WO2018028674A1 - 信息传输方法和设备 - Google Patents

信息传输方法和设备 Download PDF

Info

Publication number
WO2018028674A1
WO2018028674A1 PCT/CN2017/097090 CN2017097090W WO2018028674A1 WO 2018028674 A1 WO2018028674 A1 WO 2018028674A1 CN 2017097090 W CN2017097090 W CN 2017097090W WO 2018028674 A1 WO2018028674 A1 WO 2018028674A1
Authority
WO
WIPO (PCT)
Prior art keywords
index
data processing
pilot signal
terminal device
manner
Prior art date
Application number
PCT/CN2017/097090
Other languages
English (en)
French (fr)
Inventor
吴艺群
陈雁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17838804.7A priority Critical patent/EP3487108B1/en
Publication of WO2018028674A1 publication Critical patent/WO2018028674A1/zh
Priority to US16/272,952 priority patent/US11044037B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • H04L1/0005Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes applied to payload information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • H04L1/0011Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding applied to payload information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • H04L1/0016Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy involving special memory structures, e.g. look-up tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0033Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0052Realisations of complexity reduction techniques, e.g. pipelining or use of look-up tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0062Avoidance of ingress interference, e.g. ham radio channels

Definitions

  • the present application relates to the field of communications and, more particularly, to an information transmission method and apparatus.
  • the selection of the uplink data sharing channels is based on the scheduling/granting mechanism, and is completely affected by the base station (BS).
  • the user equipment User Equipment, UE
  • the BS After receiving the request, the BS sends an uplink Grant to the UE to notify the UE of the uplink transmission resource allocated to the UE.
  • the UE accordingly performs data transmission on the permitted uplink transmission resources.
  • next-generation communication networks Large-scale user access is one of the typical application scenarios for next-generation communication networks.
  • Scheduling/Grant mechanism When a large number of users access, if the above-mentioned Scheduling/Grant mechanism is used, on the one hand, it will cause huge signaling transmission overhead and scheduling pressure of BS resource allocation, and on the other hand, it will cause significant transmission delay.
  • the next-generation communication network will adopt the Grant Free transmission mode to support massive user access.
  • the above-mentioned unlicensed transmission of massive user access because multiple UEs are allowed to compete for transmission on the same time-frequency resource, may cause competition conflict and reduce the reliability of unauthorized transmission.
  • the receiving end since the receiving end needs to blindly detect the data of the terminal device, this will cause the complexity of the processing at the receiving end.
  • the embodiment of the present application provides an information transmission method and device, which can improve the reliability of communication and reduce the complexity of processing at the receiving end.
  • an embodiment of the present application provides an information transmission method, including:
  • the terminal device determines a data processing manner
  • the pilot signal and the processed data are transmitted.
  • the terminal device may determine a data processing manner; process the data according to the data processing manner; determine a pilot signal according to the data processing manner; and send the pilot signal and the processed The data, so that the receiving end can determine the data processing manner according to the pilot signal, avoiding the complexity of the blind detection of the data processing mode by the receiving end, and further, the terminal device can select the required modulation according to the requirement.
  • the coding method can meet the transmission requirements and improve the reliability of transmission.
  • the data processing manner includes at least one of the following processing modes: a modulation and coding mode, an interleaving manner, and a spreading manner.
  • the determining, according to the data processing manner, the pilot signal specifically:
  • the pilot signal is determined according to a mapping relationship between the data processing manner and the pilot signal.
  • the mapping relationship between the data processing mode and the pilot signal may be implemented by using a table.
  • mapping relationship between the data processing manner and the pilot signal may be implemented by using a formula.
  • the determining, according to the data processing manner, the pilot signal specifically:
  • the pilot signal is determined based on an index of the pilot signal.
  • the data processing manner includes multiple processing manners, and different processing manners of the multiple processing manners correspond to different ones of indexes of the pilot signals. Or multiple bits;
  • an index of the pilot signal specifically:
  • the data processing manner includes a first to a gth processing manner, where g is an integer greater than or equal to 2; and the pilot signal is determined according to the data processing manner, Specifically:
  • An index of the pilot signal is determined based on the value y, wherein the value y is determined according to a condition that satisfies the following formula:
  • x g represents the index of the g- th processing mode
  • x i represents the index of the i-th processing mode
  • N j represents the number of the j-th processing mode selectable.
  • the value is determined according to the value y.
  • the index of the pilot signal is specifically as follows:
  • the index f of the pilot signal is determined according to the condition that the following formula is met:
  • S is a value corresponding to at least one of a cell identifier of the terminal device, an identifier of the terminal device, time domain resource information, and frequency domain resource information, and mod represents a modulo processing.
  • determining the guide according to the value y is specifically as follows:
  • the index f of the pilot signal is determined according to the condition that the following formula is met:
  • S is a value corresponding to at least one of a cell identifier of the terminal device, an identifier of the terminal device, time domain resource information, and frequency domain resource information, where q is a constant, and p belongs to [0, q-1] Where mod represents modulo processing.
  • the terminal device determines a data processing manner, specifically:
  • the terminal device determines the data processing manner according to at least one of the following information:
  • a broadcast or unicast message at the receiving end of the data is a broadcast or unicast message at the receiving end of the data.
  • the terminal device according to the state information of the channel between the receiving ends of the data, the data processing manner corresponding to the previously transmitted data, and the NACK/ACK condition fed back by the receiving end, and the receiving end of the data broadcast Or the unicast message determines at least one of the data processing manners, determines a better modulation and coding manner, thereby improving transmission efficiency.
  • an information transmission method which includes:
  • the data is processed according to the data processing method.
  • the data processing manner further includes at least one of the following processing modes: an interleaving manner, a spreading manner, and a modulation and encoding manner.
  • the determining, according to the pilot signal, a data processing manner specifically:
  • the determining, according to the data processing manner, the pilot signal specifically:
  • the determining, according to the pilot signal, a data processing manner specifically:
  • the data processing mode is determined according to an index of the data processing manner.
  • the data processing manner includes multiple processing manners, and different processing manners of the multiple processing manners correspond to different ones of indexes of the pilot signals. Or multiple bits;
  • an index of the pilot signal specifically:
  • the data processing manner includes a first to a gth processing manner, where g is an integer greater than or equal to 2; and determining, according to an index of the pilot signal,
  • the index of the data processing mode is specifically:
  • x g represents the index of the g- th processing mode
  • x i represents the index of the i-th processing mode
  • N j represents the number of the j-th processing mode selectable.
  • determining, according to an index of the pilot signal, a value y specifically:
  • the value y is determined according to a condition that satisfies the following formula:
  • the S is a value corresponding to at least one of a cell identifier of the terminal device, an identifier of the terminal device, time domain resource information, and frequency domain resource information.
  • determining, according to an index of the pilot signal, a value y specifically:
  • the value y is determined according to a condition that satisfies the following formula:
  • S is a value corresponding to at least one of a cell identifier of the terminal device, an identifier of the terminal device, time domain resource information, and frequency domain resource information, where q is a constant, and p belongs to [0, q-1] , where mod represents the modulo processing, Indicates rounding down.
  • a terminal device comprising a processor and a transceiver, the method of any of the optional implementations of the first aspect or the first aspect.
  • a communication device comprising a processor and a transceiver, the method of any of the alternative implementations of the second or sixth aspect.
  • a computer storage medium having stored therein program code, the program code being operative to indicate a method of performing the first to second aspects described above, or any alternative implementation thereof.
  • FIG. 1 is a diagram of an application scenario according to an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of an information transmission method according to an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of an information transmission method according to an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of an information transmission method according to an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of an information transmission method according to an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of an information transmission method according to an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of a communication device in accordance with an embodiment of the present application.
  • a component can be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and a computing device can be a component.
  • One or more components can reside within a process and/or execution thread, and the components can be located on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on signals having one or more data packets (eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • the terminal device in the embodiment of the present application may also be referred to as a User Equipment (UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, and a terminal.
  • UE User Equipment
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), with wireless communication.
  • the network device in the embodiment of the present application may be a device for communicating with the terminal device, for example, may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, or may be a base station (NodeB, NB) in a WCDMA system. ), may also be an evolved base station (Evolutional Node B, eNB or eNodeB) in the LTE system, or the network device may be a relay station, an access point, an in-vehicle device, a wearable device, and a network-side device in a future 5G network or Network devices and the like in a future evolved PLMN network.
  • BTS Base Transceiver Station
  • NodeB NodeB
  • eNodeB evolved base station
  • the network device may be a relay station, an access point, an in-vehicle device, a wearable device, and a network-side device in a future 5G network or Network devices and the like in a
  • a large number of connections need to consume more resources to access the UE and need to consume more resources for the transmission of scheduling signaling related to data transmission of the terminal device.
  • FIG. 1 shows a schematic architectural diagram of a communication system to which an embodiment of the present application is applied.
  • the communication system 100 can include a network device 102 and terminal devices 104-114 (referred to as UEs in the figure) connected by a wireless connection or a wired connection or other means.
  • UEs terminal devices
  • the network in the embodiment of the present application may refer to a public land mobile network (PLMN) or a D2D network or an M2M network or other network.
  • PLMN public land mobile network
  • FIG. 1 is only a simplified schematic diagram of an example, and the network may also include other network devices. 1 is not drawn.
  • Grant free transmission can solve a variety of services in the future network, such as Machine Type Communication (MTC) services or Ultra Reliable and Low Latency Communication (URLLC) services. And to meet low latency, highly reliable service transmission. Grant free transmission can be targeted for upstream data transmission. Those skilled in the art will appreciate that Grant free transmissions can also be called other names, such as autonomous access, spontaneous multiple access, or contention-based multiple access.
  • MTC Machine Type Communication
  • URLLC Ultra Reliable and Low Latency Communication
  • Grant free transmission can be targeted for upstream data transmission.
  • Grant free transmissions can also be called other names, such as autonomous access, spontaneous multiple access, or contention-based multiple access.
  • the embodiment of the present application may be applied to the communication between the terminal device and the terminal device. (Device to Device, D2D) transmission.
  • D2D Device to Device
  • pilot signal mentioned in the embodiment of the present application may also be referred to as a reference signal, and is a signal provided by the transmitting end to the receiving end for channel estimation, channel sounding or channel state detection.
  • the index of the pilot signal means that the pilot signal can be determined by the index.
  • the pilot signal may be directly determined by using the index, or the index may be determined by combining the index with other information.
  • the index of the pilot signal can be obtained according to the index of the data processing mode, and the pilot signal is determined according to the index of the pilot signal combined with the identifier of the terminal device.
  • the index of the pilot signal may be obtained according to the index of the data processing mode and the identifier of the terminal device, and the pilot signal is determined according to the index of the pilot signal combined with the cell identifier of the terminal device.
  • the index of the data processing mode also means that the data processing mode is found through the index.
  • the data processing mode can be directly determined through the index, or the index can be combined with other information to determine the data processing mode.
  • indexes mentioned in the embodiments of the present application may also be referred to as numbers, or lookup parameters, and the like.
  • FIG. 2 is a schematic flowchart of an information transmission method 200 according to an embodiment of the present application.
  • the transmitting end of the data and the pilot signal may be a terminal device or a network device
  • the receiving end of the data and the pilot signal may be a terminal device or a network device.
  • the transmitting end of the data and the pilot signal is the terminal device, and the receiving end of the data and the pilot signal is a network device.
  • the embodiment of the present application is not limited thereto.
  • the transmitting end of the data and the pilot signal is the terminal device, and the receiving end of the data and the pilot signal is another terminal device.
  • the embodiment of the present application can apply the D2D transmission.
  • the terminal device acquires a data processing mode.
  • the data processing manner may include a modulation and coding manner.
  • the modulation and coding mode may refer to a Modulation Coding Scheme (MCS).
  • MCS Modulation Coding Scheme
  • the MCS may indicate a modulation order, a Transport Block Size (TBS), and a Redundancy Version (RV).
  • TBS Transport Block Size
  • RV Redundancy Version
  • the TBS may refer to the number of information bits transmitted within a certain time-frequency resource block size; the redundancy version rv idx is used to specify an output bit during channel coding.
  • the transport block size and redundancy version rv idx determine the specific channel coding method, such as the code rate.
  • the modulation order determines the specific modulation method.
  • the MCS mentioned in the embodiment of the present application may be selected from the following Table 1:
  • each MCS index corresponds to a combination of a modulation order Q'm , a TBS index I TBS and a redundancy version rv idx .
  • the correspondence between the TBS index and the transport block size may be represented by a TBS table, and Table 2 is an example of a TBS table. Based on the transmission resources (1 RB or 2 RBs exemplified in the table) and the TBS index, TBS (8 or 24 values exemplified in the table) can be determined.
  • TBS index I TBS 1RB 2RB ... 0 8 twenty four 1 16 40 2 twenty four 56 3 32 72 4 48 108 5 64 132 6 80 172 7 96 200
  • the modulation and coding mode mentioned in the embodiment of the present application may separately select a channel coding mode from a set of channel coding modes, and separately select a modulation mode from the modulation mode set, in addition to the form of the foregoing MCS.
  • the channel coding mode and the modulation mode may have respective indexes.
  • the embodiment of the present application can find the TBS and the redundancy version directly according to the index of the modulation coding mode or the index of the channel coding mode, and can also find the code rate directly according to the index of the modulation coding mode or the index of the channel coding mode.
  • the data processing manner mentioned in the embodiment of the present application may further include at least one of the following processing modes: an interleaving manner and a spreading manner.
  • the different interleaving manners may be distinguished by using an interlace pattern, that is, when the interleaving patterns are different, the interleaving manner is different.
  • the difference of the spreading manners may be differentiated by using a spreading code, that is, when the spreading codes are different, the spreading manner is different.
  • the terminal device does not mean that other data processing is not selected. the way.
  • the data processing manner acquired by the terminal device only includes the spread spectrum method, but the terminal device can still select the modulation and coding scheme.
  • the manner in which the above data processing method is included represents a data processing method for determining a pilot signal.
  • the terminal device may select a data processing manner according to multiple manners.
  • the terminal device may determine a data processing manner according to status information of a channel between the receiving ends of the data.
  • the terminal device may estimate status information of the channel between the terminal device and the receiving end of the data according to the reference signal sent by the receiving end of the data.
  • the terminal device may select a current data processing manner according to a data processing manner corresponding to the data previously transmitted by the receiving end of the data and information (eg, NACK/ACK) that the receiving end feeds back to the previously transmitted data.
  • information eg, NACK/ACK
  • the modulation coding mode adopted by the terminal device is the mode corresponding to the index 1, and the mode corresponding to the index 2 and the method corresponding to the index 3 process the data sent by the receiving end, and if the receiving end has the highest ACK ratio for the feedback corresponding to the index 1
  • the terminal device can perform data processing in a manner corresponding to index 1.
  • the terminal device may determine a data processing manner of data usage according to a broadcast or unicast message of the data receiving end.
  • the receiving end of the data may notify the terminal device in advance of the selection range of the data processing mode that the data can be transmitted by the terminal device.
  • the embodiment of the present application may combine the state information of the channel between the receiving end of the data, the data processing manner corresponding to the previously transmitted data, and the NACK/ACK condition fed back by the receiving end, and the broadcast or unicast message of the receiving end of the data. use.
  • the status information of the channel between the receiving ends of the data, the data processing manner corresponding to the data transmitted before the receiving end of the data, and the NACK/ACK condition fed back by the receiving end, and the receiving end broadcast or unicast of the data may be used. Any two of the messages are selected for data processing.
  • the data processing manner corresponding to the data transmitted by the receiving end of the data, the NACK/ACK condition fed back by the receiving end, and the broadcast or unicast message of the receiving end of the data together Select the data processing method.
  • the terminal device according to the state information of the channel between the receiving ends of the data, the data processing manner corresponding to the previously transmitted data, and the NACK/ACK condition fed back by the receiving end, and the receiving end of the data broadcast Or the unicast message determines at least one of the data processing manners, determines a better modulation and coding manner, thereby improving transmission efficiency.
  • the receiving end of the data can broadcast a selectable range of the data processing mode, and the terminal device can select the data processing mode from the selection range of the data processing mode according to the state of the channel with the receiving end.
  • the terminal device processes the data according to the data processing manner.
  • the code indicated by the MCS may be used.
  • the method performs channel coding on the data to obtain a coded bit.
  • the coded bit can be modulated according to a modulation order indicated by the MCS to obtain a modulation symbol.
  • the data may be channel-encoded according to the coding mode indicated by the MCS to obtain coded bits; in 322, the MCS may be instructed according to the MCS.
  • the modulation order modulates the coded bits to obtain a modulation symbol.
  • the modulation symbols may be spread according to a determined spreading manner to obtain a spread-spectrum modulation symbol.
  • the ZC code or the PN code may be used for spreading. .
  • the data may be interleaved according to the determined interleaving manner to obtain the interleaved data; in 332, the MCS may be indicated according to the determined MCS.
  • the interleaved data is channel-encoded to obtain coded bits.
  • the coded bits may be modulated according to a modulation order indicated by the determined MCS to obtain a modulation symbol.
  • the data may be channel-encoded according to the manner indicated by the channel coding mode to obtain coded bits; in 342, according to The determined multi-dimensional modulation mode modulates the coded bits to obtain modulation symbols.
  • the non-orthogonal multiple access technology may be used to implement multi-dimensional modulation. Therefore, the multi-dimensional modulation mode may be Sparse Code Multiple Access (SCMA).
  • SCMA Sparse Code Multiple Access
  • SCMA is a non-orthogonal multiple access technology.
  • SCMA is a non-orthogonal multiple access technology.
  • those skilled in the art may not refer to this technology as SCMA, and may also be referred to as other technical names.
  • the interleaving mode, the channel coding mode, and the multi-dimensional modulation mode can be determined, and the data is processed according to the determined manners.
  • the interleaving process may be performed after the modulation.
  • the terminal device acquires a pilot signal according to the data processing manner.
  • the terminal device may acquire the pilot signal according to the mapping relationship between the data processing manner and the pilot signal.
  • the terminal device may uniquely determine the pilot signal according to a specific data processing manner or a combination of a specific data processing manner, and a mapping relationship between the data processing manner and the pilot signal. .
  • the mapping relationship between the data processing mode and the pilot signal may be a mapping relationship between an index of the data processing mode and an index of the pilot signal.
  • the mapping relationship between the data processing mode and the pilot signal may be implemented by using a table.
  • the table can directly represent the mapping relationship between the data processing mode and the pilot signal, that is, the pilot signal can be directly found by looking up the table.
  • the table may present a mapping relationship between the index of the data processing mode and the index of the pilot signal, that is, the index of the data processing mode may be utilized, and the index of the pilot signal is searched by looking up the table, thereby using the pilot signal. Index, get the pilot signal.
  • mapping relationship between the data processing mode and the pilot signal may be implemented by using a formula.
  • an index of a data processing method can be utilized, and an index of a pilot signal can be obtained by a formula, thereby The pilot signal is determined by the index of the pilot signal.
  • the pilot signal can be directly obtained by the formula using the index of the data processing method.
  • the index of the pilot signal may have a value of a certain number of bits, wherein the number of bits may be optionally related according to the number of selectable pilots.
  • the index of the pilot signal is a t-digit number, and t is optionally a value of 2 or 10.
  • the index of the data processing mode corresponds to all or part of the index of the pilot signal, that is, the terminal device may determine the value of all or part of the index of the pilot signal according to the index of the data processing manner.
  • the other bits may correspond to the cell identifier of the terminal device, the identifier of the terminal device, the time domain resource information, and the frequency domain resource.
  • At least one of the information, for example, the value of the other bit may be indexed by at least one of a cell identifier of the terminal device, an identifier of the terminal device, time domain resource information, and frequency domain resource information for indicating to make sure.
  • the time domain resource information is optionally information of a time domain resource allocated by the transmission data, or information of a time domain resource allocated by the latest data transmission.
  • the time domain resource information may include a frame number and a slot number.
  • the frequency domain resource information is optionally information of a frequency domain resource allocated for transmitting data to be transmitted, or information of a frequency domain resource allocated by the most recent data transmission.
  • the frequency domain resource information may include a subband number.
  • the cell identifier of the terminal device is optionally an identifier of the management area to which the terminal device belongs, where the management area may be a physical cell or a hypercell hypercell (which is a virtual cell).
  • the identifier of the terminal device is optionally information for identifying the terminal device, for example, an International Mobile Subscriber Identification Number (IMSI), a Temporary Mobile Station Identity (TMSI), or an international mobile device. Identification (International Mobile Equipment Identity, IMEI), etc.
  • IMSI International Mobile Subscriber Identification Number
  • TMSI Temporary Mobile Station Identity
  • IMEI International Mobile Equipment Identity
  • the pilot signal is a binary number having 4 digits, wherein the 4th and 3rd bits of the index of the pilot signal from the lower to the upper bits may correspond to a modulation and coding mode, and the 1st and 2nd bits may be used by the terminal.
  • different processing manners may correspond to different bits in the index of the pilot signal.
  • the bits corresponding to different processing modes do not coincide at all.
  • the pilot signal is a binary number having 5 digits, wherein the 4th and 5th bits of the index of the pilot signal from the lower to the upper bits may correspond to the modulation and coding mode, and the 2nd and 3rd bits may correspond to the spread spectrum mode.
  • the first bit may be determined by other factors, such as, for example, an index indicating at least one of a cell identity of the terminal device, an identity of the terminal device, time domain resource information, and frequency domain resource information.
  • the index of the modulation and coding mode is 11, and the index of the spread spectrum mode is 00, and the corresponding value of at least one of the cell identifier of the terminal device, the identifier of the terminal device, the time domain resource information, and the frequency domain resource information is 1 Then, the index of the pilot signal is 11001.
  • the pilot signal is a binary number having a 5-bit number, wherein the fifth bit of the index of the pilot signal from the lower bit to the upper bit corresponds to the channel coding mode, that is, the specific value is determined by the index of the channel coding mode.
  • the fourth bit corresponds to the modulation mode, that is, the specific value is determined by the index of the modulation mode
  • the second and third bits correspond to the spreading mode, that is, the specific value is determined by the index of the spreading mode, and the last bit is determined. It may be determined by other factors, such as, for example, at least one of a cell identifier indicating the terminal device, an identifier of the terminal device, time domain resource information, and frequency domain resource information. index of. It is assumed that the index of the channel coding mode is 1, the index of the modulation mode is 0, the index of the spreading mode is 11, the corresponding value of at least one of the time domain resource information and the frequency domain resource information is 1, and the pilot signal is The index is 10111.
  • the pilot signal is a binary number having 5 digits, wherein the 4th and 5th bits of the index of the pilot signal from the lower to the upper bits may correspond to the interleaving mode, and the 2nd and 3rd bits may correspond to the spreading mode.
  • the first bit may be determined by other factors, such as, for example, an index indicating at least one of a cell identity of the terminal device, an identity of the terminal device, time domain resource information, and frequency domain resource information.
  • the index of the interleaving mode is 11, and the index of the spreading mode is 00, and the corresponding value of at least one of the cell identifier of the terminal device, the identifier of the terminal device, the time domain resource information, and the frequency domain resource information is 1, Then the index of the pilot signal is 11001.
  • the bits corresponding to each processing mode in the index of the pilot signal may be arranged in a concentrated manner.
  • the pilot signal is a binary number having 5 digits, the 4th and 5th bits of the index from the lower to the upper bits correspond to the modulation and coding scheme, the 2nd and 3rd bits correspond to the spread spectrum mode, and the last 1 bit corresponds to the spread spectrum mode.
  • Other information for example, a cell identifier of the terminal device, an identifier of the terminal device, time domain resource information, or frequency domain resource information. It is assumed that the index of the modulation and coding mode is 11, and the index of the spread spectrum mode is 00, and the corresponding value of at least one of the cell identifier of the terminal device, the identifier of the terminal device, the time domain resource information, and the frequency domain resource information is 1 Then, the index of the pilot signal is 11001.
  • At least two corresponding bits of the index of the pilot signal may be arranged in a cross between each other.
  • the pilot signal is a binary number having 5 digits, wherein the 2nd and 4th bit pairs from the lower to the upper bits are used for modulation coding, and the 3rd and 5th bits may correspond to the interleaving method, the last one. Bits correspond to other information. It is assumed that the index of the modulation and coding mode is 11, and the index of the interleaving mode is 00, and the corresponding value of at least one of the cell identifier of the terminal device, the identifier of the terminal device, the time domain resource information, and the frequency domain resource information is 1, Then the index of the pilot signal is 01011.
  • bits corresponding to other information are multiple bits, they may also be arranged in a cross.
  • the following describes how to determine the index of the pilot signal according to the index of the data processing mode, wherein the bits corresponding to each processing mode can be arranged in a centralized manner, that is, the bits that do not correspond to other modes are arranged in an intersecting manner.
  • the specific data processing manner corresponds to a specific bit of the index of the pilot signal, but it should be understood that this does not mean that the terminal device needs to index the pilot signal in the execution process.
  • the value of the data directly corresponds to the index of the data processing mode, but a specific data processing manner can be implemented by a formula to correspond to a specific bit of the index of the pilot signal.
  • positions of the respective bits in the following modes 1-6 are positions arranged in the order of the lower bits to the upper bits.
  • the data processing mode includes a modulation and coding mode; and the terminal device may determine the index f of the pilot signal according to the following formula 1:
  • m is an index of the modulation and coding mode
  • the f is a value in a t-digit
  • N 0 is a position of a start bit of a bit corresponding to the m in the f
  • N s is the f a location of a start bit of the bit corresponding to the S, where the S is a value corresponding to at least one of a cell identifier of the terminal device, an identifier of the terminal device, time domain resource information, and frequency domain resource information.
  • t is 2 or 10
  • f can be a 2 or a decimal number.
  • N 0 and N s are not limited.
  • N 0 may be greater than N s
  • N 0 may be greater than N s
  • the modulation and coding mode is MCS.
  • the data processing mode includes a modulation coding mode and a spreading mode; the terminal device may determine the index f of the pilot signal according to the following formula 2:
  • m is the index of the modulation and coding scheme
  • c 1 is the index of the spread spectrum system
  • f is the decimal value of t
  • N 0 f is the corresponding bit in the m
  • the position of the start bit N 1 is the position of the start bit of the bit corresponding to c 1 in the f
  • N s is the position of the start bit of the bit corresponding to the S in the f
  • S is a value corresponding to at least one of a cell identifier of the terminal device, an identifier of the terminal device, time domain resource information, and frequency domain resource information.
  • N 0 may be greater than N 1
  • N 1 may be greater than N s
  • N 0 may be greater than N s
  • N s may be greater than N 1
  • N 1 may be greater than N s
  • N s may be greater than N 0
  • N 1 It may be greater than N 0 , N 0 may be greater than N s ; or N s may be greater than N 0 , N 0 may be greater than N 1 ; or N s may be greater than N 1 , and N 1 may be greater than N 0 .
  • t is 2 or 10
  • f can be a 2 or a decimal number.
  • the modulation and coding mode is MCS.
  • the data processing mode includes a modulation coding mode and an interleaving mode; and the terminal device may determine the index f of the pilot signal according to the following formula 3:
  • m is an index of the modulation and coding mode
  • the c 2 is an index of the interleaving manner
  • the f is a value in a t-digit
  • N 0 is a bit corresponding to the m in the f
  • the position of the start bit N 2 is the position of the start bit of the bit corresponding to c 2 in the f
  • N s is the position of the start bit of the bit corresponding to the S in the f
  • the S And a value corresponding to at least one of a cell identifier of the terminal device, an identifier of the terminal device, time domain resource information, and frequency domain resource information.
  • N 0 may be greater than N 2
  • N 2 may be greater than N s
  • N 0 may be greater than N s
  • N s may be greater than N 2
  • N 2 may be greater than N s
  • N s may be greater than N 0
  • N 2 It may be greater than N 0 , N 0 may be greater than N s ; or N s may be greater than N 0 , N 0 may be greater than N 2 ; alternatively, N s may be greater than N 2 , and N 2 may be greater than N 0 .
  • t is 2 or 10
  • f can be a 2 or a decimal number.
  • the modulation and coding mode is MCS.
  • the data processing manner includes a modulation and coding scheme, a spreading scheme, and an interleaving method; and the terminal device may determine an index of the pilot signal according to the following formula 4:
  • m is an index of the modulation and coding mode
  • the c 1 is an index of the spreading mode
  • the c 2 is an index of the interleaving manner
  • the f is a value of a t-ary value
  • N 0 is the position of the start bit of the bit corresponding to the m in the f
  • N 1 is the start bit of the bit corresponding to the c 1 in the f
  • N 2 is the c 2 corresponding to the f in the f
  • N s is the position of the start bit of the bit corresponding to the S in the f
  • the S is the cell identifier of the terminal device, the identifier of the terminal device, and the time domain A value corresponding to at least one of resource information and frequency domain resource information.
  • N 0 , N 2 , N 1 , and N s are not equal to each other.
  • t is 2 or 10
  • f can be a 2 or a decimal number.
  • the modulation and coding mode is MCS.
  • the data processing manner includes a channel coding mode and a multi-dimensional modulation mode; the terminal device may determine an index of the pilot signal according to the following formula 5:
  • m a is an index of the channel coding mode
  • m b is an index of the multi-dimensional modulation mode
  • f is a value of t
  • Na is a start bit of a bit corresponding to m a of the f a position
  • N b is the position of the start bit of the bit corresponding to m b in the f
  • N s is the position of the start bit of the bit corresponding to the S in the f
  • the S is the a value corresponding to at least one of a cell identifier of the terminal device, an identifier of the terminal device, time domain resource information, and frequency domain resource information.
  • N a , N b , and N s are not specifically limited in the embodiment of the present application, but N a , N b , and N s are not equal to each other.
  • t is 2 or 10
  • f can be a 2 or a decimal number.
  • the modulation and coding mode is MCS.
  • the data processing manner includes a channel coding mode, a multi-dimensional modulation mode, and an interleaving mode;
  • the terminal device can determine the index f of the pilot signal according to the following formula 6;
  • m a is an index of the channel coding scheme
  • m b is an index of the multi-dimensional modulation scheme
  • c 2 is an index of the interleaving scheme
  • f is a value in a t-digit
  • Na is a value in the f
  • N s is a position of a start bit of a bit corresponding to the S in the f
  • the S is a cell identifier of the terminal device, an identifier of the terminal device, time domain resource information, and a frequency At least one corresponding value in the domain resource information.
  • N a , N b , N 2 , and N s in the embodiments of the present application is not specifically limited, but N a , N b , N 2 , and N s are not equal to each other.
  • t is 2 or 10
  • f can be a 2 or a decimal number.
  • the S in the foregoing various manners may be an index used to indicate at least one of a cell identifier of the terminal device, an identifier of the terminal device, time domain resource information, and frequency domain resource information.
  • the modulation and coding mode may be split.
  • the channel coding mode and the modulation mode that is, the index of the pilot signal can be determined according to the index of the channel coding mode and the index of the modulation and coding mode (further, the index of the interleaving mode and/or the index of the spreading mode) can be determined.
  • the channel coding mode and the modulation coding mode respectively correspond to different bits of the index of the pilot signal.
  • the data processing manner includes the first to the gth processing manners, and g is an integer greater than or equal to 2;
  • the terminal device may determine an index of the pilot signal according to the value y, wherein the value y is determined according to the following formula 7:
  • x g represents the index of the g- th processing mode
  • x i represents the index of the i-th processing mode
  • N j represents the number of the j-th processing mode selectable.
  • the terminal device may multiply the index of the i-th processing mode by the selectable number of each of the i+1th to the gth processing modes to obtain the first value, where i is from 1 Traversing to g-1; adding the first value to the index of the gth processing mode to obtain a value y; determining an index of the pilot signal according to the value y.
  • the terminal device can directly use the index of the data processing manner to obtain the value y according to the above formula 7.
  • the terminal device may store a direct correspondence between the index of the data processing mode and the value y, for example, storing in a table manner, wherein the corresponding relationship may be obtained according to Equation 7. For example, as shown in Table 3 below:
  • the index of the pilot signal is determined according to the following formula:
  • the S is a value corresponding to at least one of a cell identifier of the terminal device, an identifier of the terminal device, time domain resource information, and frequency domain resource information.
  • the index of the pilot signals is determined according to the following formula:
  • S is a value corresponding to at least one of a cell identifier of the terminal device, an identifier of the terminal device, time domain resource information, and frequency domain resource information, where q is a constant, and p belongs to [0, q-1] .
  • q is determined based on the ratio of the number of selectable pilot signals to the product of the number of selectable first to gth processing modes. For example, q is equal to the number of selectable pilot signals and can be selected from the first to the gth processing modes. The ratio of the product of the selected number is rounded up or down.
  • the above-mentioned first to gth processing modes do not mean that the data processing manner needs to be sorted.
  • the order of the embodiments of the present application should not be limited.
  • the modulation and coding scheme may be referred to as a first processing scheme
  • the interleaving scheme may be referred to as a second processing scheme
  • the interleaving scheme may be referred to as a first processing scheme
  • modulation may be performed.
  • the encoding method is called the second processing method.
  • the data processing method includes a modulation and coding method and a spread spectrum method.
  • the terminal device may determine the index f of the pilot signal according to the following formula 10:
  • m is an index of the modulation and coding mode
  • c1 is an index of the spread spectrum mode
  • K represents the number of selectable pilot signals
  • S is at least the cell identifier of the terminal device, the identifier of the terminal device, the time domain resource information, and the frequency domain resource information. A corresponding value.
  • the N m represents the number of selectable modulation and coding modes, Indicates the number of selectable spread modes.
  • the data processing method further includes a modulation and coding method and a spread spectrum method.
  • the terminal device can determine the index f of the pilot signal according to the following formula 11:
  • m is an index of the modulation and coding scheme
  • c 1 is an index of the spreading mode
  • the N m represents the number of selectable modulation and coding modes
  • K represents the number of selectable pilot signals
  • S is a value corresponding to at least one of a cell identifier of the terminal device, an identifier of the terminal device, time domain resource information, and frequency domain resource information.
  • the N m represents the number of selectable modulation and coding modes, Indicates the number of selectable spread modes.
  • the data processing method further includes a modulation and coding method and a spread spectrum method.
  • the terminal device may determine the index f of the pilot signal according to the following formula 12:
  • m is an index of the modulation and coding scheme
  • c 1 is an index of the spread spectrum method.
  • S is a value corresponding to at least one of a cell identifier of the terminal device, an identifier of the terminal device, time domain resource information, and frequency domain resource information, where q is a constant, p Belongs to [0, q-1], K represents the number of selectable pilot signals.
  • p can be chosen at random.
  • the N m represents the number of selectable modulation and coding modes, Indicates the number of selectable spread modes.
  • the data processing method further includes a modulation and coding method and a spread spectrum method.
  • the terminal device may determine the index f of the pilot signal according to the following formula 13:
  • m is an index of the modulation and coding scheme
  • c 1 is an index of the spreading mode
  • the N m represents a number of selectable modulation and coding modes
  • S is a cell identifier of the terminal device
  • q is a constant
  • p belongs to [0, q-1]
  • K represents the number of selectable pilot signals.
  • p can be chosen at random.
  • the N m represents the number of selectable modulation and coding modes, Indicates the number of selectable spread modes.
  • the data processing method includes a modulation and coding method and an interleaving method.
  • the terminal device can determine the index f of the pilot signal according to the following formula 14:
  • m is an index of the modulation and coding scheme
  • c 2 is an index of the interleaving manner
  • N c represents the number of selectable interleaving modes
  • K represents the number of selectable pilot signals
  • S is the a value corresponding to at least one of a cell identifier of the terminal device, an identifier of the terminal device, time domain resource information, and frequency domain resource information.
  • the N m represents the number of selectable modulation and coding modes, Indicates the number of selectable interleaving methods.
  • the data processing method further includes a modulation and coding method and an interleaving method.
  • the terminal device may determine the index f of the pilot signal according to the following formula 15:
  • m is an index of the modulation and coding scheme
  • c 2 is an index of the interleaving manner
  • the N m represents the number of selectable modulation and coding schemes
  • K represents the number of selectable pilot signals
  • S is And a value corresponding to at least one of a cell identifier of the terminal device, an identifier of the terminal device, time domain resource information, and frequency domain resource information.
  • the N m represents the number of selectable modulation and coding modes, Indicates the number of selectable interleaving methods.
  • the data processing method further includes a modulation and coding method and an interleaving method.
  • the terminal device may determine the index f of the pilot signal according to Equation 16 below:
  • m is an index of the modulation and coding scheme
  • c 2 is an index of the interleaving manner
  • q is a constant
  • p belongs to [0, q-1]
  • K represents the number of selectable pilots
  • S is the cell identifier of the terminal device, and the identifier of the terminal device.
  • the N m represents the number of selectable modulation and coding modes, Indicates the number of selectable interleaving methods.
  • p can be chosen at random.
  • the data processing method further includes a modulation and coding method and an interleaving method.
  • the terminal device may determine the index f of the pilot signal according to the following formula 17:
  • m is an index of the modulation and coding scheme
  • c 2 is an index of the interleaving manner
  • the N m represents a number of selectable modulation and coding schemes
  • the N m represents a number of selectable modulation and coding schemes
  • q is a constant
  • p belongs to [0, q-1]
  • K represents the number of selectable pilot signals
  • S is the cell identifier of the terminal device, the identifier of the terminal device, time domain resource information, and frequency domain resources. At least one corresponding value in the information.
  • the N m represents the number of selectable modulation and coding modes, as described Indicates the number of selectable interleaving methods.
  • p can be chosen at random.
  • the data processing method includes a modulation coding mode and an interleaving manner, the pilot signal includes a first parameter and the second parameter, and an index of the pilot signal includes a first index corresponding to the first parameter and the a second index corresponding to the second parameter;
  • Determining an index of the pilot signal according to an index of the data processing manner including:
  • the first index f 1 and the second index f 2 are determined according to the following formulas 18 and 19
  • m is an index of the modulation and coding mode
  • c 2 is an index of the interleaving manner
  • S is a cell identifier of the terminal device, an identifier of the terminal device, time domain resource information, and frequency domain resource information. At least one corresponding value.
  • the pilot signal may be a ZC sequence
  • the first parameter may be a base sequence
  • the second parameter may be a cyclic shift parameter; or the first parameter may be a cyclic shift parameter.
  • the second parameter can be a base sequence.
  • the data processing method includes a modulation coding mode and a spreading mode, where the pilot signal includes a first parameter and the second parameter, and an index of the pilot signal includes a first index and a location corresponding to the first parameter a second index corresponding to the second parameter;
  • Determining an index of the pilot signal according to an index of the data processing manner including:
  • the first index f 1 and the second index f 2 are determined according to the following formulas 20 and 21
  • m is an index of the modulation and coding mode
  • c 1 is an index of the extension mode
  • S is a cell identifier of the terminal device, an identifier of the terminal device, time domain resource information, and frequency domain resource information. At least one corresponding value.
  • the pilot signal may be a ZC sequence
  • the first parameter may be a base sequence
  • the second parameter may be a cyclic shift parameter; or the first parameter may be a cyclic shift parameter.
  • the second parameter can be a base sequence.
  • the modulation and coding method may include a channel coding mode and a modulation mode, and according to a channel coding method.
  • the index of the index and the modulation coding mode, and the index of the pilot signal is determined according to the variant of the above formula.
  • the embodiments of the present application may have other manners of determining an index of a pilot signal.
  • the terminal device may directly store the correspondence between the index of the pilot signal and the index of the at least one data processing manner, for example, may be stored in a table manner, and the terminal device may use a table lookup manner.
  • the index corresponding to the index of the pilot signal and the index of the at least one data processing mode may be as shown in Table 4 below:
  • Pilot signal index f MCS index Spread spectrum index 0 0 0 1 0 1 2 0 2 3 0 3 4 1 0 5 1 1 6 1 2 7 1 3
  • the terminal device may directly store an index of the pilot signal, and at least one index of the data processing manner, a cell identifier of the terminal device, an identifier of the terminal device, time domain resource information, and a frequency domain resource.
  • the correspondence between at least one corresponding value in the information may be stored in a table manner, and the terminal device may determine the index of the pilot signal by means of a table lookup.
  • the terminal device may directly store the correspondence between the initial index of the pilot signal and the at least one data processing manner, and the terminal device may correspond to the at least one data processing manner according to the initial index of the pilot signal.
  • the relationship, the initial index of the pilot signal is determined, and the index f of the pilot signal is determined according to the following formula 19:
  • f 0 is an initial index of the pilot signal
  • K represents a number of selectable pilot signals
  • S is a cell identifier of the terminal device, an identifier of the terminal device, time domain resource information, and a frequency domain resource. At least one corresponding value in the information.
  • the initial index f 0 may refer to the value y mentioned above, and the specific implementation manner is not described herein again.
  • the S mentioned in the foregoing embodiments is at least one of a cell identifier of the terminal device, an identifier of the terminal device, time domain resource information, and frequency domain resource information.
  • the value specifically, the value obtained by modifying at least one of the identifier of the terminal device, the time domain resource information, and the frequency domain resource information.
  • the terminal device transmits the pilot signal and the processed data.
  • the network device receives pilot signals and data transmitted by the terminal device.
  • the network device determines the manner of data processing based on the pilot signals.
  • the network device may determine the data processing manner according to a mapping relationship between the pilot signal and the data processing manner.
  • the terminal device may be based on a certain specific pilot signal received, and the number According to the mapping relationship between the processing mode and the pilot signal, a unique data processing mode or a combination of unique data processing methods is determined.
  • the mapping relationship between the data processing mode and the pilot signal may be implemented by using a table.
  • the table can directly represent the mapping relationship between the data processing method and the pilot signal, that is, the data processing method can be directly found by looking up the table.
  • the table may represent a mapping relationship between the index of the data processing mode and the index of the pilot signal, that is, the index of the pilot signal may be used to find the index of the data processing mode by searching the table, thereby using the data processing manner. Index, get the data processing method.
  • mapping relationship between the data processing mode and the pilot signal may be implemented by using a formula.
  • the index of the pilot signal can be used to obtain an index of the data processing mode by using a formula, so that the data processing mode can be determined by the index of the data processing mode.
  • the network device may determine a data processing manner according to a mapping relationship between an index of the pilot signal and an index of the data processing manner.
  • the index of the data processing manner corresponds to all or part of the index of the pilot signal; the network device may determine, according to the index of the pilot signal, the data in the index of the pilot signal. The value of the bit corresponding to the processing mode is determined, thereby determining the index of the data processing mode.
  • the data processing manner includes multiple processing manners, and different processing manners of the multiple processing manners correspond to different one or more bits of an index of the pilot signal; the network device may be configured according to the The index of the pilot signal determines the value of the bit corresponding to each of the plurality of processing modes in the index of the pilot signal, and further determines an index of each of the data processing modes.
  • the network device may determine the index of the data processing mode according to the manner shown in Equation 1 - Equation 6, and details are not described herein.
  • the data processing manner includes the first to the gth processing manners, where g is an integer greater than or equal to 2; the network device may determine the value y according to the index of the pilot signal; according to the value y Determining an index of the data processing manner; wherein the value y and the index of the data processing manner have the following relationship:
  • x g represents the index of the g- th processing mode
  • x i represents the index of the i-th processing mode
  • N j represents the number of the j-th processing mode selectable.
  • the network device can directly follow the formula To determine the index of the data processing method, you can also find a table that identifies the conditions of the formula.
  • the network device may determine the value y according to a condition that satisfies the following formula:
  • S is a cell identifier of the terminal device, an identifier of the terminal device, time domain resource information, and a frequency domain resource. At least one corresponding value in the source information.
  • the value y is determined according to a condition that satisfies the following formula:
  • S is a value corresponding to at least one of a cell identifier of the terminal device, an identifier of the terminal device, time domain resource information, and frequency domain resource information, where q is a constant, and p belongs to [0, q-1] , where mod represents the modulo processing, Indicates rounding down.
  • q is determined based on the ratio of the number of selectable pilot signals to the product of the number of selectable first to gth processing modes.
  • the data processing method includes a modulation and coding mode, and includes a spreading mode or an interleaving manner, the pilot signal includes a first parameter and the second parameter, and an index of the pilot signal includes a corresponding one of the first parameter a second index corresponding to the first index and the second parameter;
  • Determining an index of the data processing manner according to an index of the pilot signal including:
  • the index of the modulation coding mode and the index of the spreading mode or the interleaving method are determined according to the following formulas 25 and 26:
  • m is an index of the modulation and coding scheme
  • c is an index of the interleaving manner or a spreading scheme
  • S is a cell identifier of the terminal device, an identifier of the terminal device, time domain resource information, and a frequency domain resource. At least one corresponding value in the information, f 1 is the first parameter, and f 2 is the first parameter.
  • the pilot signal may be a ZC sequence
  • the first parameter may be a base sequence
  • the second parameter may be a cyclic shift parameter; or the first parameter may be a cyclic shift parameter.
  • the second parameter can be a base sequence.
  • the network device may directly store the correspondence between the index of the pilot signal and the index of the at least one data processing manner, for example, may be stored in a table manner, and the network device may use a table lookup manner. Determine the index of how the data is processed.
  • the index corresponding to the index of the pilot signal and the at least one data processing mode may be as shown in Table 4 above.
  • the network device may directly store an index of the pilot signal, and at least one index of the data processing manner, a cell identifier of the terminal device, an identifier of the terminal device, time domain resource information, and a frequency domain resource.
  • the correspondence between at least one corresponding value in the information may be stored in a table manner, and the network device may determine the index of the data processing manner by means of a table lookup.
  • the network device can determine an initial index of the pilot signal according to Equation 27 below:
  • the network device can directly store the correspondence between the initial index of the pilot signal and the at least one data processing manner, and the terminal device can determine the data processing manner according to the correspondence between the initial index of the pilot signal and the at least one data processing mode. index.
  • the S mentioned in the foregoing embodiments is at least one of a cell identifier of the terminal device, an identifier of the terminal device, time domain resource information, and frequency domain resource information.
  • Value specifically, A value obtained by modifying at least one of the identifier of the terminal device, the time domain resource information, and the frequency domain resource information.
  • the network device processes the data according to the determined manner of data processing.
  • the data may be demodulated and decoded when the data processing mode includes a modulation and coding mode.
  • the data processing mode includes the interleaving manner
  • the data may be deinterleaved according to the interleaving manner.
  • the spreading mode is performed, and the data may be despread according to the spreading mode.
  • the terminal device may determine a data processing manner, where the data processing manner includes a modulation and coding manner; processing the data according to the data processing manner; and determining a pilot signal according to the data processing manner. Transmitting the pilot signal and the processed data, so that the receiving end can determine the data processing manner according to the pilot signal, thereby avoiding the complexity of the blind detection of the data processing mode by the receiving end, and further, The terminal device can select the required modulation and coding mode according to the requirements, thereby meeting the transmission requirements and improving the reliability of the transmission.
  • FIG. 7 is a schematic block diagram of a terminal device according to an embodiment of the present application. As shown in FIG. 7, the terminal device 300 includes a transceiver 310 and a processor 320.
  • the terminal device 300 may correspond to the transmitting end of the data and pilot signals in the method embodiment, that is, the terminal device, and may have any function of the terminal device in the method. For the sake of brevity, only the terminal shown in FIG. 2 is used here. The terminal device 300 is described as a part of the functions of the device, but the embodiment of the present application is not limited thereto.
  • the processor 320 is configured to: determine a data processing manner, where the data processing manner includes a modulation and coding manner; processing the data according to the data processing manner; and determining a pilot signal according to the data processing manner;
  • the transmitter 310 is configured to: send the pilot signal and the processed data.
  • the data processing manner further includes at least one of the following processing modes: an interleaving manner and a spreading manner.
  • the processor 320 is further configured to: determine the pilot signal according to a mapping relationship between the data processing manner and the pilot signal.
  • the processor 320 is further configured to: according to at least one of a cell identifier of the terminal device, an identifier of the terminal device, time domain resource information, and frequency domain resource information, and the data processing manner, The pilot signal is determined.
  • the processor 320 is further configured to: determine an index of the pilot signal according to an index of the data processing manner;
  • the pilot signal is determined based on an index of the pilot signal.
  • the index of the data processing manner corresponds to all or part of the index of the pilot signal
  • the processor 320 is further configured to: determine, according to an index of the data processing manner, a value of a bit corresponding to the data processing mode in an index of the pilot signal, and further determine an index of the pilot signal.
  • the data processing manner includes multiple processing manners, and different processing manners of the multiple processing manners correspond to different one or more bits of an index of the pilot signal;
  • the processor 320 is further configured to:
  • the data processing manner includes the first to the gth processing manners, where g is an integer greater than or equal to 2; the processor 320 is further configured to:
  • An index of the pilot signal is determined based on the value y, wherein the value y is determined according to a condition that satisfies the following formula:
  • x g represents the index of the g- th processing mode
  • x i represents the index of the i-th processing mode
  • N j represents the number of the j-th processing mode selectable.
  • the processor 320 is further configured to: determine according to a condition that meets the following formula: The index of the pilot signal f:
  • S is a value corresponding to at least one of a cell identifier of the terminal device, an identifier of the terminal device, time domain resource information, and frequency domain resource information, and mod represents a modulo processing.
  • the processor 320 is further configured to:
  • the index f of the pilot signal is determined according to the condition that the following formula is met:
  • S is a value corresponding to at least one of a cell identifier of the terminal device, an identifier of the terminal device, time domain resource information, and frequency domain resource information, where q is a constant, and p belongs to [0, q-1] Where mod represents modulo processing.
  • q is determined based on the ratio of the number of selectable pilot signals to the product of the number of selectable first to gth processing modes.
  • processor 320 is further configured to:
  • the data processing method is determined according to at least one of the following information:
  • a broadcast or unicast message at the receiving end of the data is a broadcast or unicast message at the receiving end of the data.
  • FIG. 8 is a schematic block diagram of a communication device 400 in accordance with an embodiment of the present application.
  • the communication device 400 may correspond to the receiving end of the data and pilot signals in the method embodiment, such as a network device, and may have any function of the network device in the method. For the sake of brevity, only FIG. 2 is shown here. The communication device 400 is described as a part of the functions of the network device, but the embodiment of the present application is not limited thereto.
  • the communication device 400 includes a transceiver 410 and a processor 420.
  • the transceiver 410 is configured to: receive a pilot signal and data sent by the terminal device;
  • the processor 420 is configured to: determine, according to the pilot signal, a data processing manner, where the data processing manner includes a modulation and coding manner; and the data is processed according to the data processing manner.
  • the data processing manner further includes at least one of the following processing modes: an interleaving manner and a spreading manner.
  • the processor 420 is specifically configured to:
  • the processor 420 is specifically configured to:
  • the processor 420 is specifically configured to:
  • the data processing mode is determined according to an index of the data processing manner.
  • the index of the data processing manner corresponds to all or part of the index of the pilot signal
  • the processor 420 is specifically configured to:
  • the data processing manner includes multiple processing manners, and different processing manners of the multiple processing manners correspond to different one or more bits of an index of the pilot signal;
  • the processor 420 is specifically configured to:
  • the data processing manner includes the first to the gth processing manners, where g is an integer greater than or equal to 2; the processor 420 is specifically configured to:
  • x g represents the index of the g- th processing mode
  • x i represents the index of the i-th processing mode
  • N j represents the number of the j-th processing mode selectable.
  • the processor 420 is specifically configured to:
  • the value y is determined according to a condition that satisfies the following formula:
  • the S is a value corresponding to at least one of a cell identifier of the terminal device, an identifier of the terminal device, time domain resource information, and frequency domain resource information.
  • the processor 420 is specifically configured to:
  • the value y is determined according to a condition that satisfies the following formula:
  • S is a value corresponding to at least one of a cell identifier of the terminal device, an identifier of the terminal device, time domain resource information, and frequency domain resource information, where q is a constant, and p belongs to [0, q-1] , where mod represents the modulo processing, Indicates rounding down.
  • q is determined based on the ratio of the number of selectable pilot signals to the product of the number of selectable first to gth processing modes.
  • processor 320 and/or the processor 420 in the embodiments of the present application may be implemented by a processing unit or a chip.
  • the transceiver 310 or the transceiver 410 in the embodiment of the present application may be implemented by a transceiver unit or a chip.
  • the transceiver 310 or the transceiver 410 may be configured by a transmitter or a receiver, or by a transmitting unit or a receiving unit. Composition.
  • the terminal device 300 or the communication device 400 may further include a memory, where the memory may store program code, and the processor calls the program code stored in the memory to implement a corresponding function of the network device or the terminal device.
  • the embodiment of the present application further provides a system, which may include the foregoing terminal device 300 and the communication device 400.
  • the terminal device may determine a data processing manner, where the data processing manner includes a modulation and coding manner; processing the data according to the data processing manner; and determining a pilot signal according to the data processing manner. Transmitting the pilot signal and the processed data, so that the receiving end can determine the data processing manner according to the pilot signal, thereby avoiding the complexity of the blind detection of the data processing mode by the receiving end, and further, The terminal device can select the required modulation and coding mode according to the requirements, thereby meeting the transmission requirements and improving the reliability of the transmission.
  • the device of the embodiment of the present invention may be a Field-Programmable Gate Array (FPGA), may be an Application Specific Integrated Circuit (ASIC), or may be a System on Chip (SoC). It can also be a Central Processor Unit (CPU), a Network Processor (NP), a Digital Signal Processor (DSP), or a Microcontroller (Micro).
  • the Controller Unit (MCU) can also be a Programmable Logic Device (PLD) or other integrated chip.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种信息传输方法和设备,可以提高通信的可靠性以及降低接收端处理的复杂度。该方法包括:终端设备确定数据处理方式,所述数据处理方式包括调制编码方式;根据所述数据处理方式,对数据进行处理;根据所述数据处理方式,确定导频信号;发送所述导频信号和处理后的所述数据

Description

信息传输方法和设备
本申请要求于2016年8月11日提交中国专利局、申请号为201610658101.7、申请名称为“信息传输方法和设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种信息传输方法和设备。
背景技术
在典型无线通信网络(比如,长期演进(Long Term Evolution,LTE)中,上行数据共享信道(Shared Data Channels)的选择基于调度/准许(Scheduling/Grant)机制,完全受基站(Base Station,BS)控制。在该机制中,用户设备(User Equipment,UE)首先向BS发出上行调度请求。当BS接收到该请求后,向UE发出上行Grant以通知该UE为该UE分配给的上行传输资源。UE据此在经过准许的上行传输资源上进行数据传输。
大规模用户接入是下一代通信网络的典型应用场景之一。当海量用户接入时,如果沿用上述Scheduling/Grant机制,则一方面将导致巨大的信令传输开销以及BS资源分配的调度压力,另一方面将造成显著的传输时延。鉴于此,下一代通信网络为支撑海量用户接入将采用免授权(Grant Free)传输方式。
上述海量用户接入的免授权传输,由于允许多个UE在同一时频资源上竞争传输,因此会导致竞争冲突,降低免授权传输的可靠性。并且,由于接收端需要盲检测终端设备的数据,这将造成接收端处理的复杂度。
发明内容
本申请实施例提供了一种信息传输方法和设备,可以提高通信的可靠性以及降低接收端处理的复杂度。
第一方面,本申请实施例提供了一种信息传输方法,包括:
终端设备确定数据处理方式;
根据所述数据处理方式,对数据进行处理;
根据所述数据处理方式,确定导频信号;
发送所述导频信号和处理后的所述数据。
因此,在本申请实施例中,终端设备可以确定数据处理方式;根据所述数据处理方式,对数据进行处理;根据所述数据处理方式,确定导频信号;发送所述导频信号和处理后的所述数据,从而接收端可以根据导频信号,确定数据处理方式,避免了接收端对数据处理方式进行盲检测的复杂度,并且,并进一步地,终端设备可以根据需求选择所需的调制编码方式,从而可以满足传输需求,提高传输的可靠性。
可选地,在第一方面的一种实现方式中,所述数据处理方式包括以下处理方式中的至少一种:调制编码方式、交织方式和扩频方式。
可选地,在第一方面的一种实现方式中,所述根据所述数据处理方式,确定导频信号,具体为:
根据所述数据处理方式与所述导频信号的映射关系,确定所述导频信号。
可选地,在第一方面的一种实现方式中,数据处理方式与导频信号的映射关系可以是通过表格的方式实现。
可选地,在第一方面的一种实现方式中,数据处理方式与导频信号的映射关系可以是通过公式实现。
可选地,在第一方面的一种实现方式中,所述根据所述数据处理方式,确定导频信号,具体为:
根据所述数据处理方式的索引,确定所述导频信号的索引;
根据所述导频信号的索引,确定所述导频信号。
可选地,在第一方面的一种实现方式中,所述数据处理方式包括多种处理方式,所述多种处理方式中不同的处理方式对应于所述导频信号的索引的不同的一个或多个位;
所述根据所述数据处理方式的索引,确定所述导频信号的索引,具体为:
根据所述多种处理方式中每种处理方式的索引,确定所述导频信号的索引中所述每种处理方式对应的位的取值,进而确定所述导频信号的索引。
可选地,在第一方面的一种实现方式中,所述数据处理方式包括第1至第g种处理方式,g为大于等于2的整数;根据所述数据处理方式,确定导频信号,具体为:
根据数值y,确定所述导频信号的索引,其中,数值y是根据符合以下公式的条件来确定的:
Figure PCTCN2017097090-appb-000001
其中,xg表示第g种处理方式的索引,xi表示第i种处理方式的索引,Nj表示第j种处理方式可选择的数量。
可选地,在第一方面的一种实现方式中,在可选择的导频信号的数量K等于所述第1至第g种处理方式可选择的数量的乘积时,根据数值y,确定所述导频信号的索引,具体为:
按照符合以下公式的条件,确定所述导频信号的索引f:
f=(y+S)mod K
其中,S为所述终端设备的小区标识、所述终端设备的标识、时域资源信息和频域资源信息中的至少一种对应的数值,mod表示取模处理。
可选地,在第一方面的一种实现方式中,在可选择的导频信号的数量K大于第1至第g种处理方式可选择的数量的乘积时,根据数值y,确定所述导频信号的索引,具体为:
按照符合以下公式的条件,确定所述导频信号的索引f:
f=(q·y+p+S)mod K
其中,S为所述终端设备的小区标识、所述终端设备的标识、时域资源信息和频域资源信息中的至少一种对应的数值,q为常数,p属于[0,q-1],其中,mod表示取模处理。
可选地,在本申请实施例的一种实现方式中,所述终端设备确定数据处理方式,具体为:
所述终端设备根据以下信息中的至少一种,确定所述数据处理方式:
所述终端设备与所述数据的接收端之间的信道的状态信息;
之前向所述接收端发送的数据对应的数据处理方式以及所述接收端对之前发送的数据反馈的信息;
所述数据的接收端的广播或单播消息。
因此,在本申请实施例中,终端设备根据数据的接收端之间的信道的状态信息,之前传输的数据对应的数据处理方式以及该接收端反馈的NACK/ACK情况,和数据的接收端广播或单播消息确定数据处理方式中的至少一种,确定较优的调制编码方式,从而可以提高传输效率。
第二方面,提供了一种信息传输方法,其特征在于,包括:
接收终端设备发送的导频信号和数据;
根据所述导频信号,确定数据处理方式;
根据所述数据处理方式,对所述数据进行处理。
可选地,在第二方面的一种实现方式中,所述数据处理方式还包括以下处理方式中的至少一种:交织方式、扩频方式和调制编码方式。
可选地,在第二方面的一种实现方式中,所述根据所述导频信号,确定数据处理方式,具体为:
根据所述导频信号与所述数据处理方式的映射关系,确定所述数据处理方式。
可选地,在第二方面的一种实现方式中,所述根据所述数据处理方式,确定导频信号,具体为:
根据所述终端设备的小区标识、所述终端设备的标识、时域资源信息和频域资源信息中的至少一种以及所述导频信号,确定所述数据处理方式。
可选地,在第二方面的一种实现方式中,所述根据所述导频信号,确定数据处理方式,具体为:
根据所述导频信号的索引,确定所述数据处理方式的索引;
根据所述数据处理方式的索引,确定所述数据处理方式。
可选地,在第二方面的一种实现方式中,所述数据处理方式包括多种处理方式,所述多种处理方式中不同的处理方式对应于所述导频信号的索引的不同的一个或多个位;
所述根据所述数据处理方式的索引,确定所述导频信号的索引,具体为:
根据所述导频信号的索引,确定所述导频信号的索引中所述多种处理方式中每种处理方式对应的位的取值,进而确定所述每种数据处理方式的索引。
可选地,在第二方面的一种实现方式中,所述数据处理方式包括第1至第g种处理方式,g为大于等于2的整数;所述根据所述导频信号的索引,确定所述数据处理方式的索引,具体为:
根据所述导频信号的索引,确定数值y;
根据所述数值y,确定所述数据处理方式的索引;其中,所述数值y与所述数据处理方式的索引,具有以下关系:
Figure PCTCN2017097090-appb-000002
其中,xg表示第g种处理方式的索引,xi表示第i种处理方式的索引,Nj表示第j种处理方式可选择的数量。
可选地,在第二方面的一种实现方式中,所述根据所述导频信号的索引,确定数值y,具体为:
在可选择的导频信号的数量K等于所述第1至第g种处理方式可选择的数量的乘积时,根据符合以下公式的条件,确定所述数值y:
y=(f-s)mod K
其中,S为所述终端设备的小区标识、所述终端设备的标识、时域资源信息和频域资源信息中的至少一种对应的数值。
可选地,在第二方面的一种实现方式中,所述根据所述导频信号的索引,确定数值y,具体为:
在可选择的导频信号的数量K大于第1至第g种处理方式可选择的数量的乘积时,根据符合以下公式的条件,确定所述数值y:
Figure PCTCN2017097090-appb-000003
其中,S为所述终端设备的小区标识、所述终端设备的标识、时域资源信息和频域资源信息中的至少一种对应的数值,q为常数,p属于[0,q-1],其中,mod表示取模处理,
Figure PCTCN2017097090-appb-000004
表示向下取整。
第三方面,提供了一种终端设备,包括处理器和收发器,可以执行第一方面或第一方面的任一可选的实现方式中的方法。
第四方面,提供了一种通信设备,包括处理器和收发器,可以执行第二方面或第六方面的任一可选的实现方式中的方法。
第五方面,提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码可以用于指示执行上述第一至第二方面或其任意可选的实现方式中的方法。
附图说明
图1是根据本申请实施例的应用场景图。
图2是根据本申请实施例的信息传输方法的示意性流程图。
图3是根据本申请实施例的信息传输方法的示意性流程图。
图4是根据本申请实施例的信息传输方法的示意性流程图。
图5是根据本申请实施例的信息传输方法的示意性流程图。
图6是根据本申请实施例的信息传输方法的示意性流程图。
图7是根据本申请实施例的终端设备的示意性框图。
图8是根据本申请实施例的通信设备的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
应理解,本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile Communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、以及未来的5G通信系统等。
本申请实施例的终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的PLMN网络中的终端设备等。
本申请实施例的网络设备可以是用于与终端设备进行通信的设备,例如,可以是GSM系统或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络侧设备或未来演进的PLMN网络中的网络设备等。
由于大量连接的存在,使得未来的无线通信系统和现有的通信系统存在很大差异。大量连接需要消耗更多的资源接入UE以及需要消耗更多的资源用于终端设备的数据传输相关的调度信令的传输。
图1示出了应用本申请实施例的一种通信系统的示意性架构图。如图1所示,该通信系统100可以包括网络设备102和终端设备104~114(图中简称为UE)通过无线连接或有线连接或其它方式连接。
本申请实施例中的网络可以是指公共陆地移动网络(Public Land Mobile Network,PLMN)或者D2D网络或者M2M网络或者其他网络,图1只是举例的简化示意图,网络中还可以包括其他网络设备,图1中未予以画出。
本申请提出的方案可以应用于了免授权(Grant Free)传输。Grant free传输可以解决未来网络中的多种业务,例如机器类通信(Machine Type Communication,MTC)业务或者超可靠和低延迟通信(Ultra Reliable and Low Latency Communication,URLLC)业务, 以及满足低时延、高可靠的业务传输。Grant free传输可以针对的是上行数据传输。本领域技术人员可以知道,Grant free传输也可以叫做其他名称,比如叫做自发接入、自发多址接入、或者基于竞争的多址接入等。
除了应用于终端设备与网络设备之间的通信,例如,如图1所示,本申请实施例还可以应用于终端设备与终端设备之间的通信,此时本申请实施例可以应用设备对设备(Device to Device,D2D)传输。
应理解,本申请实施例提到的导频信号还可以称为参考信号,是由发射端提供给接收端用于信道估计、信道探测或信道状态检测的一种信号。
应理解,在本申请实施例中,导频信号的索引意味着可以通过该索引确定导频信号。
可选地,在本申请实施例中,可以通过该索引直接确定导频信号,或者,可以将该索引结合其他信息确定导频信号。
例如,可以根据数据处理方式的索引得到导频信号的索引,根据导频信号的索引结合终端设备的标识确定导频信号。
例如,可以根据数据处理方式的索引和终端设备的标识得到导频信号的索引,根据导频信号的索引结合终端设备的小区标识确定导频信号。
类似地,数据处理方式的索引也意味着通过该索引查找到数据处理方式,具体地,可以通过该索引直接确定数据处理方式,或者,可以将该索引结合其他信息确定数据处理方式。
本申请实施例提到的索引还可以称为编号、或查找参数等。
图2是根据本申请实施例的信息传输方法200的示意性流程图。
图2所示的方法中,数据和导频信号的发送端可以为终端设备或网络设备,数据和导频信号的接收端可以为终端设备或网络设备。
以下将以数据和导频信号的发送端为终端设备,以及数据和导频信号的接收端为网络设备为例进行说明,但本申请实施例并不限于此。例如,数据和导频信号的发送端为终端设备,数据和导频信号的接收端为另一终端设备,此时本申请实施例可以应用D2D传输。
在210中,终端设备获取数据处理方式。
可选地,在本申请实施例中,该数据处理方式可以包括调制编码方式。
在本申请实施例中,调制编码方式可以是指调制编码方案(Module Coding Scheme,MCS)。
可选地,该MCS可以指示调制阶数、传输块大小(Transport Block Size,TBS)和冗余版本(Redundancy Version,RV)。
其中,TBS可以是指一定时频资源块大小内传递的信息比特数量;冗余版本rvidx用于指定信道编码过程中选择输出比特。传输块大小和冗余版本rvidx决定具体的信道编码方式,例如码率。调制阶数则决定具体的调制方式。
可选地,本申请实施例提到的MCS可以从以下表1中选择:
表1
MCS索引IMCS 调制阶数Q'm TBS索引ITBS 冗余版本rvidx
0 2 0 0
1 2 1 0
2 2 2 0
3 2 3 0
4 2 4 0
5 2 5 0
6 2 6 0
7 2 7 0
在该表格中,每一个MCS索引对应一种调制阶数Q'm,TBS索引ITBS和冗余版本rvidx的组合。
可选地,TBS索引和传输块大小的对应可以用TBS表表示,表2是TBS表的一个举例。根据传输资源(表中举例的1RB或2RB)和TBS索引,可以确定TBS(表中举例的8或24等数值)。
表2
TBS索引ITBS 1RB 2RB
0 8 24  
1 16 40  
2 24 56  
3 32 72  
4 48 108  
5 64 132  
6 80 172  
7 96 200  
可选地,在本申请实施例中提到的调制编码方式除了是上述MCS的形式之外,还可以从信道编码方式集合中单独选择信道编码方式,从调制方式集合中单独选择调制方式,此时,信道编码方式和调制方式可以分别具有各自的索引。
应理解,本申请实施例除了可以直接根据调制编码方式的索引或信道编码方式的索引查找到TBS和冗余版本,还可以直接根据调制编码方式的索引或信道编码方式的索引查找到码率。
可选地,本申请实施例提到的数据处理方式还可以包括以下中处理方式中的至少一种:交织方式和扩频方式。
可选地,在本申请实施例中,交织方式的不同可以通过交织图样进行区分,即,交织图样不同,则交织方式不同。
可选地,在本申请实施例中,扩频方式的不同可以通过扩频码区分,即,扩频码不同,则扩频方式不同。
应理解,终端设备在选择了上述数据处理方式之后,不意味着不选择其他数据处理 方式。
例如,在210中,终端设备获取的数据处理方式仅包括扩频方式,但终端设备仍旧可以选择调制编码方案。上述数据处理方式所包括的方式代表用于可以确定导频信号的数据处理方式。
可选地,在本申请实施例中,终端设备可以根据多种方式选择数据处理方式。
在一种实现方式中,终端设备可以根据数据的接收端之间的信道的状态信息确定数据处理方式。
可选地,终端设备可以根据数据的接收端所发送的参考信号,估计终端设备和该数据的接收端之间的信道的状态信息。
在一种实现方式中,终端设备可以根据数据的接收端之前传输数据对应的数据处理方式以及该接收端针对之前传输的数据反馈的信息(例如,NACK/ACK),选择当前的数据处理方式。
例如,终端设备之前采用的调制编码方式为索引1对应的方式,索引2对应的方式和索引3对应的方式处理发送该接收端的数据,如果接收端针对采用索引1对应的方式反馈的ACK比例最高,则终端设备可以采用索引1对应的方式进行数据处理。
在一种实现方式中,终端设备可以根据数据的接收端广播或单播消息,确定数据使用的数据处理方式。
具体地,数据的接收端可以预先通知终端设备传输数据所能采用的数据处理方式的选择范围。
应理解,以上描述了可以根据数据的接收端之间的信道的状态信息,之前传输的数据对应的数据处理方式以及该接收端反馈的NACK/ACK情况,或数据的接收端广播或单播消息确定数据处理方式。
本申请实施例可以将数据的接收端之间的信道的状态信息、之前传输的数据对应的数据处理方式以及该接收端反馈的NACK/ACK情况,以及数据的接收端广播或单播消息进行结合使用。
具体地,可以使用数据的接收端之间的信道的状态信息、数据的接收端之前传输的数据对应的数据处理方式以及该接收端反馈的NACK/ACK情况,以及数据的接收端广播或单播消息的任意两种进行数据处理方式的选择。
或者,根据数据的接收端之间的信道的状态信息,数据的接收端之前传输的数据对应的数据处理方式以及该接收端反馈的NACK/ACK情况,以及数据的接收端广播或单播消息共同进行数据处理方式的选择。
因此,在本申请实施例中,终端设备根据数据的接收端之间的信道的状态信息,之前传输的数据对应的数据处理方式以及该接收端反馈的NACK/ACK情况,和数据的接收端广播或单播消息确定数据处理方式中的至少一种,确定较优的调制编码方式,从而可以提高传输效率。
例如,数据的接收端可以广播数据处理方式的可选择范围,终端设备可以根据与该接收端之间的信道的状态,从数据处理方式的选择范围中选择数据处理方式。
在220中,终端设备根据该数据处理方式,对数据进行处理。
例如,如图3所示,在确定了MCS之后,在311中,可以按照该MCS指示的编码 方式对数据进行信道编码,得到编码比特;在312中,可以按照该MCS指示的调制阶数对该编码比特进行调制,得到调制符号。
例如,如图4所示,在确定了MCS和扩频方式之后,在312中,可以按照该MCS指示的编码方式对数据进行信道编码,得到编码比特;在322中,可以按照该MCS指示的调制阶数对编码比特进行调制,得到调制符号;在323中,可以按照确定的扩频方式对调制符号进行扩频得到扩频后的调制符号,例如,可以通过ZC码或PN码进行扩频。
例如,如图5所示,在确定了交织方式和MCS之后,在331中,可以按照确定的交织方式对数据进行交织处理,得到交织后的数据;在332中,可以按照确定的MCS指示的编码方式,对交织后的数据进行信道编码,得到编码比特;在333中,可以按照确定的MCS指示的调制阶数,对待编码比特进行调制得到调制符号。
例如,如图6所示,在确定了信道编码方式以及多维调制方式之后,在341中,可以按照该信道编码方式指示的方式,对数据进行信道编码,得到编码比特;在342中,可以按照确定的多维调制方式,对编码比特进行调制得到调制符号。
本申请实施例中,可以采用非正交的多址接入技术来实现多维调制,因此多维调制方式可以为稀疏码多址接入(Sparse Code Multiple Access,SCMA)。
具体地说,SCMA是一种非正交的多址接入技术,当然本领域技术人员也可以不把这个技术称之为SCMA,也可以称为其他技术名称。
应理解,除了图3-6示出的数据处理方式,本申请实施例还可以有其他实现方式。例如,可以确定交织方式、信道编码方式和多维调制方式,按照确定的这些方式,对数据进行处理。再例如,在图6中,可以在调制之后,执行交织处理。
在230中,终端设备根据该数据处理方式,获取导频信号。
可选地,在本申请实施例中,终端设备可以根据数据处理方式与导频信号的映射关系,获取导频信号。
可选地,在本申请实施例中,终端设备可以根据某一特定的数据处理方式或某一特定的数据处理方式的组合,以及数据处理方式与导频信号的映射关系,唯一确定导频信号。
可选地,数据处理方式与导频信号的映射关系可以是数据处理方式的索引与导频信号的索引的映射关系。
可选地,在本申请实施例中,数据处理方式与导频信号的映射关系可以是通过表格的方式实现。
例如,表格可以直接呈现数据处理方式与导频信号的映射关系,也即可以通过查找表格,直接找到导频信号。
例如,表格可以呈现数据处理方式的索引与导频信号的索引的映射关系,也即,可以利用数据处理方式的索引,通过查找表格,查找到导频信号的索引,从而,可以利用导频信号的索引,获取导频信号。
可选地,在本申请实施例中,数据处理方式与导频信号的映射关系可以是通过公式实现。
本申请各实施例中描述的按照公式,可以理解为符合公式所表达的条件或者规律,在实现过程中,表现形式可以不是以公式的形式呈现。
例如,可以利用数据处理方式的索引,通过公式得到导频信号的索引,从而,可以 通过导频信号的索引,确定导频信号。
例如,可以利用数据处理方式的索引,通过公式直接得到导频信号。
可选地,在本申请实施例中,导频信号的索引可以具有一定的位数的数值,其中,该位数可选的可以根据可选择的导频数量相关。
可选地,导频信号的索引为t进制的数字,t可选地取值为2或10。
可选地,数据处理方式的索引对应于导频信号的索引的全部或部分位,也即,终端设备可以根据数据处理方式的索引,确定导频信号的索引的全部或部分位的取值。
可选地,在数据处理方式的索引对应导频信号的索引的部分位的取值时,其他位可以对应于该终端设备的小区标识、该终端设备的标识、时域资源信息和频域资源信息中的至少一种,例如,该其他位的取值可以由用于指示的该终端设备的小区标识、该终端设备的标识、时域资源信息和频域资源信息中的至少一种的索引来确定。
其中,时域资源信息可选地为传输数据所分配的时域资源的信息,或者最近一次数据传输所分配的时域资源的信息。该时域资源信息可以包括帧号和时隙编号。
频域资源信息可选地为传输待发送数据所分配的频域资源的信息,或者最近一次数据传输所分配的频域资源的信息。该频域资源信息可以包括子带编号。
终端设备的小区标识可选地为终端设备所属的管理区域的标识,其中,管理区域可以是物理小区,或者是超小区hypercell(为虚拟的cell)。
终端设备的标识可选地为用来标识终端设备的信息,例如,国际移动用户识别码(International Mobile Subscriber Identification Number,IMSI),临时移动台标识符(Temporary Mobile Station Identity,TMSI)或国际移动设备标识(International Mobile Equipment Identity,IMEI)等。
例如,导频信号为2进制具有4位的数字,其中,导频信号的索引从低位到高位的第4和3位可以对应于调制编码方式,第1位和第2位可以由该终端设备的小区标识、该终端设备的标识、时域资源信息和频域资源信息中的至少一种对应的取值。假设调制编码方式的索引为11,该终端设备的小区标识、该终端设备的标识、时域资源信息和频域资源信息中的至少一种的对应取值为00,则导频信号的索引为1100。
可选地,在数据处理方式包括多个处理方式时,不同的处理方式可以对应于导频信号的索引中不同的位。可选地,不同的处理方式对应的位完全不重合。
例如,导频信号为2进制具有5位的数字,其中,导频信号的索引从低位到高位的第4和5位可以对应于调制编码方式,第2和3位可以对应于扩频方式,第1位可以由其他因素确定,例如,例如用于指示该终端设备的小区标识、该终端设备的标识、时域资源信息和频域资源信息中的至少一种的索引。假设调制编码方式的索引为11,扩频方式的索引为00,该终端设备的小区标识、该终端设备的标识、时域资源信息和频域资源信息中的至少一种的对应取值为1,则导频信号的索引为11001。
再例如,导频信号为2进制的具有5位的数字,其中,导频信号的索引从低位到高位的第5位对应于信道编码方式,即具体的取值由信道编码方式的索引确定,第4位对应于调制方式,即具体的取值由调制方式的索引确定,第2位和第3位对应于扩频方式,即具体的取值由扩频方式的索引确定,最后1位可以由其他因素确定,例如,例如用于指示该终端设备的小区标识、该终端设备的标识、时域资源信息和频域资源信息中的至少一种 的索引。假设信道编码方式的索引为1,调制方式的索引为0,扩频方式的索引为11、时域资源信息和频域资源信息中的至少一种的对应取值为1,则导频信号的索引为10111。
再例如,导频信号为2进制具有5位的数字,其中,导频信号的索引从低位到高位的第4和5位可以对应于交织方式,第2和3位可以对应于扩频方式,第1位可以由其他因素确定,例如,例如用于指示该终端设备的小区标识、该终端设备的标识、时域资源信息和频域资源信息中的至少一种的索引。假设交织方式的索引为11,扩频方式的索引为00,该终端设备的小区标识、该终端设备的标识、时域资源信息和频域资源信息中的至少一种的对应取值为1,则导频信号的索引为11001。
可选地,导频信号的索引中每种处理方式对应的位可以集中排列。
例如,导频信号为2进制具有5位的数字,索引从低位到高位的第4和5位对应于调制编码方案,第2位和第3位对应于扩频方式,最后1位对应于其他信息,例如,终端设备的小区标识、该终端设备的标识、时域资源信息或频域资源信息。假设调制编码方式的索引为11,扩频方式的索引为00,该终端设备的小区标识、该终端设备的标识、时域资源信息和频域资源信息中的至少一种的对应取值为1,则导频信号的索引为11001。
可选地,导频信号的索引中至少两种对应的位相互之间可以交叉排列。
例如,导频信号为2进制具有5位的数字,其中,从低位到高位的第2位和第4位对用于调制编码方式,第3和第5位可以对应于交织方式、最后一位对应于其他信息。假设调制编码方式的索引为11,交织方式的索引为00,该终端设备的小区标识、该终端设备的标识、时域资源信息和频域资源信息中的至少一种的对应取值为1,则导频信号的索引为01011。
当然,其他信息对应的位为多位时,也可以交叉排列。
为了便于理解,以下将介绍几种如何根据数据处理方式的索引,确定导频信号的索引,其中,每个处理方式各自对应的位可以集中排列,也即不与其他方式对应的位交叉排列。
在以下方式1-6中,特定的数据处理方式对应导频信号的索引的特定的位,但应理解,这并不意味着,在执行过程中,终端设备需要将导频信号的索引的位的取值与数据处理方式的索引直接对应,而是可以通过公式的方式实现特定的数据处理方式与导频信号的索引的特定的位的对应。
应理解,以下方式1-6中各个位的位置是按照低位到高位的顺序排布的位置。
方式1
在该种方式中,该数据处理方式包括调制编码方式;则终端设备可以按照以下公式1,确定该导频信号的索引f:
Figure PCTCN2017097090-appb-000005
其中,所述m为所述调制编码方式的索引,所述f为t进制的数值,N0为所述f中所述m对应的位的起始位的位置,Ns为所述f中所述S对应的位的起始位的位置,所述S为所述终端设备的小区标识、所述终端设备的标识、时域资源信息和频域资源信息中的至少一种对应的数值。
可选地,t为2或10,则f可以为2或10进制的数字。
可选地,N0和Ns的具体大小关系不做限定。例如,可以N0大于Ns,或者也可以 N0大于Ns
可选地,该调制编码方式为MCS。
方式2
在该种方式中,该数据处理方式包括调制编码方式和扩频方式;则终端设备可以按照以下公式2,确定该导频信号的索引f:
Figure PCTCN2017097090-appb-000006
其中,所述m为所述调制编码方式的索引,所述c1为所述扩频方式的索引,所述f为t进制的数值,N0为所述f中所述m对应的位的起始位的位置,N1为所述f中所述c1对应的位的起始位的位置,Ns为所述f中所述S对应的位的起始位的位置,所述S为所述终端设备的小区标识、所述终端设备的标识、时域资源信息和频域资源信息中的至少一种对应的数值。
可选地,N0、N1和Ns的具体大小关系不做限定。N0可以大于N1,N1可以大于Ns;或者,N0可以大于Ns,Ns可以大于N1;或者,N1可以大于Ns,Ns可以大于N0;或者,N1可以大于N0,N0可以大于Ns;或者,Ns可以大于N0,N0可以大于N1;或者,Ns可以大于N1,N1可以大于N0
可选地,t为2或10,则f可以为2或10进制的数字。
可选地,该调制编码方式为MCS。
方式3
在该种方式中,该数据处理方式包括调制编码方式和交织方式;则终端设备可以按照以下公式3,确定导频信号的索引f:
Figure PCTCN2017097090-appb-000007
其中,所述m为所述调制编码方式的索引,所述c2为所述交织方式的索引,所述f为t进制的数值,N0为所述f中所述m对应的位的起始位的位置,N2为所述f中所述c2对应的位的起始位的位置,Ns为所述f中所述S对应的位的起始位的位置,所述S为所述终端设备的小区标识、所述终端设备的标识、时域资源信息和频域资源信息中的至少一种对应的数值。
可选地,N0、N2和Ns的具体大小关系不做限定。N0可以大于N2,N2可以大于Ns;或者,N0可以大于Ns,Ns可以大于N2;或者,N2可以大于Ns,Ns可以大于N0;或者,N2可以大于N0,N0可以大于Ns;或者,Ns可以大于N0,N0可以大于N2;或者,Ns可以大于N2,N2可以大于N0
可选地,t为2或10,则f可以为2或10进制的数字。
可选地,该调制编码方式为MCS。
方式4
在该种方式中,该数据处理方式包括调制编码方式、扩频方式和交织方法;则终端设备可以按照以下公式4,确定该导频信号的索引:
Figure PCTCN2017097090-appb-000008
其中,所述m为所述调制编码方式的索引,所述c1为所述扩频方式的索引,所述c2为所述交织方式的索引,所述f为t进制的数值,N0为所述f中所述m对应的位的起始位 的位置,N1为所述f中所述c1对应的位的起始位,N2为所述f中所述c2对应的位的起始位的位置,Ns为所述f中所述S对应的位的起始位的位置,所述S为所述终端设备的小区标识、所述终端设备的标识、时域资源信息和频域资源信息中的至少一种对应的数值。
可选地,本申请实施例N0、N2、N1和Ns的大小关系不做具体限定,但N0、N2、N1和Ns互不相等。
可选地,t为2或10,则f可以为2或10进制的数字。
可选地,该调制编码方式为MCS。
方式5
在该种方式中,该数据处理方式包括信道编码方式和多维调制方式;则终端设备可以按照以下公式5,确定导频信号的索引:
Figure PCTCN2017097090-appb-000009
其中,ma为所述信道编码方式的索引,mb为所述多维调制方式的索引,f为t进制的数值,Na为所述f中所述ma对应的位的起始位的位置,Nb为所述f中所述mb对应的位的起始位的位置,Ns为所述f中所述S对应的位的起始位的位置,所述S为所述终端设备的小区标识、所述终端设备的标识、时域资源信息和频域资源信息中的至少一种对应的数值。
可选地,本申请实施例对Na、Nb和Ns的大小关系不做具体限定,但Na、Nb和Ns互不相等。
可选地,t为2或10,则f可以为2或10进制的数字。
可选地,该调制编码方式为MCS。
式6
在该种方式中,该数据处理方式包括信道编码方式、多维调制方式和交织方式;
则终端设备可以按照以下公式6,确定该导频信号的索引f;
Figure PCTCN2017097090-appb-000010
其中,ma为所述信道编码方式的索引、mb为所述多维调制方式的索引、c2为所述交织方式的索引,f为t进制的数值,Na为所述f中所述ma对应的位的起始位的位置,Nb为所述f中所述mb对应的位的起始位的位置,N2为所述f中所述c2对应的位的起始位的位置,Ns为所述f中所述S对应的位的起始位的位置,所述S为所述终端设备的小区标识、所述终端设备的标识、时域资源信息和频域资源信息中的至少一种对应的数值。
可选地,本申请实施例Na、Nb、N2和Ns的大小关系不做具体限定,但Na、Nb、N2和Ns互不相等。
可选地,t为2或10,则f可以为2或10进制的数字。
可选地,以上各种方式中的S可以是用于指示终端设备的小区标识、该终端设备的标识、时域资源信息和频域资源信息中的至少一种的索引。
应理解,以上描述举例描述了几种确定导频索引的方式,但应理解,本申请实施例并不限于此,例如,在方式A、B、C和D中,调制编码方式可以拆分为信道编码方式和调制方式,也即可以根据信道编码方式的索引和调制编码方式的索引(进一步,还可以根据交织方式的索引和/或扩频方式的索引)确定导频信号的索引,其中,信道编码方式和调制编码方式分别对应于导频信号的索引的不同的位。
还应理解,除了通过公式的方式,实现特定的数据处理方式与导频信号的索引的特 定的位的对应,进而确定导频信号的索引,本申请实施例还具有其他方式。
可选地,所述数据处理方式包括第1至第g种处理方式,g为大于等于2的整数;
则终端设备可以根据数值y,确定所述导频信号的索引,其中,数值y是根据以下公式7确定的:
Figure PCTCN2017097090-appb-000011
其中,xg表示第g种处理方式的索引,xi表示第i种处理方式的索引,Nj表示第j种处理方式可选择的数量。
换句话说,终端设备可以将第i种处理方式的索引乘以第i+1至第g种处理方式中每一种处理方式的可选择的数量,以得到第一数值,其中,i从1遍历到g-1;将所述第一数值与所述第g种处理方式的索引相加得到数值y;根据所述数值y,确定所述导频信号的索引。
可选地,终端设备可以直接利用数据处理方式的索引,按照以上公式7得到数值y。
或者,终端设备可以存储数据处理方式的索引和数值y的直接对应关系,例如,以表格的方式进行存储,其中,上述对应关系可以是按照公式7得到的。例如,如下表3所示:
表3
y MCS的索引 扩频方式的索引
0 0 0
1 0 1
2 0 2
3 0 3
4 1 0
5 1 1
6 1 2
7 1 3
可选地,在可选择的导频信号的数量K等于所述第1至第g种处理方式可选择的数量的乘积时,根据以下公式,确定所述导频信号的索引:
f=(y+S)mod K            公式8
其中,S为所述终端设备的小区标识、所述终端设备的标识、时域资源信息和频域资源信息中的至少一种对应的数值。
可选地,在可选择的导频信号的数量K大于第1至第g种处理方式可选择的数量的乘积时,根据以下公式,确定所述导频信号的索引:
f=(q·y+p+S)mod K             公式9
其中,S为所述终端设备的小区标识、所述终端设备的标识、时域资源信息和频域资源信息中的至少一种对应的数值,q为常数,p属于[0,q-1]。
可选地,q是根据可选择的导频信号的数量与第1至第g种处理方式可选择的数量的乘积的比值确定的。例如,q等于可选择的导频信号的数量与第1至第g种处理方式可选 择的数量的乘积的比值的上取整或下取整。
应理解,以上提到的第1至第g种处理方式并不意味着需要对数据处理方式进行排序,此处只是为了阐述的方便,不应对本申请实施例构成顺序的限定。例如,数据处理方式包括调制编码方式和交织方式,则可以将调制编码方式称为第1种处理方式,交织方式称为第2种处理方式;可以将交织方式称为第1种处理方式,调制编码方式称为第2种处理方式。
为了便于理解,以下将结合方式7-16进行说明。
方式7
所述数据处理方式包括调制编码方式和扩频方式,
终端设备可以按照以下公式10,确定所述导频信号的索引f:
Figure PCTCN2017097090-appb-000012
其中,m为所述调制编码方式的索引,c1为所述扩频方式的索引,所述
Figure PCTCN2017097090-appb-000013
表示可选择的扩频方式的数量,K表示可选择的导频信号的数量,S为所述终端设备的小区标识、所述终端设备的标识、时域资源信息和频域资源信息中的至少一种对应的数值。
可选地,所述
Figure PCTCN2017097090-appb-000014
其中,所述Nm表示可选择的调制编码方式的数量,所述
Figure PCTCN2017097090-appb-000015
表示可选择的扩频方式的数量。
方式8
所述数据处理方式还包括调制编码方式和扩频方式,
终端设备可以按照以下公式11,确定所述导频信号的索引f:
f=(c1·Nm+m+S)mod K        公式11
其中,m为所述调制编码方式的索引,c1为所述扩频方式的索引,所述Nm表示可选择的调制编码方式的数量,K表示可选择的导频信号的数量,S为所述终端设备的小区标识、所述终端设备的标识、时域资源信息和频域资源信息中的至少一种对应的数值。
可选地,所述
Figure PCTCN2017097090-appb-000016
其中,所述Nm表示可选择的调制编码方式的数量,所述
Figure PCTCN2017097090-appb-000017
表示可选择的扩频方式的数量。
方式9
所述数据处理方式还包括调制编码方式和扩频方式,
终端设备可以按照以下公式12,确定所述导频信号的索引f:
Figure PCTCN2017097090-appb-000018
其中,m为所述调制编码方式的索引,c1为所述扩频方式的索引,
Figure PCTCN2017097090-appb-000019
表示可选择的扩频方式的数量,S为所述终端设备的小区标识、所述终端设备的标识、时域资源信息和频域资源信息中的至少一种对应的数值,q为常数,p属于[0,q-1],K表示可选择的导频信号的数量。
可选地,p可以随机选择。
可选地,所述
Figure PCTCN2017097090-appb-000020
其中,所述Nm表示可选择的调制编码方式的数量,所述
Figure PCTCN2017097090-appb-000021
表示可选择的扩频方式的数量。
方式10
所述数据处理方式还包括调制编码方式和扩频方式,
终端设备可以按照以下公式13,确定所述导频信号的索引f:
f=(c1Nmq+mq+p+S)mod K              公式13
其中,m为所述调制编码方式的索引,c1为所述扩频方式的索引,所述Nm表示可选择的调制编码方式的数量,S为所述终端设备的小区标识、所述终端设备的标识、时域资源信息和频域资源信息中的至少一种对应的数值,q为常数,p属于[0,q-1],K表示可选择的导频信号的数量。
可选地,p可以随机选择。
可选地,所述
Figure PCTCN2017097090-appb-000022
其中,所述Nm表示可选择的调制编码方式的数量,所述
Figure PCTCN2017097090-appb-000023
表示可选择的扩频方式的数量。
方式11
所述数据处理方式包括调制编码方式和交织方式,
终端设备可以按照以下公式14,确定所述导频信号的索引f:
Figure PCTCN2017097090-appb-000024
其中,m为所述调制编码方式的索引,c2为所述交织方式的索引,所述Nc表示可选择的交织方式的数量,K表示可选择的导频信号的数量,S为所述终端设备的小区标识、所述终端设备的标识、时域资源信息和频域资源信息中的至少一种对应的数值。
可选地,所述
Figure PCTCN2017097090-appb-000025
其中,所述Nm表示可选择的调制编码方式的数量,所述
Figure PCTCN2017097090-appb-000026
表示可选择的交织方式的数量。
方式12
所述数据处理方式还包括调制编码方式和交织方式,
终端设备可以按照以下公式15,确定所述导频信号的索引f:
f=(c2·Nm+m+S)mod K          公式15
其中,m为所述调制编码方式的索引,c2为所述交织方式的索引,所述Nm表示可选择的调制编码方式的数量,K表示可选择的导频信号的数量,S为所述终端设备的小区标识、所述终端设备的标识、时域资源信息和频域资源信息中的至少一种对应的数值。
可选地,所述
Figure PCTCN2017097090-appb-000027
其中,所述Nm表示可选择的调制编码方式的数量,所述
Figure PCTCN2017097090-appb-000028
表示可选择的交织方式的数量。
方式13
所述数据处理方式还包括调制编码方式和交织方式,
终端设备可以按照以下公式16,确定所述导频信号的索引f:
Figure PCTCN2017097090-appb-000029
其中,m为所述调制编码方式的索引,c2为所述交织方式的索引,所述
Figure PCTCN2017097090-appb-000030
表示可选择的扩频方式的数量,q为常数,p属于[0,q-1],K表示可选择的导频的数量,S为所述终端设备的小区标识、所述终端设备的标识、时域资源信息和频域资源信息中的至少一种对应的数值。
可选地,所述
Figure PCTCN2017097090-appb-000031
其中,所述Nm表示可选择的调制编码方式的数量,所述
Figure PCTCN2017097090-appb-000032
表示可选择的交织方式的数量。
可选地,p可以随机选择。
方式14
所述数据处理方式还包括调制编码方式和交织方式,
终端设备可以按照以下公式17,确定所述导频信号的索引f:
f=(c2Nmq+mq+p+S)mod K         公式17
其中,m为所述调制编码方式的索引,c2为所述交织方式的索引,所述Nm表示可选择的调制编码方式的数量,所述Nm表示可选择的调制编码方式的数量,q为常数,p属于[0,q-1],K表示可选择的导频信号的数量,S为所述终端设备的小区标识、所述终端设备的标识、时域资源信息和频域资源信息中的至少一种对应的数值。
可选地,所述
Figure PCTCN2017097090-appb-000033
其中,所述Nm表示可选择的调制编码方式的数量,所所述
Figure PCTCN2017097090-appb-000034
表示可选择的交织方式的数量。
可选地,p可以随机选择。
方式15
所述数据处理方式包括调制编码方式和交织方式,所述导频信号包括第一参数和所述第二参数,所述导频信号的索引包括所述第一参数对应的第一索引和所述第二参数对应的第二索引;
根据所述数据处理方式的索引,确定所述导频信号的索引,包括:
按照以下公式18和19确定所述第一索引f1和所述第二索引f2
f1=(c2+S)mod K        公式18
f2=m            公式19
其中,m为所述调制编码方式的索引,c2为所述交织方式的索引,S为所述终端设备的小区标识、所述终端设备的标识、时域资源信息和频域资源信息中的至少一种对应的数值。
可选地,导频信号可以为ZC序列,则第一参数可以为基序列,第二参数可以为循环移位参数;或者,第一参数可以为循环移位参数。第二参数可以为基序列。
方式16
所述数据处理方式包括调制编码方式和扩频方式,所述导频信号包括第一参数和所述第二参数,所述导频信号的索引包括所述第一参数对应的第一索引和所述第二参数对应的第二索引;
根据所述数据处理方式的索引,确定所述导频信号的索引,包括:
按照以下公式20和21确定所述第一索引f1和所述第二索引f2
f1=(c1+S)mod K           公式20
f2=m            公式21
其中,m为所述调制编码方式的索引,c1为所述扩方式的索引,S为所述终端设备的小区标识、所述终端设备的标识、时域资源信息和频域资源信息中的至少一种对应的数值。
可选地,导频信号可以为ZC序列,则第一参数可以为基序列,第二参数可以为循环移位参数;或者,第一参数可以为循环移位参数。第二参数可以为基序列。
应理解,本领域技术人员可以结合以上方式7-16想到的其他方式均在本申请的保护范围之内。例如,调制编码方式可以包括信道编码方式和调制方式,并根据信道编码方式 的索引以及调制编码方式的索引,按照以上公式的变型确定导频信号的索引。
应理解,除了以上描述的各种方式,本申请实施例还可以具有其他方式确定导频信号的索引。
在一种实现方式中,终端设备可以直接存储导频信号的索引与至少一种数据处理方式的索引的对应关系,例如,可以以表格的方式进行存储,则终端设备可以利用表格查找的方式,确定导频信号的索引。其中,导频信号的索引与至少一种数据处理方式的索引对应关系可以如下表4所示:
表4
导频信号的索引f MCS的索引 扩频方式的索引
0 0 0
1 0 1
2 0 2
3 0 3
4 1 0
5 1 1
6 1 2
7 1 3
在另一种实现方式中,终端设备可以直接存储导频信号的索引,与至少一种数据处理方式的索引以及终端设备的小区标识、所述终端设备的标识、时域资源信息和频域资源信息中的至少一种对应的数值的对应关系,例如,可以以表格的方式进行存储,则终端设备可以利用表格查找的方式,确定导频信号的索引。
在另一种实现方式中,终端设备可以直接存储导频信号的初始索引与至少一种数据处理方式的对应关系,则终端设备可以按照导频信号的初始索引与至少一种数据处理方式的对应关系,确定导频信号的初始索引,并按照以下公式19确定导频信号的索引f:
f=(f0+S)mod K           公式22
其中,f0为所述导频信号的初始索引,K表示可选择的导频信号的数量,S为所述终端设备的小区标识、所述终端设备的标识、时域资源信息和频域资源信息中的至少一种对应的数值。
可选地,该初始索引f0可以是指上述提到的数值y,具体实现方式在此不再赘述。
可选地,在本申请实施例中,上述各个实施例提到的S是所述终端设备的小区标识、所述终端设备的标识、时域资源信息和频域资源信息中的至少一种对应的数值,具体地,可以将所述终端设备的标识、时域资源信息和频域资源信息中的至少一种进行变型得到的数值。
在240中,终端设备发送该导频信号和处理的数据。
在250中,网络设备接收终端设备发送的导频信号和数据。
在260中,网络设备根据导频信号确定数据处理方式。
可选地,网络设备可以根据导频信号与所述数据处理方式的映射关系,确定所述数据处理方式。
可选地,在本申请实施例中,终端设备可以根据接收的某一特定导频信号,以及数 据处理方式与导频信号的映射关系,确定唯一的数据处理方式或唯一的数据处理方式的组合。
可选地,在本申请实施例中,数据处理方式与导频信号的映射关系可以是通过表格的方式实现。
例如,表格可以直接呈现数据处理方式与导频信号的映射关系,也即可以通过查找表格,直接找到数据处理方式。
例如,表格可以呈现数据处理方式的索引与导频信号的索引的映射关系,也即,可以利用导频信号的索引,通过查找表格,查找到数据处理方式的索引,从而,可以利用数据处理方式的索引,获取数据处理方式。
可选地,在本申请实施例中,数据处理方式与导频信号的映射关系可以是通过公式实现。
例如,可以利用导频信号的索引,通过公式得到数据处理方式的索引,从而,可以通过数据处理方式的索引,确定数据处理方式。
可选地,网络设备可以根据导频信号的索引与数据处理方式的索引的映射关系,确定数据处理方式。
可选地,所述数据处理方式的索引对应于所述导频信号的索引的全部或部分位;网络设备可以根据所述导频信号的索引,确定所述导频信号的索引中所述数据处理方式对应的位的取值,进而确定所述数据处理方式的索引。
可选地,所述数据处理方式包括多种处理方式,所述多种处理方式中不同的处理方式对应于所述导频信号的索引的不同的一个或多个位;网络设备可以根据所述导频信号的索引,确定所述导频信号的索引中所述多种处理方式中每种处理方式对应的位的取值,进而确定所述每种数据处理方式的索引。
可选地,特定的数据处理方式对应导频信号的索引的特定的位的情况下,网络设备可以按照公式1-公式6所示的方式,确定数据处理方式的索引,具体不再赘述。
可选地,所述数据处理方式包括第1至第g种处理方式,g为大于等于2的整数;所述网络设备可以根据所述导频信号的索引,确定数值y;根据所述数值y,确定所述数据处理方式的索引;其中,所述数值y与所述数据处理方式的索引,具有以下关系:
Figure PCTCN2017097090-appb-000035
其中,xg表示第g种处理方式的索引,xi表示第i种处理方式的索引,Nj表示第j种处理方式可选择的数量。
可选地,网络设备可以直接按照公式
Figure PCTCN2017097090-appb-000036
确定数据处理方式的索引,也可以查找符号该公式的条件的表格。
可选地,在可选择的导频信号的数量K等于所述第1至第g种处理方式可选择的数量的乘积时,网络设备可以根据符合以下公式的条件,确定所述数值y:
y=(f-s)mod K           公式23
其中,S为所述终端设备的小区标识、所述终端设备的标识、时域资源信息和频域资 源信息中的至少一种对应的数值。
可选地,在可选择的导频信号的数量K大于第1至第g种处理方式可选择的数量的乘积时,根据符合以下公式的条件,确定所述数值y:
Figure PCTCN2017097090-appb-000037
其中,S为所述终端设备的小区标识、所述终端设备的标识、时域资源信息和频域资源信息中的至少一种对应的数值,q为常数,p属于[0,q-1],其中,mod表示取模处理,
Figure PCTCN2017097090-appb-000038
表示向下取整。
可选地,q是根据可选择的导频信号的数量与第1至第g种处理方式可选择的数量的乘积的比值确定的。
所述数据处理方式包括调制编码方式,和包括扩频方式或交织方式,所述导频信号包括第一参数和所述第二参数,所述导频信号的索引包括所述第一参数对应的第一索引和所述第二参数对应的第二索引;
根据所述导频信号的索引,确定所述数据处理方式的索引,包括:
按照以下公式25和26确定调制编码方式的索引和确定扩频方式或交织方式的索引:
c=(f1-S)mod K         公式25
m=f2            公式26
其中,m为所述调制编码方式的索引,c为所述交织方式或扩频方式的索引,S为所述终端设备的小区标识、所述终端设备的标识、时域资源信息和频域资源信息中的至少一种对应的数值,f1为第一参数,f2为第一参数。
可选地,导频信号可以为ZC序列,则第一参数可以为基序列,第二参数可以为循环移位参数;或者,第一参数可以为循环移位参数。第二参数可以为基序列。
应理解,除了以上描述的各种方式,本申请实施例还可以具有其他方式确定数据处理方式的索引。
在一种实现方式中,网络设备可以直接存储导频信号的索引与至少一种数据处理方式的索引的对应关系,例如,可以以表格的方式进行存储,则网络设备可以利用表格查找的方式,确定数据处理方式的索引。其中,导频信号的索引与至少一种数据处理方式的索引对应关系可以如上表4所示。
在另一种实现方式中,网络设备可以直接存储导频信号的索引,与至少一种数据处理方式的索引以及终端设备的小区标识、所述终端设备的标识、时域资源信息和频域资源信息中的至少一种对应的数值的对应关系,例如,可以以表格的方式进行存储,则网络设备可以利用表格查找的方式,确定数据处理方式的索引。
在另一种实现方式中,网络设备可以按照以下公式27确定导频信号的初始索引:
f0=(f-S)mod K          公式27
并且网络设备可以直接存储导频信号的初始索引与至少一种数据处理方式的对应关系,则终端设备可以按照导频信号的初始索引与至少一种数据处理方式的对应关系,确定数据处理方式的索引。
可选地,在本申请实施例中,上述各个实施例提到的S是所述终端设备的小区标识、所述终端设备的标识、时域资源信息和频域资源信息中的至少一种对应的数值,具体地, 可以将所述终端设备的标识、时域资源信息和频域资源信息中的至少一种进行变型得到的数值。在270中,网络设备根据确定的数据处理方式,对数据进行处理。
可选地,在数据处理方式包括调制编码方式时,可以对数据进行解调和解码。
可选地,在数据处理方式包括交织方式时,可以按照该交织方式,对数据解交织。
可选地,在数据处理方式包括扩频方式,可以按照该扩频方式,对数据进行解扩。
因此,在本申请实施例中,终端设备可以确定数据处理方式,所述数据处理方式包括调制编码方式;根据所述数据处理方式,对数据进行处理;根据所述数据处理方式,确定导频信号;发送所述导频信号和处理后的所述数据,从而接收端可以根据导频信号,确定数据处理方式,避免了接收端对数据处理方式进行盲检测的复杂度,并且,并进一步地,终端设备可以根据需求选择所需的调制编码方式,从而可以满足传输需求,提高传输的可靠性。
图7是根据本申请实施例的终端设备的示意性框图。如图7所示,该终端设备300包括收发器310和处理器320。
应理解,该终端设备300可以对应于方法实施例中数据和导频信号的发送端,即终端设备,可以具有方法中的终端设备的任意功能,为了简洁,这里仅以图2所示的终端设备的部分功能为例对该终端设备300进行阐述,但是本申请实施例并不限于此。
其中,该处理器320用于:确定数据处理方式,所述数据处理方式包括调制编码方式;根据所述数据处理方式,对数据进行处理;根据所述数据处理方式,确定导频信号;
发送器310用于:发送所述导频信号和处理后的所述数据。
可选地,所述数据处理方式还包括以下处理方式中的至少一种:交织方式和扩频方式。
可选地,所述处理器320进一步用于:根据所述数据处理方式与所述导频信号的映射关系,确定所述导频信号。
可选地,所述处理器320进一步用于:根据所述终端设备的小区标识、所述终端设备的标识、时域资源信息和频域资源信息中的至少一种以及所述数据处理方式,确定所述导频信号。
可选地,所述处理器320进一步用于:根据所述数据处理方式的索引,确定所述导频信号的索引;
根据所述导频信号的索引,确定所述导频信号。
可选地,所述数据处理方式的索引对应于所述导频信号的索引的全部或部分位;
所述处理器320进一步用于:根据所述数据处理方式的索引,确定所述导频信号的索引中所述数据处理方式对应的位的取值,进而确定所述导频信号的索引。
可选地,所述数据处理方式包括多种处理方式,所述多种处理方式中不同的处理方式对应于所述导频信号的索引的不同的一个或多个位;
所述处理器320进一步用于:
根据所述多种处理方式中每种处理方式的索引,确定所述导频信号的索引中所述每种处理方式对应的位的取值,进而确定所述导频信号的索引。
可选地,所述数据处理方式包括第1至第g种处理方式,g为大于等于2的整数;所述处理器320进一步用于:
根据数值y,确定所述导频信号的索引,其中,数值y是根据符合以下公式的条件来确定的:
Figure PCTCN2017097090-appb-000039
其中,xg表示第g种处理方式的索引,xi表示第i种处理方式的索引,Nj表示第j种处理方式可选择的数量。
可选地,在可选择的导频信号的数量K等于所述第1至第g种处理方式可选择的数量的乘积时,所述处理器320进一步用于:按照符合以下公式的条件,确定所述导频信号的索引f:
f=(y+S)mod K
其中,S为所述终端设备的小区标识、所述终端设备的标识、时域资源信息和频域资源信息中的至少一种对应的数值,mod表示取模处理。
可选地,在可选择的导频信号的数量K大于第1至第g种处理方式可选择的数量的乘积时,所述处理器320进一步用于:
按照符合以下公式的条件,确定所述导频信号的索引f:
f=(q·y+p+S)mod K
其中,S为所述终端设备的小区标识、所述终端设备的标识、时域资源信息和频域资源信息中的至少一种对应的数值,q为常数,p属于[0,q-1],其中,mod表示取模处理。
可选地,q是根据可选择的导频信号的数量与第1至第g种处理方式可选择的数量的乘积的比值确定的。
可选地,所述处理器320进一步用于:
根据以下信息中的至少一种,确定所述数据处理方式:
所述终端设备与所述数据的接收端之间的信道的状态信息;
之前向所述接收端发送的数据对应的数据处理方式以及所述接收端对之前发送的数据反馈的信息;
所述数据的接收端的广播或单播消息。
图8是根据本申请实施例的通信设备400的示意性框图。
应理解,该通信设备400可以对应于方法实施例中的数据和导频信号的接收端,例如网络设备,可以具有方法中的该网络设备的任意功能,为了简洁,这里仅以图2所示的网络设备的部分功能为例对该通信设备400进行阐述,但是本申请实施例并不限于此。
如图8所示,该通信设备400包括收发器410和处理器420。
可选地,所述收发器410用于:接收终端设备发送的导频信号和数据;
所述处理器420用于:根据所述导频信号,确定数据处理方式,所述数据处理方式包括调制编码方式;根据所述数据处理方式,对所述数据进行处理。
可选地,所述数据处理方式还包括以下处理方式中的至少一种:交织方式和扩频方式。
可选地,所述处理器420具体用于:
根据所述导频信号与所述数据处理方式的映射关系,确定所述数据处理方式。
可选地,所述处理器420具体用于:
根据所述终端设备的小区标识、所述终端设备的标识、时域资源信息和频域资源信息中的至少一种以及所述导频信号,确定所述数据处理方式。
可选地,所述处理器420具体用于:
根据所述导频信号的索引,确定所述数据处理方式的索引;
根据所述数据处理方式的索引,确定所述数据处理方式。
可选地,所述数据处理方式的索引对应于所述导频信号的索引的全部或部分位;
所述处理器420具体用于:
根据所述导频信号的索引,确定所述导频信号的索引中所述数据处理方式对应的位的取值,进而确定所述数据处理方式的索引。
可选地,所述数据处理方式包括多种处理方式,所述多种处理方式中不同的处理方式对应于所述导频信号的索引的不同的一个或多个位;
所述处理器420具体用于:
根据所述导频信号的索引,确定所述导频信号的索引中所述多种处理方式中每种处理方式对应的位的取值,进而确定所述每种数据处理方式的索引。
可选地,所述数据处理方式包括第1至第g种处理方式,g为大于等于2的整数;所述处理器420具体用于:
根据所述导频信号的索引,确定数值y;
根据所述数值y,确定所述数据处理方式的索引;其中,所述数值y与所述数据处理方式的索引,具有以下关系:
Figure PCTCN2017097090-appb-000040
其中,xg表示第g种处理方式的索引,xi表示第i种处理方式的索引,Nj表示第j种处理方式可选择的数量。
可选地,所述处理器420具体用于:
在可选择的导频信号的数量K等于所述第1至第g种处理方式可选择的数量的乘积时,根据符合以下公式的条件,确定所述数值y:
y=(f-s)mod K
其中,S为所述终端设备的小区标识、所述终端设备的标识、时域资源信息和频域资源信息中的至少一种对应的数值。
可选地,所述处理器420具体用于:
在可选择的导频信号的数量K大于第1至第g种处理方式可选择的数量的乘积时,根据符合以下公式的条件,确定所述数值y:
Figure PCTCN2017097090-appb-000041
其中,S为所述终端设备的小区标识、所述终端设备的标识、时域资源信息和频域资源信息中的至少一种对应的数值,q为常数,p属于[0,q-1],其中,mod表示取模处理,
Figure PCTCN2017097090-appb-000042
表示向下取整。
可选地,q是根据可选择的导频信号的数量与第1至第g种处理方式可选择的数量的乘积的比值确定的。
应理解,本申请实施例中的处理器320和/或处理器420可以通过处理单元或芯片实现。
应理解,本申请实施例中的收发器310或收发器410可以通过收发单元或芯片实现,可选地,收发器310或收发器410可以发射器或接收器构成,或由发射单元或接收单元构成。
可选地,上述终端设备300或通信设备400还可以包括存储器,该存储器可以存储程序代码,处理器调用存储器存储的程序代码,以实现该网络设备或终端设备的相应功能。
本申请实施例还提供一种系统,该系统可以包括上述终端设备300和通信设备400。
因此,在本申请实施例中,终端设备可以确定数据处理方式,所述数据处理方式包括调制编码方式;根据所述数据处理方式,对数据进行处理;根据所述数据处理方式,确定导频信号;发送所述导频信号和处理后的所述数据,从而接收端可以根据导频信号,确定数据处理方式,避免了接收端对数据处理方式进行盲检测的复杂度,并且,并进一步地,终端设备可以根据需求选择所需的调制编码方式,从而可以满足传输需求,提高传输的可靠性。
本申请实施方式的装置可以是现场可编程门阵列(Field-Programmable Gate Array,FPGA),可以是专用集成芯片(Application Specific Integrated Circuit,ASIC),还可以是系统芯片(System on Chip,SoC),还可以是中央处理器(Central Processor Unit,CPU),还可以是网络处理器(Network Processor,NP),还可以是数字信号处理电路(Digital Signal Processor,DSP),还可以是微控制器(Micro Controller Unit,MCU),还可以是可编程控制器(Programmable Logic Device,PLD)或其他集成芯片。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (46)

  1. 一种信息传输方法,其特征在于,包括:
    终端设备确定数据处理方式,所述数据处理方式包括调制编码方式;
    根据所述数据处理方式,对数据进行处理;
    根据所述数据处理方式,确定导频信号;
    发送所述导频信号和处理后的所述数据。
  2. 根据权利要求1所述的方法,其特征在于,所述数据处理方式还包括以下处理方式中的至少一种:交织方式和扩频方式。
  3. 根据权利要求1或2所述的方法,其特征在于,所述根据所述数据处理方式,确定导频信号,具体为:
    根据所述数据处理方式与所述导频信号的映射关系,确定所述导频信号。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述根据所述数据处理方式,确定导频信号,具体为:
    根据所述终端设备的小区标识、所述终端设备的标识、时域资源信息和频域资源信息中的至少一种以及所述数据处理方式,确定所述导频信号。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述根据所述数据处理方式,确定导频信号,具体为:
    根据所述数据处理方式的索引,确定所述导频信号的索引;
    根据所述导频信号的索引,确定所述导频信号。
  6. 根据权利要求5所述的方法,其特征在于,所述数据处理方式的索引对应于所述导频信号的索引的全部或部分位;
    所述根据所述数据处理方式的索引,确定所述导频信号的索引,具体为:
    根据所述数据处理方式的索引,确定所述导频信号的索引中所述数据处理方式对应的位的取值,进而确定所述导频信号的索引。
  7. 根据权利要求6所述的方法,所述数据处理方式包括多种处理方式,所述多种处理方式中不同的处理方式对应于所述导频信号的索引的不同的一个或多个位;
    所述根据所述数据处理方式的索引,确定所述导频信号的索引,具体为:
    根据所述多种处理方式中每种处理方式的索引,确定所述导频信号的索引中所述每种处理方式对应的位的取值,进而确定所述导频信号的索引。
  8. 根据权利要求6所述的方法,其特征在于,所述数据处理方式包括第1至第g种处理方式,g为大于等于2的整数;根据所述数据处理方式,确定导频信号,具体为:
    根据数值y,确定所述导频信号的索引,其中,数值y是根据符合以下公式的条件来确定的:
    Figure PCTCN2017097090-appb-100001
    其中,xg表示第g种处理方式的索引,xi表示第i种处理方式的索引,Nj表示第j种处理方式可选择的数量。
  9. 根据权利要求8所述的方法,其特征在于,
    在可选择的导频信号的数量K等于所述第1至第g种处理方式可选择的数量的乘积时,根据数值y,确定所述导频信号的索引,具体为:
    按照符合以下公式的条件,确定所述导频信号的索引f:
    f=(y+S)mod K
    其中,S为所述终端设备的小区标识、所述终端设备的标识、时域资源信息和频域资源信息中的至少一种对应的数值,mod表示取模处理。
  10. 根据权利要求9所述的方法,其特征在于,
    在可选择的导频信号的数量K大于第1至第g种处理方式可选择的数量的乘积时,根据数值y,确定所述导频信号的索引,具体为:
    按照符合以下公式的条件,确定所述导频信号的索引f:
    f=(q·y+p+S)mod K
    其中,S为所述终端设备的小区标识、所述终端设备的标识、时域资源信息和频域资源信息中的至少一种对应的数值,q为常数,p属于[0,q-1],其中,mod表示取模处理。
  11. 根据权利要求10所述的方法,其特征在于,q是根据可选择的导频信号的数量与第1至第g种处理方式可选择的数量的乘积的比值确定的。
  12. 根据权利要求1至11中任一项的方法,其特征在于,所述终端设备确定数据处理方式,具体为:
    所述终端设备根据以下信息中的至少一种,确定所述数据处理方式:
    所述终端设备与所述数据的接收端之间的信道的状态信息;
    之前向所述接收端发送的数据对应的数据处理方式以及所述接收端对之前发送的数据反馈的信息;
    所述数据的接收端的广播或单播消息。
  13. 一种信息传输方法,其特征在于,包括:
    接收终端设备发送的导频信号和数据;
    根据所述导频信号,确定数据处理方式,所述数据处理方式包括调制编码方式;
    根据所述数据处理方式,对所述数据进行处理。
  14. 根据权利要求13所述的方法,其特征在于,所述数据处理方式还包括以下处理方式中的至少一种:交织方式和扩频方式。
  15. 根据权利要求13或14所述的方法,其特征在于,所述根据所述导频信号,确定数据处理方式,具体为:
    根据所述导频信号与所述数据处理方式的映射关系,确定所述数据处理方式。
  16. 根据权利要求13至15中任一项所述的方法,其特征在于,所述根据所述数据处理方式,确定导频信号,具体为:
    根据所述终端设备的小区标识、所述终端设备的标识、时域资源信息和频域资源信息中的至少一种以及所述导频信号,确定所述数据处理方式。
  17. 根据权利要求13至16中任一项所述的方法,其特征在于,所述根据所述导频信号,确定数据处理方式,具体为:
    根据所述导频信号的索引,确定所述数据处理方式的索引;
    根据所述数据处理方式的索引,确定所述数据处理方式。
  18. 根据权利要求17所述的方法,其特征在于,所述数据处理方式的索引对应于所述导频信号的索引的全部或部分位;
    所述根据所述导频信号的索引,确定所述数据处理方式的索引,具体为:
    根据所述导频信号的索引,确定所述导频信号的索引中所述数据处理方式对应的位的取值,进而确定所述数据处理方式的索引。
  19. 根据权利要求18所述的方法,所述数据处理方式包括多种处理方式,所述多种处理方式中不同的处理方式对应于所述导频信号的索引的不同的一个或多个位;
    所述根据所述数据处理方式的索引,确定所述导频信号的索引,具体为:
    根据所述导频信号的索引,确定所述导频信号的索引中所述多种处理方式中每种处理方式对应的位的取值,进而确定所述每种数据处理方式的索引。
  20. 根据权利要求17所述的方法,其特征在于,所述数据处理方式包括第1至第g种处理方式,g为大于等于2的整数;所述根据所述导频信号的索引,确定所述数据处理方式的索引,具体为:
    根据所述导频信号的索引,确定数值y;
    根据所述数值y,确定所述数据处理方式的索引;其中,所述数值y与所述数据处理方式的索引,具有以下关系:
    Figure PCTCN2017097090-appb-100002
    其中,xg表示第g种处理方式的索引,xi表示第i种处理方式的索引,Nj表示第j种处理方式可选择的数量。
  21. 根据权利要求8所述的方法,其特征在于,所述根据所述导频信号的索引,确定数值y,具体为:
    在可选择的导频信号的数量K等于所述第1至第g种处理方式可选择的数量的乘积时,根据符合以下公式的条件,确定所述数值y:
    y=(f-S)mod K
    其中,S为所述终端设备的小区标识、所述终端设备的标识、时域资源信息和频域资源信息中的至少一种对应的数值。
  22. 根据权利要求21所述的方法,其特征在于,所述根据所述导频信号的索引,确定数值y,具体为:
    在可选择的导频信号的数量K大于第1至第g种处理方式可选择的数量的乘积时,根据符合以下公式的条件,确定所述数值y:
    Figure PCTCN2017097090-appb-100003
    其中,S为所述终端设备的小区标识、所述终端设备的标识、时域资源信息和频域资源信息中的至少一种对应的数值,q为常数,p属于[0,q-1],其中,mod表示取模处理,
    Figure PCTCN2017097090-appb-100004
    表示向下取整。
  23. 根据权利要求22所述的方法,其特征在于,q是根据可选择的导频信号的数量与第1至第g种处理方式可选择的数量的乘积的比值确定的。
  24. 一种终端设备,其特征在于,包括收发器和处理器;其中,
    所述处理器用于:确定数据处理方式,所述数据处理方式包括调制编码方式;根据所述数据处理方式,对数据进行处理;根据所述数据处理方式,确定导频信号;
    所述收发器用于:发送所述导频信号和处理后的所述数据。
  25. 根据权利要求24所述的终端设备,其特征在于,所述数据处理方式还包括以下处理方式中的至少一种:交织方式和扩频方式。
  26. 根据权利要求24或25所述的终端设备,其特征在于,所述处理器具体用于:
    根据所述数据处理方式与所述导频信号的映射关系,确定所述导频信号。
  27. 根据权利要求24至26中任一项所述的终端设备,其特征在于,所述处理器具体用于:
    根据所述终端设备的小区标识、所述终端设备的标识、时域资源信息和频域资源信息中的至少一种以及所述数据处理方式,确定所述导频信号。
  28. 根据权利要求24至27中任一项所述的终端设备,其特征在于,所述处理器具体用于:
    根据所述数据处理方式的索引,确定所述导频信号的索引;
    根据所述导频信号的索引,确定所述导频信号。
  29. 根据权利要求28所述的终端设备,其特征在于,所述数据处理方式的索引对应于所述导频信号的索引的全部或部分位;
    所述处理器具体用于:
    根据所述数据处理方式的索引,确定所述导频信号的索引中所述数据处理方式对应的位的取值,进而确定所述导频信号的索引。
  30. 根据权利要求29所述的终端设备,所述数据处理方式包括多种处理方式,所述多种处理方式中不同的处理方式对应于所述导频信号的索引的不同的一个或多个位;
    所述处理器具体用于:
    根据所述多种处理方式中每种处理方式的索引,确定所述导频信号的索引中所述每种处理方式对应的位的取值,进而确定所述导频信号的索引。
  31. 根据权利要求29所述的终端设备,其特征在于,所述数据处理方式包括第1至第g种处理方式,g为大于等于2的整数;所述处理器具体用于:
    根据数值y,确定所述导频信号的索引,其中,数值y是根据符合以下公式的条件来确定的:
    Figure PCTCN2017097090-appb-100005
    其中,xg表示第g种处理方式的索引,xi表示第i种处理方式的索引,Nj表示第j种处理方式可选择的数量。
  32. 根据权利要求31所述的终端设备,其特征在于,
    在可选择的导频信号的数量K等于所述第1至第g种处理方式可选择的数量的乘积时,所述处理器具体用于:
    按照符合以下公式的条件,确定所述导频信号的索引f,具体为:
    f=(y+S)mod K
    其中,S为所述终端设备的小区标识、所述终端设备的标识、时域资源信息和频域资源信息中的至少一种对应的数值,mod表示取模处理。
  33. 根据权利要求32所述的终端设备,其特征在于,
    在可选择的导频信号的数量K大于第1至第g种处理方式可选择的数量的乘积时,所述处理器具体用于:
    按照符合以下公式的条件,确定所述导频信号的索引f,具体为:
    f=(q·y+p+S)mod K
    其中,S为所述终端设备的小区标识、所述终端设备的标识、时域资源信息和频域资源信息中的至少一种对应的数值,q为常数,p属于[0,q-1],其中,mod表示取模处理。
  34. 根据权利要求33所述的终端设备,其特征在于,q是根据可选择的导频信号的数量与第1至第g种处理方式可选择的数量的乘积的比值确定的。
  35. 根据权利要求24至34中任一项的终端设备,其特征在于,所述处理器具体用于:
    根据以下信息中的至少一种,确定所述数据处理方式:
    所述终端设备与所述数据的接收端之间的信道的状态信息;
    之前向所述接收端发送的数据对应的数据处理方式以及所述接收端对之前发送的数据反馈的信息;
    所述数据的接收端的广播或单播消息。
  36. 一种通信设备,其特征在于,包括收发器和处理器,其中,
    所述收发器用于:接收终端设备发送的导频信号和数据;
    所述处理器用于:根据所述导频信号,确定数据处理方式,所述数据处理方式包括调制编码方式;根据所述数据处理方式,对所述数据进行处理。
  37. 根据权利要求36所述的通信设备,其特征在于,所述数据处理方式还包括以下处理方式中的至少一种:交织方式和扩频方式。
  38. 根据权利要求36或37所述的通信设备,其特征在于,所述处理器具体用于:
    根据所述导频信号与所述数据处理方式的映射关系,确定所述数据处理方式。
  39. 根据权利要求36至38中任一项所述的通信设备,其特征在于,所述处理器具体用于:
    根据所述终端设备的小区标识、所述终端设备的标识、时域资源信息和频域资源信息中的至少一种以及所述导频信号,确定所述数据处理方式。
  40. 根据权利要求36至39中任一项所述的通信设备,其特征在于,所述处理器具体用于:
    根据所述导频信号的索引,确定所述数据处理方式的索引;
    根据所述数据处理方式的索引,确定所述数据处理方式。
  41. 根据权利要求40所述的通信设备,其特征在于,所述数据处理方式的索引对应于所述导频信号的索引的全部或部分位;
    所述处理器具体用于:
    根据所述导频信号的索引,确定所述导频信号的索引中所述数据处理方式对应的位的取值,进而确定所述数据处理方式的索引。
  42. 根据权利要求41所述的通信设备,所述数据处理方式包括多种处理方式,所述多种处理方式中不同的处理方式对应于所述导频信号的索引的不同的一个或多个位;
    所述处理器具体用于:
    根据所述导频信号的索引,确定所述导频信号的索引中所述多种处理方式中每种处理方式对应的位的取值,进而确定所述每种数据处理方式的索引。
  43. 根据权利要求40所述的通信设备,其特征在于,所述数据处理方式包括第1至第g种处理方式,g为大于等于2的整数;所述处理器具体用于:
    根据所述导频信号的索引,确定数值y;
    根据所述数值y,确定所述数据处理方式的索引;其中,所述数值y与所述数据处理方式的索引,具有以下关系:
    Figure PCTCN2017097090-appb-100006
    其中,xg表示第g种处理方式的索引,xi表示第i种处理方式的索引,Nj表示第j种处理方式可选择的数量。
  44. 根据权利要求43所述的通信设备,其特征在于,所述处理器具体用于:
    在可选择的导频信号的数量K等于所述第1至第g种处理方式可选择的数量的乘积时,根据符合以下公式的条件,确定所述数值y:
    y=(f-S)mod K
    其中,S为所述终端设备的小区标识、所述终端设备的标识、时域资源信息和频域资源信息中的至少一种对应的数值。
  45. 根据权利要求44所述的通信设备,其特征在于,所述处理器具体用于:
    在可选择的导频信号的数量K大于第1至第g种处理方式可选择的数量的乘积时,根据符合以下公式的条件,确定所述数值y:
    Figure PCTCN2017097090-appb-100007
    其中,S为所述终端设备的小区标识、所述终端设备的标识、时域资源信息和频域资源信息中的至少一种对应的数值,q为常数,p属于[0,q-1],其中,mod表示取模处理,
    Figure PCTCN2017097090-appb-100008
    表示向下取整。
  46. 根据权利要求45所述的通信设备,其特征在于,q是根据可选择的导频信号的数量与第1至第g种处理方式可选择的数量的乘积的比值确定的。
PCT/CN2017/097090 2016-08-11 2017-08-11 信息传输方法和设备 WO2018028674A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17838804.7A EP3487108B1 (en) 2016-08-11 2017-08-11 Information transmission method and device
US16/272,952 US11044037B2 (en) 2016-08-11 2019-02-11 Information transmission method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610658101.7A CN107733596B (zh) 2016-08-11 2016-08-11 信息传输方法和设备
CN201610658101.7 2016-08-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/272,952 Continuation US11044037B2 (en) 2016-08-11 2019-02-11 Information transmission method and device

Publications (1)

Publication Number Publication Date
WO2018028674A1 true WO2018028674A1 (zh) 2018-02-15

Family

ID=61162859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/097090 WO2018028674A1 (zh) 2016-08-11 2017-08-11 信息传输方法和设备

Country Status (4)

Country Link
US (1) US11044037B2 (zh)
EP (1) EP3487108B1 (zh)
CN (2) CN107733596B (zh)
WO (1) WO2018028674A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108024360B (zh) 2016-11-04 2023-11-21 华为技术有限公司 免授权传输的方法、终端和网络设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008060203A1 (en) * 2006-11-13 2008-05-22 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangement for pilot pattern based control signalling in mimo systems
CN101505293A (zh) * 2009-03-13 2009-08-12 华为技术有限公司 上行控制信道数据的处理方法及装置
CN101540751A (zh) * 2009-04-30 2009-09-23 北京邮电大学 用于多流数据的解调方法和系统
CN101557378A (zh) * 2009-05-18 2009-10-14 普天信息技术研究院有限公司 Ofdm系统中导频发送、信道估计和噪声功率估计方法
CN102209061A (zh) * 2006-12-22 2011-10-05 富士通株式会社 用户终端、无线通信方法和无线通信系统

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006013630A1 (ja) * 2004-08-05 2006-02-09 Mitsubishi Denki Kabushiki Kaisha 基地局、移動通信端末装置およびプライマリセル選択方法
US8477593B2 (en) * 2006-07-28 2013-07-02 Qualcomm Incorporated Method and apparatus for sending signaling for data transmission in a wireless communication system
US9026164B2 (en) * 2009-10-13 2015-05-05 Qualcomm Incorporated Selective transmission of power decision pilot in a wireless communication system
US8665811B2 (en) * 2011-08-15 2014-03-04 Motorola Mobility Llc Reference signal for a control channel in wireless communication network
CN104159318B (zh) 2012-01-11 2018-05-11 华为技术有限公司 数据的传输方法及装置
CN103209487A (zh) * 2012-01-17 2013-07-17 中兴通讯股份有限公司 一种无线通信方法和通信装置及通信系统
CA2992176C (en) * 2012-02-27 2020-04-07 Intel Corporation Techniques to manage dwell times for pilot rotation
IN2014DN10432A (zh) * 2012-06-14 2015-08-21 Ericsson Telefon Ab L M
US10028302B2 (en) * 2013-03-08 2018-07-17 Huawei Technologies Co., Ltd. System and method for uplink grant-free transmission scheme
CN104144030B (zh) * 2013-05-09 2019-05-10 中兴通讯股份有限公司 数据发送、接收方法、数据发送及接收端
US20140362779A1 (en) * 2013-06-11 2014-12-11 Qualcomm Incorporated Apparatus and methods for improving uplink access in wireless communication
CN104980247B (zh) * 2014-04-04 2019-11-22 北京三星通信技术研究有限公司 自适应调整调制编码方式和参考信号图样的方法、基站、终端和系统
KR102200811B1 (ko) * 2014-05-09 2021-01-11 삼성전자 주식회사 복합 변조 방식을 사용하는 무선 통신 시스템에서 복합 변조 심볼의 복조 장치 및 방법
WO2016024750A1 (ko) * 2014-08-12 2016-02-18 엘지전자(주) 무선 통신 시스템에서 하향링크 다중 사용자 전송 방법 및 이를 위한 장치
EP3324690B1 (en) 2015-07-01 2021-09-29 Huawei Technologies Co., Ltd. Method and device for transmitting uplink data
CN105554901B (zh) 2015-12-11 2019-01-11 清华大学 随机接入方法
US10959261B2 (en) * 2016-04-01 2021-03-23 Huawei Technologies Co., Ltd. System and method for pilot assisted grant-free uplink transmission identification
US10142084B2 (en) * 2016-07-01 2018-11-27 Intel Corporation Full-duplex self-interference cancellation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008060203A1 (en) * 2006-11-13 2008-05-22 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangement for pilot pattern based control signalling in mimo systems
CN102209061A (zh) * 2006-12-22 2011-10-05 富士通株式会社 用户终端、无线通信方法和无线通信系统
CN101505293A (zh) * 2009-03-13 2009-08-12 华为技术有限公司 上行控制信道数据的处理方法及装置
CN101540751A (zh) * 2009-04-30 2009-09-23 北京邮电大学 用于多流数据的解调方法和系统
CN101557378A (zh) * 2009-05-18 2009-10-14 普天信息技术研究院有限公司 Ofdm系统中导频发送、信道估计和噪声功率估计方法

Also Published As

Publication number Publication date
CN111294154A (zh) 2020-06-16
EP3487108A1 (en) 2019-05-22
US20190173608A1 (en) 2019-06-06
EP3487108A4 (en) 2019-06-26
CN111294154B (zh) 2024-01-12
CN107733596B (zh) 2020-02-14
CN107733596A (zh) 2018-02-23
EP3487108B1 (en) 2021-03-17
US11044037B2 (en) 2021-06-22

Similar Documents

Publication Publication Date Title
EP3468277B1 (en) Method and apparatus for determining transport block size
US10979194B2 (en) Resource indication method, user equipment, and network device
EP3557811B1 (en) Method and apparatus for transmitting reference signal
CN108347778B (zh) 通信方法及装置
EP3297353B1 (en) Resource allocation information indication method, base station and user equipment
TWI746708B (zh) 傳輸信息的方法、網絡設備和終端設備
WO2017206663A1 (zh) 免授权传输方法和装置
TWI694698B (zh) 傳輸數據的方法和通信設備
WO2017077694A1 (ja) 端末及び送信方法
US20170238313A1 (en) Data transmission method, device, and system
WO2018054191A1 (zh) 免授权传输的方法、网络设备和终端设备
WO2017092535A1 (zh) 参考信号序列的传输方法和设备
CN107852701B (zh) 下行反馈信息的传输方法、基站以及终端设备
US11070413B2 (en) Resource mapping method and apparatus
EP3399811B1 (en) Method and device for use in identifying synchronization information
JP2017520129A (ja) 端末、通信方法及び集積回路
WO2021204128A1 (zh) 一种传输块尺寸确定方法及装置
JP5178908B2 (ja) モバイルシステムにおいて通信するための方法
EP3589048B1 (en) Data sending method and apparatus, and data receiving method and apparatus
CN109672506B (zh) 数据传输的确认方法及设备
WO2014019194A1 (zh) 导频配置方法、发送方法及装置
WO2017000900A1 (zh) 传输信息的方法和设备
TWI734805B (zh) 傳輸數據的方法和設備
EP3550761B1 (en) Data transmission method and device, and information transmission method and device
WO2018028674A1 (zh) 信息传输方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17838804

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017838804

Country of ref document: EP

Effective date: 20190214