WO2018027804A1 - Apparatus and method for unified csi feedback framework for control and data channel - Google Patents

Apparatus and method for unified csi feedback framework for control and data channel Download PDF

Info

Publication number
WO2018027804A1
WO2018027804A1 PCT/CN2016/094648 CN2016094648W WO2018027804A1 WO 2018027804 A1 WO2018027804 A1 WO 2018027804A1 CN 2016094648 W CN2016094648 W CN 2016094648W WO 2018027804 A1 WO2018027804 A1 WO 2018027804A1
Authority
WO
WIPO (PCT)
Prior art keywords
mimo transmission
state information
scheme
channel state
transmission scheme
Prior art date
Application number
PCT/CN2016/094648
Other languages
French (fr)
Inventor
Xiaoyi Wang
Frederick Vook
Eugene Visotsky
Deshan Miao
Original Assignee
Nokia Technologies Oy
Nokia Technologies (Beijing) Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Technologies Oy, Nokia Technologies (Beijing) Co., Ltd. filed Critical Nokia Technologies Oy
Priority to PCT/CN2016/094648 priority Critical patent/WO2018027804A1/en
Publication of WO2018027804A1 publication Critical patent/WO2018027804A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0689Hybrid systems, i.e. switching and simultaneous transmission using different transmission schemes, at least one of them being a diversity transmission scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection

Definitions

  • the present application relates generally to an apparatus and a method for unified channel state information feedback framework for control and data channel.
  • 5G Third generation partnership project (3GPP) 5 th generation (5G) technology is a new generation of radio systems and network architecture that can deliver extreme broadband and ultra-robust, low latency connectivity. 5G can improve the telecommunication services offered to the end users, and help support massive machine-to-machine (M2M) communications. 5G is also expected to increase network expandability up to hundreds of thousands of connections. The signal technology of 5G is anticipated to be improved for greater coverage as well as spectral and signaling efficiency.
  • 3GPP Third generation partnership project
  • 5G 5 th generation
  • 5G can improve the telecommunication services offered to the end users, and help support massive machine-to-machine (M2M) communications. 5G is also expected to increase network expandability up to hundreds of thousands of connections.
  • the signal technology of 5G is anticipated to be improved for greater coverage as well as spectral and signaling efficiency.
  • 5G networks are expected to use multiple input and multiple output (MIMO) technology for multiplying the capacity of a radio link by using multiple transmit and receive antennas.
  • MIMO multiple input and multiple output
  • CSI feedback is the key to harvest MIMO performance gain.
  • LTE long term evolution
  • CSI feedback format is tied to MIMO transmission mode (TM) . Once configured to a certain TM, UE should report corresponding CSI feedback accordingly.
  • a method can include determining a set of candidate multiple input multiple output (MIMO) transmission schemes, wherein each MIMO transmission scheme is associated with a channel state information (CSI) calculation mechanism and a feedback format for channel state information; indicating the determined set of candidate MIMO transmission schemes to a user equipment; and receiving a channel state information with a feedback format associated with a MIMO transmission scheme selected from the set of candidate MIMO transmission schemes.
  • MIMO multiple input multiple output
  • an apparatus can include at least one processor and at least one memory including computer program code, wherein the at least one memory and the computer program code are configured to, with the at least one processor, cause the apparatus at least to determine a set of candidate multiple input multiple output (MIMO) transmission schemes, wherein each MIMO transmission scheme is associated with a channel state information (CSI) calculation mechanism and a feedback format for channel state information; indicate the determined set of candidate MIMO transmission schemes to a user equipment; and receive a channel state information with a feedback format associated with a MIMO transmission scheme selected from the set of candidate MIMO transmission schemes.
  • MIMO multiple input multiple output
  • a computer program product can include a computer-readable medium bearing computer program code embodied therein for use with a computer, the computer program code comprising code for determining a set of candidate multiple input multiple output (MIMO) transmission schemes, wherein each MIMO transmission scheme is associated with a channel state information (CSI) calculation mechanism and a feedback format for channel state information; indicating the determined set of candidate MIMO transmission schemes to a user equipment; and receiving a channel state information with a feedback format associated with a MIMO transmission scheme selected from the set of candidate MIMO transmission schemes.
  • MIMO multiple input multiple output
  • an apparatus can include means for determining a set of candidate multiple input multiple output (MIMO) transmission schemes, wherein each MIMO transmission scheme is associated with a channel state information (CSI) calculation mechanism and a feedback format for channel state information; means for indicating the determined set of candidate MIMO transmission schemes to a user equipment; and means for receiving a channel state information with a feedback format associated with a MIMO transmission scheme selected from the set of candidate MIMO transmission schemes.
  • MIMO multiple input multiple output
  • a method can include receiving from a network element a set of candidate multiple input multiple output (MIMO) transmission schemes, wherein each MIMO transmission scheme is associated with a channel state information calculation mechanism and a feedback format for channel state information; selecting a MIMO transmission scheme from the received set of candidate MIMO transmission schemes; calculating a channel state information and determining a feedback format based on the selected MIMO transmission scheme; and sending to the network element the channel state information with the determined feedback format.
  • MIMO multiple input multiple output
  • an apparatus can include at least one processor and at least one memory including computer program code, wherein the at least one memory and the computer program code are configured to, with the at least one processor, cause the apparatus at least to receive from a network element a set of candidate multiple input multiple output (MIMO) transmission schemes, wherein each MIMO transmission scheme is associated with a channel state information calculation mechanism and a feedback format for channel state information; select a MIMO transmission scheme from the received set of candidate MIMO transmission schemes; calculate a channel state information and determine a feedback format based on the selected MIMO transmission scheme; and send to the network element the channel state information with the determined feedback format.
  • MIMO multiple input multiple output
  • a computer program product can include a computer-readable medium bearing computer program code embodied therein for use with a computer, the computer program code comprising code for receiving from a network element a set of candidate multiple input multiple output (MIMO) transmission schemes, wherein each MIMO transmission scheme is associated with a channel state information calculation mechanism and a feedback format for channel state information; selecting a MIMO transmission scheme from the received set of candidate MIMO transmission schemes; calculating a channel state information and determining a feedback format based on the selected MIMO transmission scheme; and sending to the network element the channel state information with the determined feedback format.
  • MIMO multiple input multiple output
  • an apparatus can include means for receiving from a network element a set of candidate multiple input multiple output (MIMO) transmission schemes, wherein each MIMO transmission scheme is associated with a channel state information calculation mechanism and a feedback format for channel state information; mean for selecting a MIMO transmission scheme from the received set of candidate MIMO transmission schemes; means for calculating a channel state information and determining a feedback format based on the selected MIMO transmission scheme; and means for sending to the network element the channel state information with the determined feedback format.
  • MIMO multiple input multiple output
  • FIG. 1 illustrates a flowchart in accordance with an example embodiment of the application.
  • FIG. 2 illustrates a flowchart in accordance with another example embodiment of the application.
  • Figure 3 illustrates a simplified block diagram of example apparatuses that are suitable for use in practicing various example embodiments of this application.
  • Associating the channel state information (CSI) feedback with multiple input and multiple output (MIMO) transmission mode may simplify the operation procedure.
  • a user equipment UE
  • eNB evolved NodeB
  • CSI feedback associated with transmission mode it may also be difficult to accommodate scheduling and link adaption for control channel.
  • LTE long term evolution
  • control channels e.g. physical downlink control channel (PDCCH)
  • ePDCCH enhanced physical downlink control channel
  • Single MIMO transmission mode (or no transmission mode) has been discussed within third generation partnership project (3GPP) 5 th generation (5G) MIMO work force.
  • the design target is to use one MIMO transmission mode to cover all MIMO transmission schemes.
  • the eNB could dynamically switch transmission scheme (TS) from transmission time interval (TTI) to TTI using downlink control information (DCI) .
  • TS transmission scheme
  • TTI transmission time interval
  • DCI downlink control information
  • a unified CSI feedback framework for both data and control channels and different transmission schemes is proposed.
  • an eNB may configure a set of candidate MIMO transmission schemes and optionally an uplink (UL) resource for UE selected transmission scheme reporting:
  • a MIMO transmission scheme is a general term which may apply to data or control channel.
  • a MIMO transmission scheme for data channel may include for example:
  • TxD space frequency block coding
  • SFBC space frequency block coding
  • a MIMO transmission scheme for control channel may include for example:
  • Each MIMO transmission scheme is associated with a CSI calculation mechanism and a CSI feedback format.
  • the eNB can preclude some transmissions schemes for UE to select. For example, if eNB decides to pair a particular UE with others for multi-user MIMO (MU-MIMO) . It may not want this UE to select TxD as hypothetical transmission scheme. In that case, eNB can preclude the TxD scheme from the candidate transmission scheme set.
  • MU-MIMO multi-user MIMO
  • a UE when triggered by eNB, can select a MIMO transmission scheme from the candidate set as hypothetical transmission scheme for the CSI feedback.
  • the selected hypothetic transmission scheme will determine the CSI calculation mechanism and corresponding feedback format.
  • the selection may be based on observed channel changing rate, credibility of the CSI accuracy and link adaptation (LA) efficiency between control and data channels. For example, if the UE observes inefficient control scheduling (e.g. block error rate (BLER) is too high) , it may select a transmission scheme for control channel as for CSI feedback to allow eNB better adjust the control channel scheduling and link adaption. In another example, if UE observes the channel is changing too fast, it may select TxD as hypothetical transmission scheme for CSI feedback. This selection may provide recommendation to eNB about which transmission scheme to use as well as corresponding scheduling and link adaption.
  • inefficient control scheduling e.g. block error rate (BLER) is too high
  • BLER block error rate
  • TxD hypothetical transmission scheme for CSI feedback. This selection may provide recommendation to eNB about which transmission scheme to use as well as corresponding scheduling and link adaption.
  • the information of the selected MIMO transmission scheme is feedback to eNB together with the CSI, separately or jointly encoded.
  • a selected MIMO transmission scheme may have different CSI feedback formats.
  • the CSI may include rank indicator (RI) and channel quality indicator (CQI) information; if the UE selects close loop spatial multiplexing, CSI feedback may include RI, PMI and CQI.
  • RI rank indicator
  • CQI channel quality indicator
  • CSI feedback may include RI, PMI and CQI.
  • an explicit feedback if the UE selects close loop spatial multiplexing, it may feedback quantized Eigen vectors plus quantized interference.
  • multiple candidate MIMO transmission schemes of the set may be associated with one same CSI quantization type, and their associated CSI feedback formats are corresponding to different quantization granularities.
  • the eNB may use the recommended MIMO transmission scheme for future data or control transmission.
  • the eNB may generate a message for the UE to acknowledge the CSI feedback, hence, the recommended MIMO transmission scheme.
  • the eNB may over-write the recommend MIMO transmission scheme and choose by itself. For example, if UE selects close-loop MIMO, however, eNB finds the historical BLER of this user is very bad, it may overwrite it to transmission diversity.
  • FIG. 1 illustrates a flowchart in accordance with an example embodiment of the application.
  • a network element such as for example, an eNB
  • Each MIMO transmission scheme is associated with a CSI calculation mechanism and a CSI feedback format.
  • the eNB indicates the determined set of candidate MIMO transmission schemes to a UE at step 102.
  • the eNB may optionally determine an uplink resource and indicate the uplink resource to the UE.
  • the eNB receives a CSI feedback with a format associated with a MIMO transmission scheme selected from the set. The eNB may acknowledge the received CSI and hence the MIMO transmission scheme selected by the UE and adopt it for future transmission at step 105.
  • FIG. 2 illustrates another flowchart in accordance with an example embodiment of the application.
  • a UE receives from a NE, such as for example, an eNB, a set of candidate MIMO transmission scheme at step 201.
  • Each MIMO transmission scheme is associated with a CSI calculation mechanism and a CSI feedback format.
  • the UE selects a MIMO transmission scheme from the received set at step 202.
  • the UE calculates a CSI and determines a CSI feedback format based on the selected MIMO transmission scheme.
  • the UE may receive an uplink resource from the NE at step 204, and indicate the CSI with the determined feedback format to the NE on the received uplink resource at step 205.
  • the UE may receive an acknowledgement from the NE acknowledging the indicated CSI and hence the selected MIMO transmission scheme that may be adopted by the NE for future transmission.
  • a NE 301 is adapted for communication with a UE 311.
  • the UE 311 includes at least one processor circuitry 315, at least one memory (MEM) 314 coupled to the at least one processor circuitry 315, and a suitable transceiver (TRANS) 313 (having a transmitter (TX) and a receiver (RX) ) coupled to the at least one processor circuitry 315.
  • the at least one MEM 314 stores a program (PROG) 312.
  • the TRANS 313 is for bidirectional wireless communications with the NE 301.
  • the NE 301 includes at least one processor circuitry 305, at least one memory (MEM) 304 coupled to the at least one processor circuitry 305, and a suitable transceiver (TRANS) 303 (having a transmitter (TX) and a receiver (RX) ) coupled to the at least one processor circuitry 305.
  • the at least one MEM 304 stores a program (PROG) 302.
  • the TRANS 303 is for bidirectional wireless communications with the UE 311.
  • the NE 301 may be coupled to one or more cellular networks or systems, which is not shown in this figure.
  • the NE 301 may further include a MIMO TS control unit 306.
  • the unit 306, together with the at least one processor circuitry 305 and the PROG 302, may be utilized by the NE 301 in conjunction with various example embodiments of the application, as described herein.
  • the UE 311 may further include a MIMO TS process unit 316.
  • the unit 316 together with the at least one processor circuitry 315 and the PROG 312, may be utilized by the UE 311 in conjunction with various example embodiments of the application, as described herein.
  • At least one of the PROGs 302 and 312 is assumed to include program instructions that, when executed by the associated processor, enable the electronic apparatus to operate in accordance with the example embodiments of this disclosure, as discussed herein.
  • the various example embodiments of the apparatus 311 can include, but are not limited to, cellular phones, personal digital assistants (PDAs) having wireless communication capabilities, portable computers having wireless communication capabilities, image capture devices such as digital cameras having wireless communication capabilities, gaming devices having wireless communication capabilities, music storage and playback appliances having wireless communication capabilities, Internet appliances permitting wireless Internet access and browsing, as well as portable units or terminals that incorporate combinations of such functions.
  • PDAs personal digital assistants
  • portable computers having wireless communication capabilities
  • image capture devices such as digital cameras having wireless communication capabilities
  • gaming devices having wireless communication capabilities
  • music storage and playback appliances having wireless communication capabilities
  • Internet appliances permitting wireless Internet access and browsing, as well as portable units or terminals that incorporate combinations of such functions.
  • the example embodiments of this disclosure may be implemented by computer software or computer program code executable by one or more of the processor circuitries 305, 315 of the NE 301 and the UE 311, or by hardware, or by a combination of software and hardware.
  • the MEMs 304 and 314 may be of any type suitable to the local technical environment and may be implemented using any suitable data storage technology, such as semiconductor-based memory devices, flash memory, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory, as non-limiting examples.
  • the processor circuitries 305 and 315 may be of any type suitable to the local technical environment, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multi-core processor architecture, as non-limiting examples.
  • a technical effect of one or more of the example embodiments disclosed herein may be unifying CSI feedback inside one framework to support both control and data channels. It also allows UE to observe the full channel and interference, and to select the best transmission scheme. That results in a more efficient feedback and improved overall performance.
  • Embodiments of the present invention may be implemented in software, hardware, application logic or a combination of software, hardware and application logic.
  • the software, application logic and/or hardware may reside on an apparatus such as a user equipment, an eNB or other mobile communication devices. If desired, part of the software, application logic and/or hardware may reside on a network element 301, part of the software, application logic and/or hardware may reside on a UE 311, and part of the software, application logic and/or hardware may reside on other chipset or integrated circuit.
  • the application logic, software or an instruction set is maintained on any one of various conventional computer-readable media.
  • a “computer-readable medium” may be any media or means that can contain, store, communicate, propagate or transport the instructions for use by or in connection with an instruction execution system, apparatus, or device.
  • a computer-readable medium may comprise a non-transitory computer-readable storage medium that may be any media or means that can contain or store the instructions for use by or in connection with an instruction execution system, apparatus, or device.
  • the various names such as for example, the names of timers used for the described parameters are not intended to be limiting in any respect, as these parameters may be identified by any suitable names.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

A method comprises determining a set of candidate multiple input multiple output (MIMO) transmission schemes, wherein each MIMO transmission scheme is associated with a channel state information (CSI) calculation mechanism and a feedback format for channel state information; indicating the determined set of candidate MIMO transmission schemes to a user equipment; and receiving a channel state information with a feedback format associated with a MIMO transmission scheme selected from the set of candidate MIMO transmission schemes.

Description

APPARATUS AND METHOD FOR UNIFIED CSI FEEDBACK FRAMEWORK FOR CONTROL AND DATA CHANNEL TECHNICAL FIELD
The present application relates generally to an apparatus and a method for unified channel state information feedback framework for control and data channel.
BACKGROUND
This section is intended to provide a background or context to the invention that is recited in the claims. The description herein may include concepts that could be pursued, but are not necessarily ones that have been previously conceived, implemented or described. Therefore, unless otherwise indicated herein, what is described in this section is not prior art to the description and claims in this application.
Third generation partnership project (3GPP) 5th generation (5G) technology is a new generation of radio systems and network architecture that can deliver extreme broadband and ultra-robust, low latency connectivity. 5G can improve the telecommunication services offered to the end users, and help support massive machine-to-machine (M2M) communications. 5G is also expected to increase network expandability up to hundreds of thousands of connections. The signal technology of 5G is anticipated to be improved for greater coverage as well as spectral and signaling efficiency.
5G networks are expected to use multiple input and multiple output (MIMO) technology for multiplying the capacity of a radio link by using multiple transmit and receive antennas. Channel state information (CSI) feedback is the key to harvest MIMO performance gain. In traditional long term evolution (LTE) MIMO framework, CSI feedback format is tied to MIMO transmission mode (TM) . Once configured to a certain TM, UE should report corresponding CSI feedback accordingly.
SUMMARY
According to a first embodiment, a method can include determining a set of candidate multiple input multiple output (MIMO) transmission schemes, wherein each MIMO  transmission scheme is associated with a channel state information (CSI) calculation mechanism and a feedback format for channel state information; indicating the determined set of candidate MIMO transmission schemes to a user equipment; and receiving a channel state information with a feedback format associated with a MIMO transmission scheme selected from the set of candidate MIMO transmission schemes.
According to a second embodiment, an apparatus can include at least one processor and at least one memory including computer program code, wherein the at least one memory and the computer program code are configured to, with the at least one processor, cause the apparatus at least to determine a set of candidate multiple input multiple output (MIMO) transmission schemes, wherein each MIMO transmission scheme is associated with a channel state information (CSI) calculation mechanism and a feedback format for channel state information; indicate the determined set of candidate MIMO transmission schemes to a user equipment; and receive a channel state information with a feedback format associated with a MIMO transmission scheme selected from the set of candidate MIMO transmission schemes.
According to a third embodiment, a computer program product can include a computer-readable medium bearing computer program code embodied therein for use with a computer, the computer program code comprising code for determining a set of candidate multiple input multiple output (MIMO) transmission schemes, wherein each MIMO transmission scheme is associated with a channel state information (CSI) calculation mechanism and a feedback format for channel state information; indicating the determined set of candidate MIMO transmission schemes to a user equipment; and receiving a channel state information with a feedback format associated with a MIMO transmission scheme selected from the set of candidate MIMO transmission schemes.
According to a fourth embodiment, an apparatus can include means for determining a set of candidate multiple input multiple output (MIMO) transmission schemes, wherein each MIMO transmission scheme is associated with a channel state information (CSI) calculation mechanism and a feedback format for channel state information; means for indicating the determined set of candidate MIMO transmission schemes to a user equipment; and means for receiving a channel state information with a feedback format associated with a MIMO transmission scheme selected from the set of candidate MIMO transmission schemes.
According to a fifth embodiment, a method can include receiving from a network element a set of candidate multiple input multiple output (MIMO) transmission schemes, wherein each MIMO transmission scheme is associated with a channel state information calculation mechanism and a feedback format for channel state information; selecting a MIMO transmission scheme from the received set of candidate MIMO transmission schemes; calculating a channel state information and determining a feedback format based on the selected MIMO transmission scheme; and sending to the network element the channel state information with the determined feedback format.
According to a sixth embodiment, an apparatus can include at least one processor and at least one memory including computer program code, wherein the at least one memory and the computer program code are configured to, with the at least one processor, cause the apparatus at least to receive from a network element a set of candidate multiple input multiple output (MIMO) transmission schemes, wherein each MIMO transmission scheme is associated with a channel state information calculation mechanism and a feedback format for channel state information; select a MIMO transmission scheme from the received set of candidate MIMO transmission schemes; calculate a channel state information and determine a feedback format based on the selected MIMO transmission scheme; and send to the network element the channel state information with the determined feedback format.
According to a seventh embodiment, a computer program product can include a computer-readable medium bearing computer program code embodied therein for use with a computer, the computer program code comprising code for receiving from a network element a set of candidate multiple input multiple output (MIMO) transmission schemes, wherein each MIMO transmission scheme is associated with a channel state information calculation mechanism and a feedback format for channel state information; selecting a MIMO transmission scheme from the received set of candidate MIMO transmission schemes; calculating a channel state information and determining a feedback format based on the selected MIMO transmission scheme; and sending to the network element the channel state information with the determined feedback format.
According to an eighth embodiment, an apparatus can include means for receiving from a network element a set of candidate multiple input multiple output (MIMO) transmission schemes, wherein each MIMO transmission scheme is associated with a channel  state information calculation mechanism and a feedback format for channel state information; mean for selecting a MIMO transmission scheme from the received set of candidate MIMO transmission schemes; means for calculating a channel state information and determining a feedback format based on the selected MIMO transmission scheme; and means for sending to the network element the channel state information with the determined feedback format.
BRIEF DESCRIPTION OF THE DRAWINGS
For a more complete understanding of example embodiments of the present invention, reference is now made to the following descriptions taken in connection with the accompanying drawings in which:
Figure 1 illustrates a flowchart in accordance with an example embodiment of the application.
Figure 2 illustrates a flowchart in accordance with another example embodiment of the application.
Figure 3 illustrates a simplified block diagram of example apparatuses that are suitable for use in practicing various example embodiments of this application.
DETAILED DESCRIPTON
Associating the channel state information (CSI) feedback with multiple input and multiple output (MIMO) transmission mode may simplify the operation procedure. Once configured into one transmission mode, a user equipment (UE) has a fixed procedure to measure and feedback related CSI content. However, it may be hard for evolved NodeB (eNB) to decide what CSI feedback mostly fits the user. With CSI feedback associated with transmission mode, it may also be difficult to accommodate scheduling and link adaption for control channel. As a result, some long term evolution (LTE) control channels, e.g. physical downlink control channel (PDCCH) , or enhanced physical downlink control channel (ePDCCH) , can only depend on less efficient outer loop controlling schemes for scheduling and link adaptation.
Single MIMO transmission mode (or no transmission mode) has been discussed within third generation partnership project (3GPP) 5th generation (5G) MIMO work force. The design target is to use one MIMO transmission mode to cover all MIMO transmission schemes. The eNB could dynamically switch transmission scheme (TS) from transmission time interval  (TTI) to TTI using downlink control information (DCI) . A unified CSI feedback framework to fit all the transmission schemes may be needed.
In an example embodiment, a unified CSI feedback framework for both data and control channels and different transmission schemes is proposed.
In an example embodiment, an eNB may configure a set of candidate MIMO transmission schemes and optionally an uplink (UL) resource for UE selected transmission scheme reporting:
- A MIMO transmission scheme is a general term which may apply to data or control channel.
- A MIMO transmission scheme for data channel may include for example:
- Transmit diversity (TxD) such as for example space frequency block coding (SFBC)
- Open loop spatial multiplexing such as for example large delay cyclic delay diversity (CDD) (with multiple ranks)
- Close loop spatial multiplexing (e.g. with precoding matrix indicator (PMI) feedback)
- A MIMO transmission scheme for control channel may include for example:
- Distributed PDCCH like (with interleaved control channel element (CCE) configuration)
- Localized ePDCCH like (with localized enhanced CCE (eCCE) configuration)
Each MIMO transmission scheme is associated with a CSI calculation mechanism and a CSI feedback format. Note that the eNB can preclude some transmissions schemes for UE to select. For example, if eNB decides to pair a particular UE with others for multi-user MIMO (MU-MIMO) . It may not want this UE to select TxD as hypothetical transmission scheme. In that case, eNB can preclude the TxD scheme from the candidate transmission scheme set.
In an example embodiment, when triggered by eNB, a UE can select a MIMO transmission scheme from the candidate set as hypothetical transmission scheme for the CSI feedback. The selected hypothetic transmission scheme will determine the CSI calculation mechanism and corresponding feedback format.
In an example embodiment, the selection may be based on observed channel changing rate, credibility of the CSI accuracy and link adaptation (LA) efficiency between control and data channels. For example, if the UE observes inefficient control scheduling (e.g. block error rate (BLER) is too high) , it may select a transmission scheme for control channel as for CSI feedback to allow eNB better adjust the control channel scheduling and link adaption. In another example, if UE observes the channel is changing too fast, it may select TxD as hypothetical transmission scheme for CSI feedback. This selection may provide recommendation to eNB about which transmission scheme to use as well as corresponding scheduling and link adaption.
In an example embodiment, the information of the selected MIMO transmission scheme, such as for example, the index of the selected MIMO transmission scheme, is feedback to eNB together with the CSI, separately or jointly encoded.
In an example embodiment, a selected MIMO transmission scheme may have different CSI feedback formats. For example, as an implicit feedback, ifthe UE selects open loop spatial multiplexing, the CSI may include rank indicator (RI) and channel quality indicator (CQI) information; ifthe UE selects close loop spatial multiplexing, CSI feedback may include RI, PMI and CQI. In another example, as an explicit feedback, if the UE selects close loop spatial multiplexing, it may feedback quantized Eigen vectors plus quantized interference. In an example embodiment, multiple candidate MIMO transmission schemes of the set may be associated with one same CSI quantization type, and their associated CSI feedback formats are corresponding to different quantization granularities.
In an example embodiment, once receiving the CSI feedback selected by the UE, the eNB may use the recommended MIMO transmission scheme for future data or control transmission. The eNB may generate a message for the UE to acknowledge the CSI feedback, hence, the recommended MIMO transmission scheme. In another example embodiment, the eNB may over-write the recommend MIMO transmission scheme and choose by itself. For example, if UE selects close-loop MIMO, however, eNB finds the historical BLER of this user is very bad, it may overwrite it to transmission diversity.
Figure 1 illustrates a flowchart in accordance with an example embodiment of the application. In the example of Figure 1, a network element (NE) , such as for example, an eNB, determines a set of candidate MIMO transmission scheme at step 101. Each MIMO  transmission scheme is associated with a CSI calculation mechanism and a CSI feedback format. The eNB indicates the determined set of candidate MIMO transmission schemes to a UE at step 102. At step 103 the eNB may optionally determine an uplink resource and indicate the uplink resource to the UE. At step 104 the eNB receives a CSI feedback with a format associated with a MIMO transmission scheme selected from the set. The eNB may acknowledge the received CSI and hence the MIMO transmission scheme selected by the UE and adopt it for future transmission at step 105.
Figure 2 illustrates another flowchart in accordance with an example embodiment of the application. In the example of Figure 2, a UE receives from a NE, such as for example, an eNB, a set of candidate MIMO transmission scheme at step 201. Each MIMO transmission scheme is associated with a CSI calculation mechanism and a CSI feedback format. The UE selects a MIMO transmission scheme from the received set at step 202. At step 203 the UE calculates a CSI and determines a CSI feedback format based on the selected MIMO transmission scheme. The UE may receive an uplink resource from the NE at step 204, and indicate the CSI with the determined feedback format to the NE on the received uplink resource at step 205. At step 206 the UE may receive an acknowledgement from the NE acknowledging the indicated CSI and hence the selected MIMO transmission scheme that may be adopted by the NE for future transmission.
Reference is made to Figure 3 for illustrating a simplified block diagram of various example apparatuses that are suitable for use in practicing various example embodiments of this application. In Figure 3, a NE 301, is adapted for communication with a UE 311. The UE 311 includes at least one processor circuitry 315, at least one memory (MEM) 314 coupled to the at least one processor circuitry 315, and a suitable transceiver (TRANS) 313 (having a transmitter (TX) and a receiver (RX) ) coupled to the at least one processor circuitry 315. The at least one MEM 314 stores a program (PROG) 312. The TRANS 313 is for bidirectional wireless communications with the NE 301.
The NE 301 includes at least one processor circuitry 305, at least one memory (MEM) 304 coupled to the at least one processor circuitry 305, and a suitable transceiver (TRANS) 303 (having a transmitter (TX) and a receiver (RX) ) coupled to the at least one processor circuitry 305. The at least one MEM 304 stores a program (PROG) 302. The TRANS  303 is for bidirectional wireless communications with the UE 311. The NE 301 may be coupled to one or more cellular networks or systems, which is not shown in this figure.
As shown in Figure 3, the NE 301 may further include a MIMO TS control unit 306. The unit 306, together with the at least one processor circuitry 305 and the PROG 302, may be utilized by the NE 301 in conjunction with various example embodiments of the application, as described herein.
As shown in Figure 3, the UE 311 may further include a MIMO TS process unit 316. The unit 316, together with the at least one processor circuitry 315 and the PROG 312, may be utilized by the UE 311 in conjunction with various example embodiments of the application, as described herein.
At least one of the  PROGs  302 and 312 is assumed to include program instructions that, when executed by the associated processor, enable the electronic apparatus to operate in accordance with the example embodiments of this disclosure, as discussed herein.
In general, the various example embodiments of the apparatus 311 can include, but are not limited to, cellular phones, personal digital assistants (PDAs) having wireless communication capabilities, portable computers having wireless communication capabilities, image capture devices such as digital cameras having wireless communication capabilities, gaming devices having wireless communication capabilities, music storage and playback appliances having wireless communication capabilities, Internet appliances permitting wireless Internet access and browsing, as well as portable units or terminals that incorporate combinations of such functions.
The example embodiments of this disclosure may be implemented by computer software or computer program code executable by one or more of the  processor circuitries  305, 315 of the NE 301 and the UE 311, or by hardware, or by a combination of software and hardware.
The  MEMs  304 and 314 may be of any type suitable to the local technical environment and may be implemented using any suitable data storage technology, such as semiconductor-based memory devices, flash memory, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory, as non-limiting examples. The  processor circuitries  305 and 315 may be of any type suitable to the local technical environment, and may include one or more of general purpose computers, special  purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multi-core processor architecture, as non-limiting examples.
Without in any way limiting the scope, interpretation, or application of the claims appearing below, a technical effect of one or more of the example embodiments disclosed herein may be unifying CSI feedback inside one framework to support both control and data channels. It also allows UE to observe the full channel and interference, and to select the best transmission scheme. That results in a more efficient feedback and improved overall performance.
Embodiments of the present invention may be implemented in software, hardware, application logic or a combination of software, hardware and application logic. The software, application logic and/or hardware may reside on an apparatus such as a user equipment, an eNB or other mobile communication devices. If desired, part of the software, application logic and/or hardware may reside on a network element 301, part of the software, application logic and/or hardware may reside on a UE 311, and part of the software, application logic and/or hardware may reside on other chipset or integrated circuit. In an example embodiment, the application logic, software or an instruction set is maintained on any one of various conventional computer-readable media. In the context of this document, a “computer-readable medium” may be any media or means that can contain, store, communicate, propagate or transport the instructions for use by or in connection with an instruction execution system, apparatus, or device. A computer-readable medium may comprise a non-transitory computer-readable storage medium that may be any media or means that can contain or store the instructions for use by or in connection with an instruction execution system, apparatus, or device.
It is also noted herein that while the above describes example embodiments of the invention, these descriptions should not be viewed in a limiting sense. Rather, there are several variations and modifications which may be made without departing from the scope of the present invention. For example, the described example embodiments may focus on trigger based CSI feedback, i.e., aperiodical feedback. But it may also be applied in the case of periodical feedback.
Further, the various names, such as for example, the names of timers used for the described parameters are not intended to be limiting in any respect, as these parameters may be identified by any suitable names.
If desired, the different functions discussed herein may be performed in a different order and/or concurrently with each other. Furthermore, if desired, one or more of the above-described functions may be optional or may be combined. As such, the foregoing description should be considered as merely illustrative of the principles, teachings and example embodiments of this invention, and not in limitation thereof.

Claims (44)

  1. A method, comprising:
    by an apparatus,
    determining a set of candidate multiple input multiple output (MIMO) transmission schemes, wherein each MIMO transmission scheme is associated with a channel state information (CSI) calculation mechanism and a feedback format for channel state information;
    indicating the determined set of candidate MIMO transmission schemes to a user equipment; and
    receiving a channel state information with a feedback format associated with a MIMO transmission scheme selected from the set of candidate MIMO transmission schemes.
  2. The method according to claim 1, wherein a transmission scheme is a data channel transmission scheme or a control channel transmission scheme.
  3. The method according to claim 1 or 2, further comprising:
    determining an uplink resource; and
    indicating the determined uplink resource to the user equipment.
  4. The method according to claim 3, wherein receiving the channel state information comprising receiving the channel state information on the determined uplink resource.
  5. The method according to any of claims 1 to 4, wherein determining the set of candidate MIMO transmission schemes comprising precluding a MIMO transmission scheme from the set.
  6. The method according to any of claims 1 to 5, further comprising receiving an information indicating the selected MIMO transmission scheme.
  7. The method according to any of claims 1 to 6, wherein multiple candidate MIMO transmission schemes of the set are associated with one same CSI quantization type, and their associated CSI feedback formats are corresponding to different quantization granularities.
  8. The method according to any of claims 1 to 7, further comprising adopting the selected MIMO transmission scheme for future transmission.
  9. The method according to any of claims 1 to 8, further comprising sending to the user equipment a message acknowledging the selected MIMO transmission scheme.
  10. The method according to any of claims 1 to 9, wherein the set of candidate MIMO transmission schemes includes at least one of transmission diversity scheme, open loop spatial multiplexing scheme, close loop spatial multiplexing scheme, distributed control channel element configuration scheme, and localized control channel element configuration scheme.
  11. An apparatus, comprising:
    at least one processor;
    and at least one memory including computer program code,
    wherein the at least one memory and the computer program code are configured to, with the at least one processor, cause the apparatus at least to:
    determine a set of candidate multiple input multiple output (MIMO) transmission schemes, wherein each MIMO transmission scheme is associated with a channel state information (CSI) calculation mechanism and a feedback format for channel state information;
    indicate the determined set of candidate MIMO transmission schemes to a user equipment; and
    receive a channel state information with a feedback format associated with a MIMO transmission scheme selected from the set of candidate MIMO transmission schemes.
  12. The apparatus according to claim 11, wherein a transmission scheme is a data channel transmission scheme or a control channel transmission scheme.
  13. The apparatus according to claim 11 or 12, wherein the at least one memory and the computer program code are configured to, with the at least one processor, cause the apparatus further to:
    determine an uplink resource; and
    indicate the determined uplink resource to the user equipment.
  14. The apparatus according to claim 13, wherein when receiving the channel state information, the at least one memory and the computer program code are configured to, with the at least one processor, cause the apparatus to receive the channel state information on the determined uplink resource.
  15. The apparatus according to any of claims 11 to 14, wherein when determining the set of candidate MIMO transmission schemes, the at least one memory and the computer program  code are configured to, with the at least one processor, cause the apparatus to preclude a MIMO transmission scheme from the set.
  16. The apparatus according to any of claims 11 to 15, wherein the at least one memory and the computer program code are configured to, with the at least one processor, cause the apparatus further to receive an information indicating the selected MIMO transmission scheme.
  17. The apparatus according to any of claims 11 to 16, wherein multiple candidate MIMO transmission schemes of the set are associated with one same CSI quantization type, and their associated CSI feedback formats are corresponding to different quantization granularities.
  18. The apparatus according to any of claims 11 to 17, wherein the at least one memory and the computer program code are configured to, with the at least one processor, cause the apparatus further to adopt the selected MIMO transmission scheme for future transmission.
  19. The apparatus according to any of claims 11 to 18, wherein the at least one memory and the computer program code are configured to, with the at least one processor, cause the apparatus further to send to the user equipment a message acknowledging the selected MIMO transmission scheme.
  20. The apparatus according to any of claims 11 to 19, wherein the set of candidate MIMO transmission schemes includes at least one of transmission diversity scheme, open loop spatial multiplexing scheme, close loop spatial multiplexing scheme, distributed control channel element configuration scheme, and localized control channel element configuration scheme.
  21. A computer program product comprising a computer-readable medium bearing computer program code embodied therein for use with a computer, the computer program code comprising code for:
    determining a set of candidate multiple input multiple output (MIMO) transmission schemes, wherein each MIMO transmission scheme is associated with a channel state information (CSI) calculation mechanism and a feedback format for channel state information;
    indicating the determined set of candidate MIMO transmission schemes to a user equipment; and
    receiving a channel state information with a feedback format associated with a MIMO transmission scheme selected from the set of candidate MIMO transmission schemes.
  22. An apparatus, comprising:
    means for determining a set of candidate multiple input multiple output (MIMO) transmission schemes, wherein each MIMO transmission scheme is associated with a channel state information (CSI) calculation mechanism and a feedback format for channel state information;
    means for indicating the determined set of candidate MIMO transmission schemes to a user equipment; and
    means for receiving a channel state information with a feedback format associated with a MIMO transmission scheme selected from the set of candidate MIMO transmission schemes.
  23. A method, comprising:
    by an apparatus,
    receiving from a network element a set of candidate multiple input multiple output (MIMO) transmission schemes, wherein each MIMO transmission scheme is associated with a channel state information (CSI) calculation mechanism and a feedback format for channel state information;
    selecting a MIMO transmission scheme from the received set of candidate MIMO transmission schemes;
    calculating a channel state information and determining a feedback format based on the selected MIMO transmission scheme; and
    sending to the network element the channel state information with the determined feedback format.
  24. The method according to claim 23, wherein a transmission scheme is a data channel transmission scheme or a control channel transmission scheme.
  25. The method according to claim 23 or 24, further comprising:
    receiving from the network element an uplink resource.
  26. The method according to claim 25, wherein sending the channel state information comprising sending the channel state information on the received uplink resource.
  27. The method according to any of claims 23 to 26, wherein selecting the MIMO transmission scheme is based on at least one of observed channel changing rate, credibility of channel station information accuracy, and link adaptation efficiency between a control channel and a data channel.
  28. The method according to any of claims 23 to 27, further comprising sending to the network element an information indicating the selected MIMO transmission scheme.
  29. The method according to any of claims 23 to 28, wherein multiple candidate MIMO transmission schemes of the set are associated with one same CSI quantization type, and their associated CSI feedback formats are corresponding to different quantization granularities.
  30. The method according to any of claims 23 to 29, further comprising receiving future transmission according to the selected MIMO transmission scheme.
  31. The method according to any of claims 23 to 30, further comprising receiving from the network element a message acknowledging the selected MIMO transmission scheme.
  32. The method according to any of claims 23 to 31, wherein the set of candidate MIMO transmission schemes includes at least one of transmission diversity scheme, open loop spatial multiplexing scheme, close loop spatial multiplexing scheme, distributed control channel element configuration scheme, and localized control channel element configuration scheme.
  33. An apparatus, comprising:
    at least one processor;
    and at least one memory including computer program code,
    wherein the at least one memory and the computer program code are configured to, with the at least one processor, cause the apparatus at least to:
    receive from a network element a set of candidate multiple input multiple output (MIMO) transmission schemes, wherein each MIMO transmission scheme is associated with a channel state information calculation mechanism and a feedback format for channel state information; select a MIMO transmission scheme from the received set of candidate MIMO transmission schemes;
    calculate a channel state information and determine a feedback format based on the selected MIMO transmission scheme; and
    send to the network element the channel state information with the determined feedback format.
  34. The apparatus according to claim 33, wherein a transmission scheme is a data channel transmission scheme or a control channel transmission scheme.
  35. The apparatus according to claim 33 or 34, wherein the at least one memory and the computer program code are configured to, with the at least one processor, cause the apparatus further to:
    receive from the network element an uplink resource.
  36. The apparatus according to claim 35, wherein when sending the channel state information, the at least one memory and the computer program code are configured to, with the at least one processor, cause the apparatus to send the channel state information on the received uplink resource.
  37. The apparatus according to any of claims 33 to 36, wherein when selecting the MIMO transmission scheme, the at least one memory and the computer program code are configured to, with the at least one processor, cause the apparatus to select the MIMO transmission scheme based on at least one of observed channel changing rate, credibility of channel station information accuracy, and link adaptation efficiency between a control channel and a data channel.
  38. The apparatus according to any of claims 33 to 37, wherein the at least one memory and the computer program code are configured to, with the at least one processor, cause the apparatus further to send to the network element an information indicating the selected MIMO transmission scheme.
  39. The apparatus according to any of claims 33 to 38, wherein multiple candidate MIMO transmission schemes of the set are associated with one same CSI quantization type, and their associated CSI feedback formats are corresponding to different quantization granularities.
  40. The apparatus according to any of claims 33 to 39, wherein the at least one memory and the computer program code are configured to, with the at least one processor, cause the apparatus further to receive future transmission according to the selected MIMO transmission scheme.
  41. The apparatus according to any of claims 33 to 40, wherein the at least one memory and the computer program code are configured to, with the at least one processor, cause the apparatus further to receive from the network element a message acknowledging the selected MIMO transmission scheme.
  42. The apparatus according to any of claims 33 to 41, wherein the set of candidate MIMO transmission schemes includes at least one of transmission diversity scheme, open loop  spatial multiplexing scheme, close loop spatial multiplexing scheme, distributed control channel element configuration scheme, and localized control channel element configuration scheme.
  43. A computer program product comprising a computer-readable medium bearing computer program code embodied therein for use with a computer, the computer program code comprising code for:
    receiving from a network element a set of candidate multiple input multiple output (MIMO) transmission schemes, wherein each MIMO transmission scheme is associated with a channel state information calculation mechanism and a feedback format for channel state information; selecting a MIMO transmission scheme from the received set of candidate MIMO transmission schemes;
    calculating a channel state information and determining a feedback format based on the selected MIMO transmission scheme; and
    sending to the network element the channel state information with the determined feedback format.
  44. An apparatus, comprising:
    means for receiving from a network element a set of candidate multiple input multiple output (MIMO) transmission schemes, wherein each MIMO transmission scheme is associated with a channel state information calculation mechanism and a feedback format for channel state information;
    means for selecting a MIMO transmission scheme from the received set of candidate MIMO transmission schemes;
    means for calculating a channel state information and determining a feedback format based on the selected MIMO transmission scheme; and
    means for sending to the network element the channel state information with the determined feedback format.
PCT/CN2016/094648 2016-08-11 2016-08-11 Apparatus and method for unified csi feedback framework for control and data channel WO2018027804A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/094648 WO2018027804A1 (en) 2016-08-11 2016-08-11 Apparatus and method for unified csi feedback framework for control and data channel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/094648 WO2018027804A1 (en) 2016-08-11 2016-08-11 Apparatus and method for unified csi feedback framework for control and data channel

Publications (1)

Publication Number Publication Date
WO2018027804A1 true WO2018027804A1 (en) 2018-02-15

Family

ID=61161700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/094648 WO2018027804A1 (en) 2016-08-11 2016-08-11 Apparatus and method for unified csi feedback framework for control and data channel

Country Status (1)

Country Link
WO (1) WO2018027804A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110958040A (en) * 2018-09-27 2020-04-03 电信科学技术研究院有限公司 Receiving method and feedback method of channel state information, network side equipment and terminal
US11405086B2 (en) * 2016-09-30 2022-08-02 Qualcomm Incorporated Channel state information (CSI) acquisition for dynamic MIMO transmission

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101431778A (en) * 2007-11-06 2009-05-13 大唐移动通信设备有限公司 MIMO mode self-adapting switch method and device
CN101562904A (en) * 2008-04-16 2009-10-21 大唐移动通信设备有限公司 Method and device for switching multi-input and multi-output modes
US20130044610A1 (en) * 2011-08-16 2013-02-21 Hong Kong Applied Science and Technology Research Institute Company Limited Method and apparatus for estimation of channel temporal correlation and mimo mode selection in lte system
US20130301756A1 (en) * 2012-05-10 2013-11-14 Intel Mobile Communications GmbH Apparatus and Method for Decoding a Received Signal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101431778A (en) * 2007-11-06 2009-05-13 大唐移动通信设备有限公司 MIMO mode self-adapting switch method and device
CN101562904A (en) * 2008-04-16 2009-10-21 大唐移动通信设备有限公司 Method and device for switching multi-input and multi-output modes
US20130044610A1 (en) * 2011-08-16 2013-02-21 Hong Kong Applied Science and Technology Research Institute Company Limited Method and apparatus for estimation of channel temporal correlation and mimo mode selection in lte system
US20130301756A1 (en) * 2012-05-10 2013-11-14 Intel Mobile Communications GmbH Apparatus and Method for Decoding a Received Signal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11405086B2 (en) * 2016-09-30 2022-08-02 Qualcomm Incorporated Channel state information (CSI) acquisition for dynamic MIMO transmission
CN110958040A (en) * 2018-09-27 2020-04-03 电信科学技术研究院有限公司 Receiving method and feedback method of channel state information, network side equipment and terminal
CN110958040B (en) * 2018-09-27 2021-05-25 电信科学技术研究院有限公司 Receiving method and feedback method of channel state information, network side equipment and terminal

Similar Documents

Publication Publication Date Title
CN110521137B (en) Method and apparatus for Channel State Information (CSI) acquisition with DL and UL reference signals
US20210176743A1 (en) System and Method for Virtual Multi-Point Transceivers
CN107431515B (en) Method and apparatus for codebook design and signaling
US20220295328A1 (en) Methods and apparatuses for channel state information transmission
KR102120959B1 (en) Method for cqi feedback without spatial feedback (pmi/ri) for tdd coordinated multi-point and carrier aggregation scenarios
RU2614238C1 (en) Radio communication method and radio communication device
JP6785370B2 (en) Rate matching
CN112689969A (en) Method and device for generating CSI report
US9246568B2 (en) Apparatus and method for non-codebook based precoding
WO2017031672A1 (en) Precoding information sending and feedback method and apparatus
US20160226647A1 (en) Reference precoding vectors for multiple rank indications for channel quality indication (cqi) reporting in a wireless
WO2012146041A1 (en) Channel state information processing method, apparatus and system
US20130250876A1 (en) Method And Apparatus Providing Inter-Transmission Point Phase Relationship Feedback For Joint Transmission CoMP
TW201230710A (en) Method and node in a wireless communications system
JP6278325B2 (en) Channel state information feedback method and apparatus
US10979121B2 (en) Channel state information determination using demodulation reference signals in advanced networks
WO2018028427A1 (en) Method for transmitting and receiving downlink control signalling, apparatus, base station and terminal
WO2018202071A1 (en) Data transmission method, terminal device and network device
CN111182619A (en) Method and equipment for controlling uplink power
WO2017135302A1 (en) Base station, user equipment, method for applying precoding matrix, and method for acquiring precoding matrix
US20210399937A1 (en) Facilitating an antenna port specific downlink control channel design for advanced networks
AU2017445391A1 (en) Method for uplink data transmission, terminal device and network device
US20220408446A1 (en) Efficient beam management for wireless networks
US20230244911A1 (en) Neural network information transmission method and apparatus, communication device, and storage medium
US20220038154A1 (en) Csi calculation method, user terminal and computer-readable storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16912259

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16912259

Country of ref document: EP

Kind code of ref document: A1