WO2018029387A1 - Sistema captador de la energía de corrientes fluídicas - Google Patents

Sistema captador de la energía de corrientes fluídicas Download PDF

Info

Publication number
WO2018029387A1
WO2018029387A1 PCT/ES2017/000101 ES2017000101W WO2018029387A1 WO 2018029387 A1 WO2018029387 A1 WO 2018029387A1 ES 2017000101 W ES2017000101 W ES 2017000101W WO 2018029387 A1 WO2018029387 A1 WO 2018029387A1
Authority
WO
WIPO (PCT)
Prior art keywords
turbines
fins
axis
turbine
water
Prior art date
Application number
PCT/ES2017/000101
Other languages
English (en)
French (fr)
Other versions
WO2018029387A8 (es
Inventor
Manuel Muñoz Saiz
Original Assignee
Munoz Saiz Manuel
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from ES201600696A external-priority patent/ES2653925B1/es
Priority claimed from ES201700136A external-priority patent/ES2678994B1/es
Priority claimed from ES201700535U external-priority patent/ES1202036Y/es
Priority to EP17838856.7A priority Critical patent/EP3508717A4/en
Application filed by Munoz Saiz Manuel filed Critical Munoz Saiz Manuel
Priority to AU2017309337A priority patent/AU2017309337B2/en
Priority to US16/324,820 priority patent/US11067055B2/en
Priority to CA3033460A priority patent/CA3033460A1/en
Publication of WO2018029387A1 publication Critical patent/WO2018029387A1/es
Publication of WO2018029387A8 publication Critical patent/WO2018029387A8/es
Priority to US17/360,673 priority patent/US20210363964A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/10Submerged units incorporating electric generators or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/22Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the flow of water resulting from wave movements to drive a motor or turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • F03B17/061Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially in flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/11Kind or type liquid, i.e. incompressible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/16Air or water being indistinctly used as working fluid, i.e. the machine can work equally with air or water without any modification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/706Application in combination with an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/24Rotors for turbines
    • F05B2240/243Rotors for turbines of the Archimedes screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/91Mounting on supporting structures or systems on a stationary structure
    • F05B2240/917Mounting on supporting structures or systems on a stationary structure attached to cables
    • F05B2240/9176Wing, kites or buoyant bodies with a turbine attached without flying pattern
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/20Geometry three-dimensional
    • F05B2250/25Geometry three-dimensional helical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines

Definitions

  • Each turbine can use one or more wires or helical fins on its axis
  • the fluidic current energy capture system consists of axial turbines that they have one free end and the other, or that of its axis, is attached to the mechanical movement or to an electric generator, directly or through a rpm multiplier. It is held by a pair of links, an angular kneecap, a bar or rod and a joint or hinge.
  • the generators and also the mechanical elements to be moved are attached to nails, anchors, concrete blocks, mesh bags filled with stones, poles, trees, towers, lampposts, buildings, mounds, or a cable or chain supported between two plantings of those mentioned above, which allow the turbines to rotate, orient themselves in the fluid stream and capture and take advantage of the flow of said stream, characterized in that the turbines comprise helical springs, beams or helical twisted plates, helical turbines complete with its axes or only its fins, which capture the energy of wind or water, driving its axis or end of attachment to an electric generator system, a mechanical system or a compressor or water pump, whose regulated flows drive some motors or turbines that drive the generators. In all cases, the fins around the axis of rotation of the turbines, have an inclination with respect to the wind, which generates a torque in the same direction. Generators only have a small angle of rotation or inclination
  • turbines formed by impellers of vanes connected in series are used.
  • All turbines can be externally cylindrical or conical in shape, and can use one or more fins or wires.
  • the conical shape gives them more stability.
  • the turbines may have the same density as the fluid in which they move, or they may have different densities, whereby they may adopt a certain inclination with respect to the fluidic current.
  • the turbines, their shafts or fins, in addition to being hollow and filled with helium or air, can be made of foam made of plastic polymers such as PVC, polyphane, polyethylene, etc., with a resistant and protective cover, and can act as kites.
  • the holes can be rubber or plastic. They can be inflatable and flexible. In general, being in contact with water and with elements that can be abrasive, resistant and low density materials, polymers, carbon fibers or glass with resins should be used. And in case of using metallic materials, such as steel, they should have a protective zinc layer.
  • the plastic can be reinforced with graphene and very resistant synthetic fibers, keviar, glass, carbon, etc.
  • the turbine can be fixed to the collar, a cardan ion, ball joint, etc.
  • the axis of the generator or mechanical device is connected to the rotating end of the turbine by a pair of gears.
  • the turbines when they have no axle, consist exclusively of helical fins, helical springs of hi, preferably half-round or flat, or beams or helically twisted beams.
  • the helical springs of flat wire coincide or are the same as the helical fins of the turbines used without shaft.
  • the turbines, fins, beams or helical plates have a performance proportional to their cross-section or frontal section, to the angle formed by the axis of rotation at each point and to its length. Angles between 25 ° and 55 "can be used. Unlike turbines of this type that move inside a duct, they can greatly increase their power by increasing their length.
  • the fins can have two types of inclination: a) Inclination of a section of the fin with respect to the axis of rotation and b) inclination of a section of the fin with respect to a plane perpendicular to the axis of rotation. Maximum yields occur approximately at angles close to 42 * of inclination
  • the cable can be replaced by a long and simple helical turbine.
  • Electric generators can be synchronous, and totally permanent magnets. Especially rare earth samarium-cobaite or neodymium-iron-boron
  • motor pumps are used to raise water or drive electric generators, or the air can be stored in pressure bags at sea at great depth.
  • the turbines should preferably be axial, receiving the flow of water or air parallel to their axes and automatically addressing them as vanes, but they may have an inclination with respect to the horizontal, which depends on the difference between the weight of the turbines, including the adjoining installation, generator, and the weight of the fluid that dislodges. When both factors are equal, they remain horizontal in the fluidic stream.
  • Any type of turbine can be used, with or without a shaft, especially those that are longitudinally extended and with blades or vanes inclined, twisted or helically arranged.
  • their aerodynamic profiles are made to have the dimensions of the turbines, their axes and / or their fins are larger at or towards the fire end.
  • a variant of axial turbine uses, with or without an axis, two (or more) inclined fins that can be symmetrical with each other, which create a torque around said axis.
  • the yield can be even greater since the section of the affected surface is much greater than with the frontal current.
  • the turbines receive the current parallel to the axis, when they are not covered by a tube, the performance is very high and increases and the power is multiplied with its length. Since downstream the turbine absorbs or laterally captures the energy of the water stream.
  • the turbines can have the free end attached to a balloon or a float.
  • turbines can act partially as balloons or floats.
  • turbines, cables, chains, generators or grab bars may have a density equal to or similar to that of the medium in which they move. They can have a density between 70% and 1 30% of that of the fluid, although it is not limitative.
  • the turbines, shafts, fins or hollow and flexible blades can be made of canvas, plastic or badly dense, which act as bags and can be kept inflated with the current of air or water in which they are immersed.
  • the end of the turbine, which is attached carries a fluid inlet bounded by a ring, which is attached to the generator rotor shaft by means of cords.
  • the turbines can be placed in an orderly manner, in columns and columns, so that they can use common electrical or water installations and a large area.
  • the fins, blades or turbines can be rigid or flexible. Inclining the flexible fins and reducing their impact surface with the increase in fluid velocity.
  • Some turbines anchored at the bottom of the sea can be turned and raised for repair or maintenance. It may be necessary to vary the degree of flotation with a remote control to make its exit abroad. This is achieved with an air chamber, which expands for ascent and compresses for descent.
  • the turbines can be placed semi-submerged, taking advantage of the action of water and wind simultaneously.
  • the turbines can carry a floating rope or rope, which is used to lift the system for repair or maintenance.
  • a specific color is applied as a distinctive.
  • the strobes, red or amber lights are preferably applied to LED posts or buoys, preferably LED diodes.
  • the feeding is done with the one generated by the system.
  • one or multiple series turbines can be used instead of the clamping cable. That being flexible could be a single turbine.
  • Small turbines tend to be very revolutionized and do not need multipliers.
  • the mechanical energy obtained can be used to raise water on land where it is stored at high altitude, then a motor or turbine that drives an electric generator is regulated and driven.
  • the generator is attached to a support point by means of a bar and a joint and a collar that allows 3 ⁇ to lean slightly vertically and horizontally but not rotate around its axis. This is also achieved with a pair of links.
  • Radial fins help to avoid oscillations due to turbulence or gusty winds.
  • the generators can feed electric heating heaters, mobile phones, etc. Being a simple and very economical system.
  • a control, warning and security system reports the status of each of the devices.
  • the weight of the turbine and mobile parts is equalized, with the thrust upwards of the water or air that it dislodges, in this way the turbine is arranged horizontally, except when the water or air stream has a certain vertical inclination.
  • the weight of the turbine must be varied to achieve it. More or less heavy turbines than the fluid can be used, so they will be tilted but their performance is still very high. This may be necessary to avoid hindering the navigation of ships, airplanes, etc.
  • Figure 1 shows a schematic, partial and side view of a helical spring type turbine variant, a generator and a clamping mode.
  • Figure 1 shows a schematic, partial and side view of a variant of the stretched helical spring type turbine, a generator and a clamping mode.
  • Figure 1b shows a schematic, partial and side view of a conical helical spring type turbine variant, a generator and a clamping mode.
  • Figure 1 c shows a schematic, partial and side view of a spring-type turbine helical with the thread or allele in the form of half-round, a generator and a clamping mode
  • Figure 2 shows a schematic, partial and lateral view of a variant of a beam or twisted plate turbine, generator urs and a clamping mode.
  • Figure 2a shows a schematic, partial and side view of a variant of beam type or conical torsion plate turbine, a generator and a clamping mode.
  • Figure 3 shows a schematic, partial and side view of a helical fin turbine, a generator and a fastening mode of the system of the invention.
  • Figure 3a shows a schematic, partial and side view of a spiral and spiral fin turbine variant, a generator and a clamping mode.
  • Figure 3 b shows a schematic, partially and partially sectioned view of a variant of a conical helical fin turbine, generator urs and a clamping mode.
  • Figure 4 shows a schematic, partial and side view of a helical turbine with shaft, a generator and a clamping mode.
  • Figure 5 shows a schematic and side view of a turbine variant whose shaft or drum is formed by a very thick canvas or mesh.
  • Figure 6 shows a schematic and side view of a variant of helical turbine used in high-altitude air.
  • Figure 7 shows a schematic and side view of a turbine variant with a helical fin, used in high-altitude air.
  • Figure 7a and 7b show schematic and sectioned views of two helical fins.
  • Figure 8 shows schematic views of two beams turbines or twisted plates.
  • Figure 9 shows schematic views of two complete turbines with axles.
  • Figure 10 shows a schematic view of a complete turbine with shaft.
  • Figure 1 1 shows a schematic view of a turbine acted as a cable.
  • Figure 1 1 shows a schematic view of a turbine that acts as a cable and pump.
  • Figure 12 shows a schematic view of a complete turbine with shaft
  • Figure 1 3 shows a schematic view of a complete turbine with shaft.
  • Figure 14 shows a schematic and side view of a turbine variant with pairs of inclined triangular fins.
  • Figure 1 4a shows a schematic and perspective view of a turbine variant with pairs of triangular fins attached to its vertices with wires.
  • Figure 15 shows a side and partial view of a turbine variant formed by two inclined windings & both sides of the shaft.
  • Figure 1 5a shows a front view of the turbine of Figure 1 5.
  • Figures 16 and 16a show schematic views of a turbine field.
  • Figures 1 7 and 1 8 show schematic and partial views of two turbines with helical fins of different pitch and different number of fins.
  • Figure 19 shows a view of a turbine formed by several stages or paddle wheels.
  • Figure 19a shows a schematic view of a conical torsion plate turbine application, feeding a mobile phone.
  • Figure 20 shows a schematic and partially sectioned view of an electric generator and its cover.
  • Figure 20a shows a schematic, partially sectioned perspective view of a generator variant and its cover.
  • Figure 1 shows an embodiment of a turbine of the invention, formed by a coil spring (10c), which has its end attached to the axis of the electric generator (4).
  • the generator is attached by means of rings to the collar (6), in turn attached to the mast (7), so that it allows it to tilt or turn horizontally and vertically slightly, but not to rotate around said rings.
  • Figure 1 shows the turbine formed by a stretched coil spring portion (10g), which has its end attached to the axis of the electric generator (4).
  • the generator is attached by means of rings to the collar (6), in turn attached to the mast (7), so that it allows it to tilt or turn horizontally and vertically slightly but not to rotate around said rings.
  • Figure I b shows the turbine formed by a conical helical spring (1 Gv), which has its end attached to the axis of the electric generator (4).
  • the generator is connected by the bar (45), hinged with the joint (46) to the collar (6) of the mast ⁇ ? ⁇ , So that it allows it to tilt or rotate horizontally and vertically, slightly but not to rotate around the axis of said bar.
  • Figure 3 c shows the turbine formed by a spring, of a wire or a medium-sized rod (90c), the end of which is connected to the generator (4).
  • the generator is attached by means of rings to the collar (6), in turn attached to the mast (7), so that it allows it to bend or rotate horizontally and vertically, slightly but not to rotate around said rings,
  • Figure 2 shows a turbine formed by a single beam or torsion plate, helical and without shaft (1 2c), which has its end attached to the axis of the electric generator (4).
  • the generator is connected by means of rings to the collar (6), in turn connected to the mast (7), so that it allows it to rotate horizontally and vertically, slightly but not to rotate around said rings.
  • This fin can also be hollow.
  • Figure 2a shows a turbine formed by a twisted and conical beam or plate, helical and without axis (12v), which has its end attached to the axis of the electric generator (4).
  • the generator is connected by means of the collar (6e) and this to the post (7 ⁇ ), so that it allows you to lean or rotate horizontally and vertically, slightly but not to rotate around the collar.
  • This fin can also be hollow.
  • Figure 3 shows a turbine formed by a helical fin without axis (3c). which has its end attached to the axis of the electric generator (4).
  • the generator is connected by the bar (45), hinged with the joint (46) to the neck (6) of the mast (7), so that it allows it to tilt or turn horizontally and truthfully but not to rotate around the axis of said bar.
  • Figure 3a shows a turbine formed by a single conical helical fin without axis (3v), which has its end attached to the axis of the electric generator (4) and this to the collar (6) of the mast (7) that It allows to rotate vertically and horizontally and only allows a slight twist.
  • Figure 3b shows a single-finned turbine with no axis, helical and conical (3v), which has its end attached to an external shaft (1 8r) that drives the electric generator (4r), using gears (49r) and is secured with the cylindrical bearings (19r), fixed in turn to the ball joint (6r) supported by the mast (7r), which allows the assembly to tilt horizontally and verify but not rotate around the axis (1 8r).
  • the turbines of fig, 3, 3a and 3b are similar to the springs fig. 1, 1 a and 1 b with fin or hilo piano.
  • Figure 4 shows a turbine formed by the helical fin (2a) on the shaft (13), which has its end attached to the axis of the electric generator (4).
  • the generator is attached to the rotating collar (6e) on the mast (7e), so that it allows it to lean horizontally and vertically but not to rotate around the axis of said bar, only the small turn allowed by the links.
  • Figure 5 shows the turbine (1 m) with the icoidal fin (2m). Which swells or inflates with the flow of water or air stream, for which it carries a mouth with a ring (28), which is attached to the generator shaft (4) with Sos cords (29). EN generator is subject and rotates honestly with respect to the mast (7) with the collar (6) This inflation system is valid for all devices used herein. A trellis can be added to prevent the entry of solid products
  • Figure 6 shows a hollow turbine (1 2r) that can be a float in the water or a balloon full of helium in the air, which can also act as a comet, so that once it has been raised it is maintained by the action of the Wind or water. It rotates the generator shaft (4) and is attached to the ground by means of the cable (26) and the nail (2.1). It has the advantage, like all wind farms of this type, of being able to rise and take advantage of the large air currents existing in height.
  • the cable or rope must be electrically earthed to avoid static or lightning strikes.
  • Figure 7 shows a hollow turbine (1 c) with its fin (2c) which can be a float in the water or a balloon in the air, which can also act as a cornet, so that once it is raised it is maintained by the action of the wind.
  • the cable or rope shows the inclination it can take depending on the current of the fluid and its ileotabiity.
  • the cable or rope must be derived to ground to avoid static or lightning strikes.
  • Figure 7a shows a schematic and sectioned view of a helical fin (12q) forming the angle (a) with the axis of rotation (1 2x) of the turbine.
  • Figure 7b shows a schematic and sectioned view of a helical fin (S 2q) forming the angle ( ⁇ ) with a plane perpendicular to the axis of rotation of the turbine.
  • Figure 8 shows turbines formed by helically torped axial beams or plates, the upper one (12c) cylindrical and the lower one (1 2v) conical.
  • Electric generators (4) actuated to the mast (7) by means of links (59) and collar (6).
  • a strobe light (9) at the end of the mast warns of its presence.
  • Figure 9 shows two helical axial turbines (1 and 1 a) whose hollow axis, the (13v) one troneoeon and the cylindrical (13c), give them buoyancy, can float or remain submerged, can be flexible and formed by several longitudinally articulated sections, held by links (5), their axis is oriented in the direction of the water current as a vane and drives an electric generator (4), air compressor or hydraulic pump.
  • the upper one is fixed to the ground by means of the nail (23) and the lower one with the concrete block (8a) at the bottom of the sea, rotating helical fins (3v and 3c), which can be flexible, produce the movement of the sensor. They take advantage of both wind power and water currents. Both fins increase their dimensions towards the loose end.
  • the lower turbine shows how the forces, direction and inclination are applied, depending on the difference LW (bearing force minus the upward thrust equal to the weight of the volume of fluid in which it is immersed.
  • LW bearing force minus the upward thrust equal to the weight of the volume of fluid in which it is immersed.
  • FW being the force of the wind, AND resulting in the force R and with the inclination shown by it.
  • Figure 1 0 shows the helical turbine (1 d) with a hollow cylindrical shaft (1 3c) with increasing dimensions of the shaft and of the fin (3c) towards the end l ibre.
  • the clamping end joins the generator shaft (4) and the generator with links (5) to a buoy (33) that is supported by the chain (13d) anchored at the bottom of the sea or river.
  • Figure 1 1 shows the beam-type turbine or torsion plate (126) that also acts as a cable, secured from its upper end by the balloon (32) and inferioerl to the generator (4) and this in turn to the nail (7m).
  • FJ conductor cable (7 1) derives the static current from the sliding collar (70) to the nail (7m).
  • Figure 1 shows the beam-type turbine or twisted plate (1 26a), held at its upper end by the balloon (32a) and the lower one (77), with the housing (76) acting as a pump in addition to cable.
  • the ends of the turbine section (77) are supported with the bearings (75).
  • the water flows through the pipe (78),
  • Figure 1 2 shows a helical axial turbine (a) that can float or remain submerged by the buoy (33). It can be flexible and be formed by several longitudinally articulated sections, its cylindrical axis (13c) is oriented in the direction of the water current as a vane and is held and operated by an electric generator (4), the links (5) to the concrete block ( ⁇ ).
  • the rotating fin (3a) facilitates the movement of the sensor.
  • the shaft (1 3c) of Sa turbine is hollow and provides a high degree of flotation. In this case the buoy increases the degree of buoyancy of the turbine.
  • the fin increases its dimensions towards the opposite end to the one attached to the concrete block.
  • Figure 1 3 shows the icoidal turbine (the) attached to the shaft of the electric generator (4) which is attached to the cable (3) which can be a chain, attached by one end (1 5) to a side cliff (14 ) and the other to a concrete block (8a) at the bottom of the sea.
  • the turbine has a hollow cylindrical shaft and float (13c) and a helical fin around it (3a).
  • Figure 14 shows the turbine (50) with pairs of inclined triangular fins (5 1), its axis (52).
  • the generator is connected by Sa rod (45) to the collar (6) on the mast (7),
  • Figure 14a shows the turbine (53) with pairs of triangular fins (54) attached to its vertices with cables. It rotates around its axis (55).
  • Figure 1 5 shows the turbine (60) formed by two inclined fins (61), one on each side of the axis of rotation (62), represented by the dashed line. Here are shown the inclinations of both with respect to the current flow. They are held by the crank-shaped part (63 and 63a) one at each end. The (63a) is connected by cables or cords to the generator or to the masfil.
  • Figure 1 5a shows the turbine (60) formed by two inclined alleles (61) one on each side of the axis of rotation (62). They are held by the crank-shaped part (63 and 63a) one at each end. One of them is connected by cables or cords to the generator or to the mast.
  • Figure 1 6 shows a maritime or land field or farm with multiple helical turbines (3 b) fixed to the bottom of the sea or to the ground by means of concrete blocks (8).
  • the arrow indicates the direction of the fluid, which in this case is the same for all turbines.
  • Figure 1 6a shows a maritime or land field or farm with multiple helical turbines (3 b) fixed to the bottom by means of cables (13 s) placed between two points (8b and 8e).
  • the arrow indicates the direction of the fluid, which in this case is the same for all turbines.
  • the cables can be the same that collect the electric current, and must be interconnected between silos to facilitate this task and eliminate part of the wiring.
  • Figure 1 7 shows the turbine (1 b) with a helicoidal fin (3b) of constant dimensions, attached to a cement block (8), which drives the generator (4) and is connected to other turbines in series by means of the joint or rings (22).
  • Figure 1 8 shows the turbine (1 h) with two helical fins (3b), attached to a cement block (8), which drives the generator (4).
  • Figure 19 shows the turbine (1 p) consisting of multiple stages or vane wheels, attached to a cement block (8), which drives the generator (4) and is connected to other turbines with the articulation (22) , (28) being the connecting line of the different stages or paddle wheels.
  • Figure i 9a shows the turbine formed by the beam or conical helical plate (1 2v), attached to the generator shaft (4) which is attached to the mobile phone (30).
  • the generator is attached to the collar (6e) and this in turn to the mast (7e).
  • Figure 20 shows the generator (4), fastened by links (5) to a fixed point, inside the housing (20), whose rotor (27) and shaft (1 8) rotates supported by the inefficient bearings rollers (19) and through the chain (5g) that would be attached to a turbine, being (24) the generator stator. Seals or gaskets that keep the internal elements of the generator tight are not shown.
  • ES rpm multiplier is optional, it is used for very low speed turbines.
  • Figure 20a shows the generator (4), held by links (5) to a fixed point, inside the housing (20), whose shaft (1 8) rotates supported by the inefficient roller bearings (19) and through the chain (Sg) that would be attached to a turbine. It is similar to that in Figure 20.
  • the drawings reflect turbines, which with changing the fluid used and of course its densities are valid for use with water or air.
  • the thick line arrow shows the direction of the current flow.

Abstract

Sistema captador de la energía de corrientes fluídicas, utilizando turbinas axiales, que tienen un extremo libre y el otro se sujeta a un elemento mecánico o a un generador eléctrico, caracterizado porque las turbinas comprenden unos muelles helicoidales (10c, 10g, 19v), unas vigas o pletinas torsionadas helicoidalmente ( 12c, 12v), unas turbinas helicoidales completas (1, 1a, 1b, 1d, 1m, 1p) con sus ejes (13, 13c, 13 v) o solo sus aletas (3a, 3b, 3c, 3d, 3v), Sos cuales captan la energía del viento o del agua, accionando su eje o extremo de sujeción a un generador eléctrico (4) o a un sistema mecánico, en todos los casos, las aletas alrededor del eje de giro de las turbinas, presentan una inclinación tal, que generan un par de giro en un mismo sentido, direccíonándose las turbinas automáticamente con el flujo de las corrientes de agua o de aire a modo de veletas.

Description

SISTEMA CAPTADOR DE LA ENERGÍA DE CORRIENTES FLUÍD1CAS.
CAMPO DE LA INVENCION .- En mini y megasistemas captadores eólicos y marítimo fluviales, que generan gran cantidad de electricidad y para viviendas, agricultura, desalación del agua del mar, elevación del agua, realimeníación de la corriente a la red eléctrica, obtención de hidrógeno por electrólisis del agua y almacenamiento de aire a presión en bolsas en el mar a gran profundidad.
ESTADO DE LA TECNICA,- Los sistemas de energía de las corrientes de agua en el mar actuales necesitan altas tecnologías y altos costos para conseguir altos rendimientos. Son di fíciles de controlar, complejos, se necesita direccionarlos hacia las corrientes y su energía difícil de almacenar. Los sistemas eólicos necesitan altas tecnologías, altos costos, colocación a elevadas alturas y grandes vientos para conseguir altos rendimientos. Son difíciles de controlar, complejos, se necesita direccionarlos hacia el viento, contaminan visualrnente el paisaje, producen distorsiones radioeléctricas, son afectadas por los rayos y matan las aves. La energía resulta más cara que con los sistemas convencionales. La invención aporta unas turbinas sencillas, útiles y económicas, axiales y helicoidales, de palas y similares,
DESCRIPCIÓN DE LA INVENCIÓN
Objetivo de la invención v ventajas.
Obtener energía de las corrientes marinas y fluviales, las cuales a diferencia de la energía solar y la eólica suelen ser más constantes y no tener grandes periodos de calma. De grandes masas de agua, como la Corriente del Golfo o la de Kuroshio, en estrechos, cabos y alrededor de muchas islas, donde el agua debe pasar a cierta velocidad de una zona a otra. El agua es unas 832 veces más densa que el aire.
Poder usar turbinas sencillas, de bajo coste (pueden llegar a ser entre diez y treinta veces más baratas), de gran potencia, gran rendimiento, mínimo coste del kW/h, mínimo mímero de piezas, monopieza, sin eje, sin cojinetes, ni sus soportes o apoyos, ancladas al suelo no necesitan mástiles, un clavo o lastre es suficiente, son limpias (no les afecta ni acumulan la suciedad), no necesitan cubierta o carcasa, admiten grandes y pequeñas dimensiones, gran longitud o varias en serse, pueden ser irsflables y extensibles, funcionan alineadas con Sa corriente o inclinadas respecto a la misma, son válidas simultáneamente para el aire y el agua, no matan las aves ni los peces, protegen Sa capa de ozono y el medioambiente, se autodireccionan hacia el viento o corriente sin el oso de mecanismos eléctricos, usadas sumergidas no son afectadas por las destructivas otas, y utilizando corrientes constantes elimina la necesidad de tener que almacenar la energía, solo sería necesario un pequeño almacenamiento. Sin competencia en todas estas características. Las más útiles y simples son las que no tienen eje, de aletas, vigas o pletinas torsionadas y los Brsuelles de hilo plano o de media caña.
Problema a resolver. La energía renovable aún no es lo suficientemente productiva para usarla en grandes cantidades, no es constante, produce contaminación medioambiental, y por su discontinuidad necesita almacenarse. Con el presente sistema se obtiene mucha y constante energía del mar y ríos, no siendo necesario su almacenamiento, pudiendo colocarse donde no perjudica ni contamina tanto eléctrica, audible como visualrnente. En el aire permite obtener la energía de zonas altas.
Cada turbina puede utilizar uno o más hilos o aletas helicoidales sobre, su eje
El sistema captador de la energía de corrientes fluidicas, consiste en unas turbinas axiales que tienen un extremo libre y el otro, o el de su eje, se sujeta al eiememo mecánico a mover o a un generador eléctrico, directamente o a través de un multipl icador de rpm. Se sujeta mediante una pareja de eslabones, una rótula angular, una barra o varilla y una articulación o bisagra. Los generadores y también los elementos mecánicos a mover se sujetan a unos clavos, anclas, bloques de hormigón, bolsas de malla rellenas de piedras, postes, árboles, torres, farolas, edificios, montículos, o a un cable o cadena soportados entre dos plantos de los mencionados anteriormente, los cuales les permiten a las turbinas girar, orientarse en la corriente de fluido y captar y aprovechar el flujo de dicha corriente, caracterizado porque las turbinas comprenden unos muelles helicoidales, vigas o pletinas torsionadas hel icoidaimente, las turbinas helicoidales completas con sus ejes o solo sus aletas, los cuales captan la energía del viento o del agua, accionando su eje o extremo de sujeción a un sistema generador eléctrico, a un sistema mecánico o a un compresor o bomba de agua, cuyos flujos regulados accionan unos motores o turbinas que accionan los generadores. En todos los casos, las aletas alrededor del eje de giro de las turbinas, presentan una inclinación respecto al viento, que genera un par de giro en un mismo sentido. Los generadores solo tienen un pequeño ángulo de giro o inclinación
En una variante se utilizan turbinas formadas por rodetes de paletas unidos en serie.
Todas las turbinas pueden adoptar exteriormertte forma cilindrica o cónica, y pueden utilizar una o más aletas o hilos. La forma cónica les da más estabilidad.
Las turbinas pueden tener igual densidad que el fluido en el que se mueven, o pueden tener distintas densidades, con lo cual pueden adoptar cierta inclinación respecto a la corriente fluídica.
Las turbinas, sus ejes o aletas además de ser huecas y llenas de helio o aire, pueden ser de espuma de polímeros plásticos comoel PVC, polínrefano, políeílleno, etc., con una cubierta resistente y protectora, y pueden actuar como cometas. Las huecas pueden ser de goma o plástico. Pueden ser inflables y flexibles. En general, por estar en contacto con el agua y con elementos que pueden resultar abrasivos, se deben utilizar materiales resistentes y de baja densidad, polímeros, fibras de carbono o vidrio con resinas. Y en caso de utilizar materiales metálicos, como el acero, deberán tener una capa protectora de cinc. El plástico puede reforzarse con grafeno y fibras sintéticas muy resistentes, de keviar, vidrio, carbono, etc.
La turbina se puede fijar al collarín, un ión cardan, rótula, etc. En este caso e3 eje del generador o dispositivo mecánico se conecta al extremo giratorio de la turbina mediante una pareja de engranajes.
Las turbinas cuando no tienen eje, consisten exclusivamente en unas aletas helicoidales, en unos muelles helicoidales de hi lo preferentemente en media caña o plano, o en unas vigas o pletinas torsionadas helicoidaimente. Los muelles helicoidales de hilo plano coinciden o son iguales que las aletas helicoidales de las turbinas usadas sin eje.
Las turbinas, aletas, vigas o pletinas helicoidales tienen un rendimiento proporcional a su sección transversal o frontal, al ángulo que forma con el eje de giro ers cada punto y a su longitud. Se pueden utilizar ángulos entre 25° y 55". A diferencia de las turbinas de este género que se mueven en el interior de un conducto estas pueden incrementar mucho su potencia aumentando su longitud. Las aletas pueden presentar dos tipos de inclinación: a) Inclinación de un tramo de la aleta respecto al eje de giro y b) inclinación de un tramo de la aleta respecto a un plano perpendicular al eje de giro. Los rendimientos máximos se producen aproximadamente con ángulos próximos a los 42* de inclinación
En especial en el aire, el cable puede sustituirse por una larga y sencilla turbina hel icoidal.
Los generadores eléctricos pueden ser síncronos, y totalmente de imanes permanentes. En especial de tierras raras de samario-cobaito o de neodimio-hierro-boro
Como elementos mecánicos se usan motobombas para elevar agua o accionar generadores eléctricos, o se puede almacenar el aire en bolsas a presión en el mar a gran profundidad.
Las turbinas deben ser preferentemente axiales, recibiendo el flujo de agua o aire paralelo a sus ejes y direccionándose automáticamente a modo de veletas, pero pueden tener una inclinación respecto a la horizontal, que depende de la diferencia entre el peso de las turbinas, incluyendo la instalación contigua, generador, y el peso del fluido que desaloja. Cuando ambos factores son iguales se mantienen horizontales en la corriente fluídica. Puede utilizarse cualquier tipo de turbina, con o sin eje, en especial las que están prolongadas longitudinalmente y con las palas o alabes incl inados, torsionados o dispuestos helicoidalrnente. Para incrementar la estabi lidad de las mismas se hace que sus perfiles aerodinámicos tengan las dimensiones de las turbinas, sus ejes y/o sus aletas sean mayores en o hacia el extremo l ibre.
Una variante de turbina axial util iza, con o sin eje, dos (o más) aletas inclinadas que pueden ser simétricas entre sí, que crean un par de giro alrededor de dicho eje.
Con las turbinas inclinadas respecto a la corriente del fluido el rendimiento puede ser incluso mayor ya que la sección de la superficie afectada es mucho mayor que con la corriente frontal. No obstante, las turbinas cuando reciben la corriente paralela al eje, al no estar carenadas por un tubo el rendimiento es muy alto y aumenta y la potencia se multiplica con la longitud de la misma. Ya que aguas abajo la turbina absorbe o capta lateralmente la energía de la corriente de agua.
Se puede aplicar el giro de varias de estas turbinas a un eje soportado y conducido por el interior de un mástil, eje que puede accionar una bomba y sacar agua de los pozos.
Las turbinas pueden tener el extremo libre unido a un globo o a un flotador.
Las turbinas pueden actuar parcialmente como globos o flotadores. En iodos los casos las turbinas, cables, cadenas, generadores o barras de sujeción pueden tener una densidad igual o similar a la del medio en que se mueven. Pueden tener una densidad entre el 70% y el 1 30% de la del fluido, aunque no eslimitativo.
Las turbinas, ejes, aletas o álabes huecos y flexibles pueden ser de lona, plástico o mal la muy tupida, que actúan como bolsas y pueden mantenerse inflados con la corriente de aire o agua en la que están inmersos. Para ello el extremo de la turbina, que está sujeto, porta una boca de entrada del fluido delimitada por un aro, el cual se sujeta al eje del rotor del generador mediante unos cordones.
Las turbinas se pueden colocar de forma ordenada, en hi leras y columnas, de forma que puedan util izar instalaciones eléctricas o de agua comunes y una gran superficie.
Las aletas, álabes o turbinas pueden ser rígidos o flexibles. Incl inándose las aletas flexibles y reduciendo su superficie de impacto con e l aumento de la velocidad del fluido.
Algunas turbinas ancladas en el fondo del mar se pueden girar y elevar para su reparación o mantenimiento. Puede ser necesario variar el grado de flotación con un telemando para realizar su salida al exterior. Esto se consigue con una cámara de aire, que se expansiona para ascenso y se comprime para descenso.
En el mar las turbinas se pueden colocar sem isumergidas aprovechando simultáneamente la acción del agua y del viento.
En el mar para transportar la corriente se puede utilizar un solo cable conductor, el positivo o de la fase si es alterna y el otro para el negativo, masa o tierra utilizando el agua que es conductora,
En el mar las turbinas pueden portar un cabo o cuerda flotante, que se usa para elevar el sistema para reparación o mantenim iento. Se le apl ica un color determinado como disti ntivo.
En tierra y en el agua a los postes o boyas que sobresalen se les aplican luces estroboscópicas, rojas o ámbar preferentemente de diodos LED. La alimentación se realiza con la generada por el sistema.
En especial en los cólicos de gran altura se puede usar, en vez del cable de sujeción, una o múltiples turbinas en serie. Que siendo flexibles podría ser una única turbina.
Las turbinas de pequeñas dimensiones suelen ir muy revolucionadas y no necesitan multiplicadores. La energía mecánica obtenida se puede usar para elevar agua en tierra donde se almacena a gran altura, posteriormente se regula y acciona un motor o turbina que impulsa un generador eléctrico.
El generador se sujeta a un punto de soporte mediante una barra y una articulación y un collarín que 3ε perm ite inclinarse ligeramente vertical y horizontalmeníe pero no girar alrededor de su eje, Esto se consigue igualmente con una pareja de eslabones.
Unas aletas radiales ayudan a evitar oscilaciones debidas a turbulencias o vientos racheados.
Los generadores pueden alimentar resistencias eléctricas calefactoras, teléfonos móviles, etc. Resultando un sistema sencillo y muy económico.
Un sistema de control, aviso y seguridad informa del estado de cada uno de los dispositivos.
Funcionamiento: Se iguala el peso de la turbina y partes móvi les, con el empuje hacia arriba del agua o aire que desaloja, de este modo la turbina queda dispuesta horizontalmeníe, excepto cuando ia corriente de agua o aire tenga cierta inclinación vertical. No obstante si queremos que esta quede inclinada hacia arriba por tener sus soportes en el suelo, o inclinada hacia abajo por tenerlos en la zona alta del agua, se deberá variar el peso de la turbina para conseguirlo. Se pueden utilizar turbinas más o menos pesadas que el fluido, con lo cual quedarán inclinadas pero su rendimiento sigue siendo muy alto. Esto puede ser necesario para evitar entorpecer la navegación de barcos, aviones, etc.
BREVE DESCRIPCION DE LOS DIBUJOS.
La figura 1 muestra una vista esquematizada, parcial y lateral de una variante de turbina de tipo muelle hel icoidal, un generador y un modo de sujeción.
La figura 1 a muestra una vista esquematizada, parcial y lateral de una variante de turbina de tipo muelle helicoidal estirado, un generador y un modo de sujeción.
La figura 1 b muestra una vista esquematizada, parcial y lateral de una variante de turbina de tipo muelle helicoidal cónico, un generador y un modo de sujeción.
La figura 1 c muestra una vista esquematizada, parcial y lateral de una turbina de tipo muel le helicoidal con el hilo o alela en forma de media caña, un generador y un modo de sujeción
La figura 2 muestra una visía esquematizada, parcial y lateral de una variante de turbina de íipo viga o pletina torsionada, urs generador y un modo de sujeción.
La figura 2a muestra una vista esquematizada, parcial y lateral de una variante de turbina de tipo viga o pletina torsionada cónica, un generador y un modo de sujeción.
La figura 3 muestra una vista esquematizada, parcial y lateral de una turbina tipo aleta helicoidal, un generador y un modo de sujeción del sistema de la invención.
La figura 3a muestra una vista esquematizada, parcial y lateral de una variante de turbina de aleta helicoidal y en espiral, un generador y un modo de sujeción.
La figura 3 b muestra una vista esquematizada, parcial y parcialmente seccionada de una variante de turbina de aleta helicoidal cónica, urs generador y un modo de sujeción.
La figura 4 muestra una vista esquematizada, parcial y lateral de una turbina helicoidal con eje, un generador y un modo de sujeción.
La figura 5 muestra una vista esquematizada y lateral de una variante de turbina cuyo eje o tambor está formado por una lona o malla muy tupida.
La figura 6 muestra una vista esquematizada y lateral de una variante de turbina helicoidal utilizada en el aire a gran altura.
La figura 7 muestra una visía esquematizada y lateral de una variante de turbina con una aleta helicoidal, utilizada en el aire a gran altura.
La figura 7a y 7b muestran vistas esquematizadas y seccionadas de dos aletas helicoidales.
La figura 8 muestra vistas esquematizadas de dos turbinas de vigas o pletinas íorsionadas.
La figura 9 muestra vistas esquematizadas de dos turbinas completas con eje.
La figura 1 0 muestra una visía esquematizada de una turbina completa con eje.
La figura 1 1 muestra una vista esquematizada de una turbina actuado como cable.
La figura 1 1 a muestra una vista esquematizada de una turbina que hace de cable y de bomba.
La figura 12 muestra una visía esquematizada de una turbina completa con eje,
La figura 1 3 muestra una vista esquematizada de una turbina completa con eje.
La figura 14 muestra una vista esquematizada y lateral de una variante de turbina con parejas de aletas triangulares inclinadas.
La figura 1 4a muestra una vista esquematizada y en perspectiva de una variante de turbina con parejas de aletas triangulares sujetas de sus vért ices con cables.
La figura 15 muestra una visía lateral y parcial de una variante de turbina formada por dos aieías inclinadas & ambos lados del eje.
La figura 1 5a muestra una vista frontal de la turbina de la figura 1 5.
Las figuras 16 y 16a muestran vistas esquematizadas de un campo de turbinas.
Las figuras 1 7 y 1 8 muestran vistas esquematizadas y parciales de dos turbinas con las aletas helicoidales de distinto paso y distinto número de aletas.
La figura 19 muestra una vista de una turbina formada por varías etapas o ruedas de paletas. La figura 19a muestra una vista esquematizada de una aplicación de turbina de pletina torsionada cónica, alimentando a un teléfono móv il .
La figura 20 muestra una vista esquematizada y parcialmente seccionada de un generador eléctrico y su cubierta.
La figura 20a muestra una vista esquematizada, en perspectiva parcialmente seccionada de una variante de generador y su cubierta.
DESCRIPCIÓN MÁS DETALLADA DE UNA FORMA DE REALIZACIÓN DE LA INVENCIÓN
La figura l muestra una forma de realización de una turbina de la invención, formada por un muelle helicoidal ( 10c), el cual tiene su extremo unido al eje del generador eléctrico (4). El generador está unido medíante unas anillas al collarín (6), unido a su vez al mástil (7), de modo que le permite inclinarse o girar horizontal y verticalmente ligeramente, pero no girar alrededor de dichas anillas.
La figura l a muestra la turbina formada por una porción de muel le helicoidal ( 10g) estirado, el cual tiene su extremo unido al eje del generador eléctrico (4). El generador está unido mediante unas anil las al collarín (6), unido a su vez al másti l (7), de modo que le permite inclinarse o girar horizontal y verticalmente ligeramente pero no girar alrededor de dichas anillas.
La figura I b muestra la turbina formada por un muel le hel icoidal cónico ( 1 Gv), el cual tiene su extremo unido al eje del generador eléctrico (4). El generador está unido mediante la barra (45), abisagrada con la articulación (46) al collarín (6) del másti l {?}, de modo que le permite inclinarse o girar horizontal y verticalmente, l igeramente pero no girar alrededor del eje de dicha barra.
La figura 3 c muestra la turbina formada por un muelle, de hilo o aleta de medía caña (90c), cuyo extremo está unido al generador (4). El generador está unido mediante unas ani llas al collarín (6), unido a su vez al mástil (7), de modo que le perm ite incl inarse o girar horizontal y verticalmente, ligeramente pero no girar alrededor de dichas anillas,
La figura 2 muestra una turbina formada por una sola viga o pletina torsionada, helicoidal y sin eje ( 1 2c), la cual tiene su extremo unido al eje del generador eléctrico (4). El generador está unido mediante unas anillas al collarín (6), unido a su vez al mástil (7), de modo que le permite girar horizontal y verticalmente, ligeramente pero no girar alrededor de dichas anillas. Esta aleta también puede ser hueca.
La figura 2a muestra una turbina formada por una viga o pletina torsionada y cónica, helicoidal y sin eje ( 12v), la cual tiene su extremo unido al eje del generador eléctrico (4). El generador está unido mediante el collarín (6e) y este al poste (7ε), de modo que le permite inclinarse o girar horizontal y verticalmente, ligeramente pero no girar alrededor del collarín. Esta aleta también puede ser hueca.
La figura 3 muestra una turbina formada por una aleta helicoidal y sin eje (3c). la cual tiene su extremo unido al eje del generador eléctrico (4). El generador está unido mediante la barra (45), abisagrada con la articulación (46) al collarín (6) del mástil (7), de modo que le permite inclinarse o girar horizontal y veríicainiente pero no girar alrededor del eje de dicha barra.
La figura 3a muestra una turbina formada por una sola aleta helicoidal cónica y sin eje (3v), la cual tiene su extremo unido al eje del generador eléctrico (4) y este al collarín (6) del mástil (7) que le permite girar vertical y horizontalmenie y solo permite un ligera torsión.
La figura 3b muestra una turbina de una sola aleta y sin eje, helicoidal y cónica (3v), la cual tiene su extremo unido a un eje externo ( 1 8r) que acciona al generador eléctrico (4r), mediante los engranajes (49r) y se sujeta con los cojinetes cilindricos ( 19r), fijados a su vez a la rótula (6r) soportada por el mástil (7r), que le permite al conjunto inclinarse horizontal y veríícalrneníe pero no girar alrededor del eje ( 1 8r).
Las turbinas de las fig, 3, 3a y 3b son simi lares a los muelles fig. 1 , 1 a y 1 b con aleta o h ilo piano.
La figura 4 muestra una turbina formada por la aleta helicoidal (2a) sobre el eje ( 13), que tiene su extremo unido al eje del generador eléctrico (4). El generador está unido al collarín giratorio (6e) sobre el mástil (7e), de modo que le permite inclinarse horizontal y verticaímente pero no girar alrededor del eje de dicha barra, tan solo el pequeño giro que le permiten los eslabones.
La figura 5 muestra la turbina ( 1 m) con la aleta hel icoidal (2m). La cual se hincha o infla con el flujo de la corriente de agua o aire, para lo cual porta una boca con un aro (28), el cual se sujeta al eje del generador (4) con Sos cordones (29). ES generador está sujeto y gira honzontalmente respecto al mástil (7) con el collarín (6) Este sistema de inflado es válido para todos los dispositivos utilizados en la presente memoria. Puede añadirse un enrejado para evitar la entrada de productos sólidos
La figura 6 muestra una turbina hueca ( 1 2r) que puede ser un flotador en el agua o un globo lleno de helio en el aire, que además puede actuar como cometa, de modo que una vez se ha elevado se mantiene por la acción del viento o del agua. Hace girar al eje del generador (4) y está sujeta al suelo mediante el cable (26) y el clavo (2.1). Tiene la ventaja, como todas 3as eólieas de este tipo, de poder elevarse y aprovechar las grandes corrientes de aire existentes en altura. Se debe derivar eléctricamente el cable o cuerda a tierra para evitar descargas estáticas o de los rayos.
La figura 7 muestra una turbina hueca ( 1 c) con su aleta (2c) que puede ser un flotador en el agua o un globo en el aire, que además puede actuar corno corneta, de modo que una vez se ha elevado se mantiene por la acción del viento. Gira el eje del generador (4) y está sujeta al suelo mediante el cable (26) y el clavo (23). Tiene la ventaja, de utilizarse como eól ica, de poder elevarse y aprovechar las grandes corrientes de aire existentes en altura. El cable o cuerda muestra la inclinación que puede tomar en función de la corriente del fluido y de su ílotabi íidad. Se debe derivar el cable o cuerda a tierra para evitar descargas estáticas o de los rayos.
La figura 7a muestra una vista esquematizada y seccionada de una aleta helicoidal ( 12q) formando el ángulo (a) con el eje de giro ( 1 2x) de la turbina.
La figura 7b muestra una vista esquematizada y seccionada de una aleta helicoidal ( S 2q) formando el ángulo (β) con un plano perpendicular al eje de giro de la turbina.
La figura 8 muestra unas turbinas formadas por vigas o pletinas axiales torponadas helicoidalmente, la superior ( 12c) ci lindrica y la inferior ( 1 2v) cónica. Accionan generadores eléctricos (4) sujetos al mástil (7) mediante los eslabones (59) y el collarín (6). Una luz esíroboscópica (9) en el extremo del mástil avisa de su presencia.
La ñgura 9 muestra dos turbinas axiales helicoidales ( 1 y 1 a) cuyo eje hueco, el ( 13v) troneoeón ico y el ( 13c) cilindrico, les da flotabilidad, pueden flotar o permanecer sumergidas, pueden ser flexibles y formadas por varios tramos articulados longitudinalmente, sujetas mediante unos eslabones (5), su eje se orienta en la dirección de la corriente de agua a modo de veleta y acciona un generador eléctrico (4), compresor de aire o bomba hidráulica. Se fijan al suelo la superior mediante el clavo (23) y la inferior con el bloque de hormigón (8a) en el fondo del mar, unas aletas helicoidales giratorias (3v y 3c), que pueden ser flexibles, producen el movimiento del captador. Aprovechan tanto Sa energía eólica como las corrientes de agua Ambas aletas aumentan sus dimensiones hacia el extremo suelto. Cambiando la densidad de sus elementos se pueden uti lizar en el aire. La turbina inferior muestra cómo se aplican las fuerzas, dirección e inclinación, en función de la diferencia L-W (fuerza de sustentación menos el empuje hacia arriba igual al peso del volumen de fluido en el que está inmersa. Siendo FW la fuerza del viento, Y dando como resultado la fuerza R y con la inclinación mostrada por la misma.
La figura 1 0 muestra la turbina helicoidal ( 1 d) de eje cilindrico hueco ( 1 3c) con dimensiones en aumento del eje y de la aleta (3c) hacia el extremo l ibre. El extremo de sujeción se une al eje del generador (4) y el generador con los eslabones (5 ) a una boya (33 ) que está soportada mediante la cadena ( 13d) anclada en el fondo del mar o rio.
La figura 1 1 muestra la turbina tipo viga o pletina torsionada ( 126) que hace además de cable, sujeta de su extremo superior por el globo (32) y inferioerl al generador (4) y este a su vez al clavo (7m). FJ cable conductor (7 1 ) deriva la corriente estática desde el collarín desl izante (70) al clavo (7m).
La figura l i a muestra la turbina tipo vigas o pletina torsionada ( 1 26a), sujeta de su extremo superior por el globo (32a) y el inferior (77), con la carcasa (76) que actúa de bomba además de cable. Los extremos del tramo de turbina (77) se soportan con los cojinetes (75). El agua sale por el caño (78),
La figura 1 2 muestra una turbina axial helicoidal ( l a) que puede flotar o permanecer sumergida mediante la boya (33). Puede ser flexible y estar formada por varios tramos articulados longitudinalmente, su eje cilindrico ( 13c) se orienta en la dirección de la corriente de agua a modo de veleta y se sujeta y acciona a un generador eléctrico (4), los eslabones (5) al bloque de hormigón (§). La aleta giratoria (3a) facilita el movimiento del captador. El eje ( 1 3c) de Sa turbina está hueco y proporciona un alto grado de flotación. En este caso la boya incrementa el grado de flotabi lidad de la turbina. La aleta aumenta sus dimensiones hacia el extremo opuesto al sujetado al bloque de hormigón.
La figura 1 3 muestra la turbina hel icoidal ( l a) sujeta aS eje del generador eléctrico (4) el cual está sujeto al cable (3) que puede ser una cadena, sujeta por un extremo ( 1 5) a un acanti lado ( 14) y el otro a un bloque de hormigón (8a) en el fondo del mar. La turbina tiene un eje cilindrico hueco y flotador ( 13c) y una aleta helicoidal a su alrededor (3a).
La figura 14 muestra la turbina (50) con parejas de aletas triangulares incl inadas (5 1 ), su eje (52). El generador está unido mediante Sa barra (45) al collarín (6) sobre el másti l (7),
La figura 14a muestra la turbina (53 ) con parejas de aletas triangulares (54) sujetas de sus vértices con cables. Gira alrededor de su eje (55).
La figura 1 5 muestra la turbina (60) formada por dos aletas inclinadas (61 ), una a cada lado del eje del giro (62), representado este por la línea de trazos. Aquí se muestran las inclinaciones de ambas respecto a la corriente íluídica. Están sujetas por la pieza en forma de manivela (63 y 63a) una en cada extremo. La (63a) se une mediante cables o cordones al generador o al másfil .
La figura 1 5a muestra la turbina (60) Formada por dos alelas inclinadas (61 ) una a cada lado del eje del giro (62). Están sujetas por la pieza en forma de manivela (63 y 63a) una en cada extremo. Una de el las se une mediante cables o cordones al generador o al mástil .
La figura 1 6 muestra un campo o granja marítima o terrestre con múltiples turbinas helicoidales ( 3 b) fijadas al fondo del mar o al suelo mediante los bloques de hormigón (8). La flecha indica la dirección del fluido, que en este caso es el mismo para todas las turbinas.
La figura 1 6a muestra un campo o granja marítima o terrestre con múltiples turbinas helicoidales ( 3 b) fijadas al fondo mediante los cables ( 13 s) colocados entre dos puntos (8b y 8e). La flecha indica la dirección del fluido, que en este caso es el mismo para todas las turbinas. Los cables pueden ser los mismos que recogen la corriente eléctrica, debiendo interconeclarse entre silos para facilitar este cometido y eliminar parte del cableado.
La figura 1 7 muestra la turbina ( 1 b) con una aleta hel icoidal (3b) de dimensiones constantes, sujeta a un bloque de cemento (8), que acciona el generador (4) y está unida a otras turbinas en serie mediante la articulación o argollas (22).
La figura 1 8 muestra la turbina ( 1 h) con dos aletas helicoidales (3b), sujeta a un bloque de cemento (8), que acciona el generador (4).
La figura 19 muestra la turbina ( 1 p) constituida por múlti ples etapas o ruedas de paletas, sujeta a un bloque de cemento (8), que acciona el generador (4) y está unida a otras turbinas con la articu lación (22), siendo (28) la línea de unión de las distintas etapas o ruedas de paletas.
La figura i 9a muestra la turbina formada por la viga o pletina helicoidal cónica ( 1 2v), unida al eje del generador (4) el cual al imenta al teléfono móvil (30). El generador está sujeto al collarín (6e) y este a su vez al mástil (7e).
La figura 20 muestra el generador (4), sujeto mediante los eslabones (5) a un punto fijo, en el interior de la carcasa (20), cuyo rotor (27) y eje ( 1 8) gira soportado por los coj inetes de rodillos ( 19) y mediante la cadena (5g) que estaría unida a una turbina, siendo (24) el estator del generador. No se muestran los sellos o juntas que mantienen herméticos los elementos internos del generador. ES multiplicador de rpm es opcional, se usa para turbinas de muy bajas revoluciones.
La figura 20a muestra el generador (4), sujeto mediante los eslabones (5) a un punto fijo, en el interior de la carcasa (20), cuyo eje ( 1 8) gira soportado por los coj inetes de rodillos ( 19) y mediante la cadena (Sg) que estaría unida a una turbina. Es similar al de la figura 20.
Los dibujos reflejan turbinas, las cuales con cambiar el fluido uti lizado y por supuesto sus densidades son válidas para ser usadas con el agua o con el aire.
En todos los casos se relacionan con buques o cetáceos para hacer ostensibles sus medidas relativas. La flecha de trazo grueso muestra el sentido de la corriente íluídica.

Claims

REIVINDICACIONES
1 . Sistema captador de la energía de corrientes fhudicas, utilizando turbinas axiales que tienen una densidad entre el 70% y el 130% de la del fluido en que se mueve, que tienen un extremo libre y el otro, o el de su eje, se sujeta al elemento mecáriico a mover o a un generador eléctrico, directamente o a través de un multiplicador de rpm, a su vez estos se sujetan mediante una pareja de eslabones, una rótula angular, una barra o vari l la, una articulación o bisagra a unos elementos de sujeción clavos, anclas, bloques de hormigón, bolsas de malla rellenas de piedras, postes, árboles, torres, farolas, edificios, montículos, o a un cable o cadena soportados entre dos punios de los mencionados anteriormente, los cuales Ies permiten a las turbinas girar, orientarse en la corriente de flu ido y captar y aprovechar el flujo de dicha corriente, disponiendo de unos dispositivos de control, aviso y seguridad, caracterizado porque las turbinas comprenden unos muelles helicoidales ( 10c, 1 0g, 19v), unas vigas o pletinas torsionadas helicoidalmente ( 12c, 12%'), unas turbinas helicoidales completas ( 1 , 1 a, 1 b, 1 d, 1 m, 1 p) con sus ejes ( 13, 1 3c, 13v) o solo sus aletas (3a, 3 b, 3c, 3d, 3v), los cuales captan la energía del viento o del agua, accionando su eje o extremo de sujeción a un sistema generador eléctrico (4), a un sisíema mecánico, compresor o bomba de agua, cuyos flujos regulados, de estos dos últimos, impulsan a unos motores o turbinas que accionan los generadores, en todos los casos, las aletas alrededor del eje de giro de las turbinas, presentan una incl inación tal, que generan un par de giro en un mismo sentido, Sos generadores solo tienen un pequeño ángulo de giro o inclinación, direccionándose las turbinas automáticamente con el flujo de las corrientes de agua o de aire a modo de veletas.
2. Sistema según reivindicación 1 , caracterizado porque los muelles helicoidales tienen la aleta o el hi lo plano y no tienen eje.
3. Sistema según reivindicación 1 , caracterizado porque los muelles helicoidales están formados por un hilo o aleta de media caña (90c), con la concavidad hacia zona fronlatal.
4. Sistema según reivindicación 1 , caracterizado porque las turbinas axiales son de paletas radiales ( 1 p) y constan de varías ruedas de alabes o paletas.
5. Sistema según reivindicación 1 , caracterizado porque las turbinas (50) están formadas por parejas de aletas triangulares incl inadas (5 1 ) distribuidas alrededor de su eje de giro (52).
6. Sistema según reivindicación 1 , caracterizado porque las turbinas (53) están formadas por parejas de aletas triangulares inclinadas (54) distribuidas alrededor de su eje de giro (55) y sujetas de sus vértices con cables (56).
7. Sistema según reivindicación 1 , caracterizado porque las turbinas (60) están formadas por dos aletas inclinadas (61 ) una a cada lado del eje del giro (62), estando sujetas entre dos piezas en forma de manivela (63 y 63a) una en cada extremo, una de ellas se une mediante cables o cordones al generador o a un elemento metálico,
8. Sistema según reivind icación 1 , caracterizado porque el eje de las turbinas es macizo ( 13).
9. Sistema según reivindicación 1 , caracterizado porque el eje de las turbinas es hueco y lleno de helio o aire.
1 0. Sistema según reivindicación 1 , caracterizado porque el eje de las turbinas es hueco y está lleno de espuma de polímeros plásticos, pol iuretano, polieti leno o PVC reciibiertos con una capa protectora y resistente, que actúan como cometas.
1 1 . Sistema según reivindicación 1 , caracterizado porque las aletas, alabes o turbinas son flexibles.
1 2. Sistema según reivindicación 1 , caracterizado porque las aletas, álabes o turbinas son rígidos.
1 3. Sistema según reivindicación 1 , caracterizado porque las aletas, paletas o ejes de las turbinas son írl fiables
14. S istema según reivindicación 1 , caracterizado porque las turbinas se colocan de forma ordenada, en hileras y columnas
1 5. Sistema según reivindicación 1 , caracterizado porque las turbinas tienen el extremo libre unido a un globo o a un flotador.
1 6. Sistema según reivindicación 1 , caracterizado porque corno dispositivos de aviso o seguridad se utilizan postes que sobresalen del agua o boyas, y se les aplican luces rojas o ámbar estroboscópicas, preferentemente de diodos LF.D.
1 7. Sistema según reivindicación 1 , caracterizado porque como med ios de trasporte de la energía se utiliza un cable conductor para llevar la corriente del positivo, o de la fase sl es corriente alterna, y para el negativo o masa se usa el agua que es conductora.
1 8. Sistema según reivindicación 1 , caracterizado porque las turbinas están formadas por múltiples turbinas en serie o una de gran longitud.
19. Sistema según reivindicación 1 , caracterizado porque se utilizan materiales de baja densidad e inoxidables a base de acero, cinc, hormigón, polímeros, fibras de carbono, vidrio o kevlar con resinas, el acero con una capa protectora de cinc, el plástico se refuerza con grafeno y fibras sintéticas.
20. Sistema según reivind icación 1 , caracterizado porque el movimiento giratorio se aplica a los generadores eléctricos a los que están un idas o a través de unos multiplicadores de rpm.
21 . Sistema según reivindicación 1 , caracterizado porque se usan generadores de múltiples pares de polos,
22. Sistema según reivindicación 1 , caracterizado porque las turbinas sus ejes, aletas o álabes son huecos y flexibles, de lona, y se mantienen inflados con la corriente de aire o agua en la que están inmersos, para lo cual el extremo de la turbina, que está sujeto, porta una boca de entrada del fluido delimitada con un aro (88), el cual se sujeta al cable o al rotor del generador mediante unos cordones (89).
23. Sistema según reivindicación 1 1 , caracterizado porque las aletas o álabes de las turbinas flexibles se inclinan y reducen su superficie de impacto con el aumento de la velocidad del viento o del agua.
24. Sistema según reivindicación 1 , caracterizado porque como elementos mecánicos se usan motobombas para elevar agua.
25. Sistema según reivindicación 1 , caracterizado porque las turbinas, sus ejes o las aletas helicoidales son huecas ínflables y flexibles.
26. Sistema según reivindicación 1 , caracterizado porque las aletas, vigas o pletinas íorsionadas helicoidalmente ( 126) actúan simultáneamente como turbinas y como cables de sujeción.
27. Sistema según reivind icación 26, caracterizado porque las aletas, vigas o pletinas torsionadas helicoidalmente ( 1 26a) que actúan simultáneamente como turbinas y como cables de sujeción, accionan unas bombas en el interior de ias cubiertas cilindricas (56), para lo cual tiene su extremo inferior (57) soportado por unos coj inetes (55), elevando el agua durante su giro y saliendo por un conducto acodado (58).
28. Sistema según reivindicación 1 , caracterizado porque un tramo de las aletas (3v) forma un ángulo (a) respecto al eje de giro (3x) de entre 25° y 55°.
29. Sistema según reivindicación 1 , caracterizado porque un tramo de las aletas (3v) forma un ángulo (§) de entre 0 y 45° respecto a un plano perpendicular al eje de giro (3z).
30. Sistema según reivindicación 3 , caracterizado porque los generadores eléctricos son síncronos y totalmente de imanes permanentes, principalmente de tierras raras de samario -cobalto o de neodimio - hierro-boro.
3 1. S istema según reivindicación 1 , caracterizado porque las turbinas adoptan forma externa cilindrica,
32. Sistema según reivindicación 1 , caracterizado porque las turbinas adoptan forma externa cónica.
33. Sistema según reivi ndicación 1 , caracterizado porque las turbinas tienen igual densidad que el fluido en el que se mueven.
34. Sistema según reivindicación 1 , caracterizado porque las turbinas tienen densidades distintas a la del fluido.
35. Sistema según reivindicación 1 , caracterizado porque la turbina se sujeta a una rotula (6r), y el eje del generador o dispositivo mecánico se conecta al extremo giratorio de la turbina mediante una pareja de engranajes (49r).
36. Sistema según reivindicación 1 , caracterizado porque los generadores eléctricos se conectan a un teléfono móvi l.
37. Sistema según reivindicación 1 , caracterizado porque los generadores eléctricos se conectan a unas resistencias eléctricas ealeíactoras.
PCT/ES2017/000101 2016-08-09 2017-08-30 Sistema captador de la energía de corrientes fluídicas WO2018029387A1 (es)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17838856.7A EP3508717A4 (en) 2016-08-09 2017-08-03 FLUID CURRENT ENERGY CAPTURE SYSTEM
AU2017309337A AU2017309337B2 (en) 2016-08-09 2017-08-30 System for capturing the energy of fluid currents
US16/324,820 US11067055B2 (en) 2016-08-09 2017-08-30 System for capturing the energy of fluid currents
CA3033460A CA3033460A1 (en) 2017-02-15 2017-08-30 Fluid current energy capture system
US17/360,673 US20210363964A1 (en) 2016-08-09 2021-06-28 Energy collecting systems of the marine, river and wind currents

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
ES201600696A ES2653925B1 (es) 2016-08-09 2016-08-09 Sistema captador de energía eólica
ESP201600696 2016-08-09
ES201700136A ES2678994B1 (es) 2017-02-15 2017-02-15 Sistema y procedimiento captador de la energía de corrientes fluídicas
ESP201700136 2017-02-15
ESU201700535 2017-06-23
ES201700535U ES1202036Y (es) 2017-06-23 2017-06-23 Sistema captador de la energía de corrientes fluídicas

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/324,820 A-371-Of-International US11067055B2 (en) 2016-08-09 2017-08-30 System for capturing the energy of fluid currents
US17/360,673 Continuation-In-Part US20210363964A1 (en) 2016-08-09 2021-06-28 Energy collecting systems of the marine, river and wind currents

Publications (2)

Publication Number Publication Date
WO2018029387A1 true WO2018029387A1 (es) 2018-02-15
WO2018029387A8 WO2018029387A8 (es) 2019-06-06

Family

ID=61162979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2017/000101 WO2018029387A1 (es) 2016-08-09 2017-08-30 Sistema captador de la energía de corrientes fluídicas

Country Status (5)

Country Link
US (1) US11067055B2 (es)
EP (1) EP3508717A4 (es)
AU (1) AU2017309337B2 (es)
CL (1) CL2019000290A1 (es)
WO (1) WO2018029387A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023131442A1 (en) 2022-01-07 2023-07-13 Length Wise Energy Production Ike. Power generating mechanism

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190048846A1 (en) * 2017-08-10 2019-02-14 GT Hydrokinetic, LLC Hydrokinetic Turbine Having Helical Tanks
US10823136B2 (en) * 2018-04-27 2020-11-03 Pliant Energy Systems Llc Apparatuses, methods and systems for harnessing the energy of fluid flow to generate electricity or pump fluid
EP3803099A4 (en) * 2018-06-06 2022-03-02 Bondestam, Marten ROTOR
DE102020131271A1 (de) 2020-11-25 2022-05-25 Daniela Neldner Wasserkraftturbine
KR102556109B1 (ko) * 2021-07-19 2023-07-18 정민시 해류발전장치
WO2023003162A1 (ko) * 2021-07-19 2023-01-26 정민시 스크류 구조를 갖는 모듈형 발전장치
KR102610701B1 (ko) * 2021-09-13 2023-12-07 정민시 스크류 구조를 갖는 모듈형 수력 발전장치
CA3228671A1 (en) * 2021-08-13 2023-02-16 Coastal Protection Holdings Corporation Securable device and method for securing the same
US11549479B1 (en) * 2021-10-26 2023-01-10 Ti Yang Co., Ltd. Miniature hydroelectric apparatus
WO2023233050A1 (es) * 2022-05-30 2023-12-07 Munoz Saiz Manuel Mejoras en los sistemas captadores de energía de las corrientes fluídicas

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4084102A (en) * 1976-01-19 1978-04-11 Charles Max Fry Wind driven, high altitude power apparatus
US5040948A (en) * 1990-03-26 1991-08-20 Harburg Rudy W Coaxial multi-turbine generator
WO2009074696A1 (es) * 2007-12-11 2009-06-18 Munoz Saiz Manuel Captador de la energía de las olas del mar
US20100266406A1 (en) * 2008-01-24 2010-10-21 Jan Inge Eielsen Turbine Arrangement
GB2524331A (en) * 2014-03-21 2015-09-23 Flumill As Hydrokinetic energy conversion system and use thereof

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US259860A (en) * 1882-06-20 Eobeet humphbeys
US4708592A (en) * 1985-04-15 1987-11-24 Wind Production Company Helicoidal structures, useful as wind turbines
US4850798A (en) * 1988-11-28 1989-07-25 Bailey Dennis B Modified helicoidal wind responsive device
US8197179B2 (en) * 2001-06-14 2012-06-12 Douglas Spriggs Selsam Stationary co-axial multi-rotor wind turbine supported by continuous central driveshaft
NO20030464L (no) * 2003-01-30 2004-08-02 Flucon As Anordning ved skrueturbin.
US7600963B2 (en) * 2005-08-22 2009-10-13 Viryd Technologies Inc. Fluid energy converter
WO2007139406A1 (en) * 2006-05-25 2007-12-06 Arthur Olszewski A device which converts the energy of flowing water
US7633174B1 (en) * 2007-02-27 2009-12-15 Fred John Feiler Floating water turbine for a power plant
GB2459843A (en) * 2008-05-06 2009-11-11 Darren Arthur Humphries A water turbine assembly having turbines mounted inline on a flexible shaft
GB2474080B (en) * 2009-10-05 2015-09-02 Elemental Engineering Ag Generator
NL2005954C2 (en) * 2010-05-31 2011-12-01 Windchallenge B V Wind turbine.
US20120076656A1 (en) * 2010-09-29 2012-03-29 Abass Omar Nabil Horizontal Axis Logarithmic Spiral Fluid Turbine
US20120211988A1 (en) * 2011-02-23 2012-08-23 Richard Harding Submersible electric power generator system
US8961131B2 (en) * 2011-07-04 2015-02-24 Flumill As Arrangement for extracting energy from flowing liquid
US20130147199A1 (en) * 2011-12-09 2013-06-13 Thomas Zambrano Submerged power-generation system
GB201206197D0 (en) * 2012-04-05 2012-05-23 Greenstick Energy Ltd A mooring device
NL2009233C2 (nl) * 2012-07-26 2014-01-28 Herman Jan Jongejan Schroef, schroefdeel en werkwijze hiervoor.
WO2014106765A1 (fr) * 2013-01-04 2014-07-10 Perrenoud Yvan Turbine a aubes helicoidales
US20150021917A1 (en) * 2013-07-17 2015-01-22 Brian Sellers Power generating apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4084102A (en) * 1976-01-19 1978-04-11 Charles Max Fry Wind driven, high altitude power apparatus
US5040948A (en) * 1990-03-26 1991-08-20 Harburg Rudy W Coaxial multi-turbine generator
WO2009074696A1 (es) * 2007-12-11 2009-06-18 Munoz Saiz Manuel Captador de la energía de las olas del mar
US20100266406A1 (en) * 2008-01-24 2010-10-21 Jan Inge Eielsen Turbine Arrangement
GB2524331A (en) * 2014-03-21 2015-09-23 Flumill As Hydrokinetic energy conversion system and use thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3508717A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023131442A1 (en) 2022-01-07 2023-07-13 Length Wise Energy Production Ike. Power generating mechanism

Also Published As

Publication number Publication date
US20190178224A1 (en) 2019-06-13
EP3508717A1 (en) 2019-07-10
EP3508717A4 (en) 2020-04-15
CL2019000290A1 (es) 2019-04-12
US11067055B2 (en) 2021-07-20
WO2018029387A8 (es) 2019-06-06
AU2017309337A1 (en) 2019-04-04
AU2017309337B2 (en) 2023-07-27

Similar Documents

Publication Publication Date Title
WO2018029387A1 (es) Sistema captador de la energía de corrientes fluídicas
ES2305462T3 (es) Dispositivo para central eolica situada en aguas profundas.
ES2396479T3 (es) Planta productora de energía flotante
ES2582490T3 (es) Procedimientos y medios de instalación y mantenimiento de un sistema de generación de energía por corriente de agua
US8405240B2 (en) Augmented velocity hydro-electric turbine generator
ES2678994B1 (es) Sistema y procedimiento captador de la energía de corrientes fluídicas
US20210363964A1 (en) Energy collecting systems of the marine, river and wind currents
CA3033460A1 (en) Fluid current energy capture system
ES1306386U (es) Sistema captador de energía de las corrientes marítimas, fluviales y eólicas
ES1281979U (es) Mejora en los sistemas captadores de energía de las corrientes marítimas, fluviales, eolicas
ES1286106U9 (es) Sistema captador de energía hidráulica
ES1287020U (es) Mejoras en los sistemas captadores de energía de las corrientes marítimas, fluviales y eólicas
ES2804373B2 (es) Equipo para la obtencion de energia electrica en superficie a partir de la captacion de la energia cinetica de las corrientes en mares y rios
WO2024089301A1 (es) Sistema concentrador y captador de energía eólica
ES2387441A1 (es) Generador flexible de potencia a partir de la energía de las olas.
ES1296490U (es) Sistema concentrador y captador de energía eólica
ES1292464U (es) Sistema captador de energía hidráulica y eólica
ES1298871U (es) Sistema concentrador y captador de energía eólica
ES1208786U (es) Sistema captador de energía eólica y marítimo fluvial
ES1202036U (es) Sistema captador de la energía de corrientes fluídicas
ES1304203U (es) sistemas captadores de energías de las corrientes fluídicas
WO2023233050A1 (es) Mejoras en los sistemas captadores de energía de las corrientes fluídicas
CA3155468A1 (en) Improvements in the energy collecting systems of the marine, river and wind currents
ES1208686U (es) Sistema captador de energía eólica y marítimo fluvial
ES2299361B1 (es) Central acuatica rotativa generadora de electricidad.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17838856

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3033460

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017309337

Country of ref document: AU

Date of ref document: 20170830

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017838856

Country of ref document: EP

Effective date: 20190311