでオイルOを直接的に冷却するという効果は、複数の流出口のうち少なくとも2つの流出口が、第2のリザーバ98の軸方向の両端部に位置することで奏することができる効果である。
According to this embodiment, the second reservoir 98 extends along the axial direction. The second reservoir 98 is provided with outlets at both ends in the axial direction. Moreover, the outflow port located in the axial direction both ends of the 2nd reservoir | reserver 98 is located above the coil end 31a. Thereby, the coil 31 can be directly cooled by applying the oil O to the coil ends 31 a located at both axial ends of the stator 30. More specifically, the oil O applied to the coil 31 penetrates from the gap between the conducting wires constituting the coil 31. The oil O soaked in the coil 31 removes heat from the coil while penetrating the entire coil 31 by the capillary force and gravity acting on the conductor tube. Further, the oil O accumulates at the lowermost part of the inner peripheral surface of the stator core 32 and drops from the axial ends of the coil 31.
The effect of directly cooling the oil O by supplying the oil O directly to the coil end 31 a is that at least two outflow ports out of the plurality of outflow ports are in the axial direction of the second reservoir 98. This is an effect that can be achieved by being positioned at both ends.
 本実施形態によれば、第2のリザーバ98にオイルOを供給する供給部99は、軸方向において第2のリザーバ98の両端部にそれぞれ位置する流出口の間に位置する。このため、供給部99から供給されるオイルOは、両端部にそれぞれ位置する流出口からそれぞれオイルOを流出させることができる。 According to the present embodiment, the supply parts 99 that supply the oil O to the second reservoir 98 are located between the outlets located at both ends of the second reservoir 98 in the axial direction. For this reason, the oil O supplied from the supply part 99 can each flow out the oil O from the outflow port respectively located in both ends.
 (第2のリザーバの変形例)
 図13は、本実施形態に採用可能な変形例の第2のリザーバ198の斜視図である。なお、上述の実施形態と同一態様の構成要素については、同一符号を用いて説明する。
 変形例の第2のリザーバ198は、上側が開口する矩形の浅い箱型である。第2のリザーバ198は、中央貯油部198aと、中央貯油部198aの周囲に位置する4つの油供給部198bと、を有する。中央貯油部198aおよび4つの油供給部198bは、互いに仕切られる。
(Modification of second reservoir)
FIG. 13 is a perspective view of a modified second reservoir 198 that can be employed in the present embodiment. In addition, about the component of the same aspect as the above-mentioned embodiment, it demonstrates using the same code | symbol.
The second reservoir 198 of the modified example is a rectangular shallow box shape whose upper side is open. The second reservoir 198 includes a central oil storage unit 198a and four oil supply units 198b located around the central oil storage unit 198a. The central oil storage unit 198a and the four oil supply units 198b are partitioned from each other.
 中央貯油部198aは、供給部99から流入するオイルOを溜める。中央貯油部198aは、円形の底面198abと、底面198abから上側に延びる円筒壁198aaによって油供給部198bと仕切られる。 The central oil storage unit 198a stores oil O flowing from the supply unit 99. The central oil storage unit 198a is partitioned from the oil supply unit 198b by a circular bottom surface 198ab and a cylindrical wall 198aa extending upward from the bottom surface 198ab.
 4つの油供給部198bは、中央貯油部198aを囲んで配置される。油供給部198bは、略矩形状を有する。油供給部198bの互いに異なる方向に延びる2つの外壁198ba同士の角部近傍には、油供給部198bの内外と連通させる流出口198cが設けられる。2つの流出口198cのうち一方は、モータ2の軸方向に開口し、他方は、周方向に開口する。4つの油供給部198bがそれぞれ2つの流出口198cを有するため、第2のリザーバ198は合計で8つの流出口198cを有する。 The four oil supply units 198b are disposed so as to surround the central oil storage unit 198a. The oil supply unit 198b has a substantially rectangular shape. In the vicinity of the corner of the two outer walls 198ba extending in different directions of the oil supply part 198b, an outlet 198c communicating with the inside and outside of the oil supply part 198b is provided. One of the two outlets 198c opens in the axial direction of the motor 2, and the other opens in the circumferential direction. Since each of the four oil supply units 198b has two outlets 198c, the second reservoir 198 has a total of eight outlets 198c.
 第2のリザーバ198は、ステータ30の上側に底面が水平となる様に設置される。供給部99から供給されたオイルOは、中央貯油部198aを満たすと円筒壁198aaから溢れ出て4つの油供給部198bに流入する。第2のリザーバ198は、水平に設置されており、かつ円筒壁198aaが全周ともに同一高さであるため、オイルOは4つの油供給部198bに均等に流入する。オイルOは、4つの油供給部198bに溜るとともに、流出口198cから外部へ流出する。 The second reservoir 198 is installed on the upper side of the stator 30 so that the bottom surface is horizontal. The oil O supplied from the supply unit 99 overflows from the cylindrical wall 198aa when it fills the central oil storage unit 198a and flows into the four oil supply units 198b. Since the second reservoir 198 is installed horizontally and the cylindrical wall 198aa has the same height along the entire circumference, the oil O flows equally into the four oil supply portions 198b. The oil O accumulates in the four oil supply units 198b and flows out from the outlet 198c.
 第2のリザーバ198の軸方向に沿う長さは、ステータコア32の軸方向に沿う長さよりも長い。オイルOは、1つの油供給部198bから、軸方向および周方向を向く2つの流出口198cを介してモータ2に供給される。本変形例によれば、第2のリザーバ198は、複数の流出口から複数方向に向かってモータ2にオイルOを供給できる。 The length of the second reservoir 198 along the axial direction is longer than the length of the stator core 32 along the axial direction. The oil O is supplied from one oil supply unit 198b to the motor 2 through two outlets 198c facing in the axial direction and the circumferential direction. According to this modification, the second reservoir 198 can supply the oil O to the motor 2 from a plurality of outlets in a plurality of directions.
 (副リザーバ)
 図14は、副リザーバ95の概略を示すモータユニット1の断面図である。なお、図14において、ハウジング6の閉塞部63に設けられた突出部63dを仮想線により示す。また、図14において、副リザーバ95に貯留されるオイルOをドット模様で強調して示す。
 副リザーバ95は、第2の油路92において、第2のリザーバ98から溢れ出たオイルOを受ける。すなわち、第2の油路92の経路中には、オイルOを貯留する副リザーバ95が設けられる。第2のリザーバ98は、副リザーバ95に対して主リザーバとして機能する。第2のリザーバ98は、副リザーバ95に対して第2の油路92の上流側に位置する。
(Sub reservoir)
FIG. 14 is a cross-sectional view of the motor unit 1 showing an outline of the auxiliary reservoir 95. In addition, in FIG. 14, the protrusion part 63d provided in the obstruction | occlusion part 63 of the housing 6 is shown with a virtual line. Further, in FIG. 14, the oil O stored in the auxiliary reservoir 95 is highlighted with a dot pattern.
The secondary reservoir 95 receives the oil O overflowing from the second reservoir 98 in the second oil passage 92. That is, a sub reservoir 95 that stores the oil O is provided in the second oil passage 92. The second reservoir 98 functions as a main reservoir with respect to the auxiliary reservoir 95. The second reservoir 98 is located upstream of the second oil passage 92 with respect to the auxiliary reservoir 95.
 副リザーバ95は、溢出部98yの直下に位置する。すなわち、副リザーバ95と溢出部98yとは、鉛直方向から見て重なる。これにより、第2のリザーバ98から溢れ出たオイルOを副リザーバ95によって受けることができる。 The auxiliary reservoir 95 is located immediately below the overflow portion 98y. That is, the auxiliary reservoir 95 and the overflow portion 98y overlap each other when viewed from the vertical direction. As a result, the oil O overflowing from the second reservoir 98 can be received by the auxiliary reservoir 95.
 副リザーバ95は、第2のリザーバ98に対して周方向一方側に位置する第1部分95Aと、周方向他方側に位置する第2部分95Bと、を有する。第1部分95Aと第2部分95Bとは、互いに繋がる。副リザーバ95は、第1部分95Aおよび第2部分95Bにおいて、2つずつ合計4つの流出口61kを有する。4つの流出口61kは、モータ2の周方向に沿って並ぶ。また、複数の流出口61kは、互いに高さが異なる。 The sub-reservoir 95 has a first portion 95A located on one side in the circumferential direction with respect to the second reservoir 98, and a second portion 95B located on the other side in the circumferential direction. The first portion 95A and the second portion 95B are connected to each other. The secondary reservoir 95 has a total of four outlets 61k, two at each of the first portion 95A and the second portion 95B. The four outlets 61k are arranged along the circumferential direction of the motor 2. The plurality of outlets 61k have different heights.
 副リザーバ95は、モータ収容部61の内側面61gと、閉塞部63の突出部63dとの内壁面と、から構成される。モータ収容部61の内側面61gは、径方向内側を向く内周面61iと、軸方向において閉塞部63側を向く対向面61hと、を有する。対向面61hは、突出部63dの軸方向を向く面と接触する。突出部63dと対向面61hとの接触部からはオイルOが流出しない。本実施形態によれば、副リザーバ95が他の部材間の隙間として構成されるため、他の部材を用いる必要がなく、部品点数の増加を抑制できる。 The sub-reservoir 95 includes an inner side surface 61g of the motor accommodating portion 61 and an inner wall surface of the protruding portion 63d of the closing portion 63. The inner side surface 61g of the motor housing portion 61 has an inner peripheral surface 61i facing the radially inner side and a facing surface 61h facing the closing portion 63 side in the axial direction. The facing surface 61h is in contact with the surface of the protruding portion 63d facing the axial direction. Oil O does not flow out from the contact portion between the protruding portion 63d and the facing surface 61h. According to the present embodiment, since the auxiliary reservoir 95 is configured as a gap between other members, it is not necessary to use other members, and an increase in the number of parts can be suppressed.
 対向面61hには、周方向に沿って並び軸方向に凹む凹部61jが設けられる。凹部61jは、モータ収容部61の内側面61gと突出部63dの内壁面との隙間を大きくする方向に凹む。オイルOは、凹部61jから下側に流出する。すなわち、凹部61jは、流出口61kを構成する。流出口61kは、ステータ30のコイルエンド31aの上側に位置する。したがって、流出口61kから流出するオイルOは、コイルエンド31aのコイル31を冷却する。
 なお、本実施形態では、モータ収容部61の内側面61gと突出部63dの内壁面との接触部分において、内側面61gに凹部61jが設けられている場合を例示した。しかしながら、突出部63dの内壁面に凹部が設けられていてもよい。
The opposing surface 61h is provided with a recess 61j that is aligned along the circumferential direction and recessed in the axial direction. The recessed portion 61j is recessed in the direction of increasing the gap between the inner side surface 61g of the motor accommodating portion 61 and the inner wall surface of the protruding portion 63d. The oil O flows out downward from the recess 61j. That is, the recessed part 61j comprises the outflow port 61k. The outlet 61k is positioned above the coil end 31a of the stator 30. Therefore, the oil O flowing out from the outlet 61k cools the coil 31 of the coil end 31a.
In the present embodiment, the case where the inner surface 61g is provided with the recess 61j in the contact portion between the inner surface 61g of the motor housing 61 and the inner wall surface of the protruding portion 63d is illustrated. However, a recess may be provided on the inner wall surface of the protrusion 63d.
 本実施形態によれば、第2のリザーバ98に加えて副リザーバ95が設けられることで、第2のリザーバ98の流出口に加え、副リザーバ95の流出口61kからもオイルOを流出することができ、モータ2の広範囲を冷却できる。また、副リザーバ95の複数の流出口61kが、周方向に沿って並んで配置される。これによりステータ30のコイルエンド31aを幅広い範囲で冷却することができる。さらに、複数の流出口61kは、互いに高さが異なるため、副リザーバ95に溜るオイルOの液位に応じて、流出させるタイミングを異ならせることができる。 According to the present embodiment, the secondary reservoir 95 is provided in addition to the second reservoir 98, so that the oil O flows out from the outlet 61k of the secondary reservoir 95 in addition to the outlet of the second reservoir 98. The wide range of the motor 2 can be cooled. In addition, the plurality of outlets 61k of the auxiliary reservoir 95 are arranged side by side along the circumferential direction. Thereby, the coil end 31a of the stator 30 can be cooled in a wide range. Furthermore, since the plurality of outflow ports 61k are different in height from each other, the flow-out timing can be varied according to the liquid level of the oil O accumulated in the sub-reservoir 95.
 本実施形態によれば、第2のリザーバ98から溢れ出たオイルOが副リザーバ95に貯留される。ポンプ96は、モータ2が高負荷となり温度が高まった場合に、第2のリザーバ98に供給するオイルOの供給量を増加させる。したがって、モータ2が高負荷となった場合に、第2のリザーバ98からオイルOが溢れ出て、副リザーバ95の流出口61kにおいてもオイルOをモータ2に供給できる。本実施形態によれば、モータ2が高負荷となった場合に、モータ2の広い範囲をオイルOにおいて冷却できる。すなわち、副リザーバ95を設けることによって、モータ2の動作が定常状態から高負荷状態に変化した場合に、モータ2に供給するオイルOの供給範囲を自動的に広げることができる。 According to this embodiment, the oil O overflowing from the second reservoir 98 is stored in the auxiliary reservoir 95. The pump 96 increases the supply amount of oil O supplied to the second reservoir 98 when the motor 2 becomes a heavy load and the temperature rises. Therefore, when the motor 2 becomes highly loaded, the oil O overflows from the second reservoir 98, and the oil O can be supplied to the motor 2 also at the outlet 61 k of the sub reservoir 95. According to the present embodiment, when the motor 2 has a high load, the oil O can cool a wide range of the motor 2. That is, by providing the auxiliary reservoir 95, the supply range of the oil O supplied to the motor 2 can be automatically expanded when the operation of the motor 2 changes from the steady state to the high load state.
 また、本実施形態の副リザーバ95の下端は、モータ軸J2より上側に位置する。したがって、副リザーバ95の流出口61kは、モータ軸J2より上側に位置する。モータ2は、略円柱形状である。副リザーバ95の下端をモータ軸J2より上側とすることで、流出口61kから流出したオイルOを、モータ2の表面を伝わせてモータ2を冷却できる。また、モータ2は、モータ軸J2を通過する水平方向断面において最も幅広となる。副リザーバ95の下端がモータ軸J2より上側に位置することで、モータ2の表面を伝うオイルOが、モータ水平方向寸法が最も幅広な領域を通過する。これにより、モータ2を効率的に冷却できる。 Further, the lower end of the auxiliary reservoir 95 of the present embodiment is located above the motor shaft J2. Therefore, the outlet 61k of the auxiliary reservoir 95 is located above the motor shaft J2. The motor 2 has a substantially cylindrical shape. By setting the lower end of the sub-reservoir 95 above the motor shaft J2, the oil O that has flowed out from the outlet 61k can be transmitted through the surface of the motor 2 to cool the motor 2. Moreover, the motor 2 becomes the widest in the horizontal cross section which passes the motor shaft J2. Since the lower end of the sub-reservoir 95 is positioned above the motor shaft J2, the oil O transmitted through the surface of the motor 2 passes through the region where the horizontal dimension of the motor is widest. Thereby, the motor 2 can be cooled efficiently.
 (第1の油路と第2の油路の共通部分)
 図1に示すように、モータ2の駆動状態において、オイルOは、第1の油路91および第2の油路92を介してモータ2に供給される。モータ2に供給されたオイルOは、モータ2を冷却しながら下側に滴下され、モータ室81の下側の領域に溜る。モータ室81の下側の領域に溜ったオイルOは、隔壁61cに設けられた隔壁開口68を介してギヤ室82に移動する。
(Common part of the first oil passage and the second oil passage)
As shown in FIG. 1, in the driving state of the motor 2, the oil O is supplied to the motor 2 via the first oil passage 91 and the second oil passage 92. The oil O supplied to the motor 2 is dripped downward while cooling the motor 2 and accumulates in the lower region of the motor chamber 81. The oil O collected in the lower region of the motor chamber 81 moves to the gear chamber 82 through the partition opening 68 provided in the partition wall 61c.
 図15は、モータ室81側から見たハウジング6の隔壁61cの正面図である。
 隔壁開口68は、シャフト21を挿通する挿通孔61fより下側に位置する。隔壁開口68は、第1の開口部68aと、第1の開口部68aより上側に位置する第2の開口部68bとを有する。第1の開口部68aおよび第2の開口部68bは、それぞれモータ室81とギヤ室82とを連通させる。
FIG. 15 is a front view of the partition wall 61c of the housing 6 as viewed from the motor chamber 81 side.
The partition wall opening 68 is located below the insertion hole 61 f through which the shaft 21 is inserted. The partition wall opening 68 includes a first opening 68a and a second opening 68b located above the first opening 68a. The first opening 68a and the second opening 68b allow the motor chamber 81 and the gear chamber 82 to communicate with each other.
 図19に示すように、隔壁開口68の下端(すなわち、第1の開口部68aの下端)は、モータ2の静止状態におけるギヤ室82のオイルOの液面の下限高さLminより上側に位置する。したがって、隔壁開口68は、モータ2の駆動が停止する停止状態で、極力多くのオイルOをオイル溜りPに移動させることができる。 As shown in FIG. 19, the lower end of the partition opening 68 (that is, the lower end of the first opening 68a) is located above the lower limit height Lmin of the liquid level of the oil O in the gear chamber 82 when the motor 2 is stationary. To do. Therefore, the partition opening 68 can move as much oil O as possible to the oil reservoir P in a stopped state in which the driving of the motor 2 is stopped.
 図15に示すように、第1の開口部68aは、平面視円形である。第1の開口部68aの下端は、ステータ30の下端より下側に位置する。第1の開口部68aは、モータ室81の底部81aの近傍に位置する。したがって、第1の開口部68aは、モータ室81の下側の領域に溜るオイルOが略枯渇するまで、ギヤ室82にオイルOを移動させる。 As shown in FIG. 15, the first opening 68a is circular in plan view. The lower end of the first opening 68 a is located below the lower end of the stator 30. The first opening 68 a is located in the vicinity of the bottom 81 a of the motor chamber 81. Accordingly, the first opening 68a moves the oil O into the gear chamber 82 until the oil O accumulated in the lower region of the motor chamber 81 is almost exhausted.
 第1の開口部68aは、上下方向から見てモータ軸J2と重なる。また、第1の開口部68aは、周壁部61aの内周面に設けられた凹部61qに位置する。ここで、周壁部61aおよび凹部61qについて説明する。ハウジング6のモータ収容部61は、ステータ30の外周面に沿う円筒形状を有する周壁部61aを有する。周壁部61aの内周面には、径方向外側に向かって凹む凹部61qが設けられる。凹部61qは、軸方向に沿って延びる。凹部61qは、モータ軸J2の直下に位置する。すなわち、凹部61qは、上下方向から見て、モータ軸J2と重なる。周壁部61aは、円筒形状を有するため、モータ室81内のオイルOは、周壁部61aの内周面を伝って凹部61qの内部に集まる。第1の開口部68aは、凹部61qに位置するため、凹部61q内部に集めたモータ室81内のオイルOを効率的にギヤ室82に移動させることができる。 The first opening 68a overlaps the motor shaft J2 when viewed from the up-down direction. The first opening 68a is located in a recess 61q provided on the inner peripheral surface of the peripheral wall 61a. Here, the peripheral wall part 61a and the recessed part 61q are demonstrated. The motor accommodating portion 61 of the housing 6 has a peripheral wall portion 61 a having a cylindrical shape along the outer peripheral surface of the stator 30. The inner peripheral surface of the peripheral wall portion 61a is provided with a concave portion 61q that is recessed outward in the radial direction. The recess 61q extends along the axial direction. The recess 61q is located immediately below the motor shaft J2. That is, the recess 61q overlaps the motor shaft J2 when viewed from the up-down direction. Since the peripheral wall 61a has a cylindrical shape, the oil O in the motor chamber 81 gathers inside the recess 61q along the inner peripheral surface of the peripheral wall 61a. Since the first opening 68a is located in the recess 61q, the oil O in the motor chamber 81 collected in the recess 61q can be efficiently moved to the gear chamber 82.
 第2の開口部68bは、第1の開口部68aより上側に位置する。第2の開口部68bは、平面視で水平方向を長手方向とする矩形である。第2の開口部68bは、第1の開口部68aより開口面積が大きい。また、第2の開口部68bは、第1の開口部68aと比較して水平方向に沿う幅が大きい。第2の開口部68bは、水平方向に沿って延びる下端68cを有する。 The second opening 68b is located above the first opening 68a. The second opening 68b is a rectangle whose longitudinal direction is the horizontal direction in plan view. The second opening 68b has a larger opening area than the first opening 68a. The second opening 68b has a larger width along the horizontal direction than the first opening 68a. The second opening 68b has a lower end 68c extending along the horizontal direction.
 モータ2が駆動することで、油路90(すなわち、第1の油路91および第2の油路92)からモータ2に供給されるオイルOの単位時間当たりの供給量が増加する。これにより、モータ室81の下側の領域に溜るオイルOの液位が上昇する。隔壁開口68において、モータ室81の下側の領域に溜るオイルOの液面より下側に位置する領域を第1の領域Sと呼び、液面より上側に位置する領域を第2の領域Rと呼ぶ。隔壁開口68は、第1の領域SにおいてオイルOをギヤ室82に移動させる。ギヤ室82の下側の領域に溜ったオイルOの液面が上昇した際に、第1の領域Sの面積が大きくなり、第2の領域Rの面積が小さくなる。第1の領域Sの面積が大きくなると、隔壁開口68を介してモータ室81からギヤ室82へのオイルOの移動量が多くなる。 When the motor 2 is driven, the supply amount of oil O supplied from the oil passage 90 (that is, the first oil passage 91 and the second oil passage 92) to the motor 2 per unit time increases. As a result, the level of the oil O accumulated in the lower region of the motor chamber 81 increases. In the partition opening 68, a region located below the liquid level of the oil O accumulated in the region below the motor chamber 81 is referred to as a first region S, and a region located above the liquid level is a second region R. Call it. The partition opening 68 moves the oil O to the gear chamber 82 in the first region S. When the level of the oil O accumulated in the lower region of the gear chamber 82 rises, the area of the first region S increases and the area of the second region R decreases. When the area of the first region S increases, the amount of movement of the oil O from the motor chamber 81 to the gear chamber 82 through the partition opening 68 increases.
 本実施形態の隔壁開口68は、モータ室81のオイルOの液面が高くなった際、隔壁開口68を介してモータ室81からギヤ室82へのオイルOの移動量が多くなるように配置される。このため、モータ室81内のオイルOの液位が高くなり過ぎることが抑制される。すなわち、モータ室81内のロータ20が、オイルOに浸かったり過剰にオイルOをかき上げたりすることを抑制できる。したがって、モータ2の回転効率が、オイルOの流動抵抗により低下することを抑制できる。
 加えて、本実施形態によれば、モータ室81のオイルOの液面の高さに応じて、モータ室81内のオイルOをギヤ室82側に移動させることで、モータユニット1内のオイルOを有効利用することができる。これにより、オイルOの使用量を抑制して、モータユニット1を軽量化できるのみならず、オイルOの冷却に要するエネルギー効率を高めることができる。
The partition opening 68 of the present embodiment is arranged so that the amount of movement of the oil O from the motor chamber 81 to the gear chamber 82 through the partition opening 68 increases when the level of the oil O in the motor chamber 81 becomes high. Is done. For this reason, it is suppressed that the liquid level of the oil O in the motor chamber 81 becomes too high. That is, it is possible to prevent the rotor 20 in the motor chamber 81 from being immersed in the oil O or excessively lifting the oil O. Therefore, it can suppress that the rotational efficiency of the motor 2 falls by the flow resistance of the oil O. FIG.
In addition, according to this embodiment, the oil in the motor unit 1 is moved to the gear chamber 82 side by moving the oil O in the motor chamber 81 to the gear chamber 82 side according to the height of the liquid level of the oil O in the motor chamber 81. O can be used effectively. Thereby, the usage-amount of the oil O can be suppressed, the motor unit 1 can be reduced in weight, and the energy efficiency required for cooling the oil O can be increased.
 図19に示すように、第2の開口部68bの下端は、モータ2の静止および駆動に関わらず、ギヤ室82のオイルOの液面の高さ(上限高さLminおよび下限高さLmin)より上側に位置する。したがって、第2の開口部68bが、ギヤ室82側で液没することがない。第2の開口部68bは、ギヤ室82の液位に関わらずオイルOをギヤ室82に移動でき、ロータ20がオイルOに浸かることを抑制できる。 As shown in FIG. 19, the lower end of the second opening 68b is the height of the oil level in the gear chamber 82 (upper limit height Lmin and lower limit height Lmin) regardless of whether the motor 2 is stationary or driven. Located on the upper side. Therefore, the second opening 68b is not submerged on the gear chamber 82 side. The second opening 68 b can move the oil O to the gear chamber 82 regardless of the liquid level of the gear chamber 82, and can prevent the rotor 20 from being immersed in the oil O.
 モータ室81の下側に溜るオイルOの液面の上昇に伴い隔壁開口68を介して移動するオイルOの移動量の変化についてより具体的に説明する。ここで、モータ室81の下側に溜るオイルOの液位であって、第2の開口部68bの下端68cに達する液位を第1の液位OLとする。すなわち、第2の開口部68bの下端は、第1の液位OLに位置する。第1の液位OLは、ステータ30の下端より上側かつロータ20の下端より下側に位置する。 The change in the amount of movement of the oil O that moves through the partition opening 68 as the liquid level of the oil O that accumulates below the motor chamber 81 rises will be described more specifically. Here, the liquid level of the oil O accumulated below the motor chamber 81 and reaching the lower end 68c of the second opening 68b is defined as a first liquid level OL. That is, the lower end of the second opening 68b is located at the first liquid level OL. The first liquid level OL is located above the lower end of the stator 30 and below the lower end of the rotor 20.
 図16は、モータ室81の下側に溜るオイルOの液位の高さと、第1の領域Sの面積との関係を示すグラフである。第1の領域Sの面積は、隔壁開口68から流出するオイルOの流量と相関関係(略比例の関係)がある。 FIG. 16 is a graph showing the relationship between the height of the liquid level of the oil O accumulated under the motor chamber 81 and the area of the first region S. The area of the first region S has a correlation (substantially proportional relationship) with the flow rate of the oil O flowing out from the partition opening 68.
 オイルOは、モータ2の駆動とともにモータ2に供給され、モータ室81の下側の領域に溜り始める。モータ室81の下側の領域に溜ったオイルOは、第1の開口部68aを介して、モータ室81からギヤ室82にオイルOが移動する。モータ2に供給される単位時間当たりのオイルOの供給量が、第1の開口部68aを介してモータ室81からギヤ室82に移動するオイルOの流量を超えると、モータ室81の下側の領域に溜るオイルOの液位が上昇する。液位が、第1の液位OLに達すると、オイルOは、第1の開口部68aに加えて、第2の開口部68bからも流出する。第2の開口部68bは、第1の開口部68aと比較して、水平方向に沿う幅が大きいため、液位が第1の液位OLに達する前後で第1の領域Sの面積が急増する。これに伴い、隔壁開口68を介してモータ室81からギヤ室82に流入するオイルOの流量が急増する。上述したように、第1の液位OLは、ロータ20の下端より下側に設定される。したがって、本実施形態によれば、モータ室81内のロータ20の回転効率が、オイルOの流動抵抗により低下することを抑制できる。 Oil O is supplied to the motor 2 as the motor 2 is driven, and begins to accumulate in the lower region of the motor chamber 81. The oil O accumulated in the lower region of the motor chamber 81 moves from the motor chamber 81 to the gear chamber 82 through the first opening 68a. When the supply amount of the oil O per unit time supplied to the motor 2 exceeds the flow rate of the oil O moving from the motor chamber 81 to the gear chamber 82 via the first opening 68a, the lower side of the motor chamber 81 The level of the oil O accumulated in the region increases. When the liquid level reaches the first liquid level OL, the oil O flows out from the second opening 68b in addition to the first opening 68a. Since the second opening 68b is wider in the horizontal direction than the first opening 68a, the area of the first region S rapidly increases before and after the liquid level reaches the first liquid level OL. To do. Along with this, the flow rate of the oil O flowing from the motor chamber 81 into the gear chamber 82 via the partition opening 68 increases rapidly. As described above, the first liquid level OL is set below the lower end of the rotor 20. Therefore, according to this embodiment, it can suppress that the rotational efficiency of the rotor 20 in the motor chamber 81 falls by the flow resistance of the oil O. FIG.
 第2の開口部68bの水平方向の幅は、液位が第1の液位OLより上側に達した際に隔壁開口68から流出するオイルOの流量が、油路90においてモータ2に供給されるオイルOより多くなる幅とすることが好ましい。これにより、モータ室81の下側の領域に溜るオイルOの液位が、第1の液位OLに対して大幅に超えることを抑制し、ロータ20がオイルOに浸かることを抑制できる。 The horizontal width of the second opening 68b is such that the flow rate of the oil O flowing out from the partition opening 68 when the liquid level reaches the upper side of the first liquid level OL is supplied to the motor 2 in the oil passage 90. It is preferable that the width be larger than the oil O. Thereby, it can suppress that the liquid level of the oil O which accumulates in the area | region below the motor chamber 81 significantly exceeds the 1st liquid level OL, and can suppress that the rotor 20 is immersed in the oil O. FIG.
 図1に示すように、第1の油路91は、かき上げ経路91aとロータ内経路91dとを含む。かき上げ経路91aは、差動装置5によるオイル)のかき上げによってギヤ室82からモータ室81へオイルOを移動させる。差動装置5によってかき上げられるオイルOの量は、差動装置5の回転数に依存する。このため、かき上げ経路91aは、車速に依ってモータ室81へのオイルOの移動量を増減させる。また、ロータ内経路91dは、ロータ20の遠心力によってオイルOをギヤ室82側からモータ室81側にオイルOを吸い込む。遠心力は、ロータ20の回転数に依存する。したがって、ロータ内経路91dは、車速に依ってモータ室81へのオイルOの移動量を増減させる。すなわち、第1の油路91は、車速に依ってモータ室81へのオイルOの移動量が増減する。 As shown in FIG. 1, the first oil passage 91 includes a scooping path 91a and an in-rotor path 91d. The scooping path 91 a moves the oil O from the gear chamber 82 to the motor chamber 81 by scooping up the oil by the differential device 5. The amount of oil O pumped up by the differential device 5 depends on the rotational speed of the differential device 5. For this reason, the lifting path 91a increases or decreases the amount of movement of the oil O to the motor chamber 81 depending on the vehicle speed. Further, the in-rotor path 91 d sucks the oil O from the gear chamber 82 side to the motor chamber 81 side by the centrifugal force of the rotor 20. The centrifugal force depends on the rotational speed of the rotor 20. Therefore, the in-rotor path 91d increases or decreases the amount of movement of the oil O to the motor chamber 81 depending on the vehicle speed. That is, in the first oil passage 91, the amount of movement of the oil O to the motor chamber 81 increases or decreases depending on the vehicle speed.
 一方で、第2の油路92は、ポンプ(電動ポンプ)96によってギヤ室82からモータ室81にオイルOを移動させる。ポンプ96にオイルOの供給量は、例えばモータ2の温度測定結果に基づいて制御される。したがって、第2の油路92は、車速に依らないでモータ室81へのオイルOの移動量が増減する。 On the other hand, the second oil passage 92 moves the oil O from the gear chamber 82 to the motor chamber 81 by a pump (electric pump) 96. The amount of oil O supplied to the pump 96 is controlled based on the temperature measurement result of the motor 2, for example. Therefore, in the second oil passage 92, the amount of movement of the oil O to the motor chamber 81 increases or decreases without depending on the vehicle speed.
 第2の油路92は、モータ2が静止時において、モータ2へのオイルOの供給を停止する。また、第2の油路92は、モータ2の起動時にモータ室81へのオイルOの移動を開始させる。このため停止時において、ギヤ室82のオイル溜りPの液面を高めることができる。結果として、起動直後のモータ2の回転によって、第2のギヤ42、第3のギヤ43およびリングギヤ51をオイル溜りP内で回転させて、歯面にオイルOを行き渡らせることができる。 The second oil passage 92 stops the supply of oil O to the motor 2 when the motor 2 is stationary. Further, the second oil passage 92 starts the movement of the oil O to the motor chamber 81 when the motor 2 is started. For this reason, at the time of a stop, the liquid level of the oil sump P of the gear chamber 82 can be raised. As a result, the second gear 42, the third gear 43, and the ring gear 51 can be rotated in the oil sump P by the rotation of the motor 2 immediately after startup, and the oil O can be spread over the tooth surface.
 本実施形態によれば、第2の油路92は、車両の速度と無関係にオイル溜りPからオイルOを引き上げる。このため、第2の油路92は、車両が低速走行する場合であっても、オイル溜りPの油面の高さを下降させることができる。これによって、低速走行時において、ギヤ室82内のギヤの回転効率がオイル溜りPのオイルOによって低下させられることを抑制できる。 According to the present embodiment, the second oil passage 92 pulls up the oil O from the oil sump P regardless of the speed of the vehicle. For this reason, the second oil passage 92 can lower the oil level of the oil sump P even when the vehicle travels at a low speed. Accordingly, it is possible to prevent the rotation efficiency of the gear in the gear chamber 82 from being lowered by the oil O in the oil reservoir P during low speed traveling.
 (隔壁開口の変形例)
 図17は、本実施形態に採用可能な変形例の隔壁開口168の正面図である。なお、上述の実施形態と同一態様の構成要素については、同一符号を用いて説明する。
 変形例の隔壁開口168は、上下方向に沿って延びる長孔部168aと、長孔部168aの上側において長孔部168aと繋がる幅広の拡張部168bと、を有する。長孔部168aの下端は、モータ室81の底部81aの近傍に位置する。長孔部168aは、上下方向から見てモータ軸J2と重なる。拡張部168bは、長孔部168aに対して水平方向に沿って幅広である。拡張部168bは、平面視で水平方向を長手方向とする矩形である。拡張部168bは、水平方向に沿って延びる下端168cを有する。下端168cは、上述の第1の液位OLに位置する。
 隔壁開口168において、オイルOの液面より下側に位置する領域を第1の領域Sと液面より上側に位置する領域を第2の領域Rと呼ぶ。
(Modification of partition opening)
FIG. 17 is a front view of a partition wall opening 168 of a modified example that can be employed in the present embodiment. In addition, about the component of the same aspect as the above-mentioned embodiment, it demonstrates using the same code | symbol.
The partition wall opening 168 of the modified example includes a long hole portion 168a extending along the vertical direction and a wide extension portion 168b connected to the long hole portion 168a on the upper side of the long hole portion 168a. The lower end of the long hole portion 168 a is located in the vicinity of the bottom portion 81 a of the motor chamber 81. The long hole portion 168a overlaps with the motor shaft J2 when viewed from the vertical direction. The extended portion 168b is wider along the horizontal direction with respect to the long hole portion 168a. The extended portion 168b is a rectangle having a horizontal direction as a longitudinal direction in plan view. The extended portion 168b has a lower end 168c extending along the horizontal direction. The lower end 168c is located at the first liquid level OL described above.
In the partition opening 168, a region located below the liquid level of the oil O is referred to as a first region S and a region located above the liquid level is referred to as a second region R.
 図18は、本変形例においてモータ室81の下側に溜るオイルOの液位の高さと、第1の領域Sの面積との関係を示すグラフである。
 本変形例において液位が、第1の液位OLに達すると、オイルOは、長孔部168aに加えて拡張部168bからも流出し、第1の領域Sの面積が急増する。これに伴い、隔壁開口168を介してモータ室81からギヤ室82に流入するオイルOの流量が急増する。第1の液位OLは、ロータ20の下端より下側に設定されるためロータ20の回転効率が、オイルOの流動抵抗により低下することを抑制できる。
FIG. 18 is a graph showing the relationship between the height of the liquid level of the oil O accumulated below the motor chamber 81 and the area of the first region S in this modification.
In the present modification, when the liquid level reaches the first liquid level OL, the oil O flows out of the extended portion 168b in addition to the long hole portion 168a, and the area of the first region S increases rapidly. Along with this, the flow rate of the oil O flowing from the motor chamber 81 into the gear chamber 82 through the partition opening 168 increases rapidly. Since the first liquid level OL is set below the lower end of the rotor 20, the rotation efficiency of the rotor 20 can be suppressed from decreasing due to the flow resistance of the oil O.
 (オイル溜りの液面高さ)
 図1に示すように、第1の油路91は、モータ2の駆動状態において、ポンプ96が駆動してオイル溜りPからモータ2にオイルOを供給する。また、第1の油路91は、モータ2の駆動状態において、差動装置5のかき上げによってオイル溜りPからオイルOを第1のリザーバ93に移動させ、モータ2の内部にオイルOを供給する。すなわち、第1の油路91および第2の油路92は、ともにモータ2の駆動状態において、オイル溜りPからモータ2にオイルOを供給する。したがって、モータ2の駆動状態において、ギヤ室82の下側の領域に位置するオイル溜りPの液面は下降する。また、モータ2に供給されたオイルOは、モータ室81の下側の空間に溜るため、モータ2の駆動状態において、モータ室81の下側の領域に溜るオイルOの液面は、上昇する。
(Liquid level of oil reservoir)
As shown in FIG. 1, the first oil passage 91 supplies the oil O from the oil reservoir P to the motor 2 when the pump 96 is driven in the driving state of the motor 2. Further, the first oil passage 91 supplies the oil O to the inside of the motor 2 by moving the oil O from the oil reservoir P to the first reservoir 93 when the differential device 5 is driven up in the driving state of the motor 2. To do. That is, both the first oil passage 91 and the second oil passage 92 supply oil O from the oil reservoir P to the motor 2 when the motor 2 is driven. Accordingly, in the driving state of the motor 2, the liquid level of the oil sump P located in the lower region of the gear chamber 82 is lowered. In addition, since the oil O supplied to the motor 2 is accumulated in the lower space of the motor chamber 81, the level of the oil O accumulated in the lower region of the motor chamber 81 rises when the motor 2 is driven. .
 一方で、モータ2の停止状態においては、第1の油路91および第2の油路92は、モータ2へのオイルOの供給を停止する。これによって、モータ2の下方に滴下したオイルOは、一旦モータ室81の下側の領域に溜り、隔壁開口68を介して、ギヤ室82の下側の領域のオイル溜りPに移動する。したがって、モータ2の停止状態において、モータ室の下側の領域に溜るオイルOの液面は下降し、ギヤ室82の下側の領域に位置するオイル溜りPの液面は上昇する。 On the other hand, when the motor 2 is stopped, the first oil passage 91 and the second oil passage 92 stop supplying the oil O to the motor 2. As a result, the oil O dripped below the motor 2 temporarily accumulates in the lower region of the motor chamber 81 and moves to the oil reservoir P in the lower region of the gear chamber 82 through the partition opening 68. Accordingly, when the motor 2 is stopped, the level of the oil O accumulated in the lower region of the motor chamber is lowered, and the level of the oil reservoir P located in the lower region of the gear chamber 82 is raised.
 図19は、ギヤ室82の内部に位置する各ギヤの配置を示す側面図である。なお、図19において、ハウジング6のギヤ収容部62および各軸を支持するベアリングは、省略されている。
 図19に示すように、本実施形態によれば、オイル溜りPに溜るオイルOの液面の高さは、オイルOが油路90(第1の油路91および第2の油路92)に供給されることで上限高さLmaxと下限高さLminの間で変動する。図1に示すように、第1の油路91には、第1のリザーバ93が設けられる。また、第2の油路92には、第2のリザーバ98および副リザーバ95(図1において省略、図14参照)が設けられる。さらに、第1の油路91と第2の油路92が合流するモータ室81の下側の領域には、オイルOが溜る。このように、第1の油路91および第2の油路92の経路中には、オイルOが溜る箇所が数カ所設けられる。これにより、モータ2にオイルOを供給することでオイル溜りPに溜るオイルOが、上述の経路中のリザーバ等に移動し、オイル溜りPの液面が下降する。結果として、ギヤ室82内のギヤを、オイル溜りPのオイルOから露出させて、ギヤの回転効率を高めることができる。
FIG. 19 is a side view showing the arrangement of each gear located inside the gear chamber 82. In FIG. 19, the gear housing portion 62 of the housing 6 and the bearing that supports each shaft are omitted.
As shown in FIG. 19, according to the present embodiment, the height of the liquid level of the oil O accumulated in the oil reservoir P is such that the oil O is the oil passage 90 (the first oil passage 91 and the second oil passage 92). To the upper limit height Lmax and the lower limit height Lmin. As shown in FIG. 1, the first oil passage 91 is provided with a first reservoir 93. The second oil passage 92 is provided with a second reservoir 98 and a secondary reservoir 95 (omitted in FIG. 1, refer to FIG. 14). Further, oil O accumulates in the lower region of the motor chamber 81 where the first oil passage 91 and the second oil passage 92 merge. As described above, in the first oil passage 91 and the second oil passage 92, several places where the oil O is accumulated are provided. As a result, the oil O accumulated in the oil reservoir P by supplying the oil O to the motor 2 moves to the reservoir or the like in the above-described path, and the liquid level of the oil reservoir P is lowered. As a result, the gear in the gear chamber 82 is exposed from the oil O in the oil reservoir P, and the rotation efficiency of the gear can be increased.
 図19に示すように、中間軸J4を中心として回転する一対のギヤ(第2のギヤ42および第3のギヤ43)のうち大径でありモータ2に接続される第2のギヤ42の下端は、液面の上限高さLmaxより下側に位置する。また、第2のギヤ42の下端は、液面の下限高さLminより上側に位置する。
 同様に、中間軸J4を中心として回転する一対のギヤ(第2のギヤ42および第3のギヤ43)のうち小径であり差動装置5に接続される第3のギヤ43の下端は、液面の上限高さLmaxより下側に位置する。また、第3のギヤ43の下端は、液面の下限高さLminより上側に位置する。
As shown in FIG. 19, the lower end of the second gear 42 that has a large diameter and is connected to the motor 2 out of a pair of gears (the second gear 42 and the third gear 43) that rotate about the intermediate shaft J <b> 4. Is located below the upper limit height Lmax of the liquid level. The lower end of the second gear 42 is located above the lower limit height Lmin of the liquid level.
Similarly, the lower end of the third gear 43 having a small diameter out of the pair of gears (the second gear 42 and the third gear 43) rotating around the intermediate shaft J4 is connected to the differential device 5. It is located below the upper limit height Lmax of the surface. The lower end of the third gear 43 is located above the lower limit height Lmin of the liquid level.
 オイル溜りPの液面が上限高さLmaxとなるのは、モータ2が停止しオイル溜りPからモータ2へのオイルOの供給が停止した状態である。本実施形態によれば、モータ2の停止状態において、第2のギヤ42および第3のギヤ43の一部が、オイル溜りPのオイルOに浸かった状態とすることができる。これにより、モータ2を駆動させた際に、第2のギヤ42および第3のギヤ43の歯面にオイルOを即座に行き渡らせることができ、ギヤ間の伝達効率を高めることができる。 The liquid level of the oil reservoir P reaches the upper limit height Lmax when the motor 2 is stopped and the supply of oil O from the oil reservoir P to the motor 2 is stopped. According to the present embodiment, the second gear 42 and a part of the third gear 43 can be immersed in the oil O of the oil reservoir P when the motor 2 is stopped. Thereby, when the motor 2 is driven, the oil O can be immediately distributed to the tooth surfaces of the second gear 42 and the third gear 43, and the transmission efficiency between the gears can be increased.
 オイル溜りPの液面が下限高さLminとなるのは、モータ2が高負荷で駆動しオイル溜りPからモータ2へのオイルOの供給が最も促進された状態である。本実施形態によれば、モータ2の駆動状態において、第2のギヤ42および第3のギヤ43が、オイル溜りPの液面より上側に位置するため、オイルOの流動抵抗に起因する第2のギヤ42および第3のギヤ43の回転効率の低下を抑制できる。これにより、モータユニット1の駆動効率を高めることできる。 The liquid level of the oil reservoir P reaches the lower limit height Lmin when the motor 2 is driven at a high load and the supply of oil O from the oil reservoir P to the motor 2 is most promoted. According to the present embodiment, since the second gear 42 and the third gear 43 are positioned above the liquid level of the oil reservoir P in the driving state of the motor 2, the second gear 42 is caused by the flow resistance of the oil O. The reduction in rotational efficiency of the gear 42 and the third gear 43 can be suppressed. Thereby, the drive efficiency of the motor unit 1 can be improved.
 差動装置5に設けられ減速装置4に接続され差動軸J5を中心として回転するリングギヤ51は、液面の上限高さLmaxおよび下限高さLminにおいて、下端が液面より下側に位置する。
 本実施形態によれば、オイル溜りPの液面の変動に関わらず、リングギヤ51の少なくとも一部は、オイル溜りPのオイルOの液面より下側に位置する。したがって、モータ2が駆動してオイル溜りPの液位が低くなった場合であっても、リングギヤ51がオイル溜りPからオイルOをかき上げることができ、オイルOをギヤ室82内の各ギヤの歯面にオイルOを供給し、各ギヤ間のトルクの伝達効率を高めることができる。
The ring gear 51 that is provided in the differential device 5 and is connected to the speed reducer 4 and rotates about the differential axis J5 has a lower end positioned below the liquid level at the upper limit height Lmax and the lower limit height Lmin of the liquid level. .
According to the present embodiment, regardless of the fluctuation of the liquid level of the oil reservoir P, at least a part of the ring gear 51 is located below the liquid level of the oil O in the oil reservoir P. Therefore, even when the motor 2 is driven and the liquid level of the oil sump P becomes low, the ring gear 51 can scoop up the oil O from the oil sump P, and the oil O is removed from each gear in the gear chamber 82. The oil O can be supplied to the tooth surfaces of the gears to increase the torque transmission efficiency between the gears.
 (油路の総括)
 図1を参照して、モータユニット1の駆動に伴う油路90中のオイルOの流れについて説明する。
 モータユニット1は、ハイブリッド自動車又はプラグインハイブリッド自動車に搭載される場合、エンジンのみで駆動するエンジンモード、モータ2のみで駆動するモータモードおよびエンジンとモータの両方で駆動するハイブリッドモードのうち何れか1つのモードで走行する。
(Overview of oil passage)
With reference to FIG. 1, the flow of the oil O in the oil passage 90 accompanying the drive of the motor unit 1 is demonstrated.
When the motor unit 1 is mounted on a hybrid vehicle or a plug-in hybrid vehicle, the motor unit 1 is any one of an engine mode driven only by the engine, a motor mode driven only by the motor 2, and a hybrid mode driven by both the engine and the motor. Drive in one mode.
 エンジンモードにおいて、モータ2は停止するが、差動装置5はエンジンによって駆動されるため、オイル溜りPからオイルOがかき上げられる。かき上げられたオイルOは、第1のリザーバ93に溜るが、ロータ20が回転しないためステータ30に向かって飛散されない。また、エンジンモードにおいては、ポンプ96は駆動せず、第2の油路92にオイルOは供給されない。 In the engine mode, the motor 2 is stopped, but the differential 5 is driven by the engine, so that the oil O is pumped up from the oil reservoir P. The oil O that has been pumped up is accumulated in the first reservoir 93 but is not scattered toward the stator 30 because the rotor 20 does not rotate. In the engine mode, the pump 96 is not driven and the oil O is not supplied to the second oil passage 92.
 モータモードおよびハイブリッドモードにおいて、車両が坂道を登るような場合、モータ2の出力が増加し、モータ2の発熱量が多くなる。このような場合は、ポンプ96の吐出量を増やして、ステータ30へより多くのオイルOを供給することで、冷却を加速させる。一方で、車両が坂道を下る場合(すなわち、モータ2に負荷がかからない場合)、または車両の始動時や寒冷地での使用時のようにモータ2が高温状態に達していない場合には、ポンプ96の吐出量が減らされる。 In the motor mode and the hybrid mode, when the vehicle climbs a hill, the output of the motor 2 increases and the amount of heat generated by the motor 2 increases. In such a case, cooling is accelerated by increasing the discharge amount of the pump 96 and supplying more oil O to the stator 30. On the other hand, when the vehicle goes down a slope (that is, when the motor 2 is not loaded), or when the motor 2 has not reached a high temperature, such as when the vehicle is started or used in a cold region, the pump The discharge amount of 96 is reduced.
 第2の油路92は、モータ2の温度、車両の駆動モード等に応じてポンプ96によるモータ2への供給量を調整できる。本実施形態によれば、モータ2の冷却に要するエネルギーを効率化できる。このような効果は、ポンプ96が電気駆動式のポンプである場合に奏することができる。
 ポンプ96の吐出量の管理は、モータ2に設けた温度センサーが検出した温度データに基づいて行うことができる。また、車両の運行履歴、運転状態、車両の姿勢、外気温度、乗員及び荷物の重量等の各データを交えると、モータ2の温度変化を予測することができる。この温度変化の予測値に基づき、モータ2が高温状態にならないように管理してもよい。
The second oil passage 92 can adjust the supply amount to the motor 2 by the pump 96 according to the temperature of the motor 2, the driving mode of the vehicle, and the like. According to this embodiment, the energy required for cooling the motor 2 can be made efficient. Such an effect can be exhibited when the pump 96 is an electrically driven pump.
The discharge amount of the pump 96 can be managed based on temperature data detected by a temperature sensor provided in the motor 2. In addition, a change in the temperature of the motor 2 can be predicted by using data such as the vehicle operation history, the driving state, the vehicle posture, the outside air temperature, the weight of the passenger and the luggage. You may manage so that the motor 2 may not become a high temperature state based on the predicted value of this temperature change.
 本実施形態によれば、油路90は、オイルOを複数か所からステータ30に供給するため、ステータ30全体を効率的に冷却できる。また、本実施形態によれば、オイルOは、冷却油および潤滑油として機能する。したがって、冷却油としての経路と潤滑油としての経路を別途設ける必要がなく、低コスト化を図ることができる。 According to this embodiment, since the oil passage 90 supplies the oil O to the stator 30 from a plurality of locations, the entire stator 30 can be efficiently cooled. Moreover, according to this embodiment, the oil O functions as cooling oil and lubricating oil. Therefore, there is no need to separately provide a path as a cooling oil and a path as a lubricating oil, and the cost can be reduced.
 (油路中のコンタミ対策)
 モータユニット1の冷却に使用するオイルOは、差動装置5および減速装置4の潤滑に使用される。したがって、オイルOには、機械接触によって発生する金属粉等のコンタミが混入する虞がある。コンタミは、第1の油路91および第2の油路92においてオイルOの流動性を悪化させる虞がある。コンタミは、オイルOの定期的な交換によって除去される。また、第1の油路91および第2の油路92の何れか一方又は両方に、コンタミを捕捉する手段を設けてもよい。一例として、図9に示すように、第2のリザーバ98に、永久磁石98mを設置してコンタミを磁気的に捕捉してコンタミの拡散を抑制してもよい。この場合、オイルOの流動性の悪化を抑制できる。
(Measures against contamination in oil passages)
Oil O used for cooling the motor unit 1 is used for lubricating the differential device 5 and the speed reducer 4. Therefore, the oil O may be contaminated with contaminants such as metal powder generated by mechanical contact. Contamination may deteriorate the fluidity of the oil O in the first oil passage 91 and the second oil passage 92. Contamination is removed by periodic replacement of the oil O. Further, a means for capturing contamination may be provided in one or both of the first oil passage 91 and the second oil passage 92. As an example, as shown in FIG. 9, a permanent magnet 98m may be installed in the second reservoir 98 to capture the contamination magnetically and suppress the diffusion of the contamination. In this case, deterioration of the fluidity of the oil O can be suppressed.
 (各軸の配置)
 モータ軸J2、中間軸J4および差動軸J5は、水平方向に沿って互いに平行に延びる。モータ軸J2に対し中間軸J4および差動軸J5は、下側に位置する。したがって、減速装置4および差動装置5は、モータ2より下側に位置する。
(Arrangement of each axis)
The motor shaft J2, the intermediate shaft J4, and the differential shaft J5 extend in parallel to each other along the horizontal direction. The intermediate shaft J4 and the differential shaft J5 are located on the lower side with respect to the motor shaft J2. Therefore, the speed reduction device 4 and the differential device 5 are located below the motor 2.
 モータ軸J2の軸方向から見て、モータ軸J2と中間軸J4とを仮想的に結ぶ線分を第1の線分L1とし、中間軸J4と差動軸J5とを仮想的に結ぶ線分を第2の線分L2とし、モータ軸J2と差動軸J5とを仮想的に結ぶ線分を第3の線分L3とする。 As viewed from the axial direction of the motor shaft J2, a line segment that virtually connects the motor shaft J2 and the intermediate shaft J4 is defined as a first line segment L1, and a line segment that virtually connects the intermediate shaft J4 and the differential axis J5. Is a second line segment L2, and a line segment that virtually connects the motor shaft J2 and the differential shaft J5 is a third line segment L3.
 本実施形態によれば、第2の線分L2は、略水平方向に沿って延びる。すなわち、中間軸J4と差動軸J5は、略水平方向に並んでいる。したがって減速装置4と差動装置5とを水平方向に沿って並べることができ、モータユニット1の上下方向の寸法を小さくすることができる。また、差動装置5によりかき上げられたオイルOを、効率的に減速装置4に当てることができる。これにより、減速装置4を構成するギヤの歯面にオイルOを供給して、ギヤの伝達効率を高めることができる。なお、中間軸J4を中心として回転するギヤ(第2のギヤ42および第3のギヤ43)の直径は、差動軸J5を中心として回転するリングギヤ51の直径より小さい。本実施形態によれば、第2の線分L2が略水平方向に沿て延びるため、中間軸J4と差動軸J5とが略水平方向に沿って配置される。したがって、オイル溜りPの液面の高さによっては、リングギヤ51のみがオイル溜りPに浸かり、第2のギヤ42および第3のギヤ43がオイル溜りPに浸らない状態となる。したがって、リングギヤ51によりオイル溜りPのオイルOをかき上げつつ、第2のギヤ42および第3のギヤ43の回転効率の低下を抑制することができる。
 なお、本実施形態において、第2の線分L2が略水平方向とは、水平方向に対して±10°以内の方向である。
According to this embodiment, the second line segment L2 extends along the substantially horizontal direction. That is, the intermediate shaft J4 and the differential shaft J5 are arranged in a substantially horizontal direction. Therefore, the speed reduction device 4 and the differential device 5 can be arranged along the horizontal direction, and the vertical dimension of the motor unit 1 can be reduced. Further, the oil O pumped up by the differential device 5 can be efficiently applied to the reduction gear 4. Thereby, the oil O can be supplied to the tooth surface of the gear constituting the reduction gear 4, and the transmission efficiency of the gear can be increased. The diameters of the gears (second gear 42 and third gear 43) that rotate about the intermediate shaft J4 are smaller than the diameter of the ring gear 51 that rotates about the differential shaft J5. According to this embodiment, since the second line segment L2 extends along the substantially horizontal direction, the intermediate axis J4 and the differential axis J5 are arranged along the substantially horizontal direction. Therefore, depending on the height of the liquid level of the oil reservoir P, only the ring gear 51 is immersed in the oil reservoir P, and the second gear 42 and the third gear 43 are not immersed in the oil reservoir P. Accordingly, it is possible to suppress a decrease in the rotational efficiency of the second gear 42 and the third gear 43 while the ring gear 51 lifts up the oil O of the oil reservoir P.
In the present embodiment, the second line segment L2 is substantially in the horizontal direction within ± 10 ° with respect to the horizontal direction.
 本実施形態によれば、第2の線分L2と第3の線分L3とのなす角αは、30°±5°である。これにより、差動装置5によりかき上げたオイルOを第1のギヤ41と第2のギヤ42との伝達効率を高めることができるとともに、所望のギヤ比を実現できる。
 角αが、35°を超えると、差動装置によりかき上げられたオイルを、モータ軸を中心として回転するギヤ(第1のギヤ)に供給し難くなる。これにより、第1のギヤと第2のギヤとの間の伝達効率が低下する虞がある。一方で、角αを25°未満とすると、伝達過程における出力側のギヤを十分に大きくすることができず、3軸(モータ軸、中間軸および差動軸)において所望のギヤ比を達成することが困難となる。
According to the present embodiment, the angle α formed by the second line segment L2 and the third line segment L3 is 30 ° ± 5 °. Thereby, the transmission efficiency of the oil O pumped up by the differential device 5 between the first gear 41 and the second gear 42 can be increased, and a desired gear ratio can be realized.
When the angle α exceeds 35 °, it becomes difficult to supply the oil pumped up by the differential device to the gear (first gear) that rotates about the motor shaft. Thereby, there exists a possibility that the transmission efficiency between a 1st gear and a 2nd gear may fall. On the other hand, if the angle α is less than 25 °, the output-side gear in the transmission process cannot be made sufficiently large, and a desired gear ratio is achieved in the three axes (motor shaft, intermediate shaft, and differential shaft). It becomes difficult.
 本実施形態によれば、第1の線分L1は、略鉛直方向に沿って延びる。すなわち、モータ軸J2と中間軸J4は、略鉛直方向に沿って並んでいる。したがって、モータ2と減速装置4とを鉛直方向に沿って並べることができ、モータユニット1の水平方向の寸法を小さくすることができる。また、第1の線分L1を略鉛直方向とすることで、差動軸J5に対しモータ軸J2を近づけて配置することができ、モータ軸J2を中心として回転する第1のギヤ41に、差動装置5でかき上げたオイルOを供給できる。これにより、第1のギヤ41と第2のギヤ42との伝達効率を高めることができる。
 なお、本実施形態において、第1の線分L1が略鉛直方向とは、鉛直方向に対して±10°以内の方向である。
According to the present embodiment, the first line segment L1 extends along a substantially vertical direction. That is, the motor shaft J2 and the intermediate shaft J4 are arranged along a substantially vertical direction. Therefore, the motor 2 and the speed reducer 4 can be arranged along the vertical direction, and the horizontal dimension of the motor unit 1 can be reduced. Further, by setting the first line segment L1 in the substantially vertical direction, the motor shaft J2 can be disposed close to the differential shaft J5, and the first gear 41 that rotates about the motor shaft J2 Oil O pumped up by the differential 5 can be supplied. Thereby, the transmission efficiency of the 1st gear 41 and the 2nd gear 42 can be improved.
In the present embodiment, the first line segment L1 has a substantially vertical direction within ± 10 ° with respect to the vertical direction.
 第1の線分の長さL1と、第2の線分の長さL2と、第3の線分の長さL3は、以下の関係を満たす。
 L1:L2:L3=1:1.4~1.7:1.8~2.0
 また、モータ2から差動装置5に至る減速機構における減速比が8以上11以下である。
 本実施形態によれば、上述したようなモータ軸J2、中間軸J4および差動軸J5の位置関係を維持しながら、所望のギヤ比(8以上11以下)を実現できる。
The length L1 of the first line segment, the length L2 of the second line segment, and the length L3 of the third line segment satisfy the following relationship.
L1: L2: L3 = 1: 1.4 to 1.7: 1.8 to 2.0
Further, the reduction ratio in the reduction mechanism from the motor 2 to the differential device 5 is 8 or more and 11 or less.
According to the present embodiment, a desired gear ratio (8 or more and 11 or less) can be realized while maintaining the positional relationship among the motor shaft J2, the intermediate shaft J4, and the differential shaft J5 as described above.
 <パーキング機構>
 図20は、本実施形態のモータユニット1に採用可能なパーキング機構7を示す図である。
 パーキング機構7は、モータユニット1が電気自動車(EV)に使用される場合に有効である。
 エンジンで駆動するマニュアルトランスミッション車では、サイドブレーキを作動させる以外に、トランスミッションをニュートラル以外のポジションに設定することで、エンジンに負荷を加えてブレーキの作用をもたらすことができる。オートマチックトランスミッション車では、サイドブレーキを作動させる以外に、シフトレバーをパーキングポジションに設定することで、トランスミッションをロックさせることができる。
 一方で、電気自動車では、サイドブレーキ以外に車両にブレーキをかける制動機構が無いため、モータユニット1にパーキング機構7が必要となる。
<Parking mechanism>
FIG. 20 is a diagram showing a parking mechanism 7 that can be employed in the motor unit 1 of the present embodiment.
The parking mechanism 7 is effective when the motor unit 1 is used for an electric vehicle (EV).
In a manual transmission vehicle driven by an engine, in addition to operating the side brake, by setting the transmission to a position other than neutral, it is possible to apply a load to the engine and bring about a braking action. In an automatic transmission vehicle, in addition to operating the side brake, the transmission can be locked by setting the shift lever to the parking position.
On the other hand, in the electric vehicle, there is no braking mechanism for braking the vehicle other than the side brake, so the motor unit 1 needs the parking mechanism 7.
 パーキング機構7は、リング状のパーキングギヤ71と、パーキングポール72と、パーキングロッド73、パーキングレバー74とからなる。パーキングギヤ71は、第2のギヤ(中間ギヤ)42および第3のギヤ43と中間ギヤと同軸に配置される。パーキングギヤ71は、中間シャフト45に固定される。パーキングポール72は、パーキングギヤ71の溝に噛み込んでパーキングギヤ71の回転を阻止する突起部72aを有する。パーキングロッド73は、パーキングポール72に接続され、突起部72aをパーキングギヤの径方向に沿って移動させる。パーキングレバー74は、パーキングロッド73に接続されパーキングロッド73を駆動する。 The parking mechanism 7 includes a ring-shaped parking gear 71, a parking pole 72, a parking rod 73, and a parking lever 74. The parking gear 71 is arranged coaxially with the second gear (intermediate gear) 42, the third gear 43 and the intermediate gear. The parking gear 71 is fixed to the intermediate shaft 45. The parking pole 72 has a protrusion 72 a that is engaged with the groove of the parking gear 71 and prevents the parking gear 71 from rotating. The parking rod 73 is connected to the parking pole 72 and moves the protrusion 72a along the radial direction of the parking gear. The parking lever 74 is connected to the parking rod 73 and drives the parking rod 73.
 モータ2の動作時において、パーキングポール72は、パーキングギヤ71から退避する。一方、シフトレバーがパーキングの位置にある時は、パーキングポール72がパーキングギヤ71に噛み込んで、パーキングギヤ71の回転を阻止する。 When the motor 2 is operating, the parking pole 72 is retracted from the parking gear 71. On the other hand, when the shift lever is in the parking position, the parking pole 72 is engaged with the parking gear 71 and prevents the parking gear 71 from rotating.
 パーキングポール72の制御は、パーキングレバーに接続されるパーキング用モータ(図示略)によって行われる。パーキング用モータを用いると、パーキング機構7を電動化できるため、パーキング機構7を駆動するための構成部材を簡略化できる。また、パーキング用モータを用いると、プッシュボタンやパドルレバー等によってパーキングポール72を駆動させることができるため、運転者の操作性が向上する。このような機構を、シフトバイワイヤシステムという。
 なお、パーキング機構7は、シフトバイワイヤシステムを用いた電動式に変えて、手動式としてもよい。すなわち、運転者が、パーキングレバーに接続されたワイヤーを機械的に引っ張ることによって、パーキングポールを駆動させてもよい。
The parking pole 72 is controlled by a parking motor (not shown) connected to the parking lever. When the parking motor is used, the parking mechanism 7 can be electrically driven, so that the structural members for driving the parking mechanism 7 can be simplified. Further, when a parking motor is used, the parking pole 72 can be driven by a push button, a paddle lever, or the like, so that the operability for the driver is improved. Such a mechanism is called a shift-by-wire system.
The parking mechanism 7 may be a manual type instead of the electric type using a shift-by-wire system. That is, the driver may drive the parking pole by mechanically pulling the wire connected to the parking lever.
 本実施形態によれば、パーキング機構7が、中間シャフト45に設けられる。これにより、モータ2から車軸55に至るトルクの伝達過程において、中間シャフトより後段のギヤにパーキング機構7を設ける場合と比較して、パーキングギヤ71の回転を阻止するための制動トルクを小さくできる。これにより、パーキング機構の構造を小型化および軽量化を図ることができる。また、パーキング機構7を電動式とする場合には、パーキング用モータとして小型のものを採用できる。さらに、パーキング機構を手動式とする場合は、運転手の操作の負担を軽減できる。 According to this embodiment, the parking mechanism 7 is provided on the intermediate shaft 45. Thereby, in the torque transmission process from the motor 2 to the axle 55, the braking torque for preventing the rotation of the parking gear 71 can be reduced as compared with the case where the parking mechanism 7 is provided in the gear subsequent to the intermediate shaft. Thereby, the structure of the parking mechanism can be reduced in size and weight. When the parking mechanism 7 is electrically operated, a small parking motor can be employed. Furthermore, when the parking mechanism is a manual type, the burden on the driver's operation can be reduced.
 また、本実施形態によれば、パーキング機構7は、減速装置4の下側に位置する。したがって、パーキングポール72は、オイル溜りPのオイルOに浸かった状態となり、パーキングギヤ71とパーキングポール72の突起部72aとの間にオイルOを介在させて、突起部72aの着脱を円滑に行うことができる。
 なお、本実施形態のパーキング機構7は、一例であり従来公知の他の構造を採用してもよい。また、パーキング機構7は、モータ2に接続されたシャフト21又はリングギヤ51に制動力を作用させるように配置されていてもよい。
Further, according to the present embodiment, the parking mechanism 7 is located below the speed reduction device 4. Accordingly, the parking pole 72 is immersed in the oil O of the oil reservoir P, and the oil O is interposed between the parking gear 71 and the protruding portion 72a of the parking pole 72 so that the protruding portion 72a can be attached and detached smoothly. be able to.
In addition, the parking mechanism 7 of this embodiment is an example and may employ | adopt other conventionally well-known structures. Further, the parking mechanism 7 may be arranged to apply a braking force to the shaft 21 or the ring gear 51 connected to the motor 2.
 <変形例1>
 <切り離し機構>
 図21は、変形例1のモータユニット101の切り離し機構107を示す部分断面図である。
 変形例1として、モータ2から車軸55に至るトルクの伝達経路中に切り離し機構107を備えた変形例のモータユニット101について説明する。本変形例のモータユニット101は、モータ2のシャフト121に切り離し機構107が設けられる点が主に異なる。なお、上述の実施形態と同一態様の構成要素については、同一符号を用いて説明する。
<Modification 1>
<Separation mechanism>
FIG. 21 is a partial cross-sectional view illustrating the separation mechanism 107 of the motor unit 101 according to the first modification.
As a first modification, a motor unit 101 according to a modification in which a separation mechanism 107 is provided in a torque transmission path from the motor 2 to the axle 55 will be described. The motor unit 101 of this modification is mainly different in that a separation mechanism 107 is provided on the shaft 121 of the motor 2. In addition, about the component of the same aspect as the above-mentioned embodiment, it demonstrates using the same code | symbol.
 切り離し機構107は、モータユニット101が、ハイブリッド自動車(HEV)およびプラグインハイブリッド自動車(PHV)に搭載される場合に設けられる。ハイブリッド自動車、プラグインハイブリッド自動車では、エンジンのみで駆動するエンジンモード、モータ2のみで駆動するモータモードおよびエンジンとモータの両方で駆動するハイブリッドモードのうち何れか1つのモードで走行する。切り離し機構107は、エンジンモードで走行する自動車において、停止中のモータ2が負荷とならないように、モータユニット101の動力伝達機構(モータ2のロータ20、減速装置4、差動装置5)を車軸55から切り離す。 The separation mechanism 107 is provided when the motor unit 101 is mounted on a hybrid vehicle (HEV) and a plug-in hybrid vehicle (PHV). In a hybrid vehicle and a plug-in hybrid vehicle, the vehicle travels in any one of an engine mode driven only by the engine, a motor mode driven only by the motor 2, and a hybrid mode driven by both the engine and the motor. The separation mechanism 107 is used to drive the power transmission mechanism (the rotor 20 of the motor 2, the speed reduction device 4, and the differential device 5) of the motor unit 101 so that the stopped motor 2 does not become a load in an automobile traveling in the engine mode. Disconnect from 55.
 図21に示すように、本変形例において、シャフト121は、同軸上に並ぶ第1シャフト部121A、接続シャフト部121Cおよび第2シャフト部121Bと、接続シャフト部121Cと第2シャフト部121Bとの間に位置する切り離し機構107と、を有する。第1シャフト部121A、接続シャフト部121Cおよび第2シャフト部121Bは、軸方向に沿ってこの順で並ぶ。すなわち、接続シャフト部121Cは、第1シャフト部121Aと第2シャフト部121Bとの間に位置する。 As shown in FIG. 21, in this modification, the shaft 121 includes a first shaft portion 121A, a connection shaft portion 121C, a second shaft portion 121B, and a connection shaft portion 121C and a second shaft portion 121B that are aligned on the same axis. A separating mechanism 107 located between them. The first shaft portion 121A, the connection shaft portion 121C, and the second shaft portion 121B are arranged in this order along the axial direction. That is, the connection shaft portion 121C is located between the first shaft portion 121A and the second shaft portion 121B.
 シャフト121は、内部にモータ軸J2に沿って延びる内周面を有する中空部122が設けられた中空シャフトである。中空部122は、第1シャフト部121Aの内部に位置する第1中空部122Aと、第2シャフト部121Bの内部に位置する第2中空部122Bと、接続シャフト部121Cの内部に位置する第3中空部122Cと、を含む。第1中空部122A、第2中空部122Bおよび第3中空部122Cは、軸方向に沿って並び、互いに連通する。 The shaft 121 is a hollow shaft provided with a hollow portion 122 having an inner peripheral surface extending along the motor axis J2. The hollow portion 122 includes a first hollow portion 122A located inside the first shaft portion 121A, a second hollow portion 122B located inside the second shaft portion 121B, and a third located inside the connecting shaft portion 121C. And a hollow portion 122C. The first hollow portion 122A, the second hollow portion 122B, and the third hollow portion 122C are arranged along the axial direction and communicate with each other.
 第1シャフト部121Aは、収容空間80のモータ室81に配置される。第1シャフト部121Aは、ステータ30の径方向内側に位置し、モータ軸J2に沿ってロータコア24を貫通する。
 第1シャフト部121Aは、出力側(すなわち、減速装置4側)に位置する第1端部121eを有する。
The first shaft portion 121 </ b> A is disposed in the motor chamber 81 of the accommodation space 80. The first shaft portion 121A is located on the radially inner side of the stator 30 and penetrates the rotor core 24 along the motor shaft J2.
121 A of 1st shaft parts have the 1st end part 121e located in the output side (namely, reduction gear 4 side).
 第1端部121eは、モータ室81側から隔壁61cに設けられた挿通孔61fを通過する。第1端部121eの軸方向を向く面には、第1中空部(第2凹部)122Aが開口する。第1端部121eは、隔壁61cのモータ室81側を向く面に接触して保持される第1のベアリング89によって回転自在に支持される。
 第1のベアリング89を隔壁61cのモータ室81側を向く面に接触して保持することにより、第1シャフト部121Aの軸合わせをハウジング6のモータ室81側の部位において行うことができる。これにより、ステータ30に対して第1シャフト部121Aの軸合わせを高精度で行うことができる。
The first end 121e passes through the insertion hole 61f provided in the partition wall 61c from the motor chamber 81 side. A first hollow portion (second concave portion) 122A opens on the surface of the first end portion 121e facing the axial direction. The first end 121e is rotatably supported by a first bearing 89 held in contact with the surface of the partition wall 61c facing the motor chamber 81 side.
By holding the first bearing 89 in contact with the surface of the partition wall 61c facing the motor chamber 81 side, the first shaft portion 121A can be aligned at the portion of the housing 6 on the motor chamber 81 side. Thereby, the axial alignment of the first shaft portion 121A with respect to the stator 30 can be performed with high accuracy.
 接続シャフト部121Cは、挿通孔61fの内側に配置される。接続シャフト部121Cは、隔壁61cのギヤ室82側を向く面に接触して保持される第2のベアリング188Aによって回転自在に支持される。第2のベアリング188Aはボールベアリングである。接続シャフト部121Cには、隔壁61c側を向く段差面121qが設けられる。段差面121qは、第2のベアリング188Aの内輪と接触する。 The connecting shaft portion 121C is disposed inside the insertion hole 61f. The connecting shaft portion 121C is rotatably supported by a second bearing 188A that is held in contact with the surface of the partition wall 61c facing the gear chamber 82 side. The second bearing 188A is a ball bearing. The connecting shaft portion 121C is provided with a step surface 121q facing the partition wall 61c. The step surface 121q is in contact with the inner ring of the second bearing 188A.
 本変形例によれば、第2のベアリング188Aが隔壁61cのギヤ室82側を向く面に保持される。このため、第1シャフト部121Aの軸合わせを行った後に第1シャフト部121Aに対して接続シャフト部121Cを組み付けることができる。したがって、接続シャフト部121Cの組み付け工程を簡素化できる。 According to this modification, the second bearing 188A is held on the surface of the partition wall 61c facing the gear chamber 82 side. For this reason, the connection shaft portion 121C can be assembled to the first shaft portion 121A after the first shaft portion 121A is aligned. Therefore, the assembly process of the connection shaft portion 121C can be simplified.
 第2のベアリング188Aの外径は、第1のベアリング89の外径より大きい。切り離し機構107の動作時に、第2のベアリング188Aには軸方向および周方向に多大な負荷が加わる。本変形例の第2のベアリング188Aによれば、第1のベアリング89と比較して大径とすることで、切り離し機構107の動作時の負荷に対して、十分な強度を確保することができる。 The outer diameter of the second bearing 188A is larger than the outer diameter of the first bearing 89. During the operation of the separation mechanism 107, a great load is applied to the second bearing 188A in the axial direction and the circumferential direction. According to the second bearing 188 </ b> A of this modification, sufficient strength can be ensured with respect to the load during operation of the separation mechanism 107 by making the diameter larger than that of the first bearing 89. .
 接続シャフト部121Cは第2端部121fと、第3端部121gと、接続フランジ部121hと、を有する。 The connecting shaft portion 121C has a second end portion 121f, a third end portion 121g, and a connecting flange portion 121h.
 第2端部121fは、モータ室81側に突出する。第2端部121fは、第1シャフト部121A側に位置し第1シャフト部121Aの第1端部121eに連結される。第2端部121fは、第1端部121eに開口する第1中空部122Aに収容される。第2端部121fの外周面は、第1中空部122Aの内周面に嵌合する。第2端部121fが、第1中空部122Aに嵌合することで、第1端部121eと第2端部121fの連結部を径方向に小型化できる。これにより、第1端部121eの径方向外側に第1のベアリング89を配置するスペースを確保できる。 The second end 121f protrudes toward the motor chamber 81. The second end 121f is located on the first shaft 121A side and is connected to the first end 121e of the first shaft 121A. The second end 121f is accommodated in the first hollow portion 122A that opens to the first end 121e. The outer peripheral surface of the second end 121f is fitted to the inner peripheral surface of the first hollow portion 122A. By fitting the second end 121f into the first hollow portion 122A, the connecting portion between the first end 121e and the second end 121f can be downsized in the radial direction. Thereby, the space which arrange | positions the 1st bearing 89 on the radial direction outer side of the 1st edge part 121e is securable.
 第3端部121gは、ギヤ室82側に突出する。第3端部121gは、第2端部121fの反対側であって第2シャフト部121B側に位置する。第3端部121gの軸方向を向く端部には、第1凹部121pが設けられる。
 接続フランジ部121hは、第3端部121gの径方向外側に延びる。接続フランジ部121hの直径は、挿通孔61fの最も直径が小さい部分より大きい。
The third end 121g protrudes toward the gear chamber 82 side. The third end 121g is located on the side opposite to the second end 121f and on the second shaft 121B side. A first recess 121p is provided at the end of the third end 121g facing the axial direction.
The connection flange portion 121h extends outward in the radial direction of the third end portion 121g. The diameter of the connection flange portion 121h is larger than the smallest diameter portion of the insertion hole 61f.
 本変形例によれば、接続シャフト部121Cは、第1シャフト部121Aと別部材である。したがって、モータ2の組立工程の後に、接続シャフト部121Cを第1シャフト部121Aに組み付けることで、切り離し機構107がない場合の組み立て順序と同じ順序で組み立てを行うことができる。それに伴い、シャフト121以外の部品の形状を、切り離し機構107がない場合と同じとすることができる。すなち、本変形例によれば、切り離し機構107を備えるモータユニット101と切り離し機構107を備えないモータユニット1との間で、部品の共通化を図ることができる。また、切り離し機構107の有無に関わらず、組み立て順序を同じとすることができるため、部品形状の複雑化や部品点数の増加を抑制することができる。したがって、本変形例によれば、汎用性の高く低コストなモータユニット101を提供できる。 According to this modification, the connecting shaft portion 121C is a separate member from the first shaft portion 121A. Therefore, by assembling the connection shaft portion 121C to the first shaft portion 121A after the assembly process of the motor 2, the assembly can be performed in the same order as the assembly order without the separation mechanism 107. Accordingly, the shape of the parts other than the shaft 121 can be made the same as when the separation mechanism 107 is not provided. That is, according to the present modification, it is possible to share parts between the motor unit 101 including the separation mechanism 107 and the motor unit 1 not including the separation mechanism 107. Moreover, since the assembly order can be made the same regardless of the presence or absence of the separation mechanism 107, the complexity of the component shape and the increase in the number of components can be suppressed. Therefore, according to this modification, the motor unit 101 with high versatility and low cost can be provided.
 第2シャフト部121Bは、収容空間80のギヤ室82に配置される。
 第2シャフト部121Bは、第4端部121iと、第5端部121jと、を有する。
The second shaft portion 121 </ b> B is disposed in the gear chamber 82 of the accommodation space 80.
The second shaft portion 121B has a fourth end 121i and a fifth end 121j.
 第4端部121iは、接続シャフト部121Cの第3端部121g側に位置する。第4端部121iと接続シャフト部121Cの接続フランジ部121hとは、切り離し機構107により動力の伝達が選択的に切り離される。 The fourth end 121i is located on the third end 121g side of the connecting shaft 121C. Transmission of power is selectively disconnected by the disconnection mechanism 107 from the fourth end portion 121i and the connection flange portion 121h of the connection shaft portion 121C.
 第4端部121iは、第3端部121gに設けられた第1凹部121pに収容される。第3端部121gおよび第4端部121iの径方向の隙間には、ニードルベアリング(ベアリング)121nが設けられる。すなわち、本変形例によれば、第2シャフト部121Bは、第4端部121iにおいて、接続シャフト部121Cに回転自在に支持される。したがって、本変形例によれば、切り離し機構107により、第2シャフト部121Bおよび接続シャフト部121Cが切り離されている場合において、相対的な回転を阻害することなく安定的な保持を実現できる。なお、このような効果は、第3端部121gおよび第4端部121iのうち何れか一方に、ニードルベアリング121nを介して他方を収容する第1凹部が設けられる場合に奏することができる効果である。 The fourth end 121i is accommodated in the first recess 121p provided in the third end 121g. A needle bearing (bearing) 121n is provided in the radial gap between the third end 121g and the fourth end 121i. That is, according to the present modification, the second shaft portion 121B is rotatably supported by the connection shaft portion 121C at the fourth end 121i. Therefore, according to the present modification, when the second shaft portion 121B and the connection shaft portion 121C are separated by the separation mechanism 107, stable holding can be realized without hindering relative rotation. In addition, such an effect is an effect which can be show | played when the 1st recessed part which accommodates the other via the needle bearing 121n is provided in any one among the 3rd end part 121g and the 4th end part 121i. is there.
 本変形例においてニードルベアリング121nは、円柱状の部材が環状に複数配置されてなるが、ニードルベアリング121nに代えてボールベアリング等の他の軸受機構であってもよい。しかしながら、ニードルベアリングを採用することで、第3端部121gおよび第4端部121iの径方向寸法を小さくして、モータユニット101の小型化を図ることができる。 In the present modification, the needle bearing 121n includes a plurality of cylindrical members arranged in a ring shape, but may be another bearing mechanism such as a ball bearing instead of the needle bearing 121n. However, by adopting the needle bearing, it is possible to reduce the size of the motor unit 101 by reducing the radial dimension of the third end 121g and the fourth end 121i.
 上述したように、第1シャフト部121A、接続シャフト部121Cおよび第2シャフト部121Bには、それぞれ軸方向に延びて互いに連通する中空部122が設けられる。上述の実施形態と同様に、中空部122には、第2シャフト部121B側から第1シャフト部121A側に向かってモータの内部を冷却するオイルOが供給される。
 本変形例によれば、接続シャフト部121Cと第2シャフト部121Bとがニードルベアリング121nを介して繋がる。したがって、接続シャフト部121Cの第3中空部122Cと第2シャフト部121Bの第2中空部122Bを互いに接続させることができる。これにより、中空部122にオイルOを供給してオイル流路として使用することができる。
As described above, the first shaft portion 121A, the connection shaft portion 121C, and the second shaft portion 121B are provided with the hollow portions 122 that extend in the axial direction and communicate with each other. Similar to the above-described embodiment, the hollow portion 122 is supplied with oil O that cools the inside of the motor from the second shaft portion 121B side toward the first shaft portion 121A side.
According to this modification, the connecting shaft portion 121C and the second shaft portion 121B are connected via the needle bearing 121n. Therefore, the third hollow portion 122C of the connection shaft portion 121C and the second hollow portion 122B of the second shaft portion 121B can be connected to each other. Thereby, the oil O can be supplied to the hollow part 122 and used as an oil flow path.
 第5端部121jは、第4端部121iの反対側に位置する。第5端部は、ハウジングに保持される第3のベアリング188Bによって回転自在に支持される。すなわち、第2シャフト部121Bは、第5端部121jにおいて、第3のベアリング188Bにより支持される。
 本変形例によれば、第2シャフト部121Bは、軸方向に並ぶ2つのベアリング(ニードルベアリング121nおよび第3のベアリング188B)により支持される。同様に、接続シャフト部121Cは、軸方向に並ぶ2つのベアリング(第2のベアリング188Aおよびニードルベアリング121n)により支持される。第2シャフト部121Bおよび接続シャフト部121Cは、軸方向に並ぶ2点で回転自在に支持されることで軸ブレを生じることなく安定的に回転できる。
The fifth end 121j is located on the opposite side of the fourth end 121i. The fifth end is rotatably supported by a third bearing 188B held by the housing. That is, the second shaft portion 121B is supported by the third bearing 188B at the fifth end portion 121j.
According to this modification, the second shaft portion 121B is supported by two bearings (needle bearing 121n and third bearing 188B) arranged in the axial direction. Similarly, the connecting shaft portion 121C is supported by two bearings (second bearing 188A and needle bearing 121n) arranged in the axial direction. The second shaft portion 121B and the connection shaft portion 121C can be stably rotated without causing shaft shake by being rotatably supported at two points aligned in the axial direction.
 第2シャフト部121Bの外周面には、第1のギヤ41が設けられる。第1のギヤ41は、第4端部121iと第5端部121jとの間に位置する。第1のギヤ41は、減速装置4の第2のギヤ42に動力を伝達する。本変形例によれば、第1のギヤ41が、第2のベアリング188Aと第3のベアリング188Bとの間に位置する。したがって、第1のギヤ41は、モータ軸J2に対し安定して回転することが可能となり、モータ2で発生したトルクを安定的に第2のギヤ42に伝達できる。 The first gear 41 is provided on the outer peripheral surface of the second shaft portion 121B. The first gear 41 is located between the fourth end 121i and the fifth end 121j. The first gear 41 transmits power to the second gear 42 of the reduction gear 4. According to this modification, the first gear 41 is located between the second bearing 188A and the third bearing 188B. Therefore, the first gear 41 can stably rotate with respect to the motor shaft J2, and the torque generated by the motor 2 can be stably transmitted to the second gear 42.
 切り離し機構107は、接続シャフト部121Cの接続フランジ部121hと、第2シャフト部121Bの第4端部121iとを径方向外側から囲む。切り離し機構107は、接続フランジ部121hと第4端部121iとが、機械的に連結されない状態と、両者が連結される状態とを駆動部175を用いて切り替える。 The disconnecting mechanism 107 surrounds the connection flange portion 121h of the connection shaft portion 121C and the fourth end portion 121i of the second shaft portion 121B from the radially outer side. The separation mechanism 107 switches between a state in which the connection flange portion 121h and the fourth end portion 121i are not mechanically coupled and a state in which the connection flange portion 121h and the fourth end portion 121i are coupled using the driving unit 175.
 切り離し機構107は、軸方向において、モータ2の軸方向端面と第1のギヤ41との間に位置する。モータユニット101は、モータ軸J2、中間軸J4および差動軸J5の3軸構造が採用されている。また、軸方向において、モータ2の軸方向端面と第1のギヤ41との間には、第3のギヤ43が位置する。なお、第2のギヤ42は、第1のギヤ41と接続される第2のギヤ42と同期回転する。モータ2の軸方向端面と第1のギヤ41との間に、第3のギヤ43の厚さより大きな隙間が設けられる。本変形例によれば、切り離し機構107をモータ2の軸方向端面と第1のギヤ41との間に配置する。すなわち、第3のギヤ43と切り離し機構107とは、軸方向に重なる位置に配置される。これにより、ギヤ室82の内部空間を有効利用して、モータユニット101の小型化を図ることができる。 The separation mechanism 107 is located between the axial end surface of the motor 2 and the first gear 41 in the axial direction. The motor unit 101 has a three-axis structure including a motor shaft J2, an intermediate shaft J4, and a differential shaft J5. In the axial direction, a third gear 43 is located between the axial end surface of the motor 2 and the first gear 41. The second gear 42 rotates in synchronization with the second gear 42 connected to the first gear 41. A gap larger than the thickness of the third gear 43 is provided between the axial end surface of the motor 2 and the first gear 41. According to this modification, the separation mechanism 107 is disposed between the axial end surface of the motor 2 and the first gear 41. That is, the third gear 43 and the separation mechanism 107 are disposed at positions that overlap in the axial direction. Thereby, the internal space of the gear chamber 82 can be effectively used and the motor unit 101 can be downsized.
 本変形例によれば、切り離し機構は、モータ2のシャフト121に設けられる。すなわち、モータ2から車軸55に至る動力の伝達経路中において、最もトルクが小さい部分に切り離し機構107が設けられる。本変形例によれば、切り離し機構107を介して伝達するトルクが小さいため、切り離し機構を小型化できる。 According to this modification, the separation mechanism is provided on the shaft 121 of the motor 2. That is, in the power transmission path from the motor 2 to the axle 55, the separation mechanism 107 is provided at the portion with the smallest torque. According to this modification, since the torque transmitted through the separation mechanism 107 is small, the separation mechanism can be reduced in size.
 本変形例の切り離し機構107は、回転同期装置またはシンクロメッシュ機構と称される。なお、本変形例において、切り離し機構107は一例である。切り離し機構としては、例えば、ドッグクラッチ機構又は多段クラッチ機構を採用してもよい。 The separation mechanism 107 of this modification is referred to as a rotation synchronization device or a synchromesh mechanism. In this modification, the separation mechanism 107 is an example. As the separation mechanism, for example, a dog clutch mechanism or a multi-stage clutch mechanism may be adopted.
 切り離し機構107は、スリーブ171と、クラッチハブ172と、シンクロナイザーリング173と、キー174と、駆動部(図示略)と、を有する。 The separation mechanism 107 includes a sleeve 171, a clutch hub 172, a synchronizer ring 173, a key 174, and a drive unit (not shown).
 クラッチハブ172は、第2シャフト部121Bの外周面に固定される。クラッチハブ172は、第2シャフト部121Bとともにモータ軸J2を中心として回転する。クラッチハブ172の外周には、外歯スプラインが設けられる。 The clutch hub 172 is fixed to the outer peripheral surface of the second shaft portion 121B. The clutch hub 172 rotates around the motor shaft J2 together with the second shaft portion 121B. An external spline is provided on the outer periphery of the clutch hub 172.
 スリーブ171は、軸方向に沿って移動可能である。スリーブ171は、クラッチハブ172の外歯スプラインと噛み合っており、スリーブ171とともに一体的に回転する。また、スリーブ171の内周面には、スプラインが設けられる。スリーブ171のスプラインは、クラッチハブ172と接続フランジ部121hとが同期回転した後に、接続フランジ部121hの外周面に設けられたスプラインに嵌る。これにより、第2シャフト部121Bと接続シャフト部121Cとを連結させる。 The sleeve 171 is movable along the axial direction. The sleeve 171 meshes with an external spline of the clutch hub 172 and rotates integrally with the sleeve 171. A spline is provided on the inner peripheral surface of the sleeve 171. The spline of the sleeve 171 fits into the spline provided on the outer peripheral surface of the connection flange portion 121h after the clutch hub 172 and the connection flange portion 121h rotate synchronously. Thereby, the 2nd shaft part 121B and the connection shaft part 121C are connected.
 キー174は、スリーブ171に保持される。キー174は、スリーブ171とともに軸方向に移動する。キー174は、スリーブ171および接続フランジ部121hにそれぞれ設けられたスプラインの位相を一致させる。 The key 174 is held by the sleeve 171. The key 174 moves in the axial direction together with the sleeve 171. The key 174 matches the phases of the splines provided on the sleeve 171 and the connection flange portion 121h, respectively.
 シンクロナイザーリング173は、スリーブ171とともに軸方向に移動する。シンクロナイザーリング173は、接続フランジ部121h側に近づくに従い内径を大きくするテーパ面を有する。一方で、接続フランジ部121hには、軸方向に沿ってシンクロナイザーリング173側に突出するボス部が設けられる。ボス部は、シンクロナイザーリング173と対向するテーパ面が設けられる。シンクロナイザーリング173と接続フランジ部121hは、互いのテーパ面同士を接触させることで同期回転する。 The synchronizer ring 173 moves in the axial direction together with the sleeve 171. The synchronizer ring 173 has a tapered surface that increases its inner diameter as it approaches the connection flange portion 121h side. On the other hand, the connection flange portion 121h is provided with a boss portion that protrudes toward the synchronizer ring 173 along the axial direction. The boss portion is provided with a tapered surface facing the synchronizer ring 173. The synchronizer ring 173 and the connection flange portion 121h rotate synchronously by bringing the tapered surfaces into contact with each other.
 図示略の駆動部は、スリーブ171に接続される。駆動部は、スリーブ171を軸方向に移動させる。 A drive unit (not shown) is connected to the sleeve 171. The drive unit moves the sleeve 171 in the axial direction.
 図22は、切り離し機構107により、モータ2と減速装置4とを繋いだ状態を示す概念図であり、図23は、切り離し機構107により、モータ2と減速装置4とを切り離した状態を示す概念図である。
 上述したように、切り離し機構107を備えたモータユニット101は、ハイブリッド自動車又はプラグインハイブリッド自動車に搭載される。このような車両において、エンジンの動力のみで走行するモードとモータ2の動力を使用して走行するモードとで切り替えられると、駆動部175が動作して、接続シャフト部121Cと第2シャフト部121Bとの接続および切り離しが切り替えられる。
FIG. 22 is a conceptual diagram showing a state in which the motor 2 and the speed reduction device 4 are connected by the separation mechanism 107, and FIG. 23 is a concept showing a state in which the motor 2 and the speed reduction device 4 are separated by the separation mechanism 107. FIG.
As described above, the motor unit 101 including the separation mechanism 107 is mounted on a hybrid vehicle or a plug-in hybrid vehicle. In such a vehicle, when the mode is switched between the mode that travels using only the power of the engine and the mode that travels using the power of the motor 2, the drive unit 175 operates to connect the connecting shaft portion 121C and the second shaft portion 121B. Connection and disconnection to and from are switched.
 切り離し機構107に関する制御について説明する。切り離し機構107が、切り離し状態から接続状態に切り替える際に、まず、車軸55の回転数から第2シャフト部121Bの回転数が算出される。次に、モータ2の回転数が、算出された第2シャフト部121Bの回転数まで上昇される。モータ2の回転数が上昇中に、駆動部175によってスリーブが移動し、第2シャフト部121Bと接続シャフト部121Cとの接続が実現する。その後、駆動部175の累積回転数から、第2シャフト部121Bと接続シャフト部121Cとの接続が完了する位置が算出される。最後に、モータ2の回転数と、車軸55の回転数から算出される第2シャフト部121Bの回転数とが、同じであることを検出して、接合状態が完了していることが最終判断される。 The control related to the separation mechanism 107 will be described. When the separation mechanism 107 switches from the disconnected state to the connected state, first, the rotational speed of the second shaft portion 121B is calculated from the rotational speed of the axle 55. Next, the rotation speed of the motor 2 is increased to the calculated rotation speed of the second shaft portion 121B. While the rotational speed of the motor 2 is increasing, the sleeve is moved by the drive unit 175, and the connection between the second shaft portion 121B and the connection shaft portion 121C is realized. Thereafter, the position at which the connection between the second shaft portion 121B and the connection shaft portion 121C is completed is calculated from the cumulative number of rotations of the drive portion 175. Finally, it is detected that the rotational speed of the motor 2 and the rotational speed of the second shaft portion 121B calculated from the rotational speed of the axle 55 are the same, and it is finally determined that the joined state is completed. Is done.
 <制御>
 モータユニット1のモータ2、ポンプ96、切り離し機構107の駆動部175およびパーキング機構7のパーキング用モータ等の各要素は、マイクロコントロールユニット(MCU)によって一元的に制御される。マイクロコントロールユニットは、モータユニット1と一体的に設けても外部に設けてもよい。
<Control>
Each element such as the motor 2 of the motor unit 1, the pump 96, the drive unit 175 of the separation mechanism 107 and the parking motor of the parking mechanism 7 is centrally controlled by a micro control unit (MCU). The micro control unit may be provided integrally with the motor unit 1 or provided outside.
 <車両への搭載性>
 モータユニット1は、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHV)、電気自動車(EV)の何れにも適用できる。またモータユニット1は、乗用車に限らず、貨物自動車(トラック)等にも適用できる。モータユニット1は、車両のフロント側およびリア側のうち何れに搭載してもよいが、リア側に搭載するのが好ましい。本実施形態のモータユニット1は、上下方向の寸法が小さいため、荷室と最低地上高との制約から設置スペースに制限のあるリア側であってもコンパクトに設置できる。
<Mountability on vehicles>
The motor unit 1 can be applied to any of a hybrid vehicle (HEV), a plug-in hybrid vehicle (PHV), and an electric vehicle (EV). The motor unit 1 can be applied not only to passenger cars but also to lorry vehicles (trucks). The motor unit 1 may be mounted on either the front side or the rear side of the vehicle, but is preferably mounted on the rear side. Since the motor unit 1 of this embodiment has a small vertical dimension, the motor unit 1 can be installed compactly even on the rear side where the installation space is limited due to the restriction between the luggage compartment and the minimum ground clearance.
 以上に、本発明の実施形態および変形例を説明したが、実施形態における各構成およびそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換およびその他の変更が可能である。また、本発明は実施形態によって限定されることはない。 Although the embodiments and modifications of the present invention have been described above, the configurations and combinations thereof in the embodiments are examples, and the addition, omission, replacement, and configuration of the configurations are within the scope that does not depart from the spirit of the present invention. Other changes are possible. Further, the present invention is not limited by the embodiment.
 1,101…モータユニット(電動駆動装置)、2…モータ、4…減速装置、5…差動装置、6…ハウジング、6a…壁部、20…ロータ、21,121…シャフト、21A,121A…第1シャフト部、21B,121B…第2シャフト部、21c…鍔部、21c…鍔部(蓋部)、21d…ネジ部、21e,121e…第1端部、21f,121f…第2端部、21g,121g…第3端部、21h,121i…第4端部、22,122…中空部、22A,122A…第1中空部、22q…第2領域(小径中空部)、22r…第3領域(大径中空部)、22t…第2段差面(段差面)、22u…凹溝、23…連通孔、24…ロータコア、24a…軸方向端面、24b…外周面、24d…マグネット保持孔、24e…コア貫通孔、25…ロータマグネット、26,126,226…エンドプレート、26a,126a,226a…第1の面、26b,126b,226b…第2の面、26e,126u…傾斜面、26f,61j,61q…凹部、26j,126j,226j…第1の凹溝(第1の凹部)、26k,126k,226k,226kA,226kB…第2の凹溝(第2の凹部)、26p,126p,226p…プレート貫通孔、26r…第2の開放部(開放部)、26s…第1の開放部(開放部)、26t…オイル流路、28…ワッシャ(蓋部)、29…ナット、30…ステータ、31…コイル、31a…コイルエンド、32…ステータコア、41…第1のギヤ、42…第2のギヤ(中間ギヤ)、43…第3のギヤ、51…リングギヤ、61…モータ収容部、61c…隔壁、61f…挿通孔、61k,97b,98r,98o,98x,98t,98u,98v,198c…流出口、63…閉塞部、63d…突出部、64…ギヤ室天井部(天井部)、65…凸部、66…庇部、68,168…隔壁開口、68a…第1の開口部、68b…第2の開口部、80…収容空間、81…モータ室、82…ギヤ室、88,188A…第2のベアリング、89…第1のベアリング、90…油路、91…第1の油路(油路)、91a…かき上げ経路、91b…シャフト供給経路(オイル流路)、92…第2の油路(油路)、92a…第1の流路、92b…第2の流路、92c、92aa,92ba,92ca…第1の端部、92ab,92bb,92cb…第2の端部,97c…第3の流路、93…第1のリザーバ(リザーバ)、95…副リザーバ、96…ポンプ(電動ポンプ)、96a…吸入口、97…クーラー、98,198…第2のリザーバ(主リザーバ)、98y…溢出部、99…供給部、107…切り離し機構、121C…接続シャフト部、121h…接続フランジ部、121j…第5端部、121n…ニードルベアリング(ベアリング)、121p…第1凹部、121q…段差面、126r,226r…開放部、128,228…蓋部、168a…長孔部、168b…拡張部、98gC…堰、J2…モータ軸、J4…中間軸、J5…差動軸、L1…第1の線分、L2…第2の線分、L3…第3の線分(仮想線)、Lmax…上限高さ、Lmin…下限高さ、O…オイル、OL…第1の液位、P…オイル溜り、S…第1の領域 DESCRIPTION OF SYMBOLS 1,101 ... Motor unit (electric drive device), 2 ... Motor, 4 ... Deceleration device, 5 ... Differential device, 6 ... Housing, 6a ... Wall part, 20 ... Rotor, 21, 121 ... Shaft, 21A, 121A ... 1st shaft part, 21B, 121B ... 2nd shaft part, 21c ... collar part, 21c ... collar part (lid part), 21d ... screw part, 21e, 121e ... first end part, 21f, 121f ... second end part 21g, 121g ... 3rd end, 21h, 121i ... 4th end, 22, 122 ... hollow part, 22A, 122A ... 1st hollow part, 22q ... 2nd area | region (small diameter hollow part), 22r ... 3rd Area (large-diameter hollow portion), 22t ... second step surface (step surface), 22u ... concave groove, 23 ... communication hole, 24 ... rotor core, 24a ... axial end surface, 24b ... outer peripheral surface, 24d ... magnet holding hole, 24e ... core through hole, 25 ... b 26, 126, 226 ... end plate, 26a, 126a, 226a ... first surface, 26b, 126b, 226b ... second surface, 26e, 126u ... inclined surface, 26f, 61j, 61q ... concave portion, 26j , 126j, 226j ... first groove (first recess), 26k, 126k, 226k, 226kA, 226kB ... second groove (second recess), 26p, 126p, 226p ... plate through hole, 26r ... 2nd opening part (opening part), 26s ... 1st opening part (opening part), 26t ... Oil flow path, 28 ... Washer (lid part), 29 ... Nut, 30 ... Stator, 31 ... Coil, 31a ... Coil end, 32 ... Stator core, 41 ... First gear, 42 ... Second gear (intermediate gear), 43 ... Third gear, 51 ... Ring gear, 61 ... Motor housing, 61c Partition wall, 61f ... insertion hole, 61k, 97b, 98r, 98o, 98x, 98t, 98u, 98v, 198c ... outlet, 63 ... closed part, 63d ... projecting part, 64 ... ceiling part (ceiling part) of gear chamber, 65 ... convex part, 66 ... collar part, 68, 168 ... partition opening, 68a ... first opening part, 68b ... second opening part, 80 ... housing space, 81 ... motor chamber, 82 ... gear chamber, 88, 188A 2nd bearing, 89 ... 1st bearing, 90 ... oil path, 91 ... 1st oil path (oil path), 91a ... Scooping path, 91b ... Shaft supply path (oil path), 92 ... 1st 2 oil paths (oil paths), 92a ... first flow path, 92b ... second flow path, 92c, 92aa, 92ba, 92ca ... first end, 92ab, 92bb, 92cb ... second end 97c ... third flow path, 93 ... first reservoir (reservoir) B), 95 ... Sub-reservoir, 96 ... Pump (electric pump), 96a ... Suction port, 97 ... Cooler, 98,198 ... Second reservoir (main reservoir), 98y ... Overflow part, 99 ... Supply part, 107 ... Detaching mechanism, 121C... Connecting shaft portion, 121h... Connecting flange portion, 121j... Fifth end portion, 121n... Needle bearing (bearing), 121p ... first recessed portion, 121q ... step surface, 126r, 226r. 228 ... Lid portion, 168a ... Long hole portion, 168b ... Expansion portion, 98gC ... Weir, J2 ... Motor shaft, J4 ... Intermediate shaft, J5 ... Differential shaft, L1 ... First line segment, L2 ... Second wire Minute, L3 ... third line segment (virtual line), Lmax ... upper limit height, Lmin ... lower limit height, O ... oil, OL ... first liquid level, P ... oil reservoir, S ... first region

Claims (12)

  1.  水平方向に延びるモータ軸を中心として回転するロータを有するモータと、
     前記モータに接続された差動装置と、
     前記モータおよび前記差動装置を収容する収容空間が設けられたハウジングと、
     前記収容空間の鉛直方向下側の領域に溜るオイルと、
     前記収容空間の鉛直方向下側の領域から前記オイルを前記モータに供給する油路と、を備え、
     前記油路の経路中には、前記ハウジングの外周面に固定されたポンプが設けられ、
     前記モータ軸の軸方向から見て、前記ポンプは、前記モータ軸を挟んで前記差動装置と反対側に位置する、
    モータユニット。
    A motor having a rotor that rotates about a motor shaft extending in a horizontal direction;
    A differential connected to the motor;
    A housing provided with a housing space for housing the motor and the differential device;
    Oil that accumulates in a region on the lower side in the vertical direction of the housing space;
    An oil passage for supplying the oil to the motor from a region below the vertical direction of the housing space,
    In the path of the oil path, a pump fixed to the outer peripheral surface of the housing is provided,
    When viewed from the axial direction of the motor shaft, the pump is located on the opposite side of the differential device across the motor shaft.
    Motor unit.
  2.  前記油路は、前記モータの下側を通過する第1の流路を有し、
     前記第1の流路は、前記差動装置の下側において前記収容空間に開口する第1の端部と、前記ポンプの吸入口に繋がる第2の端部と、を有する、
    請求項1に記載のモータユニット。
    The oil passage has a first passage that passes under the motor,
    The first flow path has a first end that opens into the accommodation space on the lower side of the differential device, and a second end connected to the suction port of the pump.
    The motor unit according to claim 1.
  3.  前記モータと前記差動装置との間には、複数のギヤが接続され、
     前記モータ軸の軸方向から見て、前記第1の流路の少なくとも一部が、複数の前記ギヤのうち少なくとも1つと重なる、
    請求項2に記載のモータユニット。
    A plurality of gears are connected between the motor and the differential device,
    When viewed from the axial direction of the motor shaft, at least a part of the first flow path overlaps at least one of the plurality of gears,
    The motor unit according to claim 2.
  4.  前記差動装置は、前記モータより下側に位置し、
     前記ポンプの吸入口は、前記差動装置の下端より上側に位置し、前記モータ軸より下側に位置する、
    請求項2又は3に記載のモータユニット。
    The differential is located below the motor;
    An inlet of the pump is located above the lower end of the differential and located below the motor shaft;
    The motor unit according to claim 2 or 3.
  5.  前記吸入口は、前記収容空間の鉛直方向下側の領域に溜る前記オイルの液面より下側に位置する、
    請求項2~4の何れか一項に記載のモータユニット。
    The suction port is located below the liquid level of the oil that accumulates in a vertically lower region of the accommodation space;
    The motor unit according to any one of claims 2 to 4.
  6.  前記第1の流路は、前記第1の端部から前記第2の端部に向かうに従い上側に向かって傾斜しかつ、直線的に延びる
    請求項2~5の何れか一項に記載のモータユニット。
    The motor according to any one of claims 2 to 5, wherein the first flow path is inclined upward and linearly extends from the first end toward the second end. unit.
  7.  前記ハウジングは、前記収容空間を囲む壁部を有し、
     前記第1の流路は、前記壁部の内部を通過する、
    請求項2~6の何れか一項に記載のモータユニット。
    The housing has a wall portion surrounding the accommodation space,
    The first flow path passes through the interior of the wall;
    The motor unit according to any one of claims 2 to 6.
  8.  前記油路の経路中には、通過する前記オイルを冷却するクーラーが設けられ、
     前記油路は、前記ポンプと前記クーラーを繋ぐ第2の流路と、前記クーラーと前記収容空間とを繋ぐ第3の流路と、を有し、
     前記クーラーは、前記ハウジングの外周面に固定される、
    請求項1~7の何れか一項に記載のモータユニット。
    In the path of the oil path, a cooler for cooling the oil passing therethrough is provided,
    The oil passage has a second flow path that connects the pump and the cooler, and a third flow path that connects the cooler and the accommodation space,
    The cooler is fixed to the outer peripheral surface of the housing;
    The motor unit according to any one of claims 1 to 7.
  9.  前記第3の流路は、前記収容空間において前記モータの上側で開口する、
    請求項8に記載のモータユニット。
    The third flow path opens above the motor in the accommodation space.
    The motor unit according to claim 8.
  10.  前記モータは、前記ロータの径方向外側に位置するステータを有し、
     前記クーラーの流出口は、軸方向において、前記ステータの両端部の間に位置する、
    請求項8又は9に記載のモータユニット。
    The motor has a stator located on the radially outer side of the rotor,
    The outlet of the cooler is located between both end portions of the stator in the axial direction.
    The motor unit according to claim 8 or 9.
  11.  前記クーラーは、鉛直方向に見て前記ポンプと重なる、
    請求項8~10の何れか一項に記載のモータユニット。
    The cooler overlaps the pump as seen in the vertical direction;
    The motor unit according to any one of claims 8 to 10.
  12.  前記ハウジングは、前記収容空間を囲む壁部を有し、
     前記第2の流路および前記第3の流路は、前記壁部の内部を通過する、
    請求項8~11の何れか一項に記載のモータユニット。
    The housing has a wall portion surrounding the accommodation space,
    The second flow path and the third flow path pass through the inside of the wall portion,
    The motor unit according to any one of claims 8 to 11.
PCT/JP2017/028689 2016-08-09 2017-08-08 Motor unit WO2018030371A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780049204.6A CN109565224B (en) 2016-08-09 2017-08-08 Motor unit
US16/323,910 US10879769B2 (en) 2016-08-09 2017-08-08 Motor unit
JP2018533478A JPWO2018030371A1 (en) 2016-08-09 2017-08-08 Motor unit
DE112017003994.0T DE112017003994T5 (en) 2016-08-09 2017-08-08 MOTOR UNIT

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201662372411P 2016-08-09 2016-08-09
US62/372411 2016-08-09
US201662402027P 2016-09-30 2016-09-30
US62/402027 2016-09-30
US201662439201P 2016-12-27 2016-12-27
US62/439201 2016-12-27
JP2017073097 2017-03-31
JP2017-073097 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018030371A1 true WO2018030371A1 (en) 2018-02-15

Family

ID=61162261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028689 WO2018030371A1 (en) 2016-08-09 2017-08-08 Motor unit

Country Status (1)

Country Link
WO (1) WO2018030371A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019219676A1 (en) * 2018-05-15 2019-11-21 Valeo Siemens Eautomotive Germany Gmbh Integrated drive system
WO2020213508A1 (en) * 2019-04-19 2020-10-22 日本電産株式会社 Drive device and vehicle drive system
WO2020213507A1 (en) * 2019-04-19 2020-10-22 日本電産株式会社 Drive device
JP2021008901A (en) * 2019-06-28 2021-01-28 日本電産株式会社 Driving device
WO2021079664A1 (en) * 2019-10-21 2021-04-29 日本電産株式会社 Drive device
JP2021093867A (en) * 2019-12-11 2021-06-17 ダイハツ工業株式会社 Oil channel structure
CN113328575A (en) * 2020-02-28 2021-08-31 日本电产株式会社 Drive device
CN113525066A (en) * 2021-07-15 2021-10-22 东风汽车集团股份有限公司 Hybrid drive system's casing and vehicle
CN113669435A (en) * 2021-07-15 2021-11-19 东风汽车集团股份有限公司 Hybrid drive system's lubricated cooling system and vehicle
JP7424106B2 (en) 2020-02-28 2024-01-30 ニデック株式会社 drive device
JP7447623B2 (en) 2020-03-30 2024-03-12 ニデック株式会社 motor unit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007321927A (en) * 2006-06-02 2007-12-13 Toyota Motor Corp Lubricating device for vehicular driving device
JP2012182952A (en) * 2011-03-02 2012-09-20 Komatsu Ltd Cooling structure of motor and motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007321927A (en) * 2006-06-02 2007-12-13 Toyota Motor Corp Lubricating device for vehicular driving device
JP2012182952A (en) * 2011-03-02 2012-09-20 Komatsu Ltd Cooling structure of motor and motor

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021523666A (en) * 2018-05-15 2021-09-02 ヴァレオ ジーメンス エーアオトモーティヴェ ゲルマニー ゲーエムベーハーValeo Siemens eAutomotive Germany GmbH Integrated drive system
CN112166544A (en) * 2018-05-15 2021-01-01 法雷奥西门子新能源汽车德国有限公司 Integrated drive system
US20210086608A1 (en) * 2018-05-15 2021-03-25 Valeo Siemens Eautomotive Germany Gmbh Integrated drive system
US11938806B2 (en) 2018-05-15 2024-03-26 Valeo Siemens Eautomotive Germany Gmbh Integrated drive system
WO2019219676A1 (en) * 2018-05-15 2019-11-21 Valeo Siemens Eautomotive Germany Gmbh Integrated drive system
WO2020213508A1 (en) * 2019-04-19 2020-10-22 日本電産株式会社 Drive device and vehicle drive system
WO2020213507A1 (en) * 2019-04-19 2020-10-22 日本電産株式会社 Drive device
CN113710531A (en) * 2019-04-19 2021-11-26 日本电产株式会社 Drive device
JP2021008901A (en) * 2019-06-28 2021-01-28 日本電産株式会社 Driving device
JP7310367B2 (en) 2019-06-28 2023-07-19 ニデック株式会社 drive
WO2021079664A1 (en) * 2019-10-21 2021-04-29 日本電産株式会社 Drive device
CN114600346A (en) * 2019-10-21 2022-06-07 日本电产株式会社 Drive device
JP2021093867A (en) * 2019-12-11 2021-06-17 ダイハツ工業株式会社 Oil channel structure
JP7148483B2 (en) 2019-12-11 2022-10-05 ダイハツ工業株式会社 Oil passage structure
CN113328575A (en) * 2020-02-28 2021-08-31 日本电产株式会社 Drive device
JP7424106B2 (en) 2020-02-28 2024-01-30 ニデック株式会社 drive device
JP7447623B2 (en) 2020-03-30 2024-03-12 ニデック株式会社 motor unit
CN113525066A (en) * 2021-07-15 2021-10-22 东风汽车集团股份有限公司 Hybrid drive system's casing and vehicle
CN113669435B (en) * 2021-07-15 2024-01-16 东风汽车集团股份有限公司 Lubricating and cooling system of hybrid power type driving system and vehicle
CN113525066B (en) * 2021-07-15 2022-11-01 东风汽车集团股份有限公司 Hybrid drive system's casing and vehicle
CN113669435A (en) * 2021-07-15 2021-11-19 东风汽车集团股份有限公司 Hybrid drive system's lubricated cooling system and vehicle

Similar Documents

Publication Publication Date Title
JP2018027003A (en) Motor unit
WO2018030371A1 (en) Motor unit
CN109563920B (en) Motor unit
JP7088013B2 (en) Motor unit
WO2018030343A1 (en) Motor unit
WO2018030372A1 (en) Motor unit
JP7088012B2 (en) Motor unit
WO2018030344A1 (en) Motor unit
CN109565225B (en) Motor unit
WO2018030218A1 (en) Motor
CN109565224B (en) Motor unit
CN109565201B (en) Motor
WO2018030346A1 (en) Motor unit
CN109565200B (en) Motor
CN109565199B (en) Motor
CN109643935B (en) Motor unit
CN109643933B (en) Motor unit
WO2018030348A1 (en) Motor unit
WO2018030342A1 (en) Motor unit
WO2018030219A1 (en) Motor
WO2018030370A1 (en) Motor
CN217427837U (en) Motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17839442

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018533478

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17839442

Country of ref document: EP

Kind code of ref document: A1