WO2018029882A1 - Buffer suction device and cancer analysis system - Google Patents

Buffer suction device and cancer analysis system Download PDF

Info

Publication number
WO2018029882A1
WO2018029882A1 PCT/JP2017/009093 JP2017009093W WO2018029882A1 WO 2018029882 A1 WO2018029882 A1 WO 2018029882A1 JP 2017009093 W JP2017009093 W JP 2017009093W WO 2018029882 A1 WO2018029882 A1 WO 2018029882A1
Authority
WO
WIPO (PCT)
Prior art keywords
luminance
plate
gravity
chemotaxis
analysis
Prior art date
Application number
PCT/JP2017/009093
Other languages
French (fr)
Japanese (ja)
Inventor
坂入 実
菅谷 昌和
中村 拓
光一 寺田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2018029882A1 publication Critical patent/WO2018029882A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/493Physical analysis of biological material of liquid biological material urine

Definitions

  • the present invention relates to a buffer suction device and a cancer analysis system used for cancer testing using nematodes.
  • Patent Document 1 describes a cancer detection method using the olfactory sense of nematodes.
  • the examiner plots the urine specimen on the plate and plots sodium azide as an anesthetic agent for nematodes.
  • the examiner plots the nematode on the plate.
  • nematodes are stored with the buffer in the tube, and when plotted, the nematodes are plotted together with the buffer.
  • the inspector sucks out the buffer with a commercially available paper waste. This is because if the nematode remains in the buffer, the movement of the nematode slows down and the inspection accuracy decreases.
  • Nematodes are chemotaxis for a predetermined time.
  • the nematode performs an attracting action on the urine sample, and if the urine sample is not from a cancer patient, the nematode performs a repellent action on the urine sample.
  • the number of nematodes that have performed attracting behavior and the number of nematodes that have performed repelling behavior are counted, and a chemotaxis index is calculated based on each counted number.
  • a chemotaxis index is calculated based on each counted number.
  • positive / negative of cancer is determined.
  • step (3) when the buffer is sucked with a paper waste (step (3)), if the paper waste touches the nematode, the nematode is damaged or stress is applied to the nematode. As a result, the behavior of the nematode may slow down and the inspection accuracy may be lowered. In particular, in order to introduce a large amount of inspections, if it is attempted to introduce automation by a machine, it is difficult to perform delicate operations such as the procedure of (3) with a machine. However, such an operation of sucking out the buffer with a paper waste is generally performed in a cancer test using a nematode.
  • the present invention has been made in view of such a background, and an object of the present invention is to easily remove a buffer containing nematodes in a cancer test using nematodes.
  • the present invention provides a mounting part for mounting a plate on which nematodes are plotted together with a buffer, an inclined part for inclining the mounting part, and an inclination part that is inclined by the inclined part. And a sucking portion for sucking out the buffer accumulated in the lower portion of the plate placed on the placing portion.
  • a buffer containing the nematode in a cancer test using a nematode, can be easily removed.
  • FIG. 1 is a view showing the outer shape of the buffer suction device according to the present embodiment.
  • the buffer suction device 5 includes a plate placement part (placement part) 501, an inclined part 502, a drive part 503, a pedestal part 504, and a suction part 505.
  • a plate P on which nematodes are plotted is placed on the plate placement unit 501.
  • the inclined part 502 inclines the plate mounting part 501 by a predetermined angle.
  • the pedestal portion 504 supports the plate placement portion 501, the inclined portion 502, and the like.
  • the suction part 505 sucks the buffer accumulated in the lower part of the plate P inclined by the inclined part 502.
  • the buffer absorption will be described later.
  • the plate mounting portion 501 is provided with a recess or hole having the size of the plate P, and the plate P is installed and held in the recess or hole.
  • FIG. 2 is a diagram illustrating the buffer suction device in a state where the plate mounting portion is not inclined
  • FIG. 3 is a diagram illustrating the buffer suction device in a state where the plate mounting portion is tilted. 2 and 3, the same components as those in FIG. 1 are denoted by the same reference numerals and description thereof is omitted. 2 and 3, the suction part 505 is not shown.
  • the plate P is placed on the plate placement unit 501 while the plate placement unit 501 is horizontal.
  • An agar medium is previously set on the plate P.
  • nematodes are plotted together with the buffer on the agar medium of plate P.
  • the center of the plate P is generally plotted, the present invention is not limited to this.
  • the drive part 503 and the inclination part 502 incline the plate mounting part 501.
  • the buffer flows from the nematode plot point 601 toward the lower part of the plate P (in the direction of the arrow) and accumulates at the lower part of the plate P.
  • most nematodes are stuck to the agar medium, do not flow with the buffer, and remain at the plot point 601.
  • the inclination angle is preferably about 60 °.
  • Reference numeral 602 indicates plotting points of the urine sample and sodium azide. Then, as shown in FIG. 1, the suction part 505 sucks the buffer accumulated in the lower part of the inclined plate P.
  • the buffer sucking device 5 By using such a buffer sucking device 5, the buffer can be sucked without fear of touching or damaging the nematode. Then, by tilting the plate mounting portion 501 and sucking out the buffer accumulated in the lower part of the plate P, it becomes possible to mechanize the buffer sucking. If an attempt is made to cause the machine to absorb the buffer with the paper waste that has been used so far, a complicated process is required, for example, it is necessary to recognize the image where the nematode is plotted. According to the buffer suction device 5 according to the present embodiment, since the plate P is merely tilted, complicated processing such as image recognition is not required, and the buffer can be sucked with a very simple configuration.
  • the inclined unit 502 returns the plate placing unit 501 to the horizontal.
  • the urine specimen and sodium azide are then plotted on the plate P medium. Then, the plate P is moved to the imaging device 2 (FIG. 5) and set.
  • FIG. 5 is a functional block diagram showing the configuration of the cancer analysis system according to this embodiment.
  • broken line arrows indicate movements of plates, nematodes, urine samples, sodium azide, and the like, and solid line arrows indicate the flow of information.
  • the cancer analysis system Z includes an analysis device (analysis unit) 1, an imaging device (imaging unit) 2, a dispensing device 3, a transport device 4, and a buffer suction device 5.
  • the imaging device 2 images a plate on which nematodes and urine specimens are plotted, and transmits the captured image to the analysis device 1.
  • the analysis device 1 acquires luminance information based on the image sent from the imaging device 2.
  • the analysis apparatus 1 calculates the chemotaxis index of a nematode from the acquired brightness
  • the dispensing device 3 plots nematodes, urine samples, and sodium azide on the plate.
  • the transport device 4 sets a plate in the buffer suction device 5 or sets a plate from the buffer suction device 5 to the imaging device 2. As described with reference to FIGS. 1 to 4, the buffer sucking device 5 tilts the plate, causes the buffer to flow downward, and sucks the buffer accumulated below the plate.
  • FIG. 6 is a functional block diagram showing the configuration of the analysis device used in the present embodiment.
  • the analysis apparatus 1 is configured by a PC (Personal Computer) or the like.
  • the analysis device 1 includes a memory 11, a CPU (Central Processing Unit) 12, a storage device 13, an input device 14, an output device 15, and a transmission / reception device 16.
  • the memory 11 is loaded with a program stored in the storage device 13. Then, the loaded program is executed by the CPU 12.
  • the processing unit 100 and the image acquisition unit 101, the pixel combination unit 102, the luminance information acquisition unit 103, the luminance center-of-gravity calculation unit 104, the runnability index calculation unit 105, and the examination determination unit 106 that constitute the processing unit 100 are realized. ing.
  • the image acquisition unit 101 acquires an image from the imaging device 2.
  • the pixel combining unit 102 combines pixels of an image acquired from the imaging device 2.
  • the pixel combination will be described later.
  • the luminance information acquisition unit 103 acquires luminance information in each combined pixel from the pixels combined by the pixel combining unit 102 (referred to as a combined pixel).
  • the luminance center of gravity calculation unit 104 calculates the luminance center of gravity based on the luminance information acquired by the luminance information acquisition unit 103.
  • the luminance center of gravity will be described later.
  • the chemotaxis index calculation unit 105 calculates a nematode chemotaxis index based on the luminance centroid calculated by the luminance centroid calculation unit 104.
  • the chemotaxis index will be described later.
  • the test determination unit 106 determines whether the cancer is positive or negative based on the chemotaxis index calculated by the chemotaxis index calculation unit 105.
  • the input device 14 is a keyboard, a mouse, or the like.
  • the output device 15 is a display, a printer, or the like.
  • the transmission / reception device 16 is a NIC (Network Interface Card) or the like.
  • Imaging device 7 is an external perspective view of an imaging device used in the present embodiment
  • FIG. 8 is an external side view of the imaging device used in the present embodiment
  • FIG. 9 is an imaging device used in the present embodiment.
  • the imaging apparatus 2 includes a light source unit 202 on a base 201.
  • the light source unit 202 is a ring LED (Light Emission Diode) light source 221 with a diffusion plate.
  • the ring LED light source 221 with a diffuser plate is a ring-shaped LED light source, and a diffuser plate 241 is provided inside the ring as shown in FIG.
  • a pedestal 203 for setting the plate P is provided on the light source unit 202.
  • the pedestal 203 is provided with a hole for setting the plate P, and the plate P is set in the imaging device 2 by fitting the plate P into the hole.
  • the base 201 is provided with a rod-shaped first support portion 204, and the first support portion 204 is vertically moved along the first support portion 204 (Z direction).
  • a second support portion 205 is provided that is movable.
  • a camera (imaging unit) 206 for imaging the plate P is provided at the tip of the second support unit 205.
  • a shielding plate 222 for shielding room illumination such as a fluorescent lamp is provided above the camera 206 (the shielding plate 222 is not shown in FIG. 7).
  • the shielding plate 222 is provided in the first support portion 204, but is not limited thereto.
  • the shielding plate 222 may be configured so that the room is not illuminated on the plate P, and may be provided in the room, for example.
  • the S / N (Signal / Noise) ratio of the image is deteriorated. This is because when the light is directly applied to the plate P, it is too bright, or a specific part of the plate P such as an edge of the plate P is lit.
  • the S / N ratio of the imaged image can be improved, and it is possible to prevent difficulty in image analysis described later.
  • the shielding plate 222 above the camera 206 it is possible to block room illumination such as a fluorescent lamp, and it is possible to prevent the medium surface of the plate P from being lit by room illumination.
  • the illumination distance Z2 is a distance between the illumination surface and the imaging symmetry plane (here, the medium surface of the plate P).
  • the first condition is that f1 and Z1 satisfy the condition of the following expression (1). f1 and Z1 will be described later.
  • the second condition is that the inner radius R of the ring LED light source 221 with a diffuser is larger than the field angle radius Y2 at the light source position.
  • f1 is a front focal length that is a distance between the imaging lens 231 and the front focal point 233.
  • Z1 is the distance between the front focal point 233 and the imaging target surface (here, the surface of the medium on the plate P).
  • Y0 is the size of the image sensor 232 in the camera 206.
  • Y1 is the size of the imaging target.
  • FIG. 10 is a diagram illustrating an example of a detailed procedure for a cancer test in the present embodiment.
  • Steps S101 to S141 are diagrams showing a culture process
  • steps S201 to S215 are diagrams showing a cancer test process. Reference is made to FIGS. 1 and 5 as appropriate.
  • the plate creator creates a culture plate (S101). Then, if necessary, the plate creator performs a nematode transplanting operation (S111) to create a new culture plate (S112). Further, the plate creator creates a new culture plate (S122) by performing nematode transplantation work based on the culture plate created in step S112 (S121).
  • the examiner performs a cancer test using the cultured nematodes (S141 to S143).
  • Steps S201 to S215 show details of the processing of steps S141 to S143. Steps S201 to S215 are performed in steps S141 to S143, respectively.
  • a plate creator creates a plate for analysis (S201).
  • the dispensing device 3 plots nematodes on the analysis plate (S203). Specifically, the dispensing device 3 sucks the nematode together with the buffer from the tube that has been left stationary for a predetermined time, and plots it at a predetermined position (for example, the center) on the plate.
  • the amount of inhalation is, for example, 4 ⁇ L.
  • the transport device 4 places the plate on the plate placement portion 501 of the buffer suction device 5.
  • the nematode is set in the buffer suction device 5, but the nematode may be plotted after the plate is set in the buffer suction device 5.
  • the buffer suction device 5 inclines the 60 ° plate mounting portion 501 over 30 seconds, for example. This ensures that only the buffer flows down the plate, as described above, and many of the nematodes remain plotted. And the suction part 505 of the buffer suction device 5 sucks the buffer accumulated under the plate (buffer suction: S205).
  • the dispensing device 3 plots the urine sample (for example, 2 ⁇ L) and sodium azide at predetermined positions on the plate (S206).
  • the urine sample and sodium azide are preferably plotted at the same place. Since sodium azide is odorless to nematodes, there is no problem if the urine sample and sodium azide are plotted in the same place.
  • the transport device 4 sets the plate on the imaging device 2 (FIG. 5) (S211).
  • the urine sample and sodium azide are plotted on the plate set in the buffer suction device 5.
  • the urine sample and sodium azide may be plotted after the plate is set in the imaging device 2.
  • a plate on which nematodes, urine detection, and sodium azide are plotted is appropriately referred to as an analysis plate.
  • the imaging device 2 images the analysis plate (S212).
  • the image captured by the imaging device 2 is sent to the analysis device 1 (FIG. 5).
  • the analysis apparatus 1 performs a chemotaxis analysis process based on the sent image (S213). In some cases, the imaging is performed again (S212), and the chemotaxis analysis is repeated on the image obtained by the imaging (S213). And the analyzer 1 performs the test
  • the analysis device 1 stores the result of the process in step S215 in the storage device 13 (FIG. 6) (S215).
  • FIG. 11 is a flowchart showing a procedure of processes performed by the cancer analysis system according to the 2-1 embodiment. Reference is made to FIGS. 5 to 7 as appropriate.
  • the camera 206 of the imaging device 2 captures the plate P (S301).
  • the image acquisition part 101 of the analyzer 2 performs the image acquisition process which acquires an image from the imaging device 2 (S302).
  • the pixel combination unit 102 performs pixel combination processing (S303). The pixel combination process will be described later.
  • the luminance information acquisition unit 103 performs luminance information acquisition processing for acquiring luminance information from the pixels combined in step S303 (post-combination pixels) (S304). Thereafter, the luminance centroid calculation unit 104 performs luminance centroid calculation processing for calculating the luminance centroid based on the luminance information acquired in step S304 (S305). The luminance center of gravity will be described later.
  • the processing unit 100 determines whether or not the processing of steps S301 to S305 has been performed twice (S311). If the result of step S311 indicates that the processes of steps S301 to S305 have not been performed twice (S311 ⁇ No), has the processing unit 100 passed a predetermined time (for example, 15 minutes) after the process of step S305 is completed? It is determined whether or not (S312). As a result of step S312, when the predetermined time has not elapsed since the process of step S305 was completed (S312 ⁇ No), the processing unit 100 returns the process to step S312. As a result of step S312, when a predetermined time has passed since the process of step S305 is completed (S312 ⁇ Yes), the processing unit 100 returns the process to step S301 and instructs the imaging device 2 to image the plate P.
  • a predetermined time for example, 15 minutes
  • step S311 when the processes of steps S301 to S305 are performed twice (S311 ⁇ Yes), the chemotaxis index calculation unit 105 calculates the chemotaxis index based on the luminance center of gravity calculated in step S305. The calculated chemotaxis index calculation process is performed (S321). Subsequently, the test determination unit 106 performs a test determination process for determining whether the cancer is positive or negative based on the chemotaxis index calculated in step S321 (S322).
  • step S301 in FIG. 11 corresponds to step S212 in FIG. 10
  • steps S302 to S321 in FIG. 11 correspond to step S213 in FIG.
  • Step S322 in FIG. 11 corresponds to step S214 in FIG.
  • FIG. 12 is a schematic diagram of an image captured by the camera. This image is the image acquired in step S302 in FIG. In FIG. 12, the medium is white and the nematode E is black for easy viewing of the drawing. However, in practice, the medium appears black and the nematode E appears white.
  • FIG. 13 is a diagram illustrating a pixel combining process used in the 2-1 embodiment. This process corresponds to step S303 in FIG.
  • the pixel combination unit 102 forms a predetermined number of pixels in the captured image, thereby collecting the pixels into about 13 ⁇ 13 pixels as illustrated in FIG. 13. Note that grouping into 13 ⁇ 13 pixels is an example, and the number of pixels may be other than this.
  • FIG. 14 is a diagram illustrating a result of pixel combination processing.
  • the pixel becomes white, and as the number of nematodes decreases, the pixel becomes closer to black. That is, in the combined pixels, the luminance increases as the number of nematodes increases.
  • the number of nematodes in the combined pixel is indicated by five levels of dots, but in actuality, for example, it is indicated by 256 levels of luminance.
  • the luminance information acquisition unit 103 acquires luminance information in the combined pixels as shown in FIG. The x axis and y axis will be described later.
  • the luminance center of gravity calculation unit 104 calculates the luminance center of gravity from the luminance in the combined pixels shown in FIG.
  • the luminance centroid is a centroid of luminance in an image after pixel combination processing, calculated by the following equation (2).
  • the x coordinate of the i-th combined pixel from the left in FIG. 14 is x i, and the luminance at that pixel is Bx i .
  • the y coordinate at the j-th combined pixel from the bottom is y j and the luminance at that pixel is By j .
  • the x-coordinate and the y-coordinate are based on the x-axis and the y-axis in FIG.
  • Bx i is a value obtained by accumulating the luminance of the combined pixel belonging to x i in the y-axis direction
  • By j is a value obtained by accumulating the luminance of the combined pixel belonging to y j in the x-axis direction.
  • (C x , C y ) be the luminance centroid of the combined pixel at the calculated position (x, y) (that is, the xth from the left and the yth from the bottom in FIG. 14). Also, let the luminance center of gravity at time t be (C xt , C yt ).
  • the chemotaxis index calculation unit 105 calculates the chemotaxis index CI using the luminance center of gravity by the following method.
  • There are two methods for calculating the chemotaxis index CI: a method according to the following equation (5) and a method according to the equation (6). Note that (C x0 , C y0 ) indicates the luminance center of gravity immediately after plotting at time t 0.
  • Equation (5) calculates the temporal change of the luminance center of gravity in the x-axis direction
  • Equation (6) calculates the temporal change of the luminance center of gravity in the x-axis direction and the y-axis direction.
  • t is, for example, 15 minutes, but is not limited thereto.
  • test inspection determination part 106 determines the positive / negative of the cancer in a subject based on the calculated chemotaxis index CI.
  • FIG. 15 and FIG. 16 are diagrams showing changes in luminance distribution when nematodes are chemotaxised by a plate that has sucked a buffer by the buffer sucking device according to the present embodiment.
  • the x axis and the y axis indicate images sent from the imaging device 2 (FIG. 5).
  • the vertical axis indicates the luminance.
  • the luminance center of gravity immediately after plotting is used as the origin. This is because the plate is inclined by the buffer suction device 5 (FIG. 1), so that the nematode spreads within a predetermined range, and the plot point of the nematode on the culture medium differs for each examination.
  • the coordinate displacement is calculated from the luminance centroid immediately after plotting and the luminance centroid after a predetermined time. That is, the luminance center of gravity immediately after plotting is used as a starting point. Thereby, the fluctuation of the plot point due to the inclination of the plate can be eliminated.
  • FIG. 15 shows the luminance distribution immediately after plotting the urine sample
  • FIG. 16 shows the luminance distribution when the nematode chemotaxis was performed for 15 minutes after plotting the urine sample.
  • the urine sample of the cancer patient is plotted on the left side of the paper on the x-axis, and the nematode shows the attracting action with respect to the urine sample.
  • the chemotaxis behavior of the nematode on the plate sucked up by the buffer sucking device 5 according to the present embodiment seems to have no problem.
  • FIG. 17 is a diagram illustrating time conversion of the luminance center of gravity in the plate that has absorbed the buffer by the buffer suction device according to the present embodiment.
  • 18 is a diagram (comparative example) showing a temporal change in luminance center of gravity in a plate that has absorbed a buffer by the conventional method. 17 and 18, the horizontal axis indicates time, and the vertical axis indicates the x-coordinate value of the luminance centroid (luminance centroid x-coordinate).
  • Lines 611 to 615 in FIG. 17 indicate time conversion of the luminance center of gravity for each plate.
  • the line 615 shows the time change of the luminance center of gravity when the urine sample (repellent substance) of a healthy person is plotted.
  • the other lines 611 to 614 show the time change of the luminance center of gravity when the urine specimen (attracting substance) of the cancer patient is plotted.
  • lines 621 to 623 in FIG. 18 indicate changes over time in the luminance center of gravity when urine specimens (attracting substances) of cancer patients are plotted.
  • the line 614 in FIG. 17 and the line 623 in FIG. 18 do not show a clear attracting action, but it is clear when the other lines 611 to 613 (FIG. 17) are compared with the lines 621 to 622 (FIG. 18).
  • Lines 611 to 613 indicate that the chemotactic behavior of the nematode is more active.
  • the plate using the buffer suction device 5 according to the present embodiment is also active in repelling behavior.
  • this embodiment relates to this embodiment. This is because the buffer suction device 5 can suck the buffer without touching the nematode. Further, by sucking the buffer with the buffer sucking device 5, the nematode is not damaged or stressed, so that stable and highly reproducible data can be obtained.
  • the chemotaxis index can be calculated by a simple algorithm without counting individual nematodes. For this reason, the analysis of the image imaged with the imaging device 2 can be performed efficiently.
  • the nematode E3 in good condition is the nematode E that is active.
  • the calculation load can be reduced by using the luminance center of gravity using the property that the portion where the nematode E is large in the image becomes bright. .
  • the plate is inclined in the buffer suction device 5 and the buffer is sucked. For this reason, the portion where the nematode is plotted has a spread, and the plotted point is not always the exact origin.
  • the difference between the luminance centroid immediately after the nematode plot and the luminance centroid after a predetermined time is defined as the chemotaxis index.
  • the number of pixels can be reduced by performing pixel combination processing.
  • the capacity of the image can be reduced. Accordingly, a large amount of images can be stored. For example, if an image is captured for 15 minutes with 5 million pixels, a capacity of about 1 GB is required.
  • the image capacity can be significantly reduced. it can.
  • noise such as dust can be averaged and the influence can be eliminated.
  • Patent Document 1 describes that a fluorescent protein gene is introduced into a nematode and the tendency intensity of the nematode is measured.
  • the technique described in Patent Document 1 improves the S / N ratio of an image by making nematodes fluoresce. However, since individual nematodes are counted, it is impossible to solve the above-described problems. Can not.
  • the technique according to the 2-1 embodiment is different from the technique described in Patent Document 1 in that the amount of nematodes is estimated based on the luminance in the image.
  • the runnability index is calculated from the difference between the luminance center of gravity immediately after plotting and the luminance center of gravity after a predetermined time, but the luminance center of gravity after the predetermined time and the center position of the plate are calculated.
  • the chemotaxis index may be calculated from the difference between.
  • pixels of a fine captured image are combined, but the present invention is not limited to this.
  • the pixel combination process may be omitted by taking an image with the camera 206 (FIGS. 7 to 9) having a small number of pixels. Thus, by using the camera 206 with a small number of pixels, the cost can be significantly reduced.
  • FIG. 20 is a functional block diagram showing the configuration of the analysis apparatus used in the 2-2 embodiment.
  • the analysis apparatus 1a illustrated in FIG. 20 is different from the analysis apparatus 1 illustrated in FIG. 6 in that the processing unit 100a includes a pixel exclusion unit 107 that excludes pixels near the center of the combined pixels.
  • FIG. 21 is a flowchart showing a processing procedure performed by the analysis apparatus used in the 2-2 embodiment. Reference is made to FIG. 20 as appropriate. In FIG. 21, the same steps as those in FIG. 4 are denoted by the same step numbers and description thereof is omitted. 21 is different from the flowchart shown in FIG. 11 in that the pixel excluding unit 107 performs the pixel excluding process (S331) after step S304. The pixel exclusion process will be described later.
  • FIG. 22 is a diagram for explaining a pixel exclusion processing method used in the 2-2 embodiment.
  • the pixels shown in FIG. 22 indicate the combined pixels.
  • the pixel excluding unit 107 excludes a predetermined range of combined pixels (shaded area) from the center (reference numeral 301) of the combined image after a predetermined time from the start of running. This is because nematodes in poor condition do not move from the central area (ie where the nematodes are plotted).
  • By performing the pixel exclusion process it is possible to exclude the influence of nematodes having a poor state, and it is possible to improve the accuracy of the luminance center of gravity and the accuracy of the chemotaxis index.
  • the deletion area is, for example, (A1) A post-combination pixel for a circle (dashed circle 302 in FIG. 22) whose diameter is (elapsed time since nematode plot ⁇ slow nematode speed) (A2) a post-combination pixel of the region set by the operator Etc.
  • FIG. 23 is a schematic diagram of the combined pixel before the pixel exclusion process is performed (unprocessed), and FIG. 24 is a schematic diagram of the combined pixel after the pixel exclusion process is performed.
  • the luminance of the combined pixel is indicated by five stages of dots as in FIG. FIG. 23 is the same as that shown in FIG. 14, and a description thereof is omitted here.
  • the pixel excluding unit 107 excludes the post-combination pixels with broken line circles in FIG. 23 in the central region of the image after the pixel combination processing, thereby obtaining a post-combination image as shown in FIG.
  • the dashed circle in FIG. 23 is the same as the dashed circle 302 in FIG.
  • nematodes in good condition that is, nematodes with active movement, move at a high speed
  • by removing a predetermined range from the center it is possible to exclude the influence of a nematode having a bad state (poor movement).
  • the accuracy of the chemotaxis index can be improved.
  • Such pixel exclusion in the central region can be performed by a very simple process because it is only necessary to set the luminance of the combined pixels within a predetermined range to 0.
  • FIG. 25 is a functional block diagram showing a configuration of an analysis apparatus used in the second to third embodiments.
  • the analysis apparatus 1b shown in FIG. 25 is different from the analysis apparatus 1a shown in FIG. 20 in that the processing unit 100b stops the calculation of the luminance centroid when the time change of the luminance centroid satisfies a predetermined condition.
  • the determination processing unit 108 is included.
  • FIG. 26 is a flowchart illustrating a processing procedure performed by the analysis apparatus used in the second to third embodiments. 7 and 25 will be referred to as appropriate.
  • the same processes as those in FIG. 21 are denoted by the same step numbers and description thereof is omitted. 26 differs from the processing in FIG. 21 in the following points.
  • step S305 after the luminance center of gravity calculation unit 104 calculates the luminance center of gravity, the imaging stop determination processing unit 108 performs time displacement calculation processing for calculating the time displacement Dt of the luminance center of gravity (S341).
  • the time displacement Dt of the luminance center of gravity is a difference value between the current luminance center of gravity and the previous luminance center of gravity.
  • the temporal displacement Dt of the luminance center of gravity only needs to be considered in the x-axis direction, but in addition to the x-axis direction, , The y-axis direction may be taken into account.
  • the imaging stop determination processing unit 108 reverses the sign of the time displacement of the luminance center of gravity calculated in step S341 and the sign of the time displacement of the previous luminance center of gravity, or calculates in step S341. Whether or not the absolute value (
  • step S342 the absolute value (
  • step S342 the sign of the temporal displacement of the luminance center of gravity calculated in step S341 and the sign of the temporal displacement of the previous luminance center of gravity is reversed, or the luminance center of gravity calculated in step S341 If the absolute value (
  • step S342 the sign of the temporal displacement of the luminance center of gravity calculated in step S341 and the sign of the temporal displacement of the previous luminance center of gravity are not reversed, and the luminance center of gravity calculated in step S341
  • the processing unit 100b Determines whether or not a predetermined time (for example, 15 minutes) has elapsed since the start of chemotaxis (S343).
  • step S343 when the predetermined time has not elapsed since the start of running (S343 ⁇ No), the imaging stop determination processing unit 108 determines whether the imaging interval time (for example, 1 minute) has elapsed since the previous imaging. (S344). As a result of step S344, when the imaging interval time has not elapsed (S344 ⁇ No), the imaging stop determination processing unit 108 returns the process to step S344. As a result of step S344, when the imaging interval time has elapsed (S344 ⁇ Yes), the processing unit 100b returns the process to step S301 and instructs the imaging device 2 to image the plate P.
  • the imaging interval time for example, 1 minute
  • step S343 when a predetermined time has elapsed from the start of running (S343 ⁇ Yes), the imaging stop determination processing unit 108 instructs the imaging device 2 to stop imaging (S345).
  • the chemotaxis index calculation unit 105 performs a chemotaxis index calculation process for calculating the chemotaxis index based on the luminance center of gravity calculated most recently (S321a).
  • the imaging stop determination processing unit 108 monitors the luminance center of gravity at a predetermined time, and when the movement of the nematode becomes slow or the luminance center of gravity returns to the origin side (the nematode plot point), the imaging is stopped there. abort.
  • the chemotaxis index calculation unit 105 calculates the chemotaxis index using the luminance center of gravity immediately before the time when the imaging is stopped.
  • the inspection time can be shortened.
  • the chemotaxis index is calculated based on the luminance center of gravity when the nematode is chemotaxis to the most + side or ⁇ side, the accuracy of the chemotaxis index is improved. be able to.
  • the pixel exclusion process in step S331 in FIG. 26 may be omitted.
  • the temporal change of the luminance center of gravity is monitored for each inspection, and the runnability index is calculated by the luminance center of gravity when the luminance center of gravity returns to the origin side.
  • the present invention is not limited to this. .
  • an average value or the like of the time for the luminance change to return to the origin side may be calculated in advance by experiment, and the nematode chemotaxis may be performed for this time. That is, the predetermined time in the 2-1 embodiment and the 2-2 embodiment may be an average value of the time for which the luminance change calculated by the experiment returns to the origin side. By doing so, the inspection time can be shortened.
  • the luminance before the odor substance of the urine sample evaporates.
  • the chemotaxis index can be calculated based on the target center of gravity. Thereby, the accuracy of the chemotaxis index can be improved.
  • FIG. 27 is a functional block diagram showing the configuration of the analysis apparatus used in the second to fourth embodiments.
  • the analysis apparatus 1c shown in FIG. 27 is different from the analysis apparatus 1b shown in FIG. 25 in that the processing unit 100c selects a plate P (FIG. 7) in which the temporal change in luminance center of gravity is not seen as an exclusion plate.
  • the processing unit 109 is included.
  • FIG. 28 and FIG. 29 are flowcharts showing a procedure of processing performed by the analysis apparatus according to the second to fourth embodiments. 7 and 27 will be referred to as appropriate.
  • 28 and 29 processes similar to those in FIG. 26 are denoted by the same step numbers and description thereof is omitted. 28 and 29 are different from the processing shown in FIG. 26 in the following points. That is, in step S305, after the luminance center of gravity calculation unit 104 calculates the luminance center of gravity, the plate exclusion processing unit 109 determines whether or not a first time (for example, 2 minutes) has elapsed from the start of running ( S351 in FIG. 28).
  • a first time for example, 2 minutes
  • step S351 when the first time has not elapsed since the start of running (S351 ⁇ No), the processing unit 100c determines whether or not an imaging interval time (for example, 1 minute) has elapsed since the previous imaging ( S352). As a result of step S352, when the imaging interval time has not elapsed (S352 ⁇ No), the processing unit 100c returns the process to step S352. As a result of step S352, when the imaging interval time has elapsed (S352 ⁇ Yes), the processing unit 100c returns the process to step S301 and instructs the imaging device 2 to image the plate P.
  • an imaging interval time for example, 1 minute
  • step S353 when the first time has elapsed since the start of chemotaxis (S351 ⁇ Yes), after the plate exclusion processing unit 109 performs the plate exclusion processing (S353), the processing unit 100c advances the process to step S361. .
  • the plate exclusion processing unit 109 instructs to exclude the plate P whose displacement from the luminance center of gravity immediately after the nematode plot is equal to or less than a predetermined value from the inspection target even after the first time has elapsed.
  • the instruction to exclude the plate P may be output from the output device 15 of the analysis device 1c, or a display device (not shown) may be installed in the vicinity of the imaging device 2 and displayed on the display device. Alternatively, the transport device 4 (FIG. 5) may exclude based on the exclusion instruction.
  • Steps S361 to S366 are the same processing as steps S301 to S305, and thus description thereof is omitted here.
  • the processing unit 100c advances the process to step S341 in FIG.
  • the processes in steps S341 and S342 are the same as the processes in steps S341 and S342 shown in FIG. 26, and thus the description thereof is omitted here.
  • the imaging stop determination processing unit 108 determines whether or not a second time (for example, 13 minutes) has elapsed after the first time has elapsed (for example, 13 minutes). S371 in FIG. 29). If the second time has elapsed as a result of step S371 (S371 ⁇ Yes), the imaging stop determination processing unit 108 advances the process to step S345.
  • step S371 when the second time has not elapsed since the start of chemotaxis (S371 ⁇ No), the processing unit 100c determines whether an imaging interval time (for example, 1 minute) has elapsed since the previous imaging ( S372). As a result of step S372, when the imaging interval time has not elapsed (S372 ⁇ No), the processing unit 100c returns the process to step S372. As a result of step S372, when the imaging interval time has elapsed (S372 ⁇ Yes), the processing unit 100c returns the process to step S361 in FIG. 28 and instructs the imaging device 2 to image the plate P.
  • an imaging interval time for example, 1 minute
  • FIG. 30 is a schematic explanatory diagram of the plate exclusion process used in the second to fourth embodiments.
  • FIG. 30 shows an example in which four analysis plates Pa to Pd are generated from one culture plate Pz.
  • the culture plate Pz is a plate P (FIG. 7) on which nematodes are cultured.
  • the analysis plates Pa to Pd are plates P on which urine specimens and nematodes are placed and set in the imaging device 2 (FIG. 5).
  • nematodes cultured in the same culture plate Pz are dispensed into four analysis plates Pa to Pd.
  • the four plates for analysis Pa to Pd are set in the imaging device 2, imaged, analyzed, and discarded.
  • the analysis is the calculation of the luminance center of gravity and the calculation of the chemotaxis index.
  • the analysis plate Pc in which the distance between the luminance centroid immediately after the nematode plot and the position of the luminance centroid after a predetermined time is a predetermined value or less may cause the nematode to be weak, It is excluded because it is not suitable for inspection.
  • the second to fourth embodiments it is possible to improve the accuracy of inspection determination by excluding a plate with a small change in luminance center of gravity even after a predetermined time.
  • a plate exclusion process is added to the second to third embodiments. That is, in the second to fourth embodiments, the luminance center of gravity is obtained every predetermined interval (for example, 1 minute), but is not limited thereto.
  • imaging is performed immediately after the nematode plotting and after a predetermined time (for example, 15 minutes), and immediately after the plotting and after the predetermined time. Plates having a difference in luminance center of gravity at a predetermined value or less may be excluded.
  • the runnability index is obtained based on the luminance center of gravity.
  • the information is not limited to the luminance center of gravity as long as the information is related to the luminance in the image captured by the camera 206.
  • the chemotaxis index is calculated based on the distance between the post-combination pixel with the highest luminance immediately after the nematode plot and the post-combination pixel with the highest luminance after a predetermined time after the start of chemotaxis May be.
  • graphs, tables, and graphs showing the time transition of the luminance center of gravity as shown in FIGS. 15 to 17 may be output (displayed) to the output device 15.
  • FIG. 31 is a functional block diagram showing the configuration of the analysis device used in the third embodiment.
  • the analysis device 1d shown in FIG. 31 is different from the analysis device 1 shown in FIG. 6 in that the luminance center-of-gravity calculation unit 104 and the runnability index calculation unit 105 in the processing unit 100 in FIG. This is a point that is part 110.
  • FIG. 32 is a diagram for explaining DR values used in the third embodiment.
  • FIG. 32 shows an image captured by the imaging device. As indicated by reference numeral 631, a nematode is plotted at the center of the plate P, and a urine sample is plotted at a point indicated by reference numeral 632. Then, as shown in FIG. 32, the image is divided into sections having a predetermined size. In the example of FIG. 32, it is divided into 12 ⁇ 12. These partitions are post-combined pixels that have been combined. Among these sections, a predetermined range around the plot point 632 of the urine sample is selected. In the example of FIG. 32, a 3 ⁇ 4 range 641 around the urine sample is selected.
  • the chemotaxis index calculation unit 105 calculates the DR value based on the sum of the luminance values of the sections in the range 641. Assuming that the sum of the luminance values of the sections in the range 641 is S1, and the sum of the brightness values of the sections other than the range 641 is S2, the DR value is calculated by a method represented by the following formula (11): There are two ways with the method represented by 12).
  • FIG. 33 is a flowchart illustrating a processing procedure performed by the analysis apparatus used in the third embodiment. Reference is made to FIG. 31 as appropriate. Also, FIG. 33 will be described with a focus on processing different from FIG. In FIG. 33, processes similar to those in FIG. 11 are denoted by the same step numbers and description thereof is omitted.
  • the processing unit 100d determines whether or not a predetermined time has elapsed from the start of the nematode chemotaxis (S381). As a result of step S381, when the predetermined time has not elapsed (S381 ⁇ No), the processing unit 100d returns the process to step S381. As a result of step S381, when the predetermined time has passed (S381 ⁇ Yes), the camera 206 (FIG. 7), the image acquisition unit 101, and the pixel combination unit 102 perform the processes of steps S301 to S303.
  • the luminance information acquisition unit 103 performs luminance information acquisition processing for acquiring luminance information from the pixels (post-combination pixels) combined in step S303 (S304a).
  • the luminance information acquisition unit 103 acquires luminance information of each combined pixel (section) in the range 641 in FIG.
  • the luminance information acquisition unit 103 obtains the luminance information of each combined pixel in the range 641 in FIG. 32 and the luminance information of each combined pixel other than the range 641 in FIG. get.
  • the DR value calculation unit 110 calculates the DR value according to the equation (11) or the equation (12) (S382). Subsequently, the test determination unit 106 performs test determination processing for determining whether the cancer is positive or negative based on the DR value calculated in step S382 (S322a). At this time, the test determination unit 106 determines positive if the calculated DR value is equal to or greater than a preset threshold value, and determines negative if the calculated DR value is less than the threshold value.
  • step S301 in FIG. 33 corresponds to step S212 in FIG.
  • steps S302 to S382 in FIG. 33 correspond to step S213 in FIG.
  • Step S322a in FIG. 33 corresponds to step S214 in FIG.
  • FIG. 34 and 35 are diagrams showing temporal changes in the DR value.
  • FIG. 34 shows a case where a urine sample (repellent substance) of a healthy person is plotted
  • FIG. 35 shows a case where a urine sample (attractant) of a cancer patient is plotted.
  • the DR value used is according to the equation (12). 34 and 35, the horizontal axis indicates time, and the vertical axis indicates DR value.
  • the DR value is almost zero.
  • the DR value is a large value.
  • the repellent substance a healthy subject's urine sample
  • the DR value is almost zero. Since it is only necessary to know whether nematodes are attracted to the urine sample in the actual examination, there is no problem even if the DR value becomes 0 when the repellent substance (a urine sample of a healthy person) is plotted.
  • a predetermined threshold is provided, and if the DR value exceeds this threshold, it is determined as positive.
  • the analysis using the DR value can be applied to other than the cancer analysis system including the buffer suction device 5.
  • this invention is not limited to above-described embodiment, Various modifications are included.
  • the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to having all the configurations described.
  • a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment.
  • Each of the above-described configurations, functions, units 100 to 110, storage device unit 13 and the like may be realized by hardware by designing a part or all of them, for example, with an integrated circuit. Further, as shown in FIGS. 6, 20, 25, 27, and 31, the above-described configurations, functions, and the like are obtained by interpreting and executing a program that realizes each function by a processor such as the CPU 12. It may be realized by software. Information such as programs, tables, and files for realizing each function is stored in the HD as shown in FIG. 6, FIG. 20, FIG. 25, FIG. 27, and FIG. ) Or a recording medium such as an IC (Integrated Circuit) card, an SD (Secure Digital) card, or a DVD (Digital Versatile Disc). In each embodiment, control lines and information lines are those that are considered necessary for explanation, and not all control lines and information lines are necessarily shown on the product. In practice, it can be considered that almost all configurations are connected to each other.
  • 1,1a-1d Analysis device (analysis unit) 2 Imaging device (imaging unit) 3 Dispensing device 4 Conveying device 5 Buffer suction device 100, 100a to 100d Processing unit 101 Image acquisition unit 102 Pixel combination unit 103 Luminance information acquisition unit 104 Luminous centroid calculation unit 105 Running index calculation unit 106 Inspection determination unit 107 Pixel exclusion Unit 108 imaging stop determination processing unit 109 plate exclusion processing unit 110 DR value calculation unit 201 base unit 202 light source unit 203 pedestal 204 first support unit 205 second support unit 206 camera (imaging unit) 221 Ring LED light source with diffuser plate 222 Shield plate 231 Imaging lens 232 Imaging element 233 Front focus 241 Diffuser plate 301 Center of combined image 302 Broken line circle 401,411 Origin (luminance center of gravity immediately after plotting) 402, 412 Nematode movement is slow 501 Plate placement part (placement part) 502 Inclination part 503 Drive part 504 Base part 505 Suction part E, E1 to E3 Nematode P plate Pz Culture

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Biophysics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

To simply remove a buffer including nematodes in cancer inspection using the nematodes, the present invention is characterized by being provided with: a plate placement part (501) for placing a plate on which the nematodes are plotted together with the buffer; an inclination part (502) for inclining the plate placement part (501); and a suction part (505) for sucking the buffer that accumulates in the lower part of the plate (P) placed on the plate placement part (501) inclined by the inclination part (502). Further, the invention has an analysis device (1) for using a brightness center of gravity or DR value to carry out taxis analysis of a plate (P) for which buffer suction has been completed and a urine sample and sodium azide have been plotted.

Description

バッファ吸取装置及びがん解析システムBuffer suction device and cancer analysis system
 本発明は、線虫を用いたがん検査に用いられるバッファ吸取装置及びがん解析システムの技術に関する。 The present invention relates to a buffer suction device and a cancer analysis system used for cancer testing using nematodes.
 線虫ががん患者の尿に対して誘引行動をし、健常者の尿に対して忌避行動を示すことを利用したがん検査が提案されている。
 特許文献1には、線虫の嗅覚を用いたがん検出方法が記載されている。
A cancer test has been proposed that uses nematodes to attract cancer patients' urine and to show repellent behavior to healthy people's urine.
Patent Document 1 describes a cancer detection method using the olfactory sense of nematodes.
国際公開第2015/088039号International Publication No. 2015/088039
 現在、線虫を用いたがん検査では、以下のような手順で検査が行われている。
(1)検査者が、プレートに尿検体をプロットするとともに、線虫の麻酔剤としてのアジ化ナトリウムをプロットする。
(2)検査者が、線虫をプレートにプロットする。ここで、線虫は、チューブ内にバッファとともに保管されており、プロットされる際、線虫はバッファごとプロットされる。
(3)検査者が、市販の紙製ウェスでバッファを吸い取る。これは、線虫がバッファ中に存在したままだと、線虫の動きが鈍化し、検査精度を低下させるためである。
(4)線虫が、所定時間、走性される。尿検体ががん患者のものであれば、線虫は尿検体に対して誘引行動を行い、尿検体ががん患者のものでなければ、線虫は尿検体に対して忌避行動を行う。
(5)所定時間後、誘引行動を行った線虫の数、及び、忌避行動を行った線虫の数をカウントし、カウントした各数を基に走性指数を算出する。
(6)算出した走性指数を基に、がんの陽性・陰性を判定する。
Currently, the following procedures are used in cancer tests using nematodes.
(1) The examiner plots the urine specimen on the plate and plots sodium azide as an anesthetic agent for nematodes.
(2) The examiner plots the nematode on the plate. Here, nematodes are stored with the buffer in the tube, and when plotted, the nematodes are plotted together with the buffer.
(3) The inspector sucks out the buffer with a commercially available paper waste. This is because if the nematode remains in the buffer, the movement of the nematode slows down and the inspection accuracy decreases.
(4) Nematodes are chemotaxis for a predetermined time. If the urine sample is from a cancer patient, the nematode performs an attracting action on the urine sample, and if the urine sample is not from a cancer patient, the nematode performs a repellent action on the urine sample.
(5) After a predetermined time, the number of nematodes that have performed attracting behavior and the number of nematodes that have performed repelling behavior are counted, and a chemotaxis index is calculated based on each counted number.
(6) Based on the calculated chemotaxis index, positive / negative of cancer is determined.
 ここで、紙製ウェスでバッファを吸い取る際((3)の手順)、紙製ウェスが線虫に触れると、線虫を傷つけてしまったり、線虫にストレスを与えてしまったりする。この結果、線虫の行動が鈍化し、検査精度を低下させてしまうことがある。
 特に、大量の検査を行うために、機械による自動化を導入しようとすると、(3)の手順のような繊細な作業を機械で行うことが困難である。
 しかし、このような紙製ウェスでバッファを吸い取る作業は、線虫によるがん検査では一般的に行われているものである。
Here, when the buffer is sucked with a paper waste (step (3)), if the paper waste touches the nematode, the nematode is damaged or stress is applied to the nematode. As a result, the behavior of the nematode may slow down and the inspection accuracy may be lowered.
In particular, in order to introduce a large amount of inspections, if it is attempted to introduce automation by a machine, it is difficult to perform delicate operations such as the procedure of (3) with a machine.
However, such an operation of sucking out the buffer with a paper waste is generally performed in a cancer test using a nematode.
 このような背景に鑑みて本発明がなされたのであり、本発明は、線虫を用いたがん検査において、線虫が含まれたバッファの簡便な除去を行うことを課題とする。 The present invention has been made in view of such a background, and an object of the present invention is to easily remove a buffer containing nematodes in a cancer test using nematodes.
 前記課題を解決するため、本発明は、線虫がバッファとともにプロットされているプレートを載置する載置部と、前記載置部を傾斜させる傾斜部と、前記傾斜部によって傾斜させられた前記載置部に載置されている前記プレートの下部に溜まっている前記バッファを吸い取る吸取部と、を有することを特徴とする。
 その他の解決手段については、実施形態中において記載される。
In order to solve the above-mentioned problems, the present invention provides a mounting part for mounting a plate on which nematodes are plotted together with a buffer, an inclined part for inclining the mounting part, and an inclination part that is inclined by the inclined part. And a sucking portion for sucking out the buffer accumulated in the lower portion of the plate placed on the placing portion.
Other solutions are described in the embodiments.
 本発明によれば、線虫を用いたがん検査において、線虫が含まれたバッファの簡便な除去を行うことができる。 According to the present invention, in a cancer test using a nematode, a buffer containing the nematode can be easily removed.
本実施形態に係るバッファ吸取装置の外形を示す図である。It is a figure which shows the external shape of the buffer suction apparatus which concerns on this embodiment. プレート載置部が傾斜していない状態のバッファ吸取装置を示す図である。It is a figure which shows the buffer suction apparatus of the state in which the plate mounting part is not inclined. プレート載置部が傾斜している状態のバッファ吸取装置を示す図である。It is a figure which shows the buffer suction apparatus of the state in which the plate mounting part inclines. 傾斜によるバッファの動きを示す図である。It is a figure which shows the motion of the buffer by inclination. 本実施形態に係るがん解析システムの構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the cancer analysis system which concerns on this embodiment. 本実施形態で用いられる解析装置の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the analyzer used by this embodiment. 本実施形態で用いられる撮像装置の外観斜視図である。It is an external appearance perspective view of the imaging device used by this embodiment. 本実施形態で用いられる撮像装置の外観側面図である。It is an external appearance side view of the imaging device used by this embodiment. 本実施形態で用いられる撮像装置の断面概略図である。It is a section schematic diagram of an imaging device used by this embodiment. 本実施形態でのがん検査のための詳細な手順の一例を示す図である。It is a figure which shows an example of the detailed procedure for the cancer test | inspection in this embodiment. 第2-1実施形態に係るがん解析システムが行う処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the process which the cancer-analysis system concerning 2nd-1 embodiment performs. カメラによって撮像された画像の模式図である。It is a schematic diagram of the image imaged with the camera. 第2-1実施形態で用いられるピクセルの結合処理を示す図である。It is a figure which shows the pixel combination process used in 2nd-1 embodiment. ピクセルの結合処理の結果を示す図である。It is a figure which shows the result of a pixel combination process. 本実施形態に係るバッファ吸取装置でバッファを吸い取ったプレートで線虫を走性させた際における輝度分布の変化を示す図(プロット直後)である。It is a figure (just after a plot) which shows the change of luminance distribution at the time of making a nematode chemotaxis with the plate which sucked up the buffer with the buffer sucking device concerning this embodiment. 本実施形態に係るバッファ吸取装置でバッファを吸い取ったプレートで線虫を走性させた際における輝度分布の変化を示す図(プロット所定時間後)である。It is a figure (after the plot predetermined time) which shows the change of luminance distribution at the time of making a nematode chemotaxis with the plate which sucked up the buffer with the buffer sucking device concerning this embodiment. 本実施形態に係るバッファ吸取装置によってバッファを吸い取ったプレートにおける輝度的重心の時間変換を示す図である。It is a figure which shows the time conversion of the brightness | luminance gravity center in the plate which sucked up the buffer with the buffer suction apparatus which concerns on this embodiment. これまでの手法でバッファを吸い取ったプレートにおける輝度的重心の時間変化を示す図である。It is a figure which shows the time change of the brightness | luminance gravity center in the plate which sucked up the buffer with the conventional method. 線虫の選定を示す模式図である。It is a schematic diagram which shows selection of a nematode. 第2-2実施形態で用いられる解析装置の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the analyzer used by 2-2 embodiment. 第2-2実施形態で用いられる解析装置が行う処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the process which the analyzer used in 2nd-2 embodiment performs. 第2-2実施形態で用いられるピクセル除外処理の手法を説明するための図である。It is a figure for demonstrating the method of the pixel exclusion process used in 2-2 embodiment. ピクセル除外処理が行われる前(未処理)の結合後ピクセルの模式図である。It is a schematic diagram of the pixel after combination before pixel exclusion processing is performed (unprocessed). ピクセル除外処理が行われた後の結合後ピクセルの模式図である。It is a schematic diagram of the pixel after a combination after a pixel exclusion process was performed. 第2-3実施形態で用いられる解析装置の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the analyzer used by 2-3 embodiment. 第2-3実施形態で用いられる解析装置が行う処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the process which the analyzer used in 2-3 embodiment performs. 第2-4実施形態で用いられる解析装置の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the analyzer used by 2nd-4 embodiment. 第2-4実施形態で用いられる解析装置が行う処理の手順を示すフローチャート(その1)である。It is a flowchart (the 1) which shows the procedure of the process which the analyzer used in 2-4 embodiment performs. 第2-4実施形態で用いられる解析装置が行う処理の手順を示すフローチャート(その2)である。It is a flowchart (the 2) which shows the procedure of the process which the analyzer used in 2-4 embodiment performs. 第2-4実施形態で用いられるプレート除外処理の模式的な説明図である。It is a typical explanatory view of the plate exclusion process used in the 2-4 embodiment. 第3実施形態で用いられる解析装置の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the analyzer used by 3rd Embodiment. 第3実施形態で用いられるDR値の説明をするための図である。It is a figure for demonstrating DR value used by 3rd Embodiment. 第3実施形態で用いられる解析装置が行う処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the process which the analyzer used in 3rd Embodiment performs. DR値の時間変化を示す図(健常者)である。It is a figure (healthy person) which shows the time change of DR value. DR値の時間変化を示す図(がん患者)である。It is a figure (cancer patient) which shows the time change of DR value.
 次に、本発明を実施するための形態(「実施形態」という)について、適宜図面を参照しながら詳細に説明する。なお、各図面において、同様の構成要素については、同一の符号を付して説明を省略する。 Next, modes for carrying out the present invention (referred to as “embodiments”) will be described in detail with reference to the drawings as appropriate. In addition, in each drawing, about the same component, the same code | symbol is attached | subjected and description is abbreviate | omitted.
<第1実施形態:システム>
 まず、本発明の第1実施形態として、バッファ吸取装置を備えたがん検査システムについて説明する。
[バッファ吸取装置]
 図1は、本実施形態に係るバッファ吸取装置の外形を示す図である。
 バッファ吸取装置5は、プレート載置部(載置部)501、傾斜部502、駆動部503、台座部504、吸取部505を有している。
 プレート載置部501には、線虫がプロットされているプレートPが載置される。傾斜部502は、プレート載置部501を所定角度傾斜させる。台座部504は、プレート載置部501や、傾斜部502等を支持する。吸取部505は、傾斜部502によって傾斜されたプレートPの下部に溜まったバッファを吸い取る。バッファの吸い取りについては後記する。なお、プレート載置部501にはプレートPの大きさの窪み又は孔が設けられており、この窪み又は孔にプレートPが設置・保持される。
<First Embodiment: System>
First, as a first embodiment of the present invention, a cancer test system including a buffer suction device will be described.
[Buffer suction device]
FIG. 1 is a view showing the outer shape of the buffer suction device according to the present embodiment.
The buffer suction device 5 includes a plate placement part (placement part) 501, an inclined part 502, a drive part 503, a pedestal part 504, and a suction part 505.
A plate P on which nematodes are plotted is placed on the plate placement unit 501. The inclined part 502 inclines the plate mounting part 501 by a predetermined angle. The pedestal portion 504 supports the plate placement portion 501, the inclined portion 502, and the like. The suction part 505 sucks the buffer accumulated in the lower part of the plate P inclined by the inclined part 502. The buffer absorption will be described later. The plate mounting portion 501 is provided with a recess or hole having the size of the plate P, and the plate P is installed and held in the recess or hole.
 図2は、プレート載置部が傾斜していない状態のバッファ吸取装置を示す図であり、図3は、プレート載置部が傾斜している状態のバッファ吸取装置を示す図である。
 図2及び図3において、図1と同じ構成については、同一の符号を付して説明を省略する。また、図2及び図3において、吸取部505を図示省略している。
 まず、図2のようにプレート載置部501が水平な状態で、プレートPがプレート載置部501に載置される。プレートPには寒天培地が予め設置されている。
FIG. 2 is a diagram illustrating the buffer suction device in a state where the plate mounting portion is not inclined, and FIG. 3 is a diagram illustrating the buffer suction device in a state where the plate mounting portion is tilted.
2 and 3, the same components as those in FIG. 1 are denoted by the same reference numerals and description thereof is omitted. 2 and 3, the suction part 505 is not shown.
First, as shown in FIG. 2, the plate P is placed on the plate placement unit 501 while the plate placement unit 501 is horizontal. An agar medium is previously set on the plate P.
 その後、プレートPの寒天培地に線虫がバッファごとプロットされる。プロットされる箇所はプレートPの中央が一般的であるが、これに限らない。
 そして、図3に示すように駆動部503及び傾斜部502がプレート載置部501を傾斜させる。これにより、図4に示すように、線虫のプロット点601からバッファがプレートPの下部に向けて(矢印方向)に流れ、プレートPの下部に溜まる。このとき、ほとんどの線虫は、寒天培地にはりついた状態となってバッファとともに流れず、プロット点601に留まる。なお、傾斜角度は60°くらいが望ましい。なお、符号602は、尿検体及びアジ化ナトリウムのプロット予定点である。
 そして、図1に示すように、傾斜しているプレートPの下部に溜まったバッファを吸取部505が吸い取る。
Thereafter, nematodes are plotted together with the buffer on the agar medium of plate P. Although the center of the plate P is generally plotted, the present invention is not limited to this.
And as shown in FIG. 3, the drive part 503 and the inclination part 502 incline the plate mounting part 501. As shown in FIG. As a result, as shown in FIG. 4, the buffer flows from the nematode plot point 601 toward the lower part of the plate P (in the direction of the arrow) and accumulates at the lower part of the plate P. At this time, most nematodes are stuck to the agar medium, do not flow with the buffer, and remain at the plot point 601. The inclination angle is preferably about 60 °. Reference numeral 602 indicates plotting points of the urine sample and sodium azide.
Then, as shown in FIG. 1, the suction part 505 sucks the buffer accumulated in the lower part of the inclined plate P.
 このようなバッファ吸取装置5とすることにより、線虫に触れたり、傷つけたりするおそれなくバッファを吸い取ることができる。
 そして、プレート載置部501を傾斜させて、プレートPの下部に溜まったバッファを吸い取ることにより、バッファの吸い取りを機械化することが可能となる。
 これまで行われていた紙製ウェスでバッファを吸い取ることを機械に行わせようとすると、線虫がプロットされた箇所を画像認識しなければならない等、複雑な処理が必要となる。本実施形態に係るバッファ吸取装置5によれば、プレートPを傾けるだけであるので、画像認識等の複雑な処理を必要とせず、非常に簡便な構成でバッファを吸い取ることができる。
By using such a buffer sucking device 5, the buffer can be sucked without fear of touching or damaging the nematode.
Then, by tilting the plate mounting portion 501 and sucking out the buffer accumulated in the lower part of the plate P, it becomes possible to mechanize the buffer sucking.
If an attempt is made to cause the machine to absorb the buffer with the paper waste that has been used so far, a complicated process is required, for example, it is necessary to recognize the image where the nematode is plotted. According to the buffer suction device 5 according to the present embodiment, since the plate P is merely tilted, complicated processing such as image recognition is not required, and the buffer can be sucked with a very simple configuration.
 吸取部505によるバッファの吸い取りが完了すると、傾斜部502はプレート載置部501を水平に戻す。その後、尿検体及びアジ化ナトリウムがプレートPの培地上にプロットされる。そして、プレートPは撮像装置2(図5)に移され、セットされる。 When the sucking of the buffer by the sucking unit 505 is completed, the inclined unit 502 returns the plate placing unit 501 to the horizontal. The urine specimen and sodium azide are then plotted on the plate P medium. Then, the plate P is moved to the imaging device 2 (FIG. 5) and set.
[システム構成]
 図5は、本実施形態に係るがん解析システムの構成を示す機能ブロック図である。図5において、破線矢印はプレート、線虫、尿検体、アジ化ナトリウム等の動きを示し、実線矢印は情報の流れを示す。
 がん解析システムZは、解析装置(解析部)1、撮像装置(撮像部)2、分注装置3、搬送装置4及びバッファ吸取装置5を有する。
 撮像装置2は、線虫及び尿検体がプロットされたプレートを撮像し、撮像した画像を解析装置1へ送信する。
 解析装置1は、撮像装置2から送られた画像を基に輝度情報を取得する。そして、解析装置1は、取得した輝度情報から線虫の走性指数を算出し、算出した走性指数を基に、がんの陽性・陰性を判定する。
 分注装置3は、プレートに線虫、尿検体、アジ化ナトリウムをプロットする。
 搬送装置4は、プレートをバッファ吸取装置5にセットしたり、バッファ吸取装置5から撮像装置2にプレートをセットしたりする。
 バッファ吸取装置5は、図1~図4で説明したように、プレートを傾斜させて、バッファをプレートの下方向に流れさせ、プレートの下方にたまったバッファを吸い取る。
[System configuration]
FIG. 5 is a functional block diagram showing the configuration of the cancer analysis system according to this embodiment. In FIG. 5, broken line arrows indicate movements of plates, nematodes, urine samples, sodium azide, and the like, and solid line arrows indicate the flow of information.
The cancer analysis system Z includes an analysis device (analysis unit) 1, an imaging device (imaging unit) 2, a dispensing device 3, a transport device 4, and a buffer suction device 5.
The imaging device 2 images a plate on which nematodes and urine specimens are plotted, and transmits the captured image to the analysis device 1.
The analysis device 1 acquires luminance information based on the image sent from the imaging device 2. And the analysis apparatus 1 calculates the chemotaxis index of a nematode from the acquired brightness | luminance information, and determines positive / negative of cancer based on the calculated chemotaxis index.
The dispensing device 3 plots nematodes, urine samples, and sodium azide on the plate.
The transport device 4 sets a plate in the buffer suction device 5 or sets a plate from the buffer suction device 5 to the imaging device 2.
As described with reference to FIGS. 1 to 4, the buffer sucking device 5 tilts the plate, causes the buffer to flow downward, and sucks the buffer accumulated below the plate.
[解析装置]
 図6は、本実施形態で用いられる解析装置の構成を示す機能ブロック図である。
 解析装置1は、PC(Personal Computer)等により構成されている。そして、解析装置1は、メモリ11、CPU(Central Processing Unit)12、記憶装置13、入力装置14、出力装置15及び送受信装置16を有する。
 メモリ11には、記憶装置13に格納されているプログラムがロードされる。そして、このロードされたプログラムがCPU12によって実行される。これにより、処理部100及び処理部100を構成する画像取得部101、ピクセル結合部102、輝度情報取得部103、輝度的重心算出部104、走性指数算出部105及び検査判定部106が具現化している。
[Analyzer]
FIG. 6 is a functional block diagram showing the configuration of the analysis device used in the present embodiment.
The analysis apparatus 1 is configured by a PC (Personal Computer) or the like. The analysis device 1 includes a memory 11, a CPU (Central Processing Unit) 12, a storage device 13, an input device 14, an output device 15, and a transmission / reception device 16.
The memory 11 is loaded with a program stored in the storage device 13. Then, the loaded program is executed by the CPU 12. As a result, the processing unit 100 and the image acquisition unit 101, the pixel combination unit 102, the luminance information acquisition unit 103, the luminance center-of-gravity calculation unit 104, the runnability index calculation unit 105, and the examination determination unit 106 that constitute the processing unit 100 are realized. ing.
 画像取得部101は、撮像装置2から画像を取得する。
 ピクセル結合部102は、撮像装置2から取得した画像のピクセルを結合する。ピクセルの結合については後記する。
 輝度情報取得部103は、ピクセル結合部102で結合されたピクセル(結合後ピクセルと称する)から、各結合後ピクセルにおける輝度情報を取得する。
 輝度的重心算出部104は、輝度情報取得部103が取得した輝度情報に基づいて、輝度的重心を算出する。輝度的重心については後記する。
 走性指数算出部105は、輝度的重心算出部104が算出した輝度的重心を基に、線虫の走性指数を算出する。走性指数については後記する。
The image acquisition unit 101 acquires an image from the imaging device 2.
The pixel combining unit 102 combines pixels of an image acquired from the imaging device 2. The pixel combination will be described later.
The luminance information acquisition unit 103 acquires luminance information in each combined pixel from the pixels combined by the pixel combining unit 102 (referred to as a combined pixel).
The luminance center of gravity calculation unit 104 calculates the luminance center of gravity based on the luminance information acquired by the luminance information acquisition unit 103. The luminance center of gravity will be described later.
The chemotaxis index calculation unit 105 calculates a nematode chemotaxis index based on the luminance centroid calculated by the luminance centroid calculation unit 104. The chemotaxis index will be described later.
 検査判定部106は、走性指数算出部105が算出した走性指数に基づいて、がんの陽性、陰性を判定する。 The test determination unit 106 determines whether the cancer is positive or negative based on the chemotaxis index calculated by the chemotaxis index calculation unit 105.
 入力装置14は、キーボードや、マウス等である。
 出力装置15は、ディスプレイや、プリンタ等である。
 送受信装置16は、NIC(Network Interface Card)等である。
The input device 14 is a keyboard, a mouse, or the like.
The output device 15 is a display, a printer, or the like.
The transmission / reception device 16 is a NIC (Network Interface Card) or the like.
[撮像装置]
 図7は、本実施形態で用いられる撮像装置の外観斜視図であり、図8は、本実施形態で用いられる撮像装置の外観側面図であり、図9は、本実施形態で用いられる撮像装置の断面概略図である。
 図7及び図8に示すように、撮像装置2には、基部201の上に光源部202が備えられている。光源部202は、拡散板付きリングLED(Light Emission Diode)光源221である。拡散板付きリングLED光源221はリング状のLED光源であり、リングの内側に図9に示すように拡散板241が備えられているものである。
[Imaging device]
7 is an external perspective view of an imaging device used in the present embodiment, FIG. 8 is an external side view of the imaging device used in the present embodiment, and FIG. 9 is an imaging device used in the present embodiment. FIG.
As shown in FIGS. 7 and 8, the imaging apparatus 2 includes a light source unit 202 on a base 201. The light source unit 202 is a ring LED (Light Emission Diode) light source 221 with a diffusion plate. The ring LED light source 221 with a diffuser plate is a ring-shaped LED light source, and a diffuser plate 241 is provided inside the ring as shown in FIG.
 そこで、本実施形態の撮像装置2では、図7及び図8に示すように、光源部202の上には、プレートPがセットされるための台座203が備えられている。台座203にはプレートPがセットされるための孔が設けられており、この孔にプレートPが嵌着されることでプレートPが撮像装置2にセットされる。 Therefore, in the imaging apparatus 2 of the present embodiment, as shown in FIGS. 7 and 8, a pedestal 203 for setting the plate P is provided on the light source unit 202. The pedestal 203 is provided with a hole for setting the plate P, and the plate P is set in the imaging device 2 by fitting the plate P into the hole.
 そして、図7及び図8に示すように、基部201には棒状の第1支持部204が備えられ、この第1支持部204には、第1支持部204に沿って上下方向(Z方向)に可動である第2支持部205が備えられている。
 第2支持部205の先端にはプレートPを撮像するためのカメラ(撮像部)206が備えられている。
 さらに、図8に示すようにカメラ206の上方には、蛍光灯等といった部屋の照明を遮蔽する遮蔽板222が設けられている(図7では遮蔽板222を図示省略してある)。
 なお、図8において、遮蔽板222は、第1支持部204に備えられているが、これに限らない。例えば、遮蔽板222は、プレートPに部屋の照明があたらないようにすればよく、例えば、部屋に備えられるようにしてもよい。
As shown in FIGS. 7 and 8, the base 201 is provided with a rod-shaped first support portion 204, and the first support portion 204 is vertically moved along the first support portion 204 (Z direction). A second support portion 205 is provided that is movable.
A camera (imaging unit) 206 for imaging the plate P is provided at the tip of the second support unit 205.
Further, as shown in FIG. 8, a shielding plate 222 for shielding room illumination such as a fluorescent lamp is provided above the camera 206 (the shielding plate 222 is not shown in FIG. 7).
In FIG. 8, the shielding plate 222 is provided in the first support portion 204, but is not limited thereto. For example, the shielding plate 222 may be configured so that the room is not illuminated on the plate P, and may be provided in the room, for example.
 光源部202からの光が直接プレートPに照射されると、画像のS/N(Signal/Noise)比が悪くなるという問題がある。これは、光が直接プレートPに照射されると、明るすぎたり、プレートPの縁等、プレートPにおける特定の箇所が光ってしまったりするためである。
 図7~図9に示すように、光源部202として拡散板付きリングLED光源221を設けることで、LED光源から照射される光を拡散させることができ、適度な光がプレートPに照射される。これにより、撮像される画像のS/N比の向上を図ることができ、後記する画像解析が困難になることを防ぐことができる。
 また、カメラ206の上方に遮蔽板222が設けられることで、蛍光灯等といった部屋の照明を遮ることができ、部屋の照明によってプレートPの培地表面が光ってしまうことを防ぐことができる。
When the light from the light source unit 202 is directly applied to the plate P, there is a problem that the S / N (Signal / Noise) ratio of the image is deteriorated. This is because when the light is directly applied to the plate P, it is too bright, or a specific part of the plate P such as an edge of the plate P is lit.
As shown in FIGS. 7 to 9, by providing a ring LED light source 221 with a diffusion plate as the light source unit 202, light emitted from the LED light source can be diffused, and appropriate light is irradiated onto the plate P. . Thereby, the S / N ratio of the imaged image can be improved, and it is possible to prevent difficulty in image analysis described later.
Further, by providing the shielding plate 222 above the camera 206, it is possible to block room illumination such as a fluorescent lamp, and it is possible to prevent the medium surface of the plate P from being lit by room illumination.
 次に、図9を参照して、カメラ206で撮像された画像が光源部202による影響を受けないための条件、すなわち、画像面において照度むらが小さくなるための条件を説明する。
 光源部202(拡散板付きリングLED光源221)の特性によって、プレートPに照射される光の照度分布が良好となる照明距離Z2が存在する場合、以下の第1条件及び第2条件とが満たされるとき、照度分布が良好となる。ここで、照明距離Z2は、図9に示すように、照明面と、撮像対称面(ここでは、プレートPの培地表面)との距離である。
Next, with reference to FIG. 9, a condition for preventing an image captured by the camera 206 from being affected by the light source unit 202, that is, a condition for reducing illuminance unevenness on the image plane will be described.
When there is an illumination distance Z2 in which the illuminance distribution of the light irradiated to the plate P is good due to the characteristics of the light source unit 202 (ring LED light source 221 with a diffuser), the following first condition and second condition are satisfied. The illuminance distribution is good. Here, as shown in FIG. 9, the illumination distance Z2 is a distance between the illumination surface and the imaging symmetry plane (here, the medium surface of the plate P).
 また、第1条件は、f1、Z1が、以下の式(1)の条件を満たすことである。f1及びZ1については後記する。また、第2条件は、光源位置における画角半径Y2に対して、拡散板付きリングLED光源221の内半径Rが大きいことである。第1条件及び第2条件が満たされる場合、カメラ206で撮像された画像が光源部202による影響を受けない。これにより、後記する輝度情報の取得が容易となる。 The first condition is that f1 and Z1 satisfy the condition of the following expression (1). f1 and Z1 will be described later. The second condition is that the inner radius R of the ring LED light source 221 with a diffuser is larger than the field angle radius Y2 at the light source position. When the first condition and the second condition are satisfied, the image captured by the camera 206 is not affected by the light source unit 202. This facilitates acquisition of luminance information described later.
 Y1=(Z1×Y0)/f1 ・・・ (1) Y1 = (Z1 × Y0) / f1 (1)
 ちなみに、式(1)において、f1は撮像レンズ231と、前側焦点233との距離である前側焦点距離である。また、Z1は前側焦点233と、撮像対象面(ここでは、プレートPにおける培地表面)との距離である。そして、Y0はカメラ206における撮像素子232の大きさである。さらに、Y1は撮像対象の大きさである。
 第1条件及び第2条件が満たされることで、画像における照度むらを減少させることができ、画像のS/N比を向上させることができる。
Incidentally, in Expression (1), f1 is a front focal length that is a distance between the imaging lens 231 and the front focal point 233. Z1 is the distance between the front focal point 233 and the imaging target surface (here, the surface of the medium on the plate P). Y0 is the size of the image sensor 232 in the camera 206. Furthermore, Y1 is the size of the imaging target.
By satisfying the first condition and the second condition, the illuminance unevenness in the image can be reduced, and the S / N ratio of the image can be improved.
[検査工程]
 図10は、本実施形態でのがん検査のための詳細な手順の一例を示す図である。ステップS101~S141は培養工程を示す図であり、ステップS201~S215はがん検査工程を示す図である。適宜、図1、図5を参照する。
 図10に示すように、まず、プレート作成者が、培養プレートを作成する(S101)。そして、必要に応じて、プレート作成者が、線虫植継ぎ作業を行うことで(S111)、新たな培養プレートを作成する(S112)。さらに、プレート作成者は、ステップS112で作成した培養プレートを基に、線虫植継ぎ作業を行うことで(S121)、新たな培養プレートを作成する(S122)。
[Inspection process]
FIG. 10 is a diagram illustrating an example of a detailed procedure for a cancer test in the present embodiment. Steps S101 to S141 are diagrams showing a culture process, and steps S201 to S215 are diagrams showing a cancer test process. Reference is made to FIGS. 1 and 5 as appropriate.
As shown in FIG. 10, first, the plate creator creates a culture plate (S101). Then, if necessary, the plate creator performs a nematode transplanting operation (S111) to create a new culture plate (S112). Further, the plate creator creates a new culture plate (S122) by performing nematode transplantation work based on the culture plate created in step S112 (S121).
 そして、ステップS101,S112,S122で作成された培養プレートにおいて、線虫が培養された後、培養された線虫を用いて検査者ががん検査を行う(S141~S143)。 Then, after nematodes are cultured on the culture plates created in steps S101, S112, and S122, the examiner performs a cancer test using the cultured nematodes (S141 to S143).
 ステップS201~S215は、ステップS141~S143の処理の詳細を示すものである。なお、ステップS201~S215は、ステップS141~S143のそれぞれで行われる。
 図10に示すように、がん検査において、まず、プレート作成者が、解析用のプレートを作成する(S201)。
 続いて、分注装置3が、解析用のプレートに線虫をプロットする(S203)。具体的には、分注装置3は、所定時間静置されていたチューブから線虫をバッファごと吸入し、プレート上の所定の位置(例えば、中央)にプロットする。吸入量は、例えば4μLである。分注装置3による線虫のプロットが完了すると、搬送装置4がプレートをバッファ吸取装置5のプレート載置部501に載置する。なお、ここでは、線虫がプレートにプロットされた後、バッファ吸取装置5にセットされているが、バッファ吸取装置5にプレートがセットされた後、線虫がプロットされてもよい。
Steps S201 to S215 show details of the processing of steps S141 to S143. Steps S201 to S215 are performed in steps S141 to S143, respectively.
As shown in FIG. 10, in a cancer test, first, a plate creator creates a plate for analysis (S201).
Subsequently, the dispensing device 3 plots nematodes on the analysis plate (S203). Specifically, the dispensing device 3 sucks the nematode together with the buffer from the tube that has been left stationary for a predetermined time, and plots it at a predetermined position (for example, the center) on the plate. The amount of inhalation is, for example, 4 μL. When the nematode plotting by the dispensing device 3 is completed, the transport device 4 places the plate on the plate placement portion 501 of the buffer suction device 5. Here, after the nematode is plotted on the plate, the nematode is set in the buffer suction device 5, but the nematode may be plotted after the plate is set in the buffer suction device 5.
 そして、バッファ吸取装置5の傾斜部502が、プレート載置部501を傾斜させる(S204)。この際、バッファ吸取装置5は、例えば、30秒かけて60°プレート載置部501を傾斜させる。これにより、前記したように、バッファのみがプレートの下方に流れ、線虫の多くはプロットされたところに留まる。
 そして、バッファ吸取装置5の吸取部505が、プレートの下方に溜まったバッファを吸い取る(バッファ吸取:S205)。
And the inclination part 502 of the buffer suction apparatus 5 inclines the plate | board mounting part 501 (S204). At this time, the buffer suction device 5 inclines the 60 ° plate mounting portion 501 over 30 seconds, for example. This ensures that only the buffer flows down the plate, as described above, and many of the nematodes remain plotted.
And the suction part 505 of the buffer suction device 5 sucks the buffer accumulated under the plate (buffer suction: S205).
 その後、バッファ吸取装置5は、プレート載置部501を水平に戻すと、分注装置3が尿検体(例えば、2μL)及びアジ化ナトリウムをプレートの所定位置にプロットする(S206)。なお、尿検体と、アジ化ナトリウムは同じ場所にプロットされるとよい。アジ化ナトリウムは線虫に対しては無臭であるので、尿検体とアジ化ナトリウムとが同じ場所にプロットされても問題はない。 Thereafter, when the buffer suction device 5 returns the plate placement unit 501 to the horizontal position, the dispensing device 3 plots the urine sample (for example, 2 μL) and sodium azide at predetermined positions on the plate (S206). The urine sample and sodium azide are preferably plotted at the same place. Since sodium azide is odorless to nematodes, there is no problem if the urine sample and sodium azide are plotted in the same place.
 続いて、搬送装置4がプレートを撮像装置2(図5)にセットする(S211)。
 なお、ここでは、バッファ吸取装置5にセットされているプレートに尿検体及びアジ化ナトリウムをプロットしている。これに限らず、撮像装置2にプレートがセットされた後に、尿検体及びアジ化ナトリウムがプロットされてもよい。このように、線虫、尿検知及びアジ化ナトリウムがプロットされたプレートを解析用のプレートと適宜称する。
Subsequently, the transport device 4 sets the plate on the imaging device 2 (FIG. 5) (S211).
Here, the urine sample and sodium azide are plotted on the plate set in the buffer suction device 5. However, the urine sample and sodium azide may be plotted after the plate is set in the imaging device 2. Thus, a plate on which nematodes, urine detection, and sodium azide are plotted is appropriately referred to as an analysis plate.
 すると、撮像装置2が、解析用のプレートを撮像する(S212)。
 撮像装置2が撮像した画像は、解析装置1(図5)に送られる。解析装置1は、送られた画像に基づいて走性解析処理を行う(S213)。場合によっては、再び、撮像が行われ(S212)、その撮像によって得られた画像に対して走性解析が行われる(S213)ことが繰り返される。
 そして、解析装置1は、ステップS213の走性解析の結果に基づいて、がんの陽性、陰性を判定する検査判定処理を行う(S214)。
Then, the imaging device 2 images the analysis plate (S212).
The image captured by the imaging device 2 is sent to the analysis device 1 (FIG. 5). The analysis apparatus 1 performs a chemotaxis analysis process based on the sent image (S213). In some cases, the imaging is performed again (S212), and the chemotaxis analysis is repeated on the image obtained by the imaging (S213).
And the analyzer 1 performs the test | inspection determination process which determines positive / negative of cancer based on the result of the chemotaxis analysis of step S213 (S214).
 そして、解析装置1は、ステップS215の処理の結果を記憶装置13(図6)に格納する(S215)。 Then, the analysis device 1 stores the result of the process in step S215 in the storage device 13 (FIG. 6) (S215).
<第2実施形態:輝度的重心>
 次に、第2実施形態として輝度的重心による走性解析について説明する。
《第2-1実施形態》
[フローチャート]
 図11は、第2-1実施形態に係るがん解析システムが行う処理の手順を示すフローチャートである。適宜、図5~図7を参照する。
 まず、撮像装置2のカメラ206がプレートPの撮像を行う(S301)。
 そして、解析装置2の画像取得部101が撮像装置2から画像を取得する画像取得処理を行う(S302)。
 次に、ピクセル結合部102がピクセル結合処理を行う(S303)。ピクセル結合処理については後記する。
 そして、輝度情報取得部103が、ステップS303で結合されたピクセル(結合後ピクセル)から輝度情報を取得する輝度情報取得処理を行う(S304)。
 その後、輝度的重心算出部104が、ステップS304で取得された輝度情報を基に、輝度的重心を算出する輝度的重心算出処理を行う(S305)。輝度的重心については後記する。
<Second Embodiment: Luminous Center of Gravity>
Next, a runnability analysis based on a luminance center of gravity will be described as a second embodiment.
<< 2-1 embodiment >>
[flowchart]
FIG. 11 is a flowchart showing a procedure of processes performed by the cancer analysis system according to the 2-1 embodiment. Reference is made to FIGS. 5 to 7 as appropriate.
First, the camera 206 of the imaging device 2 captures the plate P (S301).
And the image acquisition part 101 of the analyzer 2 performs the image acquisition process which acquires an image from the imaging device 2 (S302).
Next, the pixel combination unit 102 performs pixel combination processing (S303). The pixel combination process will be described later.
Then, the luminance information acquisition unit 103 performs luminance information acquisition processing for acquiring luminance information from the pixels combined in step S303 (post-combination pixels) (S304).
Thereafter, the luminance centroid calculation unit 104 performs luminance centroid calculation processing for calculating the luminance centroid based on the luminance information acquired in step S304 (S305). The luminance center of gravity will be described later.
 次に、処理部100は、ステップS301~S305の処理が2回行われたか否かを判定する(S311)。
 ステップS311の結果、ステップS301~S305の処理が2回行われていない場合(S311→No)、処理部100は、ステップS305の処理が終了してから所定時間(例えば、15分)経過したか否かを判定する(S312)。
 ステップS312の結果、ステップS305の処理が終了してから所定時間経過していない場合(S312→No)、処理部100はステップS312へ処理を戻す。
 ステップS312の結果、ステップS305の処理が終了してから所定時間経過している場合(S312→Yes)、処理部100はステップS301へ処理を戻し、撮像装置2にプレートPの撮像を指示する。
Next, the processing unit 100 determines whether or not the processing of steps S301 to S305 has been performed twice (S311).
If the result of step S311 indicates that the processes of steps S301 to S305 have not been performed twice (S311 → No), has the processing unit 100 passed a predetermined time (for example, 15 minutes) after the process of step S305 is completed? It is determined whether or not (S312).
As a result of step S312, when the predetermined time has not elapsed since the process of step S305 was completed (S312 → No), the processing unit 100 returns the process to step S312.
As a result of step S312, when a predetermined time has passed since the process of step S305 is completed (S312 → Yes), the processing unit 100 returns the process to step S301 and instructs the imaging device 2 to image the plate P.
 ステップS311の結果、ステップS301~S305の処理が2回行われている場合(S311→Yes)、走性指数算出部105が、ステップS305で算出された輝度的重心を基に、走性指数を算出する走性指数算出処理を行う(S321)。
 続いて、検査判定部106が、ステップS321で算出された走性指数を基に、がんの陽性、陰性を判定する検査判定処理を行う(S322)。
As a result of step S311, when the processes of steps S301 to S305 are performed twice (S311 → Yes), the chemotaxis index calculation unit 105 calculates the chemotaxis index based on the luminance center of gravity calculated in step S305. The calculated chemotaxis index calculation process is performed (S321).
Subsequently, the test determination unit 106 performs a test determination process for determining whether the cancer is positive or negative based on the chemotaxis index calculated in step S321 (S322).
 ちなみに、図11のステップS301が図10のステップS212に相当し、図11のステップS302~S321が図10のステップS213に相当する。そして、図11のステップS322が図10のステップS214に相当する。 Incidentally, step S301 in FIG. 11 corresponds to step S212 in FIG. 10, and steps S302 to S321 in FIG. 11 correspond to step S213 in FIG. Step S322 in FIG. 11 corresponds to step S214 in FIG.
[輝度的重心による走性解析]
 次に、図12~図14を参照して、第2-1実施形態に係る輝度的重心による線虫の走性解析を説明する。
(画像)
 図12は、カメラによって撮像された画像の模式図を示す。この画像は、図11のステップS302で取得される画像である。
 図12では、図面をみやすくするため、培地が白くなっており、線虫Eが黒くなっている。しかし、実際には、培地は黒く写り、線虫Eは白く写る。
[Running analysis by luminance center of gravity]
Next, with reference to FIG. 12 to FIG. 14, a description will be given of the nematode chemotaxis analysis by the luminance center of gravity according to the 2-1 embodiment.
(image)
FIG. 12 is a schematic diagram of an image captured by the camera. This image is the image acquired in step S302 in FIG.
In FIG. 12, the medium is white and the nematode E is black for easy viewing of the drawing. However, in practice, the medium appears black and the nematode E appears white.
(ピクセル結合処理)
 図13は、第2-1実施形態で用いられるピクセルの結合処理を示す図である。この処理は、図11のステップS303に相当する処理である。
 ピクセル結合部102は、撮像された画像におけるピクセルを所定数結像することで、図13に示すように13×13程度のピクセルにまとめる。なお、13×13のピクセルにまとめることは一例であり、これ以外のピクセル数にまとめてもよい。
(Pixel merge processing)
FIG. 13 is a diagram illustrating a pixel combining process used in the 2-1 embodiment. This process corresponds to step S303 in FIG.
The pixel combination unit 102 forms a predetermined number of pixels in the captured image, thereby collecting the pixels into about 13 × 13 pixels as illustrated in FIG. 13. Note that grouping into 13 × 13 pixels is an example, and the number of pixels may be other than this.
(輝度情報取得処理)
 図14は、ピクセルの結合処理の結果を示す図である。
 図14に示すように、ピクセルを結合した結果、結合後のピクセル(結合後ピクセル)において線虫が多いところほど白いピクセルとなり、線虫が少ないところほど黒に近くなる。すなわち、結合後ピクセルでは、線虫が多いピクセルほど輝度が高くなる。図14では、結合後ピクセルにおける線虫の数の大小を5段階のドットで示しているが、実際には、例えば、256段階の輝度で示される。
 図11のステップS304において、輝度情報取得部103は、図14に示すような結合後ピクセルにおける輝度情報を取得する。x軸及びy軸については後記する。
(Luminance information acquisition processing)
FIG. 14 is a diagram illustrating a result of pixel combination processing.
As shown in FIG. 14, as a result of combining pixels, as the number of nematodes increases in the combined pixels (post-combination pixels), the pixel becomes white, and as the number of nematodes decreases, the pixel becomes closer to black. That is, in the combined pixels, the luminance increases as the number of nematodes increases. In FIG. 14, the number of nematodes in the combined pixel is indicated by five levels of dots, but in actuality, for example, it is indicated by 256 levels of luminance.
In step S304 in FIG. 11, the luminance information acquisition unit 103 acquires luminance information in the combined pixels as shown in FIG. The x axis and y axis will be described later.
(輝度的重心算出処理)
 そして、図11のステップS305において、輝度的重心算出部104は、図14に示す結合後のピクセルにおける輝度から輝度的重心を算出する。輝度的重心とは、以下の式(2)によって算出される、ピクセル結合処理後の画像における輝度の重心である。
(Luminance center of gravity calculation processing)
In step S305 in FIG. 11, the luminance center of gravity calculation unit 104 calculates the luminance center of gravity from the luminance in the combined pixels shown in FIG. The luminance centroid is a centroid of luminance in an image after pixel combination processing, calculated by the following equation (2).
Figure JPOXMLDOC01-appb-M000002
 
 
Figure JPOXMLDOC01-appb-M000002
 
 
 式(2)において、図14の左からi番目の結合後ピクセルにおけるx座標をxとし、そのピクセルにおける輝度をBxとする。同様に、図14において、下からj番目の結合後ピクセルにおけるy座標をyとし、そのピクセルにおける輝度をByとする。ここで、x座標及びy座標は、図14のx軸及びy軸に基づくものである。また、式(2)において、n,mは、結合後ピクセルのx軸方向及びy軸方向の数である。図14の例では、n=13、m=13となる。
 ここで、Bxは、xに属する結合後ピクセルの輝度をy軸方向について累積した値であり、Byは、yに属する結合後ピクセルの輝度をx軸方向について累積した値である。
 つまり、(i,j)の位置における(つまり、図14において、左からi番目、下からj番目に位置する)結合後ピクセルの輝度をBijとすると、式(2)におけるBxi,Byjは、以下の式(3)及び式(4)で定義される。
In Expression (2), the x coordinate of the i-th combined pixel from the left in FIG. 14 is x i, and the luminance at that pixel is Bx i . Similarly, in FIG. 14, the y coordinate at the j-th combined pixel from the bottom is y j and the luminance at that pixel is By j . Here, the x-coordinate and the y-coordinate are based on the x-axis and the y-axis in FIG. In Expression (2), n and m are the numbers of the combined pixels in the x-axis direction and the y-axis direction. In the example of FIG. 14, n = 13 and m = 13.
Here, Bx i is a value obtained by accumulating the luminance of the combined pixel belonging to x i in the y-axis direction, and By j is a value obtained by accumulating the luminance of the combined pixel belonging to y j in the x-axis direction. .
That is, assuming that the luminance of the combined pixel at the position (i, j) (that is, i-th from the left and j-th from the bottom in FIG. 14) is Bij, Bxi and Byj in Equation (2) are It is defined by the following formulas (3) and (4).
Figure JPOXMLDOC01-appb-M000003
 
 
Figure JPOXMLDOC01-appb-M000003
 
 
 算出した(x,y)の位置における(つまり、図14において、左からx番目、下からy番目に位置する)結合後ピクセルの輝度的重心を(C,C)とする。また、時刻tでの輝度的重心を(Cxt,Cyt)とする。 Let (C x , C y ) be the luminance centroid of the combined pixel at the calculated position (x, y) (that is, the xth from the left and the yth from the bottom in FIG. 14). Also, let the luminance center of gravity at time t be (C xt , C yt ).
(走性指数算出処理)
 図11のステップS321において、走性指数算出部105が、以下に示す手法で、輝度的重心を用いた走性指数CIを算出する。走性指数CIの算出方法は、以下の式(5)による方法と、式(6)による方法との2通りがある。なお、(Cx0,Cy0)は、時刻t=0、すなわち、プロット直後における輝度的重心を示す。
(Taxis index calculation process)
In step S321 in FIG. 11, the chemotaxis index calculation unit 105 calculates the chemotaxis index CI using the luminance center of gravity by the following method. There are two methods for calculating the chemotaxis index CI: a method according to the following equation (5) and a method according to the equation (6). Note that (C x0 , C y0 ) indicates the luminance center of gravity immediately after plotting at time t = 0.
CI=Cx0-Cxt ・・・ (5) CI = C x0 -C xt (5)
Figure JPOXMLDOC01-appb-M000004
 
 
Figure JPOXMLDOC01-appb-M000004
 
 
 式(5)は、x軸方向における輝度的重心の時間変化を算出しており、式(6)は、x軸方向及びy軸方向における輝度的重心の時間変化を算出している。なお、tとしては、例えば、15分であるが、これに限らない。 Equation (5) calculates the temporal change of the luminance center of gravity in the x-axis direction, and Equation (6) calculates the temporal change of the luminance center of gravity in the x-axis direction and the y-axis direction. Note that t is, for example, 15 minutes, but is not limited thereto.
 そして、検査判定部106は、算出した走性指数CIを基に、被検者におけるがんの陽性・陰性を判定する。 And the test | inspection determination part 106 determines the positive / negative of the cancer in a subject based on the calculated chemotaxis index CI.
 図15及び図16は、本実施形態に係るバッファ吸取装置でバッファを吸い取ったプレートで線虫を走性させた際における輝度分布の変化を示す図である。
 なお、図15及び図16において、x軸及びy軸は、撮像装置2(図5)から送られた画像を示している。そして、図15及び図16において縦軸は輝度を示している。また、図15及び図16において、プロット直後の輝度的重心を原点としている。これは、バッファ吸取装置5(図1)によって、プレートが傾斜されるため、所定範囲に線虫が広がり、培地上における線虫のプロット点が検査毎に異なってしまうためである。座標変位は、プロット直後の輝度的重心と、所定時間後の輝度的重心とから算出される。すなわち、プロット直後の輝度的重心をスタート点としている。これにより、プレートの傾斜によるプロット点のゆらぎを解消することができる。
FIG. 15 and FIG. 16 are diagrams showing changes in luminance distribution when nematodes are chemotaxised by a plate that has sucked a buffer by the buffer sucking device according to the present embodiment.
15 and 16, the x axis and the y axis indicate images sent from the imaging device 2 (FIG. 5). 15 and 16, the vertical axis indicates the luminance. 15 and 16, the luminance center of gravity immediately after plotting is used as the origin. This is because the plate is inclined by the buffer suction device 5 (FIG. 1), so that the nematode spreads within a predetermined range, and the plot point of the nematode on the culture medium differs for each examination. The coordinate displacement is calculated from the luminance centroid immediately after plotting and the luminance centroid after a predetermined time. That is, the luminance center of gravity immediately after plotting is used as a starting point. Thereby, the fluctuation of the plot point due to the inclination of the plate can be eliminated.
 そして、図15は、尿検体をプロットした直後における輝度分布を示し、図16は、尿検体をプロットした後、15分間、線虫の走性を行った際の輝度分布を示している。なお、図15及び図16では、x軸の紙面左側にがん患者の尿検体がプロットされており、線虫が尿検体に対して誘引行動を示している。
 図15及び図16に示すように、本実施形態に係るバッファ吸取装置5でバッファを吸い取ったプレートにおける線虫の走性行動は概ね問題ないようにみえる。
FIG. 15 shows the luminance distribution immediately after plotting the urine sample, and FIG. 16 shows the luminance distribution when the nematode chemotaxis was performed for 15 minutes after plotting the urine sample. 15 and 16, the urine sample of the cancer patient is plotted on the left side of the paper on the x-axis, and the nematode shows the attracting action with respect to the urine sample.
As shown in FIGS. 15 and 16, the chemotaxis behavior of the nematode on the plate sucked up by the buffer sucking device 5 according to the present embodiment seems to have no problem.
 次に、図17及び図18を参照して、本実施形態に係るバッファ吸取装置5によってバッファを吸い取ったプレートにおける線虫の走性行動と、これまでの手法でバッファを吸い取ったプレートにおける線虫の走性行動とを比較する。
 なお、これまでの手法とは、プレートを水平状態のまま市販の紙製ウェスによってバッファを手作業で吸い取る手法である。
 図17は、本実施形態に係るバッファ吸取装置によってバッファを吸い取ったプレートにおける輝度的重心の時間変換を示す図である。また、図18は、これまでの手法でバッファを吸い取ったプレートにおける輝度的重心の時間変化を示す図(比較例)である。
 なお、図17及び図18において、横軸は時間を示し、縦軸は輝度的重心のx座標値(輝度的重心x座標)を示す。
Next, with reference to FIG.17 and FIG.18, the chemotaxis behavior of the nematode in the plate which sucked up the buffer by the buffer sucking device 5 according to this embodiment, and the nematode in the plate which sucked up the buffer by the conventional method Compared with the chemotaxis behavior.
The conventional method is a method in which the buffer is manually sucked with a commercially available paper waste while the plate is in a horizontal state.
FIG. 17 is a diagram illustrating time conversion of the luminance center of gravity in the plate that has absorbed the buffer by the buffer suction device according to the present embodiment. FIG. 18 is a diagram (comparative example) showing a temporal change in luminance center of gravity in a plate that has absorbed a buffer by the conventional method.
17 and 18, the horizontal axis indicates time, and the vertical axis indicates the x-coordinate value of the luminance centroid (luminance centroid x-coordinate).
 図17における線611~615は、プレート毎における輝度的重心の時間変換を示している。このうち、線615は、健常者の尿検体(忌避物質)をプロットした場合における輝度的重心の時間変化を示している。そして、その他の線611~614は、がん患者の尿検体(誘引物質)をプロットした場合における輝度的重心の時間変化を示している。
 また、図18における線621~623は、いずれもがん患者の尿検体(誘引物質)をプロットした場合における輝度的重心の時間変化を示している。
Lines 611 to 615 in FIG. 17 indicate time conversion of the luminance center of gravity for each plate. Among these, the line 615 shows the time change of the luminance center of gravity when the urine sample (repellent substance) of a healthy person is plotted. The other lines 611 to 614 show the time change of the luminance center of gravity when the urine specimen (attracting substance) of the cancer patient is plotted.
In addition, lines 621 to 623 in FIG. 18 indicate changes over time in the luminance center of gravity when urine specimens (attracting substances) of cancer patients are plotted.
 図17の線614及び図18の線623が明確な誘引行動を示していないが、それ以外の線611~613(図17)と、線621~622(図18)とを比較すると、明らかに線611~613の方が線虫の走性行動が活発であることを示している。また、線615に示されるように、本実施形態に係るバッファ吸取装置5を用いたプレートは、忌避行動も活発であることが示されている。 The line 614 in FIG. 17 and the line 623 in FIG. 18 do not show a clear attracting action, but it is clear when the other lines 611 to 613 (FIG. 17) are compared with the lines 621 to 622 (FIG. 18). Lines 611 to 613 indicate that the chemotactic behavior of the nematode is more active. Further, as indicated by a line 615, the plate using the buffer suction device 5 according to the present embodiment is also active in repelling behavior.
 これは、これまでの手法では、紙製ウェスでバッファを吸い取った際、線虫に触れることで、線虫を傷つけたり、ストレスを与えたりしてしまっているのに対し、本実施形態に係るバッファ吸取装置5では、線虫にふれることなくバッファを吸い取ることができるためである。
 また、バッファ吸取装置5でバッファを吸い取ることにより、線虫を傷つけたり、ストレスを与えたりすることがないので、安定かつ再現性の高いデータを得ることができる。
This is because, in the conventional method, when the buffer is sucked with a paper waste, the nematode is damaged or stressed by touching the nematode, but this embodiment relates to this embodiment. This is because the buffer suction device 5 can suck the buffer without touching the nematode.
Further, by sucking the buffer with the buffer sucking device 5, the nematode is not damaged or stressed, so that stable and highly reproducible data can be obtained.
 また、第2-1実施形態によれば、輝度を基に走性指数を算出することで、個々の線虫をカウントすることなく、簡便なアルゴリズムで走性指数を算出することができる。このため、撮像装置2で撮像された画像の解析を効率的に行うことができる。 Further, according to the 2-1 embodiment, by calculating the chemotaxis index based on the luminance, the chemotaxis index can be calculated by a simple algorithm without counting individual nematodes. For this reason, the analysis of the image imaged with the imaging device 2 can be performed efficiently.
 また、図19に示すように、培養条件を均一にして線虫Eが幼虫の状態(符号E1)から、成虫の線虫E(符号E2)になるまで培養しても、すべての線虫の状態を良好にすることはできない。従って、状態のよい線虫E(符号E3)を選別する必要がある。ここで、状態のよい線虫E3とは、動きが活発な線虫Eである。 Further, as shown in FIG. 19, even when the nematode E is cultured from the larval state (symbol E1) to the adult nematode E (symbol E2) with uniform culture conditions, The state cannot be made good. Therefore, it is necessary to select the nematode E (symbol E3) in good condition. Here, the nematode E3 in good condition is the nematode E that is active.
 しかしながら、個々の線虫Eの動きを計測することは、アルゴリズム的に煩雑になる。第2-1実施形態に係るがん解析システムZであれば、画像において線虫Eが多くいる箇所が明るくなるという性質を利用した輝度的重心を用いることで、計算負荷を軽減することができる。 However, measuring the movements of individual nematodes E is complicated algorithmically. In the case of the cancer analysis system Z according to the 2-1 embodiment, the calculation load can be reduced by using the luminance center of gravity using the property that the portion where the nematode E is large in the image becomes bright. .
 また、前記したようにバッファ吸取装置5においてプレートが傾斜され、バッファが吸い取られる。このため、線虫をプロットした箇所は広がりをもつことになり、プロット点は正確に原点となるとは限らない。本実施形態では、式(5)及び式(6)に示すように、線虫のプロット直後の輝度的重心と、所定時間後の輝度的重心との差を走性指数とする。このようにすることで、プロット点のずれの問題が解消され、2次元的広がりを有することの問題も解消される。
 つまり、線虫のプロット直後における輝度的重心を原点として考えることで、走性指数を正しく評価することができる。
Further, as described above, the plate is inclined in the buffer suction device 5 and the buffer is sucked. For this reason, the portion where the nematode is plotted has a spread, and the plotted point is not always the exact origin. In the present embodiment, as shown in Equation (5) and Equation (6), the difference between the luminance centroid immediately after the nematode plot and the luminance centroid after a predetermined time is defined as the chemotaxis index. By doing in this way, the problem of the shift | offset | difference of a plot point is eliminated, and the problem of having a two-dimensional spread is also eliminated.
That is, the chemotaxis index can be correctly evaluated by considering the luminance center of gravity immediately after the nematode plot as the origin.
 さらに、ピクセル結合処理を行うことで、ピクセル数を減少させることができる。これにより、画像の容量を減少させることができる。従って、大量の画像を保存することが可能となる。例えば、500万画素で15分間撮像を行うと、1GB程度の容量が必要となるが、第2-1実施形態のようにピクセル結合処理を行うことで、画像の容量を大幅に減少させることができる。
 また、ピクセル結合処理を行うことで、ゴミ等のノイズを平均化することができ、その影響を除くことができる。
Furthermore, the number of pixels can be reduced by performing pixel combination processing. Thereby, the capacity of the image can be reduced. Accordingly, a large amount of images can be stored. For example, if an image is captured for 15 minutes with 5 million pixels, a capacity of about 1 GB is required. However, by performing pixel combination processing as in the case of the 2-1 embodiment, the image capacity can be significantly reduced. it can.
Further, by performing pixel combination processing, noise such as dust can be averaged and the influence can be eliminated.
 なお、特許文献1には、線虫に蛍光タンパク質遺伝子を導入し、線虫の傾向強度を測定することが記載されている。特許文献1に記載の技術は、線虫を蛍光させることで、画像のS/N比を向上させているが、個々の線虫をカウントしているため、前記した問題点を解決することはできない。第2-1実施形態に係る技術は、画像における輝度を基に線虫の量を推測している点で、特許文献1に記載の技術とは異なっている。 Note that Patent Document 1 describes that a fluorescent protein gene is introduced into a nematode and the tendency intensity of the nematode is measured. The technique described in Patent Document 1 improves the S / N ratio of an image by making nematodes fluoresce. However, since individual nematodes are counted, it is impossible to solve the above-described problems. Can not. The technique according to the 2-1 embodiment is different from the technique described in Patent Document 1 in that the amount of nematodes is estimated based on the luminance in the image.
 第2-1実施形態では、プロット直後の輝度的重心と、所定時間後の輝度的重心との差から走性指数を算出しているが、所定時間後の輝度的重心と、プレートの中心位置との差から走性指数が算出されてもよい。
 また、第2-1実施形態では、精細な撮像画像のピクセルを結合させているが、これに限らない。例えば、画素数の少ないカメラ206(図7~図9)で撮像することで、ピクセル結合処理が省略されてもよい。このように、画素数の少ないカメラ206を用いることによって、コストの大幅な削減も可能となる。
In the embodiment 2-1, the runnability index is calculated from the difference between the luminance center of gravity immediately after plotting and the luminance center of gravity after a predetermined time, but the luminance center of gravity after the predetermined time and the center position of the plate are calculated. The chemotaxis index may be calculated from the difference between.
In the 2-1 embodiment, pixels of a fine captured image are combined, but the present invention is not limited to this. For example, the pixel combination process may be omitted by taking an image with the camera 206 (FIGS. 7 to 9) having a small number of pixels. Thus, by using the camera 206 with a small number of pixels, the cost can be significantly reduced.
《第2-2実施形態》
[解析装置]
 図20は、第2-2実施形態で用いられる解析装置の構成を示す機能ブロック図である。
 図20に示す解析装置1aにおいて、図6に示す解析装置1と異なる点は、処理部100aが、結合後ピクセルにおける中心付近のピクセルを除外するピクセル除外部107を有している点である。
<< Second to Second Embodiment >>
[Analyzer]
FIG. 20 is a functional block diagram showing the configuration of the analysis apparatus used in the 2-2 embodiment.
The analysis apparatus 1a illustrated in FIG. 20 is different from the analysis apparatus 1 illustrated in FIG. 6 in that the processing unit 100a includes a pixel exclusion unit 107 that excludes pixels near the center of the combined pixels.
[フローチャート]
 図21は、第2-2実施形態で用いられる解析装置が行う処理の手順を示すフローチャートである。適宜、図20を参照する。図21において、図4と同様の処理については、同一のステップ番号を付して説明を省略する。
 図21において、図11に示すフローチャートと異なる点は、ステップS304の後に、ピクセル除外部107が、ピクセル除外処理(S331)を行っている点である。ピクセル除外処理については後記する。
[flowchart]
FIG. 21 is a flowchart showing a processing procedure performed by the analysis apparatus used in the 2-2 embodiment. Reference is made to FIG. 20 as appropriate. In FIG. 21, the same steps as those in FIG. 4 are denoted by the same step numbers and description thereof is omitted.
21 is different from the flowchart shown in FIG. 11 in that the pixel excluding unit 107 performs the pixel excluding process (S331) after step S304. The pixel exclusion process will be described later.
(ピクセル除外処理)
 次に、図22~図23を参照して図21のステップS331におけるピクセル除外処理を説明する。
 図22は、第2-2実施形態で用いられるピクセル除外処理の手法を説明するための図である。
 図22に示すピクセルは結合後ピクセルを示している。
 図22に示すように、ピクセル除外部107は、走性開始から所定時間後における結合後画像の中心(符号301)から所定範囲の結合後ピクセル(斜線領域)を除外する。これは、状態のよくない線虫は、中心領域(すなわち、線虫がプロットされた場所)から動かないことによる。ピクセル除外処理を行うことで、状態のよくない線虫による影響を除外することができ、輝度的重心の精度及び走性指数の精度を向上させることができる。
(Pixel exclusion process)
Next, the pixel exclusion process in step S331 in FIG. 21 will be described with reference to FIGS.
FIG. 22 is a diagram for explaining a pixel exclusion processing method used in the 2-2 embodiment.
The pixels shown in FIG. 22 indicate the combined pixels.
As shown in FIG. 22, the pixel excluding unit 107 excludes a predetermined range of combined pixels (shaded area) from the center (reference numeral 301) of the combined image after a predetermined time from the start of running. This is because nematodes in poor condition do not move from the central area (ie where the nematodes are plotted). By performing the pixel exclusion process, it is possible to exclude the influence of nematodes having a poor state, and it is possible to improve the accuracy of the luminance center of gravity and the accuracy of the chemotaxis index.
 削除領域は、例えば、
 (A1)(線虫プロット後からの経過時間×遅い線虫の速度)を直径とする円(図22における破線円302)にかかる結合後ピクセル
 (A2)作業員が設定する領域の結合後ピクセル
 等がある。
The deletion area is, for example,
(A1) A post-combination pixel for a circle (dashed circle 302 in FIG. 22) whose diameter is (elapsed time since nematode plot × slow nematode speed) (A2) a post-combination pixel of the region set by the operator Etc.
 図23は、ピクセル除外処理が行われる前(未処理)の結合後ピクセルの模式図を示し、図24は、ピクセル除外処理が行われた後の結合後ピクセルの模式図を示す。
 図23及び図24では、図14と同様、結合後ピクセルの輝度を5段階のドットで示す。
 図23は、図14に示すものと同様のものであるため、ここでの説明を省略する。そして、ピクセル除外部107が、ピクセル結合処理後の画像の中心領域において、図23で破線円がかかっている結合後ピクセルを除外することによって、図24に示すような結合後画像が得られる。なお、図23の破線円は図22における破線円302と同様のものである。
FIG. 23 is a schematic diagram of the combined pixel before the pixel exclusion process is performed (unprocessed), and FIG. 24 is a schematic diagram of the combined pixel after the pixel exclusion process is performed.
In FIG. 23 and FIG. 24, the luminance of the combined pixel is indicated by five stages of dots as in FIG.
FIG. 23 is the same as that shown in FIG. 14, and a description thereof is omitted here. Then, the pixel excluding unit 107 excludes the post-combination pixels with broken line circles in FIG. 23 in the central region of the image after the pixel combination processing, thereby obtaining a post-combination image as shown in FIG. Note that the dashed circle in FIG. 23 is the same as the dashed circle 302 in FIG.
 状態のよい線虫、すなわち、動きが活発な線虫は動く速度が速いため、個々の線虫の動きを計測することで、状態のよい線虫を選別することは可能である。
 第2-2実施形態によれば、中心から所定範囲を除外することにより、状態の悪い(動きの悪い)線虫の影響を除外することができる。これにより、走性指数の精度を向上させることができる。このような中心領域のピクセル除外は、所定範囲の結合後ピクセルの輝度を0にするだけでよいので、非常に簡便な処理で行うことができる。
Since nematodes in good condition, that is, nematodes with active movement, move at a high speed, it is possible to select nematodes in good condition by measuring the movement of individual nematodes.
According to the 2-2 embodiment, by removing a predetermined range from the center, it is possible to exclude the influence of a nematode having a bad state (poor movement). Thereby, the accuracy of the chemotaxis index can be improved. Such pixel exclusion in the central region can be performed by a very simple process because it is only necessary to set the luminance of the combined pixels within a predetermined range to 0.
《第2-3実施形態>
[解析装置]
 図25は、第2-3実施形態で用いられる解析装置の構成を示す機能ブロック図である。
 図25に示す解析装置1bにおいて、図20に示す解析装置1aと異なる点は、処理部100bが、輝度的重心の時間変化が所定の条件を満たす時、輝度的重心の算出を停止する撮像停止判定処理部108を有している点である。
<< 2-3 embodiment >>
[Analyzer]
FIG. 25 is a functional block diagram showing a configuration of an analysis apparatus used in the second to third embodiments.
The analysis apparatus 1b shown in FIG. 25 is different from the analysis apparatus 1a shown in FIG. 20 in that the processing unit 100b stops the calculation of the luminance centroid when the time change of the luminance centroid satisfies a predetermined condition. The determination processing unit 108 is included.
[フローチャート]
 図26は、第2-3実施形態で用いられる解析装置が行う処理の手順を示すフローチャートである。適宜、図7及び図25を参照する。図26において、図21と同様の処理については、同一のステップ番号を付して説明を省略する。
 図26において、図21の処理と異なる点は、以下の点である。
 ステップS305において、輝度的重心算出部104が輝度的重心を算出した後、撮像停止判定処理部108は、輝度的重心の時間変位Dtを算出する時間変位算出処理を行う(S341)。輝度的重心の時間変位Dtは、現在の輝度的重心と、1つ前の輝度的重心との差分値である。なお、プレートPの中心に対して、尿検体がプロットされている方向をx軸方向とした場合、輝度的重心の時間変位Dtはx軸方向のみを考えればよいが、x軸方向に加えて、y軸方向を考慮してもよい。
[flowchart]
FIG. 26 is a flowchart illustrating a processing procedure performed by the analysis apparatus used in the second to third embodiments. 7 and 25 will be referred to as appropriate. In FIG. 26, the same processes as those in FIG. 21 are denoted by the same step numbers and description thereof is omitted.
26 differs from the processing in FIG. 21 in the following points.
In step S305, after the luminance center of gravity calculation unit 104 calculates the luminance center of gravity, the imaging stop determination processing unit 108 performs time displacement calculation processing for calculating the time displacement Dt of the luminance center of gravity (S341). The time displacement Dt of the luminance center of gravity is a difference value between the current luminance center of gravity and the previous luminance center of gravity. If the direction in which the urine sample is plotted with respect to the center of the plate P is the x-axis direction, the temporal displacement Dt of the luminance center of gravity only needs to be considered in the x-axis direction, but in addition to the x-axis direction, , The y-axis direction may be taken into account.
 そして、撮像停止判定処理部108は、ステップS341で算出した輝度的重心の時間変位と、1つ前の輝度的重心の時間変位の符号との符号が逆転しているか、又は、ステップS341で算出した(現在の)輝度的重心の時間変位Dtと、1つ前の輝度的重心の時間変位Dtpとの差の絶対値(|Dt-Dtp|)が所定の値(e)未満であるか否かを判定する(S342)。なお、ステップS342において、ステップS341で算出した輝度的重心の時間変位Dtと、1つ前の輝度的重心の時間変位Dtpとの差の絶対値(|Dt-Dtp|)が所定の値(e)未満であるか否かの条件は省略されてもよい。 Then, the imaging stop determination processing unit 108 reverses the sign of the time displacement of the luminance center of gravity calculated in step S341 and the sign of the time displacement of the previous luminance center of gravity, or calculates in step S341. Whether or not the absolute value (| Dt−Dtp |) of the difference between the time displacement Dt of the (current) luminance center of gravity and the time displacement Dtp of the previous luminance center of gravity is less than a predetermined value (e) Is determined (S342). In step S342, the absolute value (| Dt−Dtp |) of the difference between the temporal displacement Dt of the luminance center of gravity calculated in step S341 and the temporal displacement Dtp of the previous luminance center of gravity is a predetermined value (e The condition of whether or not it is less than may be omitted.
 ここで、輝度的重心の時間変位と、1つ前での輝度的重心の時間変位の符号との符号が逆転しているかは、線虫がこれまでと逆方向に進みはじめているか否かを判定している。そして、輝度的重心の時間変位Dtと、1つ前の輝度的重心の時間変位Dtpとの差の絶対値(|Dt-Dtp|)が所定の値(e)未満であるか否かは、線虫の動きが鈍くなってきているか否かを判定している。 Here, whether the sign of the time displacement of the luminance center of gravity and the sign of the time displacement of the previous luminance center of gravity is reversed is determined whether or not the nematode has started moving in the opposite direction. is doing. Whether or not the absolute value (| Dt−Dtp |) of the difference between the time displacement Dt of the luminance center of gravity and the time displacement Dtp of the previous luminance center of gravity is less than a predetermined value (e) is: It is determined whether or not the movement of the nematode is slowing down.
 ステップS342の結果、ステップS341で算出した輝度的重心の時間変位と、1つ前の輝度的重心の時間変位の符号との符号が逆転しているか、又は、ステップS341で算出した輝度的重心の時間変位Dtと、1つ前の輝度的重心の時間変位Dtpと差の絶対値(|Dt-Dtp|)が所定の値(e)未満である場合(S342→Yes)、処理部100bはステップS345へ処理を進める。 As a result of step S342, the sign of the temporal displacement of the luminance center of gravity calculated in step S341 and the sign of the temporal displacement of the previous luminance center of gravity is reversed, or the luminance center of gravity calculated in step S341 If the absolute value (| Dt−Dtp |) of the time displacement Dt and the time displacement Dtp of the previous luminance center of gravity is less than the predetermined value (e) (S342 → Yes), the processing unit 100b performs the step The process proceeds to S345.
 ステップS342の結果、ステップS341で算出した輝度的重心の時間変位と、1つ前の輝度的重心の時間変位の符号との符号が逆転しておらず、かつ、ステップS341で算出した輝度的重心の時間変位Dtと、1つ前の輝度的重心の時間変位Dtpとの差の絶対値(|Dt-Dtp|)が所定の値(e)以上である場合(S342→No)、処理部100bは、走性開始から所定時間(例えば、15分)経過したか否かを判定する(S343)。 As a result of step S342, the sign of the temporal displacement of the luminance center of gravity calculated in step S341 and the sign of the temporal displacement of the previous luminance center of gravity are not reversed, and the luminance center of gravity calculated in step S341 When the absolute value (| Dt−Dtp |) of the difference between the time displacement Dt of the previous time and the time displacement Dtp of the previous luminance center of gravity is equal to or greater than the predetermined value (e) (S342 → No), the processing unit 100b Determines whether or not a predetermined time (for example, 15 minutes) has elapsed since the start of chemotaxis (S343).
 ステップS343の結果、走性開始から所定時間経過していない場合(S343→No)、撮像停止判定処理部108は、前回の撮像から撮像間隔時間(例えば、1分)経過したか否かを判定する(S344)。
 ステップS344の結果、撮像間隔時間経過していない場合(S344→No)、撮像停止判定処理部108はステップS344へ処理を戻す。
 ステップS344の結果、撮像間隔時間経過している場合(S344→Yes)、処理部100bはステップS301へ処理を戻し、撮像装置2にプレートPの撮像を指示する。
As a result of step S343, when the predetermined time has not elapsed since the start of running (S343 → No), the imaging stop determination processing unit 108 determines whether the imaging interval time (for example, 1 minute) has elapsed since the previous imaging. (S344).
As a result of step S344, when the imaging interval time has not elapsed (S344 → No), the imaging stop determination processing unit 108 returns the process to step S344.
As a result of step S344, when the imaging interval time has elapsed (S344 → Yes), the processing unit 100b returns the process to step S301 and instructs the imaging device 2 to image the plate P.
 一方、ステップS343の結果、走性開始から所定時間経過している場合(S343→Yes)、撮像停止判定処理部108は撮像装置2に撮像停止を指示する(S345)。撮像停止を指示された撮像装置2は撮像を停止する。
 そして、走性指数算出部105は、直近で算出された輝度的重心を基に、走性指数を算出する走性指数算出処理を行う(S321a)。
On the other hand, as a result of step S343, when a predetermined time has elapsed from the start of running (S343 → Yes), the imaging stop determination processing unit 108 instructs the imaging device 2 to stop imaging (S345). The imaging device 2 instructed to stop imaging stops imaging.
Then, the chemotaxis index calculation unit 105 performs a chemotaxis index calculation process for calculating the chemotaxis index based on the luminance center of gravity calculated most recently (S321a).
 線虫の動きが鈍ってきたり、線虫が、これまでと判定方向に進みはじめたりすると、これ以上、線虫を走性させても、あまり意味がないといえる。
 そこで、撮像停止判定処理部108は、所定時間毎における輝度的重心を監視し、線虫の動きが鈍くなるか、輝度的重心が原点側(線虫のプロット点)に戻ると、そこで撮像を打ち切る。
If the movement of the nematode slows down or if the nematode begins to advance in the direction of determination, it can be said that it is not meaningful to make the nematode run more.
Therefore, the imaging stop determination processing unit 108 monitors the luminance center of gravity at a predetermined time, and when the movement of the nematode becomes slow or the luminance center of gravity returns to the origin side (the nematode plot point), the imaging is stopped there. abort.
 そして、走性指数算出部105は、撮像を打ち切った時点より1つ前の輝度的重心を用いて、走性指数を算出する。 Then, the chemotaxis index calculation unit 105 calculates the chemotaxis index using the luminance center of gravity immediately before the time when the imaging is stopped.
 第2-3実施形態によれば、これ以上、線虫を走性させても、あまり意味がないといえる時点で撮像を打ち切るので、検査時間を短くすることができる。
 また、第2-3実施形態によれば、最も+側もしくは-側に線虫が走性した時点の輝度的重心を基に、走性指数を算出するため、走性指数の精度を向上させることができる。
According to the second to third embodiments, since the imaging is discontinued when it can be said that there is not much meaning even if the nematode is chemotaxis, the inspection time can be shortened.
In addition, according to the second to third embodiments, since the chemotaxis index is calculated based on the luminance center of gravity when the nematode is chemotaxis to the most + side or − side, the accuracy of the chemotaxis index is improved. be able to.
 なお、第2-3実施形態において、図26のステップS331のピクセル除外処理が省略されてもよい。
 第2-3実施形態では、検査毎に輝度的重心の時間変化を監視し、輝度的重心が原点側に戻ったときの輝度的重心で走性指数を算出しているが、これに限らない。例えば、予め、実験によって輝度的変化が原点側に戻る時間の平均値等を算出しておき、この時間だけ線虫の走性を行わせてもよい。すなわち、第2-1実施形態や、第2-2実施形態における所定時間を、実験によって算出された輝度的変化が原点側に戻る時間の平均値としてもよい。このようにすることで、検査時間の短縮を図ることができる。
In the second to third embodiments, the pixel exclusion process in step S331 in FIG. 26 may be omitted.
In the second to third embodiments, the temporal change of the luminance center of gravity is monitored for each inspection, and the runnability index is calculated by the luminance center of gravity when the luminance center of gravity returns to the origin side. However, the present invention is not limited to this. . For example, an average value or the like of the time for the luminance change to return to the origin side may be calculated in advance by experiment, and the nematode chemotaxis may be performed for this time. That is, the predetermined time in the 2-1 embodiment and the 2-2 embodiment may be an average value of the time for which the luminance change calculated by the experiment returns to the origin side. By doing so, the inspection time can be shortened.
 そして、尿検体のにおい物質が蒸発することで、線虫が原点側に戻ってしまうという事態が発生しても、第2-3実施形態によれば、尿検体のにおい物質の蒸発前における輝度的重心を基に走性指数を算出することができる。これにより、走性指数の精度を向上させることができる。 Even if the odor substance of the urine sample evaporates and the nematode returns to the origin side, according to the second to third embodiments, the luminance before the odor substance of the urine sample evaporates. The chemotaxis index can be calculated based on the target center of gravity. Thereby, the accuracy of the chemotaxis index can be improved.
<第2-4実施形態>
[解析装置]
 図27は、第2-4実施形態で用いられる解析装置の構成を示す機能ブロック図である。
 図27に示す解析装置1cにおいて、図25に示す解析装置1bと異なる点は、処理部100cが、輝度的重心の時間変化がみられないプレートP(図7)を除外プレートとして選択するプレート除外処理部109を有している点である。
<Second to Fourth Embodiment>
[Analyzer]
FIG. 27 is a functional block diagram showing the configuration of the analysis apparatus used in the second to fourth embodiments.
The analysis apparatus 1c shown in FIG. 27 is different from the analysis apparatus 1b shown in FIG. 25 in that the processing unit 100c selects a plate P (FIG. 7) in which the temporal change in luminance center of gravity is not seen as an exclusion plate. The processing unit 109 is included.
[フローチャート]
 図28及び図29は、第2-4実施形態に係る解析装置が行う処理の手順を示すフローチャートである。適宜、図7及び図27を参照する。また、図28及び図29において、図26と同様の処理については同一のステップ番号を付して説明を省略する。
 図28及び図29において、図26に示す処理と異なる点は、以下の点である。
 すなわち、ステップS305において、輝度的重心算出部104が輝度的重心を算出した後、プレート除外処理部109は、走性開始から第1時間(例えば、2分)経過したか否かを判定する(図28のS351)。
 ステップS351の結果、走性開始から第1時間経過していない場合(S351→No)、処理部100cは、前回の撮像から撮像間隔時間(例えば、1分)経過したか否かを判定する(S352)。
 ステップS352の結果、撮像間隔時間経過していない場合(S352→No)、処理部100cはステップS352へ処理を戻す。
 ステップS352の結果、撮像間隔時間経過している場合(S352→Yes)、処理部100cはステップS301へ処理を戻し、撮像装置2にプレートPの撮像を指示する。
[flowchart]
FIG. 28 and FIG. 29 are flowcharts showing a procedure of processing performed by the analysis apparatus according to the second to fourth embodiments. 7 and 27 will be referred to as appropriate. 28 and 29, processes similar to those in FIG. 26 are denoted by the same step numbers and description thereof is omitted.
28 and 29 are different from the processing shown in FIG. 26 in the following points.
That is, in step S305, after the luminance center of gravity calculation unit 104 calculates the luminance center of gravity, the plate exclusion processing unit 109 determines whether or not a first time (for example, 2 minutes) has elapsed from the start of running ( S351 in FIG. 28).
As a result of step S351, when the first time has not elapsed since the start of running (S351 → No), the processing unit 100c determines whether or not an imaging interval time (for example, 1 minute) has elapsed since the previous imaging ( S352).
As a result of step S352, when the imaging interval time has not elapsed (S352 → No), the processing unit 100c returns the process to step S352.
As a result of step S352, when the imaging interval time has elapsed (S352 → Yes), the processing unit 100c returns the process to step S301 and instructs the imaging device 2 to image the plate P.
 ステップS351の結果、走性開始から第1時間経過している場合(S351→Yes)、プレート除外処理部109がプレート除外処理を行った(S353)後、処理部100cがステップS361へ処理を進める。
 ステップS353において、プレート除外処理部109は、第1時間経過しても、線虫のプロット直後の輝度的重心との変位が所定値以下であるプレートPを検査対象から除外するよう指示する。プレートPの除外指示は、解析装置1cの出力装置15において出力されてもよいし、撮像装置2の近傍等に表示装置(不図示)を設置し、その表示装置に表示させてもよい。あるいは、除外指示に基づいて搬送装置4(図5)が除外してもよい。
As a result of step S351, when the first time has elapsed since the start of chemotaxis (S351 → Yes), after the plate exclusion processing unit 109 performs the plate exclusion processing (S353), the processing unit 100c advances the process to step S361. .
In step S353, the plate exclusion processing unit 109 instructs to exclude the plate P whose displacement from the luminance center of gravity immediately after the nematode plot is equal to or less than a predetermined value from the inspection target even after the first time has elapsed. The instruction to exclude the plate P may be output from the output device 15 of the analysis device 1c, or a display device (not shown) may be installed in the vicinity of the imaging device 2 and displayed on the display device. Alternatively, the transport device 4 (FIG. 5) may exclude based on the exclusion instruction.
 ステップS361~S366は、ステップS301~ステップS305と同様の処理であるので、ここでの説明を省略する。ステップS366の後、処理部100cは図29のステップS341へ処理を進める。ステップS341,S342の処理は、図26に示すステップS341,S342の処理と同様の処理であるため、ここでの説明を省略する。
 そして、ステップS342の処理において、「No」が判定されると、撮像停止判定処理部108は、第1時間が経過後、第2時間(例えば、13分)経過したか否かを判定する(図29のS371)。
 ステップS371の結果、第2時間経過している場合(S371→Yes)、撮像停止判定処理部108は、ステップS345へ処理を進める。
Steps S361 to S366 are the same processing as steps S301 to S305, and thus description thereof is omitted here. After step S366, the processing unit 100c advances the process to step S341 in FIG. The processes in steps S341 and S342 are the same as the processes in steps S341 and S342 shown in FIG. 26, and thus the description thereof is omitted here.
If “No” is determined in the process of step S342, the imaging stop determination processing unit 108 determines whether or not a second time (for example, 13 minutes) has elapsed after the first time has elapsed (for example, 13 minutes). S371 in FIG. 29).
If the second time has elapsed as a result of step S371 (S371 → Yes), the imaging stop determination processing unit 108 advances the process to step S345.
 ステップS371の結果、走性開始から第2時間経過していない場合(S371→No)、処理部100cは、前の撮像から撮像間隔時間(例えば、1分)経過したか否かを判定する(S372)。
 ステップS372の結果、撮像間隔時間経過していない場合(S372→No)、処理部100cはステップS372へ処理を戻す。
 ステップS372の結果、撮像間隔時間経過している場合(S372→Yes)、処理部100cは図28のステップS361へ処理を戻し、撮像装置2にプレートPの撮像を指示する。
As a result of step S371, when the second time has not elapsed since the start of chemotaxis (S371 → No), the processing unit 100c determines whether an imaging interval time (for example, 1 minute) has elapsed since the previous imaging ( S372).
As a result of step S372, when the imaging interval time has not elapsed (S372 → No), the processing unit 100c returns the process to step S372.
As a result of step S372, when the imaging interval time has elapsed (S372 → Yes), the processing unit 100c returns the process to step S361 in FIG. 28 and instructs the imaging device 2 to image the plate P.
 図30は、第2-4実施形態で用いられるプレート除外処理の模式的な説明図である。
 図30では、1つの培養プレートPzから4つの解析用のプレートPa~Pdが生成される例を示している。ここで、培養プレートPzとは、線虫が培養されているプレートP(図7)である。また、解析用のプレートPa~Pdとは尿検体と線虫が載置され、撮像装置2(図5)にセットされるプレートPである。
 図30に示すように、同じ培養プレートPzで培養されていた線虫が、4つの解析用のプレートPa~Pdに分注される。
FIG. 30 is a schematic explanatory diagram of the plate exclusion process used in the second to fourth embodiments.
FIG. 30 shows an example in which four analysis plates Pa to Pd are generated from one culture plate Pz. Here, the culture plate Pz is a plate P (FIG. 7) on which nematodes are cultured. The analysis plates Pa to Pd are plates P on which urine specimens and nematodes are placed and set in the imaging device 2 (FIG. 5).
As shown in FIG. 30, nematodes cultured in the same culture plate Pz are dispensed into four analysis plates Pa to Pd.
 4つの解析用のプレートPa~Pdは、撮像装置2にセット、撮像、解析され、廃棄される。ここで、解析とは、輝度的重心の算出及び走性指数の算出である。
 このうち、線虫のプロット直後における輝度的重心と、所定時間後の輝度的重心の位置との距離が、所定値以下の解析用のプレートPcは、線虫が弱っている可能性があり、検査対象としてふさわしくないので除外される。
The four plates for analysis Pa to Pd are set in the imaging device 2, imaged, analyzed, and discarded. Here, the analysis is the calculation of the luminance center of gravity and the calculation of the chemotaxis index.
Among these, the analysis plate Pc in which the distance between the luminance centroid immediately after the nematode plot and the position of the luminance centroid after a predetermined time is a predetermined value or less may cause the nematode to be weak, It is excluded because it is not suitable for inspection.
 第2-4実施形態によれば、所定時間過ぎても輝度的重心の変化が少ないプレートを除外することで、検査判定の精度を向上させることができる。 According to the second to fourth embodiments, it is possible to improve the accuracy of inspection determination by excluding a plate with a small change in luminance center of gravity even after a predetermined time.
 なお、第2-4実施形態は、第2-3実施形態にプレート除外処理を加えた形式となっている。すなわち、第2-4実施形態は、所定間隔(例えば、1分)毎に輝度的重心を求めている形式となっているが、これに限らない。例えば、第2-1実施形態や、第2-2実施形態のように、線虫のプロット直後と、所定時間後(例えば、15分後)とで撮像を行い、プロット直後と、所定時間後とにおける輝度的重心の差が所定値以下のプレートを除外するようにしてもよい。 In the second to fourth embodiments, a plate exclusion process is added to the second to third embodiments. That is, in the second to fourth embodiments, the luminance center of gravity is obtained every predetermined interval (for example, 1 minute), but is not limited thereto. For example, as in the 2-1 embodiment and the 2-2 embodiment, imaging is performed immediately after the nematode plotting and after a predetermined time (for example, 15 minutes), and immediately after the plotting and after the predetermined time. Plates having a difference in luminance center of gravity at a predetermined value or less may be excluded.
 なお、第1~4実施形態では、輝度的重心に基づいて、走性指数を求めているが、カメラ206によって撮像された画像における輝度に関する情報であれば、輝度的重心に限らない。例えば、結合後ピクセルにおいて、線虫のプロット直後において最も輝度の高い結合後ピクセルと、走性開始後、所定時間後において最も輝度の高い結合後ピクセルとの距離を基に、走性指数が算出されてもよい。 In the first to fourth embodiments, the runnability index is obtained based on the luminance center of gravity. However, the information is not limited to the luminance center of gravity as long as the information is related to the luminance in the image captured by the camera 206. For example, in the post-combination pixel, the chemotaxis index is calculated based on the distance between the post-combination pixel with the highest luminance immediately after the nematode plot and the post-combination pixel with the highest luminance after a predetermined time after the start of chemotaxis May be.
 また、図15~図17に示すようなグラフや、表や、輝度的重心の時間遷移を示すものが、出力装置15に出力(表示)されてもよい。 Also, graphs, tables, and graphs showing the time transition of the luminance center of gravity as shown in FIGS. 15 to 17 may be output (displayed) to the output device 15.
<第3実施形態>
 次に、図31~図34を参照して、DR(Density Ratio)値による走性解析について説明する。
 DR法は、輝度的重心に代わって用いられる走性解析手法である。
[解析装置]
 図31は、第3実施形態で用いられる解析装置の構成を示す機能ブロック図である。図31において、図6と同様の構成には同一の符号を付して説明を省略する。
 図31に示す解析装置1dにおいて、図6に示す解析装置1と異なる点は、図6の処理部100における輝度的重心算出部104及び走性指数算出部105が、処理部100dではDR値算出部110となっている点である。
<Third Embodiment>
Next, with reference to FIG. 31 to FIG. 34, a description will be given of the chemotaxis analysis based on the DR (Density Ratio) value.
The DR method is a running analysis method used instead of the luminance center of gravity.
[Analyzer]
FIG. 31 is a functional block diagram showing the configuration of the analysis device used in the third embodiment. In FIG. 31, the same components as those in FIG.
The analysis device 1d shown in FIG. 31 is different from the analysis device 1 shown in FIG. 6 in that the luminance center-of-gravity calculation unit 104 and the runnability index calculation unit 105 in the processing unit 100 in FIG. This is a point that is part 110.
[DR値]
 図32は、第3実施形態で用いられるDR値の説明をするための図である。
 図32は、撮像装置によって撮像された画像を示す。符号631に示すようにプレートPの中央に線虫がプロットされ、符号632に示す点に尿検体がプロットされている。
 そして、画像が図32に示すように、画像を所定の大きさをもった区画に分割する。図32の例では、12×12に分割されている。これらの区画は、ピクセルが結合された結合後ピクセルである。
 この区画のうち、尿検体のプロット点632周囲の所定の範囲を選択する。図32の例では、尿検体の周囲3×4の範囲641が選択されている。
[DR value]
FIG. 32 is a diagram for explaining DR values used in the third embodiment.
FIG. 32 shows an image captured by the imaging device. As indicated by reference numeral 631, a nematode is plotted at the center of the plate P, and a urine sample is plotted at a point indicated by reference numeral 632.
Then, as shown in FIG. 32, the image is divided into sections having a predetermined size. In the example of FIG. 32, it is divided into 12 × 12. These partitions are post-combined pixels that have been combined.
Among these sections, a predetermined range around the plot point 632 of the urine sample is selected. In the example of FIG. 32, a 3 × 4 range 641 around the urine sample is selected.
 そして、走性指数算出部105は、範囲641中の各区画の輝度の合算値を基に、DR値を算出する。
 範囲641中の各区画の輝度の合算値をS1、範囲641以外の各区画の輝度の合算値をS2とすると、DR値の算出は、以下の式(11)で表わされる方法と、式(12)で表わされる方法との2通りがある。
Then, the chemotaxis index calculation unit 105 calculates the DR value based on the sum of the luminance values of the sections in the range 641.
Assuming that the sum of the luminance values of the sections in the range 641 is S1, and the sum of the brightness values of the sections other than the range 641 is S2, the DR value is calculated by a method represented by the following formula (11): There are two ways with the method represented by 12).
DR=S1 ・・・ (11)
DR=S1/S2 ・・・ (12)
DR = S1 (11)
DR = S1 / S2 (12)
[フローチャート]
 図33は、第3実施形態で用いられる解析装置が行う処理の手順を示すフローチャートである。適宜、図31を参照する。また、図33では、図11と異なる処理を中心に説明を行う。なお、図33において、図11と同様の処理については同一のステップ番号を付して説明を省略する。
 まず、処理部100dが線虫の走性開始から所定時間経過したか否かを判定する(S381)。
 ステップS381の結果、所定時間経過していない場合(S381→No)、処理部100dは、ステップS381へ処理を戻す。
 ステップS381の結果、所定時間経過している場合(S381→Yes)、カメラ206(図7)、画像取得部101、ピクセル結合部102がステップS301~S303のそれぞれの処理を行う。
[flowchart]
FIG. 33 is a flowchart illustrating a processing procedure performed by the analysis apparatus used in the third embodiment. Reference is made to FIG. 31 as appropriate. Also, FIG. 33 will be described with a focus on processing different from FIG. In FIG. 33, processes similar to those in FIG. 11 are denoted by the same step numbers and description thereof is omitted.
First, the processing unit 100d determines whether or not a predetermined time has elapsed from the start of the nematode chemotaxis (S381).
As a result of step S381, when the predetermined time has not elapsed (S381 → No), the processing unit 100d returns the process to step S381.
As a result of step S381, when the predetermined time has passed (S381 → Yes), the camera 206 (FIG. 7), the image acquisition unit 101, and the pixel combination unit 102 perform the processes of steps S301 to S303.
 その後、輝度情報取得部103が、ステップS303で結合されたピクセル(結合後ピクセル)から輝度情報を取得する輝度情報取得処理を行う(S304a)。
 このとき、DR値を式(11)で算出する場合、輝度情報取得部103は図32の範囲641中の結合後ピクセル(区画)それぞれの輝度情報を取得する。
 また、DR値を式(12)で算出する場合、輝度情報取得部103は、図32の範囲641中の結合後ピクセルそれぞれの輝度情報と、範囲641以外の結合後ピクセルそれぞれの輝度情報とを取得する。
Thereafter, the luminance information acquisition unit 103 performs luminance information acquisition processing for acquiring luminance information from the pixels (post-combination pixels) combined in step S303 (S304a).
At this time, when the DR value is calculated by Expression (11), the luminance information acquisition unit 103 acquires luminance information of each combined pixel (section) in the range 641 in FIG.
Further, when calculating the DR value by Expression (12), the luminance information acquisition unit 103 obtains the luminance information of each combined pixel in the range 641 in FIG. 32 and the luminance information of each combined pixel other than the range 641 in FIG. get.
 そして、DR値算出部110が式(11)又は式(12)に従ってDR値を算出する(S382)。
 続いて、検査判定部106が、ステップS382で算出されたDR値を基に、がんの陽性、陰性を判定する検査判定処理を行う(S322a)。
 このとき、検査判定部106は、算出されたDR値が、予め設定されている閾値以上であれば陽性と判定し、閾値未満であれば陰性と判定する。
Then, the DR value calculation unit 110 calculates the DR value according to the equation (11) or the equation (12) (S382).
Subsequently, the test determination unit 106 performs test determination processing for determining whether the cancer is positive or negative based on the DR value calculated in step S382 (S322a).
At this time, the test determination unit 106 determines positive if the calculated DR value is equal to or greater than a preset threshold value, and determines negative if the calculated DR value is less than the threshold value.
 ちなみに、図33のステップS301が図10のステップS212に相当する。また、図33のステップS302~S382が図10のステップS213に相当する。そして、図33のステップS322aが図10のステップS214に相当する。 Incidentally, step S301 in FIG. 33 corresponds to step S212 in FIG. Also, steps S302 to S382 in FIG. 33 correspond to step S213 in FIG. Step S322a in FIG. 33 corresponds to step S214 in FIG.
 図34及び図35は、DR値の時間変化を示す図である。図34は健常者の尿検体(忌避物質)をプロットした場合を示し、図35はがん患者の尿検体(誘引物質)をプロットした場合を示す。なお、使用したDR値は式(12)によるものである。
 なお、図34及び図35では、横軸が時間を示し、縦軸はDR値を示している。
 図34では、忌避物質がプロットされているため、図32の範囲641に線虫が存在しない。そのため、図34の線651に示すように、DR値は、ほぼ0となっている。
34 and 35 are diagrams showing temporal changes in the DR value. FIG. 34 shows a case where a urine sample (repellent substance) of a healthy person is plotted, and FIG. 35 shows a case where a urine sample (attractant) of a cancer patient is plotted. The DR value used is according to the equation (12).
34 and 35, the horizontal axis indicates time, and the vertical axis indicates DR value.
In FIG. 34, since repellent substances are plotted, there is no nematode in the range 641 of FIG. Therefore, as indicated by a line 651 in FIG. 34, the DR value is almost zero.
 これに対し、図35では、誘引物質がプロットされているため、図32の範囲641に線虫が多く存在する。そのため、図35の線652に示すように、DR値が大きな値となっている。
 このように、忌避物質(健常者の尿検体)がプロットされている場合、DR値は、ほぼ0となる。実際の検査では線虫が尿検体に誘引されているか否かがわかればよいため、忌避物質(健常者の尿検体)がプロットされている場合、DR値は0となっても問題はない。
 このようなDR値を用いた解析では、所定の閾値を設け、DR値がこの閾値を超えたら陽性と判定する。
 なお、DR値による解析は、バッファ吸取装置5を備えたがん解析システム以外にも適用可能である。
On the other hand, in FIG. 35, since attracting substances are plotted, there are many nematodes in the range 641 in FIG. Therefore, as indicated by a line 652 in FIG. 35, the DR value is a large value.
Thus, when the repellent substance (a healthy subject's urine sample) is plotted, the DR value is almost zero. Since it is only necessary to know whether nematodes are attracted to the urine sample in the actual examination, there is no problem even if the DR value becomes 0 when the repellent substance (a urine sample of a healthy person) is plotted.
In the analysis using such a DR value, a predetermined threshold is provided, and if the DR value exceeds this threshold, it is determined as positive.
The analysis using the DR value can be applied to other than the cancer analysis system including the buffer suction device 5.
 このように、DR値を用いた手法は、輝度的重心よりシンプルに算出できるため、処理負荷を軽減することが可能となる。このため、効率的な解析が可能となる。特に、式(11)による算出手法では、尿検体の周辺のみを撮像すればよいので、カメラ206の設定が容易となる。
 なお、このようなDR値は、図7~図9に示す撮像装置2でプレートPが撮像されることによって算出可能である。
As described above, since the technique using the DR value can be calculated simply from the luminance center of gravity, the processing load can be reduced. For this reason, efficient analysis becomes possible. In particular, with the calculation method according to Equation (11), it is only necessary to image only the periphery of the urine sample, so that the camera 206 can be easily set.
Such a DR value can be calculated by imaging the plate P with the imaging device 2 shown in FIGS.
 なお、本発明は前記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、前記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明したすべての構成を有するものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, this invention is not limited to above-described embodiment, Various modifications are included. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to having all the configurations described. In addition, a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment. In addition, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 また、前記した各構成、機能、各部100~110、記憶装置部13等は、それらの一部又はすべてを、例えば集積回路で設計すること等によりハードウェアで実現してもよい。また、図6、図20、図25、図27、図31で示すように、前記した各構成、機能等は、CPU12等のプロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、図6、図20、図25、図27、図31に示すようにHDに格納すること以外に、メモリ11や、SSD(Solid State Drive)等の記録装置、又は、IC(Integrated Circuit)カードや、SD(Secure Digital)カード、DVD(Digital Versatile Disc)等の記録媒体に格納することができる。
 また、各実施形態において、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしもすべての制御線や情報線を示しているとは限らない。実際には、ほとんどすべての構成が相互に接続されていると考えてよい。
Each of the above-described configurations, functions, units 100 to 110, storage device unit 13 and the like may be realized by hardware by designing a part or all of them, for example, with an integrated circuit. Further, as shown in FIGS. 6, 20, 25, 27, and 31, the above-described configurations, functions, and the like are obtained by interpreting and executing a program that realizes each function by a processor such as the CPU 12. It may be realized by software. Information such as programs, tables, and files for realizing each function is stored in the HD as shown in FIG. 6, FIG. 20, FIG. 25, FIG. 27, and FIG. ) Or a recording medium such as an IC (Integrated Circuit) card, an SD (Secure Digital) card, or a DVD (Digital Versatile Disc).
In each embodiment, control lines and information lines are those that are considered necessary for explanation, and not all control lines and information lines are necessarily shown on the product. In practice, it can be considered that almost all configurations are connected to each other.
 1,1a~1d 解析装置(解析部)
 2   撮像装置(撮像部)
 3   分注装置
 4   搬送装置
 5   バッファ吸取装置
 100,100a~100d 処理部
 101 画像取得部
 102 ピクセル結合部
 103 輝度情報取得部
 104 輝度的重心算出部
 105 走性指数算出部
 106 検査判定部
 107 ピクセル除外部
 108 撮像停止判定処理部
 109 プレート除外処理部
 110 DR値算出部
 201 基部
 202 光源部
 203 台座
 204 第1支持部
 205 第2支持部
 206 カメラ(撮像部)
 221 拡散板付きリングLED光源
 222 遮蔽板
 231 撮像レンズ
 232 撮像素子
 233 前側焦点
 241 拡散板
 301 結合後画像の中心
 302 破線円
 401,411 原点(プロット直後の輝度的重心)
 402,412 線虫の動きが鈍る点
 501 プレート載置部(載置部)
 502 傾斜部
 503 駆動部
 504 台座部
 505 吸取部
 E,E1~E3 線虫
 P   プレート
 Pz  培養プレート
 Pa~Pc 解析用のプレート
 Z   がん解析システム
1,1a-1d Analysis device (analysis unit)
2 Imaging device (imaging unit)
3 Dispensing device 4 Conveying device 5 Buffer suction device 100, 100a to 100d Processing unit 101 Image acquisition unit 102 Pixel combination unit 103 Luminance information acquisition unit 104 Luminous centroid calculation unit 105 Running index calculation unit 106 Inspection determination unit 107 Pixel exclusion Unit 108 imaging stop determination processing unit 109 plate exclusion processing unit 110 DR value calculation unit 201 base unit 202 light source unit 203 pedestal 204 first support unit 205 second support unit 206 camera (imaging unit)
221 Ring LED light source with diffuser plate 222 Shield plate 231 Imaging lens 232 Imaging element 233 Front focus 241 Diffuser plate 301 Center of combined image 302 Broken line circle 401,411 Origin (luminance center of gravity immediately after plotting)
402, 412 Nematode movement is slow 501 Plate placement part (placement part)
502 Inclination part 503 Drive part 504 Base part 505 Suction part E, E1 to E3 Nematode P plate Pz Culture plate Pa to Pc Analysis plate Z Cancer analysis system

Claims (15)

  1.  線虫がバッファとともにプロットされているプレートを載置する載置部と、
     前記載置部を傾斜させる傾斜部と、
     前記傾斜部によって傾斜させられた前記載置部に載置されている前記プレートの下部に溜まっている前記バッファを吸い取る吸取部と、
     を有することを特徴とするバッファ吸取装置。
    A mounting section for mounting a plate on which nematodes are plotted together with a buffer;
    An inclined part for inclining the mounting part;
    A suction part for sucking out the buffer accumulated in the lower part of the plate placed on the placement part inclined by the inclined part;
    A buffer suction device characterized by comprising:
  2.  線虫がバッファとともにプロットされているプレートを載置する載置部と、
     前記載置部を傾斜させる傾斜部と、
     前記傾斜部によって傾斜させられた前記載置部に載置されている前記プレートの下部に溜まっている前記バッファを吸い取る吸取部と、
     前記線虫の走性解析を行う解析部と、
     を有することを特徴とするがん解析システム。
    A mounting section for mounting a plate on which nematodes are plotted together with a buffer;
    An inclined part for inclining the mounting part;
    A suction part for sucking out the buffer accumulated in the lower part of the plate placed on the placement part inclined by the inclined part;
    An analysis unit for performing the chemotaxis analysis of the nematode;
    A cancer analysis system characterized by comprising:
  3.  前記線虫及び尿検体がプロットされている前記プレートを下方から照射する光源部と、
     前記光源部によって照射された前記プレートを、撮像する撮像部と、
     を有し、
     前記解析部は、
     前記撮像部で撮像された画像における輝度に関する情報を基に、前記走性解析を行う
     ことを特徴とする請求項2に記載のがん解析システム。
    A light source unit for irradiating the plate on which the nematode and urine specimens are plotted from below;
    An imaging unit for imaging the plate irradiated by the light source unit;
    Have
    The analysis unit
    The cancer analysis system according to claim 2, wherein the chemotaxis analysis is performed based on information on luminance in an image captured by the imaging unit.
  4.  前記輝度に関する情報は、前記画像における輝度分布の重心である輝度的重心である
     ことを特徴とする請求項3に記載のがん解析システム。
    The cancer analysis system according to claim 3, wherein the information on the luminance is a luminance centroid that is a centroid of a luminance distribution in the image.
  5.  前記走性解析は、前記線虫の走性に関する評価値である走性指数に基づいて行われ、前記走性指数は、以下の式(1)に基づく
     ことを特徴とする請求項4に記載のがん解析システム。
    CI=Cx0-Cxt ・・・ (1)
     ここで、CIは走性指数を示し、Cx0は、プロット直後における前記輝度的重心のx座標を示し、Cxtは、前記線虫の走性開始から時間tが経過した後における前記輝度的重心のx座標を示す。なお、前記プレートの中心に対し、前記尿検体がプロットされている方向をx座標の方向とする。
    The chemotaxis analysis is performed based on a chemotaxis index that is an evaluation value related to the chemotaxis of the nematode, and the chemotaxis index is based on the following equation (1). Cancer analysis system.
    CI = C x0 -C xt (1)
    Here, CI represents the chemotaxis index, C x0 represents the x coordinate of the luminance center of gravity immediately after the plot, and C xt represents the luminance after the elapse of time t from the start of the chemotaxis of the nematode. Indicates the x coordinate of the center of gravity. Note that the direction in which the urine sample is plotted with respect to the center of the plate is the x-coordinate direction.
  6.  前記走性解析は、前記線虫の走性に関する評価値である走性指数に基づいて行われ、前記走性指数は、以下の式(2)に基づく
     ことを特徴とする請求項4に記載のがん解析システム。
    Figure JPOXMLDOC01-appb-M000001
     ここで、CIは走性指数を示し、(Cx0,Cy0)は、プロット直後における前記輝度的重心のx座標及びy座標を示し、(Cxt,Cyt)は、前記線虫の走性開始から時間tが経過した後における前記輝度的重心のx座標及びy座標を示す。なお、前記プレートの中心に対し、前記尿検体がプロットされている方向をx座標の方向とし、該x座標に直交する方向をy座標の方向とする。
    The chemotaxis analysis is performed based on a chemotaxis index that is an evaluation value related to the chemotaxis of the nematode, and the chemotaxis index is based on the following formula (2). Cancer analysis system.
    Figure JPOXMLDOC01-appb-M000001
    Here, CI represents the chemotaxis index, (C x0 , C y0 ) represents the x-coordinate and y-coordinate of the luminance center immediately after plotting, and (C xt , C yt ) represents the run of the nematode. The x-coordinate and y-coordinate of the luminance center of gravity after the elapse of time t from the start of sex. The direction in which the urine sample is plotted with respect to the center of the plate is defined as the x coordinate direction, and the direction orthogonal to the x coordinate is defined as the y coordinate direction.
  7.  前記解析部は、
     前記輝度的重心の時間毎における前記輝度的重心の位置変化を観測し、
     前記輝度的重心が戻りかけたら解析を停止する
     ことを特徴とする請求項4に記載のがん解析システム。
    The analysis unit
    Observe the change in position of the luminance center of gravity over time of the luminance center of gravity;
    The cancer analysis system according to claim 4, wherein the analysis is stopped when the luminance center of gravity returns.
  8.  前記輝度的重心の位置変化は、前記線虫のプロット直後における輝度的重心と、所定時間後の輝度的重心とから算出される
     ことを特徴とする請求項7に記載のがん解析システム。
    The cancer analysis system according to claim 7, wherein the position change of the luminance center of gravity is calculated from the luminance center of gravity immediately after plotting the nematode and the luminance center of gravity after a predetermined time.
  9.  前記解析部は、
     所定時間経過しても、前記輝度的重心の変化が一定量以下である前記プレートを、前記走性解析の対象から除外する
     ことを特徴とする請求項4に記載のがん解析システム。
    The analysis unit
    The cancer analysis system according to claim 4, wherein the plate whose change in luminance center of gravity is a certain amount or less even after a predetermined time has elapsed is excluded from the target of the chemotaxis analysis.
  10.  前記解析部は、
     前記画像のピクセルを所定数結合した後、前記輝度に関する情報を算出する
     ことを特徴とする請求項3に記載のがん解析システム。
    The analysis unit
    The cancer analysis system according to claim 3, wherein information relating to the luminance is calculated after combining a predetermined number of pixels of the image.
  11.  前記解析部は、
     前記画像の中心から、一定距離にある画像を前記輝度に関する情報の算出対象から除外する
     ことを特徴とする請求項3に記載のがん解析システム。
    The analysis unit
    The cancer analysis system according to claim 3, wherein an image located at a certain distance from the center of the image is excluded from a calculation target of information on the luminance.
  12.  前記解析部は、
     前記尿検体がプロットされている点から所定の範囲における輝度に関する情報を基に、前記線虫の走性解析を行う
     ことを特徴とする請求項3に記載のがん解析システム。
    The analysis unit
    4. The cancer analysis system according to claim 3, wherein the chemotaxis analysis of the nematode is performed based on information on luminance in a predetermined range from the point where the urine specimen is plotted. 5.
  13.  前記輝度に関する情報は、
     前記尿検体がプロットされている点から所定の範囲における輝度に関する情報である
     ことを特徴とする請求項12に記載のがん解析システム。
    Information about the brightness is
    It is the information regarding the brightness | luminance in the predetermined range from the point where the said urine sample is plotted. The cancer-analysis system of Claim 12 characterized by the above-mentioned.
  14.  前記所定の範囲における輝度に関する情報は、
     前記尿検体がプロットされている点から所定の範囲における輝度の合算値である
     ことを特徴とする請求項13に記載のがん解析システム。
    Information regarding luminance in the predetermined range is:
    The cancer analysis system according to claim 13, which is a sum of luminance values in a predetermined range from the point where the urine specimen is plotted.
  15.  前記輝度に関する情報は、
     前記尿検体がプロットされている点から所定の範囲における輝度の合算値を、前記所定の範囲以外における輝度の合算値で除したものである
     ことを特徴とする請求項13に記載のがん解析システム。
    Information about the brightness is
    The cancer analysis according to claim 13, wherein the sum of luminance values in a predetermined range from the point where the urine sample is plotted is divided by the sum of luminance values outside the predetermined range. system.
PCT/JP2017/009093 2016-08-09 2017-03-07 Buffer suction device and cancer analysis system WO2018029882A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016156377A JP6747908B2 (en) 2016-08-09 2016-08-09 Buffer suction device and cancer analysis system
JP2016-156377 2016-08-09

Publications (1)

Publication Number Publication Date
WO2018029882A1 true WO2018029882A1 (en) 2018-02-15

Family

ID=61162141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009093 WO2018029882A1 (en) 2016-08-09 2017-03-07 Buffer suction device and cancer analysis system

Country Status (2)

Country Link
JP (1) JP6747908B2 (en)
WO (1) WO2018029882A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4071471A4 (en) * 2019-12-06 2024-01-10 Hirotsu Bio Science Inc Taxis analysis method, cancer evaluation method, taxis analysis system, and program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7301436B2 (en) * 2021-03-19 2023-07-03 国立研究開発法人量子科学技術研究開発機構 Test method and nematode test plate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0668489B2 (en) * 1986-09-09 1994-08-31 株式会社日立製作所 Aquatic animal monitoring device
JP2009291103A (en) * 2008-06-04 2009-12-17 Kawasaki Heavy Ind Ltd Automatic cell culture apparatus
JP2013074839A (en) * 2011-09-30 2013-04-25 Sanyo Electric Co Ltd Dispenser
WO2015088039A1 (en) * 2013-12-10 2015-06-18 国立大学法人九州大学 Cancer detection method using sense of smell of nematode

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10112798A1 (en) * 2001-03-16 2002-10-02 Elegene Gmbh Device and method for automatically generating a heat avoidance reaction of nematodes or similar living things

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0668489B2 (en) * 1986-09-09 1994-08-31 株式会社日立製作所 Aquatic animal monitoring device
JP2009291103A (en) * 2008-06-04 2009-12-17 Kawasaki Heavy Ind Ltd Automatic cell culture apparatus
JP2013074839A (en) * 2011-09-30 2013-04-25 Sanyo Electric Co Ltd Dispenser
WO2015088039A1 (en) * 2013-12-10 2015-06-18 国立大学法人九州大学 Cancer detection method using sense of smell of nematode

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KEIKO SUZUKI ET AL., SENCHU C. ELEGANS NO KYOZAIKA, JUGYO JISSEN KIROKU (SEIBUTSU, 8 November 2015 (2015-11-08), Retrieved from the Internet <URL:http://web.archive.org/web/20151108083457/http://www.shinko-keirin.co.jp/tea/kou/jissen/seibutsu/201411/index.html> [retrieved on 20170518] *
OSAMU IKEGAMI: "Extraction of Characteristics of Behavior from Recorded Images of Locomotion of the Nematode", IEICE TECHNICAL REPORT, vol. 96, no. 379, 20 November 1996 (1996-11-20), pages 13 - 17 *
WANG, J. ET AL.: "The Anaphase-Promoting Comples (APC) ubiquitin ligase affects chemosensory behavior in", C. ELEGANS, PEERJ, vol. 4, no. e2013, 10 May 2016 (2016-05-10), pages 1 - 19, XP055464001 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4071471A4 (en) * 2019-12-06 2024-01-10 Hirotsu Bio Science Inc Taxis analysis method, cancer evaluation method, taxis analysis system, and program

Also Published As

Publication number Publication date
JP6747908B2 (en) 2020-08-26
JP2018025432A (en) 2018-02-15

Similar Documents

Publication Publication Date Title
JP5644447B2 (en) Microscope, region determination method, and program
JP6900581B1 (en) Focus-weighted machine learning classifier error prediction for microscope slide images
KR20120003376A (en) Microscope and area determination method
US20040241677A1 (en) Techniques for automated diagnosis of cell-borne anomalies with digital optical microscope
JP7424289B2 (en) Information processing device, information processing method, information processing system, and program
US20180210185A1 (en) Image generating apparatus and image generating method
WO2018029882A1 (en) Buffer suction device and cancer analysis system
CN1826521A (en) Device for counting micro particles
JPWO2017150194A1 (en) Image processing apparatus, image processing method, and program
JP2020530611A (en) Automated methods and systems for detecting cells in stained specimen images
US20180128734A1 (en) Image processing apparatus, image processing method, and image processing program
JP6530507B2 (en) Cancer test system and cancer test evaluation method
JP6559876B2 (en) Cancer analysis system and cancer analysis method
CN103946756A (en) Optical method for controlling the movement of a sampling tool
JP6522778B2 (en) Cancer test system and cancer test evaluation method
US11169079B2 (en) Captured image evaluation apparatus, captured image evaluation method, and captured image evaluation program
CN109064468B (en) Method for quantitatively analyzing eyelid meibomian gland morphology and area by applying MATLAB
JP3660936B1 (en) Bubble measuring method and bubble measuring device for hardened concrete
JP6379385B2 (en) Test unit and sample analyzer
JP2010085248A (en) Asbestos detection device
SG193046A1 (en) A digital imaging system for biopsy inspection
JP2004309426A (en) Method and apparatus for evaluating translucent substrate
TWI625394B (en) Image processing method, control program, recording medium and image processing apparatus
JP2004351100A (en) System and method for medical image processing
JP2019066222A (en) Visual inspection device and visual inspection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17838958

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17838958

Country of ref document: EP

Kind code of ref document: A1