WO2018028656A1 - 系统信息传输方法及装置 - Google Patents

系统信息传输方法及装置 Download PDF

Info

Publication number
WO2018028656A1
WO2018028656A1 PCT/CN2017/097006 CN2017097006W WO2018028656A1 WO 2018028656 A1 WO2018028656 A1 WO 2018028656A1 CN 2017097006 W CN2017097006 W CN 2017097006W WO 2018028656 A1 WO2018028656 A1 WO 2018028656A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
system information
resource
terminal device
transmission
Prior art date
Application number
PCT/CN2017/097006
Other languages
English (en)
French (fr)
Inventor
柴丽
张戬
刘鹍鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17838786.6A priority Critical patent/EP3490318A4/en
Priority to BR112019002780A priority patent/BR112019002780A2/pt
Publication of WO2018028656A1 publication Critical patent/WO2018028656A1/zh
Priority to US16/267,964 priority patent/US11284395B2/en
Priority to US17/698,888 priority patent/US20220210782A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams

Definitions

  • the present application relates to the field of system information transmission technologies, and in particular, to a system information transmission method and apparatus.
  • the system information broadcast provides the user equipment (UE) with the main information of accessing the access network system.
  • the system information in the system information broadcast is the link between the UE and the access network, and in the UE and the access network.
  • the network device completes various types of services and physical processes in wireless communication through the transmission of system information.
  • system information is divided into a master information block (MIB) and a plurality of system information blocks (SIBs), such as SIB1, SIB2, ..., SIB12, SIB13, ....
  • MIB master information block
  • SIBs system information blocks
  • the scheduling period of the MIB is 40 ms
  • the MIB is fixed to the 0th subframe transmission
  • the scheduling period of the SIB1 is 80 ms
  • the SIB1 is fixed to the 5th subframe transmission
  • the SI message is scheduled on a fixed transmission window
  • the UE receives the MIB and each SIB at a fixed location according to the scheduling period of the MIB and each SIB.
  • the cell coverage is full antenna coverage, and the coverage is continuous and uninterrupted in time. Therefore, the transmission of system information is also deployed without time slots, so the UE can perform fixed scheduling on the MIB and each SIB.
  • the MIB and each SIB are received at the location.
  • massive MIMO massive multiple input multiple output
  • Massive MIMO/beamforming technology adopts active antenna array technology. Combined with the pilot signal design and the user channel high-accuracy estimation algorithm, an extremely accurate user-level ultra-narrow beam is formed to direct the energy to the user's location.
  • the beam within the cell coverage is not transmitted at full time, and time gaps may occur. If the UE still receives system information according to the existing method, it is easy to cause the UE to be at certain time. The operation of obtaining system information at the point failed.
  • the object of the present invention is to provide a system information transmission method and apparatus to improve the probability of success of a terminal device receiving system information.
  • a first aspect provides a system information receiving method, including: determining, by a terminal device, resource information, where the terminal device uses one beam to communicate on a resource indicated by the resource information; and the terminal device according to the resource information The system information is received on the resource indicated by the resource information.
  • the terminal device determines the resource information, and according to the resource information, the terminal device may determine that the occurrence of the system information is unknown, and the terminal device may Receiving system information on the resource indicated by the resource information, thereby avoiding an operation in which the terminal device performs receiving system information at a fixed time point, but the operation fails due to no beam coverage at the corresponding time point, and the terminal is improved.
  • the probability of success of the device receiving system information including: determining, by a terminal device, resource information, where the terminal device uses one beam to communicate on a resource indicated by the resource information; and the terminal device according to the resource information The system information is received on the resource indicated by the resource information.
  • the beam in this application is formed by a beamforming technique of multi-antenna technology.
  • the beam provides a plurality of physical channels, such as a common control channel, a dedicated control channel, and a traffic channel, for the UE within the coverage.
  • a plurality of beams are included in one cell.
  • the beam has a narrow beamwidth, typically less than 120 degrees.
  • the resource information includes one or more of the following: frequency domain information, time domain information, code domain information, and airspace information.
  • the frequency domain information includes one or more of the following: frequency information, carrier information, radio resource block information, and subcarrier information.
  • the time domain information is absolute time information; or the time domain information includes a period and an offset, or the time domain information includes a period, an offset, and a duration.
  • the time domain information is granular with radio frames, subframes, time symbols, and/or Transmission Time Interval (TTI).
  • TTI Transmission Time Interval
  • the determining, by the terminal device, the resource information includes: acquiring, by the terminal device, beam determining information; and determining, by the terminal device, the resource information according to the beam determining information.
  • the terminal device may acquire the resource information according to the beam determining information.
  • the terminal device acquires beam determining information, including: the terminal device acquiring the beam determining information from the network device. In this implementation manner, the terminal device acquires beam determination information according to scheduling of the network device.
  • the beam decision information includes one or more of the following: total beam information of the base station, beam information that occurs simultaneously in parallel, and a signal for identifying the beam.
  • the signal for identifying a beam includes one or more of the following: a reference signal of a beam, a discovery signal of a beam, and a beam identification.
  • the terminal device determines the resource information according to the beam determining information, including: when the beam determining information acquired by the terminal device includes a signal for identifying a beam, the terminal device according to the signal for identifying the beam The resource information is determined corresponding to the resource information.
  • the terminal device determines the resource information according to the correspondence between the signal for identifying the beam and the resource information, and the implementation manner is simple.
  • the determining, by the terminal device, the resource information includes: determining, by the terminal device, the resource information by using a beam scan.
  • the terminal device determines the resource information by using beam scanning, and reduces the interaction cost with the network device, such as the base station.
  • the terminal device determines the resource information, the terminal device determines the resource information according to the beam information carried by the synchronization sequence of the beam, or the terminal device determines the resource information by traversing the mask, where
  • the mask is a mask for identifying a signal of a beam or a mask corresponding to a beam usage resource.
  • the resource information includes transmission resource information of a beam and/or transmission resource information of system information.
  • the transmission resource information of the system information includes the transmission resource information of the at least one first system information block and the transmission resource information of the at least one second system information block.
  • the system information acquired by the terminal device may be the transmission resource information of the at least one first system information block and the transmission resource information of the at least one second system information block, not only used in the current communication system, but also in the future.
  • the terminal device receives the system information on the resource indicated by the resource information according to the resource information, and includes: the resource indicated by the terminal device in the sending resource information of the system information, and the The system information is received on the intersection resource of the resource indicated by the transmission resource information of the beam; or the terminal device receives the system information on the resource indicated by the transmission resource information of the beam according to the transmission resource information of the beam.
  • the terminal device receives the system information on the resource indicated by the transmission resource information of the beam according to the transmission resource information of the beam, including: the terminal device according to the transmission resource information of the beam, according to a predefined The rule or network device notification manner, receiving system information on a subset or a complete set of resources indicated by the transmission resource information of the beam.
  • the terminal device receives, according to the transmission resource information of the beam, a subset or a complete set of resources indicated by the transmission resource information of the beam according to a predefined rule or a notification by the network device.
  • the system information includes: the terminal device receives the first system information block and/or the second system information block by using the first available resource on the time domain resource of the selected beam in a specific system information sending period; or, the terminal device The first system information block and/or the second system information block are connected to the available resource that is closest to the predefined system information transmission resource on the time domain resource of the selected beam during a specific system information transmission period; or, the terminal device Receiving the first system information block and/or the second system information block according to a period and an offset of the network device notification; or the period in which the terminal device receives the system information is a transmission period of the system information and a minimum transmission period of the beam common multiple.
  • the terminal device receives, according to the transmission resource information of the beam, a subset or a complete set of resources indicated by the transmission resource information of the beam according to a predefined rule or a notification by the network device.
  • the system information includes: a sending period of the first system information block and/or the second system information block and a sending subframe fixed, and the terminal device selects to read the first system information block and/or on the beam with available resources at the corresponding time point.
  • the transmission period and the transmission subframe of the first system message block and/or the second system message block are configured according to a transmission period of the beam and a transmission subframe, and the terminal device selects the beam and selects the beam
  • the first system information block and/or the second system information block are read at corresponding time points.
  • the method further includes: determining, by the terminal device, the sending resource information of the third system information block according to the resource information.
  • the terminal device determines, according to the resource information, the sending resource information of the third system information block, including: the terminal device indicates by sending the window time of the third system message block and the time domain information of the beam.
  • the beam scan time takes the intersection and determines the transmission time of the third system message block.
  • the terminal device when the terminal device receives multiple beams at the same time, the terminal device receives the system information on the resource indicated by the resource information according to the resource information, including: the terminal device is in the Nth beam period. And reading system information of the beam N according to the resource information used by the beam N, where N is a sequence number of multiple beams simultaneously received by the terminal device; or, resource information used by the terminal device according to the beam N in each beam period Reading the system information of the beam N, where N is the sequence number of the plurality of beams simultaneously received by the terminal device.
  • the method further includes: determining, by the terminal device, a receiving time of the receiving system information update indication message; the terminal device receiving the system information update indication message at the determined receiving time; the terminal device according to the system The information update indication message reacquires all or part of the resource information.
  • the terminal device determines the receiving time of the receiving system information update indication message, including: the receiving time of the receiving system information update indication message determined by the terminal device is aligned with the sending time of the beam.
  • the terminal device determines the manner in which the receiving time of the system information update indication message is aligned with the sending time of the beam, including: after the terminal device determines the sending time position of the system information update indication message, the terminal device is at the corresponding time.
  • the system information update indication message is read on the beam with the available resources; or the transmission time of the system information update indication message is configured according to the transmission period of the beam and the transmission subframe, and the terminal device reads the system at the corresponding time position of the selected beam.
  • the information update indication message or, after the terminal device determines the transmission time position of the system information update indication message, the terminal device reads the system information update indication message on the intersection resource of the transmission time of the update indication message and the transmission time of the beam; or, the terminal The period in which the device receives the system information update indication message is the least common multiple of the system information update indication message transmission period and the beam transmission period; and the subframe position of the terminal device receiving the system information update indication message is configured according to the transmission subframe position of the beam.
  • a system information sending method including: the network device allocates resources for a beam; and the network device provides resource information of resources allocated to the beam to the terminal device.
  • the resource information includes one or more of the following: frequency domain information, time domain information, code domain information, and airspace information.
  • the frequency domain information includes one or more of the following: frequency information, carrier information, radio resource block information, and subcarrier information.
  • the time domain information is absolute time information; or the time domain information includes a period and an offset.
  • the time domain information is granular in radio frames, subframes, time symbols, and/or TTI.
  • the network device provides beam determining information to the terminal device, so that the terminal device determines the resource information according to the beam determining information;
  • the beam determining information includes one or more of the following: a total number of beams of the base station. Beam information that appears in parallel at the same time and a signal used to identify the beam.
  • the signal for identifying a beam includes one or more of the following: a reference signal of a beam, a discovery signal of a beam, and a beam identification.
  • the network device provides the resource information of the resource allocated to the beam to the terminal device, including: the network device carries the beam information in the synchronization sequence, so that the terminal device determines the information according to the beam information in the synchronization sequence. Resource information; or, the network device provides a mask for the beam discovery signal or signaling to the terminal device, so that the terminal device determines the resource information by traversing the mask.
  • the resource information includes transmission resource information of a beam and/or transmission resource information of system information.
  • the transmission resource information of the system information includes the transmission resource information of the at least one first system information block and the transmission resource information of the at least one second system information block.
  • the method further includes: the network device notifying the terminal device of the manner of receiving the system information, so that the terminal device, according to the notification of the network device, is on a subset or a complete set of resources indicated by the transmitted resource information of the beam. Receive system information.
  • the manner in which the network device notifies the terminal device to receive system information includes:
  • the first system information block and/or the second system information block receives, by the first available resource on the time domain resource of the selected beam, the first system information block and/or the second system information block during a specific system information transmission period; or, during a specific system information transmission period,
  • the first system information block and/or the second system information block that are closest to the predefined system information transmission resource on the time domain resource of the selected beam are connected to the first system information block and/or the second system information block; or, according to the period and offset of the network device notification Receiving the first system information block and/or the second system information block; or receiving the system information is a least common multiple of a period of transmission of the system information and a period of resource resources used by the beam.
  • the network device notifies the terminal device of the manner of receiving the system information, including: the sending period of the first system information block and/or the second system information block and the sending subframe are fixed, and the selection is available at the corresponding time point.
  • the first system information block and/or the second system information block are read on the beam of the resource; or the transmission period and the transmission subframe of the first system message block and/or the second system message block are according to the transmission period and the transmitter of the beam
  • the frame configuration selects a beam and reads the first system information block and/or the second system information block at a corresponding point in time of the selected beam.
  • the manner in which the network device notifies the terminal device to receive the system information includes: when the terminal device receives multiple beams at the same time, in the Nth beam period, according to the resource information used by the beam N, the reading beam N is read.
  • System information, where N is the sequential number of multiple beams received by the terminal device at the same time; or, when the terminal device receives multiple beams at the same time, in each beam period, according to the resource information used by the beam N, the reading beam N is read.
  • System information, where N is the sequential number of multiple beams received by the terminal device simultaneously.
  • the method further includes: transmitting a system information update indication message to the terminal device.
  • the embodiment of the present application provides a terminal device, which has a function of implementing behavior of a terminal device in the design of the foregoing method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the modules can be software and/or hardware.
  • the structure of the terminal device includes at least one processor and a receiver, at least one processor is configured to determine the resource information, and the terminal device uses one beam to perform on the resource indicated by the resource information. And a receiver, configured to receive system information on the resource indicated by the resource information according to the resource information.
  • the embodiment of the present application provides a network device, which has the function of implementing the behavior of the network device in the actual method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the network device includes at least one processor and a transmitter, at least one processor is configured to allocate resources for the beam, and a transmitter is configured to provide resource information of resources allocated to the beam to the terminal device.
  • the embodiment of the present application provides a computer storage medium for storing computer software instructions used by the terminal device, which includes a program designed to perform the above aspects.
  • the embodiment of the present application provides a computer storage medium for storing computer software instructions used by the network device, which includes a program designed to perform the above aspects.
  • the solution of the embodiment of the present application can prevent the terminal device from performing the operation of receiving the system information at a fixed time point to some extent, but the terminal device receives the system information successfully due to the operation failure caused by the beam coverage at the corresponding time point. Probability.
  • FIG. 1 is a schematic diagram of a possible application scenario of the present application
  • FIG. 2 is a schematic diagram of a specific scenario of an embodiment of the present application.
  • FIG. 3 is a flowchart of a system information receiving method according to an embodiment of the present application.
  • FIG. 5 is a flowchart of another system information receiving method according to an embodiment of the present application.
  • FIG. 6 is a flowchart of a system information sending method according to an embodiment of the present application.
  • FIG. 7 is a simplified schematic diagram of a possible design structure of a UE involved in the above embodiment
  • FIG. 8 is a schematic structural diagram of a network device involved in the foregoing embodiment.
  • the network architecture and the service scenario described in the embodiments of the present application are for the purpose of more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute a limitation of the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided by the embodiments of the present application are equally applicable to similar technical problems.
  • FIG. 1 is a schematic diagram of a possible application scenario of the present application.
  • the terminal device is a UE in FIG. 1, and the UE accesses the service network through a radio access network (RAN) and a core network (CN).
  • RAN radio access network
  • CN core network
  • the techniques described herein may be applicable to LTE systems employing active antenna array technology, LTE evolution systems, and fifth generation 5G communication systems, or other various wireless communication systems employing active antenna array technology.
  • the user equipment UE involved in the present application may include various handheld devices having wireless communication functions, in-vehicle devices, wearable devices, computing devices or other processing devices connected to the wireless modem, and various forms of user equipment (user equipment) , UE), mobile station (MS), terminal, terminal equipment, and the like.
  • user equipment user equipment
  • MS mobile station
  • terminal equipment terminal equipment
  • the devices mentioned above are collectively referred to as user equipments or UEs.
  • the network device involved in the present application may be a device in a radio access network, such as a base station, or a device in a core network, such as a mobility management entity (MME), as needed.
  • MME mobility management entity
  • the base station (BS) described above is a device deployed in the radio access network to provide wireless communication functions for the UE.
  • the base station may include various forms of macro base stations, micro base stations, relay stations, access points, and the like. In systems using different radio access technologies, devices with base station functions may use different naming schemes.
  • FIG. 2 is a schematic diagram of a specific scenario of an embodiment of the present application.
  • the system shown in Figure 2 supports beamforming techniques such as support for 3D-MIMO technology.
  • the antennas on the base station form multiple beams, and each beam corresponds to a different virtual partition.
  • the beams corresponding to UE1, UE2, UE3, and UE4 are respectively called beam 1, beam 2, beam 3, and Beam 4, wherein beam 1, beam 2 and beam 4 are spatially multiplexed in a horizontal dimension, beam 2 and beam 3 are spatially multiplexed in a vertical dimension, and are limited by antenna power, and each beam is sequentially transmitted in the time domain. It is called beam scanning technology.
  • the beam within the coverage is not transmitted at all times, in any one. There is a certain time interval between adjacent two beams in the virtual partition.
  • the cell coverage is full antenna coverage, and the coverage is continuous and uninterrupted in time.
  • the system information in the current system information broadcast is also deployed based on the full antenna coverage mode. As shown in Figure 2 There is a certain time interval between the coverage beams in the system. If the system information deployment mode in the existing solution is still adopted, the UE may fail to obtain system information at certain points in time.
  • the embodiment of the present application provides a system information transmission method based on a system such as that shown in FIG. 2.
  • the system information transmission method in the present application includes a system information receiving method and a system information transmitting method, and the receiving and transmitting methods will be described in detail below with reference to the accompanying drawings.
  • the beam in the embodiment of the present application is formed by a beamforming technique of multi-antenna technology.
  • the beam provides multiple physical channels, such as a common control channel, a dedicated control channel, and a traffic channel, for the UE within the coverage. Multiple cells are included in one cell.
  • the beam has a narrow beamwidth, typically less than 120 degrees.
  • the one cell may be a cell of a coverage area, or may be a large area with multiple transmission points, such as a hypercell, a super cell, or a resource set having a unified identifier.
  • Different beams in a cell can come from the same transmitting point or from different transmitting points.
  • a method of using multiple narrow beams to transmit multiple coverage areas in the time domain to cover different service areas is used in the networking.
  • the analog beam of a sub-column is sent in a certain direction, so the number of sub-columns determines the number of directions and the corresponding coverage of the beam on one OFDM symbol.
  • the number of beams covering the entire service area is significantly larger than the number of sub-columns, especially when the beam width is narrow.
  • Different narrow beams are transmitted in the time domain, also known as beam scanning technology, which will be used to cover the entire service area with the beam and obtain a larger directional antenna gain.
  • the UE does not directly receive the system information according to the method in the prior art.
  • the UE determines resource information, according to which the UE can receive system information on the resource indicated by the resource information, thereby avoiding the UE performing the operation of receiving system information at a fixed time point, however, due to the corresponding time The operation failure caused by no beam coverage at the point.
  • FIG. 3 is a flowchart of a system information receiving method according to an embodiment of the present application. As shown in FIG. 3, the processing steps of the method include:
  • the UE determines the resource information, and the terminal device uses one beam to communicate on the resource indicated by the resource information.
  • the UE determines the resource information, specifically, the UE determines the resource information in the cell in which it is located.
  • the resource information may have multiple representation manners, such as one or more of frequency domain information, time domain information, code domain information, and airspace information of the beam usage resource.
  • the frequency domain information may include one or more of frequency information, carrier information, radio resource block information, and subcarrier information, as needed.
  • the time domain information may be the absolute time information of the beam appearance or the relative time information of the beam appearance, and may be the period and the offset of the beam appearance for the relative time information, or may be a beam appearance. Cycle, offset, duration.
  • time domain information of the beam is granular with radio frames, subframes, time symbols, and/or TTI.
  • the code domain information refers to coded information of resources used by the beam.
  • the airspace information refers to spatial information of resources used by the beam, such as beam identification, beam reference signals, and the like.
  • the resource information includes the transmission resource information of the beam and the transmission resource information of the system information, and the UE determines that the resource information may refer to the transmission resource information of the beam and/or the transmission resource of the system information. information.
  • the UE receives system information on the resource indicated by the resource information.
  • the UE determines the resources of the beam broadcast system information according to the resource information obtained in the above S101, and further receives the system information from the resources of the transmission system information.
  • the transmission resource information of the system information includes the transmission resource information of the at least one first system information block and the transmission resource information of the at least one second system information block.
  • the UE receives at least one first system information block on the corresponding resource according to the transmission resource information of the at least one first system information block, and receives at least one local system on the corresponding resource according to the transmission resource information of the at least one second system information block. Information block.
  • the UE also receives the third system information block, wherein the resource location for transmitting the third system information block is calculated, and the specific calculation method is described in detail in the following embodiments.
  • the first system information block corresponds to the main message block MIB
  • the second system information block corresponds to the first system message block SIB1
  • the third system information block corresponds to one or more SIs (SI1-SIn); in the LTE evolution system
  • the first system information block, the second system information block, and the third system information block may adopt other naming methods.
  • the manner in which the UE determines the resource information includes but is not limited to the following manners:
  • the first way (1) The UE acquires beam judgment information.
  • the UE obtains beam judgment information from the network device, where the network device may be a base station or other base station or a core network or a server that the UE communicates.
  • the UE obtains beam determination information in a Radio Resource Control (RRC) release message after the end of the attach process.
  • RRC Radio Resource Control
  • the UE obtains beam determination information in the attach process, and, for example, the UE switches from the handover process. Beam judgment information is obtained in the message.
  • RRC Radio Resource Control
  • the beam judgment information acquired by the UE from the network device includes one of the total number of beams of the base station, the beam information that appears in parallel, the signal for identifying the beam, and the signal for distinguishing the beam resources (ie, the beam itself is not visible to the UE)kind or more.
  • the signal for identifying the beam comprises one or more of a reference signal of the beam, a discovery signal of the beam, and an identifier of the beam, wherein in one implementation the discovery signal of the beam comprises a reference signal of the beam.
  • the signal used to distinguish the beam resources is in a certain range, for example, within a certain base station, within a certain geographical range, within a TRR, the signal that the UE can distinguish the beam resources, and the beam itself is invisible to the UE. .
  • the UE may acquire the beam judgment information from the network device when the beam needs to acquire the beam resource information, or the UE may acquire the beam judgment information from the network device in advance.
  • the resource information is obtained, the required information is searched for from the beam judgment information acquired in advance.
  • the UE determines the resource information according to the beam determination information.
  • the UE When the beam judgment information acquired by the UE includes a signal for identifying a beam and/or a signal for distinguishing a beam resource, the UE is configured according to a signal for identifying a beam and/or a signal for distinguishing a beam resource from resource information. Corresponding relationship, determining the resource information.
  • the correspondence may be defined in advance in the standard protocol text, in the UE memory, or configured by network signaling.
  • FIG. 4 there is a schematic diagram of a beam.
  • PBCH physical broadcast channel
  • FIG. 4 it is assumed that a physical broadcast channel (PBCH) distribution is transmitted in eight beams in one cell or sector, and the eight beams are numbered as 0-7, wherein the number is used as the identification number of the beam, and corresponds to the signal of the beam identification beam and/or the signal used to distinguish the beam resource.
  • Table 1 and Table 2 different numbered beams respectively correspond to different numbers.
  • operating hours. T1, T2... in the figure can be the absolute time information of the beam appearing, and the period and offset of the beam appearing.
  • the time information may be granular in radio frames, subframes, time symbols, and/or TTI.
  • the UE may determine the resource information by checking the comparison relationship table as shown in Tables 1 to 3 by the acquired beam number.
  • the second mode the UE determines the resource information by using beam scanning. For example, the UE records the working time information of the beam by scanning the beam that can be received, and whether the beam or the beam is received by the beam.
  • the MIB or the first system message is extracted from the scanned beam, and the time information carried in the extracted MIB or in the first system message is recorded.
  • the third mode the UE determines the resource information according to the beam information carried by the synchronization sequence of the beam during the cell synchronization process.
  • the network device carries the beam information in the synchronization sequence, so that the UE determines the resource information according to the beam information carried by the synchronization sequence of the beam in the cell synchronization process.
  • the beam information carried by the synchronization sequence of the beam includes one or more of a total number of beam information of the base station, beam information that appears in parallel, and a signal for identifying the beam.
  • the signal for identifying the beam comprises one or more of a reference signal of the beam, a discovery signal of the beam, and an identifier of the beam, wherein in one implementation the discovery signal of the beam comprises a reference signal of the beam.
  • the beam information carried in the synchronization sequence is the same as the content of the beam determination information in the first method.
  • the manner of determining the resource information by using the beam information carried in the synchronization sequence refer to the first method.
  • the beam information carried in the synchronization sequence may include a mask in addition to the form of the mode, and the UE determines the resource information by using a traversal mask, where the mask is a mask for identifying a signal of the beam or a beam usage resource corresponding to Mask.
  • Tables 4 and 5 show a correspondence table between the mask and the resources used by the beam, according to which the resources used by the beam can be determined after the mask is obtained.
  • the UE may first use the pre-configured resource information or the history information of the resource information; if the UE does not save the related information, the UE may obtain the resource information of the beam by the foregoing manner, for example, recording the working time information of the beam by scanning the received beam.
  • the manner in which the UE receives the system information on the resource indicated by the resource information may include:
  • the first mode the base station sets resources for sending system messages or configures resources for sending system messages according to a predefined manner.
  • the UE obtains the transmission resource information of the beam and the transmission resource information of the system information, and the UE may separately determine the resource of the transmission beam and the resource of the system information according to the transmission resource information of the beam and the transmission resource information of the system information, so the UE may select the system.
  • the system information is received on the intersection resource of the resource indicated by the transmission resource information of the information and the resource indicated by the transmission resource information of the beam.
  • the second mode is: the base station configures, according to the time domain resource information of the beam, the sending resource information of the system message on the beam, including time information.
  • the UE obtains the transmission resource information of the beam, and the UE can determine the resource of the transmission beam according to the transmission resource information of the beam. Therefore, the UE can receive the system information on the resource indicated by the transmission resource information of the beam.
  • the receiving, by the UE, the system information on the resource indicated by the resource information may be a subset of resources indicated by the UE according to the transmitted resource information of the beam, according to a predefined rule or a notification by the network device, or the resource information indicated by the beam. Receive system information on the complete set.
  • the first system information block in this application includes basic configuration information of a cell, and includes at least one of the following information:
  • PLMN Public land mobile network
  • ID identification
  • TAC track area code
  • CGI global cell identifier
  • carrier frequency information carrierfreq
  • bandwidth information Bandwidth
  • whether the cell is disabled cellbarred
  • the user terminal may establish a connection with the cell or camp on the cell according to the access information.
  • the access information of the cell may include at least one of the following: a public land mobile network (PLMN) identifier (ID), a track area code (TAC), a global cell identifier (CGI) ), carrier frequency information, bandwidth information, random access information, working mode information (TDD or FDD), logical channel configuration information of the cell, physical channel and signaling configuration information of the cell, signaling configuration information of the cell, timer information , cyclic prefix (CP) length, power control information.
  • PLMN public land mobile network
  • ID track area code
  • CGI global cell identifier
  • carrier frequency information bandwidth information
  • random access information random access information
  • TDD working mode information
  • logical channel configuration information of the cell physical channel and signaling configuration information of the cell
  • signaling configuration information of the cell timer information
  • CP cyclic prefix
  • the access information of the cell may include the MIB, SIB1 or/and SIB2 specified in 3GPP 36.331 (3GPP TS 36.331 V13.0.0 (2015-12) download address: http://www.3gpp.org/dynareport/36331.htm). At least a portion of the information carried, or a combination of at least a portion of the information carried by the three. The contents of this agreement are included in this application and will not be described again.
  • the second system information block includes information such as measurement.
  • the present application does not limit the combination of the first system information block and the second system information block into one system information block; nor does the first system information block and/or the second system information block are split into a plurality of system information blocks.
  • the manner in which the UE receives system information according to a predefined rule or a network device notification includes but is not limited to the following:
  • the UE selects a resource available on a time domain resource of the beam to receive the first system information block and/or the second system information block during a specific system information transmission period.
  • the base station configures the transmission time of the first system information block and/or the second system information block according to the time domain resource of the beam.
  • the UE receives the first system information block and/or the second system information block by selecting the first available resource on the time domain resource of the beam during a specific system information transmission period.
  • the specific system information sending period may be one sending period predefined by the UE, or may be a sending period notified by the network device, and may also use one sending period randomly selected by the UE as the specific system sending period here, and send the specific system information.
  • the first available resource on the time domain resource of the UE selection beam receives the first system information block and/or the second system information block.
  • the UE may select the available resource that is closest to the predefined system information transmission resource on the time domain resource of the beam to receive the first system information block and/or the second system information block in a specific system information transmission period.
  • the UE receives the first system information block and/or the second system information block according to the period and offset of the network device notification or the period, offset, and duration (or transmission window length) notified by the network device.
  • the period in which the UE receives the system information is the least common multiple of the transmission period of the system information and the period of the resource resource used by the beam.
  • the UE selects a beam of the transmission resource including the first system information block and/or the second system information block on the available time domain resource to receive the first system information block and/or the first time in a specific system information transmission period.
  • the second system information block for example, the transmission period of the first system information block is 40 ms, and is transmitted on the fixed number 0 subframe; the working time of the beam 1 is on the 0th subframe of the period 1 (10 ms); the working time of the beam 2 In subframe 0 of period 2 (10 ms); the working time of beam 3 is in subframe 0 of period 3 (10 ms); the working time of beam 4 is in subframe 0 of period 4 (10 ms); then UE is in cycle 1 (10ms) sub-frame 0 de-beam 1 receives the first system message block, and receives the first system message block in the 0th subframe de-beam 2 of period 2 (10ms), in the period 3 (10ms) of the 0th sub- The frame de-beam 3 receive
  • the UE reads the system information of the beam N according to the resource information used by the beam N in each beam period, where N is the sequence number of multiple beams received by the UE, that is, In one beam period, the UE reads the system information of the beam 1 on the transmission resource of the beam 1, and reads the system information of the beam 2 on the transmission resource of the beam 2... reads the beam N on the transmission resource of the beam N.
  • System information if the UE can receive multiple beams, the UE reads the system information of the beam N according to the resource information used by the beam N in each beam period, where N is the sequence number of multiple beams received by the UE, that is, In one beam period, the UE reads the system information of the beam 1 on the transmission resource of the beam 1, and reads the system information of the beam 2 on the transmission resource of the beam 2... reads the beam N on the transmission resource of the beam N.
  • System information if the UE can receive multiple beams, the UE reads the system information of the beam N according to the resource
  • the UE receives the system information on the resource indicated by the resource information in a manner of a predefined rule or a network device notification, including:
  • the first mode the transmission period of the first system information block and/or the second system information block and the transmission subframe are fixed.
  • the first system information block and the second system information block are still configured according to the configuration in the prior art.
  • the scheduling period of the MIB is 40 ms
  • the MIB is fixed to the 0th subframe
  • the scheduling period of the SIB1 is 80 ms
  • the SIB1 is fixed to the 5th subframe.
  • the UE can select the system.
  • the first system information block and/or the second system information block are read on the beam of available resources at the transmission time position of the information.
  • the second mode the transmission period and the transmission subframe of the first system message block and/or the second system message block are configured according to the transmission period of the beam and the transmission subframe, and the UE selects the beam and reads at the corresponding time position of the selected beam.
  • the first system information block and/or the second system information block are taken.
  • the time when the base station configuration beam1 appears is RF1-subframe#0; RF2-subframe#1; RF3-subframe#2; RF4-subframe#3, then the base station selects the subframe or time when beam1 appears.
  • the MIB is transmitted on the symbol, and the corresponding UE receives the MIB on the subframe in which the MIB appears.
  • the base station also sends the SIB1 according to the subframe or time symbol in which the beam1 appears, and the corresponding UE receives the SIB1 at the time when the SIB1 occurs.
  • FIG. 5 is a flowchart of another system information receiving method according to an embodiment of the present application. 5, in addition to steps S101 and S102 shown in the system information receiving method shown in FIG. 3, the method further includes step S103, and the UE determines the transmission resource information of the third system information block according to the resource information.
  • the UE determines the sending time of the third system message block by taking the intersection of the transmission window time of the third system message block and the beam scanning time indicated by the time domain information of the beam.
  • the UE determines, by using a calculation, a sending resource of the third system information block, including:
  • u-x-beam_periodic*m (beam_periodic/beam_num)*(beam_id-1)
  • T1 is the period si-Periodicity xn-1w of the corresponding SI
  • w represents si-WindowLength
  • n is the sequence number subframe position scheduled by the SI in the schedulingInfoList: x mod 10 starts from the beginning of the SI-winsow, using SI- The RNTI receives the DL-SCH and continues until the end of the SI-window. It does not include the following subframes: subframe 5 in the radio frame, where SFN mod 20; any MBSFN subframe; any uplink subframe in the TDD.
  • the UE After determining x, the UE needs to determine the radio frame and subframe position from the start of SI-n.
  • the specific algorithm is:
  • T2 is the least common multiple of the period of the transmission window and the transmission period of the beam.
  • Window Length is an absolute value, the value range is [1, 2, 5, 10, 15, 20, 40], the unit is a sub-frame, and is indicated in SIB1.
  • T is the period si-Periodicity xn-1w of the corresponding SI
  • w represents si-WindowLength
  • n is the sequence number subframe position scheduled by the SI in the schedulingInfoList: x mod 10 starts from the beginning of the SI-winsow and receives using the SI-RNTI
  • the DL-SCH continues until the end of the SI-window. It does not include the following subframes: subframe 5 in the radio frame, where SFN mod 20; any MBSFN subframe; any uplink subframe in the TDD.
  • the UE when the UE receives multiple beams at the same time, the UE reads the system information of the beam N according to the resource information used by the beam N in the Nth beam period, where N is multiple received by the UE at the same time.
  • the sequence number of the beam that is, the UE reads the system information of the beam 1 according to the resource information used by the beam 1 in the first beam period, and the UE reads the beam 2 according to the resource information used by the beam 2 in the second beam period.
  • the system information ...
  • the beam reads the system information of the beam N according to the resource information used by the beam N in the Nth beam period.
  • the UE selects a subset or all of the transmission resources of the third system information block sending window on the available time domain resources in a specific system information transmission period.
  • the beam receives the third system information block; for example, the transmission period of the third system information block is 160 ms, the transmission window length is 5 ms, and the transmission is started in the first subframe of the first radio frame of each period;
  • the working time is in subframe 1 of the first radio frame of each period;
  • the working time of beam 2 is in subframe 2 of the first radio frame of each period;
  • the working time of beam 3 is in the period of each period Frame 3 of a radio frame;
  • the working time of beam 4 is in subframe 4 of the first radio frame of each period;
  • the working time of beam 5 is at number 5 of the first radio frame of each period.
  • the UE receives the third system message block in the first subframe of the first radio frame of each period, and receives the third system message block in the first radio frame of each period.
  • System message block, number 3 of the first radio frame in each cycle The de-beam 3 receives the third system message block, and receives the third system message block in the 4th subframe de-beam 4 of the first radio frame of each period, and the subframe 5 of the first radio frame in each period
  • the de-beam 5 receives the third system message block.
  • the solution of the embodiment of the present application may further include the step S104, where the UE receives the system information update indication message.
  • the UE may update the system information update indication message to reacquire all or part of the resource information.
  • the key is to determine the receiving time of the receiving system information update indication message, and the UE needs to consider the transmission time of the beam when determining the receiving time of the receiving system information update indication message to ensure the receiving system information update indication.
  • the reception time of the message is aligned with the transmission time of the beam.
  • the manner in which the UE ensures that the receiving time of the system information update indication message is aligned with the sending time of the beam includes but is not limited to the following:
  • Manner 1 After the UE determines the sending time position of the system information update indication message, the UE reads the system information update indication message on the beam with the available resources at the corresponding time position.
  • the UE may receive the paging message only at the designated subframe (PO) of the designated radio frame (PF), and the calculation of the PF, PO needs to add the information of the beam time.
  • PO designated subframe
  • PF designated radio frame
  • the UE can only receive a paging message at a fixed subframe (PO) of a specified radio frame (PF), for example, for a TDD system, the UE has 0, 1 of a certain radio frame in a paging cycle.
  • PF radio frame
  • the calculation methods of PF and PO are as follows:
  • TDD is shown in Table 7 (all UL/DL configurations):
  • Ns max(1,nB/T)
  • nB 4T, 2T, T, T/2, T/4, T/8, T/16, T/32, N:min(T,nB)
  • T is the DRX cycle of the UE
  • the UE_ID is the identity of the UE.
  • the IMSI mode 1024.nB and T can be sent to the UE through a broadcast message.
  • the UE After the UE determines the sending time position of the paging message according to the above formula 1) 2), the UE selects to read the paging message on the beam with the available resources at the corresponding time point;
  • Manner 2 The system information update indication message is sent according to the transmission period of the beam and the transmission subframe configuration, and the UE reads the system information update indication message at the corresponding time position of the selected beam.
  • the UE After the UE determines the transmission time position of the paging message according to the above formula (1) (2), the UE reads the paging message on the intersection resource of the transmission time of the paging message and the time of the beam use.
  • Manner 3 After the UE determines the sending time position of the system information update indication message, the UE reads the system information update indication message on the intersection resource of the sending time of the update indication message and the sending time of the beam.
  • the sending time position of the paging message is configured according to the transmission period of the beam and the transmission subframe, and the UE reads the paging message at the corresponding time point on the selected beam.
  • Manner 4 The least common multiple of the system information update indication message transmission period and the beam transmission period when the UE receives the period of the system information update indication message; the subframe position of the UE receiving the system information update indication message is configured according to the transmission subframe position of the beam.
  • the period in which the UE receives the paging message is the least common multiple of the paging period and the beam transmission period calculated by the above formula (1) and formula (2); the paging subframe is transmitted according to the beam. Configuration.
  • the UE receives a paging message in one of the subframes 0, 1, 5, and 6 of a certain radio frame in a paging period, and obtains the content of the paging message, and then updates the system.
  • PF and PO the calculation methods of PF and PO are as follows:
  • T1 least common multiple (T, beam_periodic);
  • Ns max(1,nB/T)
  • nB 4T, 2T, T, T/2, T/4, T/8, T/16, T/32, N:min(T,nB)
  • T is the DRX cycle of the UE
  • the UE_ID is the identity of the UE.
  • the IMSI mode 1024.nB and T can be sent to the UE through a broadcast message.
  • X, y, m, n are any number within 0-9, selected during the time of beam transmission.
  • each network element such as a UE, a base station, a core network entity, etc.
  • each network element such as a UE, a base station, a core network entity, etc.
  • each network element includes corresponding hardware structures and/or software modules for performing various functions.
  • the present application can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present application.
  • FIG. 6 is a flowchart of a system information sending method according to an embodiment of the present application, where the method includes:
  • the network device allocates resources for the beam.
  • the network device provides resource information of a resource allocated to the beam to the terminal device.
  • the resource information includes one or more of the following: frequency domain information, time domain information, code domain information, and airspace information.
  • the frequency domain information includes one or more of the following: frequency information, carrier information, radio resource block information, and subcarrier information.
  • the time domain information is absolute time information; or the time domain information includes a period and an offset.
  • the time domain information is granular by a radio frame, a subframe, a time symbol, and/or a TTI.
  • the network device provides beam determining information to the terminal device, so that the terminal device determines the resource information according to the beam determining information.
  • the beam determining information includes one or more of the following: a total number of beam information of the base station, and concurrently appearing in parallel Beam information and signals used to identify the beam.
  • the signal used to identify the beam includes one or more of the following: a reference signal of the beam, a discovery signal of the beam, and a beam identifier.
  • the network device provides the resource information of the resource allocated to the beam to the terminal device, where the network device carries the beam information in the synchronization sequence, so that the terminal device determines the resource information according to the beam information in the synchronization sequence; or And the network device provides a mask for the beam discovery signal or signaling to the terminal device, so that the terminal device determines the resource information by traversing the mask.
  • the resource information includes sending resource information of the beam and/or sending resource information of the system information.
  • the sending resource information of the system information includes the sending resource information of the at least one first system information block and the sending resource information of the at least one second system information block.
  • the method further includes: the network device notifying the terminal device of the manner of receiving the system information, so that the terminal device receives the system information according to the notification of the network device, according to the subset or the complete set of resources indicated by the transmit resource information of the beam.
  • the manner in which the network device notifies the terminal device to receive the system information includes: receiving, in a specific system information sending period, the first available resource on the time domain resource of the selected beam to receive the first system information block and/or Second a system information block; or, in a specific system information transmission period, the first system information block and/or the second system information is connected to the available resource closest to the predefined system information transmission resource on the time domain resource of the selected beam.
  • Blocking; or, receiving the first system information block and/or the second system information block according to a period and an offset of the network device notification; or, receiving a period of the system information is a transmission period of the system information and a resource used by the beam The least common multiple of the period of the resource.
  • the manner in which the network device notifies the terminal device to receive the system information includes: sending a period of the first system information block and/or the second system information block and the sending subframe is fixed, and selecting a beam with available resources at the corresponding time point. Reading the first system information block and/or the second system information block; or the transmission period and the transmission subframe of the first system message block and/or the second system message block are selected according to the transmission period of the beam and the transmission subframe configuration The beam and the first system information block and/or the second system information block are read at corresponding time points of the selected beam.
  • the manner in which the network device notifies the terminal device to receive the system information includes: when the terminal device receives the multiple beams at the same time, reading the system information of the beam N according to the resource information used by the beam N in the Nth beam period, Where N is the sequence number of multiple beams received by the terminal device at the same time; or, when the terminal device receives multiple beams at the same time, in each beam period, the system information of the beam N is read according to the resource information used by the beam N, N is the sequence number of multiple beams received by the terminal device at the same time.
  • the method further includes: sending a system information update indication message to the terminal device.
  • Fig. 7 shows a simplified schematic diagram of one possible design structure of the UE involved in the above embodiment.
  • the UE includes a transmitter 301, a receiver 302, a controller/processor 303, a memory 304, and a modem processor 305.
  • Transmitter 301 conditions (e.g., analog transforms, filters, amplifies, and upconverts, etc.) the output samples and generates an uplink signal that is transmitted via an antenna to the base station described in the above embodiments.
  • the antenna receives the downlink signal transmitted by the base station in the above embodiment.
  • Receiver 302 conditions (eg, filters, amplifies, downconverts, digitizes, etc.) the signals received from the antenna and provides input samples.
  • encoder 306 receives the traffic data and signaling messages to be transmitted on the uplink and processes (e.g., formats, codes, and interleaves) the traffic data and signaling messages.
  • Modulator 307 further processes (e.g., symbol maps and modulates) the encoded service data and signaling messages and provides output samples.
  • Demodulator 309 processes (e.g., demodulates) the input samples and provides symbol estimates.
  • the decoder 308 processes (e.g., deinterleaves and decodes) the symbol estimate and provides decoded data and signaling messages that are sent to the UE.
  • Encoder 306, modulator 307, demodulator 309, and decoder 308 may be implemented by a composite modem processor 305. These units are processed according to the radio access technology employed by the radio access network (e.g., access technologies of LTE and other evolved systems).
  • the controller/processor 303 controls and manages the actions of the UE for performing the processing performed by the UE in the above embodiment. For example, other processes for controlling the UE to determine a resource information and/or the techniques described herein. As an example, the controller/processor 303 is configured to support the UE in performing the process 101 of FIG. 3, the processes 101 and 103 of FIG.
  • FIG. 8 is a schematic diagram showing a possible structure of a network device involved in the above embodiment.
  • the network device includes a transmitter/receiver 401, a controller/processor 402, a memory 403, and a communication unit 404.
  • the transmitter/receiver 401 is configured to support transmission and reception of information between the network device and the UE in the foregoing embodiment, and to support radio communication between the UE and other UEs.
  • the controller/processor 402 performs various functions for communicating with the UE. On the uplink, the uplink signal from the UE is received via the antenna, coordinated by the receiver 401, and further processed by the controller/processor 1402 to recover the traffic data and signaling information transmitted by the UE.
  • controller/processor 402 On the downlink, traffic data and signaling messages are processed by controller/processor 402 and transmitted by the transmitter
  • the 401 performs mediation to generate a downlink signal and transmits it to the UE via the antenna.
  • Controller/processor 402 also performs the processes involved in the network device of FIG. 6 and/or other processes for the techniques described herein.
  • the memory 403 is used to store program codes and data of the network device.
  • the communication unit 404 is configured to support the network device to communicate with other network entities. For example, it is used to support communication between network devices and other communication network entities shown in FIG. 2, such as MME, SGW and or PGW located in the core network EPC.
  • Figure 8 only shows a simplified design of the network device.
  • the network device may include any number of transmitters, receivers, processors, controllers, memories, communication units, etc., and all network devices that can implement the present application are within the scope of the present application.
  • the controller/processor for performing the above network device and UE functions of the present application may be a central processing unit (CPU), a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), and a field programmable gate array. (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the steps of a method or algorithm described in connection with the present disclosure may be implemented in a hardware or may be implemented by a processor executing software instructions.
  • the software instructions may be comprised of corresponding software modules that may be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable hard disk, CD-ROM, or any other form of storage well known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in the user equipment.
  • the processor and the storage medium may also reside as discrete components in the user equipment.
  • the functions described herein can be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及系统信息传输技术领域,特别涉及一种系统信息传输方法及装置。涉及的系统信息接收方法,包括:终端设备确定资源信息,所述终端设备使用一个波束在所述资源信息所指示的资源上进行通信;终端设备根据所述资源信息,在所述资源信息所指示的资源上接收系统信息。本申请的系统信息传输方法及装置,能够提高终端设备接收系统信息成功概率。

Description

系统信息传输方法及装置
本申请要求于2016年8月11日提交中国专利局、申请号为201610659442.6发明名称为“系统信息传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及系统信息传输技术领域,特别涉及一种系统信息传输方法及装置。
背景技术
在长期演进(long term evolution,LTE)系统中,系统信息广播(system information broadcase)是该系统中的一项重要功能。系统信息广播为用户设备(user equipment,UE)提供了接入至接入网系统的主要信息,例如系统信息广播中的系统信息是连接UE和接入网的纽带,UE和接入网中的网络设备通过系统信息的传递,完成无线通信中的各类业务和物理过程。
在LTE系统中,系统信息被划分为主信息块(master information block,MIB)和多个系统信息块(system information blocks,SIB),如SIB1、SIB2……SIB12、SIB13……。在当前的LTE系统中,MIB的调度周期为40ms,MIB固定占用第0子帧发送;SIB1的调度周期为80ms,SIB1固定占用第5子帧发送;SIB2、SIB3……SIB12、SIB13……通过SI消息在固定的发送窗口上进行调度,UE根据MIB和各个SIB的调度周期在固定的位置上接收MIB和各个SIB。
在当前的LTE系统中,小区覆盖是全天线覆盖,这种覆盖在时间上是连续无间断的,因此系统信息的发送也是无时间空隙的部署的,所以UE可以在MIB和各个SIB的固定调度位置上接收MIB和各个SIB。而在LTE的演进系统和5G通信系统中,引入了大规模多输入多输出(massive multiple input multiple output,Massive MIMO)/波束成型技术,Massive MIMO/波束成型技术采用有源天线阵列技术,该技术结合导频信号设计和用户信道高精度估计算法,形成极精确的用户级超窄波束,以将能量定向投放到用户位置。但是由于天线功率的限制,此种基于天线技术的部署中,小区覆盖内的波束不是全时间发送,会出现时间空隙,如果UE仍然按照现有方法接收系统信息,很容易引起UE在某些时间点上获取系统信息的操作失败。
发明内容
本申请的发明目的在于提供一种系统信息传输方法及装置,以提高终端设备接收系统信息成功概率。
第一方面,提供了一种系统信息接收方法,包括:终端设备确定资源信息,所述终端设备使用一个波束在所述资源信息所指示的资源上进行通信;终端设备根据所述资源信息,在所述资源信息所指示的资源上接收系统信息。在本实现方式中,终端设备确定所述资源信息,根据该资源信息终端设备可以确定系统信息的出现未知,进而终端设备可以在 所述资源信息所指示的资源上接收系统信息,从而避免了终端设备在固定时间点上执行接收系统信息的操作然而由于在相应时间点上并没有波束覆盖而引起的操作失败的情况,提高终端设备接收系统信息成功概率。
在本申请中的波束,是由多天线技术的波束赋形技术形成的。该波束在覆盖内为UE提供公共控制信道、专用控制信道、业务信道等多个物理信道。一个小区内包括多个波束。该波束的波束宽度较窄,一般小于120度。在一种可能的设计中,所述资源信息包括以下一种或多种:频域信息、时域信息、码域信息和空域信息。
在一种可能的设计中,所述频域信息包括以下一种或多种:频率信息、载波信息、无线资源块信息和子载波信息。
在一种可能的设计中,所述时域信息为绝对时间信息;或者,所述时域信息包括周期和偏移量,或者,所述时域信息包括周期,偏移量和持续时间。
在一种可能的设计中,所述时域信息以无线帧、子帧、时间符号、和/或传输时间间隔(Transmission Time Interval,TTI)为粒度。
在一种可能的设计中,终端设备确定所述资源信息包括:终端设备获取波束判断信息;终端设备根据所述波束判断信息确定所述资源信息。在本实现方式中,终端设备可以根据波束判断信息来获取所述资源信息。
在一种可能的设计中,终端设备获取波束判断信息,包括:终端设备从网络设备获取所述波束判断信息。在本实现方式中,终端设备根据网络设备的调度来获取波束判断信息。
在一种可能的设计中,波束判断信息包括以下一种或多种:基站的波束总数信息、同时并行出现的波束信息和用于识别波束的信号。
在一种可能的设计中,所述用于识别波束的信号包括以下一种或多种:波束的参考信号、波束的发现信号和波束标识。
在一种可能的设计中,终端设备根据所述波束判断信息确定所述资源信息,包括:当终端设备获取的波束判断信息包括用于识别波束的信号时,终端设备根据用于识别波束的信号与资源信息之间的对应关系,确定所述资源信息。
在本实现方式中,终端设备根据用于识别波束的信号与资源信息之间的对应关系,确定所述资源信息,实现方式简单。
在一种可能的设计中,终端设备确定资源信息包括:终端设备通过波束扫描,确定所述资源信息。在本实现方式中,终端设备通过波束扫描确定所述资源信息,降低与网络设备如基站的交互成本。
在一种可能的设计中,终端设备确定资源信息包括:终端设备根据波束的同步序列所携带的波束信息,确定所述资源信息;或者,终端设备通过遍历掩码,确定所述资源信息,其中,所述掩码为用于识别波束的信号的掩码或者波束使用资源对应的掩码。
在一种可能的设计中,所述资源信息包括波束的发送资源信息和/或系统信息的发送资源信息。
在一种可能的设计中,系统信息的发送资源信息包括至少一个第一系统信息块的发送资源信息和至少一个第二系统信息块的发送资源信息。在本实现方式中,终端设备获取的系统信息可以是至少一个第一系统信息块的发送资源信息和至少一个第二系统信息块的发送资源信息,不仅使用于当前的通信系统,也适用于以后发展中的5G和LTE演进系统。
在一种可能的设计中,终端设备根据所述资源信息,在所述资源信息所指示的资源上接收系统信息,包括:终端设备在所述系统信息的发送资源信息所指示的资源和所述波束的发送资源信息所指示的资源的交集资源上接收系统信息;或者,终端设备根据所述波束的发送资源信息,在所述波束的发送资源信息所指示的资源上接收系统信息。
在一种可能的设计中,终端设备根据所述波束的发送资源信息,在波束的发送资源信息所指示的资源上接收系统信息,包括:终端设备根据所述波束的发送资源信息,按预定义的规则或者网络设备通知的方式,在所述波束的发送资源信息所指示的资源的子集或全集上接收系统信息。
在一种可能的设计中,终端设备根据所述波束的发送资源信息,按预定义的规则或者网络设备通知的方式,在所述波束的发送资源信息所指示的资源的子集或全集上接收系统信息,包括:终端设备在一个特定系统信息发送周期内,选择波束的时域资源上第一个可用的资源接收所述第一系统信息块和/或第二系统信息块;或者,终端设备在一个特定系统信息发送周期内,选择波束的时域资源上与预定义的系统信息发送资源最靠近的可用资源接所述第一系统信息块和/或第二系统信息块;或者,终端设备根据网络设备通知的周期和偏移量去接收所述第一系统信息块和/或第二系统信息块;或者,终端设备接收系统信息的周期为系统信息的发送周期和波束的发送周期的最小公倍数。
在一种可能的设计中,终端设备根据所述波束的发送资源信息,按预定义的规则或者网络设备通知的方式,在所述波束的发送资源信息所指示的资源的子集或全集上接收系统信息,包括:第一系统信息块和/或第二系统信息块的发送周期和发送子帧固定,终端设备选择在相应时间点有可用资源的波束上读取第一系统信息块和/或第二系统信息块;或者,第一系统消息块和/或第二系统消息块的发送周期和发送子帧根据波束的发送周期和发送子帧配置,终端设备选择波束并在选择的所述波束的对应时间点上读取第一系统信息块和/或第二系统信息块。
在一种可能的设计中,所述方法还包括:终端设备根据所述资源信息,确定第三系统信息块的发送资源信息。
在一种可能的设计中,终端设备根据所述资源信息,确定第三系统信息块的发送资源信息,包括:终端设备通过将第三系统消息块的发送窗时间和波束的时域信息所指示的波束扫描时间取交集,确定第三系统消息块的发送时间。
在一种可能的设计中,终端设备根据所述资源信息,确定第三系统信息块的发送资源信息,包括:终端设备根据公式x=(n-1)*Window Length,确定中间值x,其中,n是SI-n中的n,SI对应第二系统信息块,n是第二系统信息块的顺序号,n大于等于1;Window Length是波束发送周期的整数倍数;终端设备根据公式a=(x+u)mod 10确定SI-n的子帧位置;x+u的取值在((n-1)*Window Length,n*Window Length)范围内;终端设备根据公式SFN mod T1=FLOOR((x+u)/10)确定SI-n的无线帧位置;T1为SI-n的周期。
在一种可能的设计中,当终端设备同时接收多个波束时,终端设备根据所述资源信息,在所述资源信息所指示的资源上接收系统信息,包括:终端设备在第N个波束周期,根据波束N使用的资源信息,读取波束N的系统信息,其中N为终端设备同时接收的多个波束的顺序编号;或者,终端设备在每个波束周期中,根据波束N使用的资源信息,读取波束N的系统信息,其中N为终端设备同时接收的多个波束的顺序编号。
在一种可能的设计中,所述方法还包括:终端设备确定接收系统信息更新指示消息的接收时间;终端设备在确定的所述接收时间上接收系统信息更新指示消息;终端设备根据所述系统信息更新指示消息,重新获取全部或部分所述资源信息。
在一种可能的设计中,终端设备确定接收系统信息更新指示消息的接收时间,包括:终端设备确定的接收系统信息更新指示消息的接收时间与波束的发送时间对齐。
在一种可能的设计中,终端设备确定系统信息更新指示消息的接收时间与波束的发送时间对齐的方式,包括:终端设备确定系统信息更新指示消息的发送时间位置后,终端设备在对应的时间位置有可用资源的波束上读取系统信息更新指示消息;或者,系统信息更新指示消息的发送时间根据波束的发送周期和发送子帧配置,终端设备在选择的波束的对应时间位置上读取系统信息更新指示消息;或者,终端设备确定系统信息更新指示消息的发送时间位置后,终端设备在更新指示消息的发送时间和波束的发送时间的交集资源上读取系统信息更新指示消息;或者,终端设备接收系统信息更新指示消息的周期为系统信息更新指示消息发送周期和波束发送周期的最小公倍数;终端设备接收系统信息更新指示消息的子帧位置根据波束的发送子帧位置配置。
另一方面,提供了一种系统信息发送方法,包括:网络设备为波束分配资源;网络设备将分配给波束的资源的资源信息提供给终端设备。
在一种可能的设计中,所述资源信息包括以下一种或多种:频域信息、时域信息、码域信息和空域信息。
在一种可能的设计中,所述频域信息包括以下一种或多种:频率信息、载波信息、无线资源块信息和子载波信息。
在一种可能的设计中,所述时域信息为绝对时间信息;或者,所述时域信息包括周期和偏移量。
在一种可能的设计中,所述时域信息以无线帧、子帧、时间符号、和/或TTI为粒度。
在一种可能的设计中,网络设备向终端设备提供波束判断信息,以使终端设备根据波束判断信息确定所述资源信息;所述波束判断信息包括以下一种或多种:基站的波束总数信息、同时并行出现的波束信息和用于识别波束的信号。
在一种可能的设计中,所述用于识别波束的信号包括以下一种或多种:波束的参考信号、波束的发现信号和波束标识。
在一种可能的设计中,网络设备将分配给波束的资源的资源信息提供给终端设备,包括:网络设备在同步序列中携带波束信息,以使终端设备根据同步序列中的波束信息确定所述资源信息;或者,网络设备对波束发现信号或信令的掩码提供给终端设备,以使终端设备通过遍历掩码,确定所述资源信息。
在一种可能的设计中,所述资源信息包括波束的发送资源信息和/或系统信息的发送资源信息。
在一种可能的设计中,系统信息的发送资源信息包括至少一个第一系统信息块的发送资源信息和至少一个第二系统信息块的发送资源信息。
在一种可能的设计中,所述方法还包括:网络设备通知终端设备接收系统信息的方式,以使终端设备根据网络设备的通知在波束的发送资源信息所指示的资源的子集或全集上接收系统信息。
在一种可能的设计中,网络设备通知终端设备接收系统信息的方式,包括:
在一个特定系统信息发送周期内,选择波束的时域资源上第一个可用的资源接收所述第一系统信息块和/或第二系统信息块;或者,在一个特定系统信息发送周期内,选择波束的时域资源上与预定义的系统信息发送资源最靠近的可用资源接所述第一系统信息块和/或第二系统信息块;或者,根据网络设备通知的周期和偏移量去接收所述第一系统信息块和/或第二系统信息块;或者,接收系统信息的周期为系统信息的发送周期和波束使用的资源资源的周期的最小公倍数。
在一种可能的设计中,网络设备通知终端设备接收系统信息的方式,包括:第一系统信息块和/或第二系统信息块的发送周期和发送子帧固定,选择在相应时间点有可用资源的波束上读取第一系统信息块和/或第二系统信息块;或者,第一系统消息块和/或第二系统消息块的发送周期和发送子帧根据波束的发送周期和发送子帧配置,选择波束并在选择的所述波束的对应时间点上读取第一系统信息块和/或第二系统信息块。
在一种可能的设计中,网络设备通知终端设备接收系统信息的方式,包括:当终端设备同时接收多个波束时,在第N个波束周期,根据波束N使用的资源信息,读取波束N的系统信息,其中N为终端设备同时接收的多个波束的顺序编号;或者,当终端设备同时接收多个波束时,在每个波束周期中,根据波束N使用的资源信息,读取波束N的系统信息,其中N为终端设备同时接收的多个波束的顺序编号。
在一种可能的设计中,所述方法还包括:向终端设备发送系统信息更新指示消息。
又一方面,本申请实施例提供了一种终端设备,该终端设备具有实现上述方法设计中终端设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。所述模块可以是软件和/或硬件。
在一个可能的设计中,终端设备的结构中包括至少一个处理器和接收器,至少一个处理器用于确定所述资源信息,所述终端设备使用一个波束在所述资源信息所指示的资源上进行通信;接收器,用于根据所述资源信息,在所述资源信息所指示的资源上接收系统信息。
另一方面,本申请实施例提供了一种网络设备,该网络设备具有实现上述方法实际中网络设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,网络设备的结构中包括至少一个处理器和发送器,至少一个处理器用于为波束分配资源;发送器,用于将分配给波束的资源的资源信息提供给终端设备。
再一方面,本申请实施例提供了一种计算机存储介质,用于储存为上述终端设备所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
再一方面,本申请实施例提供了一种计算机存储介质,用于储存为上述网络设备所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
本申请实施例方案,可以在一定程度上避免终端设备在固定时间点上执行接收系统信息的操作然而由于在相应时间点上并没有波束覆盖而引起的操作失败的情况,终端设备接收系统信息成功概率。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍。
图1是本申请的一种可能的应用场景示意图;
图2是本申请实施例的一种具体场景示意图;
图3是本申请实施例的系统信息接收方法的流程图;
图4是一种波束示意图;
图5是本申请实施例的另一种系统信息接收方法流程图;
图6是本申请实施例系统信息发送方法的流程图;
图7是上述实施例中所涉及的UE的一种可能的设计结构的简化示意图;
图8是上述实施例中所涉及的网络设备的一种可能的结构示意图。
具体实施方式
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
图1是本申请的一种可能的应用场景示意图。本申请中终端设备在图1中为UE,UE通过无线接入网(radio access network,RAN)及核心网(core network,CN)接入业务网络。本申请描述的技术可以适用于采用了有源天线阵列技术的LTE系统、LTE演进系统和第五代5G通信系统,或其它各种采用有源天线阵列技术的无线通信系统。
本申请中,名词“网络”和“系统”经常交替使用,但本领域的技术人员可以理解其含义。本申请所涉及到的用户设备UE可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(user equipment,UE),移动台(mobile station,MS),终端(terminal),终端设备(terminal equipment)等等。为方便描述,本申请中,上面提到的设备统称为用户设备或UE。本申请所涉及的网络设备根据需要可以为无线接入网中的设备,如基站,也可以是核心网中的设备,如移动性管理实体(mobility management entity,MME)。上述的基站(base station,BS)是一种部署在无线接入网中用以为UE提供无线通信功能的装置。所述基站可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的可以采用不同的命名方式。
图2是本申请实施例的一种具体场景示意图。图2所示的系统支持波束赋形技术,如支持3D-MIMO技术。如图2所示,基站上的天线形成多个波束,各个波束对应不同的虚拟分区,如图2中,UE1、UE2、UE3和UE4分别对应的波束称为波束1、波束2、波束3和波束4,其中,波束1、波束2和波束4在水平维度上空分复用,波束2和波束3在垂直维度上空分复用,受天线功率的限制,各个波束在时域上依次发送,此称为波束扫描技术。在波束扫描中,对于UE1、UE2、UE3和UE4分别位于的各个虚拟分区(此处的虚拟分区可以对应小区或扇区)而言,其覆盖范围内的波束不是全时间发送的,在任意一个虚拟分区中相邻两个波束之间有一定时间间隔。
而在现有技术中小区覆盖是全天线覆盖的,这种覆盖在时间上是连续无间断的,当前系统信息广播中的系统信息也是基于这种全天线覆盖方式部署的。由于在诸如图2所示的 系统中覆盖波束之间有一定时间间隔,若仍采用现有方案中的系统信息部署方式,可能会导致UE在某些时间点上获取系统信息的失败。为了提高UE获取系统信息的成功率,本申请实施例提供了基于诸如图2所示系统的系统信息传输方法。本申请中的系统信息传输方法包括系统信息接收方法和系统信息发送方法,以下将结合附图对该接收和发送方法进行详细说明。
在本申请实施例中的波束,是由多天线技术的波束赋形技术形成的。该波束在覆盖内为UE提供公共控制信道、专用控制信道、业务信道等多个物理信道.一个小区内包括多个波束。该波束的波束宽度较窄,一般小于120度。
其中,一个小区,可以是一个覆盖区域的小区,也可以具有多个发射点的大小区,如,hypercell,超小区,也可以是逻辑上有一个统一标识的资源集合。一个小区内不同波束可以来自同一个发射点,也可以来自不同的发射点。
本申请中为了提升高频的小区覆盖,组网中采用了用多个窄波束在时域上多次发送去覆盖不同的服务区域的方法。在一个OFDM符号上,一个子列的模拟波束发向某一个方向,于是,子列的个数决定了一个OFDM符号上的波束的方向个数和对应的覆盖。然而,覆盖整个服务区域的波束个数会明显大于子列的个数,尤其各个波束宽度很窄的时候。不同窄波束在时域上发送,又称为波束扫描技术,将用来利用波束覆盖整个服务区域,并获得较大的方向天线增益。
在本申请实施例的系统信息传输方案,尤其在系统信息接收方法中,由于波束不是全时间覆盖的,因此UE并非直接按照现有技术中的方法去接收系统信息。在本申请方案中,UE确定资源信息,根据该资源信息UE可以在该资源信息所指示的资源上接收系统信息,从而避免了UE在固定时间点上执行接收系统信息的操作然而由于在相应时间点上并没有波束覆盖而引起的操作失败的情况。
图3是本申请实施例的系统信息接收方法的流程图,如图3所示,该方法的处理步骤包括:
S101:UE确定所述资源信息,终端设备使用一个波束在所述资源信息所指示的资源上进行通信。
UE确定所述资源信息,具体是指UE确定其所在小区中所述资源信息。所述资源信息可以有多种表示方式,如波束使用资源的频域信息、时域信息、码域信息和空域信息中的一种或多种。
可选的,频域信息根据需要可以包括频率信息、载波信息、无线资源块信息和子载波信息中的一种或多种。
可选的,时域信息根据需要可以为波束出现的绝对时间信息,也可以是波束出现的相对时间信息,对于相对时间信息其可以为波束出现的周期和偏移量,或者,可以为波束出现的周期,偏移量,持续时间。
进一步,波束的时域信息以无线帧、子帧、时间符号、和/或TTI为粒度。
码域信息是指波束所使用资源的编码信息。
空域信息是指波束所使用资源的空间信息,如波束标识、波束参考信号等。
从另一个划分角度,所述资源信息包括波束的发送资源信息和系统信息的发送资源信息,UE确定所述资源信息可以是指UE确定波束的发送资源信息和/或系统信息的发送资源 信息。
S102,UE在所述资源信息所指示的资源上接收系统信息。
UE根据上述S101中得到的所述资源信息,确定波束广播系统信息的资源,进而从传输系统信息的资源上接收系统信息。
上述S101中,系统信息的发送资源信息包括至少一个第一系统信息块的发送资源信息和至少一个第二系统信息块的发送资源信息。
UE根据至少一个第一系统信息块的发送资源信息在相应的资源上接收至少一个第一系统信息块,根据至少一个第二系统信息块的发送资源信息在相应的资源上接收至少一个地儿系统信息块。UE还接收第三系统信息块,其中,传输第三系统信息块的资源位置是计算而来,具体计算方法在下文实施例中详细介绍。
在LTE系统中,第一系统信息块对应主消息块MIB,第二系统信息块对应第一系统消息块SIB1,第三系统信息块对应一个或多个SI(SI1-SIn);在LTE演进系统、5G通信系统和其它通信系统中,第一系统信息块、第二系统信息块和第三系统信息块可以采用其它命名方式。
上述S101中,UE确定所述资源信息的方式包括但不限于以下几种方式:
第一种方式:(1)UE获取波束判断信息。
可选的,UE从网络设备中获取波束判断信息,其中网络设备可以是UE通信的基站或其它基站或者核心网或者服务器。例如,UE在附着过程结束后的无线资源控制(Radio Resource Control,RRC)释放消息中获得波束判断信息,又例如,UE在附着过程中获得波束判断信息,又例如,UE在切换过程中从切换消息中获得波束判断信息。
UE从网络设备获取的波束判断信息包括基站的波束总数信息、同时并行出现的波束信息、用于识别波束的信号和用于区分波束资源的信号(即,波束本身对UE不可见)中的一种或多种。
可选的,用于识别波束的信号包括波束的参考信号、波束的发现信号和波束的标识中的一种或多种,其中在一种实现方式中波束的发现信号包括波束的参考信号。
可选的,用于区分波束资源的信号是一种在一定范围内,如,一个基站内,一定地理范围内,一个TRR内,用于UE可以区分波束资源的信号,波束本身对UE不可见。
需要说明的是,UE获取波束判断信息的时机可以是波束需要获取波束资源信息时与网络设备交互获取波束判断信息,另外也可以是UE预先从网络设备中获取波束判断信息,当UE需要获取波束的资源信息时,从预先获取的波束判断信息中查找需要的信息。
(2)UE根据所述波束判断信息确定所述资源信息。
当UE获取的波束判断信息包括用于识别波束的信号和/或用于区分波束资源的信号时,UE根据用于识别波束的信号和/或用于区分波束资源的信号与资源信息之间的对应关系,确定所述资源信息。
以下给出了一个根据用于识别波束的信号与资源信息之间的对应关系确定所述资源信息的一个具体示例。对应关系可以是事先定义在标准协议文本中,UE内存中,或者由网络信令配置。
参见图4,是一种波束示意图。如图4中,假设在一个小区或扇区中物理广播信道(physical broadcast channel,PBCH)分布在8个波束中发送,该8个波束的编号为 0-7,其中该编号作为波束的标识号,和波束的识别波束的信号和/或用于区分波束资源的信号有对应关系,如表1和表2中,不同编号的波束分别对应不同的工作时间。图中的T1,T2…,可以为波束出现的绝对时间信息,也可以波束出现的周期和偏移量。时间信息可以以无线帧、子帧、时间符号、和/或TTI为粒度。
表1波束-工作时间对照表
Beam号 工作时间
0 T1
1 T2
2 T3
3 T3
4 T4
5 T5
6 T6
7 T7
表2波束-工作时间对照表
Beam号 工作时间
0 T1
1 T2
2 T3
3 T4
4 T1
5 T2
6 T3
7 T4
又例如,表3中给出了波束编号-工作时间-工作频域的对照关系。
表3波束-工作时间-工作频域对照表
Beam号 工作时间 工作频域
0 T1 F1
1 T2 F2
2 T3 F3
3 T4 F4
4 T1 F1
5 T2 F2
6 T3 F3
7 T4 F4
UE可以通过获取的波束编号通过查如表1至3类似的对照关系表,确定所述资源信息。
第二种方式:UE通过波束扫描,确定所述资源信息,例如,UE通过扫描可以接收的波束,通过是否接收到波束或者波束的发射功率大小,记录波束的工作时间信息,可选的,UE通过从扫描到的波束中提取MIB或者第一系统消息,并记录提取的MIB中或者第一系统消息中携带的时间信息。
第三种方式:UE在小区同步过程中,根据波束的同步序列所携带的波束信息,确定所述资源信息。
在本方式中,网络设备将波束信息携带在同步序列中,以供UE在小区同步过程中根据波束的同步序列所携带的波束信息,确定所述资源信息。
可选的,波束的同步序列所携带的波束信息包括基站的波束总数信息、同时并行出现的波束信息和用于识别波束的信号中的一种或多种。
可选的,用于识别波束的信号包括波束的参考信号、波束的发现信号和波束的标识中的一种或多种,其中在一种实现方式中波束的发现信号包括波束的参考信号。
本方式中同步序列中所携带的波束信息与方式一中的波束判断信息内容相同,利用同步序列中所携带的波束信息确定所述资源信息的方式可以参见方式一。
同步序列中携带的波束信息除方式一种的形式外还可以包括掩码,UE通过遍历掩码确定所述资源信息,其中该掩码为用于识别波束的信号的掩码或者波束使用资源对应的掩码。如表4和表5示出了掩码与波束使用的资源的对应关系表,根据该关系表可以在得到掩码后确定波束使用的资源。
表4掩码与波束的使用资源的对照表
Figure PCTCN2017097006-appb-000001
或是:
表5掩码与波束的使用资源的对照表
Figure PCTCN2017097006-appb-000002
Figure PCTCN2017097006-appb-000003
UE可以首先使用预配置的资源信息或资源信息的历史信息;如果UE没有保存相关信息,则UE可以通过上述方式获得波束的资源信息,如,通过扫描接收波束的方式记录波束的工作时间信息。
上述S102中,UE在所述资源信息所指示的资源上接收系统信息的方式可以包括:
第一种方式:基站按照预定义的方式设置发送系统消息的资源或配置发送系统消息的资源。UE获取到了波束的发送资源信息和系统信息的发送资源信息,UE根据波束的发送资源信息和系统信息的发送资源信息可以分别确定发送波束的资源和发送系统信息的资源,因此UE可以选择在系统信息的发送资源信息所指示的资源和波束的发送资源信息所指示的资源的交集资源上接收系统信息。
第二种方式:基站根据波束的时域资源信息配置该波束上系统消息的发送资源信息,包括时间信息。UE获取到了波束的发送资源信息,UE根据该波束的发送资源信息可以确定发送波束的资源,因此UE可以在波束的发送资源信息所指示的资源上接收系统信息。
其中,UE在资源信息所指示的资源上接收系统信息可以是UE根据波束的发送资源信息,按预定义的规则或者网络设备通知的方式,在波束的发送资源信息所指示的资源的子集或者全集上接收系统信息。
本申请中的第一系统信息块包括一个小区的基础配置信息,包括以下至少一个信息:
公共陆地移动网络(public land mobile network,PLMN)标识(ID),跟踪区编码(track area code,TAC),全球小区识别码(cell global identifier,CGI),载波频率信息(carrierfreq),带宽信息(bandwidth),小区是否禁用的信息(cellbarred),小区接入信息。
其中,用户终端可以根据接入信息与小区建立连接或者驻留在该小区。小区的接入信息可以包括以下至少一个信息:公共陆地移动网络(public land mobile network,PLMN)标识(ID),跟踪区编码(track area code,TAC),全球小区识别码(cell global identifier,CGI),载波频率信息,带宽信息,随机接入信息,工作模式信息(TDD or FDD),小区的逻辑信道配置信息,小区的物理信道和信令配置信息,小区的信令配置信息,定时器信息,循环前缀(cyclic prefix,CP)长度,功率控制信息。
小区的接入信息可以包括3GPP 36.331(3GPP TS 36.331 V13.0.0(2015-12)下载地址:http://www.3gpp.org/dynareport/36331.htm)中规定的MIB,SIB1或者/和SIB2所携带信息中的至少一部分信息,或者这三者所携带信息的至少部分信息的组合。该协议的内容都包含在本申请内,不再赘述。
第二系统信息块包括测量等信息。
本申请不限定第一系统信息块和第二系统信息块组合成一个系统信息块;也不限定第一系统信息块和/或第二系统信息块分裂成多个系统信息块。
UE按照预定义的规则或者网络设备通知的方式接收系统信息的方式包括但不限于以下几种:
(1)UE在一个特定系统信息发送周期内,选择波束的时域资源上可用的资源接收第一系统信息块和/或第二系统信息块。基站根据波束的时域资源去配置第一系统信息块和/或第二系统信息块的发送时间。
(2)UE在一个特定系统信息发送周期内,选择波束的时域资源上第一个可用的资源接收第一系统信息块和/或第二系统信息块。
特定系统信息发送周期可以是UE预定义的一个发送周期,也可以是网络设备通知的发送周期,还可以将UE随机选择的一个发送周期作为此处的特定系统发送周期,在该特定系统信息发送周期内,UE选择波束的时域资源上第一个可用的资源接收第一系统信息块和/或第二系统信息块。
(3)UE在一个特定系统信息发送周期内,UE可以选择波束的时域资源上与预定义的系统信息发送资源最靠近的可用资源接收第一系统信息块和/或第二系统信息块。
(4)UE根据网络设备通知的周期和偏移量或者网络设备通知的周期,偏移量和持续时间(或发送窗长)去接收第一系统信息块和/或第二系统信息块。
(5)UE接收系统信息的周期为系统信息的发送周期和波束使用的资源资源的周期的最小公倍数。
(6)UE在一个特定系统信息发送周期内,选择可用的时域资源上包括第一系统信息块和/或第二系统信息块的发送资源的波束去接收第一系统信息块和/或第二系统信息块;比如,第一系统信息块的发送周期为40ms,在固定0号子帧上发送;波束1的工作时间在周期1(10ms)的0号子帧上;波束2的工作时间在周期2(10ms)的0号子帧;波束3的工作时间在周期3(10ms)的0号子帧;波束4的工作时间在周期4(10ms)的0号子帧;则UE在周期1(10ms)的0号子帧去波束1接收第一系统消息块,在周期2(10ms)的0号子帧去波束2接收第一系统消息块,在周期3(10ms)的0号子帧去波束3接收第一系统消息块,在周期4(10ms)的0号子帧去波束4接收第一系统消息块;
即,如果UE可以接收多个波束时,UE在每个波束周期中,根据波束N使用的资源信息,读取波束N的系统信息,其中,N为UE接收的多个波束的顺序编号,即UE在一个波束周期中,UE在波束1的发送资源上读取波束1的系统信息,在波束2的发送资源上读取波束2的系统信息……在波束N的发送资源上读取波束N的系统信息。
在另外一种可能的方案中,UE按预定义的规则或者网络设备通知的方式,在所述资源信息所指示的资源上接收系统信息,包括:
第一种方式:第一系统信息块和/或第二系统信息块的发送周期和发送子帧固定,例如,第一系统信息块和第二系统信息块仍然按照现有技术中的配置方式进行配置,如MIB的调度周期为40ms,MIB固定占用第0子帧发送;SIB1的调度周期为80ms,SIB1固定占用第5子帧发送,在系统信息的此种配置方式下,UE可以选择在系统信息的发送时间位置有可用资源的波束上读取第一系统信息块和/或第二系统信息块。
第二种方式:第一系统消息块和/或第二系统消息块的发送周期和发送子帧根据波束的发送周期和发送子帧配置,UE选择波束并在选择的波束的对应时间位置上读取第一系统信息块和/或第二系统信息块。
例如:基站配置beam1出现的时间是RF1-子帧#0;RF2-子帧#1;RF3-子帧#2;RF4-子帧#3,则基站会选择在beam1出现的子帧上或时间符号上发送MIB,相应的UE在MIB出现的子帧上接收MIB。相应的,基站还根据beam1出现的子帧或时间符号上发送SIB1,相应UE在SIB1出现的时间上接收SIB1。
图5是本申请实施例的另一种系统信息接收方法流程图。图5在图3所示系统信息接收方法所示的步骤S101,S102之外,还包括步骤S103,UE根据所述资源信息,确定第三系统信息块的发送资源信息。
在一种可能的实现方式中,UE通过将第三系统消息块的发送窗时间和波束的时域信息所指示的波束扫描时间取交集,确定第三系统消息块的发送时间。
在另外一种可能的实现方式中,UE通过计算的方式确定第三系统信息块的发送资源,包括:
UE根据公式x=(n-1)*Window Length,确定中间值x,其中,n是SI-n中的n,SI对应第二系统信息块,n是第二系统信息块的顺序号,n大于等于1;Window Length是波束发送周期的整数倍数;
UE根据公式a=(x+u)mod 10确定SI-n的子帧位置;x+u的取值在((n-1)*Window Length,n*Window Length)范围内;
UE根据公式SFN mod T1=FLOOR((x+u)/10)确定SI-n的无线帧位置;
进一步,u-x-beam_periodic*m=(beam_periodic/beam_num)*(beam_id-1)
其中,T1是相应SI的周期si-Periodicity xn-1w,w表示si-WindowLength,n是SI在schedulingInfoList中调度的序号子帧位置:x mod 10从该SI-winsow的起始端开始,使用SI-RNTI接收DL-SCH,持续直至SI-window的结尾。其中不包括如下子帧:无线帧中的子帧5,其中SFN mod 20;任何MBSFN子帧;TDD中的任何上行子帧。
又一种可能的实现方式中,UE根据公式x=(n-1)*Window Length确定中间值x;其中n是指SI-n中的n,n大于等于1。
确定了x后,UE需要确定SI-n起始的无线帧和子帧位置,具体的算法是:
子帧位置:a=x mod 10;
无线帧位置,即帧号:SFN mod T2=FLOOR(x/10)
T2是发送窗的周期和波束的发送周期的最小公倍数。
其中Window Length是一个绝对的数值,取值范围是[1,2,5,10,15,20,40],单位是子帧,并在SIB1中指示。
T是相应SI的周期si-Periodicity xn-1w,w表示si-WindowLength,n是SI在schedulingInfoList中调度的序号子帧位置:x mod 10从该SI-winsow的起始端开始,使用SI-RNTI接收DL-SCH,持续直至SI-window的结尾。其中不包括如下子帧:无线帧中的子帧5,其中SFN mod 20;任何MBSFN子帧;TDD中的任何上行子帧。
在本申请实施例方案中,当UE同时接收多个波束时,UE在第N个波束周期,根据波束N使用的资源信息,读取波束N的系统信息,其中N为UE同时接收的多个波束的顺序编号,即UE在第一个波束周期,根据波束1使用的资源信息,读取波束1的系统信息,在第二个波束周期,UE根据波束2使用的资源信息,读取波束2的系统信息……波束在第N个波束周期,根据波束N使用的资源信息,读取波束N的系统信息。
在另外一种可能的方式中,当UE接收多个波束时,UE在一个特定系统信息发送周期内,选择可用的时域资源上包括第三系统信息块发送窗的发送资源的子集或者全部的波束去接收第三系统信息块;比如,第三系统信息块的发送周期为160ms,发送窗长度是5ms,在每个周期的第一个无线帧的1号子帧开始发送;波束1的工作时间在每个周期的第一个无线帧的1号子帧;波束2的工作时间在每个周期的第一个无线帧的2号子帧;波束3的工作时间在每个周期的第一个无线帧的3号子帧;波束4的工作时间在每个周期的第一个无线帧的4号子帧;波束5的工作时间在每个周期的第一个无线帧的5号子帧;则UE在每个周期的第一个无线帧的1号子帧去波束1接收第三系统消息块,在每个周期的第一个无线帧的2号子帧去波束2接收第三系统消息块,在每个周期的第一个无线帧的3号子帧去波束3接收第三系统消息块,在每个周期的第一个无线帧的4号子帧去波束4接收第三系统消息块,在每个周期的第一个无线帧的5号子帧去波束5接收第三系统消息块。
本申请实施例方案还可能包括步骤S104,UE接收系统信息更新指示消息。
UE接收到系统信息指示消息后,可以更新系统信息更新指示消息重新获取全部或部分所述资源信息。
在UE接收系统更新指示消息的步骤中关键是确定接收系统信息更新指示消息的接收时间,UE在确定接收系统信息更新指示消息的接收时间时需要考虑波束的发送时间,以保证接收系统信息更新指示消息的接收时间与波束的发送时间对齐。
UE保证系统信息更新指示消息的接收时间与波束的发送时间对齐的方式包括但不限于以下几种:
方式一:UE确定系统信息更新指示消息的发送时间位置后,UE在对应的时间位置有可用资源的波束上读取系统信息更新指示消息。
以寻呼消息为例,UE可以只在指定无线帧(PF)的指定子帧(PO)处接收寻呼消息,而PF,PO的计算需要加入beam时间的信息。
根据LTE寻呼机制,UE只能在指定无线帧(PF)的固定子帧(PO)处接收寻呼消息,例如,对于TDD系统,UE在某个寻呼周期内某一个无线帧的0、1、5、6号子帧中的某一个子帧处接收寻呼消息,获取寻呼消息内容后,更新系统消息或者发起业务。具体的,PF和PO的计算方法如下:
PF计算公式为:SFN mod T=(T div N)*(UE_ID mod N)   (1)
用于指示PO位置的i_s索引为:i_s=floor(UE_ID/N)mod Ns    (2)
其中PO与i_s的对应位置为:
FDD:如表6所示(Ns=1时,i_s=floor(UE_ID/N)mod Ns,i_s肯定为0)
表6 PO与i_s对应关系表
Figure PCTCN2017097006-appb-000004
TDD如表7所示(all UL/DL configurations):
表7 PO与i_s对应关系表
Figure PCTCN2017097006-appb-000005
其中,Ns=max(1,nB/T),nB=4T,2T,T,T/2,T/4,T/8,T/16,T/32,N:min(T,nB),T是是UE的DRX周期,UE_ID是UE的标识IMSI mode 1024.nB和T可以通过广播消息发送给UE。
UE根据上面的公式1)2)确定了寻呼消息的发送时间位置后,UE选择在对应的时间点有可用资源的波束上读取寻呼消息;
方式二:系统信息更新指示消息的发送时间根据波束的发送周期和发送子帧配置,UE在选择的波束的对应时间位置上读取系统信息更新指示消息。
UE根据上面的公式(1)(2)确定了寻呼消息的发送时间位置后,UE在寻呼消息的发送时间和波束使用的时间的交集资源上读取寻呼消息。
方式三:UE确定系统信息更新指示消息的发送时间位置后,UE在更新指示消息的发送时间和波束的发送时间的交集资源上读取系统信息更新指示消息。
仍以寻呼消息为例,寻呼消息的发送时间位置根据波束的发送周期和发送子帧配置,UE在选择的波束上在对应的时间点上读取寻呼消息。
方式四:UE接收系统信息更新指示消息的周期时系统信息更新指示消息发送周期和波束发送周期的最小公倍数;UE接收系统信息更新指示消息的子帧位置根据波束的发送子帧位置配置。
仍以寻呼消息为例,UE接收寻呼消息的周期是上述公式(1)和公式(2)计算出的寻呼周期和波束发送周期的最小公倍数;寻呼子帧根据波束的发送子帧配置。
比如:对于TDD系统,UE在某个寻呼周期内某一个无线帧的0、1、5、6号子帧中的某一个子帧处接收寻呼消息,获取寻呼消息内容后,更新系统消息。具体的,PF和PO的计算方法如下:
PF计算公式为:SFN mod T1=(T div N)*(UE_ID mod N)   (1)
用于指示PO位置的i_s索引为:i_s=floor(UE_ID/N)mod Ns    (2)
T1=最小公倍数(T,beam_periodic);
其中PO与i_s的对应位置如表8所示:
表8 PO与i_s的对应关系表
Figure PCTCN2017097006-appb-000006
Figure PCTCN2017097006-appb-000007
其中,Ns=max(1,nB/T),nB=4T,2T,T,T/2,T/4,T/8,T/16,T/32,N:min(T,nB),T是是UE的DRX周期,UE_ID是UE的标识IMSI mode 1024.nB和T可以通过广播消息发送给UE。X,y,m,n为0-9内任意数,在波束发射的时间内选择。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如UE,基站,核心网络实体等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
图6是本申请实施例系统信息发送方法的流程图,该方法包括:
S201,网络设备为波束分配资源;
S202,网络设备将分配给波束的资源的资源信息提供给终端设备。
可选的,所述资源信息包括以下一种或多种:频域信息、时域信息、码域信息和空域信息。
可选的,所述频域信息包括以下一种或多种:频率信息、载波信息、无线资源块信息和子载波信息。
可选的,所述时域信息为绝对时间信息;或者,所述时域信息包括周期和偏移量。
可选的,所述时域信息以无线帧、子帧、时间符号、和/或TTI为粒度。
可选的,网络设备向终端设备提供波束判断信息,以使终端设备根据波束判断信息确定所述资源信息;所述波束判断信息包括以下一种或多种:基站的波束总数信息、同时并行出现的波束信息和用于识别波束的信号。
可选的,所述用于识别波束的信号包括以下一种或多种:波束的参考信号、波束的发现信号和波束标识。
可选的,网络设备将分配给波束的资源的资源信息提供给终端设备,包括:网络设备在同步序列中携带波束信息,以使终端设备根据同步序列中的波束信息确定所述资源信息;或者,网络设备对波束发现信号或信令的掩码提供给终端设备,以使终端设备通过遍历掩码,确定所述资源信息。
可选的,所述资源信息包括波束的发送资源信息和/或系统信息的发送资源信息。
可选的,系统信息的发送资源信息包括至少一个第一系统信息块的发送资源信息和至少一个第二系统信息块的发送资源信息。
可选的,所述方法还包括:网络设备通知终端设备接收系统信息的方式,以使终端设备根据网络设备的通知在波束的发送资源信息所指示的资源的子集或全集上接收系统信息。
可选的,网络设备通知终端设备接收系统信息的方式,包括:在一个特定系统信息发送周期内,选择波束的时域资源上第一个可用的资源接收所述第一系统信息块和/或第二 系统信息块;或者,在一个特定系统信息发送周期内,选择波束的时域资源上与预定义的系统信息发送资源最靠近的可用资源接所述第一系统信息块和/或第二系统信息块;或者,根据网络设备通知的周期和偏移量去接收所述第一系统信息块和/或第二系统信息块;或者,接收系统信息的周期为系统信息的发送周期和波束使用的资源资源的周期的最小公倍数。
可选的,网络设备通知终端设备接收系统信息的方式,包括:第一系统信息块和/或第二系统信息块的发送周期和发送子帧固定,选择在相应时间点有可用资源的波束上读取第一系统信息块和/或第二系统信息块;或者,第一系统消息块和/或第二系统消息块的发送周期和发送子帧根据波束的发送周期和发送子帧配置,选择波束并在选择的所述波束的对应时间点上读取第一系统信息块和/或第二系统信息块。
可选的,网络设备通知终端设备接收系统信息的方式,包括:当终端设备同时接收多个波束时,在第N个波束周期,根据波束N使用的资源信息,读取波束N的系统信息,其中N为终端设备同时接收的多个波束的顺序编号;或者,当终端设备同时接收多个波束时,在每个波束周期中,根据波束N使用的资源信息,读取波束N的系统信息,其中N为终端设备同时接收的多个波束的顺序编号。
可选的,所述方法还包括:向终端设备发送系统信息更新指示消息。
图7示出了上述实施例中所涉及的UE的一种可能的设计结构的简化示意图。所述UE包括发射器301,接收器302,控制器/处理器303,存贮器304和调制解调处理器305。
发射器301调节(例如,模拟转换、滤波、放大和上变频等)该输出采样并生成上行链路信号,该上行链路信号经由天线发射给上述实施例中所述的基站。在下行链路上,天线接收上述实施例中基站发射的下行链路信号。接收器302调节(例如,滤波、放大、下变频以及数字化等)从天线接收的信号并提供输入采样。在调制解调处理器305中,编码器306接收要在上行链路上发送的业务数据和信令消息,并对业务数据和信令消息进行处理(例如,格式化、编码和交织)。调制器307进一步处理(例如,符号映射和调制)编码后的业务数据和信令消息并提供输出采样。解调器309处理(例如,解调)该输入采样并提供符号估计。解码器308处理(例如,解交织和解码)该符号估计并提供发送给UE的已解码的数据和信令消息。编码器306、调制器307、解调器309和解码器308可以由合成的调制解调处理器305来实现。这些单元根据无线接入网采用的无线接入技术(例如,LTE及其他演进系统的接入技术)来进行处理。
控制器/处理器303对UE的动作进行控制管理,用于执行上述实施例中由UE进行的处理。例如用于控制UE确定一所述资源信息和/或本申请所描述的技术的其他过程。作为示例,控制器/处理器303用于支持UE执行图3中的过程101、图5中的过程101和103。
图8示出了上述实施例中所涉及的网络设备的一种可能的结构示意图。如图8所示,网络设备包括发射器/接收器401,控制器/处理器402,存储器403以及通信单元404。所述发射器/接收器401用于支持网络设备与上述实施例中的所述的UE之间收发信息,以及支持所述UE与其他UE之间进行无线电通信。所述控制器/处理器402执行各种用于与UE通信的功能。在上行链路,来自所述UE的上行链路信号经由天线接收,由接收器401进行调解,并进一步由控制器/处理器1402进行处理来恢复UE所发送到业务数据和信令信息。在下行链路上,业务数据和信令消息由控制器/处理器402进行处理,并由发射器 401进行调解来产生下行链路信号,并经由天线发射给UE。控制器/处理器402还执行图6中涉及网络设备的处理过程和/或用于本申请所描述的技术的其他过程。存储器403用于存储网络设备的程序代码和数据。通信单元404用于支持网络设备与其他网络实体进行通信。例如,用于支持网络设备与图2中示出的其他通信网络实体间进行通信,例如位于核心网EPC中的MME,SGW和或PGW等。
可以理解的是,图8仅仅示出了网络设备的简化设计。在实际应用中,网络设备可以包含任意数量的发射器,接收器,处理器,控制器,存储器,通信单元等,而所有可以实现本申请的网络设备都在本申请的保护范围之内。
用于执行本申请上述网络设备和UE功能的控制器/处理器可以是中央处理器(CPU),通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC),现场可编程门阵列(FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
结合本申请公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于用户设备中。当然,处理器和存储介质也可以作为分立组件存在于用户设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。

Claims (84)

  1. 一种系统信息接收方法,其特征在于,包括:
    终端设备确定资源信息,所述终端设备使用一个波束在所述资源信息所指示的资源上进行通信;
    终端设备根据所述资源信息,在所述资源信息所指示的资源上接收系统信息。
  2. 根据权利要求1所述的方法,其特征在于,所述资源信息包括以下一种或多种:
    频域信息、时域信息、码域信息和空域信息。
  3. 根据权利要求2所述的方法,其特征在于,所述频域信息包括以下一种或多种:
    频率信息、载波信息、无线资源块信息和子载波信息。
  4. 根据权利要求2所述的方法,其特征在于,所述时域信息为绝对时间信息;或者,
    所述时域信息包括周期和偏移量,或者,
    所述时域信息包括周期,偏移量和持续时间。
  5. 根据权利要求4所述的方法,其特征在于,所述时域信息以无线帧、子帧、时间符号、和/或传输时间间隔TTI为粒度。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,终端设备确定资源信息包括:
    终端设备获取波束判断信息;
    终端设备根据所述波束判断信息确定所述资源信息。
  7. 根据权利要求6所述的方法,其特征在于,终端设备获取波束判断信息,包括:
    终端设备从网络设备获取所述波束判断信息。
  8. 根据权利要求6或7所述的方法,其特征在于,波束判断信息包括以下一种或多种:
    基站的波束总数信息、同时并行出现的波束信息和用于识别波束的信号。
  9. 根据权利要求8所述的方法,其特征在于,所述用于识别波束的信号包括以下一种或多种:
    波束的参考信号、波束的发现信号和波束标识。
  10. 根据权利要求8或9所述的方法,其特征在于,终端设备根据所述波束判断信息确定所述资源信息,包括:
    当终端设备获取的波束判断信息包括用于识别波束的信号时,终端设备根据用于识别波束的信号与资源信息之间的对应关系,确定所述资源信息。
  11. 根据权利要求1至5中任一项所述的方法,其特征在于,终端设备确定资源信息包括:
    终端设备通过波束扫描,确定所述资源信息。
  12. 根据权利要求1至5中任一项所述的方法,其特征在于,终端设备确定资源信息包括:
    终端设备根据波束的同步序列所携带的波束信息,确定所述资源信息;
    或者,
    终端设备通过遍历掩码,确定所述资源信息,其中,所述掩码为用于识别波束的 信号的掩码或者波束使用资源对应的掩码。
  13. 根据权利要求1所述的方法,其特征在于,所述资源信息包括波束的发送资源信息和/或系统信息的发送资源信息。
  14. 根据权利要求13所述的方法,其特征在于,系统信息的发送资源信息包括至少一个第一系统信息块的发送资源信息和至少一个第二系统信息块的发送资源信息。
  15. 根据权利要求14所述的方法,其特征在于,终端设备根据所述资源信息,在所述资源信息所指示的资源上接收系统信息,包括:
    终端设备在所述系统信息的发送资源信息所指示的资源和所述波束的发送资源信息所指示的资源的交集资源上接收系统信息;
    或者,
    终端设备根据所述波束的发送资源信息,在所述波束的发送资源信息所指示的资源上接收系统信息。
  16. 根据权利要求15所述的方法,其特征在于,终端设备根据所述波束的发送资源信息,在所述波束的发送资源信息所指示的资源上接收系统信息,包括:
    终端设备根据所述波束的发送资源信息,按预定义的规则或者网络设备通知的方式,在所述波束的发送资源信息所指示的资源的子集或全集上接收系统信息。
  17. 根据权利要求16所述的方法,其特征在于,终端设备根据所述波束的发送资源信息,按预定义的规则或者网络设备通知的方式,在所述波束的发送资源信息所指示的资源的子集或全集上接收系统信息,包括:
    终端设备在一个特定系统信息发送周期内,选择波束的时域资源上第一个可用的资源接收所述第一系统信息块和/或第二系统信息块;
    或者,
    终端设备在一个特定系统信息发送周期内,选择波束的时域资源上与预定义的系统信息发送资源最靠近的可用资源接所述第一系统信息块和/或第二系统信息块;
    或者,
    终端设备根据网络设备通知的周期和偏移量去接收所述第一系统信息块和/或第二系统信息块;
    或者,
    终端设备接收系统信息的周期为系统信息的发送周期和波束的发送周期的最小公倍数。
  18. 根据权利要求16所述的方法,其特征在于,其特征在于,终端设备根据所述波束的发送资源信息,按预定义的规则或者网络设备通知的方式,在所述波束的发送资源信息所指示的资源的子集或全集上接收系统信息,包括:
    第一系统信息块和/或第二系统信息块的发送周期和发送子帧固定,终端设备选择在相应时间点有可用资源的波束上读取第一系统信息块和/或第二系统信息块;
    或者,
    第一系统消息块和/或第二系统消息块的发送周期和发送子帧根据波束的发送周期和发送子帧配置,终端设备选择波束并在选择的所述波束的对应时间点上读取第一系统信息块和/或第二系统信息块。
  19. 根据权利要求14至18中任一项所述的方法,其特征在于,所述方法还包括:
    终端设备根据所述资源信息,确定第三系统信息块的发送资源信息。
  20. 根据权利要求19所述的方法,其特征在于,终端设备根据所述资源信息,确定第三系统信息块的发送资源信息,包括:
    终端设备通过将第三系统消息块的发送窗时间和波束的时域信息所指示的波束扫描时间取交集,确定第三系统消息块的发送时间。
  21. 根据权利要求19所述的方法,其特征在于,终端设备根据所述资源信息,确定第三系统信息块的发送资源信息,包括:
    终端设备根据公式x=(n-1)*Window Length,确定中间值x,其中,n是SI-n中的n,SI对应第二系统信息块,n是第二系统信息块的顺序号,n大于等于1;Window Length是波束发送周期的整数倍数;
    终端设备根据公式a=(x+u)mod 10确定SI-n的子帧位置;x+u的取值在((n-1)*Window Length,n*Window Length)范围内;
    终端设备根据公式SFN mod T1=FLOOR((x+u)/10)确定SI-n的无线帧位置;T1为SI-n的周期。
  22. 根据权利要求1所述的方法,其特征在于,当终端设备同时接收多个波束时,终端设备根据所述资源信息,在所述资源信息所指示的资源上接收系统信息,包括:
    终端设备在第N个波束周期,根据波束N使用的资源信息,读取波束N的系统信息,其中N为终端设备同时接收的多个波束的顺序编号;
    或者,
    终端设备在每个波束周期中,根据波束N使用的资源信息,读取波束N的系统信息,其中N为终端设备同时接收的多个波束的顺序编号。
  23. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    终端设备确定接收系统信息更新指示消息的接收时间;
    终端设备在确定的所述接收时间上接收系统信息更新指示消息;
    终端设备根据所述系统信息更新指示消息,重新获取全部或部分所述资源信息。
  24. 根据权利要求23所述的方法,其特征在于,终端设备确定接收系统信息更新指示消息的接收时间,包括:
    终端设备确定的接收系统信息更新指示消息的接收时间与波束的发送时间对齐。
  25. 根据权利要求24所述的方法,其特征在于,终端设备确定系统信息更新指示消息的接收时间与波束的发送时间对齐的方式,包括:
    终端设备确定系统信息更新指示消息的发送时间位置后,终端设备在对应的时间位置有可用资源的波束上读取系统信息更新指示消息;
    或者,
    系统信息更新指示消息的发送时间根据波束的发送周期和发送子帧配置,终端设备在选择的波束的对应时间位置上读取系统信息更新指示消息;
    或者,
    终端设备确定系统信息更新指示消息的发送时间位置后,终端设备在更新指示消息的发送时间和波束的发送时间的交集资源上读取系统信息更新指示消息;
    或者,
    终端设备接收系统信息更新指示消息的周期为系统信息更新指示消息发送周期和波束发送周期的最小公倍数;终端设备接收系统信息更新指示消息的子帧位置根据波束的发送子帧位置配置。
  26. 一种系统信息发送方法,其特征在于,包括:
    网络设备为波束分配资源;
    网络设备将分配给波束的资源的资源信息提供给终端设备。
  27. 根据权利要求26所述的方法,其特征在于,所述资源信息包括以下一种或多种:
    频域信息、时域信息、码域信息和空域信息。
  28. 根据权利要求27所述的方法,其特征在于,所述频域信息包括以下一种或多种:
    频率信息、载波信息、无线资源块信息和子载波信息。
  29. 根据权利要求27所述的方法,其特征在于,所述时域信息为绝对时间信息;或者,
    所述时域信息包括周期和偏移量。
  30. 根据权利要求29所述的方法,其特征在于,所述时域信息以无线帧、子帧、时间符号、和/或TTI为粒度。
  31. 根据权利要求26至30中任一项所述的方法,其特征在于,网络设备向终端设备提供波束判断信息,以使终端设备根据波束判断信息确定所述资源信息;
    所述波束判断信息包括以下一种或多种:
    基站的波束总数信息、同时并行出现的波束信息和用于识别波束的信号。
  32. 根据权利要求31所述的方法,其特征在于,所述用于识别波束的信号包括以下一种或多种:
    波束的参考信号、波束的发现信号和波束标识。
  33. 根据权利要求26至30中任一项所述的方法,其特征在于,网络设备将分配给波束的资源的资源信息提供给终端设备,包括:
    网络设备在同步序列中携带波束信息,以使终端设备根据同步序列中的波束信息确定所述资源信息;
    或者,
    网络设备对波束发现信号或信令的掩码提供给终端设备,以使终端设备通过遍历掩码,确定所述资源信息。
  34. 根据权利要求26所述的方法,其特征在于,所述资源信息包括波束的发送资源信息和/或系统信息的发送资源信息。
  35. 根据权利要求34所述的方法,其特征在于,系统信息的发送资源信息包括至少一个第一系统信息块的发送资源信息和至少一个第二系统信息块的发送资源信息。
  36. 根据权利要求35所述的方法,其特征在于,所述方法还包括:
    网络设备通知终端设备接收系统信息的方式,以使终端设备根据网络设备的通知在波束的发送资源信息所指示的资源的子集或全集上接收系统信息。
  37. 根据权利要求36所述的方法,其特征在于,网络设备通知终端设备接收系统信息的方式,包括:
    在一个特定系统信息发送周期内,选择波束的时域资源上第一个可用的资源接收所述第一系统信息块和/或第二系统信息块;
    或者,
    在一个特定系统信息发送周期内,选择波束的时域资源上与预定义的系统信息发送资源最靠近的可用资源接所述第一系统信息块和/或第二系统信息块;
    或者,
    根据网络设备通知的周期和偏移量去接收所述第一系统信息块和/或第二系统信息块;
    或者,
    接收系统信息的周期为系统信息的发送周期和波束使用的资源资源的周期的最小公倍数。
  38. 根据权利要求36所述的方法,其特征在于,其特征在于,网络设备通知终端设备接收系统信息的方式,包括:
    第一系统信息块和/或第二系统信息块的发送周期和发送子帧固定,选择在相应时间点有可用资源的波束上读取第一系统信息块和/或第二系统信息块;
    或者,
    第一系统消息块和/或第二系统消息块的发送周期和发送子帧根据波束的发送周期和发送子帧配置,选择波束并在选择的所述波束的对应时间点上读取第一系统信息块和/或第二系统信息块。
  39. 根据权利要求36所述的方法,其特征在于,网络设备通知终端设备接收系统信息的方式,包括:
    当终端设备同时接收多个波束时,在第N个波束周期,根据波束N使用的资源信息,读取波束N的系统信息,其中N为终端设备同时接收的多个波束的顺序编号;
    或者,
    当终端设备同时接收多个波束时,在每个波束周期中,根据波束N使用的资源信息,读取波束N的系统信息,其中N为终端设备同时接收的多个波束的顺序编号。
  40. 根据权利要求26所述的方法,其特征在于,所述方法还包括:向终端设备发送系统信息更新指示消息。
  41. 一种终端设备,其特征在于,包括:
    至少一个处理器,用于确定资源信息,所述终端设备使用一个波束在所述资源信息所指示的资源上进行通信;
    接收器,用于根据所述资源信息,在所述资源信息所指示的资源上接收系统信息。
  42. 根据权利要求41所述的终端设备,其特征在于,所述资源信息包括以下一种或多种:
    频域信息、时域信息、码域信息和空域信息。
  43. 根据权利要求42所述的终端设备,其特征在于,所述频域信息包括以下一种或多种:
    频率信息、载波信息、无线资源块信息和子载波信息。
  44. 根据权利要求42所述的终端设备,其特征在于,所述时域信息为绝对时间信息;或者,
    所述时域信息包括周期和偏移量,或者,
    所述时域信息包括周期,偏移量和持续时间。
  45. 根据权利要求44所述的终端设备,其特征在于,所述时域信息以无线帧、子帧、时间符号、和/或TTI为粒度。
  46. 根据权利要求41至45中任一项所述的终端设备,其特征在于,所述至少一个处理器确定所述资源信息包括:
    获取波束判断信息;
    根据所述波束判断信息确定所述资源信息。
  47. 根据权利要求46所述的终端设备,其特征在于,所述至少一个处理器通过所述接收器从网络设备获取所述波束判断信息。
  48. 根据权利要求46或47所述的终端设备,其特征在于,波束判断信息包括以下一种或多种:
    基站的波束总数信息、同时并行出现的波束信息和用于识别波束的信号。
  49. 根据权利要求48所述的终端设备,其特征在于,所述用于识别波束的信号包括以下一种或多种:
    波束的参考信号、波束的发现信号和波束标识。
  50. 根据权利要求48或49所述的终端设备,其特征在于,所述至少一个处理器,具体用于:
    当获取的波束判断信息包括用于识别波束的信号时,根据用于识别波束的信号与资源信息之间的对应关系,确定所述资源信息。
  51. 根据权利要求41至45中任一项所述的终端设备,其特征在于,所述至少一个处理器具体用于:
    通过波束扫描,确定所述资源信息。
  52. 根据权利要求41至45中任一项所述的终端设备,其特征在于,所述至少一个处理器具体用于:
    根据波束的同步序列所携带的波束信息,确定所述资源信息;
    或者,
    通过遍历掩码,确定所述资源信息,其中,所述掩码为用于识别波束的信号的掩码或者波束使用资源对应的掩码。
  53. 根据权利要求41所述的终端设备,其特征在于,所述资源信息包括波束的发送资源信息和/或系统信息的发送资源信息。
  54. 根据权利要求53所述的终端设备,其特征在于,所述系统信息的发送资源信息包括至少一个第一系统信息块的发送资源信息和至少一个第二系统信息块的发送资源信息。
  55. 根据权利要求54所述的终端设备,其特征在于,所述至少一个处理器,具体用于:
    在所述系统信息的发送资源信息所指示的资源和所述波束的发送资源信息所指示的资源的交集资源上接收系统信息;
    或者,
    根据所述波束的发送资源信息,在波束的发送资源信息所指示的资源上接收系统信息。
  56. 根据权利要求55所述的终端设备,其特征在于,所述至少一个处理器,具体用于:
    根据所述波束的发送资源信息,按预定义的规则或者网络设备通知的方式,在波束的发送资源信息所指示的资源的子集或全集上接收系统信息。
  57. 根据权利要求56所述的终端设备,其特征在于,所述至少一个处理器具体用于:
    在一个特定系统信息发送周期内,选择波束的时域资源上第一个可用的资源接收所述第一系统信息块和/或第二系统信息块;
    或者,
    在一个特定系统信息发送周期内,选择波束的时域资源上与预定义的系统信息发送资源最靠近的可用资源接所述第一系统信息块和/或第二系统信息块;
    或者,
    根据网络设备通知的周期和偏移量去接收所述第一系统信息块和/或第二系统信息块;
    或者,
    接收系统信息的周期为系统信息的发送周期和波束的发送周期的最小公倍数。
  58. 根据权利要求56所述的终端设备,其特征在于,其特征在于,所述至少一个处理器,具体用于:
    第一系统信息块和/或第二系统信息块的发送周期和发送子帧固定,选择在相应时间点有可用资源的波束上读取第一系统信息块和/或第二系统信息块;
    或者,
    第一系统消息块和/或第二系统消息块的发送周期和发送子帧根据波束的发送周期和发送子帧配置,选择波束并在选择的所述波束的对应时间点上读取第一系统信息块和/或第二系统信息块。
  59. 根据权利要求54至58中任一项所述的终端设备,其特征在于,所述至少一个处理器,还用于:
    根据所述资源信息,确定第三系统信息块的发送资源信息。
  60. 根据权利要求59所述的终端设备,其特征在于,所述至少一个处理器,具体用于:
    通过将第三系统消息块的发送窗时间和波束的时域信息所指示的波束扫描时间取交集,确定第三系统消息块的发送时间。
  61. 根据权利要求59所述的终端设备,其特征在于,所述至少一个处理器,具体用于:
    根据公式x=(n-1)*Window Length,确定中间值x,其中,n是SI-n中的n, SI对应第二系统信息块,n是第二系统信息块的顺序号,n大于等于1;Window Length是波束发送周期的整数倍数;
    根据公式a=(x+u)mod 10确定SI-n的子帧位置;x+u的取值在((n-1)*Window Length,n*Window Length)范围内;
    根据公式SFN mod T1=FLOOR((x+u)/10)确定SI-n的无线帧位置;T1为SI-n的周期。
  62. 根据权利要求41所述的终端设备,其特征在于,当所述接收器同时接收多个波束时,所述接收器,具体用于:
    在第N个波束周期,根据波束N使用的资源信息,读取波束N的系统信息,其中N为终端设备同时接收的多个波束的顺序编号;
    或者,
    在每个波束周期中,根据波束N使用的资源信息,读取波束N的系统信息,其中N为终端设备同时接收的多个波束的顺序编号。
  63. 根据权利要求41所述的终端设备,其特征在于,所述至少一个处理器,还用于:确定接收系统信息更新指示消息的接收时间;
    所述接收器,还用于在确定的所述接收时间上接收系统信息更新指示消息;根据所述系统信息更新指示消息,重新获取全部或部分所述资源信息。
  64. 根据权利要求63所述的终端设备,其特征在于,所述至少一个处理器,具体用于:
    确定的接收系统信息更新指示消息的接收时间与波束的发送时间对齐。
  65. 根据权利要求64所述的终端设备,其特征在于,所述至少一个处理器,具体用于:
    确定系统信息更新指示消息的发送时间位置后,在对应的时间位置有可用资源的波束上读取系统信息更新指示消息;
    或者,
    系统信息更新指示消息的发送时间根据波束的发送周期和发送子帧配置,在选择的波束的对应时间位置上读取系统信息更新指示消息;
    或者,
    确定系统信息更新指示消息的发送时间位置后,在更新指示消息的发送时间和波束的发送时间的交集资源上读取系统信息更新指示消息;
    或者,
    接收系统信息更新指示消息的周期为系统信息更新指示消息发送周期和波束发送周期的最小公倍数;接收系统信息更新指示消息的子帧位置根据波束的发送子帧位置配置。
  66. 一种网络设备,其特征在于,包括:
    至少一个处理器,用于为波束分配资源;
    发送器,用于将分配给波束的资源的资源信息提供给终端设备。
  67. 根据权利要求66所述的网络设备,其特征在于,所述资源信息包括以下一种或多种:
    频域信息、时域信息、码域信息和空域信息。
  68. 根据权利要求67所述的网络设备,其特征在于,所述频域信息包括以下一种或多种:
    频率信息、载波信息、无线资源块信息和子载波信息。
  69. 根据权利要求67所述的网络设备,其特征在于,所述时域信息为绝对时间信息;或者,
    所述时域信息包括周期和偏移量;或者,
    所述时域信息包括周期,偏移量和持续时间。
  70. 根据权利要求69所述的网络设备,其特征在于,所述时域信息以无线帧、子帧、时间符号、和/或TTI为粒度。
  71. 根据权利要求66至70中任一项所述的网络设备,其特征在于,所述发送器向终端设备提供波束判断信息,以使终端设备根据波束判断信息确定所述资源信息;
    所述波束判断信息包括以下一种或多种:
    基站的波束总数信息、同时并行出现的波束信息和用于识别波束的信号。
  72. 根据权利要求71所述的网络设备,其特征在于,所述用于识别波束的信号包括以下一种或多种:
    波束的参考信号、波束的发现信号和波束标识。
  73. 根据权利要求66至70中任一项所述的网络设备,其特征在于,所述发送器,具体用于:
    在同步序列中携带波束信息,以使终端设备根据同步序列中的波束信息确定所述资源信息;
    或者,
    对波束发现信号或信令的掩码提供给终端设备,以使终端设备通过遍历掩码,确定所述资源信息。
  74. 根据权利要求66所述的网络设备,其特征在于,所述资源信息包括波束的发送资源信息和/或系统信息的发送资源信息。
  75. 根据权利要求74所述的网络设备,其特征在于,系统信息的发送资源信息包括至少一个第一系统信息块的发送资源信息和至少一个第二系统信息块的发送资源信息。
  76. 根据权利要求75所述的网络设备,其特征在于,所述发送器还用于:
    通知终端设备接收系统信息的方式,以使终端设备根据网络设备的通知在波束的发送资源信息所指示的资源的子集或全集上接收系统信息。
  77. 根据权利要求76所述的网络设备,其特征在于,所述发送器通知终端设备接收系统信息的方式,包括:
    在一个特定系统信息发送周期内,选择波束的时域资源上第一个可用的资源接收所述第一系统信息块和/或第二系统信息块;
    或者,
    在一个特定系统信息发送周期内,选择波束的时域资源上与预定义的系统信息发送资源最靠近的可用资源接所述第一系统信息块和/或第二系统信息块;
    或者,
    根据网络设备通知的周期和偏移量去接收所述第一系统信息块和/或第二系统信息块;
    或者,
    接收系统信息的周期为系统信息的发送周期和波束使用的资源资源的周期的最小公倍数。
  78. 根据权利要求76所述的网络设备,其特征在于,其特征在于,所述发送器通知终端设备接收系统信息的方式,包括:
    第一系统信息块和/或第二系统信息块的发送周期和发送子帧固定,选择在相应时间点有可用资源的波束上读取第一系统信息块和/或第二系统信息块;
    或者,
    第一系统消息块和/或第二系统消息块的发送周期和发送子帧根据波束的发送周期和发送子帧配置,选择波束并在选择的所述波束的对应时间点上读取第一系统信息块和/或第二系统信息块。
  79. 根据权利要求76所述的网络设备,其特征在于,所述发送器通知终端设备接收系统信息的方式,包括:
    当终端设备同时接收多个波束时,在第N个波束周期,根据波束N使用的资源信息,读取波束N的系统信息,其中N为终端设备同时接收的多个波束的顺序编号;
    或者,
    当终端设备同时接收多个波束时,在每个波束周期中,根据波束N使用的资源信息,读取波束N的系统信息,其中N为终端设备同时接收的多个波束的顺序编号。
  80. 根据权利要求66所述的网络设备,其特征在于,所述发送器还用于:向终端设备发送系统信息更新指示消息。
  81. 一种计算机可读存储介质,其特征在于,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1至25中任一项所述的方法。
  82. 一种计算机可读存储介质,其特征在于,包括指令,当其在计算机上运行时,使得计算机执行如权利要求26至40中任一项所述的方法。
  83. 一种装置,其特征在于,包括:处理器,用于确定资源信息,使终端设备使用一个波束在所述资源信息所指示的资源上进行通信;根据所述资源信息,通过接收器在所述资源信息所指示的资源上接收系统信息。
  84. 一种装置,其特征在于,包括,处理器用于为波束分配资源;确定将分配给波束的资源的资源信息,所述资源信息被提供给终端设备。
PCT/CN2017/097006 2016-08-11 2017-08-11 系统信息传输方法及装置 WO2018028656A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17838786.6A EP3490318A4 (en) 2016-08-11 2017-08-11 METHOD AND DEVICE FOR TRANSMITTING SYSTEM INFORMATION
BR112019002780A BR112019002780A2 (pt) 2016-08-11 2017-08-11 método para transmitir informações e aparelhos do sistema
US16/267,964 US11284395B2 (en) 2016-08-11 2019-02-05 Method for transmitting system information and apparatus
US17/698,888 US20220210782A1 (en) 2016-08-11 2022-03-18 Method for Transmitting System Information and Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610659442.6A CN107734663B (zh) 2016-08-11 2016-08-11 系统信息传输方法及装置
CN201610659442.6 2016-08-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/267,964 Continuation US11284395B2 (en) 2016-08-11 2019-02-05 Method for transmitting system information and apparatus

Publications (1)

Publication Number Publication Date
WO2018028656A1 true WO2018028656A1 (zh) 2018-02-15

Family

ID=61161751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/097006 WO2018028656A1 (zh) 2016-08-11 2017-08-11 系统信息传输方法及装置

Country Status (5)

Country Link
US (2) US11284395B2 (zh)
EP (1) EP3490318A4 (zh)
CN (2) CN109922529B (zh)
BR (1) BR112019002780A2 (zh)
WO (1) WO2018028656A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11082176B2 (en) 2016-11-04 2021-08-03 Futurewei Technologies, Inc. System and method for transmitting a sub-space selection
WO2018120101A1 (zh) * 2016-12-30 2018-07-05 广东欧珀移动通信有限公司 传输信息的方法、网络设备和终端设备
CN110662269B (zh) * 2018-06-28 2020-10-30 中国移动通信有限公司研究院 一种系统消息的发送方法、接收方法及设备
CN110769398B (zh) * 2018-07-27 2020-11-06 大唐移动通信设备有限公司 一种系统消息发送方法及ran设备
WO2020029277A1 (zh) * 2018-08-10 2020-02-13 北京小米移动软件有限公司 Fbe的数据传输方法、装置及存储介质
CN110830219B (zh) * 2018-08-14 2021-03-30 成都华为技术有限公司 资源管理的方法和装置
CN115696607A (zh) * 2018-09-17 2023-02-03 华为技术有限公司 数据通信的方法和装置
CN110611953B (zh) * 2019-08-16 2022-03-01 展讯半导体(南京)有限公司 下行波束指示方法、设备和存储介质
CN112584467B (zh) * 2019-09-27 2022-07-19 大唐移动通信设备有限公司 节能信号的发送方法、波束信息的上报方法、设备及终端
CN113973373A (zh) * 2020-07-24 2022-01-25 华为技术有限公司 一种波束信息指示方法及装置
CN116889046A (zh) * 2021-11-15 2023-10-13 北京小米移动软件有限公司 一种信息的传输方法及其装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101064558A (zh) * 2006-04-26 2007-10-31 大唐移动通信设备有限公司 一种无线通信系统中实现广播组播的方法
CN101217689A (zh) * 2007-01-05 2008-07-09 大唐移动通信设备有限公司 一种系统消息传送方法及其实现装置
CN101854233A (zh) * 2009-04-03 2010-10-06 大唐移动通信设备有限公司 一种信道质量指示信息的处理方法及设备
WO2013070138A1 (en) * 2011-11-11 2013-05-16 Telefonaktiebolaget L M Ericsson (Publ) Network node, user equipment and methods therein for transmitting and receiving control information
CN103906249A (zh) * 2012-12-27 2014-07-02 华为技术有限公司 一种频谱资源分配方法、系统以及接入网设备

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102656934A (zh) * 2009-03-13 2012-09-05 华为技术有限公司 资源分配方法、数据传输方法、基站及终端
EP2737639A4 (en) * 2011-07-28 2015-04-08 Samsung Electronics Co Ltd APPARATUS AND METHOD FOR FORMING BEAMS IN A WIRELESS COMMUNICATION SYSTEM
KR20130028397A (ko) * 2011-09-09 2013-03-19 삼성전자주식회사 무선 통신 시스템에서 동기 및 시스템 정보 획득을 위한 장치 및 방법
US9948439B2 (en) * 2012-10-24 2018-04-17 Samsung Electronics Co., Ltd Method and apparatus for transmitting and receiving common channel information in wireless communication system
WO2014163543A1 (en) * 2013-04-05 2014-10-09 Telefonaktiebolaget L M Ericsson (Publ) Broadcast of information for new carrier type
WO2014175696A1 (en) * 2013-04-25 2014-10-30 Samsung Electronics Co., Ltd. Method and system for acquiring high frequency carrier in a wireless communication network
CN104735685B (zh) * 2013-12-20 2019-04-23 中兴通讯股份有限公司 一种信息处理方法、装置和系统
WO2016086144A1 (en) * 2014-11-26 2016-06-02 Interdigital Patent Holdings, Inc. Initial access in high frequency wireless systems
KR102346981B1 (ko) 2014-11-28 2022-01-04 삼성전자주식회사 무선 통신 시스템에서 채널 추정 방법 및 장치
US9955491B2 (en) * 2014-12-30 2018-04-24 Electronics And Telecommunications Research Institute Method and apparatus for initial access in mobile communication system
JP6596580B2 (ja) * 2015-05-30 2019-10-23 華為技術有限公司 通信方法、基地局およびユーザ機器
US10306597B2 (en) * 2015-07-21 2019-05-28 Samsung Electronics Co., Ltd. Method and apparatus for beam-level radio resource management and mobility in cellular network
CN107852210B (zh) * 2015-08-14 2020-08-07 华为技术有限公司 确定至少一个波束成形参数的接入节点、用户节点以及方法
CN106856614A (zh) * 2015-12-08 2017-06-16 中兴通讯股份有限公司 一种系统广播消息的传输方法及基站、终端
KR20170084611A (ko) * 2016-01-12 2017-07-20 한국전자통신연구원 이동 통신 시스템에서의 랜덤 접속 방법 및 장치
JP6676766B2 (ja) * 2016-02-03 2020-04-08 株式会社Nttドコモ 無線通信方法
KR20220062422A (ko) * 2016-03-03 2022-05-16 아이디에이씨 홀딩스, 인크. 빔 포밍 기반의 시스템에서의 빔 제어를 위한 방법 및 장치
WO2017155239A2 (ko) * 2016-03-11 2017-09-14 엘지전자 주식회사 임의 접속 채널 신호 전송 방법 및 사용자기기와, 임의 접속 채널 신호 수신 방법 및 기지국
US10615862B2 (en) * 2016-04-13 2020-04-07 Qualcomm Incorporated System and method for beam adjustment request
CN111052625A (zh) * 2016-04-20 2020-04-21 康维达无线有限责任公司 下行链路同步
US10887143B2 (en) * 2016-05-06 2021-01-05 Samsung Electronics Co., Ltd. Method and apparatus for initial access in wireless communication systems
MX2018013639A (es) * 2016-05-11 2019-05-15 Sony Corp Control distribuido en sistemas inalambricos.
EP4333515A2 (en) * 2016-05-11 2024-03-06 InterDigital Patent Holdings, Inc. Systems and methods for beamformed uplink transmission
CN109644494B (zh) * 2016-06-15 2022-08-12 康维达无线有限责任公司 一种用于下一代网络中的随机接入过程的装置
WO2018009468A1 (en) * 2016-07-05 2018-01-11 Idac Holdings, Inc. Latency reduction by fast forward in multi-hop communication systems
KR20190097063A (ko) * 2016-12-22 2019-08-20 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 시스템 정보를 전송하는 방법과 장치
US20220352960A1 (en) * 2021-05-03 2022-11-03 Samsung Electronics Co., Ltd. Electronic device for selecting beam and method thereof
US20220361253A1 (en) * 2021-05-05 2022-11-10 Qualcomm Incorporated MULTIPLE SIMULTANEOUS SSBs WITH SSB-SPECIFIC RACH OCCASIONS OR PREAMBLE SUBSETS

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101064558A (zh) * 2006-04-26 2007-10-31 大唐移动通信设备有限公司 一种无线通信系统中实现广播组播的方法
CN101217689A (zh) * 2007-01-05 2008-07-09 大唐移动通信设备有限公司 一种系统消息传送方法及其实现装置
CN101854233A (zh) * 2009-04-03 2010-10-06 大唐移动通信设备有限公司 一种信道质量指示信息的处理方法及设备
WO2013070138A1 (en) * 2011-11-11 2013-05-16 Telefonaktiebolaget L M Ericsson (Publ) Network node, user equipment and methods therein for transmitting and receiving control information
CN103906249A (zh) * 2012-12-27 2014-07-02 华为技术有限公司 一种频谱资源分配方法、系统以及接入网设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3490318A4

Also Published As

Publication number Publication date
CN107734663B (zh) 2023-12-12
US20190174477A1 (en) 2019-06-06
CN109922529A (zh) 2019-06-21
EP3490318A1 (en) 2019-05-29
CN109922529B (zh) 2020-04-28
BR112019002780A2 (pt) 2019-07-09
CN107734663A (zh) 2018-02-23
US11284395B2 (en) 2022-03-22
US20220210782A1 (en) 2022-06-30
EP3490318A4 (en) 2019-06-26

Similar Documents

Publication Publication Date Title
WO2018028656A1 (zh) 系统信息传输方法及装置
CN110226351B (zh) 用于寻呼接收的时间和频率跟踪方法及用户设备
TWI762456B (zh) 在共享通訊媒體上傳送存取點的子訊框定時
EP3560228B1 (en) Support for frequency-overlapping carriers
US11146376B2 (en) System type dependent master information block (MIB)
RU2668289C1 (ru) Устранение перекрытия сигналов
CN105684477B (zh) 无线基站、用户终端以及无线通信方法
TW202201920A (zh) 在共享通訊媒體上傳呼使用者設備
CN110337133B (zh) 通信方法、通信装置和通信系统
JP6451969B2 (ja) 通信システム
US11071162B2 (en) Broadcast or multicast physical layer configuration and channel structure
CN104871469B (zh) 确定数据信道起始子帧的用户设备和方法
US9674695B2 (en) Method, terminal, and base station for transmitting information
JP2021523633A (ja) ページング機会の開始決定
CN109565842B (zh) 用于信息传输和信息接收的方法和装置
KR20180008924A (ko) Tdd 시스템에서의 정보 전송 방법, 정보 결정 방법, 및 장치, 및 시스템
JP7136773B2 (ja) ネットワーク装置、ユーザ装置及び無線通信方法
US20220369411A1 (en) Method of transmitting and receiving notification of multicast session activation
US20220330291A1 (en) Method and apparatus of communication for reduced-capability user equipment in wireless communication system
EP2919502A1 (en) Method and apparatus for information transmission
KR20190034024A (ko) 프리앰블을 이용하여 통신을 수행하는 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17838786

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017838786

Country of ref document: EP

Effective date: 20190222

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019002780

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112019002780

Country of ref document: BR

Free format text: APRESENTE, NO PRAZO DE 60 (SESSENTA) DIAS, NOVAS FOLHAS DE RELATORIO DESCRITIVO, REIVINDICACOES, RESUMO, LISTAGEM DE SEQUENCIA BIOLOGICAS E DESENHOS COM O TEXTO TRADUZIDO PARA O PORTUGUES, ADAPTADO A NORMA VIGENTE, CONFORME DETERMINA O ART. 7O DA RESOLUCAO INPI PR NO 77/2013 DE 18/03/2013.

ENP Entry into the national phase

Ref document number: 112019002780

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190211