WO2018028202A1 - 检测电路及检测方法 - Google Patents

检测电路及检测方法 Download PDF

Info

Publication number
WO2018028202A1
WO2018028202A1 PCT/CN2017/076988 CN2017076988W WO2018028202A1 WO 2018028202 A1 WO2018028202 A1 WO 2018028202A1 CN 2017076988 W CN2017076988 W CN 2017076988W WO 2018028202 A1 WO2018028202 A1 WO 2018028202A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
device casing
target line
target
specified
Prior art date
Application number
PCT/CN2017/076988
Other languages
English (en)
French (fr)
Inventor
章琛
史迎春
邢海丁
张国卿
张健斌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17838335.2A priority Critical patent/EP3483616B1/en
Publication of WO2018028202A1 publication Critical patent/WO2018028202A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/66Testing of connections, e.g. of plugs or non-disconnectable joints
    • G01R31/67Testing the correctness of wire connections in electric apparatus or circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/086Locating faults in cables, transmission lines, or networks according to type of conductors in power transmission or distribution networks, i.e. with interconnected conductors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults

Definitions

  • the present invention relates to the field of electronic technologies, and in particular, to a detection circuit and a detection method.
  • the electrical energy used by the equipment is provided by a power distribution system, which may include an IT system, a TT system, and a TN system. Since any of the live wires in the power distribution system exceeds the safety extra-low voltage (SELV) of the earth, if the fire wire is broken by overvoltage due to the insulation during the operation of the device, If the metal core wire in the fire wire is connected to the equipment casing of the equipment due to aging of the insulation skin and damage of the insulation skin, the equipment casing may be exposed to dangerous voltage, which poses a great threat to the user's personal safety. Therefore, in order to enable the user to know in time whether the device casing is equipped with a dangerous voltage, the device casing can be electrically detected.
  • SELV safety extra-low voltage
  • a detection circuit is provided, as shown in FIG. 1, the detection circuit includes: a resistor R, a silicon rectifier diode D, a light-emitting diode LED, a Zener diode DW, an electrolytic capacitor C, and a buzzer. HA.
  • One end of the resistor R is connected to the device casing of the device, the other end of the resistor R is connected to the anode of the silicon rectifier diode D, and the cathode of the silicon rectifier diode D is connected to the anode of the LED of the LED, and the LED of the LED is LED
  • the negative pole is connected to the negative pole of the Zener diode DW, the anode of the Zener diode DW is connected to the neutral line, and the electrolytic capacitor C and the buzzer HA are respectively connected in parallel with the Zener diode DW.
  • the detecting circuit When detecting by the detecting circuit, if the metal core wire in the fire wire is connected to the device casing and the device casing is charged, then the live wire, the device casing, the detecting circuit and the neutral line constitute a current loop, and the current in the hot wire When the device casing flows through the detection circuit, the LED of the LED will be illuminated, and the buzzer HA will emit a sound, thereby realizing a charging alarm of the device casing.
  • an embodiment of the present invention provides a detection circuit and a detection method thereof.
  • the technical solution is as follows:
  • a detection circuit configured to detect a device, and the detection circuit comprises: a first isolation module, a first resistor, a second resistor, a first signal acquisition module, and a signal processing module. ;
  • the first isolation module includes a first isolation unit and a second isolation unit, and the first isolation unit and the first The two isolation units have the same resistance, one end of the first isolation unit is connected to the target line, one end of the second isolation unit is connected to the device housing, and the first isolation module is used for the target line and the The device housing is isolated and used to isolate the primary circuit including the target line and the power supply of the device, the secondary circuit including the first resistor, the first a second resistor, the first signal acquisition module and the signal processing module; the target line is used to supply power to the device, and the target line is a live line or a neutral line; the device housing is the device shell;
  • the first input end of the first signal acquisition module and one end of the first resistor are respectively connected to the other end of the first isolation unit, and the second input end of the first signal acquisition module and the second One end of the resistor is respectively connected to the other end of the second isolation unit, and the other end of the first resistor and the other end of the second resistor are respectively connected to a reference ground, and an output end of the first signal acquisition module is An input end of the signal processing module is connected, and a ground end of the signal processing module is connected to the reference ground;
  • the first resistor and the second resistor are used for voltage division, and the resistance of the first resistor is equal to the resistance of the second resistor;
  • the first signal acquisition module is configured to separately collect Determining a voltage across the first resistor and a voltage across the second resistor, and determining a voltage across the first resistor as a first voltage, and determining a voltage across the second resistor as a second voltage, multiplying a voltage difference between the first voltage and the second voltage by a specified ratio to obtain a third voltage within a detection range of the signal processing module, and the third voltage Input to the signal processing module;
  • the signal processing module is configured to process a voltage between the target line and the device casing according to the first isolation module, the first resistor, the second resistor, and the first signal acquisition module a process of: inversely processing the third voltage to obtain a voltage between the target line and the device casing, and determining the voltage when a voltage between the target line and the device casing meets a specified condition
  • the device is faulty, and the specified condition is used to indicate that the device is faulty, the fault includes a reverse connection between a live line connected to the device and a neutral line, the device housing is not normally grounded, and at least the device housing is charged.
  • the third voltage is obtained by multiplying the voltage difference between the first voltage and the second voltage by a specified ratio. Therefore, the voltage between the target line and the device casing is actually determined based on the first voltage and the second voltage. Since the first voltage and the second voltage are both determined relative to the reference ground, the connection or non-connection between the reference ground and the device casing does not affect the determination of the voltage between the target line and the device casing. That is, the embodiment of the present invention can implement fault detection of the device when the reference ground is connected or not connected with the device casing.
  • the first signal acquisition module may collect the first voltage and the second voltage, and multiply the voltage difference between the first voltage and the second voltage by a specified ratio to obtain detection in the signal processing module.
  • a third voltage in the range after which the third voltage is input to the signal processing module, and the signal processing module can be between the target line and the device casing according to the first isolation module, the first resistor, the second resistor, and the first signal acquisition module
  • the voltage processing process reverses the third voltage to obtain a voltage between the target line and the device casing, and determines that the device malfunctions when the voltage between the target line and the device casing meets the specified condition. Since the target line can be either a live line or a zero line, fault detection can be performed regardless of whether the live and neutral lines of the device are connected or reversed.
  • the detecting circuit further includes a signal conditioning module, and an input end of the signal conditioning module is connected to an output end of the first signal acquisition module The output of the signal conditioning module is connected to the input end of the signal processing module;
  • the signal conditioning module is configured to condition the third voltage received from the first signal acquisition module into a voltage within an acceptance range of the signal processing module, and input the conditioned third voltage To the signal processing module.
  • the first isolation unit includes N series resistors, and the N series connections
  • the total resistance of the resistor is greater than or equal to a specified resistance
  • the N is a natural number greater than or equal to 1
  • the specified resistance is a resistance value that satisfies the reinforced insulation required in the safety standard.
  • the insulation resistance between the target line and the device casing is composed of the first resistor, the second resistor, the first isolation unit and the second isolation unit, and the resistance values of the first isolation unit and the second isolation unit are Equal, therefore, when the total resistance of the N series resistors included in the first isolation unit is greater than or equal to the specified resistance value, the insulation resistance between the target line and the device casing can be ensured to meet the reinforced insulation required in the safety standard. Thereby, the user's electricity safety can be guaranteed.
  • the isolation between the primary circuit and the secondary circuit can be ensured to meet the reinforced insulation required in the safety standard, thereby ensuring that the electronic components in the secondary circuit are not subjected to the high voltage in the primary circuit. damage.
  • the second isolation unit includes M series resistors, and the M series series
  • the total resistance of the resistor is greater than or equal to the specified resistance
  • the M is a natural number greater than or equal to 1
  • the specified resistance is a resistance value that satisfies the reinforced insulation required in the safety standard.
  • the insulation resistance between the target line and the device casing is composed of the first resistor, the second resistor, the first isolation unit and the second isolation unit, and the resistance values of the first isolation unit and the second isolation unit are Equal, therefore, when the total resistance of the M series resistors included in the second isolation unit is greater than or equal to the specified resistance value, the insulation resistance between the target line and the device casing can be ensured to meet the reinforced insulation required in the safety standard, Thereby, the user's electricity safety can be guaranteed.
  • the isolation between the primary circuit and the secondary circuit can be ensured to meet the reinforced insulation required in the safety standard, thereby ensuring that the electronic components in the secondary circuit are not subjected to the high voltage in the primary circuit. damage.
  • the signal processing module is configured to:
  • the power supply mode of the device is single-phase power supply and the metal core wire in the fire wire is not connected to the device casing, determining whether the voltage between the target wire and the device casing is less than or equal to the first designation a voltage, the first specified voltage being a voltage between a neutral line and the device housing when the device housing is normally grounded and the metal core wire in the live wire is not attached to the device housing;
  • Determining that the live line connected to the device is reversed from the neutral line when the voltage between the target line and the device casing is less than or equal to the first specified voltage, and determining the target line and the device casing The voltage between them satisfies the specified condition.
  • the first specified voltage is close to 0V (volts).
  • the first specified voltage may be the first a smaller one of a preset voltage and a second preset voltage, and the first preset voltage may be a plurality of measured zeros when the device casing is normally grounded and the metal core wire in the live wire is not attached to the device casing.
  • the second preset voltage may be a product of a preset value and a power supply voltage of the device.
  • the preset value may be preset, for example, the preset value may be greater than 0.01 and less than 0.1. The embodiment of the present invention does not specifically limit this.
  • the first specified voltage can be set based on the first preset voltage and the second preset voltage, the first specified voltage can be flexibly selected based on different power usage scenarios in the embodiment of the present invention to ensure that the first specified voltage is satisfied. Detect demand.
  • the signal processing module can quickly and accurately determine whether the FireWire and the zero line connected to the device are reversed based on the first specified voltage, and the determining process is relatively simple, and the determining efficiency is high.
  • the signal processing module is configured to:
  • the power supply mode of the device is single-phase power supply and the metal core wire in the fire wire is not connected to the device casing, determining whether the voltage between the target wire and the device casing is greater than a first specified voltage and Less than a second specified voltage, the second specified voltage is a voltage obtained by subtracting the first specified voltage from a power supply voltage of the device, and the first specified voltage is less than the second specified voltage;
  • the judging process is relatively simple and the judging efficiency is high.
  • the signal processing module is configured to:
  • the power supply mode of the device is single-phase power supply and the target line is a live line, determining whether the voltage between the target line and the device casing is a first lap voltage, and the first lap voltage is a voltage between the target wire and the device casing when the metal core wire in the target wire is overlapped on the device casing; when the voltage between the target wire and the device casing is the Determining that the device housing is charged when the first lap voltage is determined, and determining that a voltage between the target line and the device housing meets the specified condition;
  • the power supply mode of the device is single-phase power supply and the target line is a neutral line, determining whether the voltage between the target line and the device casing is a second lap voltage, the second lap voltage a voltage between the target wire and the device casing when a metal core wire in a fire wire other than the target wire is attached to the device casing; when the target wire and the device casing are When the voltage between the two is the second lap voltage, it is determined that the device casing is charged, and it is determined that the voltage between the target line and the device casing satisfies the specified condition.
  • the power supply mode of the device is single-phase power supply
  • the target line is a live line
  • the second lap voltage is used to judge whether the device casing is charged, so that the charging detection of the device casing can be accurately realized, and the detection operation is simple and easy, and the detection efficiency is high.
  • the signal processing module is further configured to:
  • the target line is a zero line if a voltage between the target line and the device housing is less than or equal to a first specified voltage when the metal core wire in the live wire is not attached to the device housing;
  • the metal core wire in the live wire is not attached to the device casing, if the voltage between the target wire and the device casing is greater than or equal to a second specified voltage, it is determined that the target wire is a live wire.
  • the process of determining whether the target line is a live line or a neutral line is a process of determining whether the live line connected to the device is connected or reversed, that is, when the target line is a live line, the device connection can be determined.
  • the incoming live line is connected to the neutral line.
  • the target line is zero line, it can be determined that the live line connected to the device is reversed from the neutral line.
  • the target line is determined to be a hot line or a zero line quickly and accurately based on the first specified voltage and the second specified voltage.
  • the judging process is relatively simple and the judging efficiency is high.
  • the signal processing module is configured to:
  • the device when the power supply mode of the device is dual-fired, the device can be electrically charged based on the first lap voltage and the second lap voltage, so that the charging detection of the device casing can be accurately realized, and
  • the detection operation is simple and easy, and the detection efficiency is high.
  • the signal processing module is configured to:
  • the power supply mode of the device is three-phase power supply, determining whether the voltage between the target line and the device casing is a first lap voltage or a third lap voltage, and the third lap voltage is a voltage between the target wire and the device casing when the metal core wire in any of the fire wires other than the target wire is attached to the device casing;
  • the power supply mode of the device is three-phase power supply
  • whether the device casing is charged according to the first lap voltage and the third lap voltage can be used, so that the charging detection of the device casing can be accurately realized, and
  • the detection operation is simple and easy, and the detection efficiency is high.
  • the signal processing module is further configured to:
  • the power supply mode of the device is single-phase power supply and the metal core wire in the fire wire is not connected to the device casing, determining whether the voltage between the target wire and the device casing is less than or equal to the first designation a voltage, or greater than or equal to a second specified voltage;
  • the device casing When the voltage between the target line and the device casing is less than or equal to a first specified voltage, or greater than or equal to a second specified voltage, it is determined that the device casing is normally grounded.
  • the device enclosure can be quickly and accurately determined based on the first specified voltage and the second specified voltage.
  • the determination process is relatively simple and the determination efficiency is high.
  • the signal acquiring module includes: a first operational amplifier, a second operational amplifier, a third operational amplifier, a third resistor, and a fourth resistor, Fifth resistor and Sixth resistance;
  • the non-inverting input terminal of the first operational amplifier and one end of the first resistor are respectively connected to the other end of the first isolation unit, and the inverting input end of the first operational amplifier and one end of the third resistor Connected to an output of the first operational amplifier, respectively;
  • the non-inverting input terminal of the second operational amplifier and one end of the second resistor are respectively connected to the other end of the second isolation unit, and the inverting input end of the second operational amplifier and one end of the fourth resistor Connected to an output of the second operational amplifier, respectively;
  • the non-inverting input terminal of the third operational amplifier is connected to the other end of the third resistor, and the non-inverting input terminal of the third operational amplifier is further connected to one end of the fifth resistor, and the other end of the fifth resistor Connected to the reference ground, an inverting input end of the third operational amplifier is connected to the other end of the fourth resistor, and an inverting input end of the third operational amplifier is further connected to one end of the sixth resistor
  • the other end of the sixth resistor and the input end of the signal conditioning module are respectively connected to the output end of the third operational amplifier.
  • the first operational amplifier, the second operational amplifier, and the third operational amplifier constitute a differential amplification circuit.
  • the first operational amplifier is used to collect the voltage across the first resistor
  • the second operational amplifier is used for acquisition.
  • a voltage across the second resistor, the third operational amplifier for determining the third voltage based on a voltage difference between the first voltage and the second voltage.
  • the signal conditioning module includes: a seventh resistor, an eighth resistor, a conditioning power source, a first diode, and a second diode;
  • One end of the seventh resistor is connected to an output end of the first signal acquisition module, one end of the eighth resistor, a positive pole of the first diode, a cathode of the second diode, and the
  • the input end of the signal processing module is respectively connected to the other end of the seventh resistor, and the other end of the eighth resistor and the cathode of the first diode are respectively connected to the conditioning power source, the second level
  • the anode of the tube is connected to the reference ground.
  • the signal conditioning module can raise the third voltage by conditioning the power source, the seventh resistor, and the eighth resistor. Double the conditioning voltage and raise the third voltage After adjusting the voltage by a factor, the raised third voltage can be clamped between U cc +U d and -U d by the conditioning power source, the first diode and the second diode to adjust the third voltage. For the voltage within the acceptance range of the signal processing module, it is ensured that the electronic components in the signal processing module are not damaged by overvoltage or negative voltage.
  • r 7 is the resistance of the seventh resistor
  • r 8 is the resistance of the eighth resistor
  • U cc is the conditioning voltage
  • the conditioning voltage is the output voltage of the conditioning power source
  • U d is the first diode or the second The turn-on voltage of the stage tube, and the turn-on voltages of the first diode and the second diode are equal.
  • the signal processing module includes: an analog-to-digital converter and a controller;
  • An input end of the analog to digital converter is coupled to an output of the signal conditioning module, an output of the analog to digital converter is coupled to an input of the controller, a ground terminal of the module converter, and the The ground terminals of the controller are respectively connected to the reference ground.
  • the analog-to-digital converter is configured to convert the received analog quantity of the third voltage into a digital quantity, and send the digital quantity of the third voltage to the controller; the controller is configured to determine the target based on the third voltage The voltage between the wire and the device housing.
  • a detection circuit configured to detect a device, and the detection circuit includes: a second isolation module, a tenth resistance, a second signal acquisition module, and a signal processing module;
  • One end of the second isolation module is connected to the target line, and the input end of the second signal acquisition module and one end of the tenth resistor are respectively connected to the other end of the second isolation module, and the tenth resistor
  • the other end is connected to the reference ground, the reference ground is connected to the device casing, and the output end of the second signal acquisition module is connected to the input end of the signal processing module, and the ground end of the signal processing module and the reference ground connection;
  • the target line is used to supply power to the device, the target line is a live line or a neutral line; the device casing is an outer casing of the device; the tenth resistor is used for voltage division; the second An isolation module is configured to isolate the target line from the device housing, and is configured to isolate a primary circuit and a secondary circuit, where the primary circuit includes the target line and a power supply of the device,
  • the sub-circuit includes the tenth resistor, the second signal acquisition module, and the signal processing module; the second signal acquisition module is configured to collect a voltage across the tenth resistor, and the collected The voltage across the ten resistors is determined to be a fourth voltage, and the fourth voltage is input to the signal processing module;
  • the signal processing module is configured to process the voltage between the target line and the device casing according to the second isolation module, the tenth resistor, and the second signal acquisition module
  • the four voltages are inversely processed to obtain a voltage between the target line and the device casing, and when the voltage between the target line and the device casing meets a specified condition, determining that the device is malfunctioning,
  • the specified condition is used to indicate that the device is faulty, the fault including at least one of a live line connected to the device being reversed from a neutral line, the device housing not being properly grounded, and the device housing being powered.
  • the second signal acquisition module may collect the fourth voltage and input the fourth voltage to the signal processing module, and the signal processing module may target the second isolation module, the tenth resistance, and the second signal acquisition module.
  • the process of voltage between the line and the device casing, the fourth voltage is reversed to obtain a voltage between the target line and the device casing, and when the voltage between the target line and the device casing meets the specified condition, the determination is made.
  • the device has failed. Since the target line can be either a live line or a zero line, fault detection can be performed regardless of whether the live and neutral lines of the device are connected or reversed.
  • the detecting circuit further includes a signal conditioning module, and an input end of the signal conditioning module is connected to an output end of the second signal acquisition module The output of the signal conditioning module is connected to the input end of the signal processing module;
  • the signal conditioning module is configured to condition the fourth voltage received from the second signal acquisition module into a voltage within an acceptance range of the signal processing module, and input the conditioned fourth voltage To the signal processing module.
  • the second isolation module includes N series resistors, and the N series connections
  • the total resistance of the resistor is greater than or equal to a specified resistance
  • the N is a natural number greater than or equal to 1
  • the specified resistance is a resistance value that satisfies the reinforced insulation required in the safety standard.
  • the insulation resistance between the target line and the device casing is composed of the tenth resistor and the second isolation module, when the total resistance of the N series resistors included in the second isolation module is greater than or equal to the specified resistance When the value is obtained, the insulation resistance between the target line and the device casing can be ensured to meet the reinforced insulation required in the safety standard, thereby ensuring the safety of the user's electricity.
  • the isolation between the primary circuit and the secondary circuit can be ensured to meet the reinforced insulation required in the safety standard, thereby ensuring the electronic components in the secondary circuit. Not damaged by the high voltage in the primary circuit.
  • the signal processing module is configured to:
  • the power supply mode of the device is single-phase power supply and the metal core wire in the fire wire is not connected to the device casing, determining whether the voltage between the target wire and the device casing is less than or equal to the first designation a voltage, the first specified voltage being a voltage between a neutral line and the device housing when the device housing is normally grounded and the metal core wire in the live wire is not attached to the device housing;
  • Determining that the live line connected to the device is reversed from the neutral line when the voltage between the target line and the device casing is less than or equal to the first specified voltage, and determining the target line and the device casing The voltage between them satisfies the specified condition.
  • the signal processing module is configured to:
  • the power supply mode of the device is single-phase power supply and the metal core wire in the fire wire is not connected to the device casing, determining whether the voltage between the target wire and the device casing is greater than a first specified voltage and Less than a second specified voltage, the second specified voltage is a voltage obtained by subtracting the first specified voltage from a power supply voltage of the device, and the first specified voltage is less than the second specified voltage;
  • the signal processing module is configured to:
  • the power supply mode of the device is single-phase power supply and the target line is a live line, determining whether the voltage between the target line and the device casing is a first lap voltage, and the first lap voltage is a voltage between the target wire and the device casing when the metal core wire in the target wire is overlapped on the device casing; when the voltage between the target wire and the device casing is the Determining that the device housing is charged when the first lap voltage is determined, and determining that a voltage between the target line and the device housing meets the specified condition;
  • the power supply mode of the device is single-phase power supply and the target line is a neutral line, determining whether the voltage between the target line and the device casing is a second lap voltage, the second lap voltage a voltage between the target wire and the device casing when a metal core wire in a fire wire other than the target wire is attached to the device casing; when the target wire and the device casing are When the voltage between the two is the second lap voltage, it is determined that the device casing is charged, and it is determined that the voltage between the target line and the device casing satisfies the specified condition.
  • the signal processing module is further configured to:
  • the target line is a zero line if a voltage between the target line and the device housing is less than or equal to a first specified voltage when the metal core wire in the live wire is not attached to the device housing;
  • the metal core wire in the live wire is not attached to the device casing, if the voltage between the target wire and the device casing is greater than or equal to a second specified voltage, it is determined that the target wire is a live wire.
  • the signal processing module is configured to:
  • the signal processing module is configured to:
  • the power supply mode of the device is three-phase power supply, determining whether the voltage between the target line and the device casing is a first lap voltage or a third lap voltage, and the third lap voltage is a voltage between the target wire and the device casing when the metal core wire in any of the fire wires other than the target wire is attached to the device casing;
  • the signal processing module is further configured to:
  • the power supply mode of the device is single-phase power supply and the metal core wire in the fire wire is not connected to the device casing, determining whether the voltage between the target wire and the device casing is less than or equal to the first designation a voltage, or greater than or equal to a second specified voltage;
  • the device casing When the voltage between the target line and the device casing is less than or equal to a first specified voltage, or greater than or equal to a second specified voltage, it is determined that the device casing is normally grounded.
  • the second signal acquiring module includes a fourth operational amplifier
  • the non-inverting input terminal of the fourth operational amplifier and one end of the tenth resistor are respectively connected to the other end of the second isolation module, and the inverting input terminal of the fourth operational amplifier and the output end of the fourth operational amplifier are respectively connected with the input end of the signal conditioning module connection.
  • the fourth operational amplifier is used to collect the voltage across the tenth resistor.
  • the signal conditioning module includes: a seventh resistor, an eighth resistor, a conditioning power source, a first diode, and a second diode;
  • One end of the seventh resistor is connected to the output end of the second signal acquisition module, one end of the eighth resistor, the anode of the first diode, the cathode of the second diode, and the input end of the signal processing module are respectively connected with the seventh resistor
  • the other end is connected, the other end of the eighth resistor and the cathode of the first diode are respectively connected to the conditioning power source, and the anode of the second diode is connected to the reference ground.
  • the signal processing module includes: an analog-to-digital converter and a controller;
  • the input end of the analog-to-digital converter is connected to the output end of the signal conditioning module, the output end of the analog-to-digital converter is connected to the input end of the controller, and the ground end of the module converter and the ground end of the controller are respectively connected to the reference ground.
  • a third aspect provides a detection method, wherein the method is used for detecting a device, and the method includes:
  • the target line is for powering the device, and the target line is a live line or a neutral line, and the device housing is an outer casing of the device;
  • determining a voltage between the target line and the device casing determining whether the voltage between the target line and the device casing meets the specified condition, and determining the device when the voltage between the target line and the device casing meets the specified condition. malfunction. Since the target line can be either a live line or a zero line, fault detection can be performed regardless of whether the live and neutral lines of the device are connected or reversed.
  • the determining whether a voltage between the target line and the device casing meets a specified condition includes:
  • the power supply mode of the device is single-phase power supply and the metal core wire in the fire wire is not connected to the device casing, determining whether the voltage between the target wire and the device casing is less than or equal to the first designation a voltage, the first specified voltage being a voltage between a neutral line and the device housing when the device housing is normally grounded and the metal core wire in the live wire is not attached to the device housing;
  • Determining that the live line connected to the device is reversed from the neutral line when the voltage between the target line and the device casing is less than or equal to the first specified voltage, and determining the target line and the device casing The voltage between them satisfies the specified condition.
  • the determining whether a voltage between the target line and the device casing meets a specified condition includes:
  • the power supply mode of the device is single-phase power supply and the metal core wire in the fire wire is not connected to the device casing, determining whether the voltage between the target wire and the device casing is greater than a first specified voltage and Less than a second specified voltage, the second specified voltage is a voltage obtained by subtracting the first specified voltage from a power supply voltage of the device, and the first specified voltage is less than the second specified voltage;
  • the determining whether the voltage between the target line and the device casing meets the specified condition includes:
  • the power supply mode of the device is single-phase power supply and the target line is a live line, determining whether the voltage between the target line and the device casing is a first lap voltage, and the first lap voltage is a voltage between the target wire and the device casing when the metal core wire in the target wire is overlapped on the device casing; when the voltage between the target wire and the device casing is the Determining that the device housing is charged when the first lap voltage is determined, and determining that a voltage between the target line and the device housing meets the specified condition;
  • the power supply mode of the device is single-phase power supply and the target line is a neutral line, determining whether the voltage between the target line and the device casing is a second lap voltage, the second lap voltage a voltage between the target wire and the device casing when a metal core wire in a fire wire other than the target wire is attached to the device casing;
  • the voltage between the target line and the device casing is the second lap voltage, it is determined that the device casing is charged, and it is determined that the voltage between the target line and the device casing satisfies the specified condition.
  • the target line is a zero line if a voltage between the target line and the device housing is less than or equal to a first specified voltage when the metal core wire in the live wire is not attached to the device housing;
  • the metal core wire in the live wire is not attached to the device casing, if the voltage between the target wire and the device casing is greater than or equal to a second specified voltage, it is determined that the target wire is a live wire.
  • the determining whether a voltage between the target line and the device casing meets a specified condition includes:
  • the determining whether a voltage between the target line and the device casing meets a specified condition includes:
  • the power supply mode of the device is three-phase power supply, determining whether the voltage between the target line and the device casing is a first lap voltage or a third lap voltage, and the third lap voltage is a voltage between the target wire and the device casing when the metal core wire in any of the fire wires other than the target wire is attached to the device casing;
  • the method further includes:
  • the power supply mode of the device is single-phase power supply and the metal core wire in the fire wire is not connected to the device casing, determining whether the voltage between the target wire and the device casing is less than or equal to the first designation a voltage, or greater than or equal to a second specified voltage;
  • the device casing When the voltage between the target line and the device casing is less than or equal to a first specified voltage, or greater than or equal to a second specified voltage, it is determined that the device casing is normally grounded.
  • the first signal acquisition module can collect the first voltage and the second voltage, and the voltage between the first voltage and the second voltage. The difference is multiplied by the specified ratio to obtain a third voltage within the detection range of the signal processing module, and then the third voltage is input to the signal processing module, and the signal processing module can be based on the first isolation module, the first resistor, and the second
  • the resistor and the first signal acquisition module process the voltage between the target line and the device casing, and inversely process the third voltage to obtain a voltage between the target line and the device casing, when the target line and the device casing When the voltage between the two meets the specified conditions, it is determined that the device has failed.
  • the device can be fault detected regardless of whether the live and neutral lines connected to the device are connected or reversed.
  • the specified condition is used to indicate that the device is faulty, and the fault includes at least one of a hot line connected to the device and a neutral line connected, the device housing is not properly grounded, and the device housing is charged. Therefore, the embodiment of the present invention can perform three types of fault detection at the same time, and the fault detection capability is strong.
  • FIG. 1 is a schematic structural diagram of a detecting circuit provided by a related art
  • FIG. 2 is a schematic structural diagram of a first detecting circuit according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a second detecting circuit according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a third detecting circuit according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a fourth detecting circuit according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a fifth detecting circuit according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a sixth detecting circuit according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a seventh detecting circuit according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of an eighth detection circuit according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a ninth detecting circuit according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a tenth detecting circuit according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of an eleventh detecting circuit according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a twelfth detecting circuit according to an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of a thirteenth detecting circuit according to an embodiment of the present invention.
  • FIG. 15 is a flowchart of a detection method according to an embodiment of the present invention.
  • R resistance
  • D silicon rectifier diode
  • LED light-emitting diode
  • DW voltage regulator diode
  • C electrolytic capacitor
  • HA buzzer.
  • X target line
  • E device housing
  • GND reference ground
  • R1 first resistance
  • R2 second resistance
  • 1 a first isolation module
  • 1A a first isolation unit
  • 1B a second isolation unit
  • 2 signal acquisition module; 2a: the first input of the signal acquisition module; 2b: the second input of the signal acquisition module; 2c: the output of the signal acquisition module; OPA1: the first operational amplifier; OPA2: the second operational amplifier ; OPA3: third operational amplifier; R3: third resistor; R4: fourth resistor; R5: fifth resistor; R6: sixth resistor;
  • 3 signal processing module; 3a: input terminal of signal processing module; 3b: ground terminal of signal processing module; AD: analog to digital converter; aa: input terminal of analog to digital converter; ab: output of analog to digital converter ;ac: ground of the analog-to-digital converter; MCU: controller; ma: input of the controller; mb: ground of the controller;
  • 4 signal conditioning module; 4a: signal conditioning module input; 4b: signal conditioning module output; R7: seventh resistor; R8: eighth resistor; D1: first diode; D2: second level tube;
  • R10 the tenth resistor
  • 5 the second isolation module
  • 6 the second signal acquisition module
  • 6a the input end of the second signal acquisition module
  • 6b the output end of the second signal acquisition module
  • OPA4 the fourth operational amplifier.
  • the detecting circuit includes: a first isolation module 1, a first resistor R1, and a second resistor. R2, the first signal acquisition module 2 and the signal processing module 3;
  • the first isolation module 1 includes a first isolation unit 1A and a second isolation unit 1B, and the resistance values of the first isolation unit 1A and the second isolation unit 1B are equal.
  • One end of the first isolation unit 1A is connected to the target line X, and the second One end of the isolation unit 1B is connected to the device housing E;
  • the first input end 2a of the first signal acquisition module 2 and one end of the first resistor R1 are respectively connected to the other end of the first isolation unit 1A, and the first signal acquisition module 2
  • One ends of the second input terminal 2b and the second resistor R2 are respectively connected to the other end of the second isolation unit 1B, and the other end of the first resistor R1 and the other end of the second resistor R2 are respectively connected to the reference ground GND;
  • the output terminal 2c of 2 is connected to the input terminal 3a of the signal processing module 3, and the ground terminal 3b of the signal processing module 3 is connected to the reference ground GND.
  • the first isolation module 1 is configured to isolate the target line X and the device housing E, and is used for isolating the primary circuit and the secondary circuit.
  • the primary circuit includes the target line X and the power supply of the device, and the secondary circuit includes the a resistor R1, a second resistor R2, a first signal acquisition module 2 and a signal processing module 3;
  • the target line X is used to supply power to the device, and the target line X is a live line or a neutral line;
  • the device casing E is a casing of the device;
  • the first resistor R1 and the second resistor R2 are used for voltage division, and the resistance of the first resistor R1 is equal to the resistance of the second resistor R2;
  • the first signal acquisition module 2 is configured to separately collect the voltage across the first resistor R1 and a voltage across the second resistor R2, and determining a voltage across the first resistor R1 as a first voltage, and determining a voltage across the second resistor R2 as a second voltage, the first voltage and the second voltage
  • the voltage difference between the voltages is multiplied by a specified ratio to obtain a third voltage within the detection range of the signal processing module 3, and the third voltage is input to the signal processing module 3;
  • the signal processing module 3 is configured to perform the third voltage according to the processing process of the voltage between the target line X and the device casing E according to the first isolation module 1, the first resistor R1, the second resistor R2, and the first signal acquisition module 2. Reverse processing to obtain a voltage between the target line X and the device casing E. When the voltage between the target line X and the device casing E satisfies the specified condition, it is determined that the device is faulty, and the specified condition is used to indicate that the device is faulty.
  • the device includes at least one of a live line connected to the neutral line, a device housing not properly grounded, and a device housing charged.
  • the first voltage is a voltage that is reduced by the first ratio by the voltage U X-GND between the target line X and the reference ground GND, and the first ratio is
  • U E-GND is the voltage between the device casing E and the reference ground GND
  • r 2 is the resistance of the second resistor R2
  • r 1B is the resistance of the second isolation unit 1B. That is, the second voltage is the voltage that is reduced by the second ratio between the voltage U E-GND between the device casing E and the reference ground GND, and the second ratio is
  • the first One ratio Second ratio equal.
  • the first voltage is a voltage that is reduced by the first ratio by the voltage between the target line X and the reference ground GND
  • the second voltage is a voltage that is reduced by the second ratio by the voltage between the device casing E and the reference ground GND
  • the first ratio is equal to the second ratio, so the voltage difference between the first voltage and the second voltage is a voltage obtained by reducing the voltage between the target line X and the device casing E by a first ratio or a second ratio.
  • the third voltage is obtained by multiplying the voltage difference between the first voltage and the second voltage by a specified ratio. Therefore, the voltage between the target line X and the device casing E is actually determined based on the first voltage and the second voltage.
  • the connection or disconnection between the reference ground GND and the device casing E does not affect the relationship between the target line X and the device casing E.
  • the determination of the voltage that is, the fault detection of the device can be realized when the reference ground GND and the device casing E are connected or not connected.
  • the signal processing module 3 After the signal processing module 3 obtains the voltage between the target line X and the device casing E, it can determine whether the voltage between the target line X and the device casing E satisfies the specified condition to determine whether the device is faulty, and the signal processing module 3
  • the operation of determining whether the voltage between the target line and the device casing meets the specified condition may include the following five methods:
  • the first way when the power supply mode of the device is single-phase power supply and the metal core wire in the fire wire is not connected to the device casing, it is judged whether the voltage between the target wire and the device casing is less than or equal to the first specified voltage; When the voltage between the target line and the device casing is less than or equal to the first specified voltage, it is determined that the live line connected to the device is reversed from the neutral line, and the voltage between the target line and the device casing is determined to meet the specified condition.
  • the hot line connected to the device when the hot line connected to the device is connected to the neutral line, the voltage between the target line and the device shell can be determined to meet the specified condition, and the fault that occurs in the device can be determined as the device connection.
  • the incoming fire line is reversely connected to the zero line.
  • a first prompt message can be generated, and the first prompt message is used to prompt the user equipment to access the live line and the neutral line, so that the user can know the fire line and the zero line in time.
  • the wiring status refers to whether the live line and the neutral line are connected or reversed.
  • the first specified voltage is a voltage between the neutral wire and the device casing when the device casing is normally grounded and the metal core wire in the live wire is not attached to the device casing, and the first specified voltage is close to 0V.
  • the first specified voltage may be a smaller one of the first preset voltage and the second preset voltage, and the first preset voltage may be when the device casing is normally grounded and the metal core wire in the live wire is not connected
  • the average value of the voltage between the zero line and the device casing measured multiple times on the device casing.
  • the second preset voltage may be the product of the preset value and the power supply voltage of the device.
  • the preset value may be preset.
  • the preset value may be greater than 0.01 and less than 0.1, etc., which is not specifically limited in this embodiment of the present invention.
  • the first specified voltage can be set based on the first preset voltage and the second preset voltage, the first specified voltage can be flexibly selected based on different power usage scenarios in the embodiment of the present invention to ensure that the first specified voltage is satisfied. Detect demand.
  • the metal core wire in the live wire is not attached to the device.
  • the target line is zero line, that is, it can be determined that the fire line connected to the device is reversed from the neutral line.
  • the first specified voltage is 5V, assuming that the voltage between the target line and the device casing is 3V, since 3V is less than 5V, the fire of the device access can be determined. The line is reversed from the zero line.
  • the second way when the power supply mode of the device is single-phase power supply and the metal core wire in the fire wire is not connected to the device casing, it is judged whether the voltage between the target wire and the device casing is greater than the first specified voltage and less than the second The voltage is specified; when the voltage between the target line and the device casing is greater than the first specified voltage and less than the second specified voltage, it is determined that the device casing is not properly grounded, and the voltage between the target line and the device casing is determined to meet the specified condition.
  • a second prompt message may be generated, which is used to prompt the user equipment that the device casing is not properly grounded, so that the user can know the grounding condition of the device casing in time, and the grounding condition refers to whether the device casing is normally grounded.
  • the second designated voltage is a voltage obtained by subtracting the first specified voltage from the power supply voltage, the first specified voltage is less than the second specified voltage, and the second specified voltage is close to the power supply voltage.
  • the voltage between the live wire or the neutral wire and the equipment casing should be The power supply voltage is doubled, so when the voltage between the target line and the device casing is greater than the first specified voltage and less than the second specified voltage, it can be determined that the device casing is not properly grounded.
  • the power supply voltage is 220V
  • the first specified voltage is 5V
  • the second specified voltage is 215V.
  • the voltage between the target line and the device casing is 210V. Since 210V is greater than 5V and less than 215V, it can be determined that the device casing is not properly grounded. .
  • the power supply mode of the device is single-phase power supply and the metal core wire in the fire wire is not connected to the device casing
  • the voltage between the target wire and the device casing should be less than or equal to the first specified voltage, if the target wire
  • the voltage between the target line and the device casing should be greater than or equal to the second specified voltage, so when the voltage between the target line and the device casing is less than or equal to the first specified voltage, or greater than or equal to the second specified voltage
  • the device case is properly grounded.
  • the supply voltage is 220V
  • the first specified voltage is 5V
  • the second specified voltage is 215V.
  • the voltage between the target line and the device casing is 3V. Since 3V is less than 5V, it can be determined that the device casing is properly grounded.
  • the third way when the power supply mode of the device is single-phase power supply and the target line is a live line, it is determined whether the voltage between the target line and the device casing is the first lap voltage, and the first lap voltage is in the target line.
  • the voltage between the target wire and the device casing is the first lap voltage, it is determined that the device casing is charged, and the target wire and the device casing are determined.
  • the voltage between the two meets the specified conditions; when the power supply mode of the device is single-phase power supply and the target line is the neutral line, it is judged whether the voltage between the target line and the device casing is the second lap voltage, and the second lap voltage is The voltage between the target wire and the device casing when the metal core wire in the fire wire other than the target wire is attached to the device casing, and the device casing is determined when the voltage between the target wire and the device casing is the second lap voltage. Charge and determine that the voltage between the target line and the device enclosure meets the specified conditions.
  • the device casing when the device casing is charged, it may be determined that the voltage between the target line and the device casing meets the specified condition, and at this time, it may be determined that the device fault is charged to the device casing, and in this case, A third prompt message is generated, and the third prompt message is used to prompt the user equipment to be powered, so that the user can know the charging status of the device housing in time.
  • the charging status refers to whether the device housing is powered.
  • the power supply mode of the device is single-phase power supply and the target line is a live wire
  • the metal wire in the target wire is taken
  • the device casing is connected to the device casing, the device casing is charged, and the potential of the device casing is close to the target line.
  • the voltage between the target line and the device casing should be near 0V, that is, the first lap voltage can be greater than or equal to 0V.
  • the third preset voltage may be preset, for example, the third preset voltage may be 0.2V, 0.3V, etc., which is not specifically limited in this embodiment of the present invention.
  • the power supply mode of the device is single-phase power supply and the target line is zero line
  • the device casing is close to the potential of the live wire.
  • the voltage between the target line and the device casing should be near the supply voltage, that is, the second lap voltage can be greater than the fourth predetermined voltage and less than or equal to the supply voltage.
  • the fourth preset voltage may be preset, for example, when the power supply voltage is 220V, the fourth preset voltage may be 119V, 119.5V, etc., which is not specifically limited in this embodiment of the present invention.
  • the target line is a live line
  • the first lap voltage is greater than or equal to 0V and less than 0.3V. Assuming that the voltage between the target line and the device casing is 0.2V, the voltage between the target line and the device casing is the first lap. Voltage, you can determine the device housing is charged.
  • the target line is zero line
  • the power supply voltage is 220V
  • the second lap voltage is greater than 119V and less than or equal to 220V. Assuming that the voltage between the target line and the device casing is 119.5V, the target line is connected to the device casing. The voltage is the second lap voltage and it can be determined that the device housing is charged.
  • the power supply mode of the device is single-phase power supply
  • it can also determine whether the target line is a hot line or a neutral line, and judge that the target line is a hot line.
  • the operation of the neutral line may be: when the metal core wire in the live wire is not connected to the device casing, if the voltage between the target wire and the device casing is less than or equal to the first specified voltage, it is determined that the target wire is a neutral wire; When the metal core wire in the live wire is not attached to the device casing, if the voltage between the target wire and the device casing is greater than or equal to the second specified voltage, it is determined that the target wire is a live wire.
  • the process of determining whether the target line is a live line or a neutral line is a process of determining whether the live line connected to the device is connected or reversed, that is, when the target line is a live line, the device connection can be determined.
  • the incoming live line is connected to the neutral line.
  • the target line is zero line, it can be determined that the live line connected to the device is reversed from the neutral line.
  • the metal core wires in the live wire are not overlapped.
  • you reach the device enclosure you can determine that the target line is zero.
  • the voltage between the target line and the device casing is greater than or equal to the second specified voltage, the voltage between the target line and the device casing is large and close to the supply voltage, and therefore, the metal core wire in the live wire is not overlapped.
  • you can determine that the target line is a live line.
  • the supply voltage is 220V
  • the first specified voltage is 5V
  • the second specified voltage is 215V.
  • the voltage between the target line and the device casing is 3V
  • 3V is less than 5V
  • the power supply voltage is 220V
  • the first specified voltage is 5V
  • the second specified voltage is 215V.
  • the voltage between the target line and the device casing is 217V
  • the 217V is greater than 215V, it can be determined that the target line is a hot line.
  • the operation of detecting the live detection of the device in the fault detection of the device is different, and therefore, before the device housing is electrically detected. It is necessary to first determine whether the target line is a hot line or a zero line. Moreover, only when the metal core wire in the fire wire is not connected to the device casing and the equipment casing is normally grounded, can the cable be judged to be a hot wire or a neutral wire. Therefore, in practical applications, the device can be installed for the first time and initially.
  • the target line is a hot line or a neutral line, thereby ensuring that the effective detection of the device casing can be performed subsequently.
  • the target line since the wiring condition of the neutral line and the live line does not change during the operation of the device under normal conditions, the target line may be used only when the device is first installed, first powered up, or powered off for the first time. The fire line or the zero line is judged, and it is not necessary to judge again in the subsequent detection process, thereby saving processing resources.
  • the operation of determining whether the voltage between the target line and the device casing is the first lap voltage may be implemented by using a flag bit, specifically When the target line is a live line, if a voltage jump between the target line and the device casing is detected, the voltage between the target line and the device casing before the jump occurs is acquired, and the first flag is determined based on the acquired voltage. Obtaining a voltage between the target line and the device casing after the jump occurs, and determining a second flag bit based on the acquired voltage; determining the target line and the device casing when the first flag bit and the second flag bit satisfy the first condition The voltage between them is the first lap voltage.
  • obtaining a voltage between the target line and the device casing before the jump occurs and determining the first flag bit based on the acquired voltage, if the acquired voltage is the first normal voltage, setting the first flag bit to 0, if The acquired voltage is the first lap voltage, and the first flag is set to 1.
  • the first normal voltage is the voltage between the target line and the device casing when the metal core wire in the target wire is not overlapped on the device casing. And when the device casing is normally grounded, the first normal voltage may be greater than a fourth preset voltage and less than or equal to the power supply voltage. When the device casing is not normally grounded, the first normal voltage may be greater than a fifth preset voltage and less than Or equal Double the supply voltage.
  • the fifth preset voltage can be preset, for example, when the power supply voltage is 220V, The power supply voltage of the multiple is 110V, and the fifth preset voltage may be 108V, 109V, etc., which is not specifically limited in the embodiment of the present invention.
  • the target line is a live line
  • the power supply voltage is 220V
  • the first normal voltage is greater than 119V and less than or equal to 220V
  • the first normal voltage is greater than 108V and less than or equal to 110V
  • the first lap voltage is greater than or equal to 0V and less than 0.3V.
  • the acquired voltage is the first normal voltage
  • the first flag bit can be set to 0 at this time.
  • the target line is a live line
  • the power supply voltage is 220V
  • the first normal voltage is greater than 119V and less than or equal to 220V
  • the first normal voltage is greater than 108V and less than or equal to 110V
  • the first lap voltage is greater than or equal to 0V and less than 0.3.
  • V assuming that the voltage between the target line and the device casing before the occurrence of the jump is 0.2V, the obtained voltage is the first lap voltage, and the first flag bit can be set to 1 at this time.
  • the operation of determining the voltage between the target line and the device casing after the hopping occurs, and determining the second flag bit based on the acquired voltage is the same as the operation of determining the first flag bit based on the acquired voltage, which is used by the embodiment of the present invention. No longer.
  • the first condition is used to indicate that the device casing jumps from the unpowered state to the charged state.
  • the first condition may be that the first flag bit is 0 and the second flag bit is 1. Since when the first flag bit is 0 and the second flag bit is 1, it can be determined that the voltage between the target line and the device casing jumps from the first normal voltage to the first lap voltage, so the target line can be determined at this time.
  • the voltage between the device and the device housing is the first lap voltage.
  • the operation of determining whether the voltage between the target line and the device casing is the second lap voltage can be realized by the flag bit.
  • the target line is a neutral line
  • the voltage between the target line and the device casing before the jump occurs is acquired, and the first step is determined based on the acquired voltage.
  • Three flag bits obtain the target after the jump a voltage between the line and the device casing, and determining a fourth flag bit based on the acquired voltage; when the third flag bit and the fourth flag bit satisfy the second condition, determining a voltage between the target line and the device casing is a second Connect the voltage.
  • the voltage between the target line and the device casing before the jump occurs is obtained, and when the third flag is determined based on the acquired voltage, if the acquired voltage is the second normal voltage, the third flag is set to 0. If the acquired voltage is the second lap voltage, the third flag bit is set to one.
  • the second normal voltage is a voltage between the target line and the device casing when the metal core wire in the live wire other than the target wire is not overlapped on the device casing. And when the device casing is normally grounded, the second normal voltage may be greater than or equal to 0V and less than the third preset voltage. When the device casing is not normally grounded, the second normal voltage may be greater than the fifth preset voltage and less than or equal to Double the supply voltage.
  • the target line is zero line
  • the power supply voltage is 220V
  • the second normal voltage is greater than or equal to 0V and less than 0.3V
  • the second normal voltage is greater than 108V and less than or equal to 110V
  • the second lap voltage is greater than 119V and less than or equal to 220V
  • the target line is zero line
  • the power supply voltage is 220V
  • the second normal voltage is greater than or equal to 0V and less than 0.3V
  • the second normal voltage is greater than 108V and less than or equal to 110V
  • the second lap voltage is greater than 119V and less than or It is equal to 220V.
  • the third flag bit can be set to 1.
  • the operation of determining the voltage between the target line and the device casing after the jump occurs, and determining the fourth flag bit based on the acquired voltage is the same as the operation of determining the third flag bit based on the acquired voltage, which is used by the embodiment of the present invention. No longer.
  • the second condition is used to indicate that the device casing jumps from the uncharged state to the charged state.
  • the second condition may be that the third flag bit is 0 and the fourth flag bit is 1. Since when the third flag bit is 0 and the fourth flag bit is 1, it can be determined that the voltage between the target line and the device casing jumps from the second normal voltage to the second lap voltage, so that the target line can be determined at this time.
  • the voltage between the device and the device housing is the second lap voltage.
  • the fourth way when the power supply mode of the device is double-fired, determine whether the voltage between the target line and the device casing is the first lap voltage or the second lap voltage; when the voltage between the target line and the device casing When it is the first lap voltage or the second lap voltage, it is determined that the device casing is charged, and it is determined that the voltage between the target line and the device casing meets the specified condition.
  • the device casing when the device casing is charged, it may be determined that the voltage between the target line and the device casing meets the specified condition, and at this time, it may be determined that the device fault is charged to the device casing, and in this case, A third prompt message is generated, and the third prompt message is used to prompt the user equipment to be powered, so that the user can know the charging status of the device shell in time.
  • the potential of the device casing is close to the target line.
  • the voltage between the device housings should be around 0V, that is, the voltage between the target line and the device housing should be the first lap voltage. If the metal core wire in the hot wire other than the target wire is connected to the device casing and the device casing is charged, the device casing is close to the potential of the live wire, and the voltage between the target wire and the device casing should be at the supply voltage. Nearby, that is, the voltage between the target line and the device casing should be the second lap voltage. Therefore, when the voltage between the target line and the device casing is the first lap voltage or the second lap voltage, it can be determined that the device casing is charged.
  • the power supply voltage is 220V
  • the first lap voltage is greater than or equal to 0V and less than 0.3V
  • the second lap voltage is greater than 119V and less than or equal to 220V.
  • the voltage between the target line and the device casing is 0.2V
  • the voltage between the target line and the device casing is determined to be the first lap voltage
  • the device casing is determined to be charged.
  • the operation of determining whether the voltage between the target line and the device casing is the first lap voltage or the second lap voltage in the fourth manner may be implemented by using a flag bit, specifically If a voltage jump between the target line and the device casing is detected, obtaining a voltage between the target line and the device casing before the jump occurs, and determining a fifth flag based on the acquired voltage; acquiring the target after the jump occurs a voltage between the line and the device casing, and determining a sixth flag based on the acquired voltage; when the fifth flag and the sixth flag satisfy the third condition, determining that the voltage between the target line and the device casing is the first Connect the voltage or the second lap voltage.
  • obtaining a voltage between the target line and the device casing before the jump occurs and determining the fifth flag bit based on the acquired voltage, if the acquired voltage is the third normal voltage, setting the fifth flag bit to 0, if The acquired voltage is the first lap voltage or the second lap voltage, and the fifth flag bit is set to 1.
  • the third normal voltage is the voltage between the target line and the device casing when the metal wire in the target wire and the fire wire other than the target wire are not overlapped on the device casing.
  • the third normal voltage may be greater than the fifth preset voltage and less than or equal to Double the supply voltage.
  • the power supply voltage is 220V
  • the third normal voltage is greater than 108V and less than or equal to 110V
  • the first lap voltage is greater than or equal to 0V and less than 0.3V
  • the second lap voltage is greater than 119V and less than or equal to 220V, assuming acquisition occurs.
  • the voltage between the target line and the device casing is 109V
  • the obtained voltage is the third normal voltage.
  • the fifth flag bit can be set to 0.
  • the power supply voltage is 220V
  • the third normal voltage is greater than 108V and less than or equal to 110V
  • the first lap voltage is greater than or equal to 0V and less than 0.3V
  • the second lap voltage is greater than 119V and less than or equal to 220V, assuming acquisition occurs.
  • the voltage between the target line and the device casing is 0.2V
  • the obtained voltage is the first overlap voltage.
  • the fifth flag bit can be set to 1.
  • the operation of determining the voltage between the target line and the device casing after the hopping occurs, and determining the sixth flag bit based on the acquired voltage is the same as the operation of determining the fifth flag bit based on the acquired voltage, which is used by the embodiment of the present invention. No longer.
  • the third condition is used to indicate that the device casing jumps from the unpowered state to the charged state.
  • the third condition may be that the fifth flag bit is 0 and the sixth flag bit is 1. Since when the fifth flag bit is 0 and the sixth flag bit is 1, it can be determined that the voltage between the target line and the device casing jumps from the third normal voltage to the first lap voltage, or is hopped by the third normal voltage. To the second lap voltage, therefore, it can be determined at this time that the voltage between the target line and the device casing is the first lap voltage or the second lap voltage.
  • the fifth mode when the power supply mode of the device is three-phase power supply, it is determined whether the voltage between the target line and the device casing is the first lap voltage or the third lap voltage, and the third lap voltage is when the target line is removed.
  • the voltage between the target wire and the device casing when the metal core wire in any other fire wire is connected to the device casing; when the voltage between the target wire and the device casing is the first lap voltage or the third lap voltage When it is determined that the device housing is charged, it is determined that the voltage between the target line and the device housing meets the specified conditions.
  • the device casing when the device casing is charged, it may be determined that the voltage between the target line and the device casing meets the specified condition, and at this time, it may be determined that the device fault is charged to the device casing, and in this case, A third prompt message is generated, and the third prompt message is used to prompt the user equipment to be powered, so that the user can know the charging status of the device shell in time.
  • the power supply mode of the device is three-phase power supply
  • the metal core wire in the target wire is connected to the device casing and the device casing is charged, the potential of the device casing and the target wire is similar, and the target line is at this time.
  • the voltage between the device housings should be around 0V, that is, the voltage between the target line and the device housing should be the first lap voltage.
  • the device casing is close to the potential of the live wire, and the voltage between the target wire and the device casing should be In the vicinity of the supply voltage, that is, the third lap voltage may be greater than the sixth preset voltage and less than or equal to Double the supply voltage.
  • the sixth preset voltage may be preset, for example, when the power supply voltage is 220V, the sixth preset voltage may be 373V, 374V, etc., which is not specifically limited in this embodiment of the present invention.
  • the power supply voltage is 220V
  • the first lap voltage is greater than or equal to 0V and less than 0.3V
  • the third lap voltage is greater than 373V and less than or equal to Assuming that the voltage between the target line and the device casing is 0.2V, it can be determined that the voltage between the target line and the device casing is the first lap voltage, and it is determined that the device casing is charged.
  • the operation of determining whether the voltage between the target line and the device casing is the first lap voltage or the third lap voltage in the fifth manner may be implemented by using a flag bit, specifically If a voltage transition between the target line and the device casing is detected, obtaining a voltage between the target line and the device casing before the jump occurs, and determining a seventh flag based on the acquired voltage; acquiring the target after the occurrence of the jump The voltage between the line and the device casing, and determining the eighth flag bit based on the acquired voltage; when the seventh flag bit and the eighth flag bit satisfy the fourth condition, determining that the voltage between the target line and the device casing is the first Connect the voltage or the third lap voltage.
  • obtaining a voltage between the target line and the device casing before the jump occurs and determining the seventh flag bit based on the acquired voltage, if the acquired voltage is the fourth normal voltage, setting the seventh flag bit to 0, if The acquired voltage is the first lap voltage or the third lap voltage, and the seventh flag is set to 1.
  • the fourth normal voltage is a voltage between the target line and the device casing when the metal wire in the target wire and the fire wire other than the target wire are not overlapped on the device casing. And when the device is normally grounded, the fourth normal voltage may be greater than the fourth preset voltage and less than or equal to the power supply voltage. When the device casing is not normally grounded, the fourth normal voltage may be greater than the fifth preset voltage and less than or equal Double the supply voltage.
  • the power supply voltage is 220V
  • the fourth normal voltage is greater than 119V and less than or equal to 220V
  • the fourth normal voltage is greater than 108V and less than or equal to 110V
  • the first lap voltage is greater than or equal to 0V and less than 0.3V
  • the third lap Voltage greater than 373V and less than or equal to Assuming that the voltage between the target line and the device casing before the jump occurs is 119.5V, the acquired voltage is the fourth normal voltage, and the seventh flag bit can be set to 0 at this time.
  • the power supply voltage is 220V
  • the fourth normal voltage is greater than 119V and less than or equal to 220V
  • the fourth normal voltage is greater than 108V and less than or equal to 110V
  • the first lap voltage is greater than or equal to 0V and less than 0.3V
  • the third lap Voltage greater than 373V and less than or equal to Assuming that the obtained voltage between the target line and the device casing before the jump occurs is 0.2V, the obtained voltage is the first overlap voltage, and the seventh flag bit can be set to 1 at this time.
  • the operation of determining the voltage between the target line and the device casing after the hopping occurs, and determining the eighth flag bit based on the acquired voltage is the same as the operation of determining the seventh flag bit based on the acquired voltage, which is used by the embodiment of the present invention. No longer.
  • the fourth condition is used to indicate that the device casing jumps from an uncharged state to a charged state, such as the fourth article.
  • the piece may have a seventh flag bit of 0 and an eighth flag bit of 1. Since when the seventh flag bit is 0 and the eighth flag bit is 1, it can be determined that the voltage between the target line and the device casing jumps from the fourth normal voltage to the first lap voltage, or is hopped by the fourth normal voltage. To the third lap voltage, therefore, it can be determined at this time that the voltage between the target line and the device casing is the first lap voltage or the third lap voltage.
  • the power supply mode of the device is single-phase power supply and when the live line connected to the device is connected to the neutral line, if the voltage between the target line and the device casing is detected to be changed from the first normal voltage to the first With the lap voltage, you can determine that the device case is live.
  • the power supply mode of the device is single-phase power supply and when the fire line connected to the device is connected to the neutral line, if it is detected that the voltage between the target line and the device casing is changed from the second normal voltage to the second overlapping voltage, then It can be determined that the device housing is live.
  • the power supply mode of the device is double-fired, if the voltage between the target line and the device casing is detected to jump from the third normal voltage to the first lap voltage, or the voltage between the target line and the device casing is detected, When the third normal voltage jumps to the second lap voltage, it can be determined that the device casing is charged.
  • the power supply mode of the device is three-phase power supply, if it is detected that the voltage between the target line and the device casing jumps from the fourth normal voltage to the first lap voltage, or the voltage between the target line and the device casing is detected, When the fourth normal voltage jumps to the third lap voltage, it can be determined that the device casing is charged.
  • the detection circuit further includes a signal conditioning module 4, an input terminal 4a of the signal conditioning module 4 and a first signal.
  • the output 2c of the acquisition module 2 is connected, and the output 4b of the signal conditioning module 4 is connected to the input 3a of the signal processing module 3.
  • the signal conditioning module 4 is configured to condition the third voltage received from the first signal acquisition module 2 into a voltage within the acceptance range of the signal processing module 3, and input the conditioned third voltage to the signal processing module 3. .
  • the first isolation unit 1A includes N series resistors, the total resistance of the N series resistors is greater than or equal to a specified resistance value, and N is a natural number greater than or equal to 1, and the specified resistance value meets the safety standard.
  • the required resistance of the reinforced insulation is N series resistors, the total resistance of the N series resistors is greater than or equal to a specified resistance value, and N is a natural number greater than or equal to 1, and the specified resistance value meets the safety standard. The required resistance of the reinforced insulation.
  • the specified resistance value may be set in advance, and the specified resistance value may be a reinforced insulation 4Mohm (mega ohm) or the like required by the safety standard IEC60065, which is not specifically limited in the embodiment of the present invention.
  • the insulation resistance between the target line X and the device casing E is composed of the first resistor R1, the second resistor R2, the first isolation unit 1A and the second isolation unit 1B, and due to the first isolation unit 1A and The resistance values of the second isolation unit 1B are equal. Therefore, when the total resistance of the N series resistors included in the first isolation unit 1A is greater than or equal to a specified resistance value, insulation between the target line X and the device casing E can be ensured.
  • the resistor meets the reinforced insulation required in the safety standard to ensure the user's electrical safety.
  • the isolation module 1 since the primary circuit and the secondary circuit are isolated by the first isolation module 1, and since the resistances of the first isolation unit 1A and the second isolation unit 1B are equal, when the first isolation unit 1A includes N series connected When the total resistance of the resistor is greater than or equal to the specified resistance value, the isolation between the primary circuit and the secondary circuit can be ensured to meet the reinforced insulation required in the safety standard, thereby ensuring that the electronic components in the secondary circuit are not in the primary circuit. The high voltage is damaged.
  • the total resistance of the N series resistors when the total resistance of the N series resistors is greater than a specified resistance, the total resistance of any of the N series resistors is greater than or equal to the specified resistance. The value can be ensured that the first isolation unit 1A can still meet the isolation requirement in the case where any one of the N series resistors is short-circuited.
  • first isolation unit 1A in the embodiment of the present invention is described by taking the structure shown in FIG. 4 as an example. In practical applications, other structures composed of other electronic components may also be used to implement the first isolation unit 1A. The function of the embodiment of the present invention is not specifically limited thereto.
  • the second isolation unit 1B includes M series resistors, the total resistance of the M resistors is greater than or equal to a specified resistance value, and M is a natural number greater than or equal to 1, and the specified resistance value meets the requirements in the safety standard.
  • the resistance of the reinforced insulation is M series resistors, the total resistance of the M resistors is greater than or equal to a specified resistance value, and M is a natural number greater than or equal to 1, and the specified resistance value meets the requirements in the safety standard.
  • the resistance of the reinforced insulation is provided.
  • the insulation resistance between the target line X and the device casing E is composed of the first resistor R1, the second resistor R2, the first isolation unit 1A and the second isolation unit 1B, and due to the first isolation unit 1A and The resistance values of the second isolation unit 1B are equal. Therefore, when the total resistance of the M series resistors included in the second isolation unit 1B is greater than or equal to the specified resistance value, the insulation between the target line X and the device casing E can be ensured.
  • the resistor meets the reinforced insulation required in the safety standard to ensure the user's electrical safety.
  • the isolation between the primary circuit and the secondary circuit can be ensured to meet the reinforced insulation required in the safety standard, thereby ensuring that the electronic components in the secondary circuit are not in the primary circuit. The high voltage is damaged.
  • the second isolation unit 1B when the total resistance of the M series resistors is greater than a specified resistance, the total resistance of any M-1 resistors of the M series resistors is greater than or equal to the specified resistance. The value, so as to ensure that any one of the M series resistors is short-circuited, the second isolation unit 1B can still meet the isolation requirement.
  • the second isolation unit 1B in the embodiment of the present invention is described by taking the structure shown in FIG. 5 as an example. In practical applications, other structures composed of other electronic components may also be used to implement the second isolation unit 1B.
  • the function of the embodiment of the present invention is not specifically limited thereto.
  • the first signal acquisition module 2 includes: a first operational amplifier OPA1, a second operational amplifier OPA2, a third operational amplifier OPA3, a third resistor R3, a fourth resistor R4, a fifth resistor R5, and a sixth resistor R6;
  • the non-inverting input terminal of the first operational amplifier OPA1 and one end of the first resistor R1 are respectively connected to the other end of the first isolation unit 1A, and the inverting input terminal of the first operational amplifier OPA1 and one end of the third resistor R3 are respectively associated with the first operation.
  • the output terminal of the amplifier OPA1 is connected; the non-inverting input terminal of the second operational amplifier OPA2 and one end of the second resistor R2 are respectively connected to the other end of the second isolation unit 2B, and the inverting input terminal of the second operational amplifier OPA2 and the fourth resistor R4
  • One end of the third operational amplifier OPA3 is connected to the other end of the third operational amplifier OPA2, and the non-inverting input terminal of the third operational amplifier OPA3 is also connected to one end of the fifth resistor R5.
  • the other end of the fifth resistor R5 is connected to the reference ground GND
  • the inverting input terminal of the third operational amplifier OPA3 is connected to the other end of the fourth resistor R4
  • the inverting input terminal of the third operational amplifier OPA3 is further connected to the sixth resistor.
  • One end of R6 is connected, and the other end of the sixth resistor R6 and the input end 4a of the signal conditioning module 4 are respectively connected to the output terminal of the third operational amplifier OPA3.
  • the first operational amplifier OPA1, the second operational amplifier OPA2, and the third operational amplifier OPA3 constitute a differential amplifying circuit. Specifically, the first operational amplifier OPA1 is used to collect the voltage across the first resistor R1, and the second operational amplifier OPA2 is used. The voltage across the second resistor R2 is acquired, and the third operational amplifier OPA3 is configured to determine the third voltage based on the voltage difference between the first voltage and the second voltage.
  • the third operational amplifier OPA3 can determine the third voltage based on the voltage difference between the first voltage and the second voltage, The third voltage is determined, wherein U 3 is a third voltage, r 6 is a resistance of the sixth resistor, r 4 is a resistance of the fourth resistor, U 1 is a first voltage, and U 2 is a second voltage. That is, the third voltage is a voltage obtained by multiplying the voltage difference between the first voltage and the second voltage by a specified ratio, and the specified ratio is
  • the first signal acquisition module 2 in the embodiment of the present invention is described by taking the structure shown in FIG. 6 as an example.
  • a differential amplifier circuit composed of other electronic components may also be used to implement the first signal acquisition.
  • the function of the module 2 is not specifically limited in this embodiment of the present invention.
  • the signal conditioning module 4 includes: a seventh resistor R7, an eighth resistor R8, a conditioning power supply, a first diode D1 and a second diode D2;
  • One end of the seventh resistor R7 is connected to the output end 2c of the first signal acquisition module 2, one end of the eighth resistor R8, the anode of the first diode D1, the cathode of the second diode D2, and the input of the signal processing module 3.
  • the terminals 3a are respectively connected to the other end of the seventh resistor R7, the other end of the eighth resistor R8 and the cathode of the first diode D1 are respectively connected to the conditioning power source, and the anode of the second diode D2 is connected to the reference ground GND.
  • the signal conditioning module 4 can raise the third voltage through the conditioning power source, the seventh resistor R7, and the eighth resistor R8 when conditioning the third voltage received from the first signal acquiring module 2. Double the conditioning voltage and raise the third voltage After adjusting the voltage, the lifted third voltage can be clamped between U cc + U d and -U d through the conditioning power source, the first diode D1 and the second diode D2 to The voltage is conditioned to a voltage within the acceptance range of the signal processing module 3, thereby ensuring that the electronic components in the signal processing module 3 are not damaged by overvoltage or negative voltage.
  • r 7 is the resistance of the seventh resistor R7
  • r 8 is the resistance of the eighth resistor R8
  • U cc is the conditioning voltage
  • the conditioning voltage is the output voltage of the conditioning power source
  • U d is the first diode D1 or
  • the turn-on voltage of the second diode D2 is equal to the turn-on voltage of the second diode D1 and the second diode D2.
  • the conditioning voltage U cc may be 3.3V, 5V, etc., which is not specifically limited in the embodiment of the present invention.
  • the on-voltage U d of the first diode D1 or the second diode D2 may be 0.5V, 0.7V, etc., which is not specifically limited in the embodiment of the present invention.
  • the signal conditioning module 4 in the embodiment of the present invention is described by taking the structure shown in FIG. 7 as an example. In practical applications, other functions composed of other electronic components may also be used to implement the function of the signal conditioning module 4. The embodiment of the present invention does not specifically limit this.
  • the signal processing module 3 includes: an analog to digital converter AD and a controller MCU;
  • the input terminal aa of the analog-to-digital converter AD is connected to the output terminal 4b of the signal conditioning module 4, the output terminal ab of the analog-to-digital converter AD is connected to the input terminal ma of the controller MCU, the ground terminal ac of the module converter AD and the controller
  • the ground terminal mb of the MCU is connected to the reference ground GND, respectively.
  • the analog-to-digital converter AD is configured to convert the received analog quantity of the third voltage into a digital quantity, and send the digital quantity of the third voltage to the controller MCU; the controller MCU is configured to determine the target based on the third voltage The voltage between line X and device housing E.
  • the controller MCU determines the voltage between the target line X and the device casing E based on the third voltage
  • the signal conditioning module 4 is not included in the detection circuit, the determination may be performed based on the first ratio and the specified ratio, specifically The voltage between the target line X and the device casing E can be obtained by multiplying the third voltage by the reciprocal of the specified ratio and multiplying by the reciprocal of the first ratio.
  • the detection circuit includes the signal conditioning module 4, the determination may be performed based on the first ratio, the specified ratio, and the conditioning voltage. Specifically, the third voltage may be lowered first. The voltage between the target line X and the device casing E is obtained by multiplying the reduced voltage by the third voltage of the specified ratio and multiplying the inverse of the first ratio.
  • the signal processing module 3 in the embodiment of the present invention is described by taking the structure shown in FIG. 8 as an example.
  • the functions of the signal processing module 3 may be implemented by other structures composed of other electronic components.
  • the signal processing module 3 may include only a controller, and an analog-to-digital conversion module or the like may be integrated in the controller, which is not specifically limited in this embodiment of the present invention.
  • the temperature drift of the semiconductor device is highly prone to occur during use, and the temperature drift refers to a change in the parameter of the semiconductor device caused by the temperature change, which may be caused when the temperature of the semiconductor device is drifted.
  • the output voltage is inaccurate. Therefore, when a semiconductor device included in the detecting circuit, such as the first resistor R1, the second resistor R2, the first operational amplifier OPA1, the second operational amplifier OPA2, etc., has a temperature drift, the semiconductor needs to be The output voltage of the device is corrected to ensure the accuracy of the output voltage of the semiconductor device. When the output voltage of the semiconductor device is corrected, the correction can be performed by using a temperature compensation method.
  • the correction may be performed in other manners, which is not specifically limited in the embodiment of the present invention.
  • the specific operation of the method for performing the temperature compensation reference may be made to the related art, which is not described in detail in the embodiment of the present invention.
  • the semiconductor device is also easily contaminated by a harsh environment during use, and the contamination may affect the resistivity of the semiconductor device. Therefore, in order to avoid the semiconductor device included in the detecting circuit, such as the first resistor R1, The second resistor R2, the first operational amplifier OPA1, the second operational amplifier OPA2, and the like are contaminated, and the semiconductor device needs to be isolated from the environment.
  • the isolation may be performed by using a coating or a potting method. Of course, in other applications, the isolation may be performed in other manners, which is not specifically limited in the embodiment of the present invention.
  • the specific operation of the method for performing the isolation by using the method of coating or potting can refer to the related art, which is not elaborated in the embodiment of the present invention.
  • the first signal acquisition module may collect the first voltage and the second voltage, and multiply the voltage difference between the first voltage and the second voltage by a specified ratio to obtain detection in the signal processing module.
  • a third voltage in the range after which the third voltage is input to the signal processing module, and the signal processing module can be between the target line and the device casing according to the first isolation module, the first resistor, the second resistor, and the first signal acquisition module
  • the voltage processing process reverses the third voltage to obtain a voltage between the target line and the device casing, and determines that the device malfunctions when the voltage between the target line and the device casing meets the specified condition.
  • the device can be fault detected regardless of whether the live and neutral lines connected to the device are connected or reversed.
  • the specified condition is used to indicate that the device is faulty, and the fault includes at least one of the hot line connected to the device and the neutral line of the device, the device housing is not normally grounded, and the device housing is charged, the embodiment of the present invention can simultaneously Three types of fault detection are performed, and the fault detection capability is strong.
  • FIG. 9 is a schematic structural diagram of a detection circuit for detecting a device according to an embodiment of the present invention.
  • the detection circuit includes: a second isolation module 5, a tenth resistor R10, and a second signal. Acquisition module 6 and signal processing module 3;
  • One end of the second isolation module 5 is connected to the target line X, and one end of the input end 6a and the tenth resistor R10 of the second signal acquisition module 6 are respectively connected to the other end of the second isolation module 5, and the other end of the tenth resistor R10 is
  • the reference ground GND is connected, the reference ground GND is connected to the device casing E, the output terminal 6b of the second signal acquisition module 6 is connected to the input terminal 3a of the signal processing module 3, and the ground terminal 3b of the signal processing module 3 is connected to the reference ground GND.
  • the target line X is used to supply power to the device, the target line X is a live line or a neutral line; the device casing E is a casing of the device; the tenth resistor R10 is used for voltage division; and the second isolation module 5 is used for the target line X and The device housing E is isolated and used to isolate the primary circuit and the secondary circuit.
  • the primary circuit includes the target line X and the power supply of the device.
  • the secondary circuit includes a tenth resistor R10, a second signal acquisition module 6, and a signal processing module. 3; the second signal acquisition module 6 is used to collect the voltage across the tenth resistor R10, and the voltage across the tenth resistor R10 is determined as the fourth voltage, the fourth voltage is input to the signal processing module 3;
  • the signal processing module 3 is configured to inversely process the fourth voltage according to the processing process of the voltage between the target line X and the device casing E according to the second isolation module 5, the tenth resistor R10, and the second signal acquisition module 6.
  • the voltage between the target line X and the device casing E determines that the device has failed when the voltage between the target line X and the device casing E meets the specified condition, and the specified condition is used to indicate that the device is faulty, and the fault includes the device access. At least one of the live wire is reversed to the neutral wire, the device casing is not properly grounded, and the device casing is live.
  • the fourth voltage is the voltage that is reduced by the third ratio between the voltage U XE between the target line X and the device casing E, and the third ratio is
  • the signal processing module 3 After the signal processing module 3 obtains the voltage between the target line X and the device casing E, it can determine whether the voltage between the target line X and the device casing E satisfies the specified condition to determine whether the device is faulty, and the signal processing module
  • the operation of determining whether the voltage between the target line X and the device casing E satisfies the specified condition is the same as that of the above-mentioned detection circuit embodiment, and will not be further described in the embodiment of the present invention.
  • the detecting circuit further includes a signal conditioning module 4, the input end 4a of the signal conditioning module 4 is connected to the output end 6b of the second signal acquisition module 6, the output end 4b of the signal conditioning module 4 and the input end of the signal processing module 3. 3a connection.
  • the signal conditioning module 4 is configured to condition the fourth voltage received from the second signal acquisition module 6 into a voltage within the acceptance range of the signal processing module 3, and input the conditioned fourth voltage to the signal processing module 3.
  • the second isolation module 5 includes N series resistors, the total resistance of the N series resistors is greater than or equal to a specified resistance value, and N is a natural number greater than or equal to 1, and the specified resistance value meets the safety standard. Requires the resistance of the reinforced insulation.
  • the specified resistance value may be set in advance, and the specified resistance value may be the reinforced insulation 4Mohm or the like required by the safety standard IEC60065, which is not specifically limited in the embodiment of the present invention.
  • the insulation resistance between the target line X and the device casing E is composed of the tenth resistor R10 and the second isolation module 5, when the second isolation module 5 includes the total resistance of the N series resistors.
  • the resistance is greater than or equal to the specified value, the insulation resistance between the target line X and the device casing E can be ensured to meet the reinforced insulation required in the safety standard, thereby ensuring the user's power safety.
  • the primary circuit and the secondary circuit are isolated by the second isolation module 5, when the total resistance of the N series resistors included in the second isolation unit 5 is greater than or equal to a specified resistance value, the primary circuit can be guaranteed.
  • the isolation between the secondary circuits satisfies the reinforced insulation required in the safety standard, thereby ensuring that the electronic components in the secondary circuit are not damaged by the high voltage in the primary circuit.
  • the second isolation module 5 when the total resistance of the N series resistors is greater than a specified resistance, the total resistance of any of the N series resistors is greater than or equal to the specified resistance. The value, so as to ensure that any one of the N series resistors is short-circuited, the second isolation module 5 can still meet the isolation requirement.
  • the second isolation module 5 in the embodiment of the present invention is described by taking the structure shown in FIG. 11 as an example. In practical applications, other structures composed of other electronic components may also be used to implement the second isolation module 5 .
  • the function of the embodiment of the present invention is not specifically limited thereto.
  • the second signal acquisition module 6 includes a fourth operational amplifier OPA4; the non-inverting input terminal of the fourth operational amplifier OPA4 and one end of the tenth resistor R10 are respectively connected to the other end of the second isolation module 5, and the fourth operational amplifier OPA4 The inverting input and the output of the fourth operational amplifier OPA4 are connected to the input 4a of the signal conditioning module 4, respectively.
  • the fourth operational amplifier OPA4 is used to collect the voltage across the tenth resistor R10.
  • the second signal acquisition module 6 in the embodiment of the present invention is described by taking the structure shown in FIG. 12 as an example. In an actual application, the second signal acquisition module may be implemented by other structures composed of other electronic components. The function of the embodiment of the present invention is not specifically limited.
  • the signal conditioning module 4 includes: a seventh resistor R7, an eighth resistor R8, a conditioning power supply, a first diode D1 and a second diode D2;
  • One end of the seventh resistor R7 is connected to the output terminal 6b of the second signal acquisition module 6, one end of the eighth resistor R8, the anode of the first diode D1, the cathode of the second diode D2, and the input of the signal processing module 3.
  • the terminals 3a are respectively connected to the other end of the seventh resistor R7, the other end of the eighth resistor R8 and the cathode of the first diode D1 are respectively connected to the conditioning power source, and the anode of the second diode D2 is connected to the reference ground GND.
  • the signal conditioning module 4 can raise the fourth voltage by using the conditioning power source, the seventh resistor R7, and the eighth resistor R8 when conditioning the fourth voltage received from the second signal acquiring module 6. Double the conditioning voltage and raise the fourth voltage After adjusting the voltage, the lifted fourth voltage can be clamped between U cc +U d and -U d by the conditioning power source, the first diode D1 and the second diode D2, so as to be the fourth The voltage is conditioned to a voltage within the acceptance range of the signal processing module 3, thereby ensuring that the electronic components in the signal processing module 3 are not damaged by overvoltage or negative voltage.
  • r 7 is the resistance of the seventh resistor R7
  • r 8 is the resistance of the eighth resistor R8
  • U cc is the conditioning voltage
  • the conditioning voltage is the output voltage of the conditioning power source
  • U d is the first diode D1 or
  • the turn-on voltage of the second diode D2 is equal to the turn-on voltage of the second diode D1 and the second diode D2.
  • the conditioning voltage U cc may be 3.3V, 5V, etc., which is not specifically limited in the embodiment of the present invention.
  • the on-voltage U d of the first diode D1 or the second diode D2 may be 0.5V, 0.7V, etc., which is not specifically limited in the embodiment of the present invention.
  • the signal conditioning module 4 in the embodiment of the present invention is described by taking the structure shown in FIG. 13 as an example. In practical applications, other functions composed of other electronic components may also be used to implement the function of the signal conditioning module 4. The embodiment of the present invention does not specifically limit this.
  • the signal processing module 3 includes: an analog to digital converter AD and a controller MCU;
  • the input terminal aa of the analog-to-digital converter AD is connected to the output terminal 4b of the signal conditioning module 4, the output terminal ab of the analog-to-digital converter AD is connected to the input terminal ma of the controller MCU, the ground terminal ac of the module converter AD and the controller
  • the ground terminal mb of the MCU is connected to the reference ground GND, respectively.
  • the analog-to-digital converter AD is configured to convert the received analog quantity of the fourth voltage into a digital quantity, and send the digital quantity of the fourth voltage to the controller MCU; the controller MCU is configured to determine the target based on the fourth voltage The voltage between line X and device housing E.
  • the controller MCU determines the voltage between the target line X and the device casing E based on the fourth voltage
  • the determination may be performed based on the third ratio, specifically, The fourth voltage is multiplied by the reciprocal of the third ratio to obtain the voltage between the target line X and the device casing E.
  • the detection circuit includes the signal conditioning module 4, the determination may be performed based on the third ratio and the conditioning voltage. Specifically, the fourth voltage may be lowered first. The voltage between the target line X and the device casing E is obtained by multiplying the reduced voltage by the fourth voltage and the reciprocal of the third ratio.
  • the signal processing module 3 in the embodiment of the present invention is described by taking the structure shown in FIG. 14 as an example.
  • the functions of the signal processing module 3 may also be implemented by other structures composed of other electronic components.
  • the signal processing module 3 may include only a controller, and an analog-to-digital conversion module or the like may be integrated in the controller, which is not specifically limited in this embodiment of the present invention.
  • the temperature drift of the semiconductor device is prone to occur during use, and the temperature drift refers to A change in a semiconductor device parameter caused by a temperature change, because when the temperature drift of the semiconductor device causes an output voltage of the semiconductor device to be inaccurate, when a semiconductor device included in the detection circuit, such as a tenth resistor R10,
  • the output voltage of the semiconductor device needs to be corrected to ensure the accuracy of the output voltage of the semiconductor device.
  • the correction can be performed by using a temperature compensation method.
  • the correction may be performed in other manners, which is not specifically limited in the embodiment of the present invention.
  • the specific operation of the method for performing the temperature compensation reference may be made to the related art, which is not described in detail in the embodiment of the present invention.
  • the semiconductor device is also highly susceptible to contamination due to harsh environments during use, and the contamination may affect the resistivity of the semiconductor device. Therefore, in order to avoid the semiconductor device included in the detection circuit, such as the tenth resistor R10, The fourth operational amplifier OPA4 or the like is contaminated, and it is necessary to isolate the semiconductor device from the environment.
  • the isolation may be performed by using a coating or a potting method. Of course, in other applications, the isolation may be performed in other manners, which is not specifically limited in the embodiment of the present invention.
  • the specific operation of the method for performing the isolation by using the method of coating or potting can refer to the related art, which is not elaborated in the embodiment of the present invention.
  • the second signal acquisition module may collect the fourth voltage and input the fourth voltage to the signal processing module, and the signal processing module may target the second isolation module, the tenth resistance, and the second signal acquisition module.
  • the process of voltage between the line and the device casing, the fourth voltage is reversed to obtain a voltage between the target line and the device casing, and when the voltage between the target line and the device casing meets the specified condition, the determination is made.
  • the device has failed. Since the target line can be either a live line or a zero line, the device can be fault detected regardless of whether the live and neutral lines connected to the device are connected or reversed.
  • the embodiment of the present invention can simultaneously Three types of fault detection are performed, and the fault detection capability is strong.
  • Figure 15 is a diagram of a method for detecting a device according to an embodiment of the present invention. The method includes:
  • Step 1501 Determine the voltage between the target line and the device casing.
  • the target line is used to supply power to the device, and the target line is a live line or a neutral line, and the device casing is the outer casing of the device.
  • determining the voltage between the target line and the device casing it may be determined by any one of the above two detection circuits. Of course, in practical applications, the determination may also be performed by other means, and the present invention is implemented. This example does not specifically limit this. In addition, the operation of determining the voltage between the target line and the device casing by any one of the above two detection circuits has been described in the relevant part of the above two detection circuit embodiments, and the description of the embodiments of the present invention will not be repeated. .
  • Step 1502 Determine whether the voltage between the target line and the device casing meets the specified condition. When the voltage between the target line and the device casing meets the specified condition, it is determined that the device is faulty, and the specified condition is used to indicate that the device is faulty, and the fault includes At least one of the firewire connected to the device is reversed to the neutral wire, the device casing is not properly grounded, and the device casing is charged.
  • the operation of determining whether the voltage between the target line and the device casing meets the specified condition may include the following five methods:
  • the first way when the power supply mode of the device is single-phase power supply and the metal core wire in the fire wire is not connected to the device casing, it is judged whether the voltage between the target wire and the device casing is less than or equal to the first specified voltage; When the voltage between the target line and the device casing is less than or equal to the first specified voltage, it is determined that the live line connected to the device is reversed from the neutral line, and the voltage between the target line and the device casing is determined to meet the specified condition.
  • the hot line connected to the device when the hot line connected to the device is connected to the neutral line, the voltage between the target line and the device shell can be determined to meet the specified condition, and the fault that occurs in the device can be determined as the device connection.
  • the incoming fire line is reversely connected to the zero line.
  • a first prompt message can be generated, and the first prompt message is used to prompt the user equipment to access the live line and the neutral line, so that the user can know the fire line and the zero line in time.
  • the wiring status refers to whether the live line and the neutral line are connected or reversed.
  • the first specified voltage is a voltage between the neutral wire and the device casing when the device casing is normally grounded and the metal core wire in the live wire is not attached to the device casing, and the first specified voltage is close to 0V.
  • the first specified voltage may be a smaller one of the first preset voltage and the second preset voltage, and the first preset voltage may be when the device casing is normally grounded and the metal core wire in the live wire is not connected
  • the average value of the voltage between the zero line and the device casing measured multiple times on the device casing.
  • the second preset voltage may be the product of the preset value and the power supply voltage of the device.
  • the preset value may be preset.
  • the preset value may be greater than 0.01 and less than 0.1, etc., which is not specifically limited in this embodiment of the present invention.
  • the first specified voltage can be set based on the first preset voltage and the second preset voltage, the first specified voltage can be flexibly selected based on different power usage scenarios in the embodiment of the present invention to ensure that the first specified voltage is satisfied. Detect demand.
  • the metal core wire in the live wire is not attached to the device.
  • the target line is zero line, that is, it can be determined that the fire line connected to the device is reversed from the neutral line.
  • the first specified voltage is 5V, assuming that the voltage between the target line and the device casing is 3V. Since 3V is less than 5V, it can be determined that the live line connected to the device is reversed from the neutral line.
  • the second way when the power supply mode of the device is single-phase power supply and the metal core wire in the fire wire is not connected to the device casing, it is judged whether the voltage between the target wire and the device casing is greater than the first specified voltage and less than the second The voltage is specified; when the voltage between the target line and the device casing is greater than the first specified voltage and less than the second specified voltage, it is determined that the device casing is not properly grounded, and the voltage between the target line and the device casing is determined to meet the specified condition.
  • a second prompt message may be generated, which is used to prompt the user equipment that the device casing is not properly grounded, so that the user can know the grounding condition of the device casing in time, and the grounding condition refers to whether the device casing is normally grounded.
  • the second designated voltage is a voltage obtained by subtracting the first specified voltage from the power supply voltage, the first specified voltage is less than the second specified voltage, and the second specified voltage is close to the power supply voltage.
  • the voltage between the live wire or the neutral wire and the equipment casing should be The power supply voltage is doubled, so when the voltage between the target line and the device casing is greater than the first specified voltage and less than the second specified voltage, it can be determined that the device casing is not properly grounded.
  • the power supply voltage is 220V
  • the first specified voltage is 5V
  • the second specified voltage is 215V.
  • the voltage between the target line and the device casing is 210V. Since 210V is greater than 5V and less than 215V, it can be determined that the device casing is not properly grounded. .
  • the power supply mode of the device is single-phase power supply and the metal core wire in the fire wire is not connected to the device casing
  • the voltage between the target wire and the device casing should be less than or equal to the first specified voltage, if the target wire For the fire line, the head
  • the voltage between the marking line and the device housing should be greater than or equal to the second specified voltage, so when the voltage between the target line and the device housing is less than or equal to the first specified voltage, or greater than or equal to the second specified voltage, it can be determined
  • the device enclosure is properly grounded.
  • the supply voltage is 220V
  • the first specified voltage is 5V
  • the second specified voltage is 215V.
  • the voltage between the target line and the device casing is 3V. Since 3V is less than 5V, it can be determined that the device casing is properly grounded.
  • the third way when the power supply mode of the device is single-phase power supply and the target line is a live line, it is determined whether the voltage between the target line and the device casing is the first lap voltage, and the first lap voltage is in the target line.
  • the voltage between the target wire and the device casing is the first lap voltage, it is determined that the device casing is charged, and the target wire and the device casing are determined.
  • the voltage between the two meets the specified conditions; when the power supply mode of the device is single-phase power supply and the target line is the neutral line, it is judged whether the voltage between the target line and the device casing is the second lap voltage, and the second lap voltage is The voltage between the target wire and the device casing when the metal core wire in the fire wire other than the target wire is attached to the device casing, and the device casing is determined when the voltage between the target wire and the device casing is the second lap voltage. Charge and determine that the voltage between the target line and the device enclosure meets the specified conditions.
  • the device casing when the device casing is charged, it may be determined that the voltage between the target line and the device casing meets the specified condition, and at this time, it may be determined that the device fault is charged to the device casing, and in this case, A third prompt message is generated, and the third prompt message is used to prompt the user equipment to be powered, so that the user can know the charging status of the device housing in time.
  • the charging status refers to whether the device housing is powered.
  • the power supply mode of the device is single-phase power supply and the target line is a live wire
  • the metal core wire in the target wire is connected to the device casing and the device casing is charged, the potential of the device casing and the target line is similar, and the target is at this time.
  • the voltage between the line and the device housing should be near 0V, that is, the first lap voltage can be greater than or equal to 0V and less than the third predetermined voltage.
  • the third preset voltage may be preset, for example, the third preset voltage may be 0.2V, 0.3V, etc., which is not specifically limited in this embodiment of the present invention.
  • the power supply mode of the device is single-phase power supply and the target line is zero line
  • the device casing is close to the potential of the live wire.
  • the voltage between the target line and the device casing should be near the supply voltage, that is, the second lap voltage can be greater than the fourth predetermined voltage and less than or equal to the supply voltage.
  • the fourth preset voltage may be preset, for example, when the power supply voltage is 220V, the fourth preset voltage may be 119V, 119.5V, etc., which is not specifically limited in this embodiment of the present invention.
  • the target line is a live line
  • the first lap voltage is greater than or equal to 0V and less than 0.3V. Assuming that the voltage between the target line and the device casing is 0.2V, the voltage between the target line and the device casing is the first lap. Voltage, you can determine the device housing is charged.
  • the target line is zero line
  • the power supply voltage is 220V
  • the second lap voltage is greater than 119V and less than or equal to 220V. Assuming that the voltage between the target line and the device casing is 119.5V, the target line is connected to the device casing. The voltage is the second lap voltage and it can be determined that the device housing is charged.
  • the power supply mode of the device is single-phase power supply
  • it can also determine whether the target line is a hot line or a neutral line, and judge that the target line is a hot line.
  • the operation of the neutral line may be: when the metal core wire in the live wire is not connected to the device casing, if the voltage between the target wire and the device casing is less than or equal to the first specified voltage, it is determined that the target wire is a neutral wire; When the metal core wire in the live wire is not attached to the device casing, if the voltage between the target wire and the device casing is greater than or equal to the second specified voltage, it is determined that the target wire is a live wire.
  • the process of determining whether the target line is a hot line or a zero line is to determine the fire line and zero of the device access. Whether the line is positive or reverse, that is, when the target line is a live line, it can be determined that the live line connected to the device is connected to the neutral line. When the target line is zero line, it can be determined that the line connected to the line is opposite to the zero line. Pick up.
  • the metal core wires in the live wire are not overlapped.
  • you reach the device enclosure you can determine that the target line is zero.
  • the voltage between the target line and the device casing is greater than or equal to the second specified voltage, the voltage between the target line and the device casing is large and close to the supply voltage, and therefore, the metal core wire in the live wire is not overlapped.
  • you can determine that the target line is a live line.
  • the supply voltage is 220V
  • the first specified voltage is 5V
  • the second specified voltage is 215V.
  • the voltage between the target line and the device casing is 3V
  • 3V is less than 5V
  • the power supply voltage is 220V
  • the first specified voltage is 5V
  • the second specified voltage is 215V.
  • the voltage between the target line and the device casing is 217V
  • the 217V is greater than 215V, it can be determined that the target line is a hot line.
  • the operation of detecting the live detection of the device in the fault detection of the device is different, and therefore, before the device housing is electrically detected. It is necessary to first determine whether the target line is a hot line or a zero line. Moreover, only when the metal core wire in the fire wire is not connected to the device casing and the equipment casing is normally grounded, can the cable be judged to be a hot wire or a neutral wire. Therefore, in practical applications, the device can be installed for the first time and initially.
  • the target line is a live line or a neutral line, thereby ensuring that the device can be effectively detected by the subsequent device.
  • the target line since the wiring condition of the neutral line and the live line does not change during the operation of the device under normal conditions, the target line may be used only when the device is first installed, first powered up, or powered off for the first time. The fire line or the zero line is judged, and it is not necessary to judge again in the subsequent detection process, thereby saving processing resources.
  • the operation of determining whether the voltage between the target line and the device casing is the first lap voltage may be implemented by using a flag bit, specifically When the target line is a live line, if a voltage jump between the target line and the device casing is detected, the voltage between the target line and the device casing before the jump occurs is acquired, and the first flag is determined based on the acquired voltage. Obtaining a voltage between the target line and the device casing after the jump occurs, and determining a second flag bit based on the acquired voltage; determining the target line and the device casing when the first flag bit and the second flag bit satisfy the first condition The voltage between them is the first lap voltage.
  • obtaining a voltage between the target line and the device casing before the jump occurs and determining the first flag bit based on the acquired voltage, if the acquired voltage is the first normal voltage, setting the first flag bit to 0, if The acquired voltage is the first lap voltage, and the first flag is set to 1.
  • the first normal voltage is the voltage between the target line and the device casing when the metal core wire in the target wire is not overlapped on the device casing. And when the device casing is normally grounded, the first normal voltage may be greater than a fourth preset voltage and less than or equal to the power supply voltage. When the device casing is not normally grounded, the first normal voltage may be greater than a fifth preset voltage and less than Or equal Double the supply voltage.
  • the fifth preset voltage can be preset, for example, when the power supply voltage is 220V, The power supply voltage of the multiple is 110V, and the fifth preset voltage may be 108V, 109V, etc., which is not specifically limited in the embodiment of the present invention.
  • the target line is a live line
  • the power supply voltage is 220V
  • the first normal voltage is greater than 119V and less than or equal to 220V
  • the first normal voltage is greater than 108V and less than or equal to 110V
  • the first lap voltage is greater than or equal to 0V and less than 0.3V.
  • the target line is a live line
  • the power supply voltage is 220V
  • the first normal voltage is greater than 119V and less than or equal to 220V
  • the first normal voltage is greater than 108V and less than or equal to 110V
  • the first lap voltage is greater than or equal to 0V and less than 0.3.
  • V assuming that the voltage between the target line and the device casing before the occurrence of the jump is 0.2V, the obtained voltage is the first lap voltage, and the first flag bit can be set to 1 at this time.
  • the operation of determining the voltage between the target line and the device casing after the hopping occurs, and determining the second flag bit based on the acquired voltage is the same as the operation of determining the first flag bit based on the acquired voltage, which is used by the embodiment of the present invention. No longer.
  • the first condition is used to indicate that the device casing jumps from the unpowered state to the charged state.
  • the first condition may be that the first flag bit is 0 and the second flag bit is 1. Since when the first flag bit is 0 and the second flag bit is 1, it can be determined that the voltage between the target line and the device casing jumps from the first normal voltage to the first lap voltage, so the target line can be determined at this time.
  • the voltage between the device and the device housing is the first lap voltage.
  • the operation of determining whether the voltage between the target line and the device casing is the second lap voltage can be realized by the flag bit.
  • the target line is a neutral line
  • the voltage between the target line and the device casing before the jump occurs is acquired, and the first step is determined based on the acquired voltage.
  • a third flag bit obtaining a voltage between the target line and the device casing after the jump occurs, and determining a fourth flag bit based on the acquired voltage; and determining the target line when the third flag bit and the fourth flag bit satisfy the second condition
  • the voltage between the device housings is the second lap voltage.
  • the voltage between the target line and the device casing before the jump occurs is obtained, and when the third flag is determined based on the acquired voltage, if the acquired voltage is the second normal voltage, the third flag is set to 0. If the acquired voltage is the second lap voltage, the third flag bit is set to one.
  • the second normal voltage is a voltage between the target line and the device casing when the metal core wire in the live wire other than the target wire is not overlapped on the device casing. And when the device casing is normally grounded, the second normal voltage may be greater than or equal to 0V and less than the third preset voltage. When the device casing is not normally grounded, the second normal voltage may be greater than the fifth preset voltage and less than or equal to Double the supply voltage.
  • the target line is zero line
  • the power supply voltage is 220V
  • the second normal voltage is greater than or equal to 0V and less than 0.3V
  • the second normal voltage is greater than 108V and less than or equal to 110V
  • the second lap voltage is greater than 119V and less than or equal to 220V
  • the target line is zero line
  • the power supply voltage is 220V
  • the second normal voltage is greater than or equal to 0V and less than 0.3V
  • the second normal voltage is greater than 108V and less than or equal to 110V
  • the second lap voltage is greater than 119V and less than or It is equal to 220V.
  • the third flag bit can be set to 1.
  • the operation of determining the voltage between the target line and the device casing after the jump occurs, and determining the fourth flag bit based on the acquired voltage is the same as the operation of determining the third flag bit based on the acquired voltage, which is used by the embodiment of the present invention. No longer.
  • the second condition is used to indicate that the device casing jumps from an uncharged state to a charged state, such as the second
  • the piece may have a third flag bit of 0 and a fourth flag bit of 1. Since when the third flag bit is 0 and the fourth flag bit is 1, it can be determined that the voltage between the target line and the device casing jumps from the second normal voltage to the second lap voltage, so that the target line can be determined at this time.
  • the voltage between the device and the device housing is the second lap voltage.
  • the fourth way when the power supply mode of the device is double-fired, determine whether the voltage between the target line and the device casing is the first lap voltage or the second lap voltage; when the voltage between the target line and the device casing When it is the first lap voltage or the second lap voltage, it is determined that the device casing is charged, and it is determined that the voltage between the target line and the device casing meets the specified condition.
  • the device casing when the device casing is charged, it may be determined that the voltage between the target line and the device casing meets the specified condition, and at this time, it may be determined that the device fault is charged to the device casing, and in this case, A third prompt message is generated, and the third prompt message is used to prompt the user equipment to be powered, so that the user can know the charging status of the device shell in time.
  • the potential of the device casing is close to the target line.
  • the voltage between the device housings should be around 0V, that is, the voltage between the target line and the device housing should be the first lap voltage. If the metal core wire in the hot wire other than the target wire is connected to the device casing and the device casing is charged, the device casing is close to the potential of the live wire, and the voltage between the target wire and the device casing should be at the supply voltage. Nearby, that is, the voltage between the target line and the device casing should be the second lap voltage. Therefore, when the voltage between the target line and the device casing is the first lap voltage or the second lap voltage, it can be determined that the device casing is charged.
  • the power supply voltage is 220V
  • the first lap voltage is greater than or equal to 0V and less than 0.3V
  • the second lap voltage is greater than 119V and less than or equal to 220V.
  • the voltage between the target line and the device casing is 0.2V
  • the voltage between the target line and the device casing is determined to be the first lap voltage
  • the device casing is determined to be charged.
  • the operation of determining whether the voltage between the target line and the device casing is the first lap voltage or the second lap voltage in the fourth manner may be implemented by using a flag bit, specifically If a voltage jump between the target line and the device casing is detected, obtaining a voltage between the target line and the device casing before the jump occurs, and determining a fifth flag based on the acquired voltage; acquiring the target after the jump occurs a voltage between the line and the device casing, and determining a sixth flag based on the acquired voltage; when the fifth flag and the sixth flag satisfy the third condition, determining that the voltage between the target line and the device casing is the first Connect the voltage or the second lap voltage.
  • obtaining a voltage between the target line and the device casing before the jump occurs and determining the fifth flag bit based on the acquired voltage, if the acquired voltage is the third normal voltage, setting the fifth flag bit to 0, if The acquired voltage is the first lap voltage or the second lap voltage, and the fifth flag bit is set to 1.
  • the third normal voltage is the voltage between the target line and the device casing when the metal wire in the target wire and the fire wire other than the target wire are not overlapped on the device casing.
  • the third normal voltage may be greater than the fifth preset voltage and less than or equal to Double the supply voltage.
  • the power supply voltage is 220V
  • the third normal voltage is greater than 108V and less than or equal to 110V
  • the first lap voltage is greater than or equal to 0V and less than 0.3V
  • the second lap voltage is greater than 119V and less than or equal to 220V, assuming acquisition occurs.
  • the voltage between the target line and the device casing is 109V
  • the obtained voltage is the third normal voltage.
  • the fifth flag bit can be set to 0.
  • the power supply voltage is 220V
  • the third normal voltage is greater than 108V and less than or equal to 110V
  • the first lap voltage is greater than or equal to 0V and less than 0.3V
  • the second lap voltage is greater than 119V and less than or equal to 220V, assuming the acquired hair
  • the voltage between the target line and the device casing before the jump is 0.2V
  • the obtained voltage is the first overlap voltage.
  • the fifth flag bit can be set to 1.
  • the operation of determining the voltage between the target line and the device casing after the hopping occurs, and determining the sixth flag bit based on the acquired voltage is the same as the operation of determining the fifth flag bit based on the acquired voltage, which is used by the embodiment of the present invention. No longer.
  • the third condition is used to indicate that the device casing jumps from the unpowered state to the charged state.
  • the third condition may be that the fifth flag bit is 0 and the sixth flag bit is 1. Since when the fifth flag bit is 0 and the sixth flag bit is 1, it can be determined that the voltage between the target line and the device casing jumps from the third normal voltage to the first lap voltage, or is hopped by the third normal voltage. To the second lap voltage, therefore, it can be determined at this time that the voltage between the target line and the device casing is the first lap voltage or the second lap voltage.
  • the fifth mode when the power supply mode of the device is three-phase power supply, it is determined whether the voltage between the target line and the device casing is the first lap voltage or the third lap voltage, and the third lap voltage is when the target line is removed.
  • the voltage between the target wire and the device casing when the metal core wire in any other fire wire is connected to the device casing; when the voltage between the target wire and the device casing is the first lap voltage or the third lap voltage When it is determined that the device housing is charged, it is determined that the voltage between the target line and the device housing meets the specified conditions.
  • the device casing when the device casing is charged, it may be determined that the voltage between the target line and the device casing meets the specified condition, and at this time, it may be determined that the device fault is charged to the device casing, and in this case, A third prompt message is generated, and the third prompt message is used to prompt the user equipment to be powered, so that the user can know the charging status of the device shell in time.
  • the power supply mode of the device is three-phase power supply
  • the metal core wire in the target wire is connected to the device casing and the device casing is charged, the potential of the device casing and the target wire is similar, and the target line is at this time.
  • the voltage between the device housings should be around 0V, that is, the voltage between the target line and the device housing should be the first lap voltage.
  • the device casing is close to the potential of the live wire, and the voltage between the target wire and the device casing should be In the vicinity of the supply voltage, that is, the third lap voltage may be greater than the sixth preset voltage and less than or equal to Double the supply voltage.
  • the sixth preset voltage may be preset, for example, when the power supply voltage is 220V, the sixth preset voltage may be 373V, 374V, etc., which is not specifically limited in this embodiment of the present invention.
  • the power supply voltage is 220V
  • the first lap voltage is greater than or equal to 0V and less than 0.3V
  • the third lap voltage is greater than 373V and less than or equal to Assuming that the voltage between the target line and the device casing is 0.2V, it can be determined that the voltage between the target line and the device casing is the first lap voltage, and it is determined that the device casing is charged.
  • the operation of determining whether the voltage between the target line and the device casing is the first lap voltage or the third lap voltage in the fifth manner may be implemented by using a flag bit, specifically If a voltage transition between the target line and the device casing is detected, obtaining a voltage between the target line and the device casing before the jump occurs, and determining a seventh flag based on the acquired voltage; acquiring the target after the occurrence of the jump The voltage between the line and the device casing, and determining the eighth flag bit based on the acquired voltage; when the seventh flag bit and the eighth flag bit satisfy the fourth condition, determining that the voltage between the target line and the device casing is the first Connect the voltage or the third lap voltage.
  • obtaining a voltage between the target line and the device casing before the jump occurs and determining the seventh flag bit based on the acquired voltage, if the acquired voltage is the fourth normal voltage, setting the seventh flag bit to 0, if The acquired voltage is the first lap voltage or the third lap voltage, and the seventh flag is set to 1.
  • the fourth normal voltage is the voltage between the target line and the device casing when the metal wire in the target wire and the wire except the target wire are not attached to the device casing. And when the device is normally grounded, the fourth normal voltage may be greater than the fourth preset voltage and less than or equal to the power supply voltage. When the device casing is not normally grounded, the fourth normal voltage may be greater than the fifth preset voltage and less than or equal Double the supply voltage.
  • the power supply voltage is 220V
  • the fourth normal voltage is greater than 119V and less than or equal to 220V
  • the fourth normal voltage is greater than 108V and less than or equal to 110V
  • the first lap voltage is greater than or equal to 0V and less than 0.3V
  • the third lap Voltage greater than 373V and less than or equal to Assuming that the voltage between the target line and the device casing before the jump occurs is 119.5V, the acquired voltage is the fourth normal voltage, and the seventh flag bit can be set to 0 at this time.
  • the power supply voltage is 220V
  • the fourth normal voltage is greater than 119V and less than or equal to 220V
  • the fourth normal voltage is greater than 108V and less than or equal to 110V
  • the first lap voltage is greater than or equal to 0V and less than 0.3V
  • the third lap Voltage greater than 373V and less than or equal to Assuming that the obtained voltage between the target line and the device casing before the jump occurs is 0.2V, the obtained voltage is the first overlap voltage, and the seventh flag bit can be set to 1 at this time.
  • the operation of determining the voltage between the target line and the device casing after the hopping occurs, and determining the eighth flag bit based on the acquired voltage is the same as the operation of determining the seventh flag bit based on the acquired voltage, which is used by the embodiment of the present invention. No longer.
  • the fourth condition is used to indicate that the device casing jumps from the uncharged state to the charged state.
  • the fourth condition may be that the seventh flag bit is 0 and the eighth flag bit is 1. Since when the seventh flag bit is 0 and the eighth flag bit is 1, it can be determined that the voltage between the target line and the device casing jumps from the fourth normal voltage to the first lap voltage, or is hopped by the fourth normal voltage. To the third lap voltage, therefore, it can be determined at this time that the voltage between the target line and the device casing is the first lap voltage or the third lap voltage.
  • the power supply mode of the device is single-phase power supply and when the live line connected to the device is connected to the neutral line, if the voltage between the target line and the device casing is detected to be changed from the first normal voltage to the first With the lap voltage, you can determine that the device case is live.
  • the power supply mode of the device is single-phase power supply and when the fire line connected to the device is connected to the neutral line, if it is detected that the voltage between the target line and the device casing is changed from the second normal voltage to the second overlapping voltage, then It can be determined that the device housing is live.
  • the power supply mode of the device is double-fired, if the voltage between the target line and the device casing is detected to jump from the third normal voltage to the first lap voltage, or the voltage between the target line and the device casing is detected, When the third normal voltage jumps to the second lap voltage, it can be determined that the device casing is charged.
  • the power supply mode of the device is three-phase power supply, if it is detected that the voltage between the target line and the device casing jumps from the fourth normal voltage to the first lap voltage, or the voltage between the target line and the device casing is detected, When the fourth normal voltage jumps to the third lap voltage, it can be determined that the device casing is charged.
  • determining a voltage between the target line and the device casing determining whether the voltage between the target line and the device casing meets the specified condition, and determining the device when the voltage between the target line and the device casing meets the specified condition.
  • the target line can be either a live line or a zero line
  • the device can be fault detected regardless of whether the live and neutral lines connected to the device are connected or reversed.
  • the specified condition is used to indicate that the device is faulty, and the fault includes at least one of the hot line connected to the device and the neutral line of the device, the device housing is not normally grounded, and the device housing is charged, the embodiment of the present invention can simultaneously Three types of fault detection are performed, and the fault detection capability is strong.
  • a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

一种检测电路及检测方法,属于电子技术领域。该检测电路包括:第一隔离模块(1)、第一电阻(R1)、第二电阻(R2)、第一信号采集模块(2)和信号处理模块(3);第一隔离模块(1)包括第一隔离单元(1A)和第二隔离单元(1B),第一隔离单元(1A)的一端与目标线(X)连接,第二隔离单元(1B)的一端与设备外壳(E)连接;第一信号采集模块(2)的第一输入端(2a)和第一电阻(R1)的一端分别与第一隔离单元(1A)的另一端连接,第一信号采集模块(2)的第二输入端(2b)和第二电阻(R2)的一端分别与第二隔离单元(1B)的另一端连接,第一电阻(R1)的另一端和第二电阻(R2)的另一端分别与参考地(GND)连接,第一信号采集模块(2)的输出端(2c)与信号处理模块(3)的输入端(3a)连接。该检测电路和检测方法能够实现无论设备接入的火线与零线是正接还是反接,均可以对设备进行故障检测。

Description

检测电路及检测方法
本申请要求于2016年08月09日提交中国专利局、申请号为201610654020.X、发明名称为“检测电路及检测方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电子技术领域,特别涉及一种检测电路及检测方法。
背景技术
一般情况下,设备所使用的电能都是由配电系统提供的,该配电系统可以包括IT系统、TT系统和TN系统。由于配电系统中任何一根火线对大地的电压都超过了安全特低电压(Safety Extra-low Voltage,SELV),因此,在设备的运行过程中,如果火线由于绝缘皮被过电压击穿、绝缘皮老化、绝缘皮破损等原因而使火线中的金属芯线搭接到设备的设备外壳上,则可能会导致设备外壳带上危险电压,从而对用户的人身安全造成巨大的威胁。所以,为了使用户可以及时获知设备外壳是否带上了危险电压,可以对设备外壳进行带电检测。
目前,提供了一种检测电路,如图1所示,该检测电路包括:电阻R、硅整流二级管D、发光二级管LED、稳压二级管DW、电解电容C和蜂鸣器HA。电阻R的一端与设备的设备外壳连接,电阻R的另一端与硅整流二级管D的正极连接,硅整流二级管D的负极与发光二级管LED的正极连接,发光二级管LED的负极与稳压二级管DW的负极连接,稳压二级管DW的正极与零线连接,电解电容C和蜂鸣器HA分别与稳压二级管DW并联连接。
当通过该检测电路进行检测时,如果火线中的金属芯线搭接到设备外壳上导致设备外壳带电,则此时火线、设备外壳、该检测电路与零线会构成电流回路,火线中的电流通过设备外壳流经该检测电路时,发光二级管LED会被点亮,蜂鸣器HA会发出声音,从而实现设备外壳带电告警。
现有技术至少存在以下问题:当设备接入的火线与零线反接时,如果火线中的金属芯线搭接到设备外壳上导致设备外壳带电,则此时火线中的电流通过设备外壳流经该检测电路后会流回该火线,也即是此时火线、设备外壳、该检测电路与零线无法构成电流回路,从而无法进行有效的设备外壳带电告警。
发明内容
为了解决相关技术的问题,本发明实施例提供了一种检测电路及其检测方法。所述技术方案如下:
第一方面,提供了一种检测电路,所述检测电路用于对设备进行检测,所述检测电路包括:第一隔离模块、第一电阻、第二电阻、第一信号采集模块和信号处理模块;
所述第一隔离模块包括第一隔离单元和第二隔离单元,且所述第一隔离单元与所述第 二隔离单元的阻值相等,所述第一隔离单元的一端与目标线连接,所述第二隔离单元的一端与设备外壳连接,所述第一隔离模块用于对所述目标线和所述设备外壳进行隔离,且用于对一次电路和二次电路进行隔离,所述一次电路包括所述目标线和所述设备的供电电源,所述二次电路包括所述第一电阻、所述第二电阻、所述第一信号采集模块和所述信号处理模块;所述目标线用于对所述设备进行供电,且所述目标线为火线或零线;所述设备外壳为所述设备的外壳;
所述第一信号采集模块的第一输入端和所述第一电阻的一端分别与所述第一隔离单元的另一端连接,所述第一信号采集模块的第二输入端和所述第二电阻的一端分别与所述第二隔离单元的另一端连接,所述第一电阻的另一端和所述第二电阻的另一端分别与参考地连接,所述第一信号采集模块的输出端与所述信号处理模块的输入端连接,所述信号处理模块的接地端与所述参考地连接;
其中,所述第一电阻和所述第二电阻用于分压,且所述第一电阻的阻值与所述第二电阻的阻值相等;所述第一信号采集模块用于分别采集所述第一电阻两端的电压和所述第二电阻两端的电压,并将采集到的所述第一电阻两端的电压确定为第一电压,将采集到的所述第二电阻两端的电压确定为第二电压,将所述第一电压与所述第二电压之间的电压差与指定比例相乘,以得到在所述信号处理模块的检测范围内的第三电压,将所述第三电压输入到所述信号处理模块;
所述信号处理模块用于根据所述第一隔离模块、所述第一电阻、所述第二电阻和所述第一信号采集模块对所述目标线与所述设备外壳之间的电压的处理过程,对所述第三电压进行反处理,以得到所述目标线与所述设备外壳之间的电压,当所述目标线与所述设备外壳之间的电压满足指定条件时,确定所述设备发生故障,所述指定条件用于指示所述设备发生故障,所述故障包括所述设备接入的火线与零线反接、所述设备外壳未正常接地和所述设备外壳带电中的至少一种。
需要说明的是,由于目标线与设备外壳之间的电压是基于第三电压确定得到的,第三电压是将第一电压与第二电压之间的电压差与指定比例相乘后得到的,所以,目标线与设备外壳之间的电压是实际上是基于第一电压和第二电压确定得到的。又由于第一电压和第二电压均是相对于参考地确定得到的,因此,参考地与设备外壳之间连接或者不连接均不会影响对目标线与设备外壳之间的电压的确定,也即是,本发明实施例在参考地与设备外壳之间连接或者不连接时均可以实现对设备的故障检测。
在本发明实施例中,第一信号采集模块可以采集第一电压和第二电压,并将第一电压与第二电压之间的电压差与指定比例相乘,以得到在信号处理模块的检测范围内的第三电压,之后,将第三电压输入到信号处理模块,信号处理模块可以根据第一隔离模块、第一电阻、第二电阻和第一信号采集模块对目标线与设备外壳之间的电压的处理过程,对第三电压进行反处理,以得到目标线与设备外壳之间的电压,当目标线与所述设备外壳之间的电压满足指定条件时,确定设备发生故障。由于目标线既可以为火线,也可以为零线,因此,无论设备接入的火线与零线是正接还是反接,均可以进行故障检测。
结合第一方面,在上述第一方面的第一种可能的实现方式中,所述检测电路还包括信号调理模块,所述信号调理模块的输入端与所述第一信号采集模块的输出端连接,所述信号调理模块的输出端与所述信号处理模块的输入端连接;
所述信号调理模块用于将从所述第一信号采集模块接收到的所述第三电压调理为在所述信号处理模块的接受范围内的电压,并将调理后的所述第三电压输入到所述信号处理模块。
结合第一方面或第一方面的第一种可能的实现方式,在上述第一方面的第二种可能的实现方式中,所述第一隔离单元包括N个串联的电阻,所述N个串联的电阻的总阻值大于或等于指定阻值,所述N为大于或等于1的自然数,所述指定阻值为满足安全标准中所要求的加强绝缘的阻值。
需要说明的是,由于目标线与设备外壳之间的绝缘电阻由第一电阻、第二电阻、第一隔离单元和第二隔离单元组成,且由于第一隔离单元和第二隔离单元的阻值相等,因此,当第一隔离单元包括的N个串联的电阻的总阻值大于或等于指定阻值时,可以保证目标线与设备外壳之间的绝缘电阻满足安全标准中所要求的加强绝缘,从而可以保证用户的用电安全。
另外,由于一次电路与二次电路被第一隔离模块所隔离,且由于第一隔离单元和第二隔离单元的阻值相等,因此,当第一隔离单元包括的N个串联的电阻的总阻值大于或等于指定阻值时,可以保证一次电路与二次电路之间的隔离满足安全标准中所要求的加强绝缘,从而可以保证二次电路中的电子元件不被一次电路中的高电压所损坏。
结合第一方面或第一方面的第一种可能的实现方式,在上述第一方面的第三种可能的实现方式中,所述第二隔离单元包括M个串联的电阻,所述M个串联的电阻的总阻值大于或等于所述指定阻值,所述M为大于或等于1的自然数,所述指定阻值为满足安全标准中所要求的加强绝缘的阻值。
需要说明的是,由于目标线与设备外壳之间的绝缘电阻由第一电阻、第二电阻、第一隔离单元和第二隔离单元组成,且由于第一隔离单元和第二隔离单元的阻值相等,因此,当第二隔离单元包括的M个串联的电阻的总阻值大于或等于指定阻值时,可以保证目标线与设备外壳之间的绝缘电阻满足安全标准中所要求的加强绝缘,从而可以保证用户的用电安全。
另外,由于一次电路与二次电路被第一隔离模块所隔离,且由于第一隔离单元和第二隔离单元的阻值相等,因此,当第二隔离单元包括的M个串联的电阻的总阻值大于或等于指定阻值时,可以保证一次电路与二次电路之间的隔离满足安全标准中所要求的加强绝缘,从而可以保证二次电路中的电子元件不被一次电路中的高电压所损坏。
结合第一方面,在上述第一方面的第四种可能的实现方式中,所述信号处理模块,用于:
当所述设备的供电方式为单相供电且火线中的金属芯线未搭接到所述设备外壳上时,判断所述目标线与所述设备外壳之间的电压是否小于或等于第一指定电压,所述第一指定电压为当所述设备外壳正常接地且火线中的金属芯线未搭接到所述设备外壳上时零线与所述设备外壳之间的电压;
当所述目标线与所述设备外壳之间的电压小于或等于所述第一指定电压时,确定所述设备接入的火线与零线反接,并确定所述目标线与所述设备外壳之间的电压满足所述指定条件。
需要说明的是,第一指定电压接近0V(伏特)。实际应用中,第一指定电压可以为第 一预设电压与第二预设电压中较小的一个,第一预设电压可以为当设备外壳正常接地且火线中的金属芯线未搭接到设备外壳上时,多次测量到的零线与设备外壳之间的电压的平均值,第二预设电压可以为预设数值与设备的供电电压的乘积,该预设数值可以预先设置,如该预设数值可以大于0.01且小于0.1等,本发明实施例对此不做具体限定。另外,由于第一指定电压可以基于第一预设电压和第二预设电压进行设置,所以本发明实施例中可以基于不同的用电场景灵活选择第一指定电压,以保证第一指定电压满足检测需求。
在本发明实施例中,信号处理模块可以基于第一指定电压快速而准确判断出设备接入的火线与零线是否反接,该判断过程较为简单,判断效率较高。
结合第一方面,在上述第一方面的第五种可能的实现方式中,所述信号处理模块,用于:
当所述设备的供电方式为单相供电且火线中的金属芯线未搭接到所述设备外壳上时,判断所述目标线与所述设备外壳之间的电压是否大于第一指定电压且小于第二指定电压,所述第二指定电压为所述设备的供电电压减去所述第一指定电压所得的电压,所述第一指定电压小于所述第二指定电压;
当所述目标线与所述设备外壳之间的电压大于所述第一指定电压且小于所述第二指定电压时,确定所述设备外壳未正常接地,并确定所述目标线与所述设备外壳之间的电压满足所述指定条件。
在本发明实施例中,可以基于第一指定电压和第二指定电压快速而准确判断出设备外壳是否未正常接地,该判断过程较为简单,判断效率较高。
结合第一方面,在上述第一方面的第六种可能的实现方式中,所述信号处理模块,用于:
当所述设备的供电方式为单相供电且所述目标线是火线时,判断所述目标线与所述设备外壳之间的电压是否为第一搭接电压,所述第一搭接电压为当所述目标线中的金属芯线搭接到所述设备外壳上时所述目标线与所述设备外壳之间的电压;当所述目标线与所述设备外壳之间的电压为所述第一搭接电压时,确定所述设备外壳带电,并确定所述目标线与所述设备外壳之间的电压满足所述指定条件;
当所述设备的供电方式为单相供电且所述目标线是零线时,判断所述目标线与所述设备外壳之间的电压是否为第二搭接电压,所述第二搭接电压为当除所述目标线之外的火线中的金属芯线搭接到所述设备外壳上时所述目标线与所述设备外壳之间的电压;当所述目标线与所述设备外壳之间的电压为所述第二搭接电压时,确定所述设备外壳带电,并确定所述目标线与所述设备外壳之间的电压满足所述指定条件。
在本发明实施例中,当设备的供电方式为单相供电时,如果目标线是火线,则可以基于第一搭接电压来判断设备外壳是否带电,如果目标线是零线,则可以基于第二搭接电压来判断设备外壳是否带电,从而可以准确实现对设备外壳的带电检测,且该检测操作简单易行,检测效率较高。
结合第一方面的第六种可能的实现方式,在上述第一方面的第七种可能的实现方式中,所述信号处理模块,还用于:
当火线中的金属芯线未搭接到所述设备外壳上时,如果所述目标线与所述设备外壳之间的电压小于或等于第一指定电压,则确定所述目标线是零线;
当火线中的金属芯线未搭接到所述设备外壳上时,如果所述目标线与所述设备外壳之间的电压大于或等于第二指定电压,则确定所述目标线是火线。
需要说明的是,上述判断目标线是火线还是零线的过程即是判断设备接入的火线与零线是正接还是反接的过程,也即是,当目标线为火线时,可以确定设备接入的火线与零线正接,当目标线为零线,可以确定设备接入的火线与零线反接。
在本发明实施例中,可以基于第一指定电压和第二指定电压快速而准确判断出目标线是火线还是零线,该判断过程较为简单,判断效率较高。
结合第一方面,在上述第一方面的第八种可能的实现方式中,所述信号处理模块,用于:
当所述设备的供电方式为双火线供电时,判断所述目标线与所述设备外壳之间的电压是否为第一搭接电压或第二搭接电压;
当所述目标线与所述设备外壳之间的电压为所述第一搭接电压或所述第二搭接电压时,确定所述设备外壳带电,并确定所述目标线与所述设备外壳之间的电压满足所述指定条件。
在本发明实施例中,当设备的供电方式为双火线供电时,可以基于第一搭接电压和第二搭接电压来判断设备外壳是否带电,从而可以准确实现对设备外壳的带电检测,且该检测操作简单易行,检测效率较高。
结合第一方面,在上述第一方面的第九种可能的实现方式中,所述信号处理模块,用于:
当所述设备的供电方式为三相供电时,判断所述目标线与所述设备外壳之间的电压是否为第一搭接电压或第三搭接电压,所述第三搭接电压为当除所述目标线之外的任一火线中的金属芯线搭接到所述设备外壳上时所述目标线与所述设备外壳之间的电压;
当所述目标线与所述设备外壳之间的电压为所述第一搭接电压或所述第三搭接电压时,确定所述设备外壳带电,并确定所述目标线与所述设备外壳之间的电压满足所述指定条件。
在本发明实施例中,当设备的供电方式为三相供电时,可以基于第一搭接电压和第三搭接电压来判断设备外壳是否带电,从而可以准确实现对设备外壳的带电检测,且该检测操作简单易行,检测效率较高。
结合第一方面,在上述第一方面的第十种可能的实现方式中,所述信号处理模块,还用于:
当所述设备的供电方式为单相供电且火线中的金属芯线未搭接到所述设备外壳上时,判断所述目标线与所述设备外壳之间的电压是否小于或等于第一指定电压,或者大于或等于第二指定电压;
当所述目标线与所述设备外壳之间的电压小于或等于第一指定电压,或者大于或等于第二指定电压时,确定所述设备外壳正常接地。
在本发明实施例中,可以基于第一指定电压和第二指定电压快速而准确判断出设备外壳是否正常接地,该判断过程较为简单,判断效率较高。
结合第一方面,在上述第一方面的另一种可能的实现方式中,所述信号采集模块包括:第一运算放大器、第二运算放大器、第三运算放大器、第三电阻、第四电阻、第五电阻和 第六电阻;
所述第一运算放大器的同相输入端和所述第一电阻的一端分别与所述第一隔离单元的另一端连接,所述第一运算放大器的反相输入端和所述第三电阻的一端分别与所述第一运算放大器的输出端连接;
所述第二运算放大器的同相输入端和所述第二电阻的一端分别与所述第二隔离单元的另一端连接,所述第二运算放大器的反相输入端和所述第四电阻的一端分别与所述第二运算放大器的输出端连接;
所述第三运算放大器的同相输入端与所述第三电阻的另一端连接,所述第三运算放大器的同相输入端还与所述第五电阻的一端连接,所述第五电阻的另一端与所述参考地连接,所述第三运算放大器的反相输入端与所述第四电阻的另一端连接,所述第三运算放大器的反相输入端还与所述第六电阻的一端连接,所述第六电阻的另一端和所述信号调理模块的输入端分别与所述第三运算放大器的输出端连接。
在本发明实施例中,第一运算放大器、第二运算放大器和第三运算放大器组成差分放大电路,具体地,第一运算放大器用于采集第一电阻两端的电压,第二运算放大器用于采集第二电阻两端的电压,第三运算放大器用于基于第一电压与第二电压之间的电压差确定第三电压。
结合第一方面,在上述第一方面的另一种可能的实现方式中,所述信号调理模块包括:第七电阻、第八电阻、调理电源、第一二级管和第二二级管;
所述第七电阻的一端与所述第一信号采集模块的输出端连接,所述第八电阻的一端、所述第一二级管的正极、所述第二二级管的负极和所述信号处理模块的输入端分别与所述第七电阻的另一端连接,所述第八电阻的另一端和所述第一二级管的负极分别与所述调理电源连接,所述第二二级管的正极与所述参考地连接。
在本发明实施例中,信号调理模块可以通过调理电源、第七电阻和第八电阻将第三电压抬升
Figure PCTCN2017076988-appb-000001
倍的调理电压,且将第三电压抬升
Figure PCTCN2017076988-appb-000002
倍的调理电压后,还可以通过调理电源、第一二级管和第二二级管将抬升后的第三电压钳制在Ucc+Ud与-Ud之间,以将第三电压调理为在信号处理模块的接受范围内的电压,从而可以保证信号处理模块中的电子元件不被过电压或负电压所损坏。其中,r7为第七电阻的阻值,r8为第八电阻的阻值,Ucc为调理电压,且调理电压为调理电源的输出电压,Ud为第一二级管或者第二二级管的导通电压,且第一二级管与第二二级管的导通电压相等。
结合第一方面,在上述第一方面的另一种可能的实现方式中,所述信号处理模块包括:模数转换器和控制器;
所述模数转换器的输入端与所述信号调理模块的输出端连接,所述模数转换器的输出端与所述控制器的输入端连接,所述模块转换器的接地端和所述控制器的接地端分别与所述参考地连接。
在本发明实施例中,模数转换器用于将接收到的第三电压的模拟量转换成数字量,并将第三电压的数字量发送给控制器;控制器用于基于第三电压,确定目标线与设备外壳之间的电压。
第二方面,提供了一种检测电路,所述检测电路用于对设备进行检测,所述检测电路包括:第二隔离模块、第十电阻、第二信号采集模块和信号处理模块;
所述第二隔离模块的一端与目标线连接,所述第二信号采集模块的输入端和所述第十电阻的一端分别与所述第二隔离模块的另一端连接,所述第十电阻的另一端与参考地连接,所述参考地与设备外壳连接,所述第二信号采集模块的输出端与所述信号处理模块的输入端连接,所述信号处理模块的接地端与所述参考地连接;
其中,所述目标线用于对所述设备进行供电,所述目标线为火线或零线;所述设备外壳为所述设备的外壳;所述第十电阻用于分压;所述第二隔离模块用于对所述目标线和所述设备外壳进行隔离,且用于对一次电路和二次电路进行隔离,所述一次电路包括所述目标线和所述设备的供电电源,所述二次电路包括所述第十电阻、所述第二信号采集模块和所述信号处理模块;所述第二信号采集模块用于采集所述第十电阻两端的电压,并将采集到的所述第十电阻两端的电压确定为第四电压,将所述第四电压输入到所述信号处理模块;
所述信号处理模块用于根据所述第二隔离模块、所述第十电阻和所述第二信号采集模块对所述目标线与所述设备外壳之间的电压的处理过程,对所述第四电压进行反处理,以得到所述目标线与所述设备外壳之间的电压,当所述目标线与所述设备外壳之间的电压满足指定条件时,确定所述设备发生故障,所述指定条件用于指示所述设备发生故障,所述故障包括所述设备接入的火线与零线反接、所述设备外壳未正常接地和所述设备外壳带电中的至少一种。
在本发明实施例中,第二信号采集模块可以采集第四电压,并将第四电压输入到信号处理模块,信号处理模块可以根据第二隔离模块、第十电阻和第二信号采集模块对目标线与设备外壳之间的电压的处理过程,对第四电压进行反处理,以得到目标线与设备外壳之间的电压,当目标线与所述设备外壳之间的电压满足指定条件时,确定设备发生故障。由于目标线既可以为火线,也可以为零线,因此,无论设备接入的火线与零线是正接还是反接,均可以进行故障检测。
结合第二方面,在上述第二方面的第一种可能的实现方式中,所述检测电路还包括信号调理模块,所述信号调理模块的输入端与所述第二信号采集模块的输出端连接,所述信号调理模块的输出端与所述信号处理模块的输入端连接;
所述信号调理模块用于将从所述第二信号采集模块接收到的所述第四电压调理为在所述信号处理模块的接受范围内的电压,并将调理后的所述第四电压输入到所述信号处理模块。
结合第二方面或第二方面的第一种可能的实现方式,在上述第二方面的第二种可能的实现方式中,所述第二隔离模块包括N个串联的电阻,所述N个串联的电阻的总阻值大于或等于指定阻值,所述N为大于或等于1的自然数,所述指定阻值为满足安全标准中所要求的加强绝缘的阻值。
需要说明的是,由于目标线与设备外壳之间的绝缘电阻由第十电阻和第二隔离模块组成,因此,当第二隔离模块包括的N个串联的电阻的总阻值大于或等于指定阻值时,可以保证目标线与设备外壳之间的绝缘电阻满足安全标准中所要求的加强绝缘,从而可以保证用户的用电安全。
另外,由于一次电路与二次电路被第二隔离模块所隔离,因此,当第二隔离单元包括 的N个串联的电阻的总阻值大于或等于指定阻值时,可以保证一次电路与二次电路之间的隔离满足安全标准中所要求的加强绝缘,从而可以保证二次电路中的电子元件不被一次电路中的高电压所损坏。
结合第二方面,在上述第二方面的第三种可能的实现方式中,所述信号处理模块,用于:
当所述设备的供电方式为单相供电且火线中的金属芯线未搭接到所述设备外壳上时,判断所述目标线与所述设备外壳之间的电压是否小于或等于第一指定电压,所述第一指定电压为当所述设备外壳正常接地且火线中的金属芯线未搭接到所述设备外壳上时零线与所述设备外壳之间的电压;
当所述目标线与所述设备外壳之间的电压小于或等于所述第一指定电压时,确定所述设备接入的火线与零线反接,并确定所述目标线与所述设备外壳之间的电压满足所述指定条件。
结合第二方面,在上述第二方面的第四种可能的实现方式中,所述信号处理模块,用于:
当所述设备的供电方式为单相供电且火线中的金属芯线未搭接到所述设备外壳上时,判断所述目标线与所述设备外壳之间的电压是否大于第一指定电压且小于第二指定电压,所述第二指定电压为所述设备的供电电压减去所述第一指定电压所得的电压,所述第一指定电压小于所述第二指定电压;
当所述目标线与所述设备外壳之间的电压大于所述第一指定电压且小于所述第二指定电压时,确定所述设备外壳未正常接地,并确定所述目标线与所述设备外壳之间的电压满足所述指定条件。
结合第二方面,在上述第二方面的第五种可能的实现方式中,所述信号处理模块,用于:
当所述设备的供电方式为单相供电且所述目标线是火线时,判断所述目标线与所述设备外壳之间的电压是否为第一搭接电压,所述第一搭接电压为当所述目标线中的金属芯线搭接到所述设备外壳上时所述目标线与所述设备外壳之间的电压;当所述目标线与所述设备外壳之间的电压为所述第一搭接电压时,确定所述设备外壳带电,并确定所述目标线与所述设备外壳之间的电压满足所述指定条件;
当所述设备的供电方式为单相供电且所述目标线是零线时,判断所述目标线与所述设备外壳之间的电压是否为第二搭接电压,所述第二搭接电压为当除所述目标线之外的火线中的金属芯线搭接到所述设备外壳上时所述目标线与所述设备外壳之间的电压;当所述目标线与所述设备外壳之间的电压为所述第二搭接电压时,确定所述设备外壳带电,并确定所述目标线与所述设备外壳之间的电压满足所述指定条件。
结合第二方面的第五种可能的实现方式,在上述第二方面的第六种可能的实现方式中,所述信号处理模块,还用于:
当火线中的金属芯线未搭接到所述设备外壳上时,如果所述目标线与所述设备外壳之间的电压小于或等于第一指定电压,则确定所述目标线是零线;
当火线中的金属芯线未搭接到所述设备外壳上时,如果所述目标线与所述设备外壳之间的电压大于或等于第二指定电压,则确定所述目标线是火线。
结合第二方面,在上述第二方面的第七种可能的实现方式中,所述信号处理模块,用于:
当所述设备的供电方式为双火线供电时,判断所述目标线与所述设备外壳之间的电压是否为第一搭接电压或第二搭接电压;
当所述目标线与所述设备外壳之间的电压为所述第一搭接电压或所述第二搭接电压时,确定所述设备外壳带电,并确定所述目标线与所述设备外壳之间的电压满足所述指定条件。
结合第二方面,在上述第二方面的第八种可能的实现方式中,所述信号处理模块,用于:
当所述设备的供电方式为三相供电时,判断所述目标线与所述设备外壳之间的电压是否为第一搭接电压或第三搭接电压,所述第三搭接电压为当除所述目标线之外的任一火线中的金属芯线搭接到所述设备外壳上时所述目标线与所述设备外壳之间的电压;
当所述目标线与所述设备外壳之间的电压为所述第一搭接电压或所述第三搭接电压时,确定所述设备外壳带电,并确定所述目标线与所述设备外壳之间的电压满足所述指定条件。
结合第二方面,在上述第二方面的第九种可能的实现方式中,所述信号处理模块,还用于:
当所述设备的供电方式为单相供电且火线中的金属芯线未搭接到所述设备外壳上时,判断所述目标线与所述设备外壳之间的电压是否小于或等于第一指定电压,或者大于或等于第二指定电压;
当所述目标线与所述设备外壳之间的电压小于或等于第一指定电压,或者大于或等于第二指定电压时,确定所述设备外壳正常接地。
结合第二方面,在上述第二方面的另一种可能的实现方式中,第二信号采集模块包括第四运算放大器;
第四运算放大器的同相输入端和第十电阻的一端分别与第二隔离模块的另一端连接,第四运算放大器的反相输入端和第四运算放大器的输出端分别与信号调理模块的输入端连接。其中,第四运算放大器用于采集第十电阻两端的电压。
结合第二方面,在上述第二方面的另一种可能的实现方式中,信号调理模块包括:第七电阻、第八电阻、调理电源、第一二级管和第二二级管;
第七电阻的一端与第二信号采集模块的输出端连接,第八电阻的一端、第一二级管的正极、第二二级管的负极和信号处理模块的输入端分别与第七电阻的另一端连接,第八电阻的另一端和第一二级管的负极分别与调理电源连接,第二二级管的正极与参考地连接。
结合第二方面,在上述第二方面的另一种可能的实现方式中,信号处理模块包括:模数转换器和控制器;
模数转换器的输入端与信号调理模块的输出端连接,模数转换器的输出端与控制器的输入端连接,模块转换器的接地端和控制器的接地端分别与参考地连接。
第三方面,提供了一种一种检测方法,其特征在于,所述方法用于对设备进行检测,所述方法包括:
确定目标线与设备外壳之间的电压,所述目标线用于对所述设备进行供电,且所述目标线为火线或零线,所述设备外壳为所述设备的外壳;
判断所述目标线与所述设备外壳之间的电压是否满足指定条件,所述指定条件用于指示所述设备发生故障,所述故障包括所述设备接入的火线与零线反接、所述设备外壳未正常接地和所述设备外壳带电中的至少一种;
当所述目标线与所述设备外壳之间的电压满足所述指定条件时,确定所述设备发生故障。
在本发明实施例中,确定目标线与设备外壳之间的电压,判断目标线与设备外壳之间的电压是否满足指定条件,当目标线与设备外壳之间的电压满足指定条件时,确定设备发生故障。由于目标线既可以为火线,也可以为零线,因此,无论设备接入的火线与零线是正接还是反接,均可以进行故障检测。
结合第三方面,在上述第三方面的第一种可能的实现方式中,所述判断所述目标线与所述设备外壳之间的电压是否满足指定条件,包括:
当所述设备的供电方式为单相供电且火线中的金属芯线未搭接到所述设备外壳上时,判断所述目标线与所述设备外壳之间的电压是否小于或等于第一指定电压,所述第一指定电压为当所述设备外壳正常接地且火线中的金属芯线未搭接到所述设备外壳上时零线与所述设备外壳之间的电压;
当所述目标线与所述设备外壳之间的电压小于或等于所述第一指定电压时,确定所述设备接入的火线与零线反接,并确定所述目标线与所述设备外壳之间的电压满足所述指定条件。
结合第三方面,在上述第三方面的第二种可能的实现方式中,所述判断所述目标线与所述设备外壳之间的电压是否满足指定条件,包括:
当所述设备的供电方式为单相供电且火线中的金属芯线未搭接到所述设备外壳上时,判断所述目标线与所述设备外壳之间的电压是否大于第一指定电压且小于第二指定电压,所述第二指定电压为所述设备的供电电压减去所述第一指定电压所得的电压,所述第一指定电压小于所述第二指定电压;
当所述目标线与所述设备外壳之间的电压大于所述第一指定电压且小于所述第二指定电压时,确定所述设备外壳未正常接地,并确定所述目标线与所述设备外壳之间的电压满足所述指定条件。
结合第三方面,在上述第三方面的第三种可能的实现方式中,所述判断所述目标线与所述设备外壳之间的电压是否满足指定条件,包括:
当所述设备的供电方式为单相供电且所述目标线是火线时,判断所述目标线与所述设备外壳之间的电压是否为第一搭接电压,所述第一搭接电压为当所述目标线中的金属芯线搭接到所述设备外壳上时所述目标线与所述设备外壳之间的电压;当所述目标线与所述设备外壳之间的电压为所述第一搭接电压时,确定所述设备外壳带电,并确定所述目标线与所述设备外壳之间的电压满足所述指定条件;
当所述设备的供电方式为单相供电且所述目标线是零线时,判断所述目标线与所述设备外壳之间的电压是否为第二搭接电压,所述第二搭接电压为当除所述目标线之外的火线中的金属芯线搭接到所述设备外壳上时所述目标线与所述设备外壳之间的电压;当所述目 标线与所述设备外壳之间的电压为所述第二搭接电压时,确定所述设备外壳带电,并确定所述目标线与所述设备外壳之间的电压满足所述指定条件。
结合第三方面的第三种可能的实现方式,在上述第三方面的第四种可能的实现方式中,所述判断所述目标线与所述设备外壳之间的电压是否满足指定条件之前,还包括:
当火线中的金属芯线未搭接到所述设备外壳上时,如果所述目标线与所述设备外壳之间的电压小于或等于第一指定电压,则确定所述目标线是零线;
当火线中的金属芯线未搭接到所述设备外壳上时,如果所述目标线与所述设备外壳之间的电压大于或等于第二指定电压,则确定所述目标线是火线。
结合第三方面,在上述第三方面的第五种可能的实现方式中,所述判断所述目标线与所述设备外壳之间的电压是否满足指定条件,包括:
当所述设备的供电方式为双火线供电时,判断所述目标线与所述设备外壳之间的电压是否为第一搭接电压或第二搭接电压;
当所述目标线与所述设备外壳之间的电压为所述第一搭接电压或所述第二搭接电压时,确定所述设备外壳带电,并确定所述目标线与所述设备外壳之间的电压满足所述指定条件。
结合第三方面,在上述第三方面的第六种可能的实现方式中,所述判断所述目标线与所述设备外壳之间的电压是否满足指定条件,包括:
当所述设备的供电方式为三相供电时,判断所述目标线与所述设备外壳之间的电压是否为第一搭接电压或第三搭接电压,所述第三搭接电压为当除所述目标线之外的任一火线中的金属芯线搭接到所述设备外壳上时所述目标线与所述设备外壳之间的电压;
当所述目标线与所述设备外壳之间的电压为所述第一搭接电压或所述第三搭接电压时,确定所述设备外壳带电,并确定所述目标线与所述设备外壳之间的电压满足所述指定条件。
结合第三方面至第三方面的第六种可能的实现方式中任一可能的实现方式,在上述第三方面的第七种可能的实现方式中,所述方法还包括:
当所述设备的供电方式为单相供电且火线中的金属芯线未搭接到所述设备外壳上时,判断所述目标线与所述设备外壳之间的电压是否小于或等于第一指定电压,或者大于或等于第二指定电压;
当所述目标线与所述设备外壳之间的电压小于或等于第一指定电压,或者大于或等于第二指定电压时,确定所述设备外壳正常接地。
本发明实施例提供的技术方案带来的有益效果是:在本发明实施例中,第一信号采集模块可以采集第一电压和第二电压,并将第一电压与第二电压之间的电压差与指定比例相乘,以得到在信号处理模块的检测范围内的第三电压,之后,将第三电压输入到信号处理模块,信号处理模块可以根据第一隔离模块、第一电阻、第二电阻和第一信号采集模块对目标线与设备外壳之间的电压的处理过程,对第三电压进行反处理,以得到目标线与设备外壳之间的电压,当目标线与所述设备外壳之间的电压满足指定条件时,确定设备发生故障。由于目标线既可以为火线,也可以为零线,因此,无论设备接入的火线与零线是正接还是反接,均可以对设备进行故障检测。另外,由于指定条件用于指示设备发生故障,且该故障包括设备接入的火线与零线反接、设备外壳未正常接地和设备外壳带电中的至少一 种,因此,本发明实施例可以同时进行三种类型的故障检测,故障检测能力较强。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是相关技术提供的一种检测电路的结构示意图;
图2是本发明实施例提供的第一种检测电路的结构示意图;
图3是本发明实施例提供的第二种检测电路的结构示意图;
图4是本发明实施例提供的第三种检测电路的结构示意图;
图5是本发明实施例提供的第四种检测电路的结构示意图;
图6是本发明实施例提供的第五种检测电路的结构示意图;
图7是本发明实施例提供的第六种检测电路的结构示意图;
图8是本发明实施例提供的第七种检测电路的结构示意图;
图9是本发明实施例提供的第八种检测电路的结构示意图;
图10是本发明实施例提供的第九种检测电路的结构示意图;
图11是本发明实施例提供的第十种检测电路的结构示意图;
图12是本发明实施例提供的第十一种检测电路的结构示意图;
图13是本发明实施例提供的第十二种检测电路的结构示意图;
图14是本发明实施例提供的第十三种检测电路的结构示意图;
图15是本发明实施例提供的一种检测方法的流程图。
附图标记:
相关技术:
R:电阻;D:硅整流二级管;LED:发光二级管;DW:稳压二级管;C:电解电容;HA:蜂鸣器。
本发明实施例:
X:目标线;E:设备外壳;GND:参考地;R1:第一电阻;R2:第二电阻;
1:第一隔离模块;1A:第一隔离单元;1B:第二隔离单元;
2:信号采集模块;2a:信号采集模块的第一输入端;2b:信号采集模块的第二输入端;2c:信号采集模块的输出端;OPA1:第一运算放大器;OPA2:第二运算放大器;OPA3:第三运算放大器;R3:第三电阻;R4:第四电阻;R5:第五电阻;R6:第六电阻;
3:信号处理模块;3a:信号处理模块的输入端;3b:信号处理模块的接地端;AD:模数转换器;aa:模数转换器的输入端;ab:模数转换器的输出端;ac:模数转换器的接地端;MCU:控制器;ma:控制器的输入端;mb:控制器的接地端;
4:信号调理模块;4a:信号调理模块的输入端;4b:信号调理模块的输出端;R7:第七电阻;R8:第八电阻;D1:第一二极管;D2:第二二级管;
R10:第十电阻;5:第二隔离模块;6:第二信号采集模块;6a:第二信号采集模块的输入端;6b:第二信号采集模块的输出端;OPA4:第四运算放大器。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
图2是本发明实施例提供的一种检测电路的结构示意图,该检测电路用于对设备进行检测,参见图2,该检测电路包括:第一隔离模块1、第一电阻R1、第二电阻R2、第一信号采集模块2和信号处理模块3;
第一隔离模块1包括第一隔离单元1A和第二隔离单元1B,且第一隔离单元1A与第二隔离单元1B的阻值相等,第一隔离单元1A的一端与目标线X连接,第二隔离单元1B的一端与设备外壳E连接;第一信号采集模块2的第一输入端2a和第一电阻R1的一端分别与第一隔离单元1A的另一端连接,第一信号采集模块2的第二输入端2b和第二电阻R2的一端分别与第二隔离单元1B的另一端连接,第一电阻R1的另一端和第二电阻R2的另一端分别与参考地GND连接;第一信号采集模块2的输出端2c与信号处理模块3的输入端3a连接,信号处理模块3的接地端3b与参考地GND连接。
其中,第一隔离模块1用于对目标线X和设备外壳E进行隔离,且用于对一次电路和二次电路进行隔离,一次电路包括目标线X和设备的供电电源,二次电路包括第一电阻R1、第二电阻R2、第一信号采集模块2和信号处理模块3;目标线X用于对设备进行供电,且目标线X为火线或零线;设备外壳E为设备的外壳;
第一电阻R1和第二电阻R2用于分压,且第一电阻R1的阻值与第二电阻R2的阻值相等;第一信号采集模块2用于分别采集第一电阻R1两端的电压和第二电阻R2两端的电压,并将采集到的第一电阻R1两端的电压确定为第一电压,将采集到的第二电阻R2两端的电压确定为第二电压,将第一电压与第二电压之间的电压差与指定比例相乘,以得到在信号处理模块3的检测范围内的第三电压,将第三电压输入到信号处理模块3;
信号处理模块3用于根据第一隔离模块1、第一电阻R1、第二电阻R2和第一信号采集模块2对目标线X与设备外壳E之间的电压的处理过程,对第三电压进行反处理,以得到目标线X与设备外壳E之间的电压,当目标线X与设备外壳E之间的电压满足指定条件时,确定设备发生故障,指定条件用于指示设备发生故障,该故障包括设备接入的火线与零线反接、设备外壳未正常接地和设备外壳带电中的至少一种。
需要说明的是,
Figure PCTCN2017076988-appb-000003
其中,UX-GND为目标线X与参考地GND之间的电压,r1为第一电阻R1的阻值,r1A为第一隔离单元1A的阻值。也即是,第一电压为目标线X与参考地GND之间的电压UX-GND按第一比例缩小后的电压,第一比例为
Figure PCTCN2017076988-appb-000004
另外,
Figure PCTCN2017076988-appb-000005
其中,UE-GND为设备外壳E与参考地GND之间的电压,r2为第二电阻R2的阻值,r1B为第二隔离单元1B的阻值。也即是,第二电压为设备 外壳E与参考地GND之间的电压UE-GND按第二比例缩小后的电压,第二比例为
Figure PCTCN2017076988-appb-000006
再者,由于第一电阻R1的阻值r1与第二电阻R2的阻值r2相等,第一隔离单元1A的阻值r1A与第二隔离单元1B的阻值r1B相等,所以第一比例
Figure PCTCN2017076988-appb-000007
与第二比例
Figure PCTCN2017076988-appb-000008
相等。由于第一电压为目标线X与参考地GND之间的电压按第一比例缩小后的电压,第二电压为设备外壳E与参考地GND之间的电压按第二比例缩小后的电压,且第一比例与第二比例相等,所以第一电压与第二电压之间的电压差为目标线X与设备外壳E之间的电压按第一比例或第二比例缩小后的电压。
需要说明的是,由于目标线X与设备外壳E之间的电压是基于第三电压确定得到的,第三电压是将第一电压与第二电压之间的电压差与指定比例相乘后得到的,所以,目标线X与设备外壳E之间的电压是实际上是基于第一电压和第二电压确定得到的。又由于第一电压和第二电压均是相对于参考地GND确定得到的,因此,参考地GND与设备外壳E之间连接或者不连接均不会影响对目标线X与设备外壳E之间的电压的确定,也即是,本发明实施例在参考地GND与设备外壳E之间连接或者不连接时均可以实现对设备的故障检测。
其中,信号处理模块3在得到目标线X与设备外壳E之间的电压后,可以判断目标线X与设备外壳E之间的电压是否满足指定条件,以判断设备是否发生故障,且信号处理模块3判断目标线与设备外壳之间的电压是否满足指定条件的操作可以包括如下五种方式:
第一种方式:当设备的供电方式为单相供电且火线中的金属芯线未搭接到设备外壳上时,判断目标线与设备外壳之间的电压是否小于或等于第一指定电压;当目标线与设备外壳之间的电压小于或等于第一指定电压时,确定设备接入的火线与零线反接,并确定目标线与设备外壳之间的电压满足指定条件。
需要说明的是,本发明实施例中当设备接入的火线与零线反接时,可以确定目标线与设备外壳之间的电压满足指定条件,且此时可以确定设备发生的故障为设备接入的火线与零线反接,在此情况下可以生成第一提示消息,该第一提示消息用于提示用户设备接入的火线与零线反接,从而可以使用户及时获知火线与零线的接线状况,该接线状况是指火线与零线是正接还是反接。
另外,第一指定电压为当设备外壳正常接地且火线中的金属芯线未搭接到设备外壳上时零线与设备外壳之间的电压,第一指定电压接近0V。实际应用中,第一指定电压可以为第一预设电压与第二预设电压中较小的一个,第一预设电压可以为当设备外壳正常接地且火线中的金属芯线未搭接到设备外壳上时,多次测量到的零线与设备外壳之间的电压的平均值,第二预设电压可以为预设数值与设备的供电电压的乘积,该预设数值可以预先设置,如该预设数值可以大于0.01且小于0.1等,本发明实施例对此不做具体限定。另外,由于第一指定电压可以基于第一预设电压和第二预设电压进行设置,所以本发明实施例中可以基于不同的用电场景灵活选择第一指定电压,以保证第一指定电压满足检测需求。
由于当目标线与设备外壳之间的电压小于或等于第一指定电压时,目标线与设备外壳之间的电压很小且接近0伏,因此,在火线中的金属芯线未搭接到设备外壳上时,可以确定目标线为零线,也即是,可以确定设备接入的火线与零线反接。例如,第一指定电压为5V,假设目标线与设备外壳之间的电压为3V,由于3V小于5V,则可以确定设备接入的火 线与零线反接。
第二种方式:当设备的供电方式为单相供电且火线中的金属芯线未搭接到设备外壳上时,判断目标线与设备外壳之间的电压是否大于第一指定电压且小于第二指定电压;当目标线与设备外壳之间的电压大于第一指定电压且小于第二指定电压时,确定设备外壳未正常接地,并确定目标线与设备外壳之间的电压满足指定条件。
需要说明的是,本发明实施例中当设备外壳未正常接地时,可以确定目标线与设备外壳之间的电压满足指定条件,且此时可以确定设备发生的故障为设备外壳未正常接地,在此情况下可以生成第二提示消息,该第二提示消息用于提示用户设备外壳未正常接地,从而可以使用户及时获知设备外壳的接地状况,该接地状况是指设备外壳是否正常接地。
另外,第二指定电压为该供电电压减去第一指定电压所得的电压,第一指定电压小于第二指定电压,第二指定电压接近该供电电压。
由于当火线中的金属芯线未搭接到设备外壳上时,如果设备外壳未正常接地,则火线或者零线与设备外壳之间的电压均应在
Figure PCTCN2017076988-appb-000009
倍的该供电电压附近,所以,当目标线与设备外壳之间的电压大于第一指定电压且小于第二指定电压时,可以确定设备外壳未正常接地。例如,供电电压为220V,第一指定电压为5V,第二指定电压为215V,假设目标线与设备外壳之间的电压为210V,由于210V大于5V且小于215V,则可以确定设备外壳未正常接地。
进一步地,还可以当设备的供电方式为单相供电且火线中的金属芯线未搭接到设备外壳上时,判断目标线与设备外壳之间的电压是否小于或等于第一指定电压,或者大于或等于第二指定电压;当目标线与设备外壳之间的电压小于或等于第一指定电压,或者大于或等于第二指定电压时,确定设备外壳正常接地。
当设备外壳正常接地且火线中的金属芯线未搭接到设备外壳上时,如果目标线为零线,则目标线与设备外壳之间的电压应该小于或等于第一指定电压,如果目标线为火线,则目标线与设备外壳之间的电压应该大于或等于第二指定电压,所以,当目标线与设备外壳之间的电压小于或等于第一指定电压,或者大于或等于第二指定电压时,可以确定设备外壳正常接地。例如,供电电压为220V,第一指定电压为5V,第二指定电压为215V,假设目标线与设备外壳之间的电压为3V,由于3V小于5V,则可以确定设备外壳正常接地。
第三种方式:当设备的供电方式为单相供电且目标线是火线时,判断目标线与设备外壳之间的电压是否为第一搭接电压,第一搭接电压为当目标线中的金属芯线搭接到设备外壳上时目标线与设备外壳之间的电压,当目标线与设备外壳之间的电压为第一搭接电压时,确定设备外壳带电,并确定目标线与设备外壳之间的电压满足指定条件;当设备的供电方式为单相供电且目标线是零线时,判断目标线与设备外壳之间的电压是否为第二搭接电压,第二搭接电压为当除目标线之外的火线中的金属芯线搭接到设备外壳上时目标线与设备外壳之间的电压,当目标线与设备外壳之间的电压为第二搭接电压时,确定设备外壳带电,并确定目标线与设备外壳之间的电压满足指定条件。
需要说明的是,本发明实施例中当设备外壳带电时,可以确定目标线与设备外壳之间的电压满足指定条件,且此时可以确定设备发生的故障为设备外壳带电,在此情况下可以生成第三提示消息,该第三提示消息用于提示用户设备外壳带电,从而可以使用户及时获知设备外壳的带电状况,该带电状况是指设备外壳是否带电。
另外,当设备的供电方式为单相供电且目标线为火线时,如果目标线中的金属芯线搭 接到设备外壳上导致设备外壳带电,则设备外壳与目标线的电位相近,此时目标线与设备外壳之间的电压应该在0V附近,也即是,第一搭接电压可以大于或等于0V且小于第三预设电压。其中,第三预设电压可以预先设置,如第三预设电压可以为0.2V、0.3V等,本发明实施例对此不做具体限定。
再者,当设备的供电方式为单相供电且目标线为零线时,如果除目标线之外的火线搭接到设备外壳上导致设备外壳带电,则设备外壳与该火线的电位相近,此时目标线与设备外壳之间的电压应该在该供电电压附近,也即是,第二搭接电压可以大于第四预设电压且小于或等于该供电电压。其中,第四预设电压可以预先设置,如当该供电电压为220V时,第四预设电压可以为119V、119.5V等,本发明实施例对此不做具体限定。
例如,目标线为火线,第一搭接电压大于或等于0V且小于0.3V,假设目标线与设备外壳之间的电压为0.2V,则目标线与设备外壳之间的电压为第一搭接电压,可以确定设备外壳带电。
再例如,目标线为零线,供电电压为220V,第二搭接电压大于119V且小于或等于220V,假设目标线与设备外壳之间的电压为119.5V,则目标线与设备外壳之间的电压为第二搭接电压,可以确定设备外壳带电。
需要说明的是,当设备的供电方式为单相供电时,在判断目标线与设备外壳之间的电压是否满足指定条件之前,还可以判断目标线是火线还是零线,且判断目标线是火线还是零线的操作可以为:当火线中的金属芯线未搭接到设备外壳上时,如果目标线与设备外壳之间的电压小于或等于第一指定电压,则确定目标线是零线;当火线中的金属芯线未搭接到设备外壳上时,如果目标线与设备外壳之间的电压大于或等于第二指定电压,则确定目标线是火线。
需要说明的是,上述判断目标线是火线还是零线的过程即是判断设备接入的火线与零线是正接还是反接的过程,也即是,当目标线为火线时,可以确定设备接入的火线与零线正接,当目标线为零线,可以确定设备接入的火线与零线反接。
由于当目标线与设备外壳之间的电压小于或等于第一指定电压时,当前时间目标线与设备外壳之间的电压很小且接近0伏,因此,在火线中的金属芯线未搭接到设备外壳上时,可以确定目标线为零线。而当目标线与设备外壳之间的电压大于或等于第二指定电压时,目标线与设备外壳之间的电压很大且接近该供电电压,因此,在火线中的金属芯线未搭接到设备外壳上时,可以确定目标线为火线。
例如,供电电压为220V,第一指定电压为5V,第二指定电压为215V,假设目标线与设备外壳之间的电压为3V,由于3V小于5V,则可以确定目标线是零线。
再例如,供电电压为220V,第一指定电压为5V,第二指定电压为215V,假设目标线与设备外壳之间的电压为217V,由于217V大于215V,则可以确定目标线是火线。
由于当设备的供电方式为单相供电时,目标线是火线和目标线是零线时,对设备进行故障检测中的设备外壳带电检测的操作有所不同,因此,在进行设备外壳带电检测之前,需要先确定目标线是火线还是零线。又由于仅当火线中的金属芯线未搭接到设备外壳上且设备外壳正常接地时,才可以判断出目标线是火线还是零线,因此,实际应用中,可以在设备初次安装、初次上电或断电后第一次上电时,确保火线中的金属芯线未搭接到设备外壳上,且确保设备外壳正常接地,从而在设备初次安装、初次上电或断电后第一次上电时, 就可以判断出目标线是火线还是零线,进而保证后续可以进行有效地设备外壳带电检测。另外,由于一般情况下在设备的运行过程中,零线与火线的接线状况不会发生变化,所以可以仅在设备初次安装、初次上电或断电后第一次上电时对目标线是火线还是零线进行判断,而在后续的检测过程中无需再次判断,从而可以节省处理资源。
需要说明的是,实际应用中,上述第三种方式中当目标线是火线时,判断目标线与设备外壳之间的电压是否为第一搭接电压的操作可以通过标志位来实现,具体地,当目标线是火线时,如果检测到目标线与设备外壳之间的电压发生跳变,则获取发生跳变之前目标线与设备外壳之间的电压,并基于获取的电压确定第一标志位;获取发生跳变之后目标线与设备外壳之间的电压,并基于获取的电压确定第二标志位;当第一标志位与第二标志位满足第一条件时,确定目标线与设备外壳之间的电压为第一搭接电压。
其中,获取发生跳变之前目标线与设备外壳之间的电压,并基于获取的电压确定第一标志位时,如果获取的电压为第一正常电压,则将第一标志位设置为0,如果获取的电压为第一搭接电压,则将第一标志位设置为1。
需要说明的是,第一正常电压为当目标线中的金属芯线未搭接到设备外壳上时目标线与设备外壳之间的电压。且当设备外壳正常接地时,该第一正常电压可以大于第四预设电压且小于或等于该供电电压,当设备外壳未正常接地时,该第一正常电压可以大于第五预设电压且小于或等于
Figure PCTCN2017076988-appb-000010
倍的该供电电压。其中,第五预设电压可以预先设置,如当该供电电压为220V时,
Figure PCTCN2017076988-appb-000011
倍的该供电电压为110V,则该第五预设电压可以为108V、109V等,本发明实施例对此不做具体限定。
例如,目标线为火线,供电电压为220V,第一正常电压大于119V且小于或等于220V,或者第一正常电压大于108V且小于或等于110V,第一搭接电压大于或等于0V且小于0.3V,假设获取的发生跳变前目标线与设备外壳之间的电压为119.5V,则获取的电压为第一正常电压,此时可以将第一标志位设置为0。
再例如,目标线为火线,供电电压为220V,第一正常电压大于119V且小于或等于220V,或者第一正常电压大于108V且小于或等于110V,第一搭接电压大于或等于0V且小于0.3V,假设获取的发生跳变前目标线与设备外壳之间的电压为0.2V,则获取的电压为第一搭接电压,此时可以将第一标志位设置为1。
其中,获取发生跳变之后目标线与设备外壳之间的电压,并基于获取的电压确定第二标志位的操作与上述基于获取的电压确定第一标志位的操作相同,本发明实施例对此不再赘述。
需要说明的是,第一条件用于指示设备外壳由不带电状态跳变到带电状态,如第一条件可以为第一标志位为0且第二标志位为1。由于当第一标志位为0且第二标志位为1时,可以确定目标线与设备外壳之间的电压由第一正常电压跳变到第一搭接电压,因此,此时可以确定目标线与设备外壳之间的电压为第一搭接电压。
还需要说明的是,实际应用中,上述第三种方式中当目标线是零线时,判断目标线与设备外壳之间的电压是否为第二搭接电压的操作可以通过标志位来实现,具体地,当目标线是零线时,如果检测到目标线与设备外壳之间的电压发生跳变,则获取发生跳变之前目标线与设备外壳之间的电压,并基于获取的电压确定第三标志位;获取发生跳变之后目标 线与设备外壳之间的电压,并基于获取的电压确定第四标志位;当第三标志位与第四标志位满足第二条件时,确定目标线与设备外壳之间的电压为第二搭接电压。
其中,获取发生跳变之前目标线与设备外壳之间的电压,并基于获取的电压确定第三标志位时,如果获取的电压为第二正常电压时,则将第三标志位设置为0,如果获取的电压为第二搭接电压,则将第三标志位设置为1。
需要说明的是,第二正常电压为当除目标线之外的火线中的金属芯线未搭接到设备外壳上时目标线与设备外壳之间的电压。且当设备外壳正常接地时,该第二正常电压可以大于或等于0V且小于第三预设电压,当设备外壳未正常接地时,该第二正常电压可以大于第五预设电压且小于或等于
Figure PCTCN2017076988-appb-000012
倍的该供电电压。
例如,目标线为零线,供电电压为220V,第二正常电压大于或等于0V且小于0.3V,或者第二正常电压大于108V且小于或等于110V,第二搭接电压大于119V且小于或等于220V,假设获取的发生跳变前目标线与设备外壳之间的电压为0.2V,则获取的电压为第二正常电压,此时可以将第三标志位设置为0。
再例如,目标线为零线,供电电压为220V,第二正常电压大于或等于0V且小于0.3V,或者第二正常电压大于108V且小于或等于110V,第二搭接电压大于119V且小于或等于220V,假设获取的发生跳变前目标线与设备外壳之间的电压为119.5V,则获取的电压为第二搭接电压,此时可以将第三标志位设置为1。
其中,获取发生跳变之后目标线与设备外壳之间的电压,并基于获取的电压确定第四标志位的操作与上述基于获取的电压确定第三标志位的操作相同,本发明实施例对此不再赘述。
需要说明的是,第二条件用于指示设备外壳由不带电状态跳变到带电状态,如第二条件可以为第三标志位为0且第四标志位为1。由于当第三标志位为0且第四标志位为1时,可以确定目标线与设备外壳之间的电压由第二正常电压跳变到第二搭接电压,因此,此时可以确定目标线与设备外壳之间的电压为第二搭接电压。
第四种方式:当设备的供电方式为双火线供电时,判断目标线与设备外壳之间的电压是否为第一搭接电压或第二搭接电压;当目标线与设备外壳之间的电压为第一搭接电压或第二搭接电压时,确定设备外壳带电,并确定目标线与设备外壳之间的电压满足指定条件。
需要说明的是,本发明实施例中当设备外壳带电时,可以确定目标线与设备外壳之间的电压满足指定条件,且此时可以确定设备发生的故障为设备外壳带电,在此情况下可以生成第三提示消息,该第三提示消息用于提示用户设备外壳带电,从而可以使用户及时获知设备外壳的带电状况。
需要说明的是,当设备的供电方式为双火线供电时,如果目标线中的金属芯线搭接到设备外壳上导致设备外壳带电,则设备外壳与目标线的电位相近,此时目标线与设备外壳之间的电压应该在0V附近,也即是,此时目标线与设备外壳之间的电压应该为第一搭接电压。如果除目标线之外的火线中的金属芯线搭接到设备外壳上导致设备外壳带电,则设备外壳与该火线的电位相近,此时目标线与设备外壳之间的电压应该在该供电电压附近,也即是,此时目标线与设备外壳之间的电压应该为第二搭接电压。所以,当目标线与设备外壳之间的电压为第一搭接电压或者第二搭接电压时,可以确定设备外壳带电。
例如,供电电压为220V,第一搭接电压大于或等于0V且小于0.3V,第二搭接电压大于119V且小于或等于220V,假设目标线与设备外壳之间的电压为0.2V,则可以确定目标线与设备外壳之间的电压为第一搭接电压,确定设备外壳带电。
还需要说明的是,实际应用中,上述第四种方式中判断目标线与设备外壳之间的电压是否为第一搭接电压或第二搭接电压的操作可以通过标志位来实现,具体地,如果检测到目标线与设备外壳之间的电压发生跳变,则获取发生跳变之前目标线与设备外壳之间的电压,并基于获取的电压确定第五标志位;获取发生跳变之后目标线与设备外壳之间的电压,并基于获取的电压确定第六标志位;当第五标志位与第六标志位满足第三条件时,确定目标线与设备外壳之间的电压为第一搭接电压或第二搭接电压。
其中,获取发生跳变之前目标线与设备外壳之间的电压,并基于获取的电压确定第五标志位时,如果获取的电压为第三正常电压,则将第五标志位设置为0,如果获取的电压为第一搭接电压或第二搭接电压,则将第五标志位设置为1。
需要说明的是,第三正常电压为当目标线和除目标线之外的火线中的金属芯线均未搭接到设备外壳上时目标线与设备外壳之间的电压。且该第三正常电压可以大于第五预设电压且小于或等于
Figure PCTCN2017076988-appb-000013
倍的该供电电压。
例如,供电电压为220V,第三正常电压大于108V且小于或等于110V,第一搭接电压大于或等于0V且小于0.3V,第二搭接电压大于119V且小于或等于220V,假设获取的发生跳变前目标线与设备外壳之间的电压为109V,则获取的电压为第三正常电压,此时可以将第五标志位设置为0。
例如,供电电压为220V,第三正常电压大于108V且小于或等于110V,第一搭接电压大于或等于0V且小于0.3V,第二搭接电压大于119V且小于或等于220V,假设获取的发生跳变前目标线与设备外壳之间的电压为0.2V,则获取的电压为第一搭接电压,此时可以将第五标志位设置为1。
其中,获取发生跳变之后目标线与设备外壳之间的电压,并基于获取的电压确定第六标志位的操作与上述基于获取的电压确定第五标志位的操作相同,本发明实施例对此不再赘述。
需要说明的是,第三条件用于指示设备外壳由不带电状态跳变到带电状态,如第三条件可以为第五标志位为0且第六标志位为1。由于当第五标志位为0且第六标志位为1时,可以确定目标线与设备外壳之间的电压由第三正常电压跳变到第一搭接电压,或者由第三正常电压跳变到第二搭接电压,因此,此时可以确定目标线与设备外壳之间的电压为第一搭接电压或第二搭接电压。
第五种方式:当设备的供电方式为三相供电时,判断目标线与设备外壳之间的电压是否为第一搭接电压或第三搭接电压,第三搭接电压为当除目标线之外的任一火线中的金属芯线搭接到设备外壳上时目标线与设备外壳之间的电压;当目标线与设备外壳之间的电压为第一搭接电压或第三搭接电压时,确定设备外壳带电,并确定目标线与设备外壳之间的电压满足指定条件。
需要说明的是,本发明实施例中当设备外壳带电时,可以确定目标线与设备外壳之间的电压满足指定条件,且此时可以确定设备发生的故障为设备外壳带电,在此情况下可以 生成第三提示消息,该第三提示消息用于提示用户设备外壳带电,从而可以使用户及时获知设备外壳的带电状况。
需要说明的是,当设备的供电方式为三相供电时,如果目标线中的金属芯线搭接到设备外壳上导致设备外壳带电,则设备外壳与目标线的电位相近,此时目标线与设备外壳之间的电压应该在0V附近,也即是,此时目标线与设备外壳之间的电压应该为第一搭接电压。如果除目标线之外的任一火线中的金属芯线搭接到设备外壳上导致设备外壳带电,则设备外壳与该火线的电位相近,此时目标线与设备外壳之间的电压应该在
Figure PCTCN2017076988-appb-000014
倍的该供电电压附近,也即是,第三搭接电压可以大于第六预设电压且小于或等于
Figure PCTCN2017076988-appb-000015
倍的供电电压。其中,第六预设电压可以预先设置,如当该供电电压为220V时,该第六预设电压可以为373V、374V等,本发明实施例对此不做具体限定。
例如,供电电压为220V,第一搭接电压大于或等于0V且小于0.3V,第三搭接电压大于373V且小于或等于
Figure PCTCN2017076988-appb-000016
假设目标线与设备外壳之间的电压为0.2V,则可以确定目标线与设备外壳之间的电压为第一搭接电压,确定设备外壳带电。
还需要说明的是,实际应用中,上述第五种方式中判断目标线与设备外壳之间的电压是否为第一搭接电压或第三搭接电压的操作可以通过标志位来实现,具体地,如果检测到目标线与设备外壳之间的电压发生跳变,则获取发生跳变之前目标线与设备外壳之间的电压,并基于获取的电压确定第七标志位;获取发生跳变之后目标线与设备外壳之间的电压,并基于获取的电压确定第八标志位;当第七标志位与第八标志位满足第四条件时,确定目标线与设备外壳之间的电压为第一搭接电压或第三搭接电压。
其中,获取发生跳变之前目标线与设备外壳之间的电压,并基于获取的电压确定第七标志位时,如果获取的电压为第四正常电压,则将第七标志位设置为0,如果获取的电压为第一搭接电压或第三搭接电压,则将第七标志位设置为1。
需要说明的是,第四正常电压为当目标线和除目标线之外的火线中的金属芯线均未搭接到设备外壳上时目标线与设备外壳之间的电压。且当设备正常接地时,该第四正常电压可以大于第四预设电压且小于或等于该供电电压,当设备外壳未正常接地时,该第四正常电压可以大于第五预设电压且小于或等于
Figure PCTCN2017076988-appb-000017
倍的该供电电压。
例如,供电电压为220V,第四正常电压大于119V且小于或等于220V,或者第四正常电压大于108V且小于或等于110V,第一搭接电压大于或等于0V且小于0.3V,第三搭接电压大于373V且小于或等于
Figure PCTCN2017076988-appb-000018
假设获取的发生跳变前目标线与设备外壳之间的电压为119.5V,则获取的电压为第四正常电压,此时可以将第七标志位设置为0。
例如,供电电压为220V,第四正常电压大于119V且小于或等于220V,或者第四正常电压大于108V且小于或等于110V,第一搭接电压大于或等于0V且小于0.3V,第三搭接电压大于373V且小于或等于
Figure PCTCN2017076988-appb-000019
假设获取的发生跳变前目标线与设备外壳之间的电压为0.2V,则获取的电压为第一搭接电压,此时可以将第七标志位设置为1。
其中,获取发生跳变之后目标线与设备外壳之间的电压,并基于获取的电压确定第八标志位的操作与上述基于获取的电压确定第七标志位的操作相同,本发明实施例对此不再赘述。
需要说明的是,第四条件用于指示设备外壳由不带电状态跳变到带电状态,如第四条 件可以为第七标志位为0且第八标志位为1。由于当第七标志位为0且第八标志位为1时,可以确定目标线与设备外壳之间的电压由第四正常电压跳变到第一搭接电压,或者由第四正常电压跳变到第三搭接电压,因此,此时可以确定目标线与设备外壳之间的电压为第一搭接电压或第三搭接电压。
进一步地,结合表1所示的逻辑判断列表来对上述第三种方式、第四种方式和第五种方式中的故障检测操作进行整体说明。其中,UX-E为目标线与设备外壳之间的电压。
表1
Figure PCTCN2017076988-appb-000020
需要说明的是,本发明实施例中,仅以上述表1所示的逻辑判断表为例进行说明,上述表1并不对本发明实施例构成限定。
如上表1所示,当设备的供电方式为单相供电且当设备接入的火线与零线正接时,如果检测到目标线与设备外壳之间的电压由第一正常电压跳变到第一搭接电压,则可以确定设备外壳带电。当设备的供电方式为单相供电且当设备接入的火线与零线反接时,如果检测到目标线与设备外壳之间的电压由第二正常电压跳变到第二搭接电压,则可以确定设备外壳带电。
当设备的供电方式为双火线供电时,如果检测到目标线与设备外壳之间的电压由第三正常电压跳变到第一搭接电压,或者检测到目标线与设备外壳之间的电压由第三正常电压跳变到第二搭接电压,则可以确定设备外壳带电。
当设备的供电方式为三相供电时,如果检测到目标线与设备外壳之间的电压由第四正常电压跳变到第一搭接电压,或者检测到目标线与设备外壳之间的电压由第四正常电压跳变到第三搭接电压,则可以确定设备外壳带电。
参见图3,该检测电路还包括信号调理模块4,信号调理模块4的输入端4a与第一信号 采集模块2的输出端2c连接,信号调理模块4的输出端4b与信号处理模块3的输入端3a连接。
其中,信号调理模块4用于将从第一信号采集模块2接收到的第三电压调理为在信号处理模块3的接受范围内的电压,并将调理后的第三电压输入到信号处理模块3。
参见图4,第一隔离单元1A包括N个串联的电阻,该N个串联的电阻的总阻值大于或等于指定阻值,N为大于或等于1的自然数,指定阻值为满足安全标准中所要求的加强绝缘的阻值。
需要说明的是,指定阻值可以预先设置,如该指定阻值可以为安全标准IEC60065中所要求的加强绝缘4Mohm(兆欧姆)等,本发明实施例对此不做具体限定。
需要说明的是,由于目标线X与设备外壳E之间的绝缘电阻由第一电阻R1、第二电阻R2、第一隔离单元1A和第二隔离单元1B组成,且由于第一隔离单元1A和第二隔离单元1B的阻值相等,因此,当第一隔离单元1A包括的N个串联的电阻的总阻值大于或等于指定阻值时,可以保证目标线X与设备外壳E之间的绝缘电阻满足安全标准中所要求的加强绝缘,从而可以保证用户的用电安全。
另外,由于一次电路与二次电路被第一隔离模块1所隔离,且由于第一隔离单元1A和第二隔离单元1B的阻值相等,因此,当第一隔离单元1A包括的N个串联的电阻的总阻值大于或等于指定阻值时,可以保证一次电路与二次电路之间的隔离满足安全标准中所要求的加强绝缘,从而可以保证二次电路中的电子元件不被一次电路中的高电压所损坏。
再者,本发明实施例中,当该N个串联的电阻的总阻值大于指定阻值时,该N个串联的电阻中的任意N-1个电阻的总阻值将大于或等于指定阻值,从而可以保证在该N个串联的电阻中的任一电阻短路的情况下,第一隔离单元1A依旧可以满足隔离需求。
需要说明的是,本发明实施例中的第一隔离单元1A以图4所示的结构为例进行说明,实际应用中,也可以由其它电子元件组成的其它结构来实现第一隔离单元1A的功能,本发明实施例对此不做具体限定。
参见图5,第二隔离单元1B包括M个串联的电阻,该M个电阻的总阻值大于或等于指定阻值,M为大于或等于1的自然数,指定阻值为满足安全标准中所要求的加强绝缘的阻值。
需要说明的是,由于目标线X与设备外壳E之间的绝缘电阻由第一电阻R1、第二电阻R2、第一隔离单元1A和第二隔离单元1B组成,且由于第一隔离单元1A和第二隔离单元1B的阻值相等,因此,当第二隔离单元1B包括的M个串联的电阻的总阻值大于或等于指定阻值时,可以保证目标线X与设备外壳E之间的绝缘电阻满足安全标准中所要求的加强绝缘,从而可以保证用户的用电安全。
另外,由于一次电路与二次电路被第一隔离模块1所隔离,且由于第一隔离单元1A和第二隔离单元1B的阻值相等,因此,当第二隔离单元1B包括的M个串联的电阻的总阻值大于或等于指定阻值时,可以保证一次电路与二次电路之间的隔离满足安全标准中所要求的加强绝缘,从而可以保证二次电路中的电子元件不被一次电路中的高电压所损坏。
再者,本发明实施例中,当该M个串联的电阻的总阻值大于指定阻值时,该M个串联的电阻中的任意M-1个电阻的总阻值将大于或等于指定阻值,从而可以保证在该M个串联的电阻中的任一电阻短路的情况下,第二隔离单元1B依旧可以满足隔离需求。
需要说明的是,本发明实施例中的第二隔离单元1B以图5所示的结构为例进行说明,实际应用中,也可以由其它电子元件组成的其它结构来实现第二隔离单元1B的功能,本发明实施例对此不做具体限定。
参见图6,第一信号采集模块2包括:第一运算放大器OPA1、第二运算放大器OPA2、第三运算放大器OPA3、第三电阻R3、第四电阻R4、第五电阻R5和第六电阻R6;
第一运算放大器OPA1的同相输入端和第一电阻R1的一端分别与第一隔离单元1A的另一端连接,第一运算放大器OPA1的反相输入端和第三电阻R3的一端分别与第一运算放大器OPA1的输出端连接;第二运算放大器OPA2的同相输入端和第二电阻R2的一端分别与第二隔离单元2B的另一端连接,第二运算放大器OPA2的反相输入端和第四电阻R4的一端分别与第二运算放大器OPA2的输出端连接;第三运算放大器OPA3的同相输入端与第三电阻R3的另一端连接,第三运算放大器OPA3的同相输入端还与第五电阻R5的一端连接,第五电阻R5的另一端与参考地GND连接,第三运算放大器OPA3的反相输入端与第四电阻R4的另一端连接,第三运算放大器OPA3的反相输入端还与第六电阻R6的一端连接,第六电阻R6的另一端和信号调理模块4的输入端4a分别与第三运算放大器OPA3的输出端连接。
其中,第一运算放大器OPA1、第二运算放大器OPA2和第三运算放大器OPA3组成差分放大电路,具体地,第一运算放大器OPA1用于采集第一电阻R1两端的电压,第二运算放大器OPA2用于采集第二电阻R2两端的电压,第三运算放大器OPA3用于基于第一电压与第二电压之间的电压差确定第三电压。
其中,第三运算放大器OPA3基于第一电压与第二电压之间的电压差确定第三电压时,可以通过公式
Figure PCTCN2017076988-appb-000021
确定第三电压,其中,U3为第三电压,r6为第六电阻的阻值,r4为第四电阻的阻值,U1为第一电压,U2为第二电压。也即是,第三电压为将第一电压与第二电压之间的电压差与指定比例相乘后的电压,指定比例为
Figure PCTCN2017076988-appb-000022
需要说明的是,本发明实施例中的第一信号采集模块2以图6所示的结构为例进行说明,实际应用中,也可以由其它电子元件组成的差分放大电路来实现第一信号采集模块2的功能,本发明实施例对此不做具体限定。
参见图7,信号调理模块4包括:第七电阻R7、第八电阻R8、调理电源、第一二级管D1和第二二级管D2;
第七电阻R7的一端与第一信号采集模块2的输出端2c连接,第八电阻R8的一端、第一二级管D1的正极、第二二级管D2的负极和信号处理模块3的输入端3a分别与第七电阻R7的另一端连接,第八电阻R8的另一端和第一二级管D1的负极分别与调理电源连接,第二二级管D2的正极与参考地GND连接。
其中,信号调理模块4在对从第一信号采集模块2接收到的第三电压进行调理时,可以通过调理电源、第七电阻R7和第八电阻R8将第三电压抬升
Figure PCTCN2017076988-appb-000023
倍的调理电压,且将第三电压抬升
Figure PCTCN2017076988-appb-000024
倍的调理电压后,还可以通过调理电源、第一二级管D1和第二二级 管D2将抬升后的第三电压钳制在Ucc+Ud与-Ud之间,以将第三电压调理为在信号处理模块3的接受范围内的电压,从而可以保证信号处理模块3中的电子元件不被过电压或负电压所损坏。其中,r7为第七电阻R7的阻值,r8为第八电阻R8的阻值,Ucc为调理电压,且调理电压为调理电源的输出电压,Ud为第一二级管D1或者第二二级管D2的导通电压,第一二级管D1与第二二级管D2的导通电压相等。
需要说明的是,调理电压Ucc可以为3.3V、5V等,本发明实施例对此不做具体限定。另外,第一二级管D1或者第二二级管D2的导通电压Ud可以为0.5V、0.7V等,本发明实施例对此不做具体限定。
还需要说明的是,本发明实施例中的信号调理模块4以图7所示的结构为例进行说明,实际应用中,也可以由其它电子元件组成的其它结构来实现信号调理模块4的功能,本发明实施例对此不做具体限定。
参见图8,信号处理模块3包括:模数转换器AD和控制器MCU;
模数转换器AD的输入端aa与信号调理模块4的输出端4b连接,模数转换器AD的输出端ab与控制器MCU的输入端ma连接,模块转换器AD的接地端ac和控制器MCU的接地端mb分别与参考地GND连接。
其中,模数转换器AD用于将接收到的第三电压的模拟量转换成数字量,并将第三电压的数字量发送给控制器MCU;控制器MCU用于基于第三电压,确定目标线X与设备外壳E之间的电压。
其中,控制器MCU基于第三电压,确定目标线X与设备外壳E之间的电压时,如果该检测电路中不包括信号调理模块4,则可以基于第一比例和指定比例进行确定,具体地,可以将第三电压与指定比例的倒数相乘,以及与第一比例的倒数相乘,即可得到目标线X与设备外壳E之间的电压。如果该检测电路中包括信号调理模块4,则可以基于第一比例、指定比例和调理电压进行确定,具体地,可以先将第三电压降低
Figure PCTCN2017076988-appb-000025
倍的调理电压,再将降低后的第三电压与指定比例的倒数相乘,以及与第一比例的倒数相乘,即可得到目标线X与设备外壳E之间的电压。
需要说明的是,本发明实施例中的信号处理模块3以图8所示的结构为例进行说明,实际应用中,也可以由其它电子元件组成的其它结构来实现信号处理模块3的功能,如信号处理模块3中可以仅包括控制器,该控制器中可以集成有模数转换模块等,本发明实施例对此不做具体限定。
需要说明的是,半导体器件在使用过程中极易出现温度漂移的问题,该温度漂移是指温度变化所引起的半导体器件参数的变化,由于当该半导体器件出现温度漂移时,会导致该半导体器件的输出电压不准确,因此,当该检测电路中包括的半导体器件,如第一电阻R1、第二电阻R2、第一运算放大器OPA1、第二运算放大器OPA2等出现温度漂移时,需要对该半导体器件的输出电压进行修正,以保证该半导体器件的输出电压的准确性。且对该半导体器件的输出电压进行修正时,可以采用温度补偿的方式来进行修正,当然,实际应用中,也可以采用其它方式来进行修正,本发明实施例对此不做具体限定。其中,采用温度补偿的方式来进行修正的具体操作可以参考相关技术,本发明实施例对此不进行详细阐述。
另外,半导体器件在使用过程中也极易因为恶劣环境而受到污染,该污染会对该半导体器件的电阻率造成影响,因此,为了避免该检测电路中包括的半导体器件,如第一电阻R1、第二电阻R2、第一运算放大器OPA1、第二运算放大器OPA2等受到污染,需要将该半导体器件与环境进行隔离。且将该半导体器件与环境进行隔离时,可以采用涂覆或灌封的方式来进行隔离,当然,实际应用中,也可以采用其它方式来进行隔离,本发明实施例对此不做具体限定。其中,采用涂覆或灌封的方式来进行隔离的具体操作可以参考相关技术,本发明实施例对此不进行详细阐述。
在本发明实施例中,第一信号采集模块可以采集第一电压和第二电压,并将第一电压与第二电压之间的电压差与指定比例相乘,以得到在信号处理模块的检测范围内的第三电压,之后,将第三电压输入到信号处理模块,信号处理模块可以根据第一隔离模块、第一电阻、第二电阻和第一信号采集模块对目标线与设备外壳之间的电压的处理过程,对第三电压进行反处理,以得到目标线与设备外壳之间的电压,当目标线与所述设备外壳之间的电压满足指定条件时,确定设备发生故障。由于目标线既可以为火线,也可以为零线,因此,无论设备接入的火线与零线是正接还是反接,均可以对设备进行故障检测。另外,由于指定条件用于指示设备发生故障,且该故障包括设备接入的火线与零线反接、设备外壳未正常接地和设备外壳带电中的至少一种,因此,本发明实施例可以同时进行三种类型的故障检测,故障检测能力较强。
图9是本发明实施例提供的一种检测电路的结构示意图,该检测电路用于对设备进行检测,参见图9,该检测电路包括:第二隔离模块5、第十电阻R10、第二信号采集模块6和信号处理模块3;
第二隔离模块5的一端与目标线X连接,第二信号采集模块6的输入端6a和第十电阻R10的一端分别与第二隔离模块5的另一端连接,第十电阻R10的另一端与参考地GND连接,参考地GND与设备外壳E连接,第二信号采集模块6的输出端6b与信号处理模块3的输入端3a连接,信号处理模块3的接地端3b与参考地GND连接。
其中,目标线X用于对设备进行供电,目标线X为火线或零线;设备外壳E为设备的外壳;第十电阻R10用于分压;第二隔离模块5用于对目标线X和设备外壳E进行隔离,且用于对一次电路和二次电路进行隔离,一次电路包括目标线X和设备的供电电源,二次电路包括第十电阻R10、第二信号采集模块6和信号处理模块3;第二信号采集模块6用于采集第十电阻R10两端的电压,并将采集到的第十电阻R10两端的电压确定为第四电压,将第四电压输入到信号处理模块3;
信号处理模块3用于根据第二隔离模块5、第十电阻R10和第二信号采集模块6对目标线X与设备外壳E之间的电压的处理过程,对第四电压进行反处理,以得到目标线X与设备外壳E之间的电压,当目标线X与设备外壳E之间的电压满足指定条件时,确定设备发生故障,指定条件用于指示设备发生故障,该故障包括设备接入的火线与零线反接、设备外壳未正常接地和设备外壳带电中的至少一种。
需要说明的是,
Figure PCTCN2017076988-appb-000026
其中,UX-E为目标线X与设备外壳E之间的电压,r10为第十电阻R10的阻值,r5为第二隔离模块5的阻值。也即是,第四电压为 目标线X与设备外壳E之间的电压UX-E按第三比例缩小后的电压,第三比例为
Figure PCTCN2017076988-appb-000027
其中,信号处理模块3在得到目标线X与设备外壳E之间的电压后,可以判断目标线X与设备外壳E之间的电压是否满足指定条件,以判断设备是否发生故障,且信号处理模块3判断目标线X与设备外壳E之间的电压是否满足指定条件的操作与上述检测电路实施例中的判断操作相同,本发明实施例对此不再赘述。
参见图10,检测电路还包括信号调理模块4,信号调理模块4的输入端4a与第二信号采集模块6的输出端6b连接,信号调理模块4的输出端4b与信号处理模块3的输入端3a连接。
信号调理模块4用于将从第二信号采集模块6接收到的第四电压调理为在信号处理模块3的接受范围内的电压,并将调理后的第四电压输入到信号处理模块3。
参见图11,第二隔离模块5包括N个串联的电阻,N个串联的电阻的总阻值大于或等于指定阻值,N为大于或等于1的自然数,指定阻值为满足安全标准中所要求的加强绝缘的阻值。
需要说明的是,指定阻值可以预先设置,如该指定阻值可以为安全标准IEC60065中所要求的加强绝缘4Mohm等,本发明实施例对此不做具体限定。
需要说明的是,由于目标线X与设备外壳E之间的绝缘电阻由第十电阻R10和第二隔离模块5组成,因此,当第二隔离模块5包括的N个串联的电阻的总阻值大于或等于指定阻值时,可以保证目标线X与设备外壳E之间的绝缘电阻满足安全标准中所要求的加强绝缘,从而可以保证用户的用电安全。
另外,由于一次电路与二次电路被第二隔离模块5所隔离,因此,当第二隔离单元5包括的N个串联的电阻的总阻值大于或等于指定阻值时,可以保证一次电路与二次电路之间的隔离满足安全标准中所要求的加强绝缘,从而可以保证二次电路中的电子元件不被一次电路中的高电压所损坏。
再者,本发明实施例中,当该N个串联的电阻的总阻值大于指定阻值时,该N个串联的电阻中的任意N-1个电阻的总阻值将大于或等于指定阻值,从而可以保证在该N个串联的电阻中的任一电阻短路的情况下,第二隔离模块5依旧可以满足隔离需求。
需要说明的是,本发明实施例中的第二隔离模块5以图11所示的结构为例进行说明,实际应用中,也可以由其它电子元件组成的其它结构来实现第二隔离模块5的功能,本发明实施例对此不做具体限定。
参见图12,第二信号采集模块6包括第四运算放大器OPA4;第四运算放大器OPA4的同相输入端和第十电阻R10的一端分别与第二隔离模块5的另一端连接,第四运算放大器OPA4的反相输入端和第四运算放大器OPA4的输出端分别与信号调理模块4的输入端4a连接。其中,第四运算放大器OPA4用于采集第十电阻R10两端的电压。
需要说明的是,本发明实施例中的第二信号采集模块6以图12所示的结构为例进行说明,实际应用中,也可以由其它电子元件组成的其它结构来实现第二信号采集模块6的功能,本发明实施例对此不做具体限定。
参见图13,信号调理模块4包括:第七电阻R7、第八电阻R8、调理电源、第一二级管D1和第二二级管D2;
第七电阻R7的一端与第二信号采集模块6的输出端6b连接,第八电阻R8的一端、第一二级管D1的正极、第二二级管D2的负极和信号处理模块3的输入端3a分别与第七电阻R7的另一端连接,第八电阻R8的另一端和第一二级管D1的负极分别与调理电源连接,第二二级管D2的正极与参考地GND连接。
其中,信号调理模块4在对从第二信号采集模块6接收到的第四电压进行调理时,可以通过调理电源、第七电阻R7和第八电阻R8将第四电压抬升
Figure PCTCN2017076988-appb-000028
倍的调理电压,且将第四电压抬升
Figure PCTCN2017076988-appb-000029
倍的调理电压后,还可以通过调理电源、第一二级管D1和第二二级管D2将抬升后的第四电压钳制在Ucc+Ud与-Ud之间,以将第四电压调理为在信号处理模块3的接受范围内的电压,从而可以保证信号处理模块3中的电子元件不被过电压或负电压所损坏。其中,r7为第七电阻R7的阻值,r8为第八电阻R8的阻值,Ucc为调理电压,且调理电压为调理电源的输出电压,Ud为第一二级管D1或者第二二级管D2的导通电压,第一二级管D1与第二二级管D2的导通电压相等。
需要说明的是,调理电压Ucc可以为3.3V、5V等,本发明实施例对此不做具体限定。另外,第一二级管D1或者第二二级管D2的导通电压Ud可以为0.5V、0.7V等,本发明实施例对此不做具体限定。
还需要说明的是,本发明实施例中的信号调理模块4以图13所示的结构为例进行说明,实际应用中,也可以由其它电子元件组成的其它结构来实现信号调理模块4的功能,本发明实施例对此不做具体限定。
参见图14,信号处理模块3包括:模数转换器AD和控制器MCU;
模数转换器AD的输入端aa与信号调理模块4的输出端4b连接,模数转换器AD的输出端ab与控制器MCU的输入端ma连接,模块转换器AD的接地端ac和控制器MCU的接地端mb分别与参考地GND连接。
其中,模数转换器AD用于将接收到的第四电压的模拟量转换成数字量,并将第四电压的数字量发送给控制器MCU;控制器MCU用于基于第四电压,确定目标线X与设备外壳E之间的电压。
其中,控制器MCU基于第四电压,确定目标线X与设备外壳E之间的电压时,如果该检测电路中不包括信号调理模块4,则可以基于第三比例进行确定,具体地,可以将第四电压与第三比例的倒数相乘,即可得到目标线X与设备外壳E之间的电压。如果该检测电路中包括信号调理模块4,则可以基于第三比例和调理电压进行确定,具体地,可以先将第四电压降低
Figure PCTCN2017076988-appb-000030
倍的调理电压,再将降低后的第四电压与第三比例的倒数相乘,即可得到目标线X与设备外壳E之间的电压。
需要说明的是,本发明实施例中的信号处理模块3以图14所示的结构为例进行说明,实际应用中,也可以由其它电子元件组成的其它结构来实现信号处理模块3的功能,如信号处理模块3中可以仅包括控制器,该控制器中可以集成有模数转换模块等,本发明实施例对此不做具体限定。
需要说明的是,半导体器件在使用过程中极易出现温度漂移的问题,该温度漂移是指 温度变化所引起的半导体器件参数的变化,由于当该半导体器件出现温度漂移时,会导致该半导体器件的输出电压不准确,因此,当该检测电路中包括的半导体器件,如第十电阻R10、第四运算放大器OPA4等出现温度漂移时,需要对该半导体器件的输出电压进行修正,以保证该半导体器件的输出电压的准确性。且对该半导体器件的输出电压进行修正时,可以采用温度补偿的方式来进行修正,当然,实际应用中,也可以采用其它方式来进行修正,本发明实施例对此不做具体限定。其中,采用温度补偿的方式来进行修正的具体操作可以参考相关技术,本发明实施例对此不进行详细阐述。
另外,半导体器件在使用过程中也极易因为恶劣环境而受到污染,该污染会对该半导体器件的电阻率造成影响,因此,为了避免该检测电路中包括的半导体器件,如第十电阻R10、第四运算放大器OPA4等受到污染,需要将该半导体器件与环境进行隔离。且将该半导体器件与环境进行隔离时,可以采用涂覆或灌封的方式来进行隔离,当然,实际应用中,也可以采用其它方式来进行隔离,本发明实施例对此不做具体限定。其中,采用涂覆或灌封的方式来进行隔离的具体操作可以参考相关技术,本发明实施例对此不进行详细阐述。
在本发明实施例中,第二信号采集模块可以采集第四电压,并将第四电压输入到信号处理模块,信号处理模块可以根据第二隔离模块、第十电阻和第二信号采集模块对目标线与设备外壳之间的电压的处理过程,对第四电压进行反处理,以得到目标线与设备外壳之间的电压,当目标线与所述设备外壳之间的电压满足指定条件时,确定设备发生故障。由于目标线既可以为火线,也可以为零线,因此,无论设备接入的火线与零线是正接还是反接,均可以对设备进行故障检测。另外,由于指定条件用于指示设备发生故障,且该故障包括设备接入的火线与零线反接、设备外壳未正常接地和设备外壳带电中的至少一种,因此,本发明实施例可以同时进行三种类型的故障检测,故障检测能力较强。
图15是本发明实施例提供的一种检测方法,该方法用于对设备进行检测,该方法包括:
步骤1501:确定目标线与设备外壳之间的电压,目标线用于对设备进行供电,且目标线为火线或零线,设备外壳为设备的外壳。
需要说明的是,确定目标线与设备外壳之间的电压时,可以通过上述两种检测电路中的任一检测电路进行确定,当然,实际应用中,也可以通过其它方式进行确定,本发明实施例对此不做具体限定。另外,通过上述两种检测电路中的任一检测电路确定目标线与设备外壳之间的电压的操作已在上述两种检测电路实施例的相关部分进行说明,本发明实施例对此不再赘述。
步骤1502:判断目标线与设备外壳之间的电压是否满足指定条件,当目标线与设备外壳之间的电压满足指定条件时,确定设备发生故障,指定条件用于指示设备发生故障,该故障包括设备接入的火线与零线反接、设备外壳未正常接地和设备外壳带电中的至少一种。
其中,判断目标线与设备外壳之间的电压是否满足指定条件的操作可以包括如下五种方式:
第一种方式:当设备的供电方式为单相供电且火线中的金属芯线未搭接到设备外壳上时,判断目标线与设备外壳之间的电压是否小于或等于第一指定电压;当目标线与设备外壳之间的电压小于或等于第一指定电压时,确定设备接入的火线与零线反接,并确定目标线与设备外壳之间的电压满足指定条件。
需要说明的是,本发明实施例中当设备接入的火线与零线反接时,可以确定目标线与设备外壳之间的电压满足指定条件,且此时可以确定设备发生的故障为设备接入的火线与零线反接,在此情况下可以生成第一提示消息,该第一提示消息用于提示用户设备接入的火线与零线反接,从而可以使用户及时获知火线与零线的接线状况,该接线状况是指火线与零线是正接还是反接。
另外,第一指定电压为当设备外壳正常接地且火线中的金属芯线未搭接到设备外壳上时零线与设备外壳之间的电压,第一指定电压接近0V。实际应用中,第一指定电压可以为第一预设电压与第二预设电压中较小的一个,第一预设电压可以为当设备外壳正常接地且火线中的金属芯线未搭接到设备外壳上时,多次测量到的零线与设备外壳之间的电压的平均值,第二预设电压可以为预设数值与设备的供电电压的乘积,该预设数值可以预先设置,如该预设数值可以大于0.01且小于0.1等,本发明实施例对此不做具体限定。另外,由于第一指定电压可以基于第一预设电压和第二预设电压进行设置,所以本发明实施例中可以基于不同的用电场景灵活选择第一指定电压,以保证第一指定电压满足检测需求。
由于当目标线与设备外壳之间的电压小于或等于第一指定电压时,目标线与设备外壳之间的电压很小且接近0伏,因此,在火线中的金属芯线未搭接到设备外壳上时,可以确定目标线为零线,也即是,可以确定设备接入的火线与零线反接。例如,第一指定电压为5V,假设目标线与设备外壳之间的电压为3V,由于3V小于5V,则可以确定设备接入的火线与零线反接。
第二种方式:当设备的供电方式为单相供电且火线中的金属芯线未搭接到设备外壳上时,判断目标线与设备外壳之间的电压是否大于第一指定电压且小于第二指定电压;当目标线与设备外壳之间的电压大于第一指定电压且小于第二指定电压时,确定设备外壳未正常接地,并确定目标线与设备外壳之间的电压满足指定条件。
需要说明的是,本发明实施例中当设备外壳未正常接地时,可以确定目标线与设备外壳之间的电压满足指定条件,且此时可以确定设备发生的故障为设备外壳未正常接地,在此情况下可以生成第二提示消息,该第二提示消息用于提示用户设备外壳未正常接地,从而可以使用户及时获知设备外壳的接地状况,该接地状况是指设备外壳是否正常接地。
另外,第二指定电压为该供电电压减去第一指定电压所得的电压,第一指定电压小于第二指定电压,第二指定电压接近该供电电压。
由于当火线中的金属芯线未搭接到设备外壳上时,如果设备外壳未正常接地,则火线或者零线与设备外壳之间的电压均应在
Figure PCTCN2017076988-appb-000031
倍的该供电电压附近,所以,当目标线与设备外壳之间的电压大于第一指定电压且小于第二指定电压时,可以确定设备外壳未正常接地。例如,供电电压为220V,第一指定电压为5V,第二指定电压为215V,假设目标线与设备外壳之间的电压为210V,由于210V大于5V且小于215V,则可以确定设备外壳未正常接地。
进一步地,还可以当设备的供电方式为单相供电且火线中的金属芯线未搭接到设备外壳上时,判断目标线与设备外壳之间的电压是否小于或等于第一指定电压,或者大于或等于第二指定电压;当目标线与设备外壳之间的电压小于或等于第一指定电压,或者大于或等于第二指定电压时,确定设备外壳正常接地。
当设备外壳正常接地且火线中的金属芯线未搭接到设备外壳上时,如果目标线为零线,则目标线与设备外壳之间的电压应该小于或等于第一指定电压,如果目标线为火线,则目 标线与设备外壳之间的电压应该大于或等于第二指定电压,所以,当目标线与设备外壳之间的电压小于或等于第一指定电压,或者大于或等于第二指定电压时,可以确定设备外壳正常接地。例如,供电电压为220V,第一指定电压为5V,第二指定电压为215V,假设目标线与设备外壳之间的电压为3V,由于3V小于5V,则可以确定设备外壳正常接地。
第三种方式:当设备的供电方式为单相供电且目标线是火线时,判断目标线与设备外壳之间的电压是否为第一搭接电压,第一搭接电压为当目标线中的金属芯线搭接到设备外壳上时目标线与设备外壳之间的电压,当目标线与设备外壳之间的电压为第一搭接电压时,确定设备外壳带电,并确定目标线与设备外壳之间的电压满足指定条件;当设备的供电方式为单相供电且目标线是零线时,判断目标线与设备外壳之间的电压是否为第二搭接电压,第二搭接电压为当除目标线之外的火线中的金属芯线搭接到设备外壳上时目标线与设备外壳之间的电压,当目标线与设备外壳之间的电压为第二搭接电压时,确定设备外壳带电,并确定目标线与设备外壳之间的电压满足指定条件。
需要说明的是,本发明实施例中当设备外壳带电时,可以确定目标线与设备外壳之间的电压满足指定条件,且此时可以确定设备发生的故障为设备外壳带电,在此情况下可以生成第三提示消息,该第三提示消息用于提示用户设备外壳带电,从而可以使用户及时获知设备外壳的带电状况,该带电状况是指设备外壳是否带电。
另外,当设备的供电方式为单相供电且目标线为火线时,如果目标线中的金属芯线搭接到设备外壳上导致设备外壳带电,则设备外壳与目标线的电位相近,此时目标线与设备外壳之间的电压应该在0V附近,也即是,第一搭接电压可以大于或等于0V且小于第三预设电压。其中,第三预设电压可以预先设置,如第三预设电压可以为0.2V、0.3V等,本发明实施例对此不做具体限定。
再者,当设备的供电方式为单相供电且目标线为零线时,如果除目标线之外的火线搭接到设备外壳上导致设备外壳带电,则设备外壳与该火线的电位相近,此时目标线与设备外壳之间的电压应该在该供电电压附近,也即是,第二搭接电压可以大于第四预设电压且小于或等于该供电电压。其中,第四预设电压可以预先设置,如当该供电电压为220V时,第四预设电压可以为119V、119.5V等,本发明实施例对此不做具体限定。
例如,目标线为火线,第一搭接电压大于或等于0V且小于0.3V,假设目标线与设备外壳之间的电压为0.2V,则目标线与设备外壳之间的电压为第一搭接电压,可以确定设备外壳带电。
再例如,目标线为零线,供电电压为220V,第二搭接电压大于119V且小于或等于220V,假设目标线与设备外壳之间的电压为119.5V,则目标线与设备外壳之间的电压为第二搭接电压,可以确定设备外壳带电。
需要说明的是,当设备的供电方式为单相供电时,在判断目标线与设备外壳之间的电压是否满足指定条件之前,还可以判断目标线是火线还是零线,且判断目标线是火线还是零线的操作可以为:当火线中的金属芯线未搭接到设备外壳上时,如果目标线与设备外壳之间的电压小于或等于第一指定电压,则确定目标线是零线;当火线中的金属芯线未搭接到设备外壳上时,如果目标线与设备外壳之间的电压大于或等于第二指定电压,则确定目标线是火线。
需要说明的是,上述判断目标线是火线还是零线的过程即是判断设备接入的火线与零 线是正接还是反接的过程,也即是,当目标线为火线时,可以确定设备接入的火线与零线正接,当目标线为零线,可以确定设备接入的火线与零线反接。
由于当目标线与设备外壳之间的电压小于或等于第一指定电压时,当前时间目标线与设备外壳之间的电压很小且接近0伏,因此,在火线中的金属芯线未搭接到设备外壳上时,可以确定目标线为零线。而当目标线与设备外壳之间的电压大于或等于第二指定电压时,目标线与设备外壳之间的电压很大且接近该供电电压,因此,在火线中的金属芯线未搭接到设备外壳上时,可以确定目标线为火线。
例如,供电电压为220V,第一指定电压为5V,第二指定电压为215V,假设目标线与设备外壳之间的电压为3V,由于3V小于5V,则可以确定目标线是零线。
再例如,供电电压为220V,第一指定电压为5V,第二指定电压为215V,假设目标线与设备外壳之间的电压为217V,由于217V大于215V,则可以确定目标线是火线。
由于当设备的供电方式为单相供电时,目标线是火线和目标线是零线时,对设备进行故障检测中的设备外壳带电检测的操作有所不同,因此,在进行设备外壳带电检测之前,需要先确定目标线是火线还是零线。又由于仅当火线中的金属芯线未搭接到设备外壳上且设备外壳正常接地时,才可以判断出目标线是火线还是零线,因此,实际应用中,可以在设备初次安装、初次上电或断电后第一次上电时,确保火线中的金属芯线未搭接到设备外壳上,且确保设备外壳正常接地,从而在设备初次安装、初次上电或断电后第一次上电时,就可以判断出目标线是火线还是零线,进而保证后续可以进行有效地设备外壳带电检测。另外,由于一般情况下在设备的运行过程中,零线与火线的接线状况不会发生变化,所以可以仅在设备初次安装、初次上电或断电后第一次上电时对目标线是火线还是零线进行判断,而在后续的检测过程中无需再次判断,从而可以节省处理资源。
需要说明的是,实际应用中,上述第三种方式中当目标线是火线时,判断目标线与设备外壳之间的电压是否为第一搭接电压的操作可以通过标志位来实现,具体地,当目标线是火线时,如果检测到目标线与设备外壳之间的电压发生跳变,则获取发生跳变之前目标线与设备外壳之间的电压,并基于获取的电压确定第一标志位;获取发生跳变之后目标线与设备外壳之间的电压,并基于获取的电压确定第二标志位;当第一标志位与第二标志位满足第一条件时,确定目标线与设备外壳之间的电压为第一搭接电压。
其中,获取发生跳变之前目标线与设备外壳之间的电压,并基于获取的电压确定第一标志位时,如果获取的电压为第一正常电压,则将第一标志位设置为0,如果获取的电压为第一搭接电压,则将第一标志位设置为1。
需要说明的是,第一正常电压为当目标线中的金属芯线未搭接到设备外壳上时目标线与设备外壳之间的电压。且当设备外壳正常接地时,该第一正常电压可以大于第四预设电压且小于或等于该供电电压,当设备外壳未正常接地时,该第一正常电压可以大于第五预设电压且小于或等于
Figure PCTCN2017076988-appb-000032
倍的该供电电压。其中,第五预设电压可以预先设置,如当该供电电压为220V时,
Figure PCTCN2017076988-appb-000033
倍的该供电电压为110V,则该第五预设电压可以为108V、109V等,本发明实施例对此不做具体限定。
例如,目标线为火线,供电电压为220V,第一正常电压大于119V且小于或等于220V,或者第一正常电压大于108V且小于或等于110V,第一搭接电压大于或等于0V且小于0.3V, 假设获取的发生跳变前目标线与设备外壳之间的电压为119.5V,则获取的电压为第一正常电压,此时可以将第一标志位设置为0。
再例如,目标线为火线,供电电压为220V,第一正常电压大于119V且小于或等于220V,或者第一正常电压大于108V且小于或等于110V,第一搭接电压大于或等于0V且小于0.3V,假设获取的发生跳变前目标线与设备外壳之间的电压为0.2V,则获取的电压为第一搭接电压,此时可以将第一标志位设置为1。
其中,获取发生跳变之后目标线与设备外壳之间的电压,并基于获取的电压确定第二标志位的操作与上述基于获取的电压确定第一标志位的操作相同,本发明实施例对此不再赘述。
需要说明的是,第一条件用于指示设备外壳由不带电状态跳变到带电状态,如第一条件可以为第一标志位为0且第二标志位为1。由于当第一标志位为0且第二标志位为1时,可以确定目标线与设备外壳之间的电压由第一正常电压跳变到第一搭接电压,因此,此时可以确定目标线与设备外壳之间的电压为第一搭接电压。
还需要说明的是,实际应用中,上述第三种方式中当目标线是零线时,判断目标线与设备外壳之间的电压是否为第二搭接电压的操作可以通过标志位来实现,具体地,当目标线是零线时,如果检测到目标线与设备外壳之间的电压发生跳变,则获取发生跳变之前目标线与设备外壳之间的电压,并基于获取的电压确定第三标志位;获取发生跳变之后目标线与设备外壳之间的电压,并基于获取的电压确定第四标志位;当第三标志位与第四标志位满足第二条件时,确定目标线与设备外壳之间的电压为第二搭接电压。
其中,获取发生跳变之前目标线与设备外壳之间的电压,并基于获取的电压确定第三标志位时,如果获取的电压为第二正常电压时,则将第三标志位设置为0,如果获取的电压为第二搭接电压,则将第三标志位设置为1。
需要说明的是,第二正常电压为当除目标线之外的火线中的金属芯线未搭接到设备外壳上时目标线与设备外壳之间的电压。且当设备外壳正常接地时,该第二正常电压可以大于或等于0V且小于第三预设电压,当设备外壳未正常接地时,该第二正常电压可以大于第五预设电压且小于或等于
Figure PCTCN2017076988-appb-000034
倍的该供电电压。
例如,目标线为零线,供电电压为220V,第二正常电压大于或等于0V且小于0.3V,或者第二正常电压大于108V且小于或等于110V,第二搭接电压大于119V且小于或等于220V,假设获取的发生跳变前目标线与设备外壳之间的电压为0.2V,则获取的电压为第二正常电压,此时可以将第三标志位设置为0。
再例如,目标线为零线,供电电压为220V,第二正常电压大于或等于0V且小于0.3V,或者第二正常电压大于108V且小于或等于110V,第二搭接电压大于119V且小于或等于220V,假设获取的发生跳变前目标线与设备外壳之间的电压为119.5V,则获取的电压为第二搭接电压,此时可以将第三标志位设置为1。
其中,获取发生跳变之后目标线与设备外壳之间的电压,并基于获取的电压确定第四标志位的操作与上述基于获取的电压确定第三标志位的操作相同,本发明实施例对此不再赘述。
需要说明的是,第二条件用于指示设备外壳由不带电状态跳变到带电状态,如第二条 件可以为第三标志位为0且第四标志位为1。由于当第三标志位为0且第四标志位为1时,可以确定目标线与设备外壳之间的电压由第二正常电压跳变到第二搭接电压,因此,此时可以确定目标线与设备外壳之间的电压为第二搭接电压。
第四种方式:当设备的供电方式为双火线供电时,判断目标线与设备外壳之间的电压是否为第一搭接电压或第二搭接电压;当目标线与设备外壳之间的电压为第一搭接电压或第二搭接电压时,确定设备外壳带电,并确定目标线与设备外壳之间的电压满足指定条件。
需要说明的是,本发明实施例中当设备外壳带电时,可以确定目标线与设备外壳之间的电压满足指定条件,且此时可以确定设备发生的故障为设备外壳带电,在此情况下可以生成第三提示消息,该第三提示消息用于提示用户设备外壳带电,从而可以使用户及时获知设备外壳的带电状况。
需要说明的是,当设备的供电方式为双火线供电时,如果目标线中的金属芯线搭接到设备外壳上导致设备外壳带电,则设备外壳与目标线的电位相近,此时目标线与设备外壳之间的电压应该在0V附近,也即是,此时目标线与设备外壳之间的电压应该为第一搭接电压。如果除目标线之外的火线中的金属芯线搭接到设备外壳上导致设备外壳带电,则设备外壳与该火线的电位相近,此时目标线与设备外壳之间的电压应该在该供电电压附近,也即是,此时目标线与设备外壳之间的电压应该为第二搭接电压。所以,当目标线与设备外壳之间的电压为第一搭接电压或者第二搭接电压时,可以确定设备外壳带电。
例如,供电电压为220V,第一搭接电压大于或等于0V且小于0.3V,第二搭接电压大于119V且小于或等于220V,假设目标线与设备外壳之间的电压为0.2V,则可以确定目标线与设备外壳之间的电压为第一搭接电压,确定设备外壳带电。
还需要说明的是,实际应用中,上述第四种方式中判断目标线与设备外壳之间的电压是否为第一搭接电压或第二搭接电压的操作可以通过标志位来实现,具体地,如果检测到目标线与设备外壳之间的电压发生跳变,则获取发生跳变之前目标线与设备外壳之间的电压,并基于获取的电压确定第五标志位;获取发生跳变之后目标线与设备外壳之间的电压,并基于获取的电压确定第六标志位;当第五标志位与第六标志位满足第三条件时,确定目标线与设备外壳之间的电压为第一搭接电压或第二搭接电压。
其中,获取发生跳变之前目标线与设备外壳之间的电压,并基于获取的电压确定第五标志位时,如果获取的电压为第三正常电压,则将第五标志位设置为0,如果获取的电压为第一搭接电压或第二搭接电压,则将第五标志位设置为1。
需要说明的是,第三正常电压为当目标线和除目标线之外的火线中的金属芯线均未搭接到设备外壳上时目标线与设备外壳之间的电压。且该第三正常电压可以大于第五预设电压且小于或等于
Figure PCTCN2017076988-appb-000035
倍的该供电电压。
例如,供电电压为220V,第三正常电压大于108V且小于或等于110V,第一搭接电压大于或等于0V且小于0.3V,第二搭接电压大于119V且小于或等于220V,假设获取的发生跳变前目标线与设备外壳之间的电压为109V,则获取的电压为第三正常电压,此时可以将第五标志位设置为0。
例如,供电电压为220V,第三正常电压大于108V且小于或等于110V,第一搭接电压大于或等于0V且小于0.3V,第二搭接电压大于119V且小于或等于220V,假设获取的发 生跳变前目标线与设备外壳之间的电压为0.2V,则获取的电压为第一搭接电压,此时可以将第五标志位设置为1。
其中,获取发生跳变之后目标线与设备外壳之间的电压,并基于获取的电压确定第六标志位的操作与上述基于获取的电压确定第五标志位的操作相同,本发明实施例对此不再赘述。
需要说明的是,第三条件用于指示设备外壳由不带电状态跳变到带电状态,如第三条件可以为第五标志位为0且第六标志位为1。由于当第五标志位为0且第六标志位为1时,可以确定目标线与设备外壳之间的电压由第三正常电压跳变到第一搭接电压,或者由第三正常电压跳变到第二搭接电压,因此,此时可以确定目标线与设备外壳之间的电压为第一搭接电压或第二搭接电压。
第五种方式:当设备的供电方式为三相供电时,判断目标线与设备外壳之间的电压是否为第一搭接电压或第三搭接电压,第三搭接电压为当除目标线之外的任一火线中的金属芯线搭接到设备外壳上时目标线与设备外壳之间的电压;当目标线与设备外壳之间的电压为第一搭接电压或第三搭接电压时,确定设备外壳带电,并确定目标线与设备外壳之间的电压满足指定条件。
需要说明的是,本发明实施例中当设备外壳带电时,可以确定目标线与设备外壳之间的电压满足指定条件,且此时可以确定设备发生的故障为设备外壳带电,在此情况下可以生成第三提示消息,该第三提示消息用于提示用户设备外壳带电,从而可以使用户及时获知设备外壳的带电状况。
需要说明的是,当设备的供电方式为三相供电时,如果目标线中的金属芯线搭接到设备外壳上导致设备外壳带电,则设备外壳与目标线的电位相近,此时目标线与设备外壳之间的电压应该在0V附近,也即是,此时目标线与设备外壳之间的电压应该为第一搭接电压。如果除目标线之外的任一火线中的金属芯线搭接到设备外壳上导致设备外壳带电,则设备外壳与该火线的电位相近,此时目标线与设备外壳之间的电压应该在
Figure PCTCN2017076988-appb-000036
倍的该供电电压附近,也即是,第三搭接电压可以大于第六预设电压且小于或等于
Figure PCTCN2017076988-appb-000037
倍的供电电压。其中,第六预设电压可以预先设置,如当该供电电压为220V时,该第六预设电压可以为373V、374V等,本发明实施例对此不做具体限定。
例如,供电电压为220V,第一搭接电压大于或等于0V且小于0.3V,第三搭接电压大于373V且小于或等于
Figure PCTCN2017076988-appb-000038
假设目标线与设备外壳之间的电压为0.2V,则可以确定目标线与设备外壳之间的电压为第一搭接电压,确定设备外壳带电。
还需要说明的是,实际应用中,上述第五种方式中判断目标线与设备外壳之间的电压是否为第一搭接电压或第三搭接电压的操作可以通过标志位来实现,具体地,如果检测到目标线与设备外壳之间的电压发生跳变,则获取发生跳变之前目标线与设备外壳之间的电压,并基于获取的电压确定第七标志位;获取发生跳变之后目标线与设备外壳之间的电压,并基于获取的电压确定第八标志位;当第七标志位与第八标志位满足第四条件时,确定目标线与设备外壳之间的电压为第一搭接电压或第三搭接电压。
其中,获取发生跳变之前目标线与设备外壳之间的电压,并基于获取的电压确定第七标志位时,如果获取的电压为第四正常电压,则将第七标志位设置为0,如果获取的电压为第一搭接电压或第三搭接电压,则将第七标志位设置为1。
需要说明的是,第四正常电压为当目标线和除目标线之外的火线中的金属芯线均未搭 接到设备外壳上时目标线与设备外壳之间的电压。且当设备正常接地时,该第四正常电压可以大于第四预设电压且小于或等于该供电电压,当设备外壳未正常接地时,该第四正常电压可以大于第五预设电压且小于或等于
Figure PCTCN2017076988-appb-000039
倍的该供电电压。
例如,供电电压为220V,第四正常电压大于119V且小于或等于220V,或者第四正常电压大于108V且小于或等于110V,第一搭接电压大于或等于0V且小于0.3V,第三搭接电压大于373V且小于或等于
Figure PCTCN2017076988-appb-000040
假设获取的发生跳变前目标线与设备外壳之间的电压为119.5V,则获取的电压为第四正常电压,此时可以将第七标志位设置为0。
例如,供电电压为220V,第四正常电压大于119V且小于或等于220V,或者第四正常电压大于108V且小于或等于110V,第一搭接电压大于或等于0V且小于0.3V,第三搭接电压大于373V且小于或等于
Figure PCTCN2017076988-appb-000041
假设获取的发生跳变前目标线与设备外壳之间的电压为0.2V,则获取的电压为第一搭接电压,此时可以将第七标志位设置为1。
其中,获取发生跳变之后目标线与设备外壳之间的电压,并基于获取的电压确定第八标志位的操作与上述基于获取的电压确定第七标志位的操作相同,本发明实施例对此不再赘述。
需要说明的是,第四条件用于指示设备外壳由不带电状态跳变到带电状态,如第四条件可以为第七标志位为0且第八标志位为1。由于当第七标志位为0且第八标志位为1时,可以确定目标线与设备外壳之间的电压由第四正常电压跳变到第一搭接电压,或者由第四正常电压跳变到第三搭接电压,因此,此时可以确定目标线与设备外壳之间的电压为第一搭接电压或第三搭接电压。
进一步地,结合表2所示的逻辑判断列表来对上述第三种方式、第四种方式和第五种方式中的故障检测操作进行整体说明。其中,UX-E为目标线与设备外壳之间的电压。
表2
Figure PCTCN2017076988-appb-000042
需要说明的是,本发明实施例中,仅以上述表2所示的逻辑判断表为例进行说明,上述表2并不对本发明实施例构成限定。
如上表2所示,当设备的供电方式为单相供电且当设备接入的火线与零线正接时,如果检测到目标线与设备外壳之间的电压由第一正常电压跳变到第一搭接电压,则可以确定设备外壳带电。当设备的供电方式为单相供电且当设备接入的火线与零线反接时,如果检测到目标线与设备外壳之间的电压由第二正常电压跳变到第二搭接电压,则可以确定设备外壳带电。
当设备的供电方式为双火线供电时,如果检测到目标线与设备外壳之间的电压由第三正常电压跳变到第一搭接电压,或者检测到目标线与设备外壳之间的电压由第三正常电压跳变到第二搭接电压,则可以确定设备外壳带电。
当设备的供电方式为三相供电时,如果检测到目标线与设备外壳之间的电压由第四正常电压跳变到第一搭接电压,或者检测到目标线与设备外壳之间的电压由第四正常电压跳变到第三搭接电压,则可以确定设备外壳带电。
在本发明实施例中,确定目标线与设备外壳之间的电压,判断目标线与设备外壳之间的电压是否满足指定条件,当目标线与设备外壳之间的电压满足指定条件时,确定设备发生故障。由于目标线既可以为火线,也可以为零线,因此,无论设备接入的火线与零线是正接还是反接,均可以对设备进行故障检测。另外,由于指定条件用于指示设备发生故障,且该故障包括设备接入的火线与零线反接、设备外壳未正常接地和设备外壳带电中的至少一种,因此,本发明实施例可以同时进行三种类型的故障检测,故障检测能力较强。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (29)

  1. 一种检测电路,其特征在于,所述检测电路用于对设备进行检测,所述检测电路包括:第一隔离模块、第一电阻、第二电阻、第一信号采集模块和信号处理模块;
    所述第一隔离模块包括第一隔离单元和第二隔离单元,且所述第一隔离单元与所述第二隔离单元的阻值相等,所述第一隔离单元的一端与目标线连接,所述第二隔离单元的一端与设备外壳连接,所述第一隔离模块用于对所述目标线和所述设备外壳进行隔离,且用于对一次电路和二次电路进行隔离,所述一次电路包括所述目标线和所述设备的供电电源,所述二次电路包括所述第一电阻、所述第二电阻、所述第一信号采集模块和所述信号处理模块;所述目标线用于对所述设备进行供电,且所述目标线为火线或零线;所述设备外壳为所述设备的外壳;
    所述第一信号采集模块的第一输入端和所述第一电阻的一端分别与所述第一隔离单元的另一端连接,所述第一信号采集模块的第二输入端和所述第二电阻的一端分别与所述第二隔离单元的另一端连接,所述第一电阻的另一端和所述第二电阻的另一端分别与参考地连接,所述第一信号采集模块的输出端与所述信号处理模块的输入端连接,所述信号处理模块的接地端与所述参考地连接;
    其中,所述第一电阻和所述第二电阻用于分压,且所述第一电阻的阻值与所述第二电阻的阻值相等;所述第一信号采集模块用于分别采集所述第一电阻两端的电压和所述第二电阻两端的电压,并将采集到的所述第一电阻两端的电压确定为第一电压,将采集到的所述第二电阻两端的电压确定为第二电压,将所述第一电压与所述第二电压之间的电压差与指定比例相乘,以得到在所述信号处理模块的检测范围内的第三电压,将所述第三电压输入到所述信号处理模块;
    所述信号处理模块用于根据所述第一隔离模块、所述第一电阻、所述第二电阻和所述第一信号采集模块对所述目标线与所述设备外壳之间的电压的处理过程,对所述第三电压进行反处理,以得到所述目标线与所述设备外壳之间的电压,当所述目标线与所述设备外壳之间的电压满足指定条件时,确定所述设备发生故障,所述指定条件用于指示所述设备发生故障,所述故障包括所述设备接入的火线与零线反接、所述设备外壳未正常接地和所述设备外壳带电中的至少一种。
  2. 如权利要求1所述的检测电路,其特征在于,所述检测电路还包括信号调理模块,所述信号调理模块的输入端与所述第一信号采集模块的输出端连接,所述信号调理模块的输出端与所述信号处理模块的输入端连接;
    所述信号调理模块用于将从所述第一信号采集模块接收到的所述第三电压调理为在所述信号处理模块的接受范围内的电压,并将调理后的所述第三电压输入到所述信号处理模块。
  3. 如权利要求1或2所述的检测电路,其特征在于,所述第一隔离单元包括N个串联的电阻,所述N个串联的电阻的总阻值大于或等于指定阻值,所述N为大于或等于1的自然数,所述指定阻值为满足安全标准中所要求的加强绝缘的阻值。
  4. 如权利要求1或2所述的检测电路,其特征在于,所述第二隔离单元包括M个串联的电阻,所述M个串联的电阻的总阻值大于或等于所述指定阻值,所述M为大于或等于1的自然数,所述指定阻值为满足安全标准中所要求的加强绝缘的阻值。
  5. 如权利要求1所述的检测电路,其特征在于,所述信号处理模块,用于:
    当所述设备的供电方式为单相供电且火线中的金属芯线未搭接到所述设备外壳上时,判断所述目标线与所述设备外壳之间的电压是否小于或等于第一指定电压,所述第一指定电压为当所述设备外壳正常接地且火线中的金属芯线未搭接到所述设备外壳上时零线与所述设备外壳之间的电压;
    当所述目标线与所述设备外壳之间的电压小于或等于所述第一指定电压时,确定所述设备接入的火线与零线反接,并确定所述目标线与所述设备外壳之间的电压满足所述指定条件。
  6. 如权利要求1所述的检测电路,其特征在于,所述信号处理模块,用于:
    当所述设备的供电方式为单相供电且火线中的金属芯线未搭接到所述设备外壳上时,判断所述目标线与所述设备外壳之间的电压是否大于第一指定电压且小于第二指定电压,所述第二指定电压为所述设备的供电电压减去所述第一指定电压所得的电压,所述第一指定电压小于所述第二指定电压;
    当所述目标线与所述设备外壳之间的电压大于所述第一指定电压且小于所述第二指定电压时,确定所述设备外壳未正常接地,并确定所述目标线与所述设备外壳之间的电压满足所述指定条件。
  7. 如权利要求1所述的检测电路,其特征在于,所述信号处理模块,用于:
    当所述设备的供电方式为单相供电且所述目标线是火线时,判断所述目标线与所述设备外壳之间的电压是否为第一搭接电压,所述第一搭接电压为当所述目标线中的金属芯线搭接到所述设备外壳上时所述目标线与所述设备外壳之间的电压;当所述目标线与所述设备外壳之间的电压为所述第一搭接电压时,确定所述设备外壳带电,并确定所述目标线与所述设备外壳之间的电压满足所述指定条件;
    当所述设备的供电方式为单相供电且所述目标线是零线时,判断所述目标线与所述设备外壳之间的电压是否为第二搭接电压,所述第二搭接电压为当除所述目标线之外的火线中的金属芯线搭接到所述设备外壳上时所述目标线与所述设备外壳之间的电压;当所述目标线与所述设备外壳之间的电压为所述第二搭接电压时,确定所述设备外壳带电,并确定所述目标线与所述设备外壳之间的电压满足所述指定条件。
  8. 如权利要求7所述的检测电路,其特征在于,所述信号处理模块,还用于:
    当火线中的金属芯线未搭接到所述设备外壳上时,如果所述目标线与所述设备外壳之间的电压小于或等于第一指定电压,则确定所述目标线是零线;
    当火线中的金属芯线未搭接到所述设备外壳上时,如果所述目标线与所述设备外壳之间的电压大于或等于第二指定电压,则确定所述目标线是火线。
  9. 如权利要求1所述的检测电路,其特征在于,所述信号处理模块,用于:
    当所述设备的供电方式为双火线供电时,判断所述目标线与所述设备外壳之间的电压是否为第一搭接电压或第二搭接电压;
    当所述目标线与所述设备外壳之间的电压为所述第一搭接电压或所述第二搭接电压时,确定所述设备外壳带电,并确定所述目标线与所述设备外壳之间的电压满足所述指定条件。
  10. 如权利要求1所述的检测电路,其特征在于,所述信号处理模块,用于:
    当所述设备的供电方式为三相供电时,判断所述目标线与所述设备外壳之间的电压是否为第一搭接电压或第三搭接电压,所述第三搭接电压为当除所述目标线之外的任一火线中的金属芯线搭接到所述设备外壳上时所述目标线与所述设备外壳之间的电压;
    当所述目标线与所述设备外壳之间的电压为所述第一搭接电压或所述第三搭接电压时,确定所述设备外壳带电,并确定所述目标线与所述设备外壳之间的电压满足所述指定条件。
  11. 如权利要求1所述的检测电路,其特征在于,所述信号处理模块,还用于:
    当所述设备的供电方式为单相供电且火线中的金属芯线未搭接到所述设备外壳上时,判断所述目标线与所述设备外壳之间的电压是否小于或等于第一指定电压,或者大于或等于第二指定电压;
    当所述目标线与所述设备外壳之间的电压小于或等于第一指定电压,或者大于或等于第二指定电压时,确定所述设备外壳正常接地。
  12. 一种检测电路,其特征在于,所述检测电路用于对设备进行检测,所述检测电路包括:第二隔离模块、第十电阻、第二信号采集模块和信号处理模块;
    所述第二隔离模块的一端与目标线连接,所述第二信号采集模块的输入端和所述第十电阻的一端分别与所述第二隔离模块的另一端连接,所述第十电阻的另一端与参考地连接,所述参考地与设备外壳连接,所述第二信号采集模块的输出端与所述信号处理模块的输入端连接,所述信号处理模块的接地端与所述参考地连接;
    其中,所述目标线用于对所述设备进行供电,所述目标线为火线或零线;所述设备外壳为所述设备的外壳;所述第十电阻用于分压;所述第二隔离模块用于对所述目标线和所述设备外壳进行隔离,且用于对一次电路和二次电路进行隔离,所述一次电路包括所述目标线和所述设备的供电电源,所述二次电路包括所述第十电阻、所述第二信号采集模块和所述信号处理模块;所述第二信号采集模块用于采集所述第十电阻两端的电压,并将采集到的所述第十电阻两端的电压确定为第四电压,将所述第四电压输入到所述信号处理模块;
    所述信号处理模块用于根据所述第二隔离模块、所述第十电阻和所述第二信号采集模块对所述目标线与所述设备外壳之间的电压的处理过程,对所述第四电压进行反处理,以得到所述目标线与所述设备外壳之间的电压,当所述目标线与所述设备外壳之间的电压满足指定条件时,确定所述设备发生故障,所述指定条件用于指示所述设备发生故障,所述故障包括所述设备接入的火线与零线反接、所述设备外壳未正常接地和所述设备外壳带电中的至少一种。
  13. 如权利要求12所述的检测电路,其特征在于,所述检测电路还包括信号调理模块,所述信号调理模块的输入端与所述第二信号采集模块的输出端连接,所述信号调理模块的输出端与所述信号处理模块的输入端连接;
    所述信号调理模块用于将从所述第二信号采集模块接收到的所述第四电压调理为在所述信号处理模块的接受范围内的电压,并将调理后的所述第四电压输入到所述信号处理模块。
  14. 如权利要求12或13所述的检测电路,其特征在于,所述第二隔离模块包括N个串联的电阻,所述N个串联的电阻的总阻值大于或等于指定阻值,所述N为大于或等于1的自然数,所述指定阻值为满足安全标准中所要求的加强绝缘的阻值。
  15. 如权利要求12所述的检测电路,其特征在于,所述信号处理模块,用于:
    当所述设备的供电方式为单相供电且火线中的金属芯线未搭接到所述设备外壳上时,判断所述目标线与所述设备外壳之间的电压是否小于或等于第一指定电压,所述第一指定电压为当所述设备外壳正常接地且火线中的金属芯线未搭接到所述设备外壳上时零线与所述设备外壳之间的电压;
    当所述目标线与所述设备外壳之间的电压小于或等于所述第一指定电压时,确定所述设备接入的火线与零线反接,并确定所述目标线与所述设备外壳之间的电压满足所述指定条件。
  16. 如权利要求12所述的检测电路,其特征在于,所述信号处理模块,用于:
    当所述设备的供电方式为单相供电且火线中的金属芯线未搭接到所述设备外壳上时,判断所述目标线与所述设备外壳之间的电压是否大于第一指定电压且小于第二指定电压,所述第二指定电压为所述设备的供电电压减去所述第一指定电压所得的电压,所述第一指定电压小于所述第二指定电压;
    当所述目标线与所述设备外壳之间的电压大于所述第一指定电压且小于所述第二指定电压时,确定所述设备外壳未正常接地,并确定所述目标线与所述设备外壳之间的电压满足所述指定条件。
  17. 如权利要求12所述的检测电路,其特征在于,所述信号处理模块,用于:
    当所述设备的供电方式为单相供电且所述目标线是火线时,判断所述目标线与所述设备外壳之间的电压是否为第一搭接电压,所述第一搭接电压为当所述目标线中的金属芯线搭接到所述设备外壳上时所述目标线与所述设备外壳之间的电压;当所述目标线与所述设备外壳之间的电压为所述第一搭接电压时,确定所述设备外壳带电,并确定所述目标线与所述设备外壳之间的电压满足所述指定条件;
    当所述设备的供电方式为单相供电且所述目标线是零线时,判断所述目标线与所述设备外壳之间的电压是否为第二搭接电压,所述第二搭接电压为当除所述目标线之外的火线中的金属芯线搭接到所述设备外壳上时所述目标线与所述设备外壳之间的电压;当所述目标线与所述设备外壳之间的电压为所述第二搭接电压时,确定所述设备外壳带电,并确定所述目标线与所述设备外壳之间的电压满足所述指定条件。
  18. 如权利要求17所述的检测电路,其特征在于,所述信号处理模块,还用于:
    当火线中的金属芯线未搭接到所述设备外壳上时,如果所述目标线与所述设备外壳之间的电压小于或等于第一指定电压,则确定所述目标线是零线;
    当火线中的金属芯线未搭接到所述设备外壳上时,如果所述目标线与所述设备外壳之间的电压大于或等于第二指定电压,则确定所述目标线是火线。
  19. 如权利要求12所述的检测电路,其特征在于,所述信号处理模块,用于:
    当所述设备的供电方式为双火线供电时,判断所述目标线与所述设备外壳之间的电压是否为第一搭接电压或第二搭接电压;
    当所述目标线与所述设备外壳之间的电压为所述第一搭接电压或所述第二搭接电压时,确定所述设备外壳带电,并确定所述目标线与所述设备外壳之间的电压满足所述指定条件。
  20. 如权利要求12所述的检测电路,其特征在于,所述信号处理模块,用于:
    当所述设备的供电方式为三相供电时,判断所述目标线与所述设备外壳之间的电压是否为第一搭接电压或第三搭接电压,所述第三搭接电压为当除所述目标线之外的任一火线中的金属芯线搭接到所述设备外壳上时所述目标线与所述设备外壳之间的电压;
    当所述目标线与所述设备外壳之间的电压为所述第一搭接电压或所述第三搭接电压时,确定所述设备外壳带电,并确定所述目标线与所述设备外壳之间的电压满足所述指定条件。
  21. 如权利要求12所述的检测电路,其特征在于,所述信号处理模块,还用于:
    当所述设备的供电方式为单相供电且火线中的金属芯线未搭接到所述设备外壳上时,判断所述目标线与所述设备外壳之间的电压是否小于或等于第一指定电压,或者大于或等于第二指定电压;
    当所述目标线与所述设备外壳之间的电压小于或等于第一指定电压,或者大于或等于第二指定电压时,确定所述设备外壳正常接地。
  22. 一种检测方法,其特征在于,所述方法用于对设备进行检测,所述方法包括:
    确定目标线与设备外壳之间的电压,所述目标线用于对所述设备进行供电,且所述目标线为火线或零线,所述设备外壳为所述设备的外壳;
    判断所述目标线与所述设备外壳之间的电压是否满足指定条件,所述指定条件用于指示所述设备发生故障,所述故障包括所述设备接入的火线与零线反接、所述设备外壳未正常接地和所述设备外壳带电中的至少一种;
    当所述目标线与所述设备外壳之间的电压满足所述指定条件时,确定所述设备发生故障。
  23. 如权利要求22所述的方法,其特征在于,所述判断所述目标线与所述设备外壳之间的电压是否满足指定条件,包括:
    当所述设备的供电方式为单相供电且火线中的金属芯线未搭接到所述设备外壳上时,判断所述目标线与所述设备外壳之间的电压是否小于或等于第一指定电压,所述第一指定电压为当所述设备外壳正常接地且火线中的金属芯线未搭接到所述设备外壳上时零线与所述设备 外壳之间的电压;
    当所述目标线与所述设备外壳之间的电压小于或等于所述第一指定电压时,确定所述设备接入的火线与零线反接,并确定所述目标线与所述设备外壳之间的电压满足所述指定条件。
  24. 如权利要求22所述的方法,其特征在于,所述判断所述目标线与所述设备外壳之间的电压是否满足指定条件,包括:
    当所述设备的供电方式为单相供电且火线中的金属芯线未搭接到所述设备外壳上时,判断所述目标线与所述设备外壳之间的电压是否大于第一指定电压且小于第二指定电压,所述第二指定电压为所述设备的供电电压减去所述第一指定电压所得的电压,所述第一指定电压小于所述第二指定电压;
    当所述目标线与所述设备外壳之间的电压大于所述第一指定电压且小于所述第二指定电压时,确定所述设备外壳未正常接地,并确定所述目标线与所述设备外壳之间的电压满足所述指定条件。
  25. 如权利要求22所述的方法,其特征在于,所述判断所述目标线与所述设备外壳之间的电压是否满足指定条件,包括:
    当所述设备的供电方式为单相供电且所述目标线是火线时,判断所述目标线与所述设备外壳之间的电压是否为第一搭接电压,所述第一搭接电压为当所述目标线中的金属芯线搭接到所述设备外壳上时所述目标线与所述设备外壳之间的电压;当所述目标线与所述设备外壳之间的电压为所述第一搭接电压时,确定所述设备外壳带电,并确定所述目标线与所述设备外壳之间的电压满足所述指定条件;
    当所述设备的供电方式为单相供电且所述目标线是零线时,判断所述目标线与所述设备外壳之间的电压是否为第二搭接电压,所述第二搭接电压为当除所述目标线之外的火线中的金属芯线搭接到所述设备外壳上时所述目标线与所述设备外壳之间的电压;当所述目标线与所述设备外壳之间的电压为所述第二搭接电压时,确定所述设备外壳带电,并确定所述目标线与所述设备外壳之间的电压满足所述指定条件。
  26. 如权利要求25所述的方法,其特征在于,所述判断所述目标线与所述设备外壳之间的电压是否满足指定条件之前,还包括:
    当火线中的金属芯线未搭接到所述设备外壳上时,如果所述目标线与所述设备外壳之间的电压小于或等于第一指定电压,则确定所述目标线是零线;
    当火线中的金属芯线未搭接到所述设备外壳上时,如果所述目标线与所述设备外壳之间的电压大于或等于第二指定电压,则确定所述目标线是火线。
  27. 如权利要求22所述的方法,其特征在于,所述判断所述目标线与所述设备外壳之间的电压是否满足指定条件,包括:
    当所述设备的供电方式为双火线供电时,判断所述目标线与所述设备外壳之间的电压是否为第一搭接电压或第二搭接电压;
    当所述目标线与所述设备外壳之间的电压为所述第一搭接电压或所述第二搭接电压时, 确定所述设备外壳带电,并确定所述目标线与所述设备外壳之间的电压满足所述指定条件。
  28. 如权利要求22所述的方法,其特征在于,所述判断所述目标线与所述设备外壳之间的电压是否满足指定条件,包括:
    当所述设备的供电方式为三相供电时,判断所述目标线与所述设备外壳之间的电压是否为第一搭接电压或第三搭接电压,所述第三搭接电压为当除所述目标线之外的任一火线中的金属芯线搭接到所述设备外壳上时所述目标线与所述设备外壳之间的电压;
    当所述目标线与所述设备外壳之间的电压为所述第一搭接电压或所述第三搭接电压时,确定所述设备外壳带电,并确定所述目标线与所述设备外壳之间的电压满足所述指定条件。
  29. 如权利要求22-28任一权利要求所述的方法,其特征在于,所述方法还包括:
    当所述设备的供电方式为单相供电且火线中的金属芯线未搭接到所述设备外壳上时,判断所述目标线与所述设备外壳之间的电压是否小于或等于第一指定电压,或者大于或等于第二指定电压;
    当所述目标线与所述设备外壳之间的电压小于或等于第一指定电压,或者大于或等于第二指定电压时,确定所述设备外壳正常接地。
PCT/CN2017/076988 2016-08-09 2017-03-16 检测电路及检测方法 WO2018028202A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17838335.2A EP3483616B1 (en) 2016-08-09 2017-03-16 Detection circuit and detection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610654020.XA CN107703414B (zh) 2016-08-09 2016-08-09 检测电路及检测方法
CN201610654020.X 2016-08-09

Publications (1)

Publication Number Publication Date
WO2018028202A1 true WO2018028202A1 (zh) 2018-02-15

Family

ID=61162613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/076988 WO2018028202A1 (zh) 2016-08-09 2017-03-16 检测电路及检测方法

Country Status (3)

Country Link
EP (1) EP3483616B1 (zh)
CN (1) CN107703414B (zh)
WO (1) WO2018028202A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114650237A (zh) * 2022-02-16 2022-06-21 中国人民解放军海军工程大学 一种隔离信号检测控制装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109298277A (zh) * 2018-11-14 2019-02-01 长沙待电子科技有限公司 零线、火线检测电路及方法、用电设备
CN112666488B (zh) * 2019-09-30 2024-06-07 万帮数字能源股份有限公司 接地故障检测方法和装置
CN113835039B (zh) * 2020-06-23 2023-01-20 株洲中车时代电气股份有限公司 一种接地检测电路及方法
CN111722150B (zh) 2020-06-24 2021-03-26 优利德科技(中国)股份有限公司 一种支持地线零线异常检测的插座检测装置及方法
CN111751759B (zh) * 2020-06-28 2022-11-01 国网北京市电力公司 一种三相充电枪输出短路检测电路及检测方法
CN111948570B (zh) * 2020-08-14 2023-06-02 厦门熵基科技有限公司 一种门禁辅助输入控制系统及线路检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1851484A (zh) * 2006-02-09 2006-10-25 朱玉光 一种检测运行电器(电力)设备外壳漏电压的方法和二步防触电方案
CN101183144A (zh) * 2007-12-05 2008-05-21 海信集团有限公司 单相电源接线判定方法及单相电源相位检测电路
CN101419265A (zh) * 2008-12-05 2009-04-29 韩俊 对保护接地(pe)连接状态进行检测的信号产生电路
US20110121780A1 (en) * 2009-11-20 2011-05-26 Naoki Fukuo Feed control device
US20120257314A1 (en) * 2011-03-04 2012-10-11 Bruce Armstrong Ground fault circuit interrupter (gfci) monitor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101042413B (zh) * 2006-03-21 2010-05-26 鸿富锦精密工业(深圳)有限公司 交流电识别装置
US9470738B2 (en) * 2014-02-11 2016-10-18 Infineon Technologies Ag Ground fault detection

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1851484A (zh) * 2006-02-09 2006-10-25 朱玉光 一种检测运行电器(电力)设备外壳漏电压的方法和二步防触电方案
CN101183144A (zh) * 2007-12-05 2008-05-21 海信集团有限公司 单相电源接线判定方法及单相电源相位检测电路
CN101419265A (zh) * 2008-12-05 2009-04-29 韩俊 对保护接地(pe)连接状态进行检测的信号产生电路
US20110121780A1 (en) * 2009-11-20 2011-05-26 Naoki Fukuo Feed control device
US20120257314A1 (en) * 2011-03-04 2012-10-11 Bruce Armstrong Ground fault circuit interrupter (gfci) monitor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3483616A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114650237A (zh) * 2022-02-16 2022-06-21 中国人民解放军海军工程大学 一种隔离信号检测控制装置

Also Published As

Publication number Publication date
EP3483616A1 (en) 2019-05-15
CN107703414A (zh) 2018-02-16
CN107703414B (zh) 2021-01-12
EP3483616B1 (en) 2021-09-22
EP3483616A4 (en) 2019-11-13

Similar Documents

Publication Publication Date Title
WO2018028202A1 (zh) 检测电路及检测方法
CN104331141B (zh) 过电流保护电路以及其服务器
US10578662B2 (en) Grounding detection apparatus, control method thereof and pool system
CN105788556B (zh) 一种过压保护电路及方法、液晶驱动电路
TWI657641B (zh) 充電電路及電池充電保護控制方法
CN105826894B (zh) 电源设备的充电短路保护装置和电源设备
CN209880993U (zh) 一种电连接装置
US20130148248A1 (en) Power strip with heat protection function
CN105591538B (zh) 通用串行总线功率传输装置
CN108226593B (zh) 电能表及其防窃电检测方法
CN102545145B (zh) 用于保护功耗电路的系统和方法
CN106058798B (zh) 电压保护装置、方法及可穿戴设备
WO2022001962A1 (zh) 连接检测电路、告警装置及基站
CN210092865U (zh) 一种开关电源过温保护电路
CN204651614U (zh) 一种带有充电指示的数据线
CN204794018U (zh) 微机保护与测控装置
CN216927045U (zh) 检测电路及极性判别装置
CN206931988U (zh) 高可靠性欠压保护电路及电源
CN106019170A (zh) 一种电源适配器检测装置
CN206074678U (zh) 一种市电电压异常指示电路
CN101789586A (zh) 防止受体设备接口电路受到破坏的防护结构
CN108880528A (zh) 电子装置的接口电路
CN104124678A (zh) 防雷隔离器以及防雷隔离电路
CN211456668U (zh) 用于高压发生器的供电电路及射线机
WO2016177199A1 (zh) 一种保护终端芯片usb接口的电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17838335

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017838335

Country of ref document: EP

Effective date: 20190205