WO2018030001A1 - Road surface state assessment apparatus - Google Patents

Road surface state assessment apparatus Download PDF

Info

Publication number
WO2018030001A1
WO2018030001A1 PCT/JP2017/023198 JP2017023198W WO2018030001A1 WO 2018030001 A1 WO2018030001 A1 WO 2018030001A1 JP 2017023198 W JP2017023198 W JP 2017023198W WO 2018030001 A1 WO2018030001 A1 WO 2018030001A1
Authority
WO
WIPO (PCT)
Prior art keywords
road surface
tire
surface state
threshold value
unit
Prior art date
Application number
PCT/JP2017/023198
Other languages
French (fr)
Japanese (ja)
Inventor
良佑 神林
高俊 関澤
雅士 森
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017110685A external-priority patent/JP6620787B2/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to US16/323,830 priority Critical patent/US11142210B2/en
Publication of WO2018030001A1 publication Critical patent/WO2018030001A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C19/00Tyre parts or constructions not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/172Determining control parameters used in the regulation, e.g. by calculations involving measured or detected parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/068Road friction coefficient
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles

Definitions

  • the present disclosure relates to a road surface state estimation device that includes a tire mount sensor that detects vibration received by a tire and transmits the vibration data to a vehicle body side system, and estimates a road surface state based on the vibration data.
  • a tire mount sensor has been provided on the back side of the tire tread, and vibrations applied to the tires are detected by the tire mount sensors, and the detection results of the vibrations are transmitted to the vehicle body system to estimate the road surface condition.
  • a device There is a device.
  • an index used for estimating the road surface state for example, an integrated voltage value of the vibration waveform, is obtained from the vibration waveform detected by the vibration detection unit of the tire mount sensor, and the road surface state is estimated by comparing this index with a threshold value. Is going.
  • the vibration waveform detected by the vibration detection unit changes depending on the state of the tire, it is preferable to change the threshold value for comparison with an index used for estimating the road surface state according to the state.
  • Patent Document 1 proposes a tire wear estimation device that estimates the degree of tire wear.
  • the vibration waveform detected by the vibration detection unit does not gradually change like tire wear, but different vibration waveforms before and after replacement. For this reason, when the tire is replaced, the threshold for comparison with the index used for estimating the road surface condition is completely different from that used before the replacement.
  • the tire mount sensor attached to the tire that was used before will be attached to the tire after replacement, but in that case, the threshold set based on the tire before replacement will be The road surface condition cannot be estimated accurately.
  • Patent Document 1 only detects the degree of wear, and cannot accurately estimate the road surface condition even if the tire is worn.
  • the present disclosure provides a road surface state estimation device capable of accurately estimating the road surface state even when the tire mount sensor attached to the tire before replacement is reused when the tire is replaced. With the goal.
  • a road surface state estimation device includes a vibration detection unit that outputs an output voltage corresponding to the magnitude of tire vibration as a detection signal, a signal processing unit that detects a road surface state from vibration data indicated by the detection signal of the vibration detection unit, and a road surface A transmission unit that transmits road surface data indicating a state, a tire mount sensor that is attached to the rear surface of the tire, and a vehicle body side that receives road surface data transmitted from the transmission unit, and road surface data
  • a vehicle body side system having a control unit that estimates a road surface state based on the road surface condition determination condition threshold used when detecting a road surface state from vibration data when a tire is replaced To change.
  • the threshold value of the road surface condition determination condition is automatically reset.
  • a road surface state estimating device 100 to which the tire mount sensor 1 according to the present embodiment is applied will be described with reference to FIGS.
  • the road surface state estimation device 100 according to the present embodiment estimates the road surface state during travel of the vehicle.
  • the road surface state is applied to the tire mount sensor 1 applied to the road surface state estimation device 100.
  • the road surface state estimation device 100 of the present embodiment will be specifically described.
  • the road surface state estimating device 100 has a tire mount sensor 1 provided on the wheel side and a vehicle body side system 2 including each part provided on the vehicle body side.
  • a receiver 21, a notification device 22, and the like are provided.
  • the road surface state estimation device 100 detects the vibration of the tire 3 provided to each wheel by the tire mount sensor 1 and travels data such as data indicating the road surface ⁇ between the tire 3 and the road surface during traveling based on the vibration. Data representing the road surface condition inside is generated and transmitted to the receiver 21 side.
  • the data of the road surface ⁇ is referred to as ⁇ data
  • the data indicating the road surface state including the ⁇ data is referred to as road surface data.
  • the road surface state estimation device 100 receives the road surface data transmitted from the tire mount sensor 1 by the receiver 21 and transmits the road surface state indicated by the road surface data from the notification device 22.
  • the tire mount sensor 1 and the receiver 21 are configured as follows.
  • the tire mount sensor 1 is a tire side device provided on the tire side. As shown in FIG. 2, the tire mount sensor 1 includes a power source 11, an acceleration sensor 12, a control unit 13, an LF (abbreviation of LowLFrequency) reception circuit 14, and an RF (abbreviation of Radio Frequency) transmission circuit 15. As shown in FIG. 4, it is provided on the back side of the tread 31 of the tire 3. For example, the tire mount sensor 1 is fixed to the tire 3 by being fitted to a rubber bracket 32 bonded to the back surface of the tread 31. The tire mount sensor 1 can be attached to and detached from the rubber bracket 32. When the tire mount sensor 1 is removed from the rubber bracket 32 at the time of tire replacement, the tire mount sensor 1 is fitted again to the rubber bracket 32 attached to the tire 3 after replacement.
  • LF abbreviation of LowLFrequency
  • RF abbreviation of Radio Frequency
  • the power source 11 is constituted by, for example, a battery and supplies power for driving each part of the tire mount sensor 1.
  • the acceleration sensor 12 constitutes a vibration detection unit for detecting vibration applied to the tire.
  • the acceleration sensor 12 detects acceleration as a detection signal corresponding to vibration in a tire tangential direction indicated by an arrow X in FIG. 3 in a direction in contact with a circular orbit drawn by the tire mount sensor 1 when the tire 3 rotates.
  • the detection signal is output.
  • the acceleration sensor 12 generates an output voltage as a detection signal in which one of the two directions indicated by the arrow X is positive and the opposite direction is negative.
  • the control unit 13 is a part corresponding to a signal processing unit, and uses the detection signal of the acceleration sensor 12 as a detection signal representing vibration data in the tire tangential direction, obtains road surface data by processing the detection signal, It plays a role of transmitting it to the RF transmission circuit 15.
  • the control unit 13 extracts the ground contact section of the acceleration sensor 12 when the tire 3 rotates based on the detection signal of the acceleration sensor 12, that is, the time change of the output voltage of the acceleration sensor 12.
  • the contact section here means a section in which a portion of the tread 31 of the tire 3 corresponding to the location where the acceleration sensor 12 is disposed is grounded on the road surface.
  • the location where the acceleration sensor 12 is disposed is the location where the tire mount sensor 1 is disposed
  • the portion corresponding to the location where the tire mount sensor 1 is disposed in the tread 31 of the tire 3 is the road surface. It is an agreement with the grounded section.
  • the arrangement location of the tire mount sensor 1 in the tread 31 of the tire 3, in other words, the arrangement location of the acceleration sensor 12 is referred to as an apparatus arrangement location.
  • the control unit 13 extracts the high-frequency component from the detection signal and extracts the high-frequency component as described later.
  • a road surface condition such as road surface ⁇ is detected based on the component.
  • control unit 13 when the control unit 13 detects the road surface state, the control unit 13 generates road surface data indicating the road surface state, and performs a process of transmitting it to the RF transmission circuit 15. Thus, road surface data is transmitted to the receiver 21 through the RF transmission circuit 15.
  • control unit 13 is configured by a known microcomputer including a CPU, ROM, RAM, I / O, and the like, and performs the above-described processing according to a program stored in the ROM. And the control part 13 is provided with the area extraction part 13a, the level calculation part 13b, and the data generation part 13c as a function part which performs those processes.
  • the section extracting unit 13a extracts the ground section by detecting the peak value of the detection signal represented by the output voltage of the acceleration sensor 12.
  • the output voltage waveform of the acceleration sensor 12 during tire rotation is, for example, the waveform shown in FIG.
  • the output voltage of the acceleration sensor 12 takes a maximum value at the start of grounding when the portion corresponding to the device arrangement location starts to ground as the tire 3 rotates.
  • the section extraction unit 13a detects the start of grounding at which the output voltage of the acceleration sensor 12 takes a maximum value as the timing of the first peak value.
  • the output voltage of the acceleration sensor 12 takes a minimum value at the end of the grounding when the device arrangement portion is grounded with the rotation of the tire 3 when the grounding is stopped.
  • the section extraction unit 13a detects the end of grounding at which the output voltage of the acceleration sensor 12 takes a minimum value as the timing of the second peak value.
  • the reason why the output voltage of the acceleration sensor 12 takes a peak value at the above timing is as follows. That is, when the device arrangement place comes into contact with the rotation of the tire 3, the portion of the tire 3 that has been a substantially cylindrical surface in the vicinity of the acceleration sensor 12 is pressed and deformed into a flat shape. By receiving an impact at this time, the output voltage of the acceleration sensor 12 takes the first peak value. In addition, when the device arrangement part moves away from the ground contact surface with the rotation of the tire 3, the tire 3 is released from pressing in the vicinity of the acceleration sensor 12 and returns from a planar shape to a substantially cylindrical shape. By receiving an impact when the tire 3 returns to its original shape, the output voltage of the acceleration sensor 12 takes the second peak value.
  • the output voltage of the acceleration sensor 12 takes the first and second peak values when the grounding starts and when the grounding ends, respectively. Moreover, since the direction of the impact when the tire 3 is pressed and the direction of the impact when released from the press are opposite directions, the sign of the output voltage is also opposite.
  • the section extracting unit 13a extracts the ground contact section of the acceleration sensor 12 by extracting the detection signal data including the timings of the first and second peak values, and the level calculating unit 13b indicates that it is in the grounded section. To tell.
  • the section extraction unit 13a sends a transmission trigger to the RF transmission circuit 15 at this timing.
  • road surface data such as ⁇ data created by the data generation unit 13c is transmitted from the RF transmission circuit 15 as will be described later.
  • data transmission by the RF transmission circuit 15 is not always performed, but only when the acceleration sensor 12 is grounded, so that power consumption can be reduced.
  • the timing at which the output voltage of the acceleration sensor 12 takes the second peak value has been described as an example of the data transmission timing from the RF circuit 15, it is needless to say that another timing may be used.
  • a mode in which data transmission is performed once for each rotation of the tire 3 instead of a mode in which data transmission is performed once for a plurality of rotations or a plurality of times for each rotation may be employed.
  • the level calculation unit 13b when notified from the section extraction unit 13a that it is in the grounding section, calculates the level of the high-frequency component caused by the vibration of the tire 3 included in the output voltage of the acceleration sensor 12 during that period. Then, the level calculation unit 13b transmits the calculation result to the data generation unit 13c as road surface data such as ⁇ data.
  • the level of the high-frequency component is calculated as an index representing the road surface state such as the road surface ⁇ .
  • FIG. 5A shows a change in the output voltage of the acceleration sensor 12 when traveling on a high ⁇ road surface having a relatively large road surface ⁇ such as an asphalt road.
  • FIG. 5B shows a change in the output voltage of the acceleration sensor 12 when the vehicle is traveling on a low ⁇ road surface where the road surface ⁇ is relatively small to the extent corresponding to the frozen road.
  • the first and second peak values appear at the beginning and end of the contact section, that is, at the start and end of the contact of the acceleration sensor 12, regardless of the road surface ⁇ .
  • the output voltage of the acceleration sensor 12 changes due to the influence of the road surface ⁇ .
  • the road surface ⁇ is low, such as when traveling on a low ⁇ road surface
  • fine high-frequency vibration due to slip of the tire 3 is superimposed on the output voltage.
  • Such a fine high-frequency signal due to the slip of the tire 3 is not superposed when the road surface ⁇ is high, such as when traveling on a high ⁇ road surface.
  • the frequency analysis of the output voltage during the grounding section is performed for each of the cases where the road surface ⁇ is high and low, the result shown in FIG. 6 is obtained.
  • the level is high when the road surface ⁇ is high or low, but in the high frequency range of 1 kHz or higher, the level is higher when the road surface ⁇ is low than when it is high. .
  • the level of the high frequency component of the output voltage of the acceleration sensor 12 serves as an index representing the road surface state.
  • the level calculation unit 13b calculates the level of the high frequency component of the output voltage of the acceleration sensor 12 during the grounding section by the level calculation unit 13b. Therefore, by calculating the level of the high frequency component of the output voltage of the acceleration sensor 12 during the grounding section by the level calculation unit 13b, this can be converted to ⁇ data. Further, from the ⁇ data, for example, when the road surface ⁇ is low, the road surface type corresponding to the road surface ⁇ can be detected as a road surface state, such as determining that the road is frozen.
  • the level of the high frequency component can be calculated as an integrated voltage value obtained by extracting the high frequency component from the output voltage of the acceleration sensor 12 and integrating the high frequency component extracted during the grounding section.
  • the high frequency components of the frequency bands fa to fb that are assumed to change according to the road surface condition and the road surface ⁇ are extracted by filtering or the like, and the voltages of the high frequency components of the frequency bands fa to fb extracted by the frequency analysis are obtained. Integrate to obtain the integrated voltage value. For example, a capacitor (not shown) is charged.
  • the amount of charge increases when the road surface ⁇ is low, such as when traveling on a low ⁇ road surface, rather than when the road surface ⁇ is high, such as when traveling on a high ⁇ road surface. .
  • this charge amount as the ⁇ data, it is possible to estimate the road surface ⁇ such that the larger the charge amount indicated by the ⁇ data, the lower the road surface ⁇ .
  • the data generation unit 13c generates road surface data based on the calculation result of the level calculation unit 13b.
  • the data generation unit 13c adopts ⁇ data as it is as road surface data, obtains a road surface state such as a frozen road or an asphalt road from ⁇ data, and generates data indicating the road surface data as road surface data.
  • the road surface state is estimated in the data generation unit 13c.
  • the data generation unit 13c stores a threshold value of the road surface condition determination condition used for estimating the road surface condition, and when the tire is changed, the threshold value is reset and stored. It is like that.
  • the LF reception circuit 14 corresponds to a reception unit, and is a circuit that receives a command input through the tool 200 or the like. For example, when an LF wave including an instruction command is transmitted to the tire mount sensor 1 through the tool 200 in an automobile maintenance shop or the like, the instruction command is transmitted to the control unit 13 through the LF reception circuit 14. When the instruction command is a learning mode transition signal to be described later, the control unit 13 reads the output voltage of the acceleration sensor 12 and assumes that the tire has been changed, and at the data generation unit 13c, Reset the threshold value of the road surface condition determination condition.
  • the threshold of the road surface condition determination condition Reset the settings. A method for resetting the threshold value of the road surface condition determination condition will be described later.
  • the RF transmission circuit 15 constitutes a transmission unit that transmits road surface data such as ⁇ data transmitted from the data generation unit 13 c to the receiver 21. Communication between the RF transmission circuit 15 and the receiver 21 can be performed by a known short-range wireless communication technique such as Bluetooth (registered trademark).
  • the timing for transmitting the road surface data is arbitrary, but as described above, in this embodiment, the road surface data is received from the RF transmission circuit 15 by sending a transmission trigger from the section extracting unit 13a when the ground contact of the acceleration sensor 12 is completed. It is supposed to be sent. In this way, data transmission by the RF transmission circuit 15 is not always performed, but only when the acceleration sensor 12 is grounded, so that power consumption can be reduced.
  • the road surface data is sent together with the unique identification information (hereinafter referred to as ID information) of the wheels provided in advance for each tire 3 provided in the vehicle.
  • ID information unique identification information
  • the position of each wheel can be specified by a well-known wheel position detection device that detects which position of the vehicle the wheel is attached to. Therefore, by transmitting road surface data together with ID information to the receiver 21, data on which wheel is detected. Can be determined.
  • the receiver 21 receives the road surface data transmitted from the tire mount sensor 1, estimates the road surface state based on the road surface data, transmits the estimated road surface state to the notification device 22, and if necessary, from the notification device 22. Inform the driver of the road surface condition.
  • the driver tries to drive corresponding to the road surface condition, and the danger of the vehicle can be avoided.
  • the road surface state estimated through the notification device 22 may be always displayed, or the estimated road surface state needs to be operated more carefully such as a wet road, a frozen road, a low ⁇ road, or the like. Only when the road surface condition is displayed, the driver may be warned.
  • the vehicle motion control is performed based on the transmitted road surface state. Can also be executed.
  • the notification device 22 is composed of a meter display, for example, and is used when notifying the driver of the road surface state.
  • the notification device 22 is configured by a meter display
  • the notification device 22 is disposed at a place where the driver can visually recognize the vehicle while driving, for example, in an instrument panel of the vehicle.
  • the meter display can visually notify the driver of the road surface state by performing display in such a manner that the road surface state can be grasped.
  • the notification device 22 can also be configured by a buzzer or a voice guidance device. In that case, the notification device 22 can audibly notify the driver of the road surface state by a buzzer sound or voice guidance.
  • the meter display device has been exemplified as the notification device 22 that performs visual notification, the notification device 22 may be configured by a display device that displays information such as a head-up display.
  • each part which comprises the vehicle body side system 2 is connected through in-vehicle LAN (abbreviation of Local * AreaNetwork) by CAN (abbreviation for Controller
  • in-vehicle LAN abbreviation of Local * AreaNetwork
  • CAN abbreviation for Controller
  • the output voltage waveform is analyzed every time the tire 3 makes one rotation based on the detection signal of the acceleration sensor 12 to obtain road surface data. Then, at the timing when the output voltage waveform becomes the second peak value, a transmission trigger is issued from the control unit 13 to the RF transmission circuit 15, and road surface data is transmitted.
  • the receiver 21 receives the data, estimates the road surface state based on the road surface data, and transmits the estimated road surface state to the notification device 22. Thereby, a road surface state can be notified to a driver.
  • the instruction command is received by the LF receiving circuit 14.
  • the control unit 13 reads the output voltage of the acceleration sensor 12 and resets the threshold value of the road surface condition determination condition.
  • the instruction command here, specifically the learning mode transition signal, corresponds to “information indicating that tire replacement has been performed” in the present embodiment.
  • the control part 13 totals the data of the output voltage of the acceleration sensor 12 during the period when the tire 3 rotates two or more, and resets the threshold value of road surface condition determination conditions based on the total result.
  • the road surface for learning is usually selected as an asphalt road with the highest driving frequency, that is, a high ⁇ road, and road surface condition determination is performed based on vibration data obtained when driving on a high ⁇ road.
  • stored in the data generation part 13c are reset to a new threshold value.
  • This threshold resetting method will be described with reference to the flowchart of threshold resetting processing shown in FIG. Note that the threshold resetting process shown in FIG. 7 is executed by the control unit 13 every predetermined control cycle based on the power supply from the power supply 11.
  • step S100 it is determined whether a learning mode transition signal is received as an instruction command transmitted through the tool 200 at the time of tire replacement, that is, whether tire replacement has been performed. If it has been received, the process proceeds to step S110 and subsequent steps. If it has not been received, this process is repeated until it is determined that it has been received.
  • step S110 the mode is changed to the learning mode, and in steps S120 to S170, a threshold value used as a road surface condition determination condition is reset.
  • the control unit 13 transitions to the learning mode, the road surface state determination is interrupted during the period, and various processes for resetting the threshold value are performed without transmitting road surface data.
  • step S120 processing for transmitting a learning mode transition signal to the vehicle body side system 2 is performed. That is, the control unit 13 outputs a learning mode transition signal indicating the transition to the learning mode to the RF transmission circuit 15 and transmits the learning mode transition signal from the RF transmission circuit 15. Thereby, since it can grasp
  • step S130 the output voltage waveform of the acceleration sensor 12 is signal-processed, and an integrated voltage value is calculated by integrating high-frequency components in the ground section, and the integrated voltage values are tabulated. Further, in step S140, it is determined whether or not the number of rotations of the tire 3 has reached a predetermined rotation, for example, 20 rotations, and the processing in step S130 is repeated until the predetermined rotation is reached. Thereby, the integrated voltage value during the period until the rotation speed of the tire 3 reaches a predetermined rotation is tabulated.
  • a predetermined rotation for example, 20 rotations
  • step S150 the threshold value of the road surface condition determination condition is reset in the control unit 13.
  • the average value of the integrated voltage values collected in step S140 is calculated, and a numerical value obtained by adding a predetermined value to the average value or a value obtained by multiplying a predetermined coefficient is set as the threshold value.
  • the road surface condition can be determined as a high ⁇ road if the integrated voltage value acquired in the future is equal to or lower than the threshold value, and a low ⁇ road if the integrated voltage value exceeds the threshold value.
  • the threshold value when resetting the threshold value, it is preferable to reset the threshold value for each vehicle speed or to set the threshold value at the reference vehicle speed. In this way, a threshold value for each vehicle speed or a reference vehicle speed is set, and when the road surface condition is determined, the obtained integrated voltage value is compared with a threshold value corresponding to the vehicle speed. The integrated voltage value thus obtained is corrected to a value converted to a reference vehicle speed and compared with a threshold value. By doing in this way, a road surface state can be determined more correctly. That is, as the vehicle speed increases, the first peak value and the second peak value also increase, and the integrated voltage value of the high frequency component of the output voltage of the acceleration sensor 12 also increases, so that the threshold value is increased as the vehicle speed increases. Or the integrated voltage value is corrected to a value corresponding to the reference vehicle speed. In this way, it is possible to determine the road surface state corresponding to the change in the integrated voltage value due to the vehicle speed.
  • the threshold value for determining the high ⁇ road and the low ⁇ road is given as an example, but for example, a threshold value setting for determining the type of road surface such as a snowy road or a wet road is set. It can also be done. In the case of a snowy road, the unevenness of the road surface is large, and therefore, the vibration of the output voltage of the acceleration sensor 12 becomes larger in other regions than in the ground contact section, that is, between the second peak value and the first peak value. For this reason, it is possible to reset the threshold value for determining a normal road such as a snowy road and an asphalt road by analyzing the frequency of the detection signal of the acceleration sensor 12 between the second peak value and the first peak value.
  • the first peak value and the second peak value are not steep, and the manner in which the output voltage of the acceleration sensor 12 changes when reaching the first peak value or the second peak value changes. Furthermore, in the case of a wet road, since it is easy to slip, vibration based on slip increases in the ground contact section. Accordingly, the change amount threshold value that is the threshold value of the change rate of the output voltage of the acceleration sensor 12 when the first peak value or the second peak value is reached, and the integral value threshold value that is the threshold value of the integrated voltage value during the grounding interval are reset. To do. In the future, for example, if the change rate is smaller than the change amount threshold value and the integrated voltage value is larger than the integral value threshold value, it can be determined that the road is a wet road.
  • step S160 the process proceeds to step S160, and the learning mode is changed to the normal mode. Thereby, road surface condition determination is restarted.
  • the threshold value reset in step S150 is used as the threshold value used for determining the road surface state.
  • step S170 the process for transmitting a normal mode transition signal with respect to the vehicle body side system 2 is performed. That is, the control unit 13 outputs a normal mode transition signal indicating the transition from the learning mode to the normal mode to the RF transmission circuit 15, and transmits the normal mode transition signal from the RF transmission circuit 15.
  • the vehicle body side system 2 is also informed that the tire mount sensor 1 has transitioned to the normal mode, that is, has transitioned to the mode in which road surface condition determination is performed. Therefore, in the vehicle body side system 2, road surface state estimation is performed based on the road surface data transmitted from each tire mount sensor 1.
  • the tire mount sensor 1 determines the road surface state and transmits road surface data indicating the result to the vehicle body system 2 so that the vehicle surface system 2 finally estimates the road surface state. .
  • the tire mount sensor 1 transmits the integrated voltage value of the high frequency component of the output voltage of the acceleration sensor 12 as road surface data, and the vehicle body side system 2 determines the road surface state based on the road surface data.
  • a threshold value that is a road surface condition determination condition is stored in the vehicle body side system 2
  • an integrated voltage value or the like indicated in the road surface data is compared with the threshold value to determine whether the road is a high ⁇ road or a low ⁇ road.
  • the road surface condition can be determined.
  • the threshold value is stored in the vehicle body side system 2. Therefore, the resetting of the threshold value of the road surface condition determination condition at the time of tire replacement or the like is performed by the vehicle body side system 2.
  • the threshold value which is the road surface condition determination condition in the vehicle body side system 2 can be stored, and the road surface condition of the acceleration sensor 12 can be determined.
  • the threshold resetting process executed by the control unit 13 described in the first embodiment is the process shown in the flowchart of FIG. That is, in steps S200 to S230, processing similar to that in steps S100 to S130 of FIG. 7 is performed, and in step S240, processing for transmitting road surface data such as an integrated voltage value to the vehicle body side system 2 is performed.
  • step S250 processing similar to that in step S140 in FIG. 7 is performed.
  • the process of sending road surface data to the vehicle body side system 2 shown in step S240 is performed for a predetermined number of revolutions of the tire 3.
  • the integrated voltage value and the like are aggregated in the vehicle body side system 2. Then, for example, an average value of the integrated voltage values is calculated, and a value obtained by adding a predetermined value to the average value or a value obtained by multiplying a predetermined coefficient is set as the threshold value.
  • steps S260 and S270 processing similar to that in steps S160 and S170 in FIG. 7 is performed.
  • the vehicle body side system 2 can reset the threshold value of the road surface condition determination condition at the time of tire replacement or the like.
  • a third embodiment will be described.
  • the road surface state is determined by the vehicle body side system 2 with respect to the first and second embodiments, and the rest is the same as the first and second embodiments. Only the differences from the first and second embodiments will be described.
  • a fitting detection unit 16 for detecting that the tire mount sensor 1 is fitted to the rubber bracket 32 is provided.
  • the fitting detection unit 16 corresponds to a replacement detection unit that detects that the tire mount sensor 1 is attached to the tire 3 after replacement.
  • the fitting detection part 16 is comprised by the detection circuit etc. which conduct
  • control unit 13 detects that the switching between the non-conduction state and the conduction state is detected by the fitting detection unit 16 using the change between the non-conduction state and the conduction state as information indicating that the tire has been replaced. Based on the above, it can be determined that the tire has been changed.
  • the tire mount sensor 1 includes the fitting detection unit 16, and the fitting detection unit 16 detects that the tire mount sensor 1 is fitted to the rubber bracket 32, thereby performing tire replacement. Determine what happened.
  • the threshold value of the road surface condition determination condition can be automatically reset.
  • the fitting detection unit 16 determines whether or not the tire mount sensor 1 has been fitted into the rubber bracket 32, and the fitting is detected. In this case, the processing after step S110 is performed. By doing in this way, the threshold value of the road surface condition determination condition is automatically reset.
  • a fourth embodiment will be described. This embodiment is different from the first to third embodiments in that the threshold value of the road surface condition determination condition is changed based on the change in the unevenness of the tread 31, and the others are the first to the third. Since the third embodiment is the same as the third embodiment, only the parts different from the first to third embodiments will be described.
  • the tire mount sensor 1 detects a change in unevenness of the tread 31 of the tire 3 based on the output voltage of the acceleration sensor 12, and automatically switches to the learning mode when the change in unevenness is detected.
  • the threshold value of the road surface condition determination condition is changed.
  • the tire 3 when the tire 3 is less worn as in a new state, the height of the unevenness due to the grooves formed in the tread 31 is higher than in the state after the wear, and the tire 3 is soft and easily deformed elastically. It is in a state. For this reason, the vibration attenuation rate by the tire 3 is large, and the vibration of the output voltage waveform of the acceleration sensor 12 is small. As the tire 3 wears, the vibration of the output voltage waveform of the acceleration sensor 12 gradually increases.
  • an integrated voltage value of a high frequency component of the output voltage of the acceleration sensor 12 when traveling on an asphalt road is stored in the storage unit of the tire mount sensor 1 as past information.
  • the integrated voltage value obtained before the tire 3 stops is stored as past information.
  • the integrated voltage value obtained at that time is a road surface state suitable for storing, for example, when the road is not an asphalt road
  • the integrated voltage value obtained when the tire 3 was traveling on the asphalt road before stopping is past information. May be stored.
  • the asphalt road can be determined by, for example, the integrated voltage value being smaller than a stored threshold value, and the integrated voltage value at that time is stored.
  • the change of the integrated voltage value acquired with respect to the integrated voltage value stored as the past information is abrupt, it can be said that the height of the unevenness due to the groove of the tread 31 has changed abruptly. Therefore, it is confirmed that the change of the integrated voltage value was abrupt, for example, that the tire replacement was performed when the difference between the acquired integrated voltage value and the integrated voltage value stored as past information was equal to or greater than the threshold value. As information to be shown, it can be determined that tire replacement has been performed. When it is determined that the tire has been changed in this way, the threshold value of the road surface condition determination condition is reset. At this time, the acquired integrated voltage value needs to be the same as that of the integrated voltage value stored as past information, for example, when traveling on an asphalt road as described above. For this reason, it is also possible to reset the threshold value of the road surface condition determination condition only when the acquired integrated voltage value is smaller than the integrated voltage value stored as past information.
  • the threshold value of the road surface condition determination condition can be automatically reset. Also in this case, for example, in place of step S100 in FIG. 7, a process for determining whether or not the height of the recesses and projections in the groove of the tread 31 has changed abruptly is performed. Perform the process. By doing in this way, the threshold value of the road surface condition determination condition is automatically reset.
  • the threshold value may be reset when the road surface condition is other than the asphalt road.
  • a desired road surface state can be selected by the tool 200, and a threshold value assumed for the selected road surface form may be set based on the output voltage waveform of the acceleration sensor 12. In this way, it is possible to reset the threshold value in each of various road surface conditions, and it is possible to reset the threshold value more accurately.
  • the grounding section is specified from the detection signal of the acceleration sensor 12 that constitutes the vibration detection unit, and the calculation result of the level of the high frequency component in the detection signal in the grounding section It is used as road surface data indicating the road surface condition.
  • this is only an example of a method for detecting the road surface state using the detection signal at the vibration detection unit, and even if the road surface state is detected by another method using the detection signal at the vibration detection unit. good.
  • the vibration detection unit can also be configured by another element capable of detecting vibration, such as a piezoelectric element.
  • the power source 11 is not limited to a battery, and may be configured by a power generation element or the like.
  • the power supply 11 can be configured while the vibration detection power generation element forms a vibration detection unit.
  • the receiver 21 has a function as a control unit, and the final road surface state estimation is performed.
  • a control unit may be provided separately from the receiver 21, or another ECU such as a brake ECU may function as the control unit.
  • the above embodiments are not irrelevant to each other, and can be appropriately combined unless the combination is clearly impossible.
  • the first embodiment or the second embodiment can be combined with the third embodiment or the fourth embodiment.

Abstract

A control unit (13) of a tire mounted sensor (1) determines whether a tire 3 has been changed. When the tire (3) has been changed, the control unit (13) changes the threshold value of a road surface state determination condition used for detecting the road surface state from vibration data of the tire (3) detected by an acceleration sensor (12) of the tire mounted sensor (1). For example, the threshold value of the road surface state determination condition is reset upon determining that the tire (3) has been changed, by transmitting an instruction command to the tire mounted sensor (1) through a tool (200) at an automobile maintenance shop, etc.

Description

路面状態推定装置Road surface condition estimation device 関連出願への相互参照Cross-reference to related applications
 本出願は、2016年8月11日に出願された日本特許出願番号2016-158311号と、2017年6月5日に出願された日本特許出願番号2017-110685号とに基づくもので、ここにその記載内容が参照により組み入れられる。 This application is based on Japanese Patent Application No. 2016-158311 filed on August 11, 2016 and Japanese Patent Application No. 2017-110485 filed on June 5, 2017, and here The description is incorporated by reference.
 本開示は、タイヤが受ける振動を検出し、振動データとして車体側システムに伝えるタイヤマウントセンサを含み、振動データに基づいて路面状態を推定する路面状態推定装置に関するものである。 The present disclosure relates to a road surface state estimation device that includes a tire mount sensor that detects vibration received by a tire and transmits the vibration data to a vehicle body side system, and estimates a road surface state based on the vibration data.
 従来より、タイヤトレッドの裏面にタイヤマウントセンサを備え、タイヤマウントセンサにてタイヤに加えられる振動を検出すると共に、その振動の検出結果を車体側システムに伝え、路面状態の推定を行う路面状態推定装置がある。この装置では、タイヤマウントセンサの振動検出部が検出する振動波形から路面状態の推定に用いる指標、例えば振動波形の積分電圧値を求め、この指標を閾値と比較することで、路面状態の推定を行っている。 Conventionally, a tire mount sensor has been provided on the back side of the tire tread, and vibrations applied to the tires are detected by the tire mount sensors, and the detection results of the vibrations are transmitted to the vehicle body system to estimate the road surface condition. There is a device. In this apparatus, an index used for estimating the road surface state, for example, an integrated voltage value of the vibration waveform, is obtained from the vibration waveform detected by the vibration detection unit of the tire mount sensor, and the road surface state is estimated by comparing this index with a threshold value. Is going.
 しかしながら、振動検出部が検出する振動波形がタイヤの状態によって変化することから、その状態に応じて路面状態の推定に用いる指標と比較するための閾値を変更することが好ましい。 However, since the vibration waveform detected by the vibration detection unit changes depending on the state of the tire, it is preferable to change the threshold value for comparison with an index used for estimating the road surface state according to the state.
 このようなタイヤの状態を検出するものとして、特許文献1に、タイヤの摩耗度合いを推定するタイヤ摩耗推定装置が提案されている。 As a device for detecting such a tire state, Patent Document 1 proposes a tire wear estimation device that estimates the degree of tire wear.
特許第5620268号公報Japanese Patent No. 5620268
 しかしながら、タイヤ交換時には、タイヤの摩耗のように徐々に振動検出部が検出する振動波形が変化するのではなく、交換前後で異なった振動波形となる。このため、タイヤ交換を行ったときに、路面状態の推定に用いる指標と比較するための閾値は、交換前に使用していたものと全く異なったものになる。タイヤマウントセンサを再利用する場合、以前使用していたタイヤに取り付けられていたタイヤマウントセンサを交換後のタイヤに取り付けることになるが、その場合、交換前のタイヤを基準として設定された閾値では路面状態の推定を的確に行えない。 However, at the time of tire replacement, the vibration waveform detected by the vibration detection unit does not gradually change like tire wear, but different vibration waveforms before and after replacement. For this reason, when the tire is replaced, the threshold for comparison with the index used for estimating the road surface condition is completely different from that used before the replacement. When reusing a tire mount sensor, the tire mount sensor attached to the tire that was used before will be attached to the tire after replacement, but in that case, the threshold set based on the tire before replacement will be The road surface condition cannot be estimated accurately.
 また、特許文献1に示される装置は、摩耗度合いを検出しているだけであり、タイヤが摩耗しても路面状態を的確に推定することができるものではない。 Also, the device disclosed in Patent Document 1 only detects the degree of wear, and cannot accurately estimate the road surface condition even if the tire is worn.
 本開示は、タイヤ交換を行う場合に、交換前のタイヤに取り付けていたタイヤマウントセンサを再利用する際にも、路面状態の推定を的確に行うことが可能な路面状態推定装置を提供することを目的とする。 The present disclosure provides a road surface state estimation device capable of accurately estimating the road surface state even when the tire mount sensor attached to the tire before replacement is reused when the tire is replaced. With the goal.
 路面状態推定装置は、タイヤの振動の大きさに応じた出力電圧を検出信号として出力する振動検出部と、振動検出部の検出信号が示す振動データから路面状態を検出する信号処理部と、路面状態が表された路面データを送信する送信部と、を有し、タイヤの裏面に取り付けられるタイヤマウントセンサと、車体側に備えられ、送信部から送信された路面データを受信すると共に、路面データに基づいて路面状態を推定する制御部を有する車体側システムと、を備え、信号処理部は、タイヤの交換が行われると、振動データから路面状態を検出するときに用いる路面状態判定条件の閾値を変更する。 A road surface state estimation device includes a vibration detection unit that outputs an output voltage corresponding to the magnitude of tire vibration as a detection signal, a signal processing unit that detects a road surface state from vibration data indicated by the detection signal of the vibration detection unit, and a road surface A transmission unit that transmits road surface data indicating a state, a tire mount sensor that is attached to the rear surface of the tire, and a vehicle body side that receives road surface data transmitted from the transmission unit, and road surface data A vehicle body side system having a control unit that estimates a road surface state based on the road surface condition determination condition threshold used when detecting a road surface state from vibration data when a tire is replaced To change.
 このように、タイヤの交換が行われたときに路面状態判定条件の閾値が自動的に再設定されるようにしている。これにより、タイヤ交換を行う場合に、交換前のタイヤに取り付けていたタイヤマウントセンサを再利用する際にも、路面状態の推定を的確に行うことが可能な路面状態推定装置とすることが可能となる。 Thus, when the tire is replaced, the threshold value of the road surface condition determination condition is automatically reset. As a result, when exchanging tires, it is possible to provide a road surface state estimating device capable of accurately estimating the road surface state even when the tire mount sensor attached to the tire before replacement is reused. It becomes.
第1実施形態にかかる路面状態推定装置のブロック構成を示した図である。It is the figure which showed the block configuration of the road surface state estimation apparatus concerning 1st Embodiment. タイヤマウントセンサのブロック図である。It is a block diagram of a tire mount sensor. タイヤマウントセンサが取り付けられたタイヤの断面模式図である。It is a cross-sectional schematic diagram of a tire to which a tire mount sensor is attached. タイヤ回転時における加速度センサの出力電圧波形図である。It is an output voltage waveform figure of an acceleration sensor at the time of tire rotation. アスファルト路のように路面μが比較的大きな高μ路面を走行している場合における加速度センサの出力電圧の変化を示した図である。It is the figure which showed the change of the output voltage of an acceleration sensor in the case of drive | working the high micro road surface where road surface (micro | micron | mu) is comparatively large like an asphalt road. 凍結路のように路面μが比較的小さな低μ路面を走行している場合における加速度センサの出力電圧の変化を示した図である。It is the figure which showed the change of the output voltage of an acceleration sensor in the case of drive | working on the low micro road surface where road surface (micro | micron | mu) is comparatively small like a frozen road. 高μ路面を走行している場合と低μ路面を走行している場合それぞれについて、接地区間中における出力電圧の周波数解析を行った結果を示した図である。It is the figure which showed the result of having performed the frequency analysis of the output voltage in the earthing | grounding area about the case where it is drive | working on the high micro road surface, and the case where it is driving on the low micro road surface, respectively. タイヤ交換時の閾値再設定処理の詳細を示したフローチャートである。It is the flowchart which showed the detail of the threshold reset process at the time of tire replacement | exchange. 第2実施形態で説明するタイヤ交換時の閾値再設定処理の詳細を示したフローチャートである。It is the flowchart which showed the detail of the threshold reset process at the time of tire replacement demonstrated in 2nd Embodiment. 第3実施形態で説明するタイヤマウントセンサのブロック図である。It is a block diagram of the tire mount sensor demonstrated in 3rd Embodiment.
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following embodiments, parts that are the same or equivalent to each other will be described with the same reference numerals.
 (第1実施形態)
 図1~図8を参照して、本実施形態にかかるタイヤマウントセンサ1が適用される路面状態推定装置100について説明する。本実施形態にかかる路面状態推定装置100は、車両の走行中の路面状態を推定するものであるが、本実施形態では、この路面状態推定装置100に適用されるタイヤマウントセンサ1に、路面状態の推定に用いる閾値の学習機能を持たせる。以下、具体的に、本実施形態の路面状態推定装置100について説明する。
(First embodiment)
A road surface state estimating device 100 to which the tire mount sensor 1 according to the present embodiment is applied will be described with reference to FIGS. The road surface state estimation device 100 according to the present embodiment estimates the road surface state during travel of the vehicle. In the present embodiment, the road surface state is applied to the tire mount sensor 1 applied to the road surface state estimation device 100. A learning function of a threshold value used for estimation of. Hereinafter, the road surface state estimation device 100 of the present embodiment will be specifically described.
 図1および図2に示すように路面状態推定装置100は、車輪側に設けられたタイヤマウントセンサ1と、車体側に備えられた各部を含む車体側システム2とを有する構成とされている。車体側システム2としては、受信機21や報知装置22などが備えられている。 As shown in FIGS. 1 and 2, the road surface state estimating device 100 has a tire mount sensor 1 provided on the wheel side and a vehicle body side system 2 including each part provided on the vehicle body side. As the vehicle body side system 2, a receiver 21, a notification device 22, and the like are provided.
 路面状態推定装置100は、タイヤマウントセンサ1にて各車輪に備えられるタイヤ3の振動を検出し、この振動に基づいてタイヤ3と走行中の路面との間の路面μを示すデータなど、走行中の路面状態を表すデータを生成して受信機21側に送信する。以下、路面μのデータのことをμデータといい、μデータを含む路面状態を表すデータのことを路面データという。また、路面状態推定装置100は、受信機21にてタイヤマウントセンサ1から送信された路面データを受信し、路面データに示される路面状態を報知装置22より伝える。これにより、例えば路面μが低いことや乾燥路やウェット路もしくは凍結路であることなど、路面状態をドライバに伝えることが可能となり、滑り易い路面である場合にはドライバに警告することも可能となる。具体的には、タイヤマウントセンサ1および受信機21は、以下のように構成されている。 The road surface state estimation device 100 detects the vibration of the tire 3 provided to each wheel by the tire mount sensor 1 and travels data such as data indicating the road surface μ between the tire 3 and the road surface during traveling based on the vibration. Data representing the road surface condition inside is generated and transmitted to the receiver 21 side. Hereinafter, the data of the road surface μ is referred to as μ data, and the data indicating the road surface state including the μ data is referred to as road surface data. Further, the road surface state estimation device 100 receives the road surface data transmitted from the tire mount sensor 1 by the receiver 21 and transmits the road surface state indicated by the road surface data from the notification device 22. As a result, it is possible to inform the driver of the road surface condition such as low road surface μ, dry road, wet road or frozen road, and it is possible to warn the driver when the road surface is slippery. Become. Specifically, the tire mount sensor 1 and the receiver 21 are configured as follows.
 タイヤマウントセンサ1は、タイヤ側に備えられるタイヤ側装置である。タイヤマウントセンサ1は、図2に示すように、電源11、加速度センサ12、制御部13、LF(Low  Frequencyの略)受信回路14、RF(Radio  Frequencyの略)送信回路15を備え、図3に示されるように、タイヤ3のトレッド31の裏面側に設けられる。例えば、タイヤマウントセンサ1は、トレッド31の裏面に接着されたゴムブラケット32に対して嵌合させられることでタイヤ3に固定されている。タイヤマウントセンサ1は、ゴムブラケット32に対して着脱可能とされ、タイヤ交換時にゴムブラケット32から取り外されることで、交換後のタイヤ3に取り付けられているゴムブラケット32に再度嵌合させられる。 The tire mount sensor 1 is a tire side device provided on the tire side. As shown in FIG. 2, the tire mount sensor 1 includes a power source 11, an acceleration sensor 12, a control unit 13, an LF (abbreviation of LowLFrequency) reception circuit 14, and an RF (abbreviation of Radio Frequency) transmission circuit 15. As shown in FIG. 4, it is provided on the back side of the tread 31 of the tire 3. For example, the tire mount sensor 1 is fixed to the tire 3 by being fitted to a rubber bracket 32 bonded to the back surface of the tread 31. The tire mount sensor 1 can be attached to and detached from the rubber bracket 32. When the tire mount sensor 1 is removed from the rubber bracket 32 at the time of tire replacement, the tire mount sensor 1 is fitted again to the rubber bracket 32 attached to the tire 3 after replacement.
 電源11は、例えば電池などによって構成され、タイヤマウントセンサ1の各部を駆動するための電源供給を行っている。 The power source 11 is constituted by, for example, a battery and supplies power for driving each part of the tire mount sensor 1.
 加速度センサ12は、タイヤに加わる振動を検出するための振動検出部を構成するものである。例えば、加速度センサ12は、タイヤ3が回転する際にタイヤマウントセンサ1が描く円軌道に対して接する方向、つまり図3中の矢印Xで示すタイヤ接線方向の振動に応じた検出信号として、加速度の検出信号を出力する。より詳しくは、加速度センサ12は、矢印Xで示す二方向のうちの一方向を正、反対方向を負とする出力電圧を検出信号として発生させる。 The acceleration sensor 12 constitutes a vibration detection unit for detecting vibration applied to the tire. For example, the acceleration sensor 12 detects acceleration as a detection signal corresponding to vibration in a tire tangential direction indicated by an arrow X in FIG. 3 in a direction in contact with a circular orbit drawn by the tire mount sensor 1 when the tire 3 rotates. The detection signal is output. More specifically, the acceleration sensor 12 generates an output voltage as a detection signal in which one of the two directions indicated by the arrow X is positive and the opposite direction is negative.
 制御部13は、信号処理部に相当する部分であり、加速度センサ12の検出信号をタイヤ接線方向の振動データを表す検出信号として用いて、この検出信号を処理することで路面データを得て、それをRF送信回路15に伝える役割を果たす。 The control unit 13 is a part corresponding to a signal processing unit, and uses the detection signal of the acceleration sensor 12 as a detection signal representing vibration data in the tire tangential direction, obtains road surface data by processing the detection signal, It plays a role of transmitting it to the RF transmission circuit 15.
 具体的には、制御部13は、加速度センサ12の検出信号、つまり加速度センサ12の出力電圧の時間変化に基づいて、タイヤ3の回転時における加速度センサ12の接地区間を抽出している。なお、ここでいう接地区間とは、タイヤ3のトレッド31のうち加速度センサ12の配置箇所と対応する部分が路面接地している区間のことを意味している。本実施形態の場合、加速度センサ12の配置箇所がタイヤマウントセンサ1の配置箇所とされているため、接地区間とはタイヤ3のトレッド31のうちタイヤマウントセンサ1の配置箇所と対応する部分が路面接地している区間と同意である。以下、タイヤ3のトレッド31のうちタイヤマウントセンサ1の配置箇所、換言すれば加速度センサ12の配置箇所のことを装置配置箇所という。 Specifically, the control unit 13 extracts the ground contact section of the acceleration sensor 12 when the tire 3 rotates based on the detection signal of the acceleration sensor 12, that is, the time change of the output voltage of the acceleration sensor 12. Note that the contact section here means a section in which a portion of the tread 31 of the tire 3 corresponding to the location where the acceleration sensor 12 is disposed is grounded on the road surface. In the case of this embodiment, since the location where the acceleration sensor 12 is disposed is the location where the tire mount sensor 1 is disposed, the portion corresponding to the location where the tire mount sensor 1 is disposed in the tread 31 of the tire 3 is the road surface. It is an agreement with the grounded section. Hereinafter, the arrangement location of the tire mount sensor 1 in the tread 31 of the tire 3, in other words, the arrangement location of the acceleration sensor 12 is referred to as an apparatus arrangement location.
 そして、例えば接地区間中における加速度センサ12の検出信号に含まれる高周波成分が路面状態を表していることから、後述するように、制御部13は、検出信号から高周波成分を抽出すると共に抽出した高周波成分に基づいて路面μなどの路面状態を検出している。 For example, since the high-frequency component included in the detection signal of the acceleration sensor 12 in the contact section represents the road surface state, the control unit 13 extracts the high-frequency component from the detection signal and extracts the high-frequency component as described later. A road surface condition such as road surface μ is detected based on the component.
 このようにして、制御部13は、路面状態の検出を行うと、その路面状態を示した路面データを生成し、それをRF送信回路15に伝える処理を行う。これにより、RF送信回路15を通じて受信機21に路面データが伝えられるようになっている。 In this way, when the control unit 13 detects the road surface state, the control unit 13 generates road surface data indicating the road surface state, and performs a process of transmitting it to the RF transmission circuit 15. Thus, road surface data is transmitted to the receiver 21 through the RF transmission circuit 15.
 より詳しくは、制御部13は、CPU、ROM、RAM、I/Oなどを備えた周知のマイクロコンピュータによって構成され、ROMなどに記憶されたプログラムに従って上記した処理を行っている。そして、制御部13は、それらの処理を行う機能部として区間抽出部13a、レベル算出部13bおよびデータ生成部13cを備えている。 More specifically, the control unit 13 is configured by a known microcomputer including a CPU, ROM, RAM, I / O, and the like, and performs the above-described processing according to a program stored in the ROM. And the control part 13 is provided with the area extraction part 13a, the level calculation part 13b, and the data generation part 13c as a function part which performs those processes.
 区間抽出部13aは、加速度センサ12の出力電圧で表される検出信号のピーク値を検出することで接地区間を抽出する。タイヤ回転時における加速度センサ12の出力電圧波形は例えば図4に示す波形となる。この図に示されるように、タイヤ3の回転に伴って装置配置箇所と対応する部分が接地し始めた接地開始時に、加速度センサ12の出力電圧が極大値をとる。区間抽出部13aでは、この加速度センサ12の出力電圧が極大値をとる接地開始時を第1ピーク値のタイミングとして検出している。さらに、図4に示されるように、タイヤ3の回転に伴って装置配置箇所が接地していた状態から接地しなくなる接地終了時に、加速度センサ12の出力電圧が極小値をとる。区間抽出部13aでは、この加速度センサ12の出力電圧が極小値をとる接地終了時を第2ピーク値のタイミングとして検出している。 The section extracting unit 13a extracts the ground section by detecting the peak value of the detection signal represented by the output voltage of the acceleration sensor 12. The output voltage waveform of the acceleration sensor 12 during tire rotation is, for example, the waveform shown in FIG. As shown in this figure, the output voltage of the acceleration sensor 12 takes a maximum value at the start of grounding when the portion corresponding to the device arrangement location starts to ground as the tire 3 rotates. The section extraction unit 13a detects the start of grounding at which the output voltage of the acceleration sensor 12 takes a maximum value as the timing of the first peak value. Furthermore, as shown in FIG. 4, the output voltage of the acceleration sensor 12 takes a minimum value at the end of the grounding when the device arrangement portion is grounded with the rotation of the tire 3 when the grounding is stopped. The section extraction unit 13a detects the end of grounding at which the output voltage of the acceleration sensor 12 takes a minimum value as the timing of the second peak value.
 加速度センサ12の出力電圧が上記のようなタイミングでピーク値をとるのは、以下の理由による。すなわち、タイヤ3の回転に伴って装置配置箇所が接地する際、加速度センサ12の近傍においてタイヤ3のうちそれまで略円筒面であった部分が押圧されて平面状に変形する。このときの衝撃を受けることで、加速度センサ12の出力電圧が第1ピーク値をとる。また、タイヤ3の回転に伴って装置配置箇所が接地面から離れる際には、加速度センサ12の近傍においてタイヤ3は押圧が解放されて平面状から略円筒状に戻る。このタイヤ3の形状が元に戻るときの衝撃を受けることで、加速度センサ12の出力電圧が第2ピーク値をとる。このようにして、加速度センサ12の出力電圧が接地開始時と接地終了時でそれぞれ第1、第2ピーク値をとるのである。また、タイヤ3が押圧される際の衝撃の方向と、押圧から開放される際の衝撃の方向は逆方向であるため、出力電圧の符号も逆方向となる。 The reason why the output voltage of the acceleration sensor 12 takes a peak value at the above timing is as follows. That is, when the device arrangement place comes into contact with the rotation of the tire 3, the portion of the tire 3 that has been a substantially cylindrical surface in the vicinity of the acceleration sensor 12 is pressed and deformed into a flat shape. By receiving an impact at this time, the output voltage of the acceleration sensor 12 takes the first peak value. In addition, when the device arrangement part moves away from the ground contact surface with the rotation of the tire 3, the tire 3 is released from pressing in the vicinity of the acceleration sensor 12 and returns from a planar shape to a substantially cylindrical shape. By receiving an impact when the tire 3 returns to its original shape, the output voltage of the acceleration sensor 12 takes the second peak value. In this way, the output voltage of the acceleration sensor 12 takes the first and second peak values when the grounding starts and when the grounding ends, respectively. Moreover, since the direction of the impact when the tire 3 is pressed and the direction of the impact when released from the press are opposite directions, the sign of the output voltage is also opposite.
 そして、区間抽出部13aは、第1、第2ピーク値のタイミングを含めた検出信号のデータを抽出することで加速度センサ12の接地区間を抽出し、接地区間中であることをレベル算出部13bに伝える。 Then, the section extracting unit 13a extracts the ground contact section of the acceleration sensor 12 by extracting the detection signal data including the timings of the first and second peak values, and the level calculating unit 13b indicates that it is in the grounded section. To tell.
 また、加速度センサ12の出力電圧が第2ピーク値をとるタイミングが加速度センサ12の接地終了時となるため、区間抽出部13aは、このタイミングでRF送信回路15に送信トリガを送っている。これにより、RF送信回路15より、後述するようにデータ生成部13cで作成されるμデータなどの路面データを送信させている。このように、RF送信回路15によるデータ送信を常に行うのではなく、加速度センサ12の接地終了時に限定して行うようにしているため、消費電力を低減することが可能となる。なお、加速度センサ12の出力電圧が第2ピーク値をとるタイミングをRF回路15からのデータ送信タイミングの一例として挙げたが、勿論、他のタイミングであっても良い。また、データ送信をタイヤ3の1回転ごとに1回行うという形態ではなく、複数回転ごとに1回、もしくは1回転ごとに複数回のデータ送信が行われる形態とされても良い。 Further, since the timing at which the output voltage of the acceleration sensor 12 takes the second peak value is when the grounding of the acceleration sensor 12 is completed, the section extraction unit 13a sends a transmission trigger to the RF transmission circuit 15 at this timing. As a result, road surface data such as μ data created by the data generation unit 13c is transmitted from the RF transmission circuit 15 as will be described later. In this way, data transmission by the RF transmission circuit 15 is not always performed, but only when the acceleration sensor 12 is grounded, so that power consumption can be reduced. Although the timing at which the output voltage of the acceleration sensor 12 takes the second peak value has been described as an example of the data transmission timing from the RF circuit 15, it is needless to say that another timing may be used. In addition, instead of a mode in which data transmission is performed once for each rotation of the tire 3, a mode in which data transmission is performed once for a plurality of rotations or a plurality of times for each rotation may be employed.
 レベル算出部13bは、区間抽出部13aから接地区間中であることが伝えられると、その期間中に加速度センサ12の出力電圧に含まれるタイヤ3の振動に起因する高周波成分のレベルを算出する。そして、レベル算出部13bは、その算出結果をμデータなどの路面データとしてデータ生成部13cに伝える。ここで、路面μなどの路面状態を表わす指標として高周波成分のレベルを算出するようにしているが、その理由について図5A、図5Bおよび図6を参照して説明する。 The level calculation unit 13b, when notified from the section extraction unit 13a that it is in the grounding section, calculates the level of the high-frequency component caused by the vibration of the tire 3 included in the output voltage of the acceleration sensor 12 during that period. Then, the level calculation unit 13b transmits the calculation result to the data generation unit 13c as road surface data such as μ data. Here, the level of the high-frequency component is calculated as an index representing the road surface state such as the road surface μ. The reason will be described with reference to FIGS. 5A, 5B, and 6. FIG.
 図5Aは、アスファルト路のように路面μが比較的大きな高μ路面を走行している場合における加速度センサ12の出力電圧の変化を示している。また、図5Bは、凍結路の相当する程度に路面μが比較的小さな低μ路面を走行している場合における加速度センサ12の出力電圧の変化を示している。 FIG. 5A shows a change in the output voltage of the acceleration sensor 12 when traveling on a high μ road surface having a relatively large road surface μ such as an asphalt road. FIG. 5B shows a change in the output voltage of the acceleration sensor 12 when the vehicle is traveling on a low μ road surface where the road surface μ is relatively small to the extent corresponding to the frozen road.
 これらの図から分かるように、路面μにかかわらず、接地区間の最初と最後、つまり加速度センサ12の接地開始時と接地終了時において第1、第2ピーク値が現れる。しかしながら、路面μの影響で、加速度センサ12の出力電圧が変化する。例えば、低μ路面の走行時のように路面μが低いときには、タイヤ3のスリップによる細かな高周波振動が出力電圧に重畳される。このようなタイヤ3のスリップによる細かな高周波信号は、高μ路面の走行時のように路面μが高い場合にはあまり重畳されない。 As can be seen from these figures, the first and second peak values appear at the beginning and end of the contact section, that is, at the start and end of the contact of the acceleration sensor 12, regardless of the road surface μ. However, the output voltage of the acceleration sensor 12 changes due to the influence of the road surface μ. For example, when the road surface μ is low, such as when traveling on a low μ road surface, fine high-frequency vibration due to slip of the tire 3 is superimposed on the output voltage. Such a fine high-frequency signal due to the slip of the tire 3 is not superposed when the road surface μ is high, such as when traveling on a high μ road surface.
 このため、路面μが高い場合と低い場合それぞれについて、接地区間中における出力電圧の周波数解析を行うと、図6に示す結果となる。すなわち、低周波域では路面μが高い場合と低い場合のいずれを走行する場合にも高いレベルになるが、1kHz以上の高周波域では路面μが低い場合の方が高い場合よりも高いレベルになる。このため、加速度センサ12の出力電圧の高周波成分のレベルが路面状態を表す指標となる。 Therefore, when the frequency analysis of the output voltage during the grounding section is performed for each of the cases where the road surface μ is high and low, the result shown in FIG. 6 is obtained. In other words, in the low frequency range, the level is high when the road surface μ is high or low, but in the high frequency range of 1 kHz or higher, the level is higher when the road surface μ is low than when it is high. . For this reason, the level of the high frequency component of the output voltage of the acceleration sensor 12 serves as an index representing the road surface state.
 したがって、レベル算出部13bによって接地区間中における加速度センサ12の出力電圧の高周波成分のレベルを算出することで、これをμデータとすることが可能となる。また、μデータから、例えば路面μが低い場合に凍結路と判定するなど、路面μと対応する路面の種類を路面状態として検出することもできる。 Therefore, by calculating the level of the high frequency component of the output voltage of the acceleration sensor 12 during the grounding section by the level calculation unit 13b, this can be converted to μ data. Further, from the μ data, for example, when the road surface μ is low, the road surface type corresponding to the road surface μ can be detected as a road surface state, such as determining that the road is frozen.
 例えば、高周波成分のレベルは、加速度センサ12の出力電圧から高周波成分を抽出し、接地区間中に抽出した高周波成分を積分した積分電圧値として算出することができる。具体的には、路面状態や路面μに応じて変化すると想定される周波数帯域fa~fbの高周波成分をフィルタリングなどによって抽出し、周波数解析によって取り出した周波数帯域fa~fbの高周波数成分の電圧を積分して積分電圧値を取得する。例えば、図示しないコンデンサにチャージさせる。このようにすれば、高μ路面を走行している場合のように路面μが高い場合よりも低μ路面を走行している場合のように路面μが低い場合の方がチャージ量が多くなる。このチャージ量をμデータとして用いて、μデータが示すチャージ量が多いほど路面μが低いというように路面μを推定できる。 For example, the level of the high frequency component can be calculated as an integrated voltage value obtained by extracting the high frequency component from the output voltage of the acceleration sensor 12 and integrating the high frequency component extracted during the grounding section. Specifically, the high frequency components of the frequency bands fa to fb that are assumed to change according to the road surface condition and the road surface μ are extracted by filtering or the like, and the voltages of the high frequency components of the frequency bands fa to fb extracted by the frequency analysis are obtained. Integrate to obtain the integrated voltage value. For example, a capacitor (not shown) is charged. In this way, the amount of charge increases when the road surface μ is low, such as when traveling on a low μ road surface, rather than when the road surface μ is high, such as when traveling on a high μ road surface. . Using this charge amount as the μ data, it is possible to estimate the road surface μ such that the larger the charge amount indicated by the μ data, the lower the road surface μ.
 データ生成部13cは、レベル算出部13bでの算出結果に基づいて路面データを生成している。例えば、データ生成部13cは、μデータをそのまま路面データとして採用したり、μデータから凍結路やアスファルト路のような路面状態を求めて、それを示すデータを路面データとして生成している。本実施形態の場合、データ生成部13cにおいて、路面状態の推定を行っている。このため、データ生成部13cには、路面状態の推定を行うために用いられる路面状態判定条件の閾値を記憶しており、タイヤ交換が行われたときには、その閾値が再設定されて記憶されるようになっている。 The data generation unit 13c generates road surface data based on the calculation result of the level calculation unit 13b. For example, the data generation unit 13c adopts μ data as it is as road surface data, obtains a road surface state such as a frozen road or an asphalt road from μ data, and generates data indicating the road surface data as road surface data. In the case of this embodiment, the road surface state is estimated in the data generation unit 13c. For this reason, the data generation unit 13c stores a threshold value of the road surface condition determination condition used for estimating the road surface condition, and when the tire is changed, the threshold value is reset and stored. It is like that.
 LF受信回路14は、受信部に相当し、ツール200などを通じてのコマンド入力などを受信する回路である。例えば、自動車整備工場等においてツール200を通じて指示コマンドを含むLF波がタイヤマウントセンサ1に伝えられると、LF受信回路14を通じて指示コマンドが制御部13に伝えられる。そして、指示コマンドが後述する学習モード遷移信号であった場合、制御部13は、タイヤ交換が行われたときであるとして、加速度センサ12の出力電圧の読み取りを行うと共に、データ生成部13cにおいて、路面状態判定条件の閾値の再設定を行う。具体的には、制御部13は、データ生成部13cがタイヤ交換が行われたことを示す情報を取得したとき、より詳しくはタイヤ交換が行われたと判定したときに、路面状態判定条件の閾値の再設定を行う。この路面状態判定条件の閾値の再設定の手法については、後で説明する。 The LF reception circuit 14 corresponds to a reception unit, and is a circuit that receives a command input through the tool 200 or the like. For example, when an LF wave including an instruction command is transmitted to the tire mount sensor 1 through the tool 200 in an automobile maintenance shop or the like, the instruction command is transmitted to the control unit 13 through the LF reception circuit 14. When the instruction command is a learning mode transition signal to be described later, the control unit 13 reads the output voltage of the acceleration sensor 12 and assumes that the tire has been changed, and at the data generation unit 13c, Reset the threshold value of the road surface condition determination condition. Specifically, when the control unit 13 acquires information indicating that tire replacement has been performed by the data generation unit 13c, more specifically, when it is determined that tire replacement has been performed, the threshold of the road surface condition determination condition Reset the settings. A method for resetting the threshold value of the road surface condition determination condition will be described later.
 RF送信回路15は、データ生成部13cから伝えられたμデータなどの路面データを受信機21に対して送信する送信部を構成するものである。RF送信回路15と受信機21との間の通信は、例えば、Bluetooth(登録商標)などの公知の近距離無線通信技術によって実施可能である。路面データを送信するタイミングについては任意であるが、上記したように、本実施形態では、加速度センサ12の接地終了時に区間抽出部13aから送信トリガが送られることでRF送信回路15から路面データが送られるようになっている。このように、RF送信回路15によるデータ送信を常に行うのではなく、加速度センサ12の接地終了時に限定して行うようにしているため、消費電力を低減することが可能となる。 The RF transmission circuit 15 constitutes a transmission unit that transmits road surface data such as μ data transmitted from the data generation unit 13 c to the receiver 21. Communication between the RF transmission circuit 15 and the receiver 21 can be performed by a known short-range wireless communication technique such as Bluetooth (registered trademark). The timing for transmitting the road surface data is arbitrary, but as described above, in this embodiment, the road surface data is received from the RF transmission circuit 15 by sending a transmission trigger from the section extracting unit 13a when the ground contact of the acceleration sensor 12 is completed. It is supposed to be sent. In this way, data transmission by the RF transmission circuit 15 is not always performed, but only when the acceleration sensor 12 is grounded, so that power consumption can be reduced.
 また、路面データについては、車両に備えられたタイヤ3毎に予め備えられている車輪の固有識別情報(以下、ID情報という)と共に送られる。各車輪の位置については、車輪が車両のどの位置に取り付けられているかを検出する周知の車輪位置検出装置によって特定できることから、受信機21にID情報と共に路面データを伝えることで、どの車輪のデータであるかが判別可能になる。 Further, the road surface data is sent together with the unique identification information (hereinafter referred to as ID information) of the wheels provided in advance for each tire 3 provided in the vehicle. The position of each wheel can be specified by a well-known wheel position detection device that detects which position of the vehicle the wheel is attached to. Therefore, by transmitting road surface data together with ID information to the receiver 21, data on which wheel is detected. Can be determined.
 一方、受信機21は、タイヤマウントセンサ1より送信された路面データを受信し、これに基づいて路面状態を推定すると共に推定した路面状態を報知装置22に伝え、必要に応じて報知装置22より路面状態をドライバに伝える。これにより、ドライバは路面状態に対応した運転を心掛けるようになり、車両の危険性を回避することが可能となる。例えば、報知装置22を通じて推定された路面状態を常に表示するようにしても良いし、推定された路面状態がウェット路や凍結路や低μ路等のように運転をより慎重に行う必要があるときにのみ路面状態を表示してドライバに警告するようにしても良い。また、受信機21からブレーキ制御用の電子制御装置(以下、ECUという)などの車両運動制御を実行するためのECUに対して路面状態を伝えれば、伝えられた路面状態に基づいて車両運動制御が実行されるようにすることもできる。 On the other hand, the receiver 21 receives the road surface data transmitted from the tire mount sensor 1, estimates the road surface state based on the road surface data, transmits the estimated road surface state to the notification device 22, and if necessary, from the notification device 22. Inform the driver of the road surface condition. As a result, the driver tries to drive corresponding to the road surface condition, and the danger of the vehicle can be avoided. For example, the road surface state estimated through the notification device 22 may be always displayed, or the estimated road surface state needs to be operated more carefully such as a wet road, a frozen road, a low μ road, or the like. Only when the road surface condition is displayed, the driver may be warned. Further, if the road surface state is transmitted from the receiver 21 to an ECU for executing vehicle motion control such as an electronic control device (hereinafter referred to as ECU) for brake control, the vehicle motion control is performed based on the transmitted road surface state. Can also be executed.
 報知装置22は、例えばメータ表示器などで構成され、ドライバに対して路面状態を報知する際に用いられる。報知装置22をメータ表示器で構成する場合、ドライバが車両の運転中に視認可能な場所に配置され、例えば車両におけるインストルメントパネル内に設置される。メータ表示器は、受信機21から路面状態が伝えられると、その路面状態が把握できる態様で表示を行うことで、視覚的にドライバに対して路面状態を報知することができる。 The notification device 22 is composed of a meter display, for example, and is used when notifying the driver of the road surface state. When the notification device 22 is configured by a meter display, the notification device 22 is disposed at a place where the driver can visually recognize the vehicle while driving, for example, in an instrument panel of the vehicle. When the road surface state is transmitted from the receiver 21, the meter display can visually notify the driver of the road surface state by performing display in such a manner that the road surface state can be grasped.
 なお、報知装置22をブザーや音声案内装置などで構成することもできる。その場合、報知装置22は、ブザー音や音声案内によって、聴覚的にドライバに対して路面状態を報知することができる。また、視覚的な報知を行う報知装置22としてメータ表示器を例に挙げたが、ヘッドアップディスプレイなどの情報表示を行う表示器によって報知装置22を構成しても良い。 Note that the notification device 22 can also be configured by a buzzer or a voice guidance device. In that case, the notification device 22 can audibly notify the driver of the road surface state by a buzzer sound or voice guidance. In addition, although the meter display device has been exemplified as the notification device 22 that performs visual notification, the notification device 22 may be configured by a display device that displays information such as a head-up display.
 以上のようにして、本実施形態にかかる路面状態推定装置100が構成されている。なお、車体側システム2を構成する各部が例えばCAN(Controller AreaNetworkの略)通信などによる車内LAN(Local AreaNetworkの略)を通じて接続されている。このため、車内LANを通じて各部が互いに情報伝達できるようになっている。 As described above, the road surface state estimation device 100 according to the present embodiment is configured. In addition, each part which comprises the vehicle body side system 2 is connected through in-vehicle LAN (abbreviation of Local * AreaNetwork) by CAN (abbreviation for Controller | AreaNetwork) etc., for example. For this reason, each part can communicate with each other through the in-vehicle LAN.
 続いて、本実施形態にかかる路面状態推定装置100におけるタイヤマウントセンサ1の作動について説明する。 Subsequently, the operation of the tire mount sensor 1 in the road surface state estimation device 100 according to the present embodiment will be described.
 上記したように、タイヤマウントセンサ1では、加速度センサ12の検出信号に基づいて、制御部13でタイヤ3が1回転する毎に出力電圧波形を解析し、路面データを得ている。そして、出力電圧波形が第2ピーク値となるタイミングで制御部13からRF送信回路15に送信トリガが出され、路面データが送信される。 As described above, in the tire mount sensor 1, the output voltage waveform is analyzed every time the tire 3 makes one rotation based on the detection signal of the acceleration sensor 12 to obtain road surface data. Then, at the timing when the output voltage waveform becomes the second peak value, a transmission trigger is issued from the control unit 13 to the RF transmission circuit 15, and road surface data is transmitted.
 一方、受信機21は、RF送信回路15からデータ送信が行われると、それを受信し、路面データに基づいて路面状態を推定すると共に推定した路面状態を報知装置22に伝える。これにより、ドライバに路面状態を報知することができる。 On the other hand, when data transmission is performed from the RF transmission circuit 15, the receiver 21 receives the data, estimates the road surface state based on the road surface data, and transmits the estimated road surface state to the notification device 22. Thereby, a road surface state can be notified to a driver.
 さらに、自動車整備工場等においてツール200を通じてタイヤマウントセンサ1に対して指示コマンドが送られると、LF受信回路14でその指示コマンドが受信される。この指示コマンドが制御部13に伝わり、指示コマンドが学習モード遷移信号であった場合、制御部13は、加速度センサ12の出力電圧の読み取りを行うと共に、路面状態判定条件の閾値の再設定を行う。ここでいう指示コマンド、具体的には学習モード遷移信号が、本実施形態における「タイヤ交換が行われたことを示す情報」に相当する。そして、制御部13は、加速度センサ12の出力電圧のデータをタイヤ3が複数回転する期間中集計し、その集計結果に基づいて、路面状態判定条件の閾値の再設定を行う。 Furthermore, when an instruction command is sent to the tire mount sensor 1 through the tool 200 in an automobile maintenance shop or the like, the instruction command is received by the LF receiving circuit 14. When this instruction command is transmitted to the control unit 13 and the instruction command is a learning mode transition signal, the control unit 13 reads the output voltage of the acceleration sensor 12 and resets the threshold value of the road surface condition determination condition. . The instruction command here, specifically the learning mode transition signal, corresponds to “information indicating that tire replacement has been performed” in the present embodiment. And the control part 13 totals the data of the output voltage of the acceleration sensor 12 during the period when the tire 3 rotates two or more, and resets the threshold value of road surface condition determination conditions based on the total result.
 例えば、自動車整備工場等では、学習用の路面として、通常最も走行頻度が高いアスファルト路、つまり高μ路を選択し、高μ路を走行したときに得られる振動データに基づいて路面状態判定に用いる様々な閾値を再設定する。これにより、本実施形態の場合であれば、データ生成部13cに記憶してある様々な閾値が新しい閾値に再設定される。 For example, in an automobile maintenance factory or the like, the road surface for learning is usually selected as an asphalt road with the highest driving frequency, that is, a high μ road, and road surface condition determination is performed based on vibration data obtained when driving on a high μ road. Reset the various thresholds used. Thereby, in the case of this embodiment, the various threshold values memorize | stored in the data generation part 13c are reset to a new threshold value.
 この閾値の再設定の手法について、図7に示す閾値再設定処理のフローチャートを参照して説明する。なお、図7に示す閾値再設定処理については、制御部13が電源11からの電力供給に基づいて所定の制御周期毎に実行する。 This threshold resetting method will be described with reference to the flowchart of threshold resetting processing shown in FIG. Note that the threshold resetting process shown in FIG. 7 is executed by the control unit 13 every predetermined control cycle based on the power supply from the power supply 11.
 まず、ステップS100では、タイヤ交換時にツール200を通じて伝えられる指示コマンドとして、学習モード遷移信号を受信したか否か、つまりタイヤ交換が行われたか否かを判定する。ここで、受信していればステップS110以降の処理に進み、受信していなければ受信したと判定されるまでは本処理を繰り返す。そして、ステップS110において学習モードに遷移し、ステップS120~ステップS170において、路面状態判定条件として用いる閾値の再設定を行う。なお、制御部13は、学習モードに遷移すると、その期間中は路面状態判定を中断し、路面データの送信を行わず、閾値の再設定のための各種処理を実行する。 First, in step S100, it is determined whether a learning mode transition signal is received as an instruction command transmitted through the tool 200 at the time of tire replacement, that is, whether tire replacement has been performed. If it has been received, the process proceeds to step S110 and subsequent steps. If it has not been received, this process is repeated until it is determined that it has been received. In step S110, the mode is changed to the learning mode, and in steps S120 to S170, a threshold value used as a road surface condition determination condition is reset. In addition, when the control unit 13 transitions to the learning mode, the road surface state determination is interrupted during the period, and various processes for resetting the threshold value are performed without transmitting road surface data.
 具体的には、ステップS120において、車体側システム2に対して、学習モード遷移信号を送信するための処理を行う。すなわち、制御部13からRF送信回路15に、学習モードに遷移したことを示す学習モード遷移信号を出力し、RF送信回路15から学習モード遷移信号を送信する。これにより、車体側システム2でもタイヤマウントセンサ1が学習モードに遷移したことを把握できるため、その期間中は路面状態推定を行わないようにする。また、ドライバに対しても学習モードに遷移したことを知らせるべく、報知装置22を通じて学習モード中であることを報知するようにしても良い。 Specifically, in step S120, processing for transmitting a learning mode transition signal to the vehicle body side system 2 is performed. That is, the control unit 13 outputs a learning mode transition signal indicating the transition to the learning mode to the RF transmission circuit 15 and transmits the learning mode transition signal from the RF transmission circuit 15. Thereby, since it can grasp | ascertain that the tire mount sensor 1 changed to learning mode also in the vehicle body side system 2, it is made not to perform road surface state estimation during the period. Further, in order to inform the driver that the mode has been changed to the learning mode, it may be notified through the notification device 22 that the learning mode is being performed.
 続く、ステップS130では、加速度センサ12の出力電圧波形を信号処理し、接地区間中の高周波成分を積分することで積分電圧値を算出すると共に、積分電圧値を集計する。さらに、ステップS140では、タイヤ3の回転数が所定回転、例えば20回転に至ったか否かを判定し、所定回転に至るまでステップS130の処理を繰り返す。これにより、タイヤ3の回転数が所定回転に至るまでの期間中の積分電圧値が集計される。 Subsequently, in step S130, the output voltage waveform of the acceleration sensor 12 is signal-processed, and an integrated voltage value is calculated by integrating high-frequency components in the ground section, and the integrated voltage values are tabulated. Further, in step S140, it is determined whether or not the number of rotations of the tire 3 has reached a predetermined rotation, for example, 20 rotations, and the processing in step S130 is repeated until the predetermined rotation is reached. Thereby, the integrated voltage value during the period until the rotation speed of the tire 3 reaches a predetermined rotation is tabulated.
 その後、ステップS150に進み、制御部13内において、路面状態判定条件の閾値を再設定する。例えば、ステップS140で集計を取った積分電圧値の平均値を演算し、平均値に対して所定値加算した数値、もしくは所定の係数掛け合わせた値を閾値に設定する。この閾値に基づいて、今後取得した積分電圧値が閾値以下であれば高μ路、閾値を超えていれば低μ路というようにして、路面状態を判定することができる。 Thereafter, the process proceeds to step S150, and the threshold value of the road surface condition determination condition is reset in the control unit 13. For example, the average value of the integrated voltage values collected in step S140 is calculated, and a numerical value obtained by adding a predetermined value to the average value or a value obtained by multiplying a predetermined coefficient is set as the threshold value. Based on this threshold value, the road surface condition can be determined as a high μ road if the integrated voltage value acquired in the future is equal to or lower than the threshold value, and a low μ road if the integrated voltage value exceeds the threshold value.
 また、閾値を再設定する際に、車速ごとに閾値を再設定したり、基準車速のときの閾値を設定しておくようにすると好ましい。このように、車速ごとの閾値もしくは基準車速のときの閾値を設定しておき、路面状態の判定を行うときに、得られた積分電圧値を車速に対応する閾値と比較するようにしたり、得られた積分電圧値を基準車速に換算した値に補正して閾値と比較する。このようにすることで、より正確に路面状態を判定できる。すなわち、車速が高いほど、第1ピーク値や第2ピーク値も大きくなるし、加速度センサ12の出力電圧の高周波成分の積分電圧値も大きくなるため、車速が高くなるほど閾値が大きくなるように補正を掛けたり、積分電圧値を基準車速に対応する値に補正する。このようにすれば、車速による積分電圧値の変化にも対応して路面状態を判定することが可能となる。 Also, when resetting the threshold value, it is preferable to reset the threshold value for each vehicle speed or to set the threshold value at the reference vehicle speed. In this way, a threshold value for each vehicle speed or a reference vehicle speed is set, and when the road surface condition is determined, the obtained integrated voltage value is compared with a threshold value corresponding to the vehicle speed. The integrated voltage value thus obtained is corrected to a value converted to a reference vehicle speed and compared with a threshold value. By doing in this way, a road surface state can be determined more correctly. That is, as the vehicle speed increases, the first peak value and the second peak value also increase, and the integrated voltage value of the high frequency component of the output voltage of the acceleration sensor 12 also increases, so that the threshold value is increased as the vehicle speed increases. Or the integrated voltage value is corrected to a value corresponding to the reference vehicle speed. In this way, it is possible to determine the road surface state corresponding to the change in the integrated voltage value due to the vehicle speed.
 なお、ここでは高μ路と低μ路との判定を行う閾値についてのみ例に挙げてあるが、例えば積雪路やウェット路などのように、路面の種類の判定を行うための閾値の設定を行うこともできる。積雪路の場合、路面の凹凸が大きいことから、接地区間中よりもそれ以外の領域、つまり第2ピーク値から第1ピーク値までの間において加速度センサ12の出力電圧の振動が大きくなる。このため、第2ピーク値から第1ピーク値までの間において、加速度センサ12の検出信号を周波数解析することで、積雪路とアスファルト路など通常路とを判定するための閾値を再設定できる。また、ウェット路の場合、第1ピーク値や第2ピーク値が急峻でなくなり、第1ピーク値や第2ピーク値に達する際の加速度センサ12の出力電圧の変化の仕方が変わる。さらに、ウェット路の場合、滑り易いことから、接地区間中においてスリップに基づく振動が大きくなる。したがって、第1ピーク値や第2ピーク値に達する際の加速度センサ12の出力電圧の変化割合の閾値である変化量閾値と、接地区間中における積分電圧値の閾値である積分値閾値を再設定する。そして、今後例えば、変化割合が変化量閾値よりも小さく、かつ、積分電圧値が積分値閾値よりも大きければウェット路と判定することができる。 Here, only the threshold value for determining the high μ road and the low μ road is given as an example, but for example, a threshold value setting for determining the type of road surface such as a snowy road or a wet road is set. It can also be done. In the case of a snowy road, the unevenness of the road surface is large, and therefore, the vibration of the output voltage of the acceleration sensor 12 becomes larger in other regions than in the ground contact section, that is, between the second peak value and the first peak value. For this reason, it is possible to reset the threshold value for determining a normal road such as a snowy road and an asphalt road by analyzing the frequency of the detection signal of the acceleration sensor 12 between the second peak value and the first peak value. In the case of a wet road, the first peak value and the second peak value are not steep, and the manner in which the output voltage of the acceleration sensor 12 changes when reaching the first peak value or the second peak value changes. Furthermore, in the case of a wet road, since it is easy to slip, vibration based on slip increases in the ground contact section. Accordingly, the change amount threshold value that is the threshold value of the change rate of the output voltage of the acceleration sensor 12 when the first peak value or the second peak value is reached, and the integral value threshold value that is the threshold value of the integrated voltage value during the grounding interval are reset. To do. In the future, for example, if the change rate is smaller than the change amount threshold value and the integrated voltage value is larger than the integral value threshold value, it can be determined that the road is a wet road.
 続いて、ステップS160に進み、学習モードから通常モードへ遷移する。これにより、し、路面状態判定が再開される。このとき、路面状態の判定に用いる閾値には、ステップS150で再設定された閾値が用いられる。そして、ステップS170に進み、車体側システム2に対して、通常モード遷移信号を送信するための処理を行う。すなわち、制御部13からRF送信回路15に、学習モードから通常モードに遷移したことを示す通常モード遷移信号を出力し、RF送信回路15から通常モード遷移信号を送信する。これにより、車体側システム2にも、タイヤマウントセンサ1が通常モードに遷移したこと、つまり路面状態判定が行われるモードに遷移したことが伝わる。したがって、車体側システム2では、各タイヤマウントセンサ1から送信されてくる路面データに基づいて路面状態推定が行われることになる。 Subsequently, the process proceeds to step S160, and the learning mode is changed to the normal mode. Thereby, road surface condition determination is restarted. At this time, the threshold value reset in step S150 is used as the threshold value used for determining the road surface state. And it progresses to step S170 and the process for transmitting a normal mode transition signal with respect to the vehicle body side system 2 is performed. That is, the control unit 13 outputs a normal mode transition signal indicating the transition from the learning mode to the normal mode to the RF transmission circuit 15, and transmits the normal mode transition signal from the RF transmission circuit 15. As a result, the vehicle body side system 2 is also informed that the tire mount sensor 1 has transitioned to the normal mode, that is, has transitioned to the mode in which road surface condition determination is performed. Therefore, in the vehicle body side system 2, road surface state estimation is performed based on the road surface data transmitted from each tire mount sensor 1.
 以上説明したように、タイヤ交換時に、自動車整備工場等においてツール200を通じてタイヤマウントセンサ1にタイヤ交換が行われたことを示す情報となる指示コマンドを送ることで、路面状態判定条件の閾値を自動的に再設定することができる。これにより、タイヤ交換を行う場合に、交換前のタイヤ3に取り付けていたタイヤマウントセンサ1を再利用する際にも、路面状態の推定を的確に行うことが可能な路面状態推定装置とすることが可能となる。 As described above, when a tire is replaced, an instruction command serving as information indicating that the tire has been replaced is transmitted to the tire mount sensor 1 through the tool 200 in an automobile maintenance shop or the like, thereby automatically setting the threshold value of the road surface condition determination condition. Can be reset automatically. Thereby, when performing tire replacement, a road surface state estimation device capable of accurately estimating the road surface state even when the tire mount sensor 1 attached to the tire 3 before replacement is reused. Is possible.
 (第2実施形態)
 第2実施形態について説明する。本実施形態は、第1実施形態に対して車体側システム2で路面状態の判定を行うようにしたものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
(Second Embodiment)
A second embodiment will be described. In this embodiment, the road surface state is determined by the vehicle body side system 2 with respect to the first embodiment, and the other parts are the same as those in the first embodiment, and therefore different from the first embodiment. Only will be described.
 第1実施形態では、タイヤマウントセンサ1において路面状態の判定を行うと共にその結果を示す路面データを車体側システム2に送信し、車体側システム2で最終的に路面状態を推定するようにしている。これに対して、タイヤマウントセンサ1では加速度センサ12の出力電圧の高周波成分の積分電圧値などを路面データとして送信させ、車体側システム2において路面データに基づいて路面状態の判定を行うという形態とすることもできる。例えば、車体側システム2に路面状態判定条件となる閾値を記憶しておき、路面データに示される積分電圧値などを閾値と比較することで、高μ路であるか低μ路であるかなどの路面状態を判定することができる。この場合、閾値については、車体側システム2において記憶しておくことになる。したがって、タイヤ交換時などにおける路面状態判定条件の閾値の再設定に関しても、車体側システム2で行うようにする。 In the first embodiment, the tire mount sensor 1 determines the road surface state and transmits road surface data indicating the result to the vehicle body system 2 so that the vehicle surface system 2 finally estimates the road surface state. . In contrast, the tire mount sensor 1 transmits the integrated voltage value of the high frequency component of the output voltage of the acceleration sensor 12 as road surface data, and the vehicle body side system 2 determines the road surface state based on the road surface data. You can also For example, a threshold value that is a road surface condition determination condition is stored in the vehicle body side system 2, and an integrated voltage value or the like indicated in the road surface data is compared with the threshold value to determine whether the road is a high μ road or a low μ road. The road surface condition can be determined. In this case, the threshold value is stored in the vehicle body side system 2. Therefore, the resetting of the threshold value of the road surface condition determination condition at the time of tire replacement or the like is performed by the vehicle body side system 2.
 このように、車体側システム2において路面状態判定条件となる閾値を記憶し、加速度センサ12の路面状態の判定を行うこともできる。その場合、第1実施形態で説明した制御部13が実行する閾値再設定処理については、図8のフローチャートに示す処理となる。すなわち、ステップS200~ステップS230において、図7のステップS100~ステップS130と同様の処理を行い、ステップS240において車体側システム2へ積分電圧値などの路面データを送信する処理を行う。そして、ステップS250において、図7のステップS140と同様の処理を行う。これにより、ステップS240に示した車体側システム2へ路面データを送る処理がタイヤ3の所定回転数分行われることになる。 As described above, the threshold value which is the road surface condition determination condition in the vehicle body side system 2 can be stored, and the road surface condition of the acceleration sensor 12 can be determined. In that case, the threshold resetting process executed by the control unit 13 described in the first embodiment is the process shown in the flowchart of FIG. That is, in steps S200 to S230, processing similar to that in steps S100 to S130 of FIG. 7 is performed, and in step S240, processing for transmitting road surface data such as an integrated voltage value to the vehicle body side system 2 is performed. In step S250, processing similar to that in step S140 in FIG. 7 is performed. As a result, the process of sending road surface data to the vehicle body side system 2 shown in step S240 is performed for a predetermined number of revolutions of the tire 3.
 これに基づいて、車体側システム2で積分電圧値などが集計される。そして、例えば積分電圧値の平均値が演算され、平均値に対して所定値加算した数値、もしくは所定の係数掛け合わせた値が閾値に設定される。 Based on this, the integrated voltage value and the like are aggregated in the vehicle body side system 2. Then, for example, an average value of the integrated voltage values is calculated, and a value obtained by adding a predetermined value to the average value or a value obtained by multiplying a predetermined coefficient is set as the threshold value.
 この後、ステップS260およびステップS270において、図7のステップS160およびステップS170と同様の処理を行う。以上のようにして、車体側システム2において、タイヤ交換時などにおける路面状態判定条件の閾値の再設定を行うことができる。 Thereafter, in steps S260 and S270, processing similar to that in steps S160 and S170 in FIG. 7 is performed. As described above, the vehicle body side system 2 can reset the threshold value of the road surface condition determination condition at the time of tire replacement or the like.
 (第3実施形態)
 第3実施形態について説明する。本実施形態は、第1、第2実施形態に対して車体側システム2で路面状態の判定を行うようにしたものであり、その他については第1、第2実施形態と同様であるため、第1、第2実施形態と異なる部分についてのみ説明する。
(Third embodiment)
A third embodiment will be described. In the present embodiment, the road surface state is determined by the vehicle body side system 2 with respect to the first and second embodiments, and the rest is the same as the first and second embodiments. Only the differences from the first and second embodiments will be described.
 上記実施形態では、ツール200を用いなくても、タイヤ交換時にタイヤマウントセンサ1を再利用すると、タイヤ交換が行われたことを示す情報が取得されるようにすることで、自動的に路面状態判定条件の閾値が再設定されるようにする。 In the above embodiment, even if the tool 200 is not used, when the tire mount sensor 1 is reused at the time of tire replacement, information indicating that the tire replacement has been performed is automatically acquired, so that the road surface state is automatically acquired. The threshold value of the determination condition is reset.
 図9に示すように、タイヤマウントセンサ1がゴムブラケット32に嵌合させられたことを検知する嵌合検知部16を備えてある。嵌合検知部16は、交換後のタイヤ3にタイヤマウントセンサ1が取り付けられたことを検知する交換検知部に相当する。 As shown in FIG. 9, a fitting detection unit 16 for detecting that the tire mount sensor 1 is fitted to the rubber bracket 32 is provided. The fitting detection unit 16 corresponds to a replacement detection unit that detects that the tire mount sensor 1 is attached to the tire 3 after replacement.
 嵌合検知部16は、例えば、ゴムブラケット32のうちタイヤマウントセンサ1との接触面に備えられる図示しない導体部と接触することで導通する検知回路などで構成される。すなわち、タイヤマウントセンサ1に備えた検知回路は、ゴムブラケット32から取り外されたときに導通部から離れるため、検知回路が電気的に遮断され、再びゴムブラケット32に取り付けられたときに導通部と接触して導通させられる。このため、検知回路により、非導通状態から導通状態に切り替わることによって、タイヤマウントセンサ1が交換後のタイヤ3に取り付けられたことを検知することができる。そして、制御部13は、非導通状態と導通状態との切り替わりをタイヤの交換が行われたことを示す情報として、嵌合検知部16において非導通状態と導通状態との切り替わりが検知されたことに基づき、タイヤ交換が行われたことを判定できる。 The fitting detection part 16 is comprised by the detection circuit etc. which conduct | electrically_connect by contacting with the conductor part which is provided in the contact surface with the tire mount sensor 1 among the rubber brackets 32, for example. That is, since the detection circuit provided in the tire mount sensor 1 is separated from the conducting portion when it is removed from the rubber bracket 32, the detection circuit is electrically disconnected from the conducting portion when it is attached to the rubber bracket 32 again. Conducted by contact. For this reason, it can detect that the tire mount sensor 1 was attached to the tire 3 after replacement | exchange by switching from a non-conduction state to a conduction | electrical_connection state by a detection circuit. Then, the control unit 13 detects that the switching between the non-conduction state and the conduction state is detected by the fitting detection unit 16 using the change between the non-conduction state and the conduction state as information indicating that the tire has been replaced. Based on the above, it can be determined that the tire has been changed.
 このように、タイヤマウントセンサ1に嵌合検知部16を備えておき、嵌合検知部16でタイヤマウントセンサ1がゴムブラケット32に嵌合させられたことを検知することで、タイヤ交換が行われたことを判定する。このようにして、自動的に路面状態判定条件の閾値が再設定されるようにすることもできる。例えば、図7のステップS100の代わりに嵌合検知部16でタイヤマウントセンサ1がゴムブラケット32に嵌合させられたことを検知したか否かを判定する処理を行い、嵌合が検知された場合に、ステップS110以降の処理を行う。このようにすることで、自動的に路面状態判定条件の閾値が再設定される。 As described above, the tire mount sensor 1 includes the fitting detection unit 16, and the fitting detection unit 16 detects that the tire mount sensor 1 is fitted to the rubber bracket 32, thereby performing tire replacement. Determine what happened. In this way, the threshold value of the road surface condition determination condition can be automatically reset. For example, instead of step S100 in FIG. 7, the fitting detection unit 16 determines whether or not the tire mount sensor 1 has been fitted into the rubber bracket 32, and the fitting is detected. In this case, the processing after step S110 is performed. By doing in this way, the threshold value of the road surface condition determination condition is automatically reset.
 (第4実施形態)
 第4実施形態について説明する。本実施形態は、第1~第3実施形態に対して、トレッド31の凹凸の変化に基づいて路面状態判定条件の閾値の変更が行われるようにしたものであり、その他については第1~第3実施形態と同様であるため、第1~第3実施形態と異なる部分についてのみ説明する。
(Fourth embodiment)
A fourth embodiment will be described. This embodiment is different from the first to third embodiments in that the threshold value of the road surface condition determination condition is changed based on the change in the unevenness of the tread 31, and the others are the first to the third. Since the third embodiment is the same as the third embodiment, only the parts different from the first to third embodiments will be described.
 本実施形態では、タイヤマウントセンサ1は、加速度センサ12の出力電圧に基づいてタイヤ3のトレッド31の凹凸の変化を検出し、凹凸の変化が検知されたときに、自動的に学習モードに切り替わり、路面状態判定条件の閾値の変更を行う。 In the present embodiment, the tire mount sensor 1 detects a change in unevenness of the tread 31 of the tire 3 based on the output voltage of the acceleration sensor 12, and automatically switches to the learning mode when the change in unevenness is detected. The threshold value of the road surface condition determination condition is changed.
 例えば、タイヤ3が新品の状態のように摩耗が少ないときには、摩耗後の状態と比較して、トレッド31に形成された溝による凹凸高さが高く、その分、タイヤ3が弾性変形し易い柔らかい状態となっている。このため、タイヤ3による振動の減衰率が大きく、加速度センサ12の出力電圧波形の振動が小さくなる。そして、タイヤ3の摩耗が進むと、加速度センサ12の出力電圧波形の振動が徐々に大きくなっていく。 For example, when the tire 3 is less worn as in a new state, the height of the unevenness due to the grooves formed in the tread 31 is higher than in the state after the wear, and the tire 3 is soft and easily deformed elastically. It is in a state. For this reason, the vibration attenuation rate by the tire 3 is large, and the vibration of the output voltage waveform of the acceleration sensor 12 is small. As the tire 3 wears, the vibration of the output voltage waveform of the acceleration sensor 12 gradually increases.
 しかしながら、このような加速度センサ12の出力電圧波形の変化は徐々に進むのであり、同じ種類の路面を走行しているときであれば、急激に変化することはない。このため、タイヤマウントセンサ1の記憶部に過去情報として、例えばアスファルト路を走行したときの加速度センサ12の出力電圧の高周波成分の積分電圧値を記憶しておく。例えば、加速度センサ12の検出信号に基づいてタイヤ3が停止したことを検出することができるため、タイヤ3が停止する前に得られた積分電圧値を過去情報として記憶しておく。その時に得られた積分電圧値が記憶させるのに適した路面状態、例えばアスファルト路ではない場合、タイヤ3が停止する前にアスファルト路を走行していたときに得られた積分電圧値を過去情報として記憶させるようにしても良い。アスファルト路であることについては、例えば記憶してある閾値よりも積分電圧値が小さくなることなどによって判定可能であり、そのときの積分電圧値を記憶している。 However, such a change in the output voltage waveform of the acceleration sensor 12 gradually progresses and does not change abruptly when traveling on the same type of road surface. For this reason, for example, an integrated voltage value of a high frequency component of the output voltage of the acceleration sensor 12 when traveling on an asphalt road is stored in the storage unit of the tire mount sensor 1 as past information. For example, since it can be detected that the tire 3 has stopped based on the detection signal of the acceleration sensor 12, the integrated voltage value obtained before the tire 3 stops is stored as past information. When the integrated voltage value obtained at that time is a road surface state suitable for storing, for example, when the road is not an asphalt road, the integrated voltage value obtained when the tire 3 was traveling on the asphalt road before stopping is past information. May be stored. The asphalt road can be determined by, for example, the integrated voltage value being smaller than a stored threshold value, and the integrated voltage value at that time is stored.
 そして、過去情報として記憶してある積分電圧値に対して取得した積分電圧値の変化が急激な場合、トレッド31の溝による凹凸の高さが急に変化したと言える。したがって、積分電圧値の変化が急激であったこと、例えば取得した積分電圧値と過去情報として記憶してある積分電圧値との差が閾値以上になったことをタイヤ交換が行われたことを示す情報として、タイヤ交換が行われたと判定することができる。このようにタイヤ交換が行われたと判定されると、路面状態判定条件の閾値の再設定を行う。このとき、取得した積分電圧値についても過去情報として記憶してある積分電圧値と同様の路面、例えば上記したようなアスファルト路を走行したときのものであることが必要である。このため、取得した積分電圧値が過去情報として記憶してある積分電圧値よりも小さい値である場合にのみ、路面状態判定条件の閾値の再設定するようにすることもできる。 And when the change of the integrated voltage value acquired with respect to the integrated voltage value stored as the past information is abrupt, it can be said that the height of the unevenness due to the groove of the tread 31 has changed abruptly. Therefore, it is confirmed that the change of the integrated voltage value was abrupt, for example, that the tire replacement was performed when the difference between the acquired integrated voltage value and the integrated voltage value stored as past information was equal to or greater than the threshold value. As information to be shown, it can be determined that tire replacement has been performed. When it is determined that the tire has been changed in this way, the threshold value of the road surface condition determination condition is reset. At this time, the acquired integrated voltage value needs to be the same as that of the integrated voltage value stored as past information, for example, when traveling on an asphalt road as described above. For this reason, it is also possible to reset the threshold value of the road surface condition determination condition only when the acquired integrated voltage value is smaller than the integrated voltage value stored as past information.
 このように、トレッド31の溝による凹凸高さが急に変化したと想定される場合についても、路面状態判定条件の閾値が自動的に再設定されるようにすることができる。この場合にも、例えば、図7のステップS100の代わりにトレッド31の溝の凹凸の高さが急に変化したか否かを判定する処理を行い、それが検知された場合に、ステップS110以降の処理を行う。このようにすることで、自動的に路面状態判定条件の閾値が再設定される。 As described above, even when it is assumed that the uneven height due to the groove of the tread 31 has suddenly changed, the threshold value of the road surface condition determination condition can be automatically reset. Also in this case, for example, in place of step S100 in FIG. 7, a process for determining whether or not the height of the recesses and projections in the groove of the tread 31 has changed abruptly is performed. Perform the process. By doing in this way, the threshold value of the road surface condition determination condition is automatically reset.
 (他の実施形態)
 本開示は、上記した実施形態に準拠して記述されたが、当該実施形態に限定されるものではなく、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
(Other embodiments)
Although the present disclosure has been described based on the above-described embodiment, the present disclosure is not limited to the embodiment, and includes various modifications and modifications within an equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.
 例えば、上記各実施形態では、路面状態判定条件の閾値の再設定がアスファルト路のときに行われるようにする場合について説明したが、これは車両の最も走行頻度が高い路面がアスファルト路であるためである。このため、アスファルト路以外の路面状態のときに閾値の再設定を行っても良い。例えば、ツール200によって所望の路面状態を選択できるようにし、加速度センサ12の出力電圧波形に基づいて、選択された路面形態のときに想定される閾値を設定すれば良い。このようにすれば、様々な路面状態それぞれにおいて、閾値の再設定を行うことが可能となり、より的確に閾値の再設定を行うことが可能となる。 For example, in each of the above embodiments, the case where the resetting of the threshold value of the road surface condition determination condition is performed when the road surface is an asphalt road has been described. This is because the road surface with the highest traveling frequency of the vehicle is an asphalt road. It is. For this reason, the threshold value may be reset when the road surface condition is other than the asphalt road. For example, a desired road surface state can be selected by the tool 200, and a threshold value assumed for the selected road surface form may be set based on the output voltage waveform of the acceleration sensor 12. In this way, it is possible to reset the threshold value in each of various road surface conditions, and it is possible to reset the threshold value more accurately.
 また、上記各実施形態に示した路面状態推定装置100では、振動検出部を構成する加速度センサ12の検出信号から接地区間を特定し、接地区間中の検出信号における高周波成分のレベルの算出結果を路面状態が示された路面データとして用いている。しかしながら、これは振動検出部での検出信号を用いて路面状態を検出する手法の一例を示したに過ぎず、振動検出部での検出信号を用いた他の手法によって路面状態を検出しても良い。 Further, in the road surface state estimation device 100 shown in each of the above embodiments, the grounding section is specified from the detection signal of the acceleration sensor 12 that constitutes the vibration detection unit, and the calculation result of the level of the high frequency component in the detection signal in the grounding section It is used as road surface data indicating the road surface condition. However, this is only an example of a method for detecting the road surface state using the detection signal at the vibration detection unit, and even if the road surface state is detected by another method using the detection signal at the vibration detection unit. good.
 また、振動検出部を加速度センサ12によって構成する場合を例示したが、他の振動検出を行うことができる素子、例えば圧電素子などによって振動検出部を構成することもできる。また、電源11についても、電池に限らず、発電素子などによって構成することもできる。例えば、振動検出発電素子を用いれば、振動検出発電素子によって振動検出部を構成しつつ電源11を構成することもできる。 Further, although the case where the vibration detection unit is configured by the acceleration sensor 12 has been illustrated, the vibration detection unit can also be configured by another element capable of detecting vibration, such as a piezoelectric element. Further, the power source 11 is not limited to a battery, and may be configured by a power generation element or the like. For example, if a vibration detection power generation element is used, the power supply 11 can be configured while the vibration detection power generation element forms a vibration detection unit.
 また、上記各実施形態では、受信機21に制御部としての機能を持たせ、最終的な路面状態推定を行っている。しかしながら、これは一例を示したに過ぎず、受信機21とは別に制御部を備えても良いし、ブレーキECUなどの他のECUを制御部として機能させるようにしても良い。 Further, in each of the above embodiments, the receiver 21 has a function as a control unit, and the final road surface state estimation is performed. However, this is merely an example, and a control unit may be provided separately from the receiver 21, or another ECU such as a brake ECU may function as the control unit.
 また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。例えば、第1実施形態または第2実施形態と第3実施形態または第4実施形態とを組み合わせることができる。 Further, the above embodiments are not irrelevant to each other, and can be appropriately combined unless the combination is clearly impossible. For example, the first embodiment or the second embodiment can be combined with the third embodiment or the fourth embodiment.

Claims (14)

  1.  車両の走行路面における路面状態の推定を行う路面状態推定装置であって、
     タイヤ(3)の振動の大きさに応じた出力電圧を検出信号として出力する振動検出部(12)と、前記振動検出部の検出信号が示す振動データから路面状態を検出する信号処理部(13)と、前記路面状態が表された路面データを送信する送信部(15)と、を有し、前記タイヤの裏面に取り付けられるタイヤマウントセンサ(1)と、
     車体側に備えられ、前記送信部から送信された前記路面データを受信すると共に、前記路面データに基づいて路面状態を推定する制御部(21)を有する車体側システム(2)と、を備え、
     前記信号処理部は、前記タイヤの交換が行われると、前記振動データから路面状態を検出するときに用いる路面状態判定条件の閾値を変更する路面状態推定装置。
    A road surface state estimation device for estimating a road surface state on a traveling road surface of a vehicle,
    A vibration detection unit (12) that outputs an output voltage corresponding to the magnitude of vibration of the tire (3) as a detection signal, and a signal processing unit (13) that detects a road surface state from vibration data indicated by the detection signal of the vibration detection unit. ) And a transmission unit (15) for transmitting road surface data representing the road surface state, and a tire mount sensor (1) attached to the back surface of the tire,
    A vehicle body side system (2) provided on a vehicle body side, having a control unit (21) for receiving the road surface data transmitted from the transmission unit and estimating a road surface state based on the road surface data;
    The said signal processing part is a road surface state estimation apparatus which changes the threshold value of the road surface state determination condition used when detecting a road surface state from the said vibration data, when the said tire is replaced | exchanged.
  2.  前記信号処理部は、前記タイヤの交換が行われたことを示す情報を取得すると、前記路面状態判定条件の閾値を変更する請求項1に記載の路面状態推定装置。 The road surface state estimation device according to claim 1, wherein the signal processing unit changes a threshold value of the road surface state determination condition when acquiring information indicating that the tire has been replaced.
  3.  前記信号処理部は、前記タイヤの交換が行われたか否かを判定し、該タイヤの交換が行われたと判定したときに、前記路面状態判定条件の閾値を変更する請求項1に記載の路面状態推定装置。 2. The road surface according to claim 1, wherein the signal processing unit determines whether or not the tire has been replaced, and changes a threshold value of the road surface condition determination condition when it is determined that the tire has been replaced. State estimation device.
  4.  前記タイヤマウントセンサは、ツール(200)より送られる指示コマンドを入力する受信部(14)を有し、
     前記信号処理部は、前記受信部より指示コマンドを受信すると、学習モードに遷移して前記路面状態判定の閾値の変更を行う請求項1ないし3のいずれか1つに記載の路面状態推定装置。
    The tire mount sensor has a receiving unit (14) for inputting an instruction command sent from the tool (200),
    4. The road surface state estimation device according to claim 1, wherein when the instruction command is received from the reception unit, the signal processing unit transitions to a learning mode and changes a threshold value of the road surface state determination. 5.
  5.  前記タイヤマウントセンサは、前記タイヤより着脱可能とされていると共に、前記タイヤの交換が行われて、交換後の前記タイヤに対して取り付けられたことを検知する交換検知部(16)を有し、
     前記信号処理部は、前記交換検知部にて、前記タイヤマウントセンサが交換後の前記タイヤに取り付けられたことが検知されると、学習モードに遷移して前記路面状態判定の閾値の変更を行う請求項1ないし4のいずれか1つに記載の路面状態推定装置。
    The tire mount sensor is detachable from the tire, and has a replacement detection unit (16) for detecting that the tire is replaced and attached to the tire after replacement. ,
    When the replacement detection unit detects that the tire mount sensor is attached to the replaced tire, the signal processing unit shifts to a learning mode and changes the road surface condition determination threshold value. The road surface state estimation device according to any one of claims 1 to 4.
  6.  前記信号処理部は、所望の路面を走行しているときの前記路面データの過去情報を記憶し、走行中に得られた前記路面データから前記所望の路面を走行していることが検出されたときに、該走行中に得られた前記路面データと前記過去情報とに基づいて、前記タイヤのトレッド(31)の溝の凹凸高さが変化したことを検知すると、学習モードに遷移して前記路面状態判定の閾値の変更を行う請求項1ないし5のいずれか1つに記載の路面状態推定装置。 The signal processing unit stores past information of the road surface data when traveling on a desired road surface, and it is detected that the vehicle is traveling on the desired road surface from the road surface data obtained during traveling. When detecting that the uneven height of the groove of the tread (31) of the tire has changed based on the road surface data and the past information obtained during the traveling, the mode changes to the learning mode and the The road surface state estimation apparatus according to any one of claims 1 to 5, wherein a road surface state determination threshold value is changed.
  7.  前記信号処理部は、前記タイヤの1回転中における前記トレッドのうちの前記振動検出部の配置箇所と対応する部分が接地している接地区間を抽出する区間抽出部(13a)、および、前記接地区間中における前記検出信号の高周波成分のレベルとして前記振動検出部の出力電圧を積分した積分電圧値を算出するレベル算出部(13b)を有し、前記路面状態判定の閾値として、前記積分電圧値と比較する閾値を変更する請求項1ないし6のいずれか1つに記載の路面状態推定装置。 The signal processing unit includes a section extraction unit (13a) that extracts a grounding section in which a portion corresponding to an arrangement position of the vibration detection unit in the tread during one rotation of the tire is grounded, and the grounding A level calculation unit (13b) that calculates an integrated voltage value obtained by integrating the output voltage of the vibration detection unit as a level of a high-frequency component of the detection signal in the section, and the integrated voltage value as a threshold value for the road surface condition determination The road surface state estimation apparatus according to any one of claims 1 to 6, wherein a threshold value to be compared with is changed.
  8.  車両の走行路面における路面状態の推定を行う路面状態推定装置であって、
     タイヤ(3)の振動の大きさに応じた出力電圧を検出信号として出力する振動検出部(12)と、前記振動検出部の検出信号が示す振動データから路面状態を検出する信号処理部(13)と、前記路面状態が表された路面データを送信する送信部(15)と、を有し、前記タイヤの裏面に取り付けられるタイヤマウントセンサ(1)と、
     車体側に備えられ、前記送信部から送信された前記路面データを受信すると共に、前記路面データに基づいて路面状態を推定する制御部(21)を有する車体側システム(2)と、を備え、
     前記制御部は、前記タイヤの交換が行われると、前記振動データから路面状態を検出するときに用いる路面状態判定条件の閾値を変更する路面状態推定装置。
    A road surface state estimation device for estimating a road surface state on a traveling road surface of a vehicle,
    A vibration detection unit (12) that outputs an output voltage corresponding to the magnitude of vibration of the tire (3) as a detection signal, and a signal processing unit (13) that detects a road surface state from vibration data indicated by the detection signal of the vibration detection unit. ) And a transmission unit (15) for transmitting road surface data representing the road surface state, and a tire mount sensor (1) attached to the back surface of the tire,
    A vehicle body side system (2) provided on a vehicle body side, having a control unit (21) for receiving the road surface data transmitted from the transmission unit and estimating a road surface state based on the road surface data;
    The said control part is a road surface state estimation apparatus which changes the threshold value of the road surface state determination condition used when detecting a road surface state from the said vibration data, if the said tire replacement | exchange is performed.
  9.  前記制御部は、前記タイヤの交換が行われたことを示す情報を取得すると、前記路面状態判定条件の閾値を変更する請求項8に記載の路面状態推定装置。 The road surface state estimation device according to claim 8, wherein the control unit changes a threshold value of the road surface state determination condition when acquiring information indicating that the tire has been replaced.
  10.  前記制御部は、前記タイヤの交換が行われたか否かを判定し、該タイヤの交換が行われたと判定したときに、前記路面状態判定条件の閾値を変更する請求項8に記載の路面状態推定装置。 9. The road surface state according to claim 8, wherein the control unit determines whether or not the tire has been replaced, and changes a threshold value of the road surface state determination condition when determining that the tire has been replaced. Estimating device.
  11.  前記タイヤマウントセンサは、ツール(200)より送られる指示コマンドを入力する受信部(14)を有し、
     前記信号処理部は、前記受信部より指示コマンドを受信すると、学習モードに遷移して、前記送信部を通じて前記路面データを前記車体側システムに送信し、
     前記制御部は、前記学習モード中に前記タイヤマウントセンサから送信されてきた前記路面データに基づいて、前記路面状態判定の閾値の変更を行う請求項8ないし10のいずれか1つに記載の路面状態推定装置。
    The tire mount sensor has a receiving unit (14) for inputting an instruction command sent from the tool (200),
    When the signal processing unit receives an instruction command from the receiving unit, the signal processing unit transitions to a learning mode and transmits the road surface data to the vehicle body side system through the transmitting unit,
    The road surface according to any one of claims 8 to 10, wherein the control unit changes a threshold value of the road surface state determination based on the road surface data transmitted from the tire mount sensor during the learning mode. State estimation device.
  12.  前記タイヤマウントセンサは、前記タイヤより着脱可能とされていると共に、前記タイヤの交換が行われて、交換後の前記タイヤに対して取り付けられたことを検知する交換検知部(16)を有し、
     前記信号処理部は、前記交換検知部にて、前記タイヤマウントセンサが交換後の前記タイヤに取り付けられたことが検知されると、学習モードに遷移して、前記送信部を通じて前記路面データを前記車体側システムに送信し、
     前記制御部は、前記学習モード中に前記タイヤマウントセンサから送信されてきた前記路面データに基づいて、前記路面状態判定の閾値の変更を行う請求項8ないし11のいずれか1つに記載の路面状態推定装置。
    The tire mount sensor is detachable from the tire, and has a replacement detection unit (16) for detecting that the tire is replaced and attached to the tire after replacement. ,
    When the replacement detection unit detects that the tire mount sensor is attached to the tire after replacement, the signal processing unit transitions to a learning mode and transmits the road surface data through the transmission unit. To the vehicle side system,
    The road surface according to any one of claims 8 to 11, wherein the control unit changes a threshold value of the road surface state determination based on the road surface data transmitted from the tire mount sensor during the learning mode. State estimation device.
  13.  前記信号処理部は、所望の路面を走行しているときの前記路面データの過去情報を記憶し、走行中に得られた前記路面データから前記所望の路面を走行していることが検出されたときに、該走行中に得られた前記路面データと前記過去情報とに基づいて、前記タイヤのトレッド(31)の溝の凹凸高さが変化したことを検知すると、学習モードに遷移して、前記送信部を通じて前記路面データを前記車体側システムに送信し、
     前記制御部は、前記学習モード中に前記タイヤマウントセンサから送信されてきた前記路面データに基づいて、前記路面状態判定の閾値の変更を行う請求項8ないし12のいずれか1つに記載の路面状態推定装置。
    The signal processing unit stores past information of the road surface data when traveling on a desired road surface, and it is detected that the vehicle is traveling on the desired road surface from the road surface data obtained during traveling. When detecting that the unevenness height of the groove of the tread (31) of the tire has changed based on the road surface data and the past information obtained during the traveling, the mode changes to the learning mode, Sending the road surface data to the vehicle body side system through the transmitter,
    The road surface according to any one of claims 8 to 12, wherein the control unit changes a threshold value of the road surface state determination based on the road surface data transmitted from the tire mount sensor during the learning mode. State estimation device.
  14.  前記信号処理部は、前記タイヤの1回転中における前記トレッドのうちの前記振動検出部の配置箇所と対応する部分が接地している接地区間を抽出する区間抽出部(13a)、および、前記接地区間中における前記検出信号の高周波成分のレベルとして前記振動検出部の出力電圧を積分した積分電圧値を算出するレベル算出部(13b)を有し、前記送信部を通じて、前記路面データとして前記積分電圧値を送信し、
     前記制御部は、前記路面状態判定の閾値として、前記積分電圧値と比較する閾値を変更する請求項8ないし13のいずれか1つに記載の路面状態推定装置。
    The signal processing unit includes a section extraction unit (13a) that extracts a grounding section in which a portion corresponding to an arrangement position of the vibration detection unit in the tread during one rotation of the tire is grounded, and the grounding A level calculation unit (13b) that calculates an integrated voltage value obtained by integrating the output voltage of the vibration detection unit as the level of the high-frequency component of the detection signal in the section, and the integrated voltage as the road surface data through the transmission unit; Send value,
    The road surface state estimation device according to any one of claims 8 to 13, wherein the control unit changes a threshold value to be compared with the integrated voltage value as a threshold value for the road surface state determination.
PCT/JP2017/023198 2016-08-11 2017-06-23 Road surface state assessment apparatus WO2018030001A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/323,830 US11142210B2 (en) 2016-08-11 2017-06-23 Road surface state estimation device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016158311 2016-08-11
JP2016-158311 2016-08-11
JP2017110685A JP6620787B2 (en) 2016-08-11 2017-06-05 Road surface condition estimation device
JP2017-110685 2017-06-05

Publications (1)

Publication Number Publication Date
WO2018030001A1 true WO2018030001A1 (en) 2018-02-15

Family

ID=61161889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023198 WO2018030001A1 (en) 2016-08-11 2017-06-23 Road surface state assessment apparatus

Country Status (1)

Country Link
WO (1) WO2018030001A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110909577A (en) * 2018-09-18 2020-03-24 上汽通用汽车有限公司 Pavement feature classification and identification method based on signal similarity distance
US11613260B2 (en) * 2019-03-28 2023-03-28 Subaru Corporation Road surface determination apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003182476A (en) * 2001-12-21 2003-07-03 Bridgestone Corp Device for estimating road surface condition and tire traveling condition, and vehicle control device
JP2007055284A (en) * 2005-08-22 2007-03-08 Bridgestone Corp Road surface state estimation method, tire for road surface state estimation, road surface state estimation device and vehicle control device
JP2015174638A (en) * 2014-03-18 2015-10-05 株式会社日本自動車部品総合研究所 Road surface condition estimation device
JP2016088429A (en) * 2014-11-10 2016-05-23 株式会社デンソー Lane keep control system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003182476A (en) * 2001-12-21 2003-07-03 Bridgestone Corp Device for estimating road surface condition and tire traveling condition, and vehicle control device
JP2007055284A (en) * 2005-08-22 2007-03-08 Bridgestone Corp Road surface state estimation method, tire for road surface state estimation, road surface state estimation device and vehicle control device
JP2015174638A (en) * 2014-03-18 2015-10-05 株式会社日本自動車部品総合研究所 Road surface condition estimation device
JP2016088429A (en) * 2014-11-10 2016-05-23 株式会社デンソー Lane keep control system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110909577A (en) * 2018-09-18 2020-03-24 上汽通用汽车有限公司 Pavement feature classification and identification method based on signal similarity distance
CN110909577B (en) * 2018-09-18 2023-11-17 上汽通用汽车有限公司 Road surface feature classification and identification method based on signal similarity distance
US11613260B2 (en) * 2019-03-28 2023-03-28 Subaru Corporation Road surface determination apparatus

Similar Documents

Publication Publication Date Title
JP6620787B2 (en) Road surface condition estimation device
US11034356B2 (en) Tire-mounted sensor and road surface condition estimation apparatus including the same
JP6614073B2 (en) Road surface condition estimation device
JP6547793B2 (en) Tire mount sensor, diagnosis history storage device and diagnosis notification device
WO2017159012A1 (en) Hydroplaning determination device
CN108698593B (en) Danger avoiding device for vehicle
JP2018016300A (en) Wheel position detection device
JP6394300B2 (en) Lane keep control system
JP2018009974A (en) Tire-mounted sensor and road surface state estimation device including the same
WO2017221578A1 (en) Road surface condition estimation device
WO2016092824A1 (en) Vehicle control device
US10858009B2 (en) Tire-mounted sensor and road surface condition estimation apparatus including the same
WO2018030001A1 (en) Road surface state assessment apparatus
JP2018026111A (en) Tire-mounted sensor and chain regulation management system
WO2017187927A1 (en) Road surface condition detecting device
WO2018003693A1 (en) Tire mounted sensor and road surface condition estimating device including same
WO2019131567A1 (en) Road surface condition determination device
WO2018012251A1 (en) Wheel position detecting device
WO2018030000A1 (en) Tire mounted sensor, diagnosis history storage device, and diagnosis notification device
JP6601261B2 (en) Road surface condition estimation device
WO2018025530A1 (en) Tire mount sensor and chain regulation management system
WO2018012250A1 (en) Tire-mounted sensor and road surface condition estimating device including same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17839075

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17839075

Country of ref document: EP

Kind code of ref document: A1