WO2018028701A1 - 随机接入方法、装置、系统、终端和基站 - Google Patents

随机接入方法、装置、系统、终端和基站 Download PDF

Info

Publication number
WO2018028701A1
WO2018028701A1 PCT/CN2017/097247 CN2017097247W WO2018028701A1 WO 2018028701 A1 WO2018028701 A1 WO 2018028701A1 CN 2017097247 W CN2017097247 W CN 2017097247W WO 2018028701 A1 WO2018028701 A1 WO 2018028701A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
type
resources
resource
signals
Prior art date
Application number
PCT/CN2017/097247
Other languages
English (en)
French (fr)
Inventor
刘鹍鹏
曲秉玉
刘建琴
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610978462.XA external-priority patent/CN107734690B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112019002595A priority Critical patent/BR112019002595A2/pt
Priority to EP17838831.0A priority patent/EP3493626B1/en
Priority to JP2019507153A priority patent/JP6833976B2/ja
Priority to KR1020197005882A priority patent/KR102186920B1/ko
Publication of WO2018028701A1 publication Critical patent/WO2018028701A1/zh
Priority to US16/272,705 priority patent/US11382135B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a random access method, apparatus, system, terminal, and base station.
  • the random access (English: Random Access, RA for short) process is a necessary process for establishing a wireless link between a terminal and a network.
  • the terminal and the base station can perform normal data transmission only after the random access procedure is completed.
  • the RA process is generally as follows: the terminal obtains a random access resource and an allocated preamble sequence code set by using a system broadcast message, and then, according to the obtained information, A random access preamble sequence is generated, and a random access preamble is sent to the evolved Node B (English: Evolved Node B, eNB for short) on the corresponding random access resource.
  • the eNB detects the random access channel, and if the eNB detects the random access preamble sequence, sends feedback information to the terminal on the downlink control channel. After transmitting the random access preamble sequence, the terminal detects the feedback information in the downlink control channel in a time window.
  • the terminal indicates that the random access preamble sequence sent by the terminal is detected by the base station.
  • the feedback information further includes an uplink uplink timing advance adjustment amount, and the terminal may obtain uplink synchronization according to the adjustment amount, and further may send uplink resource scheduling request information to perform subsequent data transmission.
  • the eNB transmits data by means of multi-beam scanning or the terminal transmits data by means of multi-beam scanning.
  • the existing random access method cannot be applied.
  • an embodiment of the present invention provides a random access method, device, system, terminal, and base station.
  • the technical solution is as follows:
  • an embodiment of the present invention provides a random access method, where the method includes:
  • the base station configures at least two types of random access resources, where the at least two types of random access resources include a first type of random access resources and a second type of random access resources, and different types of the random access resources are The first type of random access resources are associated with different downlink signal resources, and the second type of random access resources and different downlink signal resources are not associated with each other; Corresponding; or, the first type of random access resources are associated with resources of different downlink signals in a first association manner, The second type of random access resource is associated with the resource of the different downlink signal in a second association manner, where the first association manner is different from the second association manner;
  • the base station receives a random access preamble sent by the terminal by using the first type of random access resource or the second type of random access resource.
  • the method further includes:
  • the base station transmits X first signals and Y second signals, each of the second second signals including random access configuration information, each of the second of each of the second signals
  • the random access configuration information in the signal includes at least one of a first type of random access configuration information and a second type of random access configuration information, where the first type of random access configuration information is used to indicate Z first Corresponding relationship between a type of random access resource and resources of the Z first type of random access resources and the X first signals, where the second type of random access information is used to indicate a second type of random access
  • the resource, or the second type of random access information is used to indicate a correspondence between the Z second type random access resources and the resources of the Z second type random access resources and the X first signals;
  • the first signal is at least one of a downlink synchronization signal, a broadcast signal, or a downlink measurement pilot signal
  • the second signal is a broadcast signal or a system message
  • X, Y, and Z are positive integers, X, Y, Z is greater than 1.
  • the correspondence between the Z first type random access resources and the resources of the X first signals is: X different
  • the first signal corresponds to the time-frequency resources of the Z different first-type random access resources
  • the correspondence between the Z second-type random access resources and the resources of the X first signals is: X different
  • the first signal corresponds to code resources of Z different second type random access resources. That is to say, the first type of random access resource and the second type of random access resource are different from the resources of the X different first signals.
  • the correspondence between the Z first type random access resources and the resources of the X first signals includes: each of the first type random access resources of the first type: Corresponding to one of different resources of the X downlink signals, where the resource is a code resource, a time domain resource or a frequency domain resource;
  • the resource is a code resource, a time domain resource or a frequency domain resource.
  • the correspondence between the Z first type random access resources and the resources of the X first signals includes:
  • Each of the first type of random access resources of the first type of random access resources corresponds to one of different sequences of X downlink synchronization signals;
  • Each of the first type of random access resources of the first type of random access resources corresponds to one of the time domain resources of the different time domain resources of the X downlink synchronization signals;
  • Each of the first type of random access resources of the first type of random access resources corresponds to one frequency domain resource of different frequency domain resources of the X downlink synchronization signals;
  • Each of the first type of random access resources of the first type of random access resources corresponds to a sequence of different sequences of X downlink measurement pilot signals;
  • Each of the first type of random access resources of the first type of random access resources corresponds to one time domain resource of different time domain resources of the X downlink measurement pilot signals;
  • Each of the first type of random access resources of the first type of random access resources corresponds to one frequency domain resource of different frequency domain resources of the X downlink measurement pilot signals;
  • Each of the first type of random access resources of the first type of random access resources corresponds to one of the different scrambling codes of the X broadcast signals;
  • Each of the first type of random access resources of the first type of random access resources corresponds to one of the time domain resources of the different time domain resources of the X broadcast signals;
  • Each of the first type of random access resources of the first type of random access resources corresponds to one frequency domain resource of different frequency domain resources of the X broadcast signals.
  • the resource of each second signal of the resources of the Y second signals corresponds to resources of the X first signals.
  • the direction of the transmission beam corresponding to the first signal and the second signal of the resource is the same.
  • the second signal carrying the first type of random access configuration information and the second signal carrying the second type of random access configuration information are different.
  • the signal, the second signal carrying the second type of random access configuration information, is sent before the second signal carrying the first type of random access configuration information.
  • the second signal carrying the second type of random access configuration information is a signal on the physical broadcast channel PBCH, and the second signal carrying the first type of random access configuration information is an essential SIB; or
  • the second signal carrying the second type of random access configuration information is a signal on the PBCH, and the second signal carrying the first type of random access configuration information is the SIB1; or
  • the second signal carrying the second type of random access configuration information is an essential SIB, and the second signal carrying the first type of random access configuration information is SIB1.
  • the first type of random resource configuration information in each second signal includes all first signals and the first configuration of the cell configuration to which the second signal belongs Corresponding relationship of the type of random access resources, or the first type of random access configuration information in each second signal includes a subset of all first signals and a first type of random access configured by the cell to which the second signal belongs The correspondence of a subset of resources.
  • the first signals belonging to the same subset are transmitted in the same time unit, which is a subframe, a time slot or a minislot.
  • the base station sends the X first signals and the Y second signals, including:
  • the base station periodically transmits the X first signals and the Y second signals, and the base station sends the X first signals and the Y second signals in a beam scanning manner in one cycle. .
  • the X first signals are respectively transmitted by using different beams, and the base station adopts the same receiving direction as the transmitting beam of the first signal.
  • the beam receives a random access preamble transmitted by using a random access resource corresponding to the resource of the first signal.
  • the system parameter of the first type of random access resource and the The system parameters of the second type of random access resources are different, and the system parameters include a subcarrier spacing and a symbol length.
  • the first type of random access resource corresponds to a first type of random access preamble format
  • the second type of random access resource corresponds to a second type of random access preamble format
  • the first type is randomly
  • the format of the access preamble includes a cyclic prefix part and a preamble sequence part, and the preamble part part of the format of the first type random access preamble is composed of a single sequence
  • the format of the second type random access preamble includes a cyclic prefix part and a preamble sequence
  • the part of the preamble sequence of the second type random access preamble is composed of a plurality of repeated sequences
  • the first type of random access resource corresponds to the first type of random access preamble format
  • the second type of random access resource corresponds to the second type of random access preamble format
  • the second type of random access preamble format includes a cyclic prefix portion and a preamble sequence portion, each of which is composed of a single sequence.
  • the length of the single sequence in the format of the first type access preamble is longer than the format of the second type random access preamble
  • the length of a single sequence is large.
  • the form of the transmitting beam of the terminal includes:
  • a random access preamble is transmitted on the second type of random access resources by multiple directional beams.
  • the number of directional beams used by the terminal corresponds to different random preamble sequence groups.
  • the base station receiving, by the terminal, the random access preamble sent by using the first type of random access resource or the second type of random access resource, including :
  • the base station receives, by using a single beam, a random access preamble sent by the terminal on the first type of random access resource;
  • the base station receives, by using multiple beams, a random access preamble sent by the terminal on the second type of random access resources.
  • the method further includes:
  • the base station sends a random access response to the terminal, where the random access response includes indication information for indicating the directional beam that is optimal for the terminal.
  • the first type of random access resource and the first type of random The access response resources are in one-to-one correspondence; the K second type random access resources correspond to a second type random access response resource; wherein K is an integer greater than 1.
  • each of the consecutive consecutive types of the second type of random access resources corresponds to a second type of random access response resource.
  • an embodiment of the present invention provides a random access method, where the method includes:
  • the terminal determines at least two types of random access resources, where the at least two types of random access resources include a first type of random access resources and a second type of random access resources, and different types of the random access resources are End
  • the first type of random access resources are associated with resources of different downlink signals, and the second type of random access resources are not related to resources of different downlink signals.
  • the first type of random access resource is associated with a resource of a different downlink signal in a first association manner
  • the second type of random access resource is in a second association manner with the different downlink signal. Associated with the resource, the first association manner is different from the second association manner;
  • the terminal sends the random access preamble by using the first type of random access resource or the second type of random access resource.
  • the method further includes:
  • each of the second signals includes random access configuration information
  • the random access configuration information in each of the second signals includes At least one of a type of random access configuration information and a second type of random access configuration information
  • the first type of random access configuration information is used to indicate Z first type random access resources and the Z number a correspondence between a type of random access resource and a resource of the X first signals
  • the second type of random access information is used to indicate a second type of random access resource, or the second type of random access
  • the configuration information is used to indicate a correspondence between the Z second type random access resources and the resources of the Z second type random access resources and the X first signals
  • the first signal is at least one of a downlink synchronization signal, a broadcast signal, or a downlink measurement pilot signal
  • the second signal is a broadcast signal or a system message
  • X, Y, and Z are positive integers, X, Y, Z is greater than 1.
  • the correspondence between the Z first type random access resources and the resources of the X first signals is: X different
  • the first signal corresponds to the time-frequency resources of the Z different first-type random access resources
  • the correspondence between the Z second-type random access resources and the resources of the X first signals is: X different
  • the first signal corresponds to code resources of Z different second type random access resources.
  • the correspondence between the Z first type random access resources and the resources of the X first signals includes: each of the first type random access resources of the first type: Corresponding to one of different resources of the X downlink signals, where the resource is a code resource, a time domain resource or a frequency domain resource;
  • the resource is a code resource, a time domain resource or a frequency domain resource.
  • the correspondence between the Z first type random access resources and the resources of the X first signals includes:
  • Each of the first type of random access resources of the first type of random access resources corresponds to one of different sequences of X downlink synchronization signals;
  • Each of the first type of random access resources of the first type of random access resources corresponds to one of the time domain resources of the different time domain resources of the X downlink synchronization signals;
  • Each of the first type of random access resources of the first type of random access resources corresponds to one frequency domain resource of different frequency domain resources of the X downlink synchronization signals;
  • Each of the first type of random access resources of the first type of random access resources corresponds to a sequence of different sequences of X downlink measurement pilot signals;
  • Each of the first type of random access resources of the first type of random access resources corresponds to one frequency domain resource of different frequency domain resources of the X downlink measurement pilot signals;
  • Each of the first type of random access resources of the first type of random access resources corresponds to one of the different scrambling codes of the X broadcast signals;
  • Each of the first type of random access resources of the first type of random access resources corresponds to one of the time domain resources of the different time domain resources of the X broadcast signals;
  • Each of the first type of random access resources of the first type of random access resources corresponds to one frequency domain resource of different frequency domain resources of the X broadcast signals.
  • the resource of each second signal of the resources of the Y second signals corresponds to resources of the X first signals.
  • the direction of the transmission beam corresponding to the first signal and the second signal of the resource is the same.
  • the second signal carrying the first type of random access configuration information and the second signal carrying the second type of random access configuration information are different.
  • the signal, the second signal carrying the second type of random access configuration information, is sent before the second signal carrying the first type of random access configuration information.
  • the second signal carrying the second type of random access configuration information is a signal on the physical broadcast channel PBCH, and the second signal carrying the first type of random access configuration information is an essential SIB; or
  • the second signal carrying the second type of random access configuration information is a signal on the PBCH, and the second signal carrying the first type of random access configuration information is the SIB1; or
  • the second signal carrying the second type of random access configuration information is an essential SIB, and the second signal carrying the first type of random access configuration information is SIB1.
  • the first type of random resource configuration information in each second signal includes all first signals and the first configuration of the cell configuration to which the second signal belongs Corresponding relationship of the type of random access resources, or the first type of random access configuration information in each second signal includes a subset of all first signals and a first type of random access configured by the cell to which the second signal belongs The correspondence of a subset of resources.
  • the first type of random access resource is corresponding to the first type of random access
  • the second type of random access resource corresponds to the second type of random access preamble format
  • the format of the first type of random access preamble includes a cyclic prefix part and a preamble sequence part
  • the format of the first type random access preamble The preamble sequence portion is composed of a single sequence
  • the second type random access preamble format includes a cyclic prefix portion and a preamble sequence portion
  • the preamble portion of the second type random access preamble format is composed of a plurality of repeated sequences Constitute; or,
  • the first type of random access resource corresponds to the first type of random access preamble format
  • the second type of random access resource corresponds to the second type of random access preamble format
  • the second type of random access preamble format includes a cyclic prefix portion and a preamble sequence portion, each of which is composed of a single sequence.
  • the first type The length of a single sequence in the format of the incoming preamble is greater than the length of a single sequence of the format of the second type of random access preamble.
  • the terminal by using the first type of random access resource or the second type of random access resource, sends a random access preamble, including:
  • the first type of random access resource is selected to send the random access preamble through the omnidirectional beam;
  • the second type of random access resource is selected to send the random access preamble through multiple directional beams.
  • the number of directional beams used by the terminal corresponds to different random preamble sequence groups.
  • the method further includes:
  • the terminal receives a random access response sent by the base station, where the random access response includes indication information for indicating the optimal transmit beam of the terminal.
  • the method further includes:
  • the terminal polls the K directional beams to transmit the random access preamble on the K pieces of the second type of random access resources with the same transmit power.
  • the method further includes:
  • the transmit power polls K directional beams on the K random access resources to transmit a random access preamble, where K is an integer greater than one.
  • the first type of random access resource and the first type of random The access response resources are in one-to-one correspondence; the K second type random access resources correspond to a second type random access response resource; wherein K is an integer greater than 1.
  • each of the consecutive consecutive types of the second type of random access resources corresponds to a second type of random access response resource.
  • the random access resource includes at least one of a time-frequency resource, a sequence resource, and a cyclic shift resource for transmitting a random access preamble.
  • an embodiment of the present invention provides a random access device, where the device includes a unit, such as a configuration unit and a sending unit, for implementing the method described in the foregoing first aspect.
  • an embodiment of the present invention provides a random access apparatus, where the AP includes a unit, such as a determining unit and a receiving unit, for implementing the method described in the foregoing second aspect.
  • an embodiment of the present invention provides a random access system, where the system includes: a base station and a terminal,
  • the base station comprises a random access device as provided by any of the above-mentioned third aspect or the third aspect;
  • the terminal comprises a design as may be provided by any one of the fourth aspect or the fourth aspect above Random access device.
  • an embodiment of the present invention provides a base station, where the base station includes: a memory, a processor connected to the memory, where the memory is used to store a software program and a module, where the processor is used to run or execute the storage in the The method of the first aspect can be performed when the software program and the module are in the memory.
  • the embodiment of the present invention further provides a computer readable medium for storing program code for execution by a terminal, the program code comprising instructions for performing the method of the first aspect.
  • an embodiment of the present invention provides a terminal, where the terminal includes: a memory, a processor connected to the memory, where the memory is used to store a software program and a module, where the processor is used to run or execute the storage in the The method of the second aspect can be performed when the software program and the module are in the memory.
  • the embodiment of the present invention further provides a computer readable medium for storing program code for execution by a terminal, the program code comprising instructions for performing the method of the second aspect.
  • FIG. 1 is a schematic structural diagram of a random access system according to an embodiment of the present invention.
  • FIG. 2a is a schematic diagram of an application scenario provided by an embodiment of the present invention.
  • FIG. 2b is a schematic diagram of another application scenario provided by an embodiment of the present invention.
  • FIG. 2c is a schematic diagram of still another application scenario provided by an embodiment of the present invention.
  • FIG. 3 is a hardware structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 4 is a hardware structural diagram of a terminal according to an embodiment of the present invention.
  • FIG. 5a is a flowchart of a random access method according to an embodiment of the present invention.
  • FIG. 5b is a flowchart of a random access method according to an embodiment of the present invention.
  • Figure 6a shows an association between two types of random access resources and a downlink synchronization signal
  • FIG. 6b shows another association relationship between the first type of random access resources and the downlink synchronization signal
  • FIG. 6c shows another association relationship between the first two types of random access resources and the downlink synchronization signal
  • FIG. 7 is a schematic diagram of a format of a first type random access preamble according to an embodiment of the present invention.
  • FIG. 7b is a schematic diagram of a format of a second type random access preamble according to an embodiment of the present disclosure.
  • FIG. 8 is a flowchart of another random access method according to an embodiment of the present invention.
  • FIG. 9a is a schematic diagram showing a relationship between a downlink signal and a first type of random access resource used by a terminal
  • Figure 9b shows the transmit power used by the terminal to transmit the random access preamble in the form of two transmit beams
  • FIG. 10 is a schematic structural diagram of a random access apparatus according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of another random access apparatus according to an embodiment of the present invention.
  • a “module” as referred to herein refers to a program or instruction stored in a memory that is capable of implementing certain functions;
  • "unit” as referred to herein refers to a functional structure that is logically divided, the “unit” may be Pure hardware implementation, or a combination of hardware and software.
  • Multiple as referred to herein means two or more. "and/or”, describing the association relationship of the associated objects, indicating that there may be three relationships, for example, A and/or B, which may indicate that there are three cases where A exists separately, A and B exist at the same time, and B exists separately.
  • the character "/" generally indicates that the contextual object is an "or" relationship.
  • FIG. 1 is a schematic structural diagram of a random access system 100 according to an embodiment of the present application.
  • the random access system 100 can be an LTE system or a 5G system.
  • the random access system 100 includes at least one terminal 120 and at least one base station 140.
  • the terminal 120 can be a personal communication service (English: Personal Communication Service, PCS for short), a cordless telephone, a Session Initiation Protocol (SIP) phone, and a wireless local loop (English: Wireless Local Loop, referred to as WLL) Station, Personal Digital Assistant (English: Personal Digital Assistant, PDA for short).
  • the terminal may also be called a system, a Subscriber Unit, a Subscriber Station, a Mobile Station, a Mobile, a Remote Station, an Access Point, and a remote. Remote Terminal, Access Terminal, User Terminal, User Agent, User Device, or User Equipment.
  • the terminal 120 communicates with one or more access network devices via a radio access network (English: Radio Access Network, RAN for short).
  • a radio access network English: Radio Access Network, RAN for short.
  • the base station 140 serves as a router between the terminal 120 and the rest of the access network, and the rest of the access network may include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may be a base transceiver station in a Global System for Mobile Communication (GSM) or Code Division Multiple Access (CDMA) system (English: Base Transceiver)
  • GSM Global System for Mobile Communication
  • CDMA Code Division Multiple Access
  • BTS may be a base station (NodeB) in Wideband Code Division Multiple Accs (WCDMA) or an eNB in LTE. This application does not limit this.
  • the base station 140 serves the terminal 120.
  • the base station 140 receives and transmits signals by using a multi-beam scanning technique to resist channel attenuation and control signal loss, thereby ensuring signal coverage of the base station.
  • the multi-beam scanning technology refers to that the base station 140 performs signal transmission and reception on different resources along a relatively narrow directional beam through multiple beam control, thereby scanning the coverage area of the base station 140 through the multiple directional beams.
  • the different resources may be frequency domain resources (that is, frequencies).
  • different directional beams may use different frequency bands, or may be time domain resources (ie, time).
  • base station 140 employs four directional beams, namely beam 1, beam 2, beam 3 and Beam 4, as can be seen from the figure, each of the directional beams is aligned with a different portion of the base station 140 coverage area, and the coverage area of the base station 140 is scanned by the plurality of directional beams. It should be noted that the number of the directional beams used by the base station 140 is only an example, and the embodiment of the present invention does not limit this.
  • the base station 140 can use a mechanically controlled directional antenna for signal scanning.
  • the mechanically controlled directional antenna has a relatively narrow directional beam that covers a portion of the coverage area of the base station 140, and the mechanically controlled directional antenna moves over time such that its directional beam is scanned over the coverage area of the base station 140.
  • the base station 140 may also use an array antenna to obtain a directional beam covering a part of the coverage area of the base station by beamforming, and control the directional beam to scan on the coverage area of the base station 140, wherein the beamforming is an antenna array based
  • beamforming generates a directional beam by adjusting the weighting coefficients of each array element in the antenna array, and the beamforming may be an analog beam generated by radio frequency or a digital beam of a baseband.
  • the terminal 120 in the coverage area of the base station 140 needs to establish a wireless connection with the base station 140 through a random access procedure.
  • the random access process may be implemented in the following manner: The base station 140 first configures a random access resource for each directional beam, and sends the configured random access resource information through the system broadcast message, and the terminal detects which directional beam corresponds to the downlink. The signal initiates a random access procedure by using the random access resource corresponding to the directional beam, thereby establishing a wireless connection with the base station 140.
  • the directional beam of base station 140 is not calibrated.
  • Calibration means that the receiving beam and the transmitting beam of the base station have uplink and downlink reciprocity. In this case, the receiving beam in the same direction as the optimal transmitting beam is also optimal.
  • the base station 140 can determine the optimal receive beam based on the optimal transmit beam. If the beam of the base station 140 is not calibrated, the base station 140 cannot determine the optimal receive beam according to the optimal transmit beam.
  • the optimal base station transmit beam is the beam 3. Since the directional beam is not calibrated, the optimal receiving beam may be beam 1 or beam 3. Therefore, the base station 2 cannot adopt the optimal receiving beam to receive the random access preamble sent by the terminal 1, which may eventually lead to the terminal. Random access failed.
  • the terminal 120 is in a high speed mobile state, in which case the terminal 120 will quickly move from the area where the beam 1 is aligned, after the area where the beam 2 and the beam 3 are aligned, to the beam 4. Aligned area, the moving path is as shown by the arrow in FIG. 2b. If the base station 140 receives the data transmitted by the terminal 120 through only one of the four directional beams, it is likely that the random connection sent by the terminal 120 cannot be completely received. The preamble is entered, thereby causing the terminal 120 to fail to establish a wireless connection with the base station 140.
  • the base station 140 provides a service for the terminal 120, where the terminal 120 can transmit signals by means of multi-beam scanning (that is, multiple directional beams are used to transmit the same signal in sequence), or an omnidirectional beam can be used to transmit signals. .
  • the beam gain of the omnidirectional beam 5 is small, the beam gain of the directional beams 1 to 4 is large, and the distance that can be transmitted is further, and therefore, the center of the coverage area of the base station 140 is located.
  • the terminal 120a may transmit data using an omnidirectional beam, and the terminal 120b located at the edge of the coverage area of the base station 140 may transmit data using the directional beam.
  • the terminal 120 may sequentially transmit the random access preamble sequence by using the beam 1, the beam 2, the beam 3, and the beam 4. At this time, if the base station 140 detects the random access preamble only once, it is likely that the random access preamble sent by the terminal 120 is not detected, and the terminal 120 fails to access the random access.
  • the embodiment of the present invention provides a random access method, where a first type of random access resource and a second type of random access resource are associated with resources of different downlink signals, The second type of random access resources are not associated with resources of different downlink signals, or the first type of random access resources and the second type of random access resources are associated with different downlink signal resources in different association manners. Therefore, the terminal can select to send the resource of the random access preamble, so that the base station can receive the random access preamble sent by the terminal in different forms.
  • the first type of random access resource and the second type of random access resource may be in the form of different transmit beams of the terminal, so that the terminal may select a form of the transmit beam according to actual needs, thereby enabling random access performance and access time.
  • the terminal may select a form of the transmit beam according to actual needs, thereby enabling random access performance and access time.
  • the base station and the terminal provided by the embodiment of the present invention are described below in conjunction with a specific hardware structure.
  • FIG. 3 is a block diagram showing the structure of a base station 140 according to an embodiment of the present invention.
  • the base station 140 can include a processor 31 of one or more processing cores, a memory 32 including one or more computer readable storage media, and a transceiver 33, etc., and the processor 31 can use the bus 34 and the memory. 32 is coupled to transceiver 33.
  • the structure illustrated in FIG. 3 does not constitute a limitation to base station 140 and may include more or fewer components than those illustrated, or some components may be combined, or different component arrangements. among them:
  • the processor 31 is the control center of the base station 140, which connects various portions of the entire base station 140 using various interfaces and lines, by running or executing software programs and/or application modules stored in the memory 32, and by calling them stored in the memory 32.
  • the data performs various functions and processing data of the base station 140 to perform overall monitoring of the base station 140.
  • the processor 31 may include one or more processing units, which may be a central processing unit (English: Central Processing Unit, CPU for short) or a network processor (English: Network Processor, NP for short). .
  • the transceiver 33 includes a receiver Rx and a transmitter Tx, and the transceiver 33 can also be implemented as a communication chip.
  • the communication chip can include a receiving module, a transmitting module, a modem module, and the like for modulating and demodulating information. The information is received or transmitted via a wireless signal.
  • the transceiver 33 is controlled by the processor 31.
  • the memory 32 can be used to store various data, such as various configuration parameters, as well as software programs and/or application modules, which can be executed by the processor 31.
  • the memory 32 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system 321 and at least one function of the application module 322, such as a configuration module and a receiving module; the storage data area may be stored according to the base station 140. Use the created data, such as configuration information, the format of the random access preamble, and so on.
  • memory 32 may include high speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device. Accordingly, memory 32 may also include a memory controller to provide access by processor 31 to memory 32.
  • the application module 322 includes at least a configuration module 3221 for configuring resources and a receiving module 3222 for receiving information.
  • the configuration module 3221 is configured to configure at least two types of random access resources, where the at least two types of random access resources include a first type of random access resources and a second type of random access resources, and different types of random access resources.
  • the at least two types of random access resources include a first type of random access resources and a second type of random access resources, and different types of random access resources.
  • the second type of random access resource is associated with the resource of the different downlink signal in a second association manner, where the first association manner is different from the second association manner;
  • the receiving module 3222 is configured to receive a random access preamble sent by the terminal by using the first type of random access resource or the second type of random access resource;
  • the processor 31 is configured to execute each module in the application module 322 to implement the steps required by the base station in FIGS. 5a, 5b, and 8 as follows.
  • FIG. 4 shows a hardware structure of a terminal 120 implemented by an embodiment of the present invention.
  • the terminal 120 may include a radio frequency (English: Radio Frequency, RF for short) circuit 41, a memory 42 including one or more computer readable storage media, an input unit 43, a display unit 44, a sensor 45, The audio circuit 46, the wireless fidelity (WiFi) module 47, the processor 48 including one or more processing cores, and the power supply 49 and the like.
  • RF Radio Frequency
  • the processor 48 is the control center of the terminal 120, connecting various portions of the entire terminal 120 using various interfaces and lines, by running or executing software programs and/or application modules stored in the memory 42, and recalling stored in the memory 42.
  • the data performing various functions and processing data of the terminal 120, thereby performing overall monitoring of the terminal 120.
  • the processor 48 may include one or more processing cores; preferably, the processor 48 may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, a user interface, an application, and the like.
  • the modem processor primarily handles wireless communications. It will be appreciated that the above described modem processor may also not be integrated into processor 48.
  • the RF circuit 41 can be used for transmitting and receiving information or during a call, receiving and transmitting signals, and in particular, receiving downlink information of the base station and processing it by one or more processors 48.
  • the RF circuit 41 includes, but is not limited to, an antenna, at least one amplifier, a tuner, one or more oscillators, a Subscriber Identity Module (SIM) card, a transceiver, a coupler, and a low noise amplifier. :Low Noise Amplifier, abbreviation: LNA), duplexer, etc.
  • SIM Subscriber Identity Module
  • LNA Low Noise Amplifier
  • the RF circuit 41 can also communicate with the network and other devices through wireless communication.
  • the wireless communication may use any communication standard or protocol, including but not limited to the global mobile communication system GSM, General Packet Radio Service (GPRS: GPRS), CDMA, WCDMA, LTE, e-mail, short Message Service (English: Short Messaging Service, referred to as: SMS).
  • GSM Global Mobile communication system
  • GPRS General Packet Radio Service
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • e-mail e-mail
  • SMS Short Messaging Service
  • the memory 42 can be used to store various data, such as various configuration parameters, as well as software programs and/or application modules, which can be executed by the processor 48.
  • the memory 42 may mainly include a storage program area and a storage data area, wherein the storage program area may store the operating system 421 and the application module 422 described by at least one function, such as a determination module and a transmission module; the storage data area may be stored according to the terminal 120. Use the created data, such as configuration information, the format of the random access preamble, and so on.
  • memory 42 may include high speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device. Accordingly, the memory 42 may also include a memory controller, Access to memory 42 is provided by processor 48 and input unit 43.
  • the application module 422 includes at least a determining module 4221 for determining a resource, and a sending module 4222 for transmitting information.
  • the determining module 4221 is configured to determine at least two types of random access resources, where the at least two types of random access resources include a first type of random access resource and a second type of random access resource, and different types of random access resources Corresponding to the different types of transmission beams of the terminal; or, the first type of random access resources are associated with resources of different downlink signals, and the second type of random access resources are not associated with resources of different downlink signals; Or the first type of random access resources are associated with resources of different downlink signals in a first association manner, and the second type of random access resources are related to resources of the different downlink signals in a second association manner.
  • the first association manner is different from the second association manner;
  • the sending module 4222 is configured to send a random access preamble by using a first type of random access resource or a second type of random access resource;
  • the processor 48 is configured to execute the various modules in the application module 422 to implement the steps required by the terminal in FIGS. 5a, 5b, and 8 as follows.
  • FIG. 5a a random access method according to an embodiment of the present invention is shown.
  • the method is implemented by using the system shown in FIG. 1 and is applicable to the scenarios shown in FIG. 2a and FIG. 2b.
  • the method comprises:
  • Step S501a The base station configures at least two types of random access resources.
  • the at least two types of random access resources include a first type of random access resources and a second type of random access resources.
  • the first type of random access resources are associated with resources of different downlink signals, and the second type of random access resources are not associated with resources of different downlink signals.
  • the first type of random access resources may include one or more resources
  • the second type of random access resources may include one or more resources
  • the first type of random access resources are associated with resources of different downlink synchronization signals, and the second type of random access resources are not associated with resources of different downlink synchronization signals as an example.
  • FIG. 6a shows the association between two types of random access resources and downlink synchronization signals.
  • FIG. 6a shows four downlink synchronization signals and four first type random access resources (RACH 1, RACH 2, RACH 3, and RACH 4, respectively), and the four downlink synchronization signals are transmitted through beams 1 to 4, respectively.
  • the first downlink synchronization signal corresponds to the first first type random access resource RACH 1
  • the second downlink synchronization signal corresponds to the second first type random access resource RACH 2
  • the third downlink synchronization signal Corresponding to the third first type random access resource RACH 3, the fourth downlink synchronization signal corresponds to the fourth first type random access resource RACH 4.
  • a second type of random access resource RACH 5 is also shown in Figure 6a, as can be seen in Figure 6a, there is no association between the second type of random access resource RACH 5 and the downlink synchronization signal.
  • the system parameter of the first type of random access resource (English: Numerology) and the system parameter of the second type of random access resource are different, and the system parameter includes a subcarrier spacing and a symbol length. .
  • the configuration refers to determining which resources are used as the first type of random access resources and which resources are used as the second type of random access resources.
  • the random access resource includes a time-frequency resource, a sequence resource, and a loop for sending a random access preamble. Shift at least one of the resources.
  • Step S502a The base station sends downlink signals on different resources by using multiple directional beams.
  • the downlink signals include, but are not limited to, a downlink synchronization signal, a system message, and a downlink measurement pilot signal.
  • downlink signals transmitted through different beams are referred to as different downlink signals.
  • the resource in step S502a may refer to a frequency resource. Different directional beams transmit downlink signals on different frequency bands, for example, beam 1 transmits a downlink signal on frequency band A; beam 2 transmits a downlink signal on frequency band B.
  • the resource in step S502a may also refer to a time resource, and different directional beams transmit downlink signals in different time periods.
  • step S502a may include:
  • the base station sends X first signals and Y second signals, and each of the Y second signals is used to indicate random access configuration information, where the random access configuration information includes the first type of random access Into the configuration information and the second type of random access configuration information, the first type of random access configuration information is used to indicate Z first type random access resources and Z first type random access resources and X first signals Corresponding relationship of resources, the second type of random access information is used to indicate a second type of random access resources;
  • the first signal is at least one of a downlink synchronization signal, a broadcast signal or a downlink measurement pilot signal
  • the second signal is a broadcast signal or a system message
  • X, Y, and Z are positive integers, and X, Y, and Z are all greater than 1.
  • the first type of random resource configuration information in each second signal includes a correspondence between all first signals of the cell configuration to which the second signal belongs and the first type of random access resources; or, in another In an implementation manner, the first type of random access configuration information in each second signal includes a correspondence between a subset of all first signals configured by the cell to which the second signal belongs and a subset of the first type of random access resources. relationship.
  • the first signals belonging to the same subset are transmitted in the same time unit, which is a subframe, a time slot or a mini slot. Since the first signal is transmitted in a beam scanning manner, the transmission beams of the first signal transmitted in the same time unit are relatively close.
  • the terminal may only store the correspondence between the first signal and the first type of random access resources once or several times, and then directly search for the first type of random access corresponding to the resource of the currently received first signal in the saved correspondence. Into the resource.
  • the first type of random access configuration information in each of the second signals may further include configuration information of the first type of random access resources corresponding to the directional beam corresponding thereto, so that the terminal detects which part The second signal, that is, the first random access resource corresponding to the second signal is used to send the random access preamble.
  • the first type of random access configuration information is used to indicate a first type of random access resources corresponding to multiple directional beams and a first type of random access resources corresponding to multiple directional beams and X firsts.
  • the first type of random access configuration information corresponding to each second signal may include only the first random access resource corresponding to the directional beam corresponding to the directional beam, so that the second signal detected by the terminal is adopted.
  • the first random access resource corresponding to the second signal sends a random access preamble.
  • the resource of the first signal may be a code resource (such as a sequence of a line synchronization signal, a scrambling code of a broadcast signal), a time domain resource, or a frequency domain resource.
  • a code resource such as a sequence of a line synchronization signal, a scrambling code of a broadcast signal
  • the correspondence between the Z first type random access resources and the resources of the X first channels/signals include:
  • Each of the first type of random access resources of the first type of random access resources corresponds to one of different sequences of X downlink synchronization signals;
  • Each of the first type of random access resources of the first type of random access resources corresponds to one of the time domain resources of the different time domain resources of the X downlink synchronization signals;
  • Each of the first type of random access resources of the first type of random access resources corresponds to one frequency domain resource of different frequency domain resources of the X downlink synchronization signals;
  • Each of the first type of random access resources of the first type of random access resources corresponds to a sequence of different sequences of X downlink measurement pilot signals;
  • Each of the first type of random access resources of the first type of random access resources corresponds to one time domain resource of different time domain resources of the X downlink measurement pilot signals;
  • Each of the first type of random access resources of the first type of random access resources corresponds to one frequency domain resource of different frequency domain resources of the X downlink measurement pilot signals;
  • Each of the first type of random access resources of the first type of random access resources corresponds to one of the different scrambling codes of the X broadcast signals;
  • Each of the first type of random access resources of the first type of random access resources corresponds to one of the time domain resources of the different time domain resources of the X broadcast signals;
  • Each of the first type of random access resources of the first type of random access resources corresponds to one frequency domain resource of different frequency domain resources of the X broadcast signals.
  • resources of each second signal of the resources of the Y second signals correspond to resources of the X first signals. Therefore, the terminal can determine the resource of the corresponding second signal according to the resource of the first signal.
  • Step S503a The terminal receives the downlink synchronization signal, and performs downlink synchronization with the base station by using the downlink synchronization signal.
  • the downlink synchronization includes time synchronization and frequency synchronization, and the downlink synchronization can prepare for the reception of the subsequent broadcast channel.
  • Step S504a The terminal receives the second signal sent by the base station.
  • the second signal is a broadcast signal or a system message
  • the broadcast signal or system message sent by the base station can be received.
  • the second signal carrying the first type of random access configuration information and the second signal carrying the second type of random access configuration information are the same signal.
  • the second signal carrying the first type of random access configuration information and the second signal carrying the second type of random access configuration information are different signals, and carrying the second type of random access configuration information.
  • the second signal is sent before the second signal carrying the first type of random access configuration information, so that the terminal can access quickly.
  • the second signal carrying the second type of random access configuration information is a signal on the PBCH, and the second signal carrying the first type of random access configuration information is a main system information block (English: essential System Information Block 1, referred to as: essential SIB) ), also known as Remaining System Information (English: Remaining System Information, referred to as: RMSI); or,
  • the second signal carrying the second type of random access configuration information is a signal on the PBCH, and the second signal carrying the first type of random access configuration information is a system information block 1 (English: System Information Block 1, referred to as: SIB1); or,
  • the second signal carrying the second type of random access configuration information is an essential SIB, and the second signal carrying the first type of random access configuration information is SIB1.
  • the essential SIB includes information for initial access.
  • Step S505a The terminal determines a first type of random access resource corresponding to the downlink synchronization signal.
  • the terminal determines, according to the correspondence between the Z first-type random access resources and the resources of the Z first-type random access resources and the X first signals, in the second signal, The first type of random access resources.
  • Step S506a The terminal sends the random access preamble by using the first type random access resource or the second type random access resource.
  • the random access preamble may be sent by using the second type of random access resource.
  • the terminal may use a first type of random access resource to send a random access preamble.
  • step S506a can adopt the following manner:
  • the terminal may send a random access preamble on the first type of random access resource and the second type of access resource, respectively, so that the possibility that the base station receives the random access preamble may be increased;
  • the terminal can detect the moving speed of the terminal. If the terminal detects that the moving speed of the terminal exceeds the set value, the terminal uses the second type of random access resource to send the random access preamble, and if the terminal detects that the moving speed of the terminal does not exceed the setting. When the value is used, the random access preamble is sent by using the first type of random access resource.
  • the speed at which the terminal detects its own movement can be implemented by, for example, detecting the Doppler frequency shift, and can also be implemented by other existing technologies, which is not limited in this application.
  • Step S507a The base station receives a random access preamble sent by the terminal by using the first type of random access resource or the second type of random access resource.
  • step S507a may include:
  • the multiple access beams are used to receive the random access preamble sent by the terminal on the second type of random access resources.
  • different types of random access resources also correspond to the format of the random access preamble.
  • the first type of random access resource corresponds to the first type of random access preamble format
  • the second type of random access resource corresponds to the second type of random access preamble format
  • the format of the first type of random access preamble includes a loop a prefix portion and a preamble portion
  • the preamble portion of the format of the first type random access preamble is composed of a single sequence
  • the format of the second type random access preamble includes a cyclic prefix portion and a preamble portion
  • the second type The preamble portion of the format of the random access preamble consists of a plurality of repeated sequences.
  • the format of the first type random access preamble is as shown in FIG. 7a
  • the format of the second type random access preamble is as shown in FIG. 7b.
  • the format of the first type of random access preamble includes a cyclic prefix portion 71a and a preamble sequence portion 72a, wherein the preamble sequence portion of the format of the first type of random access preamble is composed of a single sequence 73a.
  • the second type of random access preamble format also includes a cyclic prefix portion 71b and a preamble sequence portion 72b, wherein the preamble sequence portion 72b of the second type random access preamble format is composed of multiple weights
  • the complex sequence 73b is constructed. As can be seen from Figures 7a and 7b, the length of a single sequence 73a in the format of the first type of random access preamble may be greater than the length of a single sequence 73b in the format of the second type of random access preamble.
  • each directional beam of the base station may detect one of the multiple repeated sequences, so that the terminal may be completely Receive the random access preamble sent by the terminal.
  • the terminal according to the Z first type random access resources and the Z first type random access resources and the X first in the second signal in the second signal
  • the corresponding relationship between the resources of the signal is used to determine the first type of random access resource corresponding to the downlink signal.
  • the terminal may further determine, according to the preset correspondence between the downlink signal and the first type of random access resource.
  • the first type of random access resource corresponding to the downlink signal For example, the location relationship between the time-frequency resource of the downlink signal and the first type of random access resource may be set by default, and the terminal may directly determine the first type of random access resource corresponding to the downlink signal according to the location relationship. In this case, the second signal does not need to indicate the first type of random access configuration information.
  • the method may further include:
  • Step S508a The base station sends a random access response to the terminal, where the random access response includes indication information for indicating the directional beam that is optimal for the terminal.
  • the first type of random access resources are in one-to-one correspondence with the first type of random access response resources; and the K second type of random access resources are corresponding to a second type of random access response resources; K is an integer greater than one.
  • each K consecutive consecutive types of random access resources of the second type correspond to one second type of random access response resources.
  • FIG. 5b another random access method according to an embodiment of the present invention is shown.
  • the method is implemented by using the system shown in FIG. 1, and is applicable to the scenarios shown in FIG. 2a and FIG. 2b.
  • the method comprises:
  • Step S501b The base station configures at least two types of random access resources.
  • the at least two types of random access resources include a first type of random access resources and a second type of random access resources.
  • the first type of random access resources are associated with different downlink signal resources in a first association manner
  • the second type of random access resources are associated with different downlink signal resources in a second association manner, the first association
  • the way is different from the second way. That is, the first type of random access resources are associated with resources of different downlink signals, and the second type of random access resources are also associated with resources of different downlink signals, which are associated with resources of different downlink signals. The way is different.
  • the first type of random access resources may include one or more random access resources
  • the second type of random access resources may include one or more random access resources.
  • Each of the random access resources includes at least one of a time-frequency resource, a sequence resource, and a cyclic shift resource.
  • the downlink signal in step S501b may be a downlink synchronization signal, a broadcast signal, or a downlink measurement pilot signal. Among them, different downlink signals will be transmitted through different beams.
  • the first association manner includes that time-frequency resources of at least two first-type random access resources corresponding to different downlink signals are different; and the second association manner includes at least two second types of random corresponding to different downlink signals.
  • the time-frequency resources of the access resources are the same, but the sequence resources are different.
  • the first type of random access resource and the second type of random access resource are associated with different downlink synchronization signal resources as an example, for random access resources and The relationship between the resources of the downlink signals will be described in detail.
  • FIG. 6b shows the association between the first type of random access resources and the downlink synchronization signal.
  • FIG. 6b shows four downlink synchronization signals and time-frequency resources of four first-type random access resources (b1, b2, b3, and b4, respectively), and the four downlink synchronization signals are transmitted through beams 1 to 4, respectively.
  • the first downlink synchronization signal corresponds to the time-frequency resource b1 of the first first type random access resource
  • the second downlink synchronization signal corresponds to the time-frequency resource b2 of the second first type random access resource.
  • the third downlink synchronization signal corresponds to the time-frequency resource b3 of the third first type of random access resource
  • the fourth downlink synchronization signal corresponds to the time-frequency resource b4 of the fourth first type of random access resource.
  • FIG. 6c The association relationship between the second type of random access resources and the downlink synchronization signal is shown in FIG. 6c.
  • Four downlink synchronization signals are shown in Figure 6c, which are identical to the four downlink synchronization signals in Figure 6b.
  • the time-frequency resources of the four second-type random access resources are the same, that is, the time-frequency resource b5 corresponds to four sequence resources, and the four sequence resources respectively correspond to the resources of the four downlink synchronization signals. .
  • the system parameter of the first type of random access resource (English: Numerology) and the system parameter of the second type of random access resource are different, and the system parameter includes a subcarrier spacing and a symbol length. .
  • Step S502b The base station sends downlink signals on different resources by using multiple directional beams.
  • the downlink signal sent by the base station includes, but is not limited to, a downlink synchronization signal, a broadcast signal, or a downlink measurement pilot signal. It is easy to know that the base station periodically transmits these downlink signals. In each cycle, the base station first transmits a downlink synchronization signal, and then transmits a system message (or a broadcast signal) and a downlink measurement pilot signal.
  • the resource in step S502b may refer to a frequency resource. Different directional beams transmit downlink signals on different frequency bands, for example, beam 1 transmits a downlink signal on frequency band A; beam 2 transmits a downlink signal on frequency band B.
  • the resource in step S502b may also be a time resource, and different directional beams send downlink signals in different time periods.
  • step S502b may include:
  • the base station sends X first signals and Y second signals, each of the second signals is used to indicate random access configuration information, and random access configuration information in a second signal includes At least one of the first type of random access configuration information and the second type of random access configuration information, where the first type of random access configuration information is used to indicate Z first type random access resources and Z first type random types Corresponding relationship between the access resource and the resources of the X first signals, where the second type of random access information is used to indicate the second type of random access resource, and the second type of random access configuration information is used to indicate Z second types of random access Corresponding relationship between the incoming resource and the resources of the Z second type random access resources and the X first signals;
  • the first signal is at least one of a downlink synchronization signal, a broadcast signal or a downlink measurement pilot signal
  • the second signal is a broadcast signal or a system message
  • X, Y, and Z are positive integers, and X, Y, and Z are all greater than 1.
  • the first type of random resource configuration information in each second signal includes a correspondence between all first signals of the cell configuration to which the second signal belongs and the first type of random access resources; or, in another Species
  • the first type of random access configuration information in each second signal includes a correspondence between a subset of all first signals configured by a cell to which the second signal belongs and a subset of the first type of random access resources.
  • the first signals belonging to the same subset are transmitted in the same time unit, which is a subframe, a time slot or a mini slot. Since the first signal is transmitted in a beam scanning manner, the directions of the transmitting beams of the first signal transmitted in the same time unit are relatively close.
  • the terminal can save the correspondence between the first signal and the first type of random access resources only once or several times (the number of corresponding subsets), and then directly search for the resources of the currently received first signal in the saved correspondence relationship. Corresponding first type of random access resources.
  • the first type of random access configuration information in each of the second signals may further include configuration information of the first type of random access resources corresponding to the directional beam corresponding thereto, so that the terminal detects which part The second signal, that is, the first random access resource corresponding to the second signal is used to send the random access preamble.
  • the resource of the first signal may be a code resource (such as a sequence of a line synchronization signal, a scrambling code of a broadcast signal), a time domain resource, or a frequency domain resource.
  • a code resource such as a sequence of a line synchronization signal, a scrambling code of a broadcast signal
  • Corresponding relationship between the Z first-type random access resources and the resources of the X first signals including: each of the first-type random access resources of the first type of random access resources, and X One of the different resources of the downlink signal corresponds to one.
  • the correspondence between the Z first-type random access resources and the resources of the X first signals includes:
  • Each of the first type of random access resources of the first type of random access resources corresponds to one of different sequences of X downlink synchronization signals;
  • Each of the first type of random access resources of the first type of random access resources corresponds to one of the time domain resources of the different time domain resources of the X downlink synchronization signals;
  • Each of the first type of random access resources of the first type of random access resources corresponds to one frequency domain resource of different frequency domain resources of the X downlink synchronization signals;
  • Each of the first type of random access resources of the first type of random access resources corresponds to a sequence of different sequences of X downlink measurement pilot signals;
  • Each of the first type of random access resources of the first type of random access resources corresponds to one time domain resource of different time domain resources of the X downlink measurement pilot signals;
  • Each of the first type of random access resources of the first type of random access resources corresponds to one frequency domain resource of different frequency domain resources of the X downlink measurement pilot signals;
  • Each of the first type of random access resources of the first type of random access resources corresponds to one of the different scrambling codes of the X broadcast signals;
  • Each of the first type of random access resources of the first type of random access resources corresponds to one of the time domain resources of the different time domain resources of the X broadcast signals;
  • Each of the first type of random access resources of the first type of random access resources corresponds to one frequency domain resource of different frequency domain resources of the X broadcast signals.
  • Corresponding relationship between the Z second type random access resources and the resources of the X first signals including: each of the second type of random access resources, the second type of random access resources, and the X
  • One of the different resources of the downlink signal corresponds to one.
  • resources of each second signal of the resources of the Y second signals correspond to resources of the X first signals. Therefore, the terminal can determine the resource of the corresponding second signal according to the resource of the first signal.
  • the direction of the transmission beam corresponding to the first signal and the second signal of the resource is the same.
  • Step S503b The terminal receives the downlink synchronization signal, and performs downlink synchronization with the base station by using the downlink synchronization signal.
  • Step S504b The terminal receives the second signal sent by the base station.
  • the second signal is a broadcast signal or a system message
  • the broadcast signal or system message sent by the base station can be received.
  • the second signal carrying the first type of random access configuration information and the second signal carrying the second type of random access configuration information are the same signal.
  • the second signal carrying the first type of random access configuration information and the second signal carrying the second type of random access configuration information are different signals, and carrying the second type of random access configuration information.
  • the second signal is sent before the second signal carrying the first type of random access configuration information, so that the terminal can access quickly.
  • the second signal carrying the second type of random access configuration information is a signal on the PBCH, and the second signal carrying the first type of random access configuration information is a main system information block (English: essential System Information Block 1, referred to as: essential SIB) );or,
  • the second signal carrying the second type of random access configuration information is a signal on the PBCH, and the second signal carrying the first type of random access configuration information is a system information block 1 (English: System Information Block 1, referred to as: SIB1); or,
  • the second signal carrying the second type of random access configuration information is an essential SIB, and the second signal carrying the first type of random access configuration information is SIB1.
  • the essential SIB includes information for initial access.
  • Step S505b The terminal determines a first type of random access resource corresponding to the downlink synchronization signal.
  • the terminal determines, according to the correspondence between the Z first-type random access resources and the resources of the Z first-type random access resources and the X first signals, in the second signal, The first type of random access resources.
  • Step S506b The terminal sends the random access preamble by using the first type of random access resource or the second type of random access resource.
  • step S506b For the specific implementation of the step S506b, refer to step S506a, and a detailed description is omitted here.
  • Step S507b The base station receives a random access preamble sent by the terminal by using the first type of random access resource or the second type of random access resource.
  • the X first signals are respectively transmitted by using different beams.
  • the base station receives the random access corresponding to the resource using the first signal by using the same receive beam as the transmit beam direction of the first signal.
  • a random access preamble sent by a resource (a first type of random access resource or a second type of random access resource).
  • step S507b For the related content of step S507b, refer to the foregoing step S507a, and a detailed description is omitted here.
  • Step S508b The base station sends a random access response to the terminal, where the random access response includes indication information for indicating the directional beam that is optimal for the terminal.
  • the first type of random access resources are in one-to-one correspondence with the first type of random access response resources; and the K second type of random access resources are corresponding to a second type of random access response resources; K is an integer greater than one.
  • each K consecutive consecutive types of random access resources of the second type correspond to one second type of random access response resources.
  • the first signal is a downlink synchronization signal as an example.
  • the first signal may also be other downlink signals, such as a pilot signal and a broadcast signal.
  • FIG. 8 another random access method according to an embodiment of the present invention is shown.
  • the method is implemented by using the system shown in FIG. 1 and is applicable to the scenario shown in FIG. 2c. As shown in Figure 8, the method includes:
  • Step S801 The base station configures at least two types of random access resources.
  • the at least two types of random access resources include a first type of random access resources and a second type of random access resources.
  • Different types of random access resources are in the form of different transmit beams of the terminal.
  • the transmit beam of the terminal corresponding to the first type of random access resource is an omnidirectional beam
  • the second type of random access resource is corresponding.
  • the transmit beam of the terminal is in the form of multiple directional beam scans.
  • the first type of random access resources may include one or more resources
  • the second type of random access resources may include one or more resources
  • the configuration refers to determining which resources are used as the first type of random access resources and which resources are used as the second type of random access resources.
  • the random access resource includes at least one of a time-frequency resource, a sequence resource, and a cyclic shift resource for transmitting a random access preamble.
  • Step S802 The base station sends the downlink signal on different resources by using multiple directional beams.
  • step S802 For the specific implementation of the step S802, refer to step S502, and details are not described herein again.
  • Step S803 The terminal receives the downlink signal sent by the base station.
  • the terminal receives the downlink signal transmitted by the beam 3.
  • Step S804 The terminal measures the reference signal receiving power (English: Reference Signal Receiving Power, referred to as: RSRP). If the RSRP is greater than the set threshold, step S805 is performed. If the RSRP is less than or equal to the set threshold, step S806 is performed.
  • RSRP Reference Signal Receiving Power
  • the RSRP is greater than the set threshold, indicating that the terminal is in the central area of the cell, and the RSRP is less than or equal to the set threshold, indicating that the terminal is located in the edge area of the cell.
  • Step S805 The terminal sends a random access preamble on the first type of random access resources by using the omnidirectional beam.
  • the random access preamble can be sent by using the first type of random access resource corresponding to the downlink signal.
  • the terminal since the terminal is located in the central area of the cell, the terminal can select the omnidirectional beam with a smaller beam gain than the directional beam to transmit the random access preamble, so that the base station can receive the random access preamble sent by the terminal. Meet the coverage requirements.
  • Step S806 The terminal sends a random access preamble on the second type of random access resources by using multiple directional beams.
  • the number of directional beams used by the terminal may correspond to different random preamble sequence groups.
  • the correspondence between the number of directional beams and the random preamble sequence group may be pre-configured. For example, when the directional beam used by the terminal When the number of the two is 2, the random preamble sequence that can be used is 1 to 10. When the number of directional beams used by the terminal is 3, the random preamble sequence that can be used is 11 to 20, and so on...
  • the terminal may poll K directional beams on the K second type random access resources with the same transmission power, where K is an integer greater than 1. In order to facilitate the base station to determine the optimal transmit beam of the terminal by using the received signal.
  • the method may further include:
  • Step S807 The base station receives the random access preamble sent by the terminal.
  • the method may further include the step S808: the terminal receives the random access response sent by the base station, where the random access response includes indication information for indicating the optimal transmit beam of the terminal.
  • the method may further include:
  • the transmit power polls K directional beams on the K random access resources to transmit a random access preamble, where K is an integer greater than one.
  • the terminal in the first phase 91, the terminal first polls K directional beams on the K second type random access resources to transmit a random access preamble with the first transmit power; fails to receive the random sequence sent by the base station.
  • the access response so the terminal increases the transmit power in the second phase 92, and polls the K directional beams on the K second type random access resources to transmit the random access preamble with the second transmit power; thereafter, still Receiving the random access response sent by the base station, the terminal increases the transmission power again in the second phase 93, and polls the K directional beams on the K second type random access resources to transmit the random.
  • Access the preamble It is easy to know that the number of times the terminal allows to increase the transmission power can be pre-configured.
  • the K second type random access resources correspond to a second type random access response resource; wherein K is an integer greater than 1.
  • each K consecutive second type of random access resources corresponds to a second type of random access response resource.
  • FIG. 9b after the terminal sends a random access preamble through the directional beam on the four second type random access resources, a second type random access response corresponding to the four second type random access resources is obtained. The random access response is detected on the resource, and if the random access response is not detected.
  • the first type of random access resources are in one-to-one correspondence with the first type of random access response resources.
  • the terminal passes the omnidirectional on a first type of random access resources by using the fourth transmit power 94. After the random access preamble is sent by the beam, the random access response is detected on the first type of random access response resource corresponding to the first type of random access resource, and if the random access response is not detected, the omnidirectional can be increased.
  • Transmitting power of the beam transmitting the random access preamble through the omnidirectional beam on the first type of random access resource again with the fifth transmit power 95, and then responding to the first type of random access corresponding to the first type of random access resource
  • the random access response is detected on the resource; if the random access response is still not detected, the transmit power of the omnidirectional beam may be increased, and the omnidirectional beam is transmitted again on the first type of random access resource by the sixth transmit power 96.
  • the random access preamble is used to detect a random access response on the first type of random access response resource corresponding to the first type of random access resource. It is easy to know that the number of times the terminal allows to increase the transmission power can be pre-configured.
  • the first type of random access resource corresponds to the first type of random access preamble format
  • the second type of random access resource corresponds to the second type of random access preamble format
  • the second type of random access preamble format includes a cyclic prefix part and a preamble sequence part
  • the preamble sequence Parts are composed of a single sequence.
  • the length of a single sequence in the format of the first type of access preamble is greater than the length of a single sequence of the format of the second type of random access preamble.
  • the base station can configure four types of random access resources.
  • an embodiment of the present invention provides a random access device, which may be implemented as all or part of a base station by software, hardware, or a combination of both.
  • the apparatus includes: a configuration unit 601 and a 604 receiving unit 602.
  • the configuration unit 601 is configured to configure at least two types of random access resources, where the at least two types of random access resources include a first type of random access resources and a second type of random access resources, and different types of random access resources. Corresponding to the different types of transmission beams of the terminal; or, the first type of random access resources are associated with resources of different downlink signals, and the second type of random access resources are not associated with resources of different downlink signals; Or, the first type of random access resources are associated with different downlink signal resources in a first association manner, and the second type of random access resources are associated with different downlink signal resources in a second association manner, the first association manner Different from the second association;
  • the receiving unit 602 is configured to receive a random access preamble that is sent by the terminal by using the first type of random access resource or the second type of random access resource.
  • the device further includes:
  • the sending unit 603 is configured to send X first signals and Y second signals, and each of the second second signals includes at least one of random access configuration information, where each second signal
  • the random access configuration information includes at least one of a first type of random access configuration information and a second type of random access configuration information, where the first type of random access configuration information is used to indicate Z first types of random access resources and Corresponding relationship between the Z first-type random access resources and the resources of the X first signals, where the second type of random access information is used to indicate the second type of random access resources, or the second type of random access information is used. Corresponding relationship between the Z second type random access resources and the resources of the Z second type random access resources and the X first signals;
  • the first signal is at least one of a downlink synchronization signal, a broadcast signal or a downlink measurement pilot signal
  • the second signal is a broadcast signal or a system message
  • X, Y, and Z are positive integers, and X, Y, and Z are all greater than 1.
  • the receiving unit 602 may be configured to:
  • the multiple access beams are used to receive the random access preamble sent by the terminal on the second type of random access resources.
  • the device further includes:
  • the sending unit 603 is configured to send a random access response to the terminal, where the random access response includes indication information for indicating the optimal directional beam of the terminal.
  • the first type of random access resources are in one-to-one correspondence with the first type of random access response resources; and the K second type of random access resources are corresponding to a second type of random access response resources; K is an integer greater than one.
  • each K consecutive second type of random access resources corresponds to a second type of random access response resource.
  • the foregoing sending unit 603 may be implemented by a transmitter, or the processor may be implemented by using a transmitter; the receiving unit 602 may be implemented by a receiver Rx, or the processor may be implemented by using a receiver; the configuration unit 601 may be configured by The processor implements, or the processor executes program instructions in memory to implement.
  • an embodiment of the present invention provides a random access device, which may be implemented as all or part of a terminal by software, hardware, or a combination of both.
  • the apparatus includes a determining unit 701 and a transmitting unit 702.
  • the determining unit 701 is configured to determine at least two types of random access resources, where the at least two types of random access resources include a first type of random access resource and a second type of random access resource, and different types of random access resources Corresponding to the different types of transmission beams of the terminal; or, the first type of random access resources are associated with resources of different downlink signals, and the second type of random access resources are not associated with resources of different downlink signals; Or the first type of random access resources are associated with resources of different downlink signals in a first association manner, and the second type of random access resources are related to resources of the different downlink signals in a second association manner.
  • the first association manner is different from the second association manner;
  • the sending unit 702 is configured to send a random access preamble by using a first type of random access resource or a second type of random access resource.
  • the device further includes:
  • the receiving unit 703 is configured to receive the first signal and the second signal sent by the base station, where each second signal of the second signal includes random access configuration information, and the random access configuration information in each second signal includes the first At least one of the type of random access configuration information and the second type of random access configuration information, where the first type of random access configuration information is used to indicate Z first type random access resources and Z first type random accesses Corresponding relationship between the resource and the resources of the X first signals, the second type of random access information is used to indicate the second type of random access resources, or the second type of random access configuration information is used to indicate the Z second Corresponding relationship between the type of random access resources and the resources of the Z second type of random access resources and the X first signals;
  • the first signal is at least one of a downlink synchronization signal, a broadcast signal or a downlink measurement pilot signal
  • the second signal is a broadcast signal or a system message
  • X, Y, and Z are positive integers, and X, Y, and Z are all greater than 1.
  • the sending unit 702 can be used to:
  • the first type of random access resource is selected to send the random access preamble through the omnidirectional beam;
  • the second type of random access resource is selected to send the random access preamble through multiple directional beams.
  • the number of directional beams used by the terminal corresponds to different random preamble sequence groups.
  • the device further includes:
  • the receiving unit 703 is configured to receive a random access response sent by the base station, where the random access response includes indication information used to indicate the optimal transmit beam of the terminal.
  • the sending unit 702 is further configured to:
  • the K directional beams are polled on the K second type random access resources with the same transmit power to transmit a random access preamble.
  • sending unit 702 is further configured to:
  • the first type of random access resources are in one-to-one correspondence with the first type of random access response resources; and the K second type of random access resources are corresponding to a second type of random access response resources; K is an integer greater than one.
  • each K consecutive second type of random access resources corresponds to a second type of random access response resource.
  • the foregoing sending unit 703 may be implemented by a transmitter, or the processor may be implemented by using a transmitter; the receiving unit 702 may be implemented by a receiver Rx, or the processor may be implemented by using a receiver; the determining unit 701 may be configured by The processor implements, or the processor executes program instructions in memory to implement.
  • the random access device provided by the foregoing embodiment performs random access
  • only the division of each functional unit described above is used for example.
  • the function distribution may be completed by different functional modules as needed.
  • the internal information structure of the device and system is divided into different functional modules to perform all or part of the functions described above.
  • the random access device, the random access system, and the random access method are provided in the same embodiment, and the specific implementation process is described in detail in the method embodiment, and details are not described herein again.
  • a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种随机接入方法、装置、系统、终端和基站,属于通信技术领域。该方法包括:基站配置至少两种类型的随机接入资源,所述至少两种类型的随机接入资源包括第一类型随机接入资源和第二类型随机接入资源,不同类型的随机接入资源与终端的不同的发送波束的形式一一对应;或者,第一类型随机接入资源与不同的下行信号的资源相关联,第二类型随机接入资源与不同的下行信号的资源不相关联;或者,第一类型随机接入资源和第二类型随机接入资源以不同的关联方式与不同的下行信号的资源相关联;基站接收终端采用第一类型随机接入资源或第二类型随机接入资源发送的随机接入前导。

Description

随机接入方法、装置、系统、终端和基站
本申请要求于2016年11月4日提交中国专利局、申请号为201610978462.X、申请名称为“随机接入方法、装置、系统、终端和基站”的中国专利申请和于2016年8月12日提交中国专利局、申请号为201610670239.9、申请名称为“随机接入方法、装置、系统、终端和基站”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别涉及一种随机接入方法、装置、系统、终端和基站。
背景技术
随机接入(英文:Random Access,简称:RA)过程是终端与网络之间建立无线链路的必经过程。只有在随机接入过程完成之后,终端和基站才能进行正常的数据传输。
在长期演进(英文:Long Term Evolution,简称:LTE)系统中,RA过程通常如下:终端通过系统广播消息获得进行随机接入的资源和所分配的前导序列码集合,然后根据所获得的信息,生成随机接入前导序列,并在相应的进行随机接入的资源上向演进型节点B(英文:Evolved Node B,简称:eNB)发送随机接入前导。eNB对随机接入信道进行检测,如果eNB检测到了随机接入前导序列,则在下行控制信道上向终端发送反馈信息。终端在发送随机接入前导序列后,在一个时间窗口内检测下行控制信道中的反馈信息,如果检测到了相应的反馈信息,则说明终端发送的随机接入前导序列被基站所检测到。该反馈信息中还包括了终端上行定时提前调整量,终端根据该调整量可以获得上行同步,进而可以发送上行资源调度请求信息,进行后续的数据传输。
目前,出现了eNB采用多波束扫描的方式传输数据或者终端采用多波束扫描的方式发送数据的场景,在这类场景中,现有的随机接入方式无法适用。
发明内容
为了解决现有技术的问题,本发明实施例提供了一种随机接入方法、装置、系统、终端和基站。所述技术方案如下:
第一方面,本发明实施例提供了一种随机接入方法,所述方法包括:
基站配置至少两种类型的随机接入资源,所述至少两种类型的随机接入资源包括第一类型随机接入资源和第二类型随机接入资源,不同类型的所述随机接入资源与终端的不同的发送波束的形式一一对应;或者,所述第一类型随机接入资源与不同的下行信号的资源相关联,所述第二类型随机接入资源与不同的下行信号的资源不相关联;或者,所述第一类型随机接入资源以第一关联方式与不同的下行信号的资源相关联, 所述第二类型随机接入资源以第二关联方式与所述不同的下行信号的资源相关联,所述第一关联方式与所述第二关联方式不同;
基站接收终端采用所述第一类型随机接入资源或所述第二类型随机接入资源发送的随机接入前导。
结合第一方面,在第一方面的第一实现方式中,所述方法还包括:
基站发送X个第一信号和Y个第二信号,所述Y个第二信号中的每一个第二信号包括随机接入配置信息,每个所述第二信号中的每个所述第二信号中的所述随机接入配置信息包括第一类型随机接入配置信息和第二类型随机接入配置信息中的至少一种,所述第一类型随机接入配置信息用于指示Z个第一类型随机接入资源以及所述Z个第一类型随机接入资源与所述X个第一信号的资源的对应关系,所述第二类型随机接入信息用于指示第二类型随机接入资源,或者所述第二类型随机接入信息用于指示Z个第二类型随机接入资源和所述Z个第二类型随机接入资源与X个第一信号的资源的对应关系;
其中,所述第一信号为下行同步信号、广播信号或下行测量导频信号中的至少一个,所述第二信号为广播信号或者系统消息,X、Y、Z为正整数,X、Y、Z均大于1。
结合第一方面的第一实现方式,在第一方面的第二实现方式中,所述Z个第一类型随机接入资源与所述X个第一信号的资源的对应关系为,X个不同的第一信号对应于Z个不同的第一类型随机接入资源的时频资源;所述Z个第二类型随机接入资源与X个第一信号的资源的对应关系为,X个不同的第一信号对应于Z个不同的第二类型随机接入资源的码资源。也就是说,第一类型随机接入资源与第二类型随机接入资源与X个不同的第一信号的资源的关联方式不同。
进一步地,所述Z个第一类型随机接入资源与所述X个第一信号的资源的对应关系,包括:Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个下行信号的不同资源中的一个资源相对应,所述资源为码资源、时域资源或频域资源;
所述Z个第二类型随机接入资源与所述X个第一信号的资源的对应关系,包括:Z个第二类型随机接入资源中的每一个第二类型随机接入资源、与X个下行信号的不同资源中的一个资源相对应,所述资源为码资源、时域资源或频域资源。
更进一步地,所述Z个第一类型随机接入资源与所述X个第一信号的资源的对应关系,包括:
Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个下行同步信号的不同序列中的一个序列相对应;或者,
Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个下行同步信号的不同时域资源中的一个时域资源相对应;或者,
Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个下行同步信号的不同频域资源的一个频域资源相对应;或者,
Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个下行测量导频信号的不同序列的一个序列相对应;或者,
Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个下行测量导频信号的不同时域资源的一个时域资源相对应;或者,
Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个下行测量导频信号的不同频域资源的一个频域资源相对应;或者,
Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个广播信号的不同扰码中的一个扰码相对应;或者,
Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个广播信号的不同时域资源中的一个时域资源相对应;或者,
Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个广播信号的不同频域资源的一个频域资源相对应。
结合第一方面的第二实现方式,在第一方面的第三实现方式中,所述Y个第二信号的资源的每一个第二信号的资源、与X个第一信号的资源对应。
进一步地,资源相对应的第一信号和第二信号的发送波束的方向相同。
结合第一方面的第二实现方式,在第一方面的第四实现方式中,携带第一类型随机接入配置信息的第二信号和携带第二类型随机接入配置信息的第二信号为不同的信号,携带第二类型随机接入配置信息的第二信号在携带第一类型随机接入配置信息的第二信号之前发送。
进一步地,携带第二类型随机接入配置信息的第二信号为物理广播信道PBCH上的信号,携带第一类型随机接入配置信息的第二信号为essential SIB;或者,
携带第二类型随机接入配置信息的第二信号为PBCH上的信号,携带第一类型随机接入配置信息的第二信号为SIB1;或者,
携带第二类型随机接入配置信息的第二信号为essential SIB,携带第一类型随机接入配置信息的第二信号为SIB1。
结合第一方面的第二实现方式,在第一方面的第五实现方式中,每个第二信号中第一类型随机资源配置信息包括该第二信号所属小区配置的所有第一信号和第一类型随机接入资源的对应关系,或者,每个第二信号中的第一类型随机接入配置信息包括该第二信号所属小区配置的所有的第一信号的子集和第一类型随机接入资源的子集的对应关系。
进一步地,属于相同子集的第一信号在同一时间单元内发送,所述时间单元为子帧、时隙或微时隙。
结合第一方面的第二实现方式,在第一方面的第六实现方式中,所述基站发送X个第一信号和Y个第二信号,包括:
基站周期性发送所述X个第一信号和所述Y个第二信号,且所述基站在一个周期内,以波束扫描的方式发送所述X个第一信号和所述Y个第二信号。
结合第一方面的第六实现方式,在第一方面的第七实现方式中,所述X个第一信号分别采用不同的波束发送,所述基站采用与第一信号的发送波束方向相同的接收波束接收采用所述第一信号的资源对应的随机接入资源发送的随机接入前导。
结合第一方面或者第一方面的第一实现方式至第七实现方式中的任一种,在第一方面的第八实现方式中,所述第一类型随机接入资源的系统参数和所述第二类型随机接入资源的系统参数不同,所述系统参数包括子载波间隔和符号长度。
结合第一方面或者第一方面的第一实现方式至第七实现方式中的任一种,在第一 方面的第九实现方式中,所述第一类型随机接入资源对应第一类型随机接入前导格式,所述第二类型随机接入资源对应第二类型随机接入前导格式,第一类型随机接入前导的格式包括循环前缀部分和前导序列部分,第一类型随机接入前导的格式的前导序列部分由单个序列构成;所述第二类型随机接入前导的格式包括循环前缀部分和前导序列部分,所述第二类型随机接入前导的格式的前导序列部分由多个重复的序列构成;或者,
所述第一类型随机接入资源对应第一类型随机接入前导格式,所述第二类型随机接入资源对应第二类型随机接入前导格式,第一类型随机接入前导的格式和所述第二类型随机接入前导格式均包括循环前缀部分和前导序列部分,所述前导序列部分均由单个序列构成。
结合第一方面的第九实现方式,在第一方面的第十实现方式中,所述第一类型接入前导的格式中的单个序列的长度比所述第二类型随机接入前导的格式的单个序列的长度大。
结合第一方面或者第一方面的第一实现方式至第七实现方式中的任一项,在第一方面的第十一实现方式中,所述终端发送波束的形式包括:
通过全向波束在第一类型随机接入资源上发送随机接入前导;或者,
通过多个定向波束在第二类型随机接入资源上发送随机接入前导。
结合第一方面的第十一实现方式,在第一方面的第十二实现方式中,所述终端采用的定向波束的个数对应不同的随机前导序列组。
结合第一方面,在第一方面的第十三实现方式中,所述基站接收终端采用所述第一类型随机接入资源或所述第二类型随机接入资源发送的随机接入前导,包括:
基站采用单个波束接收所述终端在所述第一类型随机接入资源上发送的随机接入前导;或者,
基站采用多个波束轮流接收所述终端在所述第二类型随机接入资源上发送的随机接入前导。
结合第一方面的第十三实现方式,在第一方面的第十四实现方式中,所述方法还包括:
基站向所述终端发送随机接入应答,所述随机接入应答包括用于指示所述终端最优的定向波束的指示信息。
结合第一方面或者第一方面的第一实现方式至第七实现方式中的任一种,在第一方面的第十五实现方式中,所述第一类型随机接入资源与第一类型随机接入应答资源一一对应;K个所述第二类型随机接入资源与一个第二类型随机接入应答资源对应;其中,K为大于1的整数。
结合第一方面的第十五实现方式,在第一方面的第十六实现方式中,每K个连续的所述第二类型的随机接入资源对应一个第二类型随机接入应答资源。
第二方面,本发明实施例提供了一种随机接入方法,所述方法包括:
终端确定至少两种类型的随机接入资源,所述至少两种类型的随机接入资源包括第一类型随机接入资源和第二类型随机接入资源,不同类型的所述随机接入资源与终 端的不同的发送波束的形式一一对应;或者,所述第一类型随机接入资源与不同的下行信号的资源相关联,所述第二类型随机接入资源与不同的下行信号的资源不相关联;或者,所述第一类型随机接入资源以第一关联方式与不同的下行信号的资源相关联,所述第二类型随机接入资源以第二关联方式与所述不同的下行信号的资源相关联,所述第一关联方式与所述第二关联方式不同;
终端采用所述第一类型随机接入资源或所述第二类型随机接入资源发送随机接入前导。
结合第二方面,在第二方面的第一实现方式中,所述方法还包括:
终端接收基站发送的第一信号和第二信号,所述第二信号中的每一个第二信号包括随机接入配置信息,每个所述第二信号中的所述随机接入配置信息包括第一类型随机接入配置信息和第二类型随机接入配置信息中的至少一种,所述第一类型随机接入配置信息用于指示Z个第一类型随机接入资源以及所述Z个第一类型随机接入资源与所述X个第一信号的资源的对应关系,所述第二类型随机接入信息用于指示第二类型随机接入资源,或者,所述第二类型随机接入配置信息用于指示Z个第二类型随机接入资源以及所述Z个第二类型随机接入资源与所述X个第一信号的资源的对应关系;
其中,所述第一信号为下行同步信号、广播信号或下行测量导频信号中的至少一个,所述第二信号为广播信号或者系统消息,X、Y、Z为正整数,X、Y、Z均大于1。
结合第二方面的第一实现方式,在第二方面的第二实现方式中,所述Z个第一类型随机接入资源与所述X个第一信号的资源的对应关系为,X个不同的第一信号对应于Z个不同的第一类型随机接入资源的时频资源;所述Z个第二类型随机接入资源与X个第一信号的资源的对应关系为,X个不同的第一信号对应于Z个不同的第二类型随机接入资源的码资源。
进一步地,所述Z个第一类型随机接入资源与所述X个第一信号的资源的对应关系,包括:Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个下行信号的不同资源中的一个资源相对应,所述资源为码资源、时域资源或频域资源;
所述Z个第二类型随机接入资源与所述X个第一信号的资源的对应关系,包括:Z个第二类型随机接入资源中的每一个第二类型随机接入资源、与X个下行信号的不同资源中的一个资源相对应,所述资源为码资源、时域资源或频域资源。
更进一步地,所述Z个第一类型随机接入资源与所述X个第一信号的资源的对应关系,包括:
Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个下行同步信号的不同序列中的一个序列相对应;或者,
Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个下行同步信号的不同时域资源中的一个时域资源相对应;或者,
Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个下行同步信号的不同频域资源的一个频域资源相对应;或者,
Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个下行测量导频信号的不同序列的一个序列相对应;或者,
Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个下行测量 导频信号的不同时域资源的一个时域资源相对应;或者,
Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个下行测量导频信号的不同频域资源的一个频域资源相对应;或者,
Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个广播信号的不同扰码中的一个扰码相对应;或者,
Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个广播信号的不同时域资源中的一个时域资源相对应;或者,
Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个广播信号的不同频域资源的一个频域资源相对应。
结合第二方面的第二实现方式,在第二方面的第三实现方式中,所述Y个第二信号的资源的每一个第二信号的资源、与X个第一信号的资源对应。
进一步地,资源相对应的第一信号和第二信号的发送波束的方向相同。
结合第二方面的第二实现方式,在第二方面的第四实现方式中,携带第一类型随机接入配置信息的第二信号和携带第二类型随机接入配置信息的第二信号为不同的信号,携带第二类型随机接入配置信息的第二信号在携带第一类型随机接入配置信息的第二信号之前发送。
进一步地,携带第二类型随机接入配置信息的第二信号为物理广播信道PBCH上的信号,携带第一类型随机接入配置信息的第二信号为essential SIB;或者,
携带第二类型随机接入配置信息的第二信号为PBCH上的信号,携带第一类型随机接入配置信息的第二信号为SIB1;或者,
携带第二类型随机接入配置信息的第二信号为essential SIB,携带第一类型随机接入配置信息的第二信号为SIB1。
结合第二方面的第二实现方式,在第二方面的第五实现方式中,每个第二信号中第一类型随机资源配置信息包括该第二信号所属小区配置的所有第一信号和第一类型随机接入资源的对应关系,或者,每个第二信号中的第一类型随机接入配置信息包括该第二信号所属小区配置的所有的第一信号的子集和第一类型随机接入资源的子集的对应关系。
结合第二方面或者第一方面的第一实现方式至第五实现方式中的任一项,在第二方面的第六实现方式中,所述第一类型随机接入资源对应第一类型随机接入前导格式,所述第二类型随机接入资源对应第二类型随机接入前导格式,第一类型随机接入前导的格式包括循环前缀部分和前导序列部分,第一类型随机接入前导的格式的前导序列部分由单个序列构成;所述第二类型随机接入前导的格式包括循环前缀部分和前导序列部分,所述第二类型随机接入前导的格式的前导序列部分由多个重复的序列构成;或者,
所述第一类型随机接入资源对应第一类型随机接入前导格式,所述第二类型随机接入资源对应第二类型随机接入前导格式,第一类型随机接入前导的格式和所述第二类型随机接入前导格式均包括循环前缀部分和前导序列部分,所述前导序列部分均由单个序列构成。
结合第二方面的第六实现方式,在第二方面的第七实现方式中,所述第一类型接 入前导的格式中的单个序列的长度比所述第二类型随机接入前导的格式的单个序列的长度大。
结合第二方面,在第二方面的第八实现方式中,所述终端采用所述第一类型随机接入资源或所述第二类型随机接入资源发送随机接入前导,包括:
当终端测得的参考信号接收功率大于设定门限的时候,选择第一类型随机接入资源通过全向波束发送随机接入前导;或者,
当终端测得的参考信号接收功率小于或等于所述设定门限的时候,选择第二类型随机接入资源通过多个定向波束发送随机接入前导。
结合第二方面的第八实现方式,在第二方面的第九实现方式中,所述终端采用的定向波束的个数对应不同的随机前导序列组。
结合第二方面的第八实现方式,在第二方面的第十实现方式中,所述方法还包括:
终端接收基站发送的随机接入应答,所述随机接入应答包括用于指示所述终端最优的发送波束的指示信息。
结合第二方面的第八实现方式,在第二方面的第十一实现方式中,所述方法还包括:
终端以相同的发射功率在K个所述第二类型随机接入资源上轮询K个定向波束发送随机接入前导。
结合第二方面的第十一实现方式,在第二方面的第十二实现方式中,所述方法还包括:
在终端以相同的发射功率在K个所述第二类型随机接入资源上轮询K个定向波束发送随机接入前导之后,若终端未能接收到随机接入应答,增加发射功率再以相同的发射功率在K个所述随机接入资源上轮询K个定向波束发送随机接入前导,其中,K为大于1的整数。
结合第二方面或者第二方面的第一实现方式至第五实现方式中的任一项,在第二方面的第十三实现方式中,所述第一类型随机接入资源与第一类型随机接入应答资源一一对应;K个所述第二类型随机接入资源与一个第二类型随机接入应答资源对应;其中,K为大于1的整数。
结合第二方面的第十二实现方式,在第二方面的第十四实现方式中,每K个连续的所述第二类型的随机接入资源对应一个第二类型随机接入应答资源。
在第一方面和第二方面中,所述随机接入资源包括用于发送随机接入前导的时频资源、序列资源、循环移位资源中的至少一个。
第三方面,本发明实施例提供了一种随机接入装置,所述装置包括用于实现上述第一方面所述的方法的单元,例如配置单元、发送单元。
第四方面,本发明实施例提供了一种随机接入装置,所述AP包括用于实现上述第二方面所述的方法的单元,例如确定单元、接收单元。
第五方面,本发明实施例提供了一种随机接入系统,所述系统包括:基站和终端, 所述基站包括如上述第三方面或第三方面中任意一种可能的设计所提供的随机接入装置;所述终端包括如上述第四方面或第四方面中任意一种可能的设计所提供的随机接入装置。
第六方面,本发明实施例提供了一种基站,所述基站包括:存储器、与存储器连接的处理器,所述存储器用于存储软件程序以及模块,当所述处理器用于运行或执行存储在所述存储器内的软件程序以及模块时,可以执行第一方面所述的方法。
第七方面,本发明实施例还提供了一种计算机可读介质,用于存储供终端执行的程序代码,所述程序代码包括执行第一方面所述的方法的指令。
第八方面,本发明实施例提供了一种终端,所述终端包括:存储器、与存储器连接的处理器,所述存储器用于存储软件程序以及模块,当所述处理器用于运行或执行存储在所述存储器内的软件程序以及模块时,可以执行第二方面所述的方法。
第九方面,本发明实施例还提供了一种计算机可读介质,用于存储供终端执行的程序代码,所述程序代码包括执行第二方面所述的方法的指令。
附图说明
图1是本发明实施例提供的一种随机接入系统的结构示意图;
图2a是本发明实施例提供的一种应用场景示意图;
图2b是本发明实施例提供的另一种应用场景示意图;
图2c是本发明实施例提供的又一种应用场景示意图;
图3是本发明实施例提供的一种基站的硬件结构图;
图4是本发明实施例提供的一种终端的硬件结构图;
图5a是本发明实施例提供的一种随机接入方法的流程图;
图5b是本发明实施例提供的一种随机接入方法的流程图;
图6a显示了两种类型的随机接入资源与下行同步信号的一种关联关系;
图6b显示了第一类型的随机接入资源与下行同步信号的另一种关联关系;
图6c显示了第一二类型的随机接入资源与下行同步信号的另一种关联关系;
图7a是本发明实施例提供的第一类型随机接入前导的格式示意图;
图7b是本发明实施例提供的第二类型随机接入前导的格式示意图;
图8是本发明实施例提供的另一种随机接入方法的流程图;
图9a显示了下行信号与终端使用的第一类型随机接入资源的关系示意图;
图9b显示了终端采用两种发送波束的形式发送随机接入前导所采用的发射功率;
图10是本发明实施例提供的一种随机接入装置的结构示意图;
图11是本发明实施例提供的另一种随机接入装置的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
在本文提及的“模块”是指存储在存储器中的能够实现某些功能的程序或指令;在本文中提及的“单元”是指按照逻辑划分的功能性结构,该“单元”可以由纯硬件实现,或者,软硬件的结合实现。
在本文中提及的“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
图1示出了本申请一个实施例提供的随机接入系统100的结构示意图。该随机接入系统100可以是LTE系统或5G系统。该随机接入系统100包括:至少一个终端120和至少一个基站140。
终端120可以是个人通信业务(英文:Personal Communication Service,简称PCS)电话、无绳电话、会话发起协议(英文:Session Initial Protocol,简称:SIP)话机、无线本地环路(英文:Wireless Local Loop,简称WLL)站、个人数字助理(英文:Personal Digital Assistant,简称:PDA)等设备。终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、接入点(Access Point)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device)、或用户装备(User Equipment)。
终端120经无线接入网(英文:Radio Access Network,简称:RAN)与一个或多个接入网设备进行通信。
基站140作为终端120与接入网的其余部分之间的路由器,接入网的其余部分可包括网际协议(英文:Internet Protocol,简称:IP)网络。基站还可协调对空中接口的属性管理。例如,基站可以是全球移动通信系统(英文:Global System for Mobile Communication,简称:GSM)或码分多址(英文:Code Division Multiple Access,简称:CDMA)系统中的基站收发台(英文:Base Transceiver Station,简称:BTS),也可以是宽带码分多址(英文:Wideband Code Division Multiple Acces,简称:WCDMA)中的基站(NodeB),还可以是LTE中的eNB,本申请对此不作限定。
下面基于图1所示的系统,结合图2a-图2c,介绍本发明实施例的应用场景。
如图2a和图2b所示,基站140为终端120服务,基站140通过使用多波束扫描技术接收和发送信号,以抵抗信道衰减,控制信号传播的损耗,进而保证基站的信号覆盖。其中,多波束扫描技术是指,基站140通过多个波束控制沿相对较窄的定向波束分别在不同的资源上进行信号发送和接收,从而通过这多个定向波束对基站140的覆盖区域进行扫描。其中,不同的资源可以是频域资源(即频率),例如,在同一个子帧内,不同的定向波束采用不同的频带,也可以是时域资源(即时间)进行发送。
在图2a和图2b中,基站140采用了4个定向波束,即波束1、波束2、波束3和 波束4,从图上可以看出,每个定向波束的分别对准基站140覆盖区域内的不同部分,通过这多个定向波束对基站140的覆盖区域进行扫描。需要说明的是,基站140采用的定向波束的数量仅为举例,本发明实施例对此不做限制。
实际应用中,基站140可以采用机械控制定向天线进行信号扫描。机械控制定向天线具有覆盖基站140覆盖区域一部分的相对较窄的定向波束,机械控制定向天线随时间移动,从而其定向波束在基站140的覆盖区域上进行扫描。或者,基站140还可以采用阵列天线,通过波束赋形得到覆盖一部分基站覆盖区域的定向波束,并控制定向波束在基站140的覆盖区域上进行扫描,其中,波束赋形是一种基于天线阵列的信号预处理技术,波束赋形通过调整天线阵列中每个阵元的加权系数产生具有指向性的波束,所述的波束赋形可以是通过射频产生的模拟波束或者基带的数字波束。
当基站140的定向波束在基站140的覆盖区域中扫描时,当终端120在基站140的某一定向波束中时,可以见到到某一特定波束对应的数据或者信号。
基站140覆盖区域内的终端120为了与基站140传输数据,需要先通过随机接入过程与基站140建立无线连接。随机接入过程可以通过以下方式实现,基站140先针对每个定向波束配置随机接入资源,并将配置的随机接入资源的信息通过系统广播消息发送出去,终端检测到哪个定向波束对应的下行信号,就采用哪个定向波束对应的随机接入资源发起随机接入过程,从而与基站140建立无线连接。
在图2a所示场景中,基站140的定向波束未实现校准。校准是指基站的接收波束和发送波束具有上下行互易性,在这种情况下,与最优的发送波束同方向的接收波束也是最优的。在多波束扫描的情况下,若基站的波束已实现校准,则基站140可以根据最优的发送波束确定最优的接收波束。而若基站140的波束未实现校准,则基站140无法根据最优的发送波束确定最优的接收波束,例如,在图2a中,对终端120而言,最优的基站的发送波束为波束3,由于定向波束未实现校准,那么最优的接收波束可能是波束1,也可能是波束3,因此,基站2无法采用最优的接收波束接收终端1发送的随机接入前导,最终可能导致终端的随机接入失败。
在图2b所示场景中,终端120处于高速移动状态,在这种情况下,终端120会快速地从波束1对准的区域、经过波束2和波束3对准的区域后,移动到波束4对准的区域,移动路径如图2b中箭头所示,若基站140仅通过四个定向波束中的某个波束接收终端120发送的数据,将很可能无法完整地接收到终端120发送的随机接入前导,从而导致终端120无法与基站140建立无线连接。
如图2c所示,基站140为终端120提供服务,其中,终端120可以采用多波束扫描的方式发送信号(即依次采用多个定向波束发送相同的信号),也可以采用一个全向波束发送信号。如图2c所示,相比而言,全向波束5的波束增益较小,定向波束1~4的波束增益较大,可以传输的距离更远,因此,位于基站140的覆盖区域中心位置的终端120a可以采用全向波束发送数据,而位于基站140的覆盖区域边缘位置的终端120b可以采用定向波束发送数据。在随机接入过程中,终端120可以依次采用波束1、波束2、波束3和波束4发送随机接入前导序列。此时,若基站140仅检测一次随机接入前导,则很可能检测不到终端120发送的随机接入前导,导致终端120随机接入失败。
可见,在上述三种场景中,均不适合按照目前的随机接入过程实现随机接入。因此,本发明实施例提供了一种随机接入方法,通过配置第一类型随机接入资源和第二类型随机接入资源,第一类型随机接入资源与不同的下行信号的资源相关联,所述第二类型随机接入资源与不同的下行信号的资源不相关联,或者,第一类型随机接入资源和第二类型随机接入资源以不同的关联方式与不同的下行信号的资源相关联,从而终端可以选择发送随机接入前导的资源,使得基站可以通过不同的形式接收终端发送的随机接入前导。或者,第一类型随机接入资源和第二类型随机接入资源可以对应终端不同的发送波束的形式,从而终端可以根据实际需要选择发送波束的形式,进而使得随机接入的性能与接入时间可以灵活配置。
下面结合具体的硬件结构对实现本发明实施例提供的基站和终端进行说明。
图3示出了本发明实施例提供的一个基站140的结构方框图。参见图3,基站140可以包括一个或者一个以上处理核心的处理器31、包括有一个或一个以上计算机可读存储介质的存储器32、以及收发器33等部件,处理器31可以用总线34与存储器32和收发器33相连。本领域技术人员可以理解,图3中示出的结构并不构成对基站140的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。其中:
处理器31是基站140的控制中心,利用各种接口和线路连接整个基站140的各个部分,通过运行或执行存储在存储器32内的软件程序和/或应用程序模块,以及调用存储在存储器32内的数据,执行基站140的各种功能和处理数据,从而对基站140进行整体监控。可选地,处理器31可以包括一个或者一个以上处理单元,该处理单元可以是中央处理单元(英文:Central Processing Unit,简称:CPU)或者网络处理器(英文:Network Processor,简称:NP)等。
收发器33包括接收机Rx和发射机Tx,收发器33还可以实现成为一通信芯片,通信芯片中可以包括接收模块、发射模块和调制解调模块等,用于对信息进行调制解调,并通过无线信号接收或发送该信息。收发器33由处理器31控制。
存储器32可用于存储各种数据,例如各种配置参数、以及软件程序和/或应用程序模块,该软件程序和/或应用程序模块可以由处理器31执行。存储器32可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统321和至少一个功能所述的应用程序模块322,例如配置模块和接收模块;存储数据区可存储根据基站140的使用所创建的数据,例如配置信息、随机接入前导的格式等。此外,存储器32可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。相应地,存储器32还可以包括存储器控制器,以提供处理器31对存储器32的访问。
应用程序模块322至少包括:用于配置资源的配置模块3221和用于接收信息的接收模块3222。
配置模块3221,用于配置至少两种类型的随机接入资源,至少两种类型的随机接入资源包括第一类型随机接入资源和第二类型随机接入资源,不同类型的随机接入资源与终端的不同的发送波束的形式一一对应;或者,第一类型随机接入资源与不同的 下行信号的资源相关联,第二类型随机接入资源与不同的下行信号的资源不相关联;或者,所述第一类型随机接入资源以第一关联方式与不同的下行信号的资源相关联,所述第二类型随机接入资源以第二关联方式与所述不同的下行信号的资源相关联,所述第一关联方式与所述第二关联方式不同;
接收模块3222,用于接收终端采用第一类型随机接入资源或第二类型随机接入资源发送的随机接入前导;
可选地,处理器31用于执行应用程序模块322中的各个模块,实现如下图5a、图5b和图8中由基站所需要执行的步骤。
图4示出了实现本发明实施例提供的一种终端120的硬件结构。如图4所示,终端120可以包括射频(英文:Radio Frequency,简称:RF)电路41、包括有一个或一个以上计算机可读存储介质的存储器42、输入单元43、显示单元44、传感器45、音频电路46、无线保真(英文:wireless fidelity,简称:WiFi)模块47、包括有一个或者一个以上处理核心的处理器48、以及电源49等部件。本领域技术人员可以理解,图4中示出的硬件结构并不构成对终端的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。其中:
处理器48是终端120的控制中心,利用各种接口和线路连接整个终端120的各个部分,通过运行或执行存储在存储器42内的软件程序和/或应用程序模块,以及调用存储在存储器42内的数据,执行终端120的各种功能和处理数据,从而对终端120进行整体监控。可选的,处理器48可包括一个或多个处理核心;优选的,处理器48可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器48中。
RF电路41可用于收发信息或通话过程中,信号的接收和发送,特别地,将基站的下行信息接收后,交由一个或者一个以上处理器48处理。通常,RF电路41包括但不限于天线、至少一个放大器、调谐器、一个或多个振荡器、用户身份模块(Subscriber Identity Module,简称SIM)卡、收发信机、耦合器、低噪声放大器(英文:Low Noise Amplifier,简称:LNA)、双工器等。此外,RF电路41还可以通过无线通信与网络和其他设备通信。所述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统GSM、通用分组无线服务(英文:General Packet Radio Service,简称:GPRS)、CDMA、WCDMA、LTE、电子邮件、短消息服务(英文:Short Messaging Service,简称:SMS)等。
存储器42可用于存储各种数据,例如各种配置参数、以及软件程序和/或应用程序模块,该软件程序和/或应用程序模块可以由处理器48执行。存储器42可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统421和至少一个功能所述的应用程序模块422,例如确定模块和发送模块;存储数据区可存储根据终端120的使用所创建的数据,例如配置信息、随机接入前导的格式等。此外,存储器42可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。相应地,存储器42还可以包括存储器控制器, 以提供处理器48和输入单元43对存储器42的访问。
应用程序模块422至少包括:用于确定资源的确定模块4221,用于发送信息的发送模块4222。
确定模块4221,用于确定至少两种类型的随机接入资源,至少两种类型的随机接入资源包括第一类型随机接入资源和第二类型随机接入资源,不同类型的随机接入资源与终端的不同的发送波束的形式一一对应;或者,第一类型随机接入资源与不同的下行信号的资源相关联,第二类型随机接入资源与不同的下行信号的资源不相关联;或者,所述第一类型随机接入资源以第一关联方式与不同的下行信号的资源相关联,所述第二类型随机接入资源以第二关联方式与所述不同的下行信号的资源相关联,所述第一关联方式与所述第二关联方式不同;
发送模块4222,用于采用第一类型随机接入资源或第二类型随机接入资源发送随机接入前导;
可选地,处理器48用于执行应用程序模块422中的各个模块,实现如下图5a、图5b和图8中由终端所需要执行的步骤。
参见图5a,其示出了本发明实施例提供的一种随机接入方法,该方法采用图1所示的系统实现,适用于图2a和图2b所示场景。在图5a所示实施例中,该方法包括:
步骤S501a:基站配置至少两种类型的随机接入资源。
在本实施例中,至少两种类型的随机接入资源包括第一类型随机接入资源和第二类型随机接入资源。其中,第一类型随机接入资源与不同的下行信号的资源相关联,第二类型随机接入资源与不同的下行信号的资源不相关联。
第一类型随机接入资源可以包括一个或多个资源,第二类型随机接入资源可以包括一个或多个资源。
在本实施例中,将以第一类型随机接入资源与不同的下行同步信号的资源相关联,第二类型随机接入资源与不同的下行同步信号的资源不相关联为例进行详细说明。
图6a显示了两种类型的随机接入资源与下行同步信号的关联关系。图6a中显示了四个下行同步信号和四个第一类型随机接入资源(分别为RACH 1、RACH 2、RACH 3、RACH 4),这四个下行同步信号分别通过波束1~4发送,其中,第一个下行同步信号与第一个第一类型随机接入资源RACH 1对应,第二个下行同步信号与第二个第一类型随机接入资源RACH 2对应,第三个下行同步信号与第三个第一类型随机接入资源RACH 3对应,第四个下行同步信号与第四个第一类型随机接入资源RACH 4对应。图6a中还显示了一个第二类型随机接入资源RACH 5,从图6a中可以看出,第二类型随机接入资源RACH 5与下行同步信号之间没有关联。
在一种实现方式中,所述第一类型随机接入资源的系统参数(英文:Numerology)和所述第二类型随机接入资源的系统参数不同,所述系统参数包括子载波间隔和符号长度。
在该步骤S501a中,配置是指确定哪些资源用于作为第一类型随机接入资源,哪些资源用于作为第二类型随机接入资源。
具体的,随机接入资源包括用于发送随机接入前导的时频资源、序列资源、循环 移位资源中的至少一个。
步骤S502a:基站通过多个定向波束在不同的资源上发送下行信号。
其中,下行信号包括但不限于下行同步信号、系统消息和下行测量导频信号。在本发明实施例中,将通过不同的波束发送的下行信号称为不同的下行信号。
步骤S502a中的资源,可以是指频率资源。不同的定向波束在不同的频带上发送下行信号,例如,波束1在频带A上发送下行信号;波束2在频带B上发送下行信号。步骤S502a中的资源,还可以是指时间资源,不同的定向波束在不同的时间段发送下行信号。
可选地,该步骤S502a可以包括:
基站发送X个第一信号和Y个第二信号,所述Y个第二信号中的每一个第二信号均用于指示随机接入配置信息,该随机接入配置信息包括第一类型随机接入配置信息和第二类型随机接入配置信息,第一类型随机接入配置信息用于指示Z个第一类型随机接入资源以及Z个第一类型随机接入资源与X个第一信号的资源的对应关系,第二类型随机接入信息用于指示第二类型随机接入资源;
其中,第一信号为下行同步信号、广播信号或下行测量导频信号中的至少一个,第二信号为广播信号或者系统消息,X、Y、Z为正整数,X、Y、Z均大于1。需要说明的是,在实际应用中,通常X=Y=Z,且X与基站采用的定向波束的个数相等。
在一种实现方式中,每个第二信号中第一类型随机资源配置信息包括该第二信号所属小区配置的所有第一信号和第一类型随机接入资源的对应关系;或者,在另一种实现方式中,每个第二信号中的第一类型随机接入配置信息包括该第二信号所属小区配置的所有的第一信号的子集和第一类型随机接入资源的子集的对应关系。
进一步地,属于相同子集的第一信号在同一时间单元内发送,所述时间单元为子帧、时隙或微时隙(英文:mini slot)。由于第一信号是按照波束扫描的方式发送的,因此,同一时间单元内发送的第一信号的发射波束较为相近。
这样,终端可以仅保存一次或几次第一信号和第一类型随机接入资源的对应关系,后续直接在保存的对应关系中查找当前接收到的第一信号的资源对应的第一类型随机接入资源。
在其他实现方式中,每个第二信号中的第一类型随机接入配置信息还可以仅包括其所对应的定向波束对应的第一类型随机接入资源的配置信息,从而终端检测到哪个第二信号,即采用该第二信号对应的第一随机接入资源发送随机接入前导。
在该实现方式中,第一类型随机接入配置信息均用于指示多个定向波束对应的第一类型随机接入资源以及多个定向波束对应的第一类型随机接入资源与X个第一信号的资源的对应关系,从而终端可以选择信号质量较好的波束发送随机接入前导。
在其他实现方式中,每个第二信号对应的第一类型随机接入配置信息可以仅包括其所对应的定向波束对应的第一随机接入资源,从而终端检测到哪个第二信号,即采用该第二信号对应的第一随机接入资源发送随机接入前导。
在一种实现方式中,第一信号的资源可以为码资源(如下行同步信号的序列、广播信号的扰码),也可以为时域资源,或者,还可以为频域资源。
进一步地,Z个第一类型随机接入资源与X个第一信道/信号的资源的对应关系, 包括:
Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个下行同步信号的不同序列中的一个序列相对应;或者,
Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个下行同步信号的不同时域资源中的一个时域资源相对应;或者,
Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个下行同步信号的不同频域资源的一个频域资源相对应;或者,
Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个下行测量导频信号的不同序列的一个序列相对应;或者,
Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个下行测量导频信号的不同时域资源的一个时域资源相对应;或者,
Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个下行测量导频信号的不同频域资源的一个频域资源相对应;或者,
Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个广播信号的不同扰码中的一个扰码相对应;或者,
Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个广播信号的不同时域资源中的一个时域资源相对应;或者,
Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个广播信号的不同频域资源的一个频域资源相对应。
可选地,Y个第二信号的资源的每一个第二信号的资源、与X个第一信号的资源对应。从而终端可以根据第一信号的资源确定对应的第二信号的资源。
步骤S503a:终端接收下行同步信号,并利用下行同步信号与基站进行下行同步。
其中,下行同步包括时间同步和频率同步,下行同步可以为后续广播信道的接收做好准备。
步骤S504a:终端接收基站发送的第二信号。
如步骤S502a所述,第二信号为广播信号或系统消息,在终端取得下行同步之后,即可接收基站发送的广播信号或系统消息。
在一种实现方式中,携带第一类型随机接入配置信息的第二信号和携带第二类型随机接入配置信息的第二信号为同一信号。
在另一种实现方式中,携带第一类型随机接入配置信息的第二信号和携带第二类型随机接入配置信息的第二信号为不同的信号,携带第二类型随机接入配置信息的第二信号在携带第一类型随机接入配置信息的第二信号之前发送,以便于终端能够快速接入。
实际应用中,若携带第一类型随机接入配置信息的第二信号和携带第二类型随机接入配置信息的第二信号为不同的信号,可以有以下几种实现方式:
携带第二类型随机接入配置信息的第二信号为PBCH上的信号,携带第一类型随机接入配置信息的第二信号为主系统信息块(英文:essential System Information Block 1,简称:essential SIB),又称剩余系统信息(英文:Remaining System Information,简称:RMSI);或者,
携带第二类型随机接入配置信息的第二信号为PBCH上的信号,携带第一类型随机接入配置信息的第二信号为系统信息块1(英文:System Information Block 1,简称:SIB1);或者,
携带第二类型随机接入配置信息的第二信号为essential SIB,携带第一类型随机接入配置信息的第二信号为SIB1。
其中,essential SIB包括用于初始接入的信息。
步骤S505a:终端确定下行同步信号对应的第一类型随机接入资源。
在本实施例中,终端根据第二信号中的Z个第一类型随机接入资源以及Z个第一类型随机接入资源与X个第一信号的资源的对应关系,确定下行同步信号对应的第一类型随机接入资源。
步骤S506a:终端采用第一类型随机接入资源或第二类型随机接入资源发送随机接入前导。
当终端为图2a或图2b所示场景中的终端时,可以采用第二类型随机接入资源发送随机接入前导。在其他情况下,终端可以采用第一类型随机接入资源发送随机接入前导。
具体的,该步骤S506a可以采用以下方式:
终端可以分别在第一类型随机接入资源和第二类型接入资源上发送随机接入前导,从而可以增大基站接收到该随机接入前导的可能;
或者,终端可以检测自身的移动速度,若终端检测到自身的移动速度超过设定值时,采用第二类型随机接入资源发送随机接入前导,若终端检测到自身的移动速度未超过设定值时,采用第一类型随机接入资源发送随机接入前导。
终端检测自身的移动速度可以采用例如检测多普勒频移的方式实现,还可以采用其他已有的技术实现,本申请对此不做限制。
步骤S507a:基站接收终端采用所述第一类型随机接入资源或所述第二类型随机接入资源发送的随机接入前导。
可选地,该步骤S507a可以包括:
采用单个波束接收终端在第一类型随机接入资源上发送的随机接入前导;或者,
采用多个波束轮流接收终端在第二类型随机接入资源上发送的随机接入前导。
优选地,在本实施例中,不同类型的随机接入资源还与随机接入前导的格式对应。具体的,第一类型随机接入资源对应第一类型随机接入前导格式,所述第二类型随机接入资源对应第二类型随机接入前导格式,第一类型随机接入前导的格式包括循环前缀部分和前导序列部分,第一类型随机接入前导的格式的前导序列部分由单个序列构成;所述第二类型随机接入前导的格式包括循环前缀部分和前导序列部分,所述第二类型随机接入前导的格式的前导序列部分由多个重复的序列构成。
其中,第一类型随机接入前导的格式如图7a所示,第二类型随机接入前导的格式如图7b所示。如图7a所示,第一类型随机接入前导的格式包括循环前缀部分71a和前导序列部分72a,其中,第一类型随机接入前导的格式的前导序列部分由单个序列73a构成。如图7b所示,第二类型的随机接入前导格式也包括循环前缀部分71b和前导序列部分72b,其中,第二类型随机接入前导的格式的前导序列部分72b由多个重 复的序列73b构成。从图7a和图7b中可以看出,第一类型随机接入前导的格式中的单个序列73a的长度可以比第二类型随机接入前导的格式中的单个序列73b的长度要大。
当终端在第二类型随机接入资源上发送第二类型随机接入前导格式的随机接入前导时,基站的每个定向波束可以对多个重复的序列中的一个进行检测,从而可以完整地接收终端发送的随机接入前导。
需要说明的是,在图5a所示实施例中,终端根据第二信号中的第二信号中的Z个第一类型随机接入资源以及Z个第一类型随机接入资源与X个第一信号的资源的对应关系,确定下行信号对应的第一类型随机接入资源,在其他实施例中,终端还可以根据预设的所述下行信号与第一类型随机接入资源的对应关系,确定所述下行信号对应的第一类型随机接入资源。例如,可以默认设置下行信号的时频资源与第一类型随机接入资源的位置关系,终端根据该位置关系可以直接确定出下行信号对应的第一类型随机接入资源。在这种情况下,第二信号不需要指示第一类型随机接入配置信息。
可选地,该方法还可以包括:
步骤S508a:基站向所述终端发送随机接入应答,所述随机接入应答包括用于指示所述终端最优的定向波束的指示信息。
具体的,所述第一类型随机接入资源与第一类型随机接入应答资源一一对应;K个所述第二类型随机接入资源与一个第二类型随机接入应答资源对应;其中,K为大于1的整数。优选地,每K个连续的所述第二类型的随机接入资源对应一个第二类型随机接入应答资源。
参见图5b,其示出了本发明实施例提供的另一种随机接入方法,该方法采用图1所示的系统实现,适用于图2a和图2b所示场景。在图5b所示实施例中,该方法包括:
步骤S501b:基站配置至少两种类型的随机接入资源。
在本实施例中,至少两种类型的随机接入资源包括第一类型随机接入资源和第二类型随机接入资源。其中,第一类型随机接入资源以第一关联方式与不同的下行信号的资源相关联,而第二类型随机接入资源以第二关联方式与不同的下行信号的资源相关联,第一关联方式与第二关联方式不同。也就是说,第一类型随机接入资源与不同的下行信号的资源相关联,第二类型随机接入资源也与不同的下行信号的资源相关联,两者与不同的下行信号的资源相关联的方式不同。
第一类型随机接入资源可以包括一个或多个随机接入资源,第二类型随机接入资源可以包括一个或多个随机接入资源。每个随机接入资源包括时频资源、序列资源和循环移位资源中的至少一种。
该步骤S501b中的下行信号可以为下行同步信号、广播信号或下行测量导频信号。其中,不同的下行信号将通过不同的波束发送。
具体地,第一关联方式包括对应于不同的下行信号的至少两个第一类型随机接入资源的时频资源不同;第二关联方式包括对应于不同的下行信号的至少两个第二类型随机接入资源的时频资源相同,但序列资源不同。下面以第一类型随机接入资源和第二类型随机接入资源均与不同的下行同步信号的资源相关联为例,对随机接入资源和 下行信号的资源的关联关系进行详细说明。
图6b显示了第一类型随机接入资源与下行同步信号的关联关系。图6b中显示了四个下行同步信号和四个第一类型随机接入资源的时频资源(分别为b1、b2、b3、b4),这四个下行同步信号分别通过波束1~4发送,其中,第一个下行同步信号与第一个第一类型随机接入资源的时频资源b1对应,第二个下行同步信号与第二个第一类型随机接入资源的时频资源b2对应,第三个下行同步信号与第三个第一类型随机接入资源的时频资源b3对应,第四个下行同步信号与第四个第一类型随机接入资源的时频资源b4对应。
图6c中显示了第二类型随机接入资源与下行同步信号的关联关系。图6c中显示了四个下行同步信号,这四个下行同步信号与图6b中的四个下行同步信号相同。在图6c中,四个第二类型随机接入资源的时频资源相同,即该时频资源b5对应了四个序列资源,这四个序列资源分别与这四个下行同步信号的资源相对应。
在图6b和图6c中,向下的箭头表示基站发送波束,向上的箭头表示基站接收波束。
在一种实现方式中,所述第一类型随机接入资源的系统参数(英文:Numerology)和所述第二类型随机接入资源的系统参数不同,所述系统参数包括子载波间隔和符号长度。
步骤S502b:基站通过多个定向波束在不同的资源上发送下行信号。
该步骤S502b中,基站发送的下行信号包括但不限于下行同步信号、广播信号或下行测量导频信号。容易知道,基站会周期性发送这些下行信号,在每个周期内,基站会先发送下行同步信号,然后再发送系统消息(或广播信号)和下行测量导频信号。
步骤S502b中的资源,可以是指频率资源。不同的定向波束在不同的频带上发送下行信号,例如,波束1在频带A上发送下行信号;波束2在频带B上发送下行信号。步骤S502b中的资源,还可以是指时间资源,不同的定向波束在不同的时间段发送下行信号。
可选地,该步骤S502b可以包括:
基站发送X个第一信号和Y个第二信号,所述Y个第二信号中的每一个第二信号均用于指示随机接入配置信息,一个第二信号中的随机接入配置信息包括第一类型随机接入配置信息和第二类型随机接入配置信息中的至少一种,第一类型随机接入配置信息用于指示Z个第一类型随机接入资源以及Z个第一类型随机接入资源与X个第一信号的资源的对应关系,第二类型随机接入信息用于指示第二类型随机接入资源第二类型随机接入配置信息用于指示Z个第二类型随机接入资源以及Z个第二类型随机接入资源与X个第一信号的资源的对应关系;
其中,第一信号为下行同步信号、广播信号或下行测量导频信号中的至少一个,第二信号为广播信号或者系统消息,X、Y、Z为正整数,X、Y、Z均大于1。
需要说明的是,在实际应用中,通常X=Y=Z,且X与基站采用的定向波束的个数相等。
在一种实现方式中,每个第二信号中第一类型随机资源配置信息包括该第二信号所属小区配置的所有第一信号和第一类型随机接入资源的对应关系;或者,在另一种 实现方式中,每个第二信号中的第一类型随机接入配置信息包括该第二信号所属小区配置的所有的第一信号的子集和第一类型随机接入资源的子集的对应关系。
进一步地,属于相同子集的第一信号在同一时间单元内发送,所述时间单元为子帧、时隙或微时隙(英文:mini slot)。由于第一信号是按照波束扫描的方式发送的,因此,同一时间单元内发送的第一信号的发送波束的方向较为相近。
这样,终端可以仅保存一次或几次(对应子集的数量)第一信号和第一类型随机接入资源的对应关系,后续直接在保存的对应关系中查找当前接收到的第一信号的资源对应的第一类型随机接入资源。
在其他实现方式中,每个第二信号中的第一类型随机接入配置信息还可以仅包括其所对应的定向波束对应的第一类型随机接入资源的配置信息,从而终端检测到哪个第二信号,即采用该第二信号对应的第一随机接入资源发送随机接入前导。
在一种实现方式中,第一信号的资源可以为码资源(如下行同步信号的序列、广播信号的扰码),也可以为时域资源,或者,还可以为频域资源。
所述Z个第一类型随机接入资源与所述X个第一信号的资源的对应关系,包括:Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个下行信号的不同资源中的一个资源相对应。
例如,Z个第一类型随机接入资源与X个第一信号的资源的对应关系,包括:
Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个下行同步信号的不同序列中的一个序列相对应;或者,
Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个下行同步信号的不同时域资源中的一个时域资源相对应;或者,
Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个下行同步信号的不同频域资源的一个频域资源相对应;或者,
Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个下行测量导频信号的不同序列的一个序列相对应;或者,
Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个下行测量导频信号的不同时域资源的一个时域资源相对应;或者,
Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个下行测量导频信号的不同频域资源的一个频域资源相对应;或者,
Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个广播信号的不同扰码中的一个扰码相对应;或者,
Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个广播信号的不同时域资源中的一个时域资源相对应;或者,
Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个广播信号的不同频域资源的一个频域资源相对应。
所述Z个第二类型随机接入资源与所述X个第一信号的资源的对应关系,包括:Z个第二类型随机接入资源中的每一个第二类型随机接入资源、与X个下行信号的不同资源中的一个资源相对应。具体的方式可以参见第一类型随机接入资源与X个下行信号的不同资源的对应方式,这里省略详细描述。
可选地,Y个第二信号的资源的每一个第二信号的资源、与X个第一信号的资源对应。从而终端可以根据第一信号的资源确定对应的第二信号的资源。
进一步地,资源相对应的第一信号和第二信号的发送波束的方向相同。
步骤S503b:终端接收下行同步信号,并利用下行同步信号与基站进行下行同步。
步骤S504b:终端接收基站发送的第二信号。
如步骤S502b所述,第二信号为广播信号或系统消息,在终端取得下行同步之后,即可接收基站发送的广播信号或系统消息。
在一种实现方式中,携带第一类型随机接入配置信息的第二信号和携带第二类型随机接入配置信息的第二信号为同一信号。
在另一种实现方式中,携带第一类型随机接入配置信息的第二信号和携带第二类型随机接入配置信息的第二信号为不同的信号,携带第二类型随机接入配置信息的第二信号在携带第一类型随机接入配置信息的第二信号之前发送,以便于终端能够快速接入。
实际应用中,若携带第一类型随机接入配置信息的第二信号和携带第二类型随机接入配置信息的第二信号为不同的信号,可以有以下几种实现方式:
携带第二类型随机接入配置信息的第二信号为PBCH上的信号,携带第一类型随机接入配置信息的第二信号为主系统信息块(英文:essential System Information Block 1,简称:essential SIB);或者,
携带第二类型随机接入配置信息的第二信号为PBCH上的信号,携带第一类型随机接入配置信息的第二信号为系统信息块1(英文:System Information Block 1,简称:SIB1);或者,
携带第二类型随机接入配置信息的第二信号为essential SIB,携带第一类型随机接入配置信息的第二信号为SIB1。
其中,essential SIB包括用于初始接入的信息。
步骤S505b:终端确定下行同步信号对应的第一类型随机接入资源。
在本实施例中,终端根据第二信号中的Z个第一类型随机接入资源以及Z个第一类型随机接入资源与X个第一信号的资源的对应关系,确定下行同步信号对应的第一类型随机接入资源。
步骤S506b:终端采用第一类型随机接入资源或第二类型随机接入资源发送随机接入前导。
该步骤S506b的具体实现方式可以参见步骤S506a,在此省略详细描述。
步骤S507b:基站接收终端采用所述第一类型随机接入资源或所述第二类型随机接入资源发送的随机接入前导。
所述X个第一信号分别采用不同的波束发送,在该步骤S507b中,所述基站采用与第一信号的发送波束方向相同的接收波束接收采用所述第一信号的资源对应的随机接入资源(第一类型随机接入资源或第二类型随机接入资源)发送的随机接入前导。
步骤S507b的相关内容参见前述步骤S507a,在此省略详细描述。
步骤S508b:基站向所述终端发送随机接入应答,所述随机接入应答包括用于指示所述终端最优的定向波束的指示信息。
具体的,所述第一类型随机接入资源与第一类型随机接入应答资源一一对应;K个所述第二类型随机接入资源与一个第二类型随机接入应答资源对应;其中,K为大于1的整数。优选地,每K个连续的所述第二类型的随机接入资源对应一个第二类型随机接入应答资源。
需要说明的是,本申请以第一信号为下行同步信号为例进行了说明,在其他实施例中,第一信号还可以是其他下行信号,例如测量导频信号和广播信号等。
参见图8,其示出了本发明实施例提供的另一种随机接入方法,该方法采用图1所示的系统实现,适用于图2c所示场景。如图8所示,该方法包括:
步骤S801:基站配置至少两种类型的随机接入资源。
其中,至少两种类型的随机接入资源包括第一类型随机接入资源和第二类型随机接入资源。不同类型的随机接入资源对应终端不同的发送波束的形式,在本实施例中,第一类型随机接入资源对应的终端的发送波束的形式为全向波束,第二类型随机接入资源对应的终端的发送波束的形式为多个定向波束扫描。
第一类型随机接入资源可以包括一个或多个资源,第二类型随机接入资源可以包括一个或多个资源。
在该步骤S801中,配置是指确定哪些资源用于作为第一类型随机接入资源,哪些资源用于作为第二类型随机接入资源。
具体的,随机接入资源包括用于发送随机接入前导的时频资源、序列资源、循环移位资源中的至少一个。
步骤S802:基站通过多个定向波束在不同的资源上发送下行信号。
该步骤S802的具体实现可以参见步骤S502,在此不再赘述。
步骤S803:终端接收基站发送的下行信号。
如图2c所示,终端接收到了波束3发送的下行信号。
步骤S804:终端测量参考信号接收功率(英文:Reference Signal Receiving Power,简称:RSRP),若RSRP大于设定门限,则执行步骤S805;若RSRP小于或等于设定门限,则执行步骤S806。
其中,RSRP大于设定门限,表示终端处于小区的中心区域,RSRP小于或等于设定门限,表示终端位于小区的边缘区域。
步骤S805:终端通过全向波束在第一类型随机接入资源上发送随机接入前导。
如图9a所示,由于终端接收了基站通过定向波束3发送的下行信号,则可以采用该下行信号对应的第一类型随机接入资源发送随机接入前导。
在该步骤S805中,由于终端位于小区中心区域,终端此时可以选择波束增益比定向波束小的全向波束来发送随机接入前导,即可保证基站能够接收到终端发送的随机接入前导,满足覆盖要求。
步骤S806:终端通过多个定向波束在第二类型随机接入资源上发送随机接入前导。
其中,终端采用的定向波束的个数可以对应不同的随机前导序列组。定向波束的个数和随机前导序列组的对应关系可以是预先配置的。例如,当终端采用的定向波束 的个数为2个时,可以使用的随机前导序列为1~10,当终端采用的定向波束的个数为3个时,可以使用的随机前导序列为11~20,以此类推……
进一步地,在该步骤S806中,终端可以以相同的发射功率在K个所述第二类型随机接入资源上轮询K个定向波束,其中,K为大于1的整数。以便于基站通过接收到的信号确定终端最优的发送波束。
可选地,在步骤S806之后,该方法还可以包括:
步骤S807:基站接收终端发送的随机接入前导。
可选地,在步骤S807之后,该方法还可以包括步骤S808:终端接收基站发送的随机接入应答,所述随机接入应答包括用于指示所述终端最优的发送波束的指示信息。
可选地,在步骤S806之后,该方法还可以包括:
在终端以相同的发射功率在K个所述第二类型随机接入资源上轮询K个定向波束发送随机接入前导之后,若终端未能接收到随机接入应答,增加发射功率再以相同的发射功率在K个所述随机接入资源上轮询K个定向波束发送随机接入前导,其中,K为大于1的整数。
如图9b所示,终端在第一阶段91,先以第一发射功率在K个第二类型随机接入资源上轮询K个定向波束发送随机接入前导;未能收到基站发送的随机接入应答,故终端在第二阶段92,增大了发射功率,以第二发射功率在K个第二类型随机接入资源上轮询K个定向波束发送随机接入前导;此后,还是未能收到基站发送的随机接入应答,故终端在第二阶段93,再次增大了发射功率,以第三发射功率在K个第二类型随机接入资源上轮询K个定向波束发送随机接入前导。容易知道,终端允许的增大发射功率的次数可以预先配置。
具体地,K个第二类型随机接入资源与一个第二类型随机接入应答资源对应;其中,K为大于1的整数。优选地,每K个连续的第二类型的随机接入资源对应一个第二类型随机接入应答资源。如图9b所示,终端在4个第二类型随机接入资源上通过定向波束发送随机接入前导之后,会在这4个第二类型随机接入资源对应的一个第二类型随机接入应答资源上检测随机接入应答,若未能检测到随机接入应答。
具体地,第一类型随机接入资源与第一类型随机接入应答资源一一对应,如图9b所示,终端在以第四发射功率94在一个第一类型随机接入资源上通过全向波束发送随机接入前导之后,都会在该第一类型随机接入资源对应的第一类型随机接入应答资源上检测随机接入应答,若未能检测到随机接入应答,则可以增大全向波束的发射功率,以第五发射功率95再次在第一类型随机接入资源上通过全向波束发送随机接入前导,然后在该第一类型随机接入资源对应的第一类型随机接入应答资源上检测随机接入应答;若仍然未能检测到随机接入应答,则可以增大全向波束的发射功率,以第六发射功率96再次在第一类型随机接入资源上通过全向波束发送随机接入前导,然后在该第一类型随机接入资源对应的第一类型随机接入应答资源上检测随机接入应答。容易知道,终端允许的增大发射功率的次数可以预先配置。
优选地,所述第一类型随机接入资源对应第一类型随机接入前导格式,所述第二类型随机接入资源对应第二类型随机接入前导格式,第一类型随机接入前导的格式和所述第二类型随机接入前导格式均包括循环前缀部分和前导序列部分,所述前导序列 部分均由单个序列构成。所述第一类型接入前导的格式中的单个序列的长度比所述第二类型随机接入前导的格式的单个序列的长度大。
需要说明的是,实际应用中,图5a或图5b所示实施例和图6所示实施例所述的方案可以结合使用,即基站可以配置四种类型的随机接入资源。
参见图10,本发明实施例提供了一种随机接入装置,该装置可以通过软件、硬件或者两者的结合实现成为基站的全部或者一部分。该装置包括:配置单元601和604接收单元602。
配置单元601,用于配置至少两种类型的随机接入资源,至少两种类型的随机接入资源包括第一类型随机接入资源和第二类型随机接入资源,不同类型的随机接入资源与终端的不同的发送波束的形式一一对应;或者,第一类型随机接入资源与不同的下行信号的资源相关联,第二类型随机接入资源与不同的下行信号的资源不相关联;或者,第一类型随机接入资源以第一关联方式与不同的下行信号的资源相关联,第二类型随机接入资源以第二关联方式与不同的下行信号的资源相关联,第一关联方式与第二关联方式不同;
接收单元602,用于接收终端采用第一类型随机接入资源或第二类型随机接入资源发送的随机接入前导。
可选地,该装置还包括:
发送单元603,用于发送X个第一信号和Y个第二信号,Y个第二信号中的每一个第二信号包括随机接入配置信息中的至少一种,每个第二信号中的随机接入配置信息包括第一类型随机接入配置信息和第二类型随机接入配置信息中的至少一种,第一类型随机接入配置信息用于指示Z个第一类型随机接入资源以及Z个第一类型随机接入资源与X个第一信号的资源的对应关系,第二类型随机接入信息用于指示第二类型随机接入资源,或者所述第二类型随机接入信息用于指示Z个第二类型随机接入资源和所述Z个第二类型随机接入资源与X个第一信号的资源的对应关系;
其中,第一信号为下行同步信号、广播信号或下行测量导频信号中的至少一个,第二信号为广播信号或者系统消息,X、Y、Z为正整数,X、Y、Z均大于1。
在本发明实施例的一种实现方式中,接收单元602,可以用于:
采用单个波束接收终端在第一类型随机接入资源上发送的随机接入前导;或者,
采用多个波束轮流接收终端在第二类型随机接入资源上发送的随机接入前导。
可选地,该装置还包括:
发送单元603,用于向终端发送随机接入应答,随机接入应答包括用于指示终端最优的定向波束的指示信息。
在本发明实施例中,第一类型随机接入资源与第一类型随机接入应答资源一一对应;K个第二类型随机接入资源与一个第二类型随机接入应答资源对应;其中,K为大于1的整数。
在本发明实施例中,每K个连续的第二类型的随机接入资源对应一个第二类型随机接入应答资源。
相关细节可结合参考图5a、图5b或图8所述的方法实施例。
需要说明的是,上述发送单元603可以由发射机实现,或者处理器配合发射机来实现;上述接收单元602可以由接收机Rx实现,或者处理器配合接收机来实现;上述配置单元601可以由处理器来实现,或者,处理器执行存储器中的程序指令来实现。
参见图11,本发明实施例提供了一种随机接入装置,该装置可以通过软件、硬件或者两者的结合实现成为终端的全部或者一部分。该装置包括:确定单元701和发送单元702。
确定单元701,用于确定至少两种类型的随机接入资源,至少两种类型的随机接入资源包括第一类型随机接入资源和第二类型随机接入资源,不同类型的随机接入资源与终端的不同的发送波束的形式一一对应;或者,第一类型随机接入资源与不同的下行信号的资源相关联,第二类型随机接入资源与不同的下行信号的资源不相关联;或者,所述第一类型随机接入资源以第一关联方式与不同的下行信号的资源相关联,所述第二类型随机接入资源以第二关联方式与所述不同的下行信号的资源相关联,所述第一关联方式与所述第二关联方式不同;
发送单元702,用于采用第一类型随机接入资源或第二类型随机接入资源发送随机接入前导。
可选地,该装置还包括:
接收单元703,用于接收基站发送的第一信号和第二信号,第二信号中的每一个第二信号包括随机接入配置信息,每个第二信号中的随机接入配置信息包括第一类型随机接入配置信息和第二类型随机接入配置信息中的至少一种,第一类型随机接入配置信息用于指示Z个第一类型随机接入资源以及Z个第一类型随机接入资源与X个第一信号的资源的对应关系,第二类型随机接入信息用于指示第二类型随机接入资源,或者,所述第二类型随机接入配置信息用于指示Z个第二类型随机接入资源以及所述Z个第二类型随机接入资源与所述X个第一信号的资源的对应关系;
其中,第一信号为下行同步信号、广播信号或下行测量导频信号中的至少一个,第二信号为广播信号或者系统消息,X、Y、Z为正整数,X、Y、Z均大于1。
在本发明实施例的一种实现方式中,发送单元702,可以用于:
当终端测得的参考信号接收功率大于设定门限的时候,选择第一类型随机接入资源通过全向波束发送随机接入前导;或者,
当终端测得的参考信号接收功率小于或等于设定门限的时候,选择第二类型随机接入资源通过多个定向波束发送随机接入前导。
在本发明实施例中,终端采用的定向波束的个数对应不同的随机前导序列组。
可选地,该装置还包括:
接收单元703,用于接收基站发送的随机接入应答,随机接入应答包括用于指示终端最优的发送波束的指示信息。
可选地,发送单元702,还用于:
以相同的发射功率在K个第二类型随机接入资源上轮询K个定向波束发送随机接入前导。
进一步地,发送单元702,还用于:
在终端以相同的发射功率在K个第二类型随机接入资源上轮询K个定向波束发送随机接入前导之后,若终端未能接收到随机接入应答,增加发射功率再以相同的发射功率在K个随机接入资源上轮询K个定向波束发送随机接入前导,其中,K为大于1的整数。
在本发明实施例中,第一类型随机接入资源与第一类型随机接入应答资源一一对应;K个第二类型随机接入资源与一个第二类型随机接入应答资源对应;其中,K为大于1的整数。
在本发明实施例中,每K个连续的第二类型的随机接入资源对应一个第二类型随机接入应答资源。
相关细节可结合参考图5a、图5b或图8所述的方法实施例。
需要说明的是,上述发送单元703可以由发射机实现,或者处理器配合发射机来实现;上述接收单元702可以由接收机Rx实现,或者处理器配合接收机来实现;上述确定单元701可以由处理器来实现,或者,处理器执行存储器中的程序指令来实现。
需要说明的是:上述实施例提供的随机接入装置进行随机接入时,仅以上述各功能单元的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置和系统的内部信息结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的随机接入装置、随机接入系统与随机接入方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (93)

  1. 一种随机接入方法,其特征在于,所述方法包括:
    基站配置至少两种类型的随机接入资源,所述至少两种类型的随机接入资源包括第一类型随机接入资源和第二类型随机接入资源,不同类型的所述随机接入资源与终端的不同的发送波束的形式一一对应;或者,所述第一类型随机接入资源与不同的下行信号的资源相关联,所述第二类型随机接入资源与不同的下行信号的资源不相关联;或者,所述第一类型随机接入资源以第一关联方式与不同的下行信号的资源相关联,所述第二类型随机接入资源以第二关联方式与所述不同的下行信号的资源相关联,所述第一关联方式与所述第二关联方式不同;
    基站接收终端采用所述第一类型随机接入资源或所述第二类型随机接入资源发送的随机接入前导。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    基站发送X个第一信号和Y个第二信号,所述Y个第二信号中的每一个第二信号包括随机接入配置信息,每个所述第二信号中的每个所述第二信号中的所述随机接入配置信息包括第一类型随机接入配置信息和第二类型随机接入配置信息中的至少一种,所述第一类型随机接入配置信息用于指示Z个第一类型随机接入资源以及所述Z个第一类型随机接入资源与所述X个第一信号的资源的对应关系,所述第二类型随机接入信息用于指示第二类型随机接入资源,或者所述第二类型随机接入信息用于指示Z个第二类型随机接入资源和所述Z个第二类型随机接入资源与X个第一信号的资源的对应关系;
    其中,所述第一信号为下行同步信号、广播信号或下行测量导频信号中的至少一个,所述第二信号为广播信号或者系统消息,X、Y、Z为正整数,X、Y、Z均大于1。
  3. 根据权利要求2所述的方法,其特征在于,所述Z个第一类型随机接入资源与所述X个第一信号的资源的对应关系为,X个不同的第一信号对应于Z个不同的第一类型随机接入资源的时频资源;所述Z个第二类型随机接入资源与X个第一信号的资源的对应关系为,X个不同的第一信号对应于Z个不同的第二类型随机接入资源的码资源。
  4. 根据权利要求3所述的方法,其特征在于,所述Z个第一类型随机接入资源与所述X个第一信号的资源的对应关系,包括:Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个下行信号的不同资源中的一个资源相对应,所述资源为码资源、时域资源或频域资源;
    所述Z个第二类型随机接入资源与所述X个第一信号的资源的对应关系,包括:Z个第二类型随机接入资源中的每一个第二类型随机接入资源、与X个下行信号的不同资源中的一个资源相对应,所述资源为码资源、时域资源或频域资源。
  5. 根据权利要求4所述的方法,其特征在于,所述Z个第一类型随机接入资源与所述X个第一信号的资源的对应关系,包括:
    Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个下行同步信号的不同序列中的一个序列相对应;或者,
    Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个下行同步 信号的不同时域资源中的一个时域资源相对应;或者,
    Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个下行同步信号的不同频域资源的一个频域资源相对应;或者,
    Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个下行测量导频信号的不同序列的一个序列相对应;或者,
    Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个下行测量导频信号的不同时域资源的一个时域资源相对应;或者,
    Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个下行测量导频信号的不同频域资源的一个频域资源相对应;或者,
    Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个广播信号的不同扰码中的一个扰码相对应;或者,
    Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个广播信号的不同时域资源中的一个时域资源相对应;或者,
    Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个广播信号的不同频域资源的一个频域资源相对应。
  6. 根据权利要求2所述的方法,其特征在于,所述Y个第二信号的资源中的每一个第二信号的资源、与X个第一信号的资源对应。
  7. 根据权利要求6所述的方法,其特征在于,资源相对应的第一信号和第二信号的发送波束的方向相同。
  8. 根据权利要求2所述的方法,其特征在于,携带第一类型随机接入配置信息的第二信号和携带第二类型随机接入配置信息的第二信号为不同的信号,携带第二类型随机接入配置信息的第二信号在携带第一类型随机接入配置信息的第二信号之前发送。
  9. 根据权利要求8所述的方法,其特征在于,携带第二类型随机接入配置信息的第二信号为物理广播信道PBCH上的信号,携带第一类型随机接入配置信息的第二信号为主系统信息块essential SIB;或者,
    携带第二类型随机接入配置信息的第二信号为PBCH上的信号,携带第一类型随机接入配置信息的第二信号为系统信息块1;或者,
    携带第二类型随机接入配置信息的第二信号为essential SIB,携带第一类型随机接入配置信息的第二信号为系统信息块1。
  10. 根据权利要求2所述的方法,其特征在于,每个第二信号中第一类型随机资源配置信息包括该第二信号所属的小区配置的所有第一信号和第一类型随机接入资源的对应关系,或者,每个第二信号中的第一类型随机接入配置信息包括该第二信号所属的小区配置的所有的第一信号的子集和第一类型随机接入资源的子集的对应关系。
  11. 根据权利要求10所述的方法,其特征在于,属于相同子集的第一信号在同一时间单元内发送,所述时间单元为子帧、时隙或微时隙mini slot。
  12. 根据权利要求2所述的方法,其特征在于,所述基站发送X个第一信号和Y个第二信号,包括:
    基站周期性发送所述X个第一信号和所述Y个第二信号,且所述基站在一个周期 内,以波束扫描的方式发送所述X个第一信号和所述Y个第二信号。
  13. 根据权利要求12所述的方法,其特征在于,所述X个第一信号分别采用不同的波束发送,所述基站采用与第一信号的发送波束方向相同的接收波束、接收采用所述第一信号的资源对应的随机接入资源发送的随机接入前导。
  14. 根据权利要求1-13任一项所述的方法,其特征在于,所述第一类型随机接入资源的系统参数和所述第二类型随机接入资源的系统参数不同,所述系统参数包括子载波间隔和符号长度。
  15. 根据权利要求1-13任一项所述的方法,其特征在于,所述第一类型随机接入资源对应第一类型随机接入前导格式,所述第二类型随机接入资源对应第二类型随机接入前导格式,第一类型随机接入前导的格式包括循环前缀部分和前导序列部分,第一类型随机接入前导的格式的前导序列部分由单个序列构成;所述第二类型随机接入前导的格式包括循环前缀部分和前导序列部分,所述第二类型随机接入前导的格式的前导序列部分由多个重复的序列构成;或者,
    所述第一类型随机接入资源对应第一类型随机接入前导格式,所述第二类型随机接入资源对应第二类型随机接入前导格式,第一类型随机接入前导的格式和所述第二类型随机接入前导格式均包括循环前缀部分和前导序列部分,所述前导序列部分均由单个序列构成。
  16. 根据权利要求15所述的方法,其特征在于,所述第一类型接入前导的格式中的单个序列的长度比所述第二类型随机接入前导的格式的单个序列的长度大。
  17. 根据权利要求1-13任一项所述的方法,其特征在于,所述随机接入资源包括用于发送随机接入前导的时频资源、序列资源、循环移位资源中的至少一个。
  18. 根据权利要求1-13任一项所述的方法,其特征在于,所述终端发送波束的形式包括:
    通过全向波束在第一类型随机接入资源上发送随机接入前导;或者,
    通过多个定向波束在第二类型随机接入资源上发送随机接入前导。
  19. 根据权利要求18所述的方法,其特征在于,所述终端采用的定向波束的个数对应不同的随机前导序列组。
  20. 根据权利要求1-13任一项所述的方法,其特征在于,所述基站接收终端采用所述第一类型随机接入资源或所述第二类型随机接入资源发送的随机接入前导,包括:
    基站采用单个波束接收所述终端在所述第一类型随机接入资源上发送的随机接入前导;或者,
    基站采用多个波束轮流接收所述终端在所述第二类型随机接入资源上发送的随机接入前导。
  21. 根据权利要求20所述的方法,其特征在于,所述方法还包括:
    基站向所述终端发送随机接入应答,所述随机接入应答包括用于指示所述终端最优的定向波束的指示信息。
  22. 根据权利要求1-13任一项所述的方法,其特征在于,所述第一类型随机接入资源与第一类型随机接入应答资源一一对应;K个所述第二类型随机接入资源与一个第二类型随机接入应答资源对应;其中,K为大于1的整数。
  23. 根据权利要求22所述的方法,其特征在于,每K个连续的所述第二类型的随机接入资源对应一个第二类型随机接入应答资源。
  24. 一种随机接入方法,其特征在于,所述方法包括:
    终端确定至少两种类型的随机接入资源,所述至少两种类型的随机接入资源包括第一类型随机接入资源和第二类型随机接入资源,不同类型的所述随机接入资源与终端的不同的发送波束的形式一一对应;或者,所述第一类型随机接入资源与不同的下行信号的资源相关联,所述第二类型随机接入资源与不同的下行信号的资源不相关联;或者,所述第一类型随机接入资源以第一关联方式与不同的下行信号的资源相关联,所述第二类型随机接入资源以第二关联方式与所述不同的下行信号的资源相关联,所述第一关联方式与所述第二关联方式不同;
    终端采用所述第一类型随机接入资源或所述第二类型随机接入资源发送随机接入前导。
  25. 根据权利要求24所述的方法,其特征在于,所述方法还包括:
    终端接收基站发送的第一信号和第二信号,所述第二信号中的每一个第二信号包括随机接入配置信息,每个所述第二信号中的所述随机接入配置信息包括第一类型随机接入配置信息和第二类型随机接入配置信息中的至少一种,所述第一类型随机接入配置信息用于指示Z个第一类型随机接入资源以及所述Z个第一类型随机接入资源与所述X个第一信号的资源的对应关系,所述第二类型随机接入信息用于指示第二类型随机接入资源,或者,所述第二类型随机接入配置信息用于指示Z个第二类型随机接入资源以及所述Z个第二类型随机接入资源与所述X个第一信号的资源的对应关系;
    其中,所述第一信号为下行同步信号、广播信号或下行测量导频信号中的至少一个,所述第二信号为广播信号或者系统消息,X、Y、Z为正整数,X、Y、Z均大于1。
  26. 根据权利要求25所述的方法,其特征在于,所述Z个第一类型随机接入资源与所述X个第一信号的资源的对应关系为,X个不同的第一信号对应于Z个不同的第一类型随机接入资源的时频资源;所述Z个第二类型随机接入资源与X个第一信号的资源的对应关系为,X个不同的第一信号对应于Z个不同的第二类型随机接入资源的码资源。
  27. 根据权利要求26所述的方法,其特征在于,所述Z个第一类型随机接入资源与所述X个第一信号的资源的对应关系,包括:Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个下行信号的不同资源中的一个资源相对应,所述资源为码资源、时域资源或频域资源;
    所述Z个第二类型随机接入资源与所述X个第一信号的资源的对应关系,包括:Z个第二类型随机接入资源中的每一个第二类型随机接入资源、与X个下行信号的不同资源中的一个资源相对应,所述资源为码资源、时域资源或频域资源。
  28. 根据权利要求27所述的方法,其特征在于,所述Z个第一类型随机接入资源与所述X个第一信号的资源的对应关系,包括:
    Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个下行同步信号的不同序列中的一个序列相对应;或者,
    Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个下行同步信号的不同时域资源中的一个时域资源相对应;或者,
    Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个下行同步信号的不同频域资源的一个频域资源相对应;或者,
    Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个下行测量导频信号的不同序列的一个序列相对应;或者,
    Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个下行测量导频信号的不同时域资源的一个时域资源相对应;或者,
    Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个下行测量导频信号的不同频域资源的一个频域资源相对应;或者,
    Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个广播信号的不同扰码中的一个扰码相对应;或者,
    Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个广播信号的不同时域资源中的一个时域资源相对应;或者,
    Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个广播信号的不同频域资源的一个频域资源相对应。
  29. 根据权利要求25所述的方法,其特征在于,所述Y个第二信号的资源中的每一个第二信号的资源、与X个第一信号的资源对应。
  30. 根据权利要求29所述的方法,其特征在于,资源相对应的第一信号和第二信号的发送波束的方向相同。
  31. 根据权利要求25所述的方法,其特征在于,携带第一类型随机接入配置信息的第二信号和携带第二类型随机接入配置信息的第二信号为不同的信号,携带第二类型随机接入配置信息的第二信号在携带第一类型随机接入配置信息的第二信号之前发送。
  32. 根据权利要求31所述的方法,其特征在于,携带第二类型随机接入配置信息的第二信号为物理广播信道PBCH上的信号,携带第一类型随机接入配置信息的第二信号为主系统信息块essential SIB;或者,
    携带第二类型随机接入配置信息的第二信号为PBCH上的信号,携带第一类型随机接入配置信息的第二信号为系统信息块1;或者,
    携带第二类型随机接入配置信息的第二信号为essential SIB,携带第一类型随机接入配置信息的第二信号为系统信息块1。
  33. 根据权利要求25所述的方法,其特征在于,每个第二信号中第一类型随机资源配置信息包括该第二信号所属小区配置的所有第一信号和第一类型随机接入资源的对应关系,或者,每个第二信号中的第一类型随机接入配置信息包括该第二信号所属小区配置的所有的第一信号的子集和第一类型随机接入资源的子集的对应关系。
  34. 根据权利要求33所述的方法,其特征在于,属于相同子集的第一信号在同一时间单元内发送,所述时间单元为子帧、时隙或微时隙。
  35. 根据权利要求24-34任一项所述的方法,其特征在于,所述第一类型随机接入资源的系统参数和所述第二类型随机接入资源的系统参数不同,所述系统参数包括 子载波间隔和符号长度。
  36. 根据权利要求24-34任一项所述的方法,其特征在于,所述第一类型随机接入资源对应第一类型随机接入前导格式,所述第二类型随机接入资源对应第二类型随机接入前导格式,第一类型随机接入前导的格式包括循环前缀部分和前导序列部分,第一类型随机接入前导的格式的前导序列部分由单个序列构成;所述第二类型随机接入前导的格式包括循环前缀部分和前导序列部分,所述第二类型随机接入前导的格式的前导序列部分由多个重复的序列构成;或者,
    所述第一类型随机接入资源对应第一类型随机接入前导格式,所述第二类型随机接入资源对应第二类型随机接入前导格式,第一类型随机接入前导的格式和所述第二类型随机接入前导格式均包括循环前缀部分和前导序列部分,所述前导序列部分均由单个序列构成。
  37. 根据权利要求36所述的方法,其特征在于,所述第一类型接入前导的格式中的单个序列的长度比所述第二类型随机接入前导的格式的单个序列的长度大。
  38. 根据权利要求24-34任一项所述的方法,其特征在于,所述随机接入资源包括用于发送随机接入前导的时频资源、序列资源、循环移位资源中的至少一个。
  39. 根据权利要求24-34任一项所述的方法,其特征在于,所述终端采用所述第一类型随机接入资源或所述第二类型随机接入资源发送随机接入前导,包括:
    当终端测得的参考信号接收功率大于设定门限的时候,选择第一类型随机接入资源通过全向波束发送随机接入前导;或者,
    当终端测得的参考信号接收功率小于或等于所述设定门限的时候,选择第二类型随机接入资源通过多个定向波束发送随机接入前导。
  40. 根据权利要求39所述的方法,其特征在于,所述终端采用的定向波束的个数对应不同的随机前导序列组。
  41. 根据权利要求39所述的方法,其特征在于,所述方法还包括:
    终端接收基站发送的随机接入应答,所述随机接入应答包括用于指示所述终端最优的发送波束的指示信息。
  42. 根据权利要求39所述的方法,其特征在于,所述方法还包括:
    终端以相同的发射功率在K个所述第二类型随机接入资源上轮询K个定向波束发送随机接入前导。
  43. 根据权利要求42所述的方法,其特征在于,所述方法还包括:
    在终端以相同的发射功率在K个所述第二类型随机接入资源上轮询K个定向波束发送随机接入前导之后,若终端未能接收到随机接入应答,增加发射功率再以相同的发射功率在K个所述随机接入资源上轮询K个定向波束发送随机接入前导,其中,K为大于1的整数。
  44. 根据权利要求24-34任一项所述的方法,其特征在于,所述第一类型随机接入资源与第一类型随机接入应答资源一一对应;K个所述第二类型随机接入资源与一个第二类型随机接入应答资源对应;其中,K为大于1的整数。
  45. 根据权利要求44所述的方法,其特征在于,每K个连续的所述第二类型的随机接入资源对应一个第二类型随机接入应答资源。
  46. 一种随机接入装置,其特征在于,所述装置包括:
    配置单元,用于配置至少两种类型的随机接入资源,所述至少两种类型的随机接入资源包括第一类型随机接入资源和第二类型随机接入资源,不同类型的所述随机接入资源与终端的不同的发送波束的形式一一对应;或者,所述第一类型随机接入资源与不同的下行信号的资源相关联,所述第二类型随机接入资源与不同的下行信号的资源不相关联;或者,所述第一类型随机接入资源以第一关联方式与不同的下行信号的资源相关联,所述第二类型随机接入资源以第二关联方式与所述不同的下行信号的资源相关联,所述第一关联方式与所述第二关联方式不同;
    接收单元,用于接收终端采用所述第一类型随机接入资源或所述第二类型随机接入资源发送的随机接入前导。
  47. 根据权利要求46所述的装置,其特征在于,所述装置还包括:
    发送单元,用于发送X个第一信号和Y个第二信号,所述Y个第二信号中的每一个第二信号包括随机接入配置信息中的至少一种,每个所述第二信号中的所述随机接入配置信息包括第一类型随机接入配置信息和第二类型随机接入配置信息中的至少一种,所述第一类型随机接入配置信息用于指示Z个第一类型随机接入资源以及所述Z个第一类型随机接入资源与所述X个第一信号的资源的对应关系,所述第二类型随机接入信息用于指示第二类型随机接入资源,或者所述第二类型随机接入信息用于指示Z个第二类型随机接入资源和所述Z个第二类型随机接入资源与X个第一信号的资源的对应关系;
    其中,所述第一信号为下行同步信号、广播信号或下行测量导频信号中的至少一个,所述第二信号为广播信号或者系统消息,X、Y、Z为正整数,X、Y、Z均大于1。
  48. 根据权利要求47所述的装置,其特征在于,所述Z个第一类型随机接入资源与所述X个第一信号的资源的对应关系为,X个不同的第一信号对应于Z个不同的第一类型随机接入资源的时频资源;所述Z个第二类型随机接入资源与X个第一信号的资源的对应关系为,X个不同的第一信号对应于Z个不同的第二类型随机接入资源的码资源。
  49. 根据权利要求48所述的装置,其特征在于,所述Z个第一类型随机接入资源与所述X个第一信号的资源的对应关系,包括:Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个下行信号的不同资源中的一个资源相对应,所述资源为码资源、时域资源或频域资源;
    所述Z个第二类型随机接入资源与所述X个第一信号的资源的对应关系,包括:Z个第二类型随机接入资源中的每一个第二类型随机接入资源、与X个下行信号的不同资源中的一个资源相对应,所述资源为码资源、时域资源或频域资源。
  50. 根据权利要求49所述的装置,其特征在于,所述Z个第一类型随机接入资源与所述X个第一信号的资源的对应关系,包括:
    Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个下行同步信号的不同序列中的一个序列相对应;或者,
    Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个下行同步 信号的不同时域资源中的一个时域资源相对应;或者,
    Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个下行同步信号的不同频域资源的一个频域资源相对应;或者,
    Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个下行测量导频信号的不同序列的一个序列相对应;或者,
    Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个下行测量导频信号的不同时域资源的一个时域资源相对应;或者,
    Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个下行测量导频信号的不同频域资源的一个频域资源相对应;或者,
    Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个广播信号的不同扰码中的一个扰码相对应;或者,
    Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个广播信号的不同时域资源中的一个时域资源相对应;或者,
    Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个广播信号的不同频域资源的一个频域资源相对应。
  51. 根据权利要求47所述的装置,其特征在于,所述Y个第二信号的资源中的每一个第二信号的资源、与X个第一信号的资源对应。
  52. 根据权利要求51所述的装置,其特征在于,资源相对应的第一信号和第二信号的发送波束的方向相同。
  53. 根据权利要求47所述的装置,其特征在于,携带第一类型随机接入配置信息的第二信号和携带第二类型随机接入配置信息的第二信号为不同的信号,携带第二类型随机接入配置信息的第二信号在携带第一类型随机接入配置信息的第二信号之前发送。
  54. 根据权利要求53所述的装置,其特征在于,携带第二类型随机接入配置信息的第二信号为物理广播信道PBCH上的信号,携带第一类型随机接入配置信息的第二信号为主系统信息块;或者,
    携带第二类型随机接入配置信息的第二信号为PBCH上的信号,携带第一类型随机接入配置信息的第二信号为系统信息块1;或者,
    携带第二类型随机接入配置信息的第二信号为主系统信息块,携带第一类型随机接入配置信息的第二信号为系统信息块1。
  55. 根据权利要求47所述的装置,其特征在于,每个第二信号中第一类型随机资源配置信息包括该第二信号所属小区配置的所有第一信号和第一类型随机接入资源的对应关系,或者,每个第二信号中的第一类型随机接入配置信息包括该第二信号所属小区配置的所有的第一信号的子集和第一类型随机接入资源的子集的对应关系。
  56. 根据权利要求55所述的装置,其特征在于,属于相同子集的第一信号在同一时间单元内发送,所述时间单元为子帧、时隙或微时隙。
  57. 根据权利要求47所述的装置,其特征在于,所述发送单元,用于周期性发送所述X个第一信号和所述Y个第二信号,且所述基站在一个周期内,以波束扫描的方式发送所述X个第一信号和所述Y个第二信号。
  58. 根据权利要求47所述的装置,其特征在于,所述X个第一信号分别采用不同的波束发送,所述接收单元采用与第一信号的发送波束方向相同的接收波束接收采用所述第一信号的资源对应的随机接入资源发送的随机接入前导。
  59. 根据权利要求46-58任一项所述的装置,其特征在于,所述第一类型随机接入资源的系统参数和所述第二类型随机接入资源的系统参数不同,所述系统参数包括子载波间隔和符号长度。
  60. 根据权利要求46-58任一项所述的装置,其特征在于,所述第一类型随机接入资源对应第一类型随机接入前导格式,所述第二类型随机接入资源对应第二类型随机接入前导格式,第一类型随机接入前导的格式包括循环前缀部分和前导序列部分,第一类型随机接入前导的格式的前导序列部分由单个序列构成;所述第二类型随机接入前导的格式包括循环前缀部分和前导序列部分,所述第二类型随机接入前导的格式的前导序列部分由多个重复的序列构成;或者,
    所述第一类型随机接入资源对应第一类型随机接入前导格式,所述第二类型随机接入资源对应第二类型随机接入前导格式,第一类型随机接入前导的格式和所述第二类型随机接入前导格式均包括循环前缀部分和前导序列部分,所述前导序列部分均由单个序列构成。
  61. 根据权利要求60所述的装置,其特征在于,所述第一类型接入前导的格式中的单个序列的长度比所述第二类型随机接入前导的格式的单个序列的长度大。
  62. 根据权利要求46-58任一项所述的装置,其特征在于,所述随机接入资源包括用于发送随机接入前导的时频资源、序列资源、循环移位资源中的至少一个。
  63. 根据权利要求46-58任一项所述的装置,其特征在于,所述终端发送波束的形式包括:
    通过全向波束在第一类型随机接入资源上发送随机接入前导;或者,
    通过多个定向波束在第二类型随机接入资源上发送随机接入前导。
  64. 根据权利要求63所述的装置,其特征在于,所述终端采用的定向波束的个数对应不同的随机前导序列组。
  65. 根据权利要求46-58任一项所述的装置,其特征在于,所述接收单元,用于:
    采用单个波束接收所述终端在所述第一类型随机接入资源上发送的随机接入前导;或者,
    采用多个波束轮流接收所述终端在所述第二类型随机接入资源上发送的随机接入前导。
  66. 根据权利要求65所述的装置,其特征在于,所述装置还包括:
    发送单元,用于向所述终端发送随机接入应答,所述随机接入应答包括用于指示所述终端最优的定向波束的指示信息。
  67. 根据权利要求46-58任一项所述的装置,其特征在于,所述第一类型随机接入资源与第一类型随机接入应答资源一一对应;K个所述第二类型随机接入资源与一个第二类型随机接入应答资源对应;其中,K为大于1的整数。
  68. 根据权利要求67所述的装置,其特征在于,每K个连续的所述第二类型的随机接入资源对应一个第二类型随机接入应答资源。
  69. 一种随机接入装置,其特征在于,所述装置包括:
    确定单元,用于确定至少两种类型的随机接入资源,所述至少两种类型的随机接入资源包括第一类型随机接入资源和第二类型随机接入资源,不同类型的所述随机接入资源与终端的不同的发送波束的形式一一对应;或者,所述第一类型随机接入资源与不同的下行信号的资源相关联,所述第二类型随机接入资源与不同的下行信号的资源不相关联;或者,所述第一类型随机接入资源以第一关联方式与不同的下行信号的资源相关联,所述第二类型随机接入资源以第二关联方式与所述不同的下行信号的资源相关联,所述第一关联方式与所述第二关联方式不同;
    发送单元,用于采用所述第一类型随机接入资源或所述第二类型随机接入资源发送随机接入前导。
  70. 根据权利要求69所述的装置,其特征在于,所述装置还包括:
    接收单元,用于接收基站发送的第一信号和第二信号,所述第二信号中的每一个第二信号包括随机接入配置信息中的至少一种,每个所述第二信号中的所述随机接入配置信息包括第一类型随机接入配置信息和第二类型随机接入配置信息中的至少一种,所述第一类型随机接入配置信息用于指示Z个第一类型随机接入资源以及所述Z个第一类型随机接入资源与所述X个第一信号的资源的对应关系,所述第二类型随机接入信息用于指示第二类型随机接入资源,或者,所述第二类型随机接入配置信息用于指示Z个第二类型随机接入资源以及所述Z个第二类型随机接入资源与所述X个第一信号的资源的对应关系;
    其中,所述第一信号为下行同步信号、广播信号或下行测量导频信号中的至少一个,所述第二信号为广播信号或者系统消息,X、Y、Z为正整数,X、Y、Z均大于1。
  71. 根据权利要求70所述的装置,其特征在于,所述Z个第一类型随机接入资源与所述X个第一信号的资源的对应关系为,X个不同的第一信号对应于Z个不同的第一类型随机接入资源的时频资源;所述Z个第二类型随机接入资源与X个第一信号的资源的对应关系为,X个不同的第一信号对应于Z个不同的第二类型随机接入资源的码资源。
  72. 根据权利要求71所述的装置,其特征在于,所述Z个第一类型随机接入资源与所述X个第一信号的资源的对应关系,包括:Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个下行信号的不同资源中的一个资源相对应,所述资源为码资源、时域资源或频域资源;
    所述Z个第二类型随机接入资源与所述X个第一信号的资源的对应关系,包括:Z个第二类型随机接入资源中的每一个第二类型随机接入资源、与X个下行信号的不同资源中的一个资源相对应,所述资源为码资源、时域资源或频域资源。
  73. 根据权利要求72所述的装置,其特征在于,所述Z个第一类型随机接入资源与所述X个第一信号的资源的对应关系,包括:
    Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个下行同步信号的不同序列中的一个序列相对应;或者,
    Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个下行同步 信号的不同时域资源中的一个时域资源相对应;或者,
    Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个下行同步信号的不同频域资源的一个频域资源相对应;或者,
    Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个下行测量导频信号的不同序列的一个序列相对应;或者,
    Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个下行测量导频信号的不同时域资源的一个时域资源相对应;或者,
    Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个下行测量导频信号的不同频域资源的一个频域资源相对应;或者,
    Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个广播信号的不同扰码中的一个扰码相对应;或者,
    Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个广播信号的不同时域资源中的一个时域资源相对应;或者,
    Z个第一类型随机接入资源中的每一个第一类型随机接入资源、与X个广播信号的不同频域资源的一个频域资源相对应。
  74. 根据权利要求70所述的装置,其特征在于,所述Y个第二信号的资源中的每一个第二信号的资源、与X个第一信号的资源对应。
  75. 根据权利要求73所述的装置,其特征在于,资源相对应的第一信号和第二信号的发送波束的方向相同。
  76. 根据权利要求70所述的装置,其特征在于,携带第一类型随机接入配置信息的第二信号和携带第二类型随机接入配置信息的第二信号为不同的信号,携带第二类型随机接入配置信息的第二信号在携带第一类型随机接入配置信息的第二信号之前发送。
  77. 根据权利要求76所述的装置,其特征在于,携带第二类型随机接入配置信息的第二信号为物理广播信道PBCH上的信号,携带第一类型随机接入配置信息的第二信号为主系统信息块;或者,
    携带第二类型随机接入配置信息的第二信号为PBCH上的信号,携带第一类型随机接入配置信息的第二信号为系统信息块1;或者,
    携带第二类型随机接入配置信息的第二信号为主系统信息块,携带第一类型随机接入配置信息的第二信号为系统信息块1。
  78. 根据权利要求70所述的装置,其特征在于,每个第二信号中第一类型随机资源配置信息包括该第二信号所属小区配置的所有第一信号和第一类型随机接入资源的对应关系,或者,每个第二信号中的第一类型随机接入配置信息包括该第二信号所属小区配置的所有的第一信号的子集和第一类型随机接入资源的子集的对应关系。
  79. 根据权利要求78所述的装置,其特征在于,属于相同子集的第一信号在同一时间单元内发送,所述时间单元为子帧、时隙或微时隙。
  80. 根据权利要求69-79任一项所述的装置,其特征在于,所述第一类型随机接入资源的系统参数和所述第二类型随机接入资源的系统参数不同,所述系统参数包括子载波间隔和符号长度。
  81. 根据权利要求69-79任一项所述的装置,其特征在于,所述第一类型随机接入资源对应第一类型随机接入前导格式,所述第二类型随机接入资源对应第二类型随机接入前导格式,第一类型随机接入前导的格式包括循环前缀部分和前导序列部分,第一类型随机接入前导的格式的前导序列部分由单个序列构成;所述第二类型随机接入前导的格式包括循环前缀部分和前导序列部分,所述第二类型随机接入前导的格式的前导序列部分由多个重复的序列构成;或者,
    所述第一类型随机接入资源对应第一类型随机接入前导格式,所述第二类型随机接入资源对应第二类型随机接入前导格式,第一类型随机接入前导的格式和所述第二类型随机接入前导格式均包括循环前缀部分和前导序列部分,所述前导序列部分均由单个序列构成。
  82. 根据权利要求81所述的装置,其特征在于,所述第一类型接入前导的格式中的单个序列的长度比所述第二类型随机接入前导的格式的单个序列的长度大。
  83. 根据权利要求69-79任一项所述的装置,其特征在于,所述随机接入资源包括用于发送随机接入前导的时频资源、序列资源、循环移位资源中的至少一个。
  84. 根据权利要求69-79任一项所述的装置,其特征在于,所述发送单元,用于:
    当终端测得的参考信号接收功率大于设定门限的时候,选择第一类型随机接入资源通过全向波束发送随机接入前导;或者,
    当终端测得的参考信号接收功率小于或等于所述设定门限的时候,选择第二类型随机接入资源通过多个定向波束发送随机接入前导。
  85. 根据权利要求84所述的装置,其特征在于,所述终端采用的定向波束的个数对应不同的随机前导序列组。
  86. 根据权利要求84所述的装置,其特征在于,所述装置还包括:
    接收单元,用于接收基站发送的随机接入应答,所述随机接入应答包括用于指示所述终端最优的发送波束的指示信息。
  87. 根据权利要求84所述的装置,其特征在于,所述发送单元,还用于:
    以相同的发射功率在K个所述第二类型随机接入资源上轮询K个定向波束发送随机接入前导。
  88. 根据权利要求86所述的装置,其特征在于,所述发送单元,还用于:在终端以相同的发射功率在K个所述第二类型随机接入资源上轮询K个定向波束发送随机接入前导之后,若终端未能接收到随机接入应答,增加发射功率再以相同的发射功率在K个所述随机接入资源上轮询K个定向波束发送随机接入前导,其中,K为大于1的整数。
  89. 根据权利要求69-79任一项所述的装置,其特征在于,所述第一类型随机接入资源与第一类型随机接入应答资源一一对应;K个所述第二类型随机接入资源与一个第二类型随机接入应答资源对应;其中,K为大于1的整数。
  90. 根据权利要求89所述的装置,其特征在于,每K个连续的所述第二类型的随机接入资源对应一个第二类型随机接入应答资源。
  91. 一种基站,其特征在于,所述基站包括处理器、存储器以及通信接口;所述 存储器用于存储软件程序以及模块,所述处理器通过运行或执行存储在所述存储器内的软件程序和/或模块实现如权利要求1-23任一项所述的方法。
  92. 一种终端,其特征在于,所述终端包括处理器、存储器以及通信接口;所述存储器用于存储软件程序以及模块,所述处理器通过运行或执行存储在所述存储器内的软件程序和/或模块实现如权利要求24-45任一项所述的方法。
  93. 一种随机接入系统,其特征在于,所述系统包括:基站和终端;
    所述基站包括如权利要求46至68任一所述的随机接入装置;
    所述终端包括如权利要求69至90任一所述的随机接入装置。
PCT/CN2017/097247 2016-08-12 2017-08-11 随机接入方法、装置、系统、终端和基站 WO2018028701A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BR112019002595A BR112019002595A2 (pt) 2016-08-12 2017-08-11 método, aparelho, e sistema de acesso aleatório, terminal, e estação de base
EP17838831.0A EP3493626B1 (en) 2016-08-12 2017-08-11 Random access method, apparatus and system, terminal, and base station
JP2019507153A JP6833976B2 (ja) 2016-08-12 2017-08-11 ランダムアクセス方法、ランダムアクセス装置およびランダムアクセスシステム、端末ならびに基地局
KR1020197005882A KR102186920B1 (ko) 2016-08-12 2017-08-11 랜덤 액세스 방법, 장치 및 시스템, 단말, 및 기지국
US16/272,705 US11382135B2 (en) 2016-08-12 2019-02-11 Configuring different types of random resources

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201610670239.9 2016-08-12
CN201610670239 2016-08-12
CN201610978462.XA CN107734690B (zh) 2016-08-12 2016-11-04 随机接入方法、装置、系统、终端和基站
CN201610978462.X 2016-11-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/272,705 Continuation US11382135B2 (en) 2016-08-12 2019-02-11 Configuring different types of random resources

Publications (1)

Publication Number Publication Date
WO2018028701A1 true WO2018028701A1 (zh) 2018-02-15

Family

ID=61161682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/097247 WO2018028701A1 (zh) 2016-08-12 2017-08-11 随机接入方法、装置、系统、终端和基站

Country Status (1)

Country Link
WO (1) WO2018028701A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111757538A (zh) * 2019-03-29 2020-10-09 华为技术有限公司 一种确定随机接入资源的方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101784121A (zh) * 2009-01-20 2010-07-21 华为技术有限公司 一种随机接入的方法、装置和系统
CN104956760A (zh) * 2013-01-28 2015-09-30 阿尔卡特朗讯 无线通信
WO2015147717A1 (en) * 2014-03-25 2015-10-01 Telefonaktiebolaget L M Ericsson (Publ) System and method for beam-based physical random-access

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101784121A (zh) * 2009-01-20 2010-07-21 华为技术有限公司 一种随机接入的方法、装置和系统
CN104956760A (zh) * 2013-01-28 2015-09-30 阿尔卡特朗讯 无线通信
WO2015147717A1 (en) * 2014-03-25 2015-10-01 Telefonaktiebolaget L M Ericsson (Publ) System and method for beam-based physical random-access

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Beam-Based Design Framework for New Radio", 3GPP TSG-RAN WG1 #85, RL-164874, 27 May 2016 (2016-05-27), XP051096289 *
NOKIA ET AL.: "Support for Beam Based Common Control Plane", 3GPP TSG-RAN WG1#85, RL-165364, 27 May 2016 (2016-05-27), XP051096653 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111757538A (zh) * 2019-03-29 2020-10-09 华为技术有限公司 一种确定随机接入资源的方法及装置
CN111757538B (zh) * 2019-03-29 2022-05-13 华为技术有限公司 一种确定随机接入资源的方法及装置

Similar Documents

Publication Publication Date Title
CN107734690B (zh) 随机接入方法、装置、系统、终端和基站
US11564183B2 (en) Scheduling beam sweeping resource for transmitting control information for wireless networks
US11569949B2 (en) Communication method and communications apparatus
US11540309B2 (en) Data transmission method and apparatus
CN109890079B (zh) 一种资源配置方法及其装置
CN108811083B (zh) 一种寻呼指示的传输方法及装置
EP3664344B1 (en) Data receiving method and device
KR20200099094A (ko) 2-단계 랜덤 액세스
JP2020513180A (ja) ワイヤレス通信における基準信号リソース捜索技法
US20230078339A1 (en) Panel selection for uplink transmission in a multi-transmission-reception point (trp) system
CN111630886B (zh) 异频测量时延确定方法、装置及存储介质
WO2020199902A1 (zh) 一种选择接收波束的方法及装置
US11582631B2 (en) User equipment indication for adaptive scheduling restrictions
US20220287088A1 (en) Channel sensing techniques for wireless networks
US20230026859A1 (en) Full-duplex communication method and apparatus
JP2024503682A (ja) マルチtrpシナリオで報告するビームグループの拡張
WO2018028701A1 (zh) 随机接入方法、装置、系统、终端和基站
US20190229881A1 (en) Method and apparatus for setting symbol
WO2020134897A1 (zh) 随机接入方法、装置、系统及存储介质
CN115529113A (zh) 参考信号的传输方法和设备
CN117998484A (zh) 传输测量结果的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17838831

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019507153

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197005882

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017838831

Country of ref document: EP

Effective date: 20190226

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019002595

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112019002595

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190208