WO2018027792A1 - Multimedia broadcast multicast service signaling for multiple cells - Google Patents

Multimedia broadcast multicast service signaling for multiple cells Download PDF

Info

Publication number
WO2018027792A1
WO2018027792A1 PCT/CN2016/094615 CN2016094615W WO2018027792A1 WO 2018027792 A1 WO2018027792 A1 WO 2018027792A1 CN 2016094615 W CN2016094615 W CN 2016094615W WO 2018027792 A1 WO2018027792 A1 WO 2018027792A1
Authority
WO
WIPO (PCT)
Prior art keywords
message
cell
indication
mbms
request
Prior art date
Application number
PCT/CN2016/094615
Other languages
French (fr)
Inventor
Kuo-Chun Lee
Daniel Amerga
Masato Kitazoe
Feilu Liu
Luis F. B. LOPES
Muralidharan Murugan
Pankaj VASANDANI
Sivaramakrishna Veerepalli
Ken-Chieh Brian YANG
Xipeng Zhu
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2016/094615 priority Critical patent/WO2018027792A1/en
Publication of WO2018027792A1 publication Critical patent/WO2018027792A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services

Definitions

  • the following relates generally to wireless communication and more specifically to Multimedia Broadcast Multicast Service (MBMS) signaling in wireless systems supporting carrier aggregation (CA) .
  • MBMS Multimedia Broadcast Multicast Service
  • CA carrier aggregation
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • multiple-access systems include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, and orthogonal frequency division multiple access (OFDMA) systems, (e.g., a Long Term Evolution (LTE) system) .
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • LTE Long Term Evolution
  • a wireless multiple-access communications system may include a number of base stations, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • UE user equipment
  • Wireless communications systems may use MBMS techniques to broadcast multimedia data (e.g., streaming media) to multiple UEs within a particular coverage area.
  • a UE receiving MBMS control signaling may respond with one or more messages indicating, for example, the MBMS services the UE is receiving or is interested in receiving. But in cases where a UE receives multiple MBMS control messages on multiple cells, response messages from the UE may cause ambiguity at the receiving base station because the relationship between the response message and the multiple control messages may be unknown.
  • a user equipment may receive multiple MBMS control messages on multiple cells requesting an indication of services that the UE is interested in receiving. For example, the UE may receive a first request message on a primary cell (PCell) and a second request message on a secondary cell (SCell) or a configurable SCell (C-SCell) at approximately the same time.
  • the UE may configure a response message to one of the request messages that includes information that identifies the cell associated with the corresponding request message.
  • the response message may include a cell identification, a frequency identification, or an area identification associated with the cell of the corresponding request message.
  • a method of wireless communication may include receiving a first message on a first cell, wherein the first message includes a request for an indication of current reception or an indication of desired reception of at least one service of a first set of MBMS services, receiving a second message on a second cell, wherein the second message includes a request for an indication of current reception or an indication of desired reception of at least one service of a second set of MBMS services, configuring a third message in response to the request in the first message, wherein the configuration of the third message is based at least in part on receiving the first message on the first cell and receiving the second message on the second cell, and transmitting the third message on the second cell.
  • the apparatus may include means for receiving a first message on a first cell, wherein the first message includes a request for an indication of current reception or an indication of desired reception of at least one service of a first set of MBMS services, means for receiving a second message on a second cell, wherein the second message includes a request for an indication of current reception or an indication of desired reception of at least one service of a second set of MBMS services, means for configuring a third message in response to the request in the first message, wherein the configuration of the third message is based at least in part on receiving the first message on the first cell and receiving the second message on the second cell, and means for transmitting the third message on the second cell.
  • the mobile device may include a processor, memory in electronic communication with the processor, and instructions stored in the memory.
  • the instructions may be operable, when executed by the processor, to cause the mobile device to receive a first message on a first cell, wherein the first message includes a request for an indication of current reception or an indication of desired reception of at least one service of a first set of MBMS services, receive a second message on a second cell, wherein the second message includes a request for an indication of current reception or an indication of desired reception of at least one service of a second set of MBMS services, configure a third message in response to the request in the first message, wherein the configuration of the third message is based at least in part on receiving the first message on the first cell and receiving the second message on the second cell, and transmit the third message on the second cell.
  • a non-transitory computer readable medium for wireless communication may include instructions operable to cause a processor to receive a first message on a first cell, wherein the first message includes a request for an indication of current reception or an indication of desired reception of at least one service of a first set of MBMS services, receive a second message on a second cell, wherein the second message includes a request for an indication of current reception or an indication of desired reception of at least one service of a second set of MBMS services, configure a third message in response to the request in the first message, wherein the configuration of the third message is based at least in part on receiving the first message on the first cell and receiving the second message on the second cell, and transmit the third message on the second cell.
  • Some examples of the methods, apparatuses, mobile devices, and non-transitory computer-readable media described herein may further include processes, features, means, or instructions for determining that the first cell is an SCell or a C-SCell. Some examples of the methods, apparatuses, mobile devices, and non-transitory computer-readable media described herein may further include processes, features, means, or instructions for configuring the third message to include an indication that the first message was received on the first cell based at least in part on determining that the first cell is an SCell or a C-SCell.
  • configuring the third message comprises configuring the third message to include an indication that it is in response to the first message received on the first cell.
  • the indication that the first message was received on the first cell comprises a cell identification.
  • the indication that the first message was received on the first cell comprises a frequency identification.
  • the indication that the first message was received on the first cell comprises a multicast/broadcast over a single frequency network (MBSFN) area identification.
  • MMSFN single frequency network
  • Some examples of the methods, apparatuses, mobile devices, and non-transitory computer-readable media described herein may further include processes, features, means, or instructions for configuring a fourth message in response to the second message based at least in part on receiving the first message on the first cell and receiving the second message on the second cell. Some examples of the methods, apparatuses, mobile devices, and non-transitory computer-readable media described herein may further include processes, features, means, or instructions for transmitting the fourth message on the second cell.
  • configuring the third message comprises configuring the third message with an indication that is responsive to the request in the first message and the request in the second message.
  • Some examples of the methods, apparatuses, mobile devices, and non-transitory computer-readable media described herein may further include processes, features, means, or instructions for configuring the third message to include a selection of at least one service of the first set of MBMS services.
  • Some examples of the methods, apparatuses, mobile devices, and non-transitory computer-readable media described herein may further include processes, features, means, or instructions for transmitting a fourth message indicating a desired frequency over which to receive at least one service from the first set of MBMS services or from the second set of MBMS services.
  • Some examples of the methods, apparatuses, mobile devices, and non-transitory computer-readable media described herein may further include processes, features, means, or instructions for configuring the fourth message to include an identification of at least one service from the first set of MBMS services or from the second set of MBMS services.
  • the first message and the second message comprise MBMS counting request messages.
  • the third message comprises an MBMS counting response message.
  • a method of wireless communication may include transmitting a first message on a first cell, wherein the first message includes a request for an indication of current reception or an indication of desired reception of at least one service of a first set of MBMS services, delaying, for a duration, transmission of a second message on a second cell, wherein the second message includes a request for an indication of current reception or an indication of desired reception of at least one service of a second set of MBMS services, wherein the predetermined duration is measured from transmission of the first message, and transmitting the second message after the duration.
  • the apparatus may include means for transmitting a first message on a first cell, wherein the first message includes a request for an indication of current reception or an indication of desired reception of at least one service of a first set of MBMS services, means for delaying, for a duration, transmission of a second message on a second cell, wherein the second message includes a request for an indication of current reception or an indication of desired reception of at least one service of a second set of MBMS services, wherein the predetermined duration is measured from transmission of the first message, and means for transmitting the second message after the duration.
  • the network device may include a processor, memory in electronic communication with the processor, and instructions stored in the memory.
  • the instructions may be operable, when executed by the processor, to cause the network device to transmit a first message on a first cell, wherein the first message includes a request for an indication of current reception or an indication of desired reception of at least one service of a first set of MBMS services, delay, for a duration, transmission of a second message on a second cell, wherein the second message includes a request for an indication of current reception or an indication of desired reception of at least one service of a second set of MBMS services, wherein the predetermined duration is measured from transmission of the first message, and transmit the second message after the duration.
  • a non-transitory computer readable medium for wireless communication may include instructions operable to cause a processor to transmit a first message on a first cell, wherein the first message includes a request for an indication of current reception or an indication of desired reception of at least one service of a first set of MBMS services, delay, for a duration, transmission of a second message on a second cell, wherein the second message includes a request for an indication of current reception or an indication of desired reception of at least one service of a second set of MBMS services, wherein the predetermined duration is measured from transmission of the first message, and transmit the second message after the duration.
  • the duration may be based at least in part on a duration of a modification period of control signaling associated with the first message or the second message.
  • a method of wireless communication may include transmitting a first message on a first cell, wherein the first message includes a request for an indication of current reception or an indication of desired reception of at least one of a first set of MBMS services and receiving a second message on the first cell, wherein the second message is responsive to a third message transmitted on a second cell, and wherein the second message is configured based at least in part on the first message being transmitted on the first cell and the third message being transmitted on the second cell.
  • the apparatus may include means for transmitting a first message on a first cell, wherein the first message includes a request for an indication of current reception or an indication of desired reception of at least one of a first set of MBMS services and means for receiving a second message on the first cell, wherein the second message is responsive to a third message transmitted on a second cell, and wherein the second message is configured based at least in part on the first message being transmitted on the first cell and the third message being transmitted on the second cell.
  • the network device may include a processor, memory in electronic communication with the processor, and instructions stored in the memory.
  • the instructions may be operable, when executed by the processor, to cause the network device to transmit a first message on a first cell, wherein the first message includes a request for an indication of current reception or an indication of desired reception of at least one of a first set of MBMS services and receive a second message on the first cell, wherein the second message is responsive to a third message transmitted on a second cell, and wherein the second message is configured based at least in part on the first message being transmitted on the first cell and the third message being transmitted on the second cell.
  • a non-transitory computer readable medium for wireless communication may include instructions operable to cause a processor to transmit a first message on a first cell, wherein the first message includes a request for an indication of current reception or an indication of desired reception of at least one of a first set of MBMS services and receive a second message on the first cell, wherein the second message is responsive to a third message transmitted on a second cell, and wherein the second message is configured based at least in part on the first message being transmitted on the first cell and the third message being transmitted on the second cell.
  • Some examples of the methods, apparatuses, network devices, and non-transitory computer-readable media described herein may further include processes, features, means, or instructions for transmitting the third message on the second cell, wherein the third message includes a request for an indication of current reception or an indication of desired reception of at least one of a second set of MBMS services.
  • the second message includes an indication that the third message was transmitted on the second cell.
  • the indication that the third message was transmitted on the second cell comprises a cell identification.
  • Some examples of the methods, apparatuses, network devices, and non-transitory computer-readable media described herein may further include processes, features, means, or instructions for forwarding the second message to the second cell based at least in part on the cell identification.
  • the second message may be forwarded to the second cell via an X2 interface.
  • the second message may be forwarded to the second cell indirectly via an S1 interface or another network entity, or both.
  • the indication that the third message was transmitted on the second cell comprises a frequency identification or a MBSFN area identification.
  • Some examples of the methods, apparatuses, network devices, and non-transitory computer-readable media described herein may further include processes, features, means, or instructions for identifying the second cell based at least in part on the configuration of the second message. Some examples of the methods, apparatuses, network devices, and non-transitory computer-readable media described herein may further include processes, features, means, or instructions for forwarding the second message to the second cell based at least in part on the identification.
  • Some examples of the methods, apparatuses, network devices, and non-transitory computer-readable media described herein may further include processes, features, means, or instructions for identifying the second cell based at least in part on the MBSFN area identification, a MBMS interest indication message, a system information block, a cell configuration of a neighbor base station, or a measurement report, or any combination thereof.
  • the first message and the third message comprise MBMS counting request messages.
  • the second message comprises an MBMS counting response message.
  • FIGs. 1 and 2 illustrate examples of a system for wireless communication that supports Multimedia Broadcast Multicast Service (MBMS) signaling for multiple cells in accordance with aspects of the present disclosure.
  • MBMS Multimedia Broadcast Multicast Service
  • FIGs. 3-6 illustrate examples of a process flow in a system that supports MBMS signaling for multiple cells in accordance with aspects of the present disclosure.
  • FIGs. 7 through 9 show block diagrams of a device or devices that supports MBMS signaling for multiple cells in accordance with aspects of the present disclosure.
  • FIG. 10 illustrates a block diagram of a system including a mobile device that supports MBMS signaling for multiple cells in accordance with aspects of the present disclosure.
  • FIGs. 11 through 13 show block diagrams of a device or devices that support MBMS signaling for multiple cells in accordance with aspects of the present disclosure.
  • FIG. 14 illustrates a block diagram of a system including a base station that supports MBMS signaling for multiple cells in accordance with aspects of the present disclosure.
  • FIGs. 15 through 19 illustrate methods for MBMS signaling for multiple cells in accordance with aspects of the present disclosure.
  • a wireless communications network that supports Multimedia Broadcast Multicast Service (MBMS) communications may transmit control messages (e.g., MBMS counting request messages) to a user equipment (UE) on different cells.
  • control messages e.g., MBMS counting request messages
  • UE user equipment
  • a UE that receives multiple MBMS control messages on different cells may configure MBMS response messages (e.g., MBMS counting response messages) to include an indication of the cell associated with the corresponding control message.
  • the UE may configure a response message to include an indication of a cell identity, a frequency, or an area identity associated with the cell on which the corresponding request message was received.
  • These response messages may provide additional information to the network to avoid ambiguity associated with receiving multiple MBMS control messages on multiple cells.
  • the network may be able to determine which MBMS services the UE is receiving or is interested in receiving based on identifying the cell associated with the corresponding MBMS control message.
  • a UE may directly indicate the MBMS services that it is interested in receiving by including a list of the services in an MBMS control message.
  • the network may use information from neighboring cells, such as neighboring cell configurations or measurement reports, to determine the corresponding cell associated with an MBMS counting response.
  • the network may use scheduling techniques to avoid potential ambiguity associated with transmitting multiple MBMS control messages on multiple cells.
  • the network may schedule a gap (e.g., a guard time) between subsequent counting requests to avoid transmitting multiple counting requests at approximately the same time.
  • a gap e.g., a guard time
  • Such scheduling schemes may provide a UE sufficient time to respond to each MBMS counting request individually.
  • the network may forward the counting response to the appropriate base station associated with the cell.
  • aspects of the disclosure introduced above are described below in the context of a wireless communications system. Examples of systems supporting prevention and resolution of ambiguity in MBMS signaling are described, and example process flows of prevention and resolution techniques in such systems are also described. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to MBMS signaling for multiple cells.
  • FIG. 1 illustrates an example of a wireless communications system 100 in accordance with various aspects of the present disclosure.
  • the wireless communications system 100 includes base stations 105, UEs 115, and a core network 130.
  • the wireless communications system 100 may be a LTE (or LTE-Advanced) network.
  • the wireless communications system 100 may support MBMS communications between base stations 105 and UEs 115.
  • One or more base stations 105 may transmit multiple MBMS control messages using multiple cells to a UE 115.
  • a UE 115 may configure MBMS response messages to include an indication of the cell associated with the corresponding MBMS control message that the response message is response to.
  • Base stations 105 may wirelessly communicate with UEs 115 via one or more base station antennas. Each base station 105 may provide communication coverage for a respective geographic coverage area 110. Communication links 125 shown in wireless communications system 100 may include uplink (UL) transmissions from a UE 115 to a base station 105, or downlink (DL) transmissions, from a base station 105 to a UE 115. UEs 115 may be dispersed throughout the wireless communications system 100, and each UE 115 may be stationary or mobile.
  • UL uplink
  • DL downlink
  • a UE 115 may also be referred to as a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
  • a UE 115 may be a cellular phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a tablet computer, a laptop computer, a cordless phone, a personal electronic device, a handheld device, a personal computer, a wireless local loop (WLL) station, an Internet of things (IoT) device, an Internet of Everything (IoE) device, a machine type communication (MTC) device, an appliance, an automobile, or the like.
  • PDA personal digital assistant
  • WLL wireless local loop
  • IoT Internet of things
  • IoE Internet of Everything
  • MTC machine type communication
  • the communication links 125 may support one or more services between devices of the wireless communications system 100.
  • Services may include, for example, point-to-point (e.g., unicast) services between two devices (e.g., between a network device such as a base station 105 and a UE 115, between a first UE 115 and a second UE 115, etc. ) , point-to-multipoint (e.g., broadcast or multicast) services between a device and a set of other devices (e.g., between a network device such as a base station 105 and a set of UEs 115, between a UE 115 and a set of other UEs 115, etc. ) , or services forwarded by devices such as those services provided by way of a mesh network.
  • point-to-point e.g., unicast
  • point-to-multipoint e.g., broadcast or multicast
  • Examples of services include data services, data transfer services, data transfer services over transmission control protocol (TCP) , data transfer services over user datagram protocol (UDP) , voice services, voice-over-IP (VoIP) services, IP multimedia services, text messaging services, short message services (SMS) , emergency broadcast services, emergency call services, public warning system services, internet services, MBMS services, sensor data distribution services, vehicle-to-vehicle services, or the like, each of which may be considered as a type of service.
  • types of services may include whether traffic associated with a service is latency sensitive (e.g., associated with a latency parameter, etc. ) or “mission critical” (e.g., associated with an acceptable or threshold error rate, etc. ) , a quality of service (QoS) parameter associated with a service, a priority or priority level of data associated with a service, an acknowledgement mode (AM) of a service, or the like.
  • wireless communications system 100 may support carrier aggregation (CA) to increase throughput and improve the overall efficiency of the network.
  • CA carrier aggregation
  • a base station 105 and a UE 115 may communicate using more than one carrier.
  • Each aggregated carrier is referred to as a component carrier (CC) .
  • CC component carrier
  • Each CC can have a bandwidth of, e.g., 1.4, 3, 5, 10, 15 or 20 MHz.
  • the number of CCs can be limited to, e.g., a maximum of five CCs giving a maximum aggregated bandwidth of 100 MHz.
  • Some systems may support a larger number of CCs, or CCs may be aggregated without a defined limit is some systems.
  • the number of aggregated carriers can be different in downlink and uplink.
  • the number of uplink component carriers may be equal to or lower than the number of downlink component carriers.
  • the individual component carriers can also be of different bandwidths.
  • For TDD the number of CCs as well as the bandwidths of each CC will normally be the same for DL and UL.
  • Component carriers may be arranged in a number of ways. For example, a CA configuration may be based on contiguous component carriers within the same operating frequency band, i.e., called intra-band contiguous CA. Non-contiguous allocations can also be used, where the component carriers may either be intra-band or inter-band.
  • a UE 115 may communicate with one or more base stations 105 using multiple cells. For example, the UE 115 may communicate with a base station 105 on a primary serving cell (PCell) and on one or more secondary cells (SCells) . The UE 115 may transmit uplink data and receive downlink data as well as control information on the PCell. The UE 115 may receive downlink data on an SCell, but may or may not be configured to transmit uplink data.
  • the PCell may include an uplink control channel (e.g., PDCCH)
  • SCells may not include an uplink control channel. In such cases, uplink control information for the PCell and for SCells is transmitted on the PCell, which may exacerbate or cause ambiguity about which cell the control information relates if there is no identifier of a particular cell in the control information.
  • a UE 115 may also receive multiple CCs that are not aggregated. For example, a UE 115 may communication with one base station 105 on a PCell, and the UE 115 may communicate with another base station 105 on a configurable SCell (C-SCell) . To the base station 105 of the PCell, the C-SCell may be understood as a non-serving neighbor cell (i.e., not configured by the base station 105 but self-configured by the UE) . A UE 115 communicating with a PCell and C-SCell may thus coordinate communications with little or no involvement of the base stations 105 associated with the PCell and C-SCell.
  • C-SCell configurable SCell
  • Base stations 105 may communicate with the core network 130 and with one another. For example, base stations 105 may interface with the core network 130 through backhaul links 132 (e.g., S1, etc. ) . Base stations 105 may communicate with one another over backhaul links 134 (e.g., X2, etc. ) either directly or indirectly (e.g., through core network 130) . Base stations 105 may perform radio configuration and scheduling for communication with UEs 115, or may operate under the control of a base station controller (not shown) . In some examples, base stations 105 may be macro cells, small cells, hot spots, or the like. Base stations 105 may also be referred to as eNodeBs (eNBs) 105. As discussed further below, communications between base stations 105 may be used to mitigate issues or confusion that results from a UE 115 communicating on a PCell and a C-SCell.
  • eNodeBs eNodeBs
  • the core network 130 may include a broadcast/multicast service center (BM-SC) , an MBMS gateway (MBMS-GW) , and a multicell/multicast coordination entity (MCE) .
  • the BM-SC may connect a content provider to the MBMS-GW.
  • the BM-SC may receive MBMS content (also referred to herein as MBMS services) from the content provider and relay the MBMS content to the MBMS-GW. Additionally, the BM-SC may transmit information about the quality of service of the content and, for example, a modulation and coding scheme (MCS) for base stations 105 to use when broadcasting MBMS content.
  • MCS modulation and coding scheme
  • the MBMS-GW may then forward this information to base stations 105 within an MBMS area in addition to, for example, a transmission time associated with the content.
  • the MCE may then provide scheduling information to base stations within the MBMS area to allow synchronized transmissions to multiple UEs 115.
  • Wireless communications system 100 may support MBMS techniques to broadcast multimedia data from one or more base stations 105 to multiple UEs 115.
  • wireless communications system 100 may be configured to broadcast steaming media, such as mobile TV content, or to multicast live event coverage to UEs 115 located near a live event such as a concert or sporting event. In some cases, this may enable more efficient utilization of downlink bandwidth.
  • a single base station 105 may simultaneously communicate with multiple UEs 115 using point-to-multipoint communication techniques, or multiple base stations 105 may communicate with multiple UEs 115 using multipoint-to-multipoint communication techniques.
  • Wireless communications system 100 may support a single frequency network (SFN) (e.g., Multimedia Broadcast Single Frequency Network (MBSFN) ) and may include SFN cells (e.g., MBSFN cells) associated with one or more base stations 105.
  • SFN single frequency network
  • MBSFN Multimedia Broadcast Single Frequency Network
  • An MBSFN base station e.g., a base station 105
  • a base station 105 may cover multiple cells and each cell may be associated with a different frequency.
  • Wireless communications system 100 may include multiple MBSFN areas.
  • An MBSFN area may include a group of synchronized base stations (e.g., base stations 105) that may broadcast the same content at the same time using the same frequency resources. These synchronized base stations 105 may perform MBSFN transmissions collectively to increase the signal power of transmissions to multiple UEs 115. The signal power of the MBSFN transmissions are increased by constructive interference among signals transmitted by multiple base stations 105.
  • Each MBSFN area may be identified by an MBSFN area ID. For example, an MBSFN area may be identified by an integer ranging from 0 to 255.
  • the multiple base stations 105 communicate with a UE 115 using an MBMS channel (MCH) .
  • the MCH may include an MBMS control channel (MCCH) and an MBMS traffic channel (MTCH) .
  • MCCH MBMS control channel
  • MTCH MBMS traffic channel
  • a base station 105 may send control information (e.g., configuration to receive the MBMS services) to a UE 115 via the MCCH, and the base station 105 may broadcast data to the UE 115 (e.g., a television station) via the MTCH.
  • a base station 105 advertises available MBMS services by transmitting a control message to a UE 115 via the MCCH that includes an identification of the available services (e.g., Temporary Mobile Group Identifier (TMGI) ) .
  • TMGI Temporary Mobile Group Identifier
  • a UE 115 may receive one message on a PCell and another message on an SCell or a C-SCell.
  • the control message may include information about which cell the services are available on.
  • the control message may include an area identity associated with the cell (e.g., an MBSFN Area ID) . MBSFN areas may overlap and the cell may be associated with multiple MBSFN areas.
  • the control message may include a list of area identities associated with the cell.
  • the control information may include an E-UTRA Absolute Radio Frequency Channel Number (EARFCN) associated with the channel used for communication with a UE 115 within the cell.
  • E-UTRA Absolute Radio Frequency Channel Number E-UTRA Absolute Radio
  • the UE 115 may determine to send a message (e.g., an MBMS Interest Indication (MII) message) indicating that it is currently receiving or is interested in receiving one or more MBMS services indicated in the control message.
  • a message e.g., an MBMS Interest Indication (MII) message
  • the UE 115 may indicate the frequency associated with the cell it is interested in receiving services on by including the EARFCN identity from the control information in the MII message.
  • the UE 115 may transmit the MII message on the PCell.
  • a base station 105 or a group of base stations 105 within a particular area may transmit signaling to one or more UEs 115 to determine the number of UEs 115 within the area that are currently receiving or that are interested in receiving a specific MBMS service.
  • a base station 105 may transmit a message (e.g., an MBMS counting request message) to a UE 115 requesting an indication of which MBMS services the UE 115 is interested in receiving.
  • the MBMS counting request message may include a list of the available MBMS services (e.g., a counting request list) .
  • the MBMS counting request message may be in response to or otherwise based on a MII message transmitted by the UE 115, or the base station 105 may send the MBMS counting request periodically.
  • a UE 115 may receive one MBMS counting request message on a PCell and receive a different MBMS counting request message on an SCell or C-SCell.
  • a UE 115 may then select the specific services it is interested in receiving from the MBMS counting request list indicated in the request message.
  • the UE 115 may then transmit a message (e.g., an MBMS counting response message) to indicate which services it is interested in by indicating the index corresponding to the MBMS service listed in the MBMS counting request list .
  • a message e.g., an MBMS counting response message
  • the index may include the value 0
  • the UE 115 is interested in receiving the second MBMS service from the list
  • the index may include the value 1.
  • This indexed list of selected MBMS services may be referred to as an MBMS counting response list.
  • the MBMS counting response message may also include the index corresponding to the list of area identities (e.g., an MBMS Area Info List within SIB 13) of the cell or cells on which the MBMS counting request message was transmitted.
  • the network may use this information to determine to broadcast the data to multiple UEs 115 or allow the base station 105 to transmit the data to the UE 115 independently over the appropriate cell (e.g., in a unicast transmission) .
  • a UE 115 may receive a counting request message on the PCell and a different counting request on the SCell or C-SCell at approximately the same time (e.g., within the same modification period) .
  • the SCell may be associated with the same base station 105 as the PCell, or the SCell may be associated with a different base station 105.
  • the UE 115 may then transmit a counting response message on the PCell in response to the first or second counting request message.
  • the base station 105 that receives the counting response message may not be able to determine if the counting response message is associated with the counting request message received on the PCell or the counting request message received on the SCell. Therefore, the base station 105 may not be able to determine which MBMS services the UE 115 is receiving or is interested in receiving.
  • a UE 115 may configure a counting response message to one of the counting request messages that includes information that identifies the cell associated with the corresponding request message.
  • the response message may include a cell identification, a frequency identification, or an area identification associated with the cell of the corresponding request message.
  • a base station 105 receiving such a response message may use the indication to determine the appropriate cell associated with the request message and may forward the response to the appropriate base station 105.
  • a UE 115 may directly indicate the MBMS services it is receiving or interested in receiving by including a list of the services in an MBMS response message.
  • FIG. 2A illustrates an example of a wireless communications system 200-a that supports MBMS signaling for multiple cells.
  • Wireless communications system 200-a may include a base station 105-a and a UE 115-a, which may be examples of corresponding devices described with reference to FIG. 1.
  • the base station 105-a and UE 115-a may communicate over PCell 205-a and SCell 210-a, which may each be associated with different carrier frequencies.
  • the UE 115-a may receive an MBMS counting request messages on the PCell 205-a and a different MBMS counting request message on the SCell 210-a and may respond on the PCell 205-a with one or more MBMS counting response messages.
  • FIG. 2B illustrates an example of a wireless communications system 200-b that supports MBMS signaling for multiple cells.
  • Wireless communications system 200-b may include a base station 105-b, a base station 105-c, and a UE 115-b, which may be examples of corresponding devices described with reference to FIG. 1.
  • the UE 115-b may communicate with base station 105-b over PCell 205-b and may communicate with base station 105-c over SCell 210-b.
  • PCell 205-b and SCell 210-b may be associated with different carrier frequencies or the same carrier frequencies.
  • the UE 115-b may receive an MBMS counting request messages on the PCell 205-b and a different MBMS counting request message on the SCell 210-b and may respond on the PCell 205-b with one or more MBMS counting response messages.
  • the receiving base station 105 may not be able to determine which counting request the response is associated with. Accordingly, without some additional indication provided by the UE 115, the base station 105 may be unable to determine the MBMS services the UE 115 is interested in receiving. This ambiguity may be caused by the network using different carrier frequencies or different base stations 105 to transmit multiple MBMS counting request messages to a UE 115.
  • wireless communications systems 200 may support additional techniques to prevent or resolve ambiguity resulting from multiple MBMS request messages being transmitted using multiple cells.
  • the wireless communications systems 200 may support configuring MBMS counting response messages to include additional information such as an indication of a frequency, an area identity, or a cell identity associated with the cell on which the corresponding counting request was received.
  • the wireless communications systems 200 may use different scheduling techniques to prevent ambiguity associated with sending multiple MBMS counting requests close in time. For example, a base station 105 may schedule a gap (e.g., a guard time) between subsequent counting requests to avoid transmitting multiple counting requests at approximately the same time.
  • a UE 115 may include an indication of a cell identity in a counting response message. For example, if a UE 115 receives a counting request on an SCell or a C-SCell (e.g., SCell 210) , then the UE 115 may include an indication of the cell identity of the SCell in the counting response. The cell identity may be included in an additional information element within the MBMS counting response message.
  • the MBMS counting response message may include the cell identity along with an index of the area associated with the corresponding cell (e.g., an MBSF Area Index) and an index of the MBMS services that the UE 115 is interested in receiving (e.g., a Counting Response List) .
  • a UE 115 may aggregate multiple counting responses into a single counting response message.
  • a UE 115 may respond on the PCell without including an indication of the cell identity in the counting response.
  • a base station 105 that receives a counting response message without an additional indication of the cell identity may determine that the response message corresponds to a request message sent on the PCell.
  • a base station 105 receiving a response message with an additional cell indication may determine the cell associated with the counting response. For example, if the response message includes an indication that identifies an SCell, then the base station 105 may be able to identify the MBMS request message that the response message is responsive to. Accordingly, the network may be able to compare the MBMS service index in the response message to the MBMS service list in the request message and determine the services that the UE 115 is receiving or is interested in receiving.
  • a base station 105 receiving a response message that includes a cell identity may be able to determine the appropriate cell even if the appropriate cell is not associated with the receiving base station 105. In such cases, the base station 105 may forward the response message to the appropriate base station 105. For example, referring to FIG. 2B, if base station 105-b receives a response message from UE 115-b that indicates a cell identity associated with base station 105-c (e.g., SCell 210-b) , base station 105-b may forward the response to base station 105-c either directly (e.g., via an X2 interface) or indirectly through one or more additional entities of the network (e.g., an MCE) .
  • base station 105-b may forward the response to base station 105-c either directly (e.g., via an X2 interface) or indirectly through one or more additional entities of the network (e.g., an MCE) .
  • a UE 115 may include an indication of a downlink carrier frequency associated with a cell in a counting response message. For example, if the UE 115 receives the counting request on an SCell or a C-SCell (e.g., SCell 210) , the UE may include an indication of the downlink carrier frequency associated with the SCell or C-SCell in the counting response.
  • the indication of a downlink carrier may include a downlink carrier frequency identification.
  • the downlink carrier identification may be included in an additional information element within the MBMS counting response message.
  • the MBMS counting response message may include the downlink carrier identification along with an index of the area associated with the corresponding cell (e.g., an MBSF Area Index) and an index of the MBMS services that the UE 115 is interested in receiving (e.g., a Counting Response List) .
  • an index of the area associated with the corresponding cell e.g., an MBSF Area Index
  • an index of the MBMS services that the UE 115 is interested in receiving e.g., a Counting Response List
  • the indication of the downlink carrier frequency may include an Absolute Radio Frequency Channel Number (ARFCN) identification.
  • the ARFCN identification may allow the receiving base station 105 that covers the PCell to determine if the indicated frequency is associated with the a PCell, SCell, or C-SCell of the UE 115.
  • the UE 115 may respond on the PCell without including an indication of the downlink carrier frequency in the counting response.
  • a base station 105 receiving a response message that includes an indication of a downlink carrier frequency may be able to determine the appropriate cell if the appropriate cell is associated with the receiving base station 105. In some cases, however, an indication of a downlink carrier frequency may not uniquely identify a cell if two different base stations 105 communicate with the UE 115 using the same downlink carrier frequency (e.g., if PCell 205-b and SCell 210-b use the same frequency) .
  • a UE 115 may include an indication of an area identity associated with a cell in a counting response message. For example, if a UE 115 receives a counting request on an SCell or C-SCell (e.g., SCell 210) ) , the UE 115 may include an indication of the area identity in the counting response associated with the SCell.
  • the area identity may be included in an additional information element within the MBMS counting response message.
  • the area identity may include an MBSFN Area Identification (e.g., an integer from 0 to 255) .
  • the MBMS counting response message may include the area identity instead of (or in addition to) an index of the area associated with the corresponding cell (e.g., an MBSF Area Index) .
  • the MBMS counting response message may also still include an index of the MBMS services that the UE 115 is interested in receiving (e.g., a Counting Response List) .
  • a base station 105 receiving a response message with an additional area indication may determine the cell associated with the counting response. For example, if the response message includes an area indication that identifies an SCell, then the base station 105 may be able to identify the MBMS request message that the response message is responsive to. Accordingly, the network may be able to compare the MBMS service index in the response message to the MBMS service list in the request message and determine the services that the UE 115 is receiving or is interested in receiving.
  • a base station 105 receiving a response message that includes an area identity may be able to determine the appropriate cell even if the appropriate cell is not associated with the receiving base station 105. In such cases, the base station 105 may forward the response message to the appropriate base station 105. For example, referring to FIG. 2B, if base station 105-b receives a response message from UE 115-b that indicates an area identity associated with base station 105-c (e.g., SCell 210-b) , base station 105-b may forward the response to base station 105-c either directly (e.g., via an X2 interface) or indirectly through one or more additional entities of the network (e.g., an MCE) . In some cases, for an area identity to uniquely identify a cell, a network operator may need to use unique area IDs (e.g., unique MBSFN Area IDs) for different frequencies of different base stations 105.
  • unique area IDs e.g., unique MBSFN Area IDs
  • a UE 115 may determine not to respond to the counting request. Such a determination may prevent potential ambiguity caused by receiving multiple MBMS request messages from different cells associated with different base stations 105.
  • a base station 105 may schedule a gap between subsequent counting requests to avoid transmitting multiple counting requests at approximately the same time. For example, if a previous counting request was transmitted within a predetermined duration of time, the network may postpone transmission of a subsequent counting request until the end of the duration.
  • the threshold amount of time is an example of a guard time.
  • the guard time may be, for example, at least one modification period in addition to a processing delay and a transmission delay.
  • the modification period, processing delay, and transmission delay may depend on network configurations and may be static or dynamic. So the guard time may be configurable by a UE 115, a base station 105, or any other network entity and may be static or dynamic.
  • the processing delay may allow time for the UE 115 to determine the services it wants to receive from the list of services included in the counting request, and the transmission delay may include time for the UE 115 to transmit the counting response on the PCell and time for the primary serving base station 105 to forward the counting response to the network. Subsequently, the network may transmit the postponed counting request to the base station 105 to relay to the UE 115.
  • These scheduling schemes prevent ambiguity since the counting response will be associated with a most recently transmitted counting request. In some cases, this scheduling scheme may introduce additional latency to a counting procedure.
  • a UE 115 may indicate the MBMS services it is interested in receiving by included a list or some other identity of the services in a message to a base station 105. For example, instead of including an index of the services that corresponds to a separate list of the services, the UE 115 my directly identify the services with a unique identifier.
  • the identifier of the MBMS services may include a Temporary Mobile Group Identifier (TMGI) .
  • TMGI Temporary Mobile Group Identifier
  • the TMGI values corresponding to the MBMS services may be included in a response message or some other control message sent from a UE 115 to a base station 105.
  • the TMGI indications may be included in an MBMS interested indication (MII) message.
  • the MII message may be in response to one or more advertising messages sent to the UE 115 over the MCCH that advertise the available MBMS services.
  • the network may only need to send the advertising messages over the MCCH and receive the MII message to determine which MBMS services the UE 115 is interested. That is, the base station 105 may not transmit a counting request and the UE 115 may not respond with a counting response if the MII includes a direct indication of the MBMS services the UE 115 is interested in receiving.
  • an MII message that includes TMGI values may be used in addition to the counting request and counting response signaling.
  • a base station 105 that receives a counting response may use information about neighboring cells to determine which cell the counting response corresponds to. For example, the receiving base station 105 may analyze information included in the counting response (e.g., a frequency indication or an area indication) , information included in an MII message (e.g., an identification of an EARFCN value) , information from a control message (e.g., SIB15) , information regarding a neighbor cell configuration, and/or a measurement report from a neighboring cell to determine the appropriate cell associated with the counting response.
  • information included in the counting response e.g., a frequency indication or an area indication
  • information included in an MII message e.g., an identification of an EARFCN value
  • SIB15 information from a control message
  • the primary serving base station may determine to ignore the counting response or forward the counting response to its MCE, and the MCE may forward the counting response to the MCE associated with the secondary serving base station. In some cases (e.g., when there are multiple neighbor cells) , the primary serving base station may not be able to determine the appropriate cell associated with a counting response.
  • an X2 interface e.g., connection between primary serving base station and secondary serving base station
  • FIG. 3 illustrates an example of a process flow 300 in a system that supports MBMS signaling for multiple cells.
  • Process flow 300 may include steps performed by UE 115-c, which may be an example of a UE 115 described above with reference to FIGs. 1 and 2.
  • Process flow 300 may also include steps performed by a serving base station 105-d, which may be an example of a base station 105 described above with reference to FIGs. 1 and 2.
  • a base station 105-d may communicate with UE 115-c on PCell 305 or SCell 310.
  • base station 105-d may transmit, and UE 115-c may receive, control information on PCell 305 via MCCH.
  • base station 105-d may transmit, and UE 115-c may receive, control information on SCell 310 via MCCH.
  • the control information may include an advertisement of MBMS services available on the respective cells.
  • the control information may include an indication of the frequency associated with the cell (e.g. an EARFCN value) , and indication of the area associated with the cell (e.g., and MBSFN Area ID) , and an indication of the MBMS services that are available (e.g., one or more TMGI values in a MBMS counting request list) .
  • the MBMS services available on the PCell may include a first set of MBMS services and the services available on the SCell may include a second set of MBMS services.
  • UE 115-c may transmit a message to base station 105-d on PCell 305 indicating an interest in receiving services on a specific cell (e.g., PCell 305 or SCell 310) .
  • the message may indicate a desired frequency over which to receive at least one service from a first set of MBMS services or a second set of MBMS services.
  • an indication of a desired frequency may include an EARFCN value associated with the cell that advertised the desired set of MBMS services.
  • base station 105-d may include the first set of MBMS services in the message transmitted at step 315, and the base station 105-d may include the second set of MBMS services in the message transmitted at step 320.
  • the message transmitted at step 325 may also include an indication of interest in at least one service from the first set of MBMS services, at least one service from the second set of MBMS services, or a combination thereof.
  • the indication of interest in a particular MBMS service may include a list of TMGI values that identify the desired MBMS services.
  • base station 105-d may transmit, and UE 115-c may receive, a message on PCell 305 requesting an indication of MBMS services the UE 115-c is interested in receiving.
  • the message may include a request for an indication of current reception or an indication of desired reception of services of a set of MBMS services.
  • base station 105-d may include the set of MBMS services in the message transmitted on PCell 305 at step 330.
  • the message transmitted at step 330 may be an example of an MBMS counting request message.
  • base station 105-d may transmit a message to UE 115-c on SCell 310 requesting an indication of MBMS services the UE 115-c is interested in receiving.
  • the message may include a request for an indication of current reception or an indication of desired reception of services of a set of MBMS services.
  • base station 105-d may include the set of MBMS services in the message transmitted on SCell 310 at step 335.
  • the message transmitted at step 335 may be an example of an MBMS counting request message.
  • UE 115-c may transmit a response message to base station 105-d on PCell 305 indicating the MBMS services it is interested in receiving.
  • the message may be a response to the request received at step 330.
  • UE 115-c may configure the response message based on receiving the request message at step 330 on PCell 305.
  • UE 115-c may configure the response message to include a cell identification, a frequency identification, or an MBSFN area identification.
  • the message transmitted at step 340 may be an example of an MBMS counting response message.
  • UE 115-c may transmit a message to base station 105-d on PCell 305 indicating the MBMS services it is interested in receiving.
  • the message may be a response to the request received at step 335.
  • UE 115-c may configure the response message based on receiving the request message at step 335 on SCell 310.
  • UE 115-c may configure the response message to include a cell identification, a frequency identification, or an MBSFN area identification.
  • the message transmitted at step 345 may be an example of an MBMS counting response message.
  • UE 115-c may aggregate the messages transmitted at step 340 and at step 345 into a single response message.
  • FIG. 4 illustrates an example of a process flow 400 in a system that supports MBMS signaling for multiple cells.
  • Process flow 400 may include steps performed by UE 115-d, which may be an example of a UE 115 described above with reference to FIGs. 1 and 2.
  • Process flow 400 may also include steps performed by a serving base station 105-e and a neighboring base station 105-f, which may be examples of a base station 105 described above with reference to FIGs. 1 and 2.
  • base station 105-e and base station 105-f may communicate with UE 115-d on PCell 405 or SCell (or C-SCell) 410.
  • base station 105-e may transmit control information to UE 115-d on PCell 405 via MCCH.
  • base station 105-f may transmit control information to UE 115-d on SCell (or C-SCell) 410 via MCCH.
  • the control information sent at step 415 and step 420 may be examples of the control information sent at step 315 and step 320 of FIG. 3.
  • UE 115-d may transmit a message to base station 105-e on PCell 405 indicating an interest in receiving services on a specific cell (e.g., PCell 405 or SCell (or C-SCell) 410) .
  • the message may indicate a desired frequency over which to receive at least one service from a first set of MBMS services or a second set of MBMS services.
  • base station 105-e may include the first set of MBMS services in the message transmitted at step 415
  • base station 105-f may include the second set of MBMS services in the message transmitted at step 420.
  • the message transmitted at step 425 may also include an indication of interest in at least one service from the first set of MBMS services, at least one service from the second set of MBMS services, or a combination thereof.
  • the message sent at step 425 may be an example of the interest indication message sent at step 325 of FIG. 3.
  • base station 105-e may transmit a message to UE 115-d on PCell 405 requesting an indication of MBMS services the UE 115-d is interested in receiving.
  • the message may include a request for an indication of current reception or an indication of desired reception of services of a set of MBMS services.
  • base station 105-e may include the set of MBMS services in the message transmitted on PCell 405 at step 430.
  • the message transmitted at step 430 may be an example of an MBMS counting request message.
  • base station 105-f may transmit a message to UE 115-d on SCell (or C-SCell) 410 requesting an indication of MBMS services the UE 115-d is interested in receiving.
  • the message may include a request for an indication of current reception or an indication of desired reception of services of a set of MBMS services.
  • base station 105-f may include the set of MBMS services in the message transmitted on SCell (or C-SCell) 410 at step 435.
  • the message transmitted at step 435 may be an example of an MBMS counting request message.
  • UE 115-d may transmit a message to base station 105-e on PCell 405 indicating the MBMS services it is interested in receiving.
  • the message may be a response to the request received at step 430.
  • UE 115-d may configure the response message based on receiving the request message at step 430 on PCell 405.
  • UE 115-d may configure the response message to include a cell identification, a frequency identification, or an MBSFN area identification.
  • the message transmitted at step 440 may be an example of an MBMS counting response message.
  • UE 115-d may transmit a message to base station 105-e on PCell 405 indicating the MBMS services it is interested in receiving.
  • the message may be a response to the request received at step 435.
  • UE 115-d may configure the response message based on receiving the request message at step 435 on SCell (or C-SCell) 410.
  • SCell or C-SCell
  • UE 115-d may configure the response message to include a cell identification, a frequency identification, or an MBSFN area identification.
  • the message transmitted at step 445 may be an example of an MBMS counting response message.
  • UE 115-d may aggregate the messages transmitted at step 440 and at step 445 into a single response message.
  • FIG. 5 illustrates an example of a process flow 500 in a system that supports MBMS signaling for multiple cells.
  • Process flow 500 may include steps performed by UE 115-e, which may be an example of a UE 115 described above with reference to FIGs. 1 and 2.
  • Process flow 500 may also include steps performed by a serving base station 105-g, which may be example of a base station 105 described above with reference to FIGs. 1 and 2.
  • base station 105-g may communicate with UE 115-e on PCell 505 or SCell 510.
  • base station 105-g may transmit control information to UE 115-e on PCell 505 via MCCH.
  • base station 105-g may transmit control information to UE 115-e on SCell 510 via MCCH.
  • the control information transmitted at step 515 and step 520 may be examples of the control information sent at step 315 and step 320 of FIG. 3.
  • UE 115-e may transmit a message to base station 105-g on PCell 505 indicating an interest in receiving services on a specific cell (e.g., PCell 505 or SCell 510) .
  • the message may indicate a desired frequency over which to receive at least one service from a first set of MBMS services or a second set of MBMS services.
  • base station 105-g may include the first set of MBMS services in the message transmitted at step 515, and base station 105-g may include the second set of MBMS services in the message transmitted at step 520.
  • the message transmitted at step 525 may also include an indication of interest in at least one service from the first set of MBMS services, at least one service from the second set of MBMS services, or a combination thereof.
  • the message sent at step 525 may be an example of the interest indication message sent at step 325 of FIG. 3.
  • base station 105-g may transmit a message to UE 115-e on PCell 505 requesting an indication of MBMS services the UE 115-e is interested in receiving.
  • the message may include a request for an indication of current reception or an indication of desired reception of services of a set of MBMS services.
  • base station 105-g may include the set of MBMS services in the message transmitted on PCell 505 at step 530.
  • the message transmitted at step 530 may be an example of an MBMS counting request message.
  • UE 115-e may transmit a message to base station 105-g on PCell 505 indicating the MBMS services it is interested in receiving.
  • the message may be a response to the request received at step 530.
  • UE 115-e may configure the response message based on receiving the request message at step 530 on PCell 505.
  • UE 115-e may configure the response message to include a cell identification, a frequency identification, and/or an MBSFN area identification.
  • the message transmitted at step 535 may be an example of an MBMS counting response message.
  • base station 105-g may transmit a message to UE 115-e on SCell 510 requesting an indication of MBMS services the UE 115-e is interested in receiving.
  • the message may include a request for an indication of current reception or an indication of desired reception of services of a set of MBMS services.
  • base station 105-g may include the set of MBMS services in the message transmitted on SCell 510 at step 540.
  • the message transmitted at step 540 may be an example of an MBMS counting request message.
  • UE 115-e may transmit a message to base station 105-g on PCell 505 indicating the MBMS services it is interested in receiving.
  • the message may be a response to the request received at step 540.
  • UE 115-e may configure the response message based on receiving the request message at step 540 on SCell 510.
  • UE 115-e may configure the response message to include a cell identification, a frequency identification, or an MBSFN area identification.
  • the message transmitted at step 545 may be an example of an MBMS counting response message.
  • base station 105-g may schedule a delay 550 between subsequent transmissions of a request for an indication of MBMS services the UE 115-e is interested in receiving.
  • the delay 550 may be a predetermined delay that may be measured from the transmission of the request message at step 530.
  • the duration of the delay 550 may be based on a duration of a modification period of control signaling associated with the message transmitted at step 530 or the message transmitted at step 535.
  • FIG. 6 illustrates an example of a process flow 600 in a system that supports MBMS signaling for multiple cells.
  • Process flow 600 may include steps performed by UE 115-f, which may be an example of a UE 115 described above with reference to FIGs. 1 and 2.
  • Process flow 600 may also include steps performed by a serving base station 105-h and a neighboring base station 105-i, which may be examples of a base station 105 described above with reference to FIGs. 1 and 2.
  • base station 105-h and base station 105-i may communicate with UE 115-f on PCell 605 or SCell (or C-SCell) 610.
  • base station 105-h may transmit control information to UE 115-f on PCell 605 via MCCH.
  • base station 105-g may transmit control information to UE 115-e on SCell (or C-SCell) 610 via MCCH.
  • the control information transmitted at step 615 and step 620 may be examples of the control information transmitted at step 315 and step 320 in FIG. 3.
  • UE 115-f may transmit a message to base station 105-h on PCell 605 indicating an interest in receiving services on a specific cell (e.g., PCell 605 or SCell (or C-SCell) 610) .
  • the message may indicate a desired frequency over which to receive at least one service from a first set of MBMS services or a second set of MBMS services.
  • base station 105-h may include the first set of MBMS services in the message transmitted at step 615
  • base station 105-i may include the second set of MBMS services in the message transmitted at step 620.
  • the message transmitted at step 625 may also include an indication of interest in at least one service from the first set of MBMS services, at least one service from the second set of MBMS services, or a combination thereof.
  • the interest indication message transmitted at step 625 may be an example of the interested indication transmitted at step 325 in FIG. 3.
  • base station 105-h may transmit a message to UE 115-f on PCell 605 requesting an indication of MBMS services the UE 115-f is interested in receiving.
  • the message may include a request for an indication of current reception or an indication of desired reception of services of a set of MBMS services.
  • base station 105-h may include the set of MBMS services in the message transmitted on PCell 605 at step 630.
  • the message transmitted at step 630 may be an example of an MBMS counting request message.
  • base station 105-i may transmit a message to UE 115-f on SCell (or C-SCell) 610 requesting an indication of MBMS services the UE 115-f is interested in receiving.
  • the message may include a request for an indication of current reception or an indication of desired reception of services of a set of MBMS services.
  • base station 105-i may include the set of MBMS services in the message transmitted on SCell (or C-SCell) 610 at step 635.
  • the message transmitted at step 635 may be an example of an MBMS counting request message.
  • UE 115-f may transmit a message to base station 105-h on PCell 605 indicating the MBMS services it is interested in receiving.
  • the message may be a response to the request received at step 635.
  • UE 115-f may configure the response message based on receiving the request message at step 635 on SCell (or C-SCell) 610.
  • SCell or C-SCell
  • UE 115-f may configure the response message to include a cell identification, a frequency identification, and/or an MBSFN area identification.
  • the message transmitted at step 640 may be an example of an MBMS counting response message.
  • base station 105-h may identify the appropriate cell associated with the message received by base station 105-h at step 640.
  • base station 105-h may identify the appropriate cell based on the configuration of the message. Specifically, the base station 105-h may identify the appropriate cell based on a cell identification, frequency identification, or an MBSFN area identification included in the message received at step 640. In other cases, base station 105-h may identify the appropriate cell based on the MBSFN identification, an MBMS interest indication message, a system information block, a cell configuration of a neighbor base station, a measurement report, or any combination thereof.
  • base station 105-h may forward the message received at step 640 to base station 105-i based on the identification at block 645. In some cases, the base station 105-h may forward the message to base station 105-i via an X2 interface. In other cases, the base station 105-h may forward the message to base station 105-i via an S1 interface or another network entity or both.
  • FIG. 7 illustrates an example of a process flow 700 in a system that supports MBMS signaling for multiple cells.
  • Process flow 700 may include steps performed by UE 115-g, which may be an example of a UE 115 described above with reference to FIGs. 1 and 2.
  • Process flow 700 may also include steps performed by a serving base station 105-j, neighboring base station 105-k, and neighboring base station 105-l, which may be examples of a base station 105 described above with reference to FIGs. 1 and 2.
  • base station 105-j, base station 105-k, and base station 105-l may communicate with UE 115-g on PCell 705 or SCell (or C-SCell) 710.
  • base station 105-j may transmit control information to UE 115-g on SCell (or C-SCell) 710 via MCCH.
  • base station 105-k may transmit control information to UE 115-g on SCell (or C-SCell) 710 via MCCH.
  • base station 105-l may transmit control information to UE 115-g on SCell (or C-SCell) 710 via MCCH.
  • the control information transmitted at step 715, step 720, and step 725 may be examples of the control information transmitted at step 315 and step 320 of FIG. 3.
  • UE 115-g may transmit a message to base station 105-j on PCell 705 indicating an interest in receiving services on a specific cell (e.g., PCell 705 or SCell (or C-SCell) 710) .
  • the message may indicate a desired frequency over which to receive at least one service from a first set of MBMS services, a second set of MBMS services, or a third set of MBMS services.
  • base station 105-j may include the first set of MBMS services in the message transmitted at step 715
  • base station 105-k may include the second set of MBMS services in the message transmitted at step 720
  • base station 105-l may include the third set of MBMS services in the message transmitted at step 725.
  • the second set of services may be the same as the third set of services.
  • the message transmitted at step 730 may also include an indication of interest in at least one service from the first set of MBMS services, at least one service from the second set of MBMS services, at least one service from the third set of MBMS services, or a combination thereof.
  • base station 105-k may broadcast data (e.g., a television broadcast video streaming) to UE 115-g on SCell (or C-SCell) 710.
  • base station 105-k may broadcast the data using MTCH.
  • the broadcasted data may be associated with a service selected at step 730 from the set of services included in messages transmitted at step 715, step 720, and step 725.
  • base station 105-j may transmit a configuration message (e.g., RRC Connection Reconfiguration) on PCell 705 requesting a measurement report from UE 115-g.
  • the configuration message may indicate a frequency or cell associated with the requested measurement report.
  • UE 115-g may transmit a measurement report to base station 105-j on PCell 705.
  • the measurement report may include a reference signal received power (RSRP) associated with transmissions from base station 105-k and base station 105-l.
  • the measurement report may include an indication of the corresponding cell ID associated with an RSRP.
  • the measurement report may include an indication of an RSRP of -30 dBm associated with reference signals transmitted on cell ID 2 from base station 105-k and an RSRP of -50 dBm associated with reference signals transmitted on cell ID 3 from base station 105-l.
  • the cell identities included in the measurement report may be decoded from messages transmitted at step 715, step 720, and step 725.
  • FIG. 8 shows a block diagram 800 of a wireless device 805 that supports MBMS signaling for multiple cells in accordance with various aspects of the present disclosure.
  • Wireless device 805 may be an example of aspects of a UE 115 as described with reference to FIG. 1.
  • Wireless device 805 may include receiver 810, UE MBMS manager 815, and transmitter 820.
  • Wireless device 805 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • Receiver 810 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to MBMS signaling for multiple cells, etc. ) . Information may be passed on to other components of the device.
  • the receiver 810 may be an example of aspects of the transceiver 1135 described with reference to FIG. 11.
  • UE MBMS manager 815 may be an example of aspects of the UE MBMS manager 1115 described with reference to FIG. 11.
  • UE MBMS manager 815 may, in combination with receiver 810, receive a first message on a first cell, where the first message includes a request for an indication of current reception or an indication of desired reception of at least one service of a first set of multimedia broadcast multicast service (MBMS) services, receive a second message on a second cell, where the second message includes a request for an indication of current reception or an indication of desired reception of at least one service of a second set of MBMS services, and configure a third message in response to the request in the first message, where the configuration of the third message is based on receiving the first message on the first cell and receiving the second message on the second cell.
  • MBMS multimedia broadcast multicast service
  • Transmitter 820 may transmit signals generated by other components of the device.
  • the transmitter 820 may be collocated with a receiver 810 in a transceiver module.
  • the transmitter 820 may be an example of aspects of the transceiver 1135 described with reference to FIG. 11.
  • the transmitter 820 may include a single antenna, or it may include a set of antennas.
  • Transmitter 820 may transmit the third message on the second cell and transmit the fourth message on the second cell.
  • FIG. 9 shows a block diagram 900 of a wireless device 905 that supports MBMS signaling for multiple cells in accordance with various aspects of the present disclosure.
  • Wireless device 905 may be an example of aspects of a wireless device 805 or a UE 115 as described with reference to FIGs. 1 and 8.
  • Wireless device 905 may include receiver 910, UE MBMS manager 915, and transmitter 920.
  • Wireless device 905 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • Receiver 910 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to MBMS signaling for multiple cells, etc. ) . Information may be passed on to other components of the device.
  • the receiver 910 may be an example of aspects of the transceiver 1135 described with reference to FIG. 11.
  • UE MBMS manager 915 may be an example of aspects of the UE MBMS manager 1115 described with reference to FIG. 11.
  • UE MBMS manager 915 may also include request messaging component 925 and response configuration component 930.
  • Request messaging component 925 may, in combination with receiver 910, receive a first message on a first cell, where the first message includes a request for an indication of current reception or an indication of desired reception of at least one service of a first set of multimedia broadcast multicast service (MBMS) services and receive a second message on a second cell, where the second message includes a request for an indication of current reception or an indication of desired reception of at least one service of a second set of MBMS services.
  • the first message and the second message include MBMS counting request messages.
  • Response configuration component 930 may configure a third message in response to the request in the first message, where the configuration of the third message is based on receiving the first message on the first cell and receiving the second message on the second cell, determine that the first cell is a secondary cell (SCell) or a configurable secondary cell (C-SCell) , configure the third message to include an indication that the first message was received on the first cell based on determining that the first cell is an SCell or a C-SCell, and configure a fourth message in response to the second message based on receiving the first message on the first cell and receiving the second message on the second cell.
  • SCell secondary cell
  • C-SCell configurable secondary cell
  • configuring the third message includes configuring the third message to include an indication that it is in response to the first message received on the first cell.
  • the indication that the first message was received on the first cell includes a cell identification, a frequency identification, and/or a multicast/broadcast over a single frequency network (MBSFN) area identification.
  • configuring the third message includes: configuring the third message with an indication that is responsive to the request in the first message and the request in the second message.
  • the third message includes an MBMS counting response message.
  • Transmitter 920 may transmit signals generated by other components of the device.
  • the transmitter 920 may be collocated with a receiver 910 in a transceiver module.
  • the transmitter 920 may be an example of aspects of the transceiver 1135 described with reference to FIG. 11.
  • the transmitter 920 may include a single antenna, or it may include a set of antennas.
  • FIG. 10 shows a block diagram 1000 of a UE MBMS manager 1015 that supports MBMS signaling for multiple cells in accordance with various aspects of the present disclosure.
  • the UE MBMS manager 1015 may be an example of aspects of a UE MBMS manager 815, a UE MBMS manager 915, or a UE MBMS manager 1115 described with reference to FIGs. 8, 9, and 11.
  • the UE MBMS manager 1015 may include request messaging component 1020, response configuration component 1025, service selection component 1030, and frequency indication component 1035. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • Request messaging component 1020 may receive a first message on a first cell, where the first message includes a request for an indication of current reception or an indication of desired reception of at least one service of a first set of multimedia broadcast multicast service (MBMS) services and receive a second message on a second cell, where the second message includes a request for an indication of current reception or an indication of desired reception of at least one service of a second set of MBMS services.
  • the first message and the second message include MBMS counting request messages.
  • Response configuration component 1025 may configure a third message in response to the request in the first message, where the configuration of the third message is based on receiving the first message on the first cell and receiving the second message on the second cell, determine that the first cell is a secondary cell (SCell) or a configurable secondary cell (C-SCell) , configure the third message to include an indication that the first message was received on the first cell based on determining that the first cell is an SCell or a C-SCell, and configure a fourth message in response to the second message based on receiving the first message on the first cell and receiving the second message on the second cell.
  • SCell secondary cell
  • C-SCell configurable secondary cell
  • configuring the third message includes: configuring the third message to include an indication that it is in response to the first message received on the first cell.
  • the indication that the first message was received on the first cell includes a cell identification, a frequency identification, and/or a multicast/broadcast over a single frequency network (MBSFN) area identification.
  • configuring the third message includes: configuring the third message with an indication that is responsive to the request in the first message and the request in the second message.
  • the third message includes an MBMS counting response message.
  • Service selection component 1030 may coordinate with response configuration component 1025 to configure the third message to include a selection of at least one service of the first set of MBMS services and configure the fourth message to include an identification of at least one service from the first set of MBMS services or from the second set of MBMS services.
  • Frequency indication component 1035 may transmit a fourth message indicating a desired frequency over which to receive at least one service from the first set of MBMS services or from the second set of MBMS services.
  • FIG. 11 shows a diagram of a system 1100 including a mobile device 1105 that supports MBMS signaling for multiple cells in accordance with various aspects of the present disclosure.
  • Device 1105 may be an example of or include the components of wireless device 805, wireless device 905, or a UE 115 as described above, e.g., with reference to FIGs. 1, 8 and 9.
  • Device 1105 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including UE MBMS manager 1115, processor 1120, memory 1125, software 1130, transceiver 1135, antenna 1140, and I/O controller 1145. These components may be in electronic communication via one or more busses (e.g., bus 1110) .
  • Device 1105 may communicate wirelessly with one or more base stations 105.
  • Processor 1120 may include an intelligent hardware device, (e.g., a general-purpose processor, a digital signal processor (DSP) , a central processing unit (CPU) , a microcontroller, an application-specific integrated circuit (ASIC) , an field-programmable gate array (FPGA) , a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • processor 1120 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into processor 1120.
  • Processor 1120 may be configured to execute computer-readable instructions stored in a memory to perform various functions (e.g., functions or tasks supporting MBMS signaling for multiple cells) .
  • Memory 1125 may include random access memory (RAM) and read only memory (ROM) .
  • the memory 1125 may store computer-readable, computer-executable software 1130 including instructions that, when executed, cause the processor to perform various functions described herein.
  • the memory 1125 may contain, among other things, a basic input/output system (BIOS) which may control basic hardware and/or software operation such as the interaction with peripheral components or devices.
  • BIOS basic input/output system
  • Software 1130 may include code to implement aspects of the present disclosure, including code to support MBMS signaling for multiple cells.
  • Software 1130 may be stored in a non-transitory computer-readable medium such as system memory or other memory. In some cases, the software 1130 may not be directly executable by the processor but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • Transceiver 1135 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 1135 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 1135 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 1140. However, in some cases the device may have more than one antenna 1140, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • I/O controller 1145 may manage input and output signals for device 1105. I/O controller 1145 may also manage peripherals not integrated into device 1105. In some cases, I/O controller 1145 may represent a physical connection or port to an external peripheral. In some cases, I/O controller 1145 may utilize an operating system such as or another known operating system.
  • FIG. 12 shows a block diagram 1200 of a wireless device 1205 that supports MBMS signaling for multiple cells in accordance with various aspects of the present disclosure.
  • Wireless device 1205 may be an example of aspects of a base station 105 as described with reference to FIG. 1.
  • Wireless device 1205 may include receiver 1210, base station MBMS manager 1215, and transmitter 1220.
  • Wireless device 1205 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • Receiver 1210 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to MBMS signaling for multiple cells, etc. ) . Information may be passed on to other components of the device.
  • the receiver 1210 may be an example of aspects of the transceiver 1535 described with reference to FIG. 15.
  • Base station MBMS manager 1215 may be an example of aspects of the base station MBMS manager 1515 described with reference to FIG. 15.
  • Base station MBMS manager 1215 may, combination with transmitter 1220, transmit a first message on a first cell, where the first message includes a request for an indication of current reception or an indication of desired reception of at least one service of a first set of multimedia broadcast multicast service (MBMS) services.
  • Base station MBMS manager 1215 may also delay, for a duration, transmission of a second message on a second cell, where the second message includes a request for an indication of current reception or an indication of desired reception of at least one service of a second set of MBMS services.
  • the predetermined duration may be measured from transmission of the first message.
  • the base station MBMS manager 1215 may transmit a first message on a first cell, where the first message includes a request for an indication of current reception or an indication of desired reception of at least one of a first set of multimedia broadcast multicast service (MBMS) services and receive a second message on the first cell, where the second message is responsive to a third message transmitted on a second cell, and where the second message is configured based on the first message being transmitted on the first cell and the third message being transmitted on the second cell.
  • MBMS multimedia broadcast multicast service
  • Transmitter 1220 may transmit signals generated by other components of the device.
  • the transmitter 1220 may be collocated with a receiver 1210 in a transceiver module.
  • the transmitter 1220 may be an example of aspects of the transceiver 1535 described with reference to FIG. 15.
  • the transmitter 1220 may include a single antenna, or it may include a set of antennas. In some cases, transmitter 1220 may transmit the second message after the duration.
  • FIG. 13 shows a block diagram 1300 of a wireless device 1305 that supports MBMS signaling for multiple cells in accordance with various aspects of the present disclosure.
  • Wireless device 1305 may be an example of aspects of a wireless device 1205 or a base station 105 as described with reference to FIGs. 1 and 12.
  • Wireless device 1305 may include receiver 1310, base station MBMS manager 1315, and transmitter 1320.
  • Wireless device 1305 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • Receiver 1310 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to MBMS signaling for multiple cells, etc. ) . Information may be passed on to other components of the device.
  • the receiver 1310 may be an example of aspects of the transceiver 1535 described with reference to FIG. 15.
  • Base station MBMS manager 1315 may be an example of aspects of the base station MBMS manager 1515 described with reference to FIG. 15. Base station MBMS manager 1315 may also include request messaging component 1325, transmission delaying component 1330, and response configuration component 1335.
  • Request messaging component 1325 may, combination with transmitter 1320, transmit a first message on a first cell, where the first message includes a request for an indication of current reception or an indication of desired reception of at least one service of a first set of multimedia broadcast multicast service (MBMS) services and transmit a third message on a second cell, where the third message includes a request for an indication of current reception or an indication of desired reception of at least one of a second set of MBMS services.
  • the first message and the third message include MBMS counting request messages.
  • Transmission delaying component 1330 may delay, for a duration, transmission of a second message on a second cell, where the second message includes a request for an indication of current reception or an indication of desired reception of at least one service of a second set of MBMS services, where the predetermined duration is measured from transmission of the first message.
  • the duration is based on a duration of a modification period of control signaling associated with the first message or the second message.
  • Response configuration component 1335 may receive a second message on the first cell, where the second message is responsive to a third message transmitted on a second cell, and where the second message is configured based on the first message being transmitted on the first cell and the third message being transmitted on the second cell.
  • the second message includes an indication that the third message was transmitted on the second cell.
  • the indication that the third message was transmitted on the second cell includes a cell identification, a frequency identification, and/or a multicast/broadcast over a single frequency network (MBSFN) area identification.
  • the second message includes an MBMS counting response message.
  • Transmitter 1320 may transmit signals generated by other components of the device.
  • the transmitter 1320 may be collocated with a receiver 1310 in a transceiver module.
  • the transmitter 1320 may be an example of aspects of the transceiver 1535 described with reference to FIG. 15.
  • the transmitter 1320 may include a single antenna, or it may include a set of antennas.
  • FIG. 14 shows a block diagram 1400 of a base station MBMS manager 1415 that supports MBMS signaling for multiple cells in accordance with various aspects of the present disclosure.
  • the base station MBMS manager 1415 may be an example of aspects of a base station MBMS manager 1515 described with reference to FIGs. 12, 13, and 15.
  • the base station MBMS manager 1415 may include request messaging component 1420, transmission delaying component 1425, response configuration component 1430, and response forwarding component 1435. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • Request messaging component 1420 may transmit a first message on a first cell, where the first message includes a request for an indication of current reception or an indication of desired reception of at least one service of a first set of multimedia broadcast multicast service (MBMS) services and transmit a third message on a second cell, where the third message includes a request for an indication of current reception or an indication of desired reception of at least one of a second set of MBMS services.
  • the first message and the third message include MBMS counting request messages.
  • Transmission delaying component 1425 may delay, for a duration, transmission of a second message on a second cell, where the second message includes a request for an indication of current reception or an indication of desired reception of at least one service of a second set of MBMS services.
  • the predetermined duration may be measured from transmission of the first message.
  • the duration is based on a duration of a modification period of control signaling associated with the first message or the second message.
  • Response configuration component 1430 may receive a second message on the first cell, where the second message is responsive to a third message transmitted on a second cell, and where the second message is configured based on the first message being transmitted on the first cell and the third message being transmitted on the second cell.
  • the second message includes an indication that the third message was transmitted on the second cell.
  • the indication that the third message was transmitted on the second cell includes a cell identification, a frequency identification, and/or a multicast/broadcast over a single frequency network (MBSFN) area identification.
  • the second message includes an MBMS counting response message.
  • Response forwarding component 1435 may forward the second message to the second cell based on the cell identification, identify the second cell based on the configuration of the second message, forward the second message to the second cell based on the identification, and identify the second cell based on the MBSFN area identification, a MBMS interest indication message, a system information block, a cell configuration of a neighbor base station, or a measurement report, or any combination thereof.
  • the second message is forwarded to the second cell via an X2 interface.
  • the second message is forwarded to the second cell indirectly via an S1 interface or another network entity, or both.
  • FIG. 15 shows a diagram of a system 1500 including a network device 1505 that supports MBMS signaling for multiple cells in accordance with various aspects of the present disclosure.
  • Device 1505 may be an example of or include the components of base station 105 as described above, e.g., with reference to FIG. 1.
  • Device 1505 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including base station MBMS manager 1515, processor 1520, memory 1525, software 1530, transceiver 1535, antenna 1540, network communications manager 1545, and base station communications manager 1550. These components may be in electronic communication via one or more busses (e.g., bus 1510) .
  • Device 1505 may communicate wirelessly with one or more UEs 115.
  • Processor 1520 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • processor 1520 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into processor 1520.
  • Processor 1520 may be configured to execute computer- readable instructions stored in a memory to perform various functions (e.g., functions or tasks supporting MBMS signaling for multiple cells) .
  • Memory 1525 may include RAM and ROM.
  • the memory 1525 may store computer-readable, computer-executable software 1530 including instructions that, when executed, cause the processor to perform various functions described herein.
  • the memory 1525 may contain, among other things, a BIOS which may control basic hardware and/or software operation such as the interaction with peripheral components or devices.
  • Software 1530 may include code to implement aspects of the present disclosure, including code to support MBMS signaling for multiple cells.
  • Software 1530 may be stored in a non-transitory computer-readable medium such as system memory or other memory. In some cases, the software 1530 may not be directly executable by the processor but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • Transceiver 1535 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 1535 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 1535 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 1540. However, in some cases the device may have more than one antenna 1540, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • Network communications manager 1545 may manage communications with the core network (e.g., via one or more wired backhaul links) . For example, the network communications manager 1545 may manage the transfer of data communications for client devices, such as one or more UEs 115.
  • Base station communications manager 1550 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the base station communications manager 1550 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, base station communications manager 1550 may provide an X2 interface within an Long Term Evolution (LTE) /LTE-Awireless communication network technology to provide communication between base stations 105.
  • LTE Long Term Evolution
  • LTE-Awireless communication network technology to provide communication between base stations 105.
  • FIG. 16 shows a flowchart illustrating a method 1600 for MBMS signaling for multiple cells in accordance with various aspects of the present disclosure.
  • the operations of method 1600 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1600 may be performed by a UE MBMS manager as described with reference to FIGs. 8 through 11.
  • a UE 115 may execute a set of codes to control the functional elements of the device to perform the functions described below. Additionally or alternatively, the UE 115 may perform aspects the functions described below using special-purpose hardware.
  • the UE 115 may receive a first message on a first cell, wherein the first message includes a request for an indication of current reception or an indication of desired reception of at least one service of a first set of multimedia broadcast multicast service (MBMS) services.
  • MBMS multimedia broadcast multicast service
  • the operations of block 1605 may be performed according to the methods described with reference to FIGs. 1 through 6. In certain examples, aspects of the operations of block 1605 may be performed by a request messaging component as described with reference to FIGs. 8 through 11.
  • the UE 115 may receive a second message on a second cell, wherein the second message includes a request for an indication of current reception or an indication of desired reception of at least one service of a second set of MBMS services.
  • the operations of block 1610 may be performed according to the methods described with reference to FIGs. 1 through 6. In certain examples, aspects of the operations of block 1610 may be performed by a request messaging component as described with reference to FIGs. 8 through 11.
  • the UE 115 may configure a third message in response to the request in the first message, wherein the configuration of the third message is based at least in part on receiving the first message on the first cell and receiving the second message on the second cell.
  • the operations of block 1615 may be performed according to the methods described with reference to FIGs. 1 through 6. In certain examples, aspects of the operations of block 1615 may be performed by a response configuration component as described with reference to FIGs. 8 through 11.
  • the UE 115 may transmit the third message on the second cell.
  • the operations of block 1620 may be performed according to the methods described with reference to FIGs. 1 through 6. In certain examples, aspects of the operations of block 1620 may be performed by a transmitter as described with reference to FIGs. 8 through 11.
  • FIG. 17 shows a flowchart illustrating a method 1700 for MBMS signaling for multiple cells in accordance with various aspects of the present disclosure.
  • the operations of method 1700 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 1700 may be performed by a base station MBMS manager as described with reference to FIGs. 12 through 15.
  • a base station 105 may execute a set of codes to control the functional elements of the device to perform the functions described below. Additionally or alternatively, the base station 105 may perform aspects the functions described below using special-purpose hardware.
  • the base station 105 may transmit a first message on a first cell, wherein the first message includes a request for an indication of current reception or an indication of desired reception of at least one service of a first set of multimedia broadcast multicast service (MBMS) services.
  • MBMS multimedia broadcast multicast service
  • the operations of block 1705 may be performed according to the methods described with reference to FIGs. 1 through 6. In certain examples, aspects of the operations of block 1705 may be performed by a request messaging component as described with reference to FIGs. 12 through 15.
  • the base station 105 may delay, for a duration, transmission of a second message on a second cell, wherein the second message includes a request for an indication of current reception or an indication of desired reception of at least one service of a second set of MBMS services, wherein the predetermined duration is measured from transmission of the first message.
  • the operations of block 1710 may be performed according to the methods described with reference to FIGs. 1 through 6. In certain examples, aspects of the operations of block 1710 may be performed by a transmission delaying component as described with reference to FIGs. 12 through 15.
  • the base station 105 may transmit the second message after the duration.
  • the operations of block 1715 may be performed according to the methods described with reference to FIGs. 1 through 6. In certain examples, aspects of the operations of block 1715 may be performed by a transmitter as described with reference to FIGs. 12 through 15.
  • FIG. 18 shows a flowchart illustrating a method 1800 for MBMS signaling for multiple cells in accordance with various aspects of the present disclosure.
  • the operations of method 1800 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 1800 may be performed by a base station MBMS manager as described with reference to FIGs. 12 through 15.
  • a base station 105 may execute a set of codes to control the functional elements of the device to perform the functions described below. Additionally or alternatively, the base station 105 may perform aspects the functions described below using special-purpose hardware.
  • the base station 105 may transmit a first message on a first cell, wherein the first message includes a request for an indication of current reception or an indication of desired reception of at least one of a first set of multimedia broadcast multicast service (MBMS) services.
  • MBMS multimedia broadcast multicast service
  • the operations of block 1805 may be performed according to the methods described with reference to FIGs. 1 through 6. In certain examples, aspects of the operations of block 1805 may be performed by a request messaging component as described with reference to FIGs. 12 through 15.
  • the base station 105 may receive a second message on the first cell, wherein the second message is responsive to a third message transmitted on a second cell, and wherein the second message is configured based at least in part on the first message being transmitted on the first cell and the third message being transmitted on the second cell.
  • the operations of block 1810 may be performed according to the methods described with reference to FIGs. 1 through 6. In certain examples, aspects of the operations of block 1810 may be performed by a response configuration component as described with reference to FIGs. 12 through 15.
  • FIG. 19 shows a flowchart illustrating a method 1900 for MBMS signaling for multiple cells in accordance with various aspects of the present disclosure.
  • the operations of method 1900 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 1900 may be performed by a base station MBMS manager as described with reference to FIGs. 12 through 15.
  • a base station 105 may execute a set of codes to control the functional elements of the device to perform the functions described below. Additionally or alternatively, the base station 105 may perform aspects the functions described below using special-purpose hardware.
  • the base station 105 may transmit a first message on a first cell, wherein the first message includes a request for an indication of current reception or an indication of desired reception of at least one of a first set of multimedia broadcast multicast service (MBMS) services.
  • MBMS multimedia broadcast multicast service
  • the operations of block 1905 may be performed according to the methods described with reference to FIGs. 1 through 6. In certain examples, aspects of the operations of block 1905 may be performed by a request messaging component as described with reference to FIGs. 12 through 15.
  • the base station 105 may receive a second message on the first cell, wherein the second message is responsive to a third message transmitted on a second cell, and wherein the second message is configured based at least in part on the first message being transmitted on the first cell and the third message being transmitted on the second cell.
  • the operations of block 1910 may be performed according to the methods described with reference to FIGs. 1 through 6. In certain examples, aspects of the operations of block 1910 may be performed by a response configuration component as described with reference to FIGs. 12 through 15.
  • the base station 105 may the second message includes an indication that the third message was transmitted on the second cell.
  • the operations of block 1915 may be performed according to the methods described with reference to FIGs. 1 through 6. In certain examples, aspects of the operations of block 1915 may be performed by a response configuration component as described with reference to FIGs. 12 through 15.
  • the base station 105 may forward the second message to the second cell based at least in part on the cell identification.
  • the operations of block 1920 may be performed according to the methods described with reference to FIGs. 1 through 6. In certain examples, aspects of the operations of block 1920 may be performed by a response forwarding component as described with reference to FIGs. 12 through 15.
  • the second message includes an indication that the third message was transmitted on the second cell.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA2000 covers IS-2000, IS-95, and IS-856 standards.
  • IS-2000 Releases may be commonly referred to as CDMA2000 1X, 1X, etc.
  • IS-856 (TIA-856) is commonly referred to as CDMA2000 1xEV-DO, High Rate Packet Data (HRPD) , etc.
  • UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA.
  • WCDMA Wideband CDMA
  • a time division multiple access (TDMA) system may implement a radio technology such as Global System for Mobile Communications (GSM) .
  • GSM Global System for Mobile Communications
  • An orthogonal frequency division multiple access (OFDMA) system may implement a radio technology such as Ultra Mobile Broadband (UMB) , Evolved UTRA (E-UTRA) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, etc.
  • UMB Ultra Mobile Broadband
  • E-UTRA Evolved UTRA
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX
  • IEEE 802.20 WiMAX
  • Flash-OFDM Flash-OFDM
  • UTRA and E-UTRA are part of Universal Mobile Telecommunications system (UMTS) .
  • 3GPP Long Term Evolution (LTE) and LTE-Advanced (LTE-A) are new releases of Universal Mobile Telecommunications System (UMTS) that use E-UTRA.
  • UTRA, E-UTRA, UMTS, LTE, LTE-A, and Global System for Mobile communications are described in documents from the organization named “3rd Generation Partnership Project” (3GPP) .
  • CDMA2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
  • the techniques described herein may be used for the systems and radio technologies mentioned above as well as other systems and radio technologies. While aspects an LTE system may be described for purposes of example, and LTE terminology may be used in much of the description, the techniques described herein are applicable beyond LTE applications.
  • the term evolved node B may be generally used to describe the base stations.
  • the wireless communications system or systems described herein may include a heterogeneous LTE/LTE-A network in which different types of evolved node B (eNBs) provide coverage for various geographical regions.
  • eNBs evolved node B
  • each eNB or base station may provide communication coverage for a macro cell, a small cell, or other types of cell.
  • the term “cell” may be used to describe a base station, a carrier or component carrier associated with a base station, or a coverage area (e.g., sector, etc. ) of a carrier or base station, depending on context.
  • Base stations may include or may be referred to by those skilled in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, eNodeB (eNB) , Home NodeB, a Home eNodeB, or some other suitable terminology.
  • the geographic coverage area for a base station may be divided into sectors making up only a portion of the coverage area.
  • the wireless communications system or systems described herein may include base stations of different types (e.g., macro or small cell base stations) .
  • the UEs described herein may be able to communicate with various types of base stations and network equipment including macro eNBs, small cell eNBs, relay base stations, and the like. There may be overlapping geographic coverage areas for different technologies.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a small cell is a lower-powered base station, as compared with a macro cell, that may operate in the same or different (e.g., licensed, unlicensed, etc. ) frequency bands as macro cells.
  • Small cells may include pico cells, femto cells, and micro cells according to various examples.
  • a pico cell for example, may cover a small geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a femto cell may also cover a small geographic area (e.g., a home) and may provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) .
  • An eNB for a macro cell may be referred to as a macro eNB.
  • An eNB for a small cell may be referred to as a small cell eNB, a pico eNB, a femto eNB, or a home eNB.
  • An eNB may support one or multiple (e.g., two, three, four, and the like) cells (e.g., component carriers) .
  • a UE may be able to communicate with various types of base stations and network equipment including macro eNBs, small cell eNBs, relay base stations, and the like.
  • the wireless communications system or systems described herein may support synchronous or asynchronous operation.
  • the base stations may have similar frame timing, and transmissions from different base stations may be approximately aligned in time.
  • the base stations may have different frame timing, and transmissions from different base stations may not be aligned in time.
  • the techniques described herein may be used for either synchronous or asynchronous operations.
  • Each communication link described herein including, for example, wireless communications system 100 and 200 of FIGs. 1 and 2—may include one or more carriers, where each carrier may be a signal made up of multiple sub-carriers (e.g., waveform signals of different frequencies) .
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described above can be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that can be accessed by a general purpose or special purpose computer.
  • non-transitory computer-readable media may comprise RAM, ROM, electrically erasable programmable read only memory (EEPROM) , compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • RAM random access memory
  • ROM read only memory
  • EEPROM electrically erasable programmable read only memory
  • CD compact disk
  • magnetic disk storage or other magnetic storage devices or any other non-transitory medium that can be used to carry or store desired program code means in the form of instructions or
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave are included in the definition of medium.
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.

Abstract

Methods, systems, and devices for wireless communication are described for wireless communication related to Multimedia Broadcast Multicast Service (MBMS) signaling. A user equipment (UE) may receive multiple messages on multiple cells requesting an indication of MBMS services that the UE is interested in receiving. The UE may receive a first message on a primary cell (PCell) and a second message on a secondary cell (SCell) or a configurable SCell (C-SCell) at approximately the same time. In some cases, these messages may include a list of services offered by a network to the UE. The UE may then configure a response message to include information that may be used by the network to determine which cell and to which request message the response message is responsive. In some cases, the response message may include a cell identification, frequency identification, or an area identification associated with the corresponding request message.

Description

MULTIMEDIA BROADCAST MULTICAST SERVICE SIGNALING FOR MULTIPLE CELLS BACKGROUND
 The following relates generally to wireless communication and more specifically to Multimedia Broadcast Multicast Service (MBMS) signaling in wireless systems supporting carrier aggregation (CA) .
 Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, and orthogonal frequency division multiple access (OFDMA) systems, (e.g., a Long Term Evolution (LTE) system) . A wireless multiple-access communications system may include a number of base stations, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
 Wireless communications systems may use MBMS techniques to broadcast multimedia data (e.g., streaming media) to multiple UEs within a particular coverage area. A UE receiving MBMS control signaling may respond with one or more messages indicating, for example, the MBMS services the UE is receiving or is interested in receiving. But in cases where a UE receives multiple MBMS control messages on multiple cells, response messages from the UE may cause ambiguity at the receiving base station because the relationship between the response message and the multiple control messages may be unknown.
SUMMARY
 The described techniques relate to methods, systems, and apparatuses that support Multimedia Broadcast Multicast Service (MBMS) signaling for multiple cells. A user equipment (UE) may receive multiple MBMS control messages on multiple cells requesting an indication of services that the UE is interested in receiving. For example, the UE may receive a first request message on a primary cell (PCell) and a second request message on a  secondary cell (SCell) or a configurable SCell (C-SCell) at approximately the same time. The UE may configure a response message to one of the request messages that includes information that identifies the cell associated with the corresponding request message. For example, the response message may include a cell identification, a frequency identification, or an area identification associated with the cell of the corresponding request message.
 A method of wireless communication is described. The method may include receiving a first message on a first cell, wherein the first message includes a request for an indication of current reception or an indication of desired reception of at least one service of a first set of MBMS services, receiving a second message on a second cell, wherein the second message includes a request for an indication of current reception or an indication of desired reception of at least one service of a second set of MBMS services, configuring a third message in response to the request in the first message, wherein the configuration of the third message is based at least in part on receiving the first message on the first cell and receiving the second message on the second cell, and transmitting the third message on the second cell.
 An apparatus for wireless communication is described. The apparatus may include means for receiving a first message on a first cell, wherein the first message includes a request for an indication of current reception or an indication of desired reception of at least one service of a first set of MBMS services, means for receiving a second message on a second cell, wherein the second message includes a request for an indication of current reception or an indication of desired reception of at least one service of a second set of MBMS services, means for configuring a third message in response to the request in the first message, wherein the configuration of the third message is based at least in part on receiving the first message on the first cell and receiving the second message on the second cell, and means for transmitting the third message on the second cell.
 A mobile device for wireless communication is described. The mobile device may include a processor, memory in electronic communication with the processor, and instructions stored in the memory. The instructions may be operable, when executed by the processor, to cause the mobile device to receive a first message on a first cell, wherein the first message includes a request for an indication of current reception or an indication of desired reception of at least one service of a first set of MBMS services, receive a second message on a second cell, wherein the second message includes a request for an indication of current reception or an indication of desired reception of at least one service of a second set  of MBMS services, configure a third message in response to the request in the first message, wherein the configuration of the third message is based at least in part on receiving the first message on the first cell and receiving the second message on the second cell, and transmit the third message on the second cell.
 A non-transitory computer readable medium for wireless communication is described. The non-transitory computer-readable medium may include instructions operable to cause a processor to receive a first message on a first cell, wherein the first message includes a request for an indication of current reception or an indication of desired reception of at least one service of a first set of MBMS services, receive a second message on a second cell, wherein the second message includes a request for an indication of current reception or an indication of desired reception of at least one service of a second set of MBMS services, configure a third message in response to the request in the first message, wherein the configuration of the third message is based at least in part on receiving the first message on the first cell and receiving the second message on the second cell, and transmit the third message on the second cell.
 Some examples of the methods, apparatuses, mobile devices, and non-transitory computer-readable media described herein may further include processes, features, means, or instructions for determining that the first cell is an SCell or a C-SCell. Some examples of the methods, apparatuses, mobile devices, and non-transitory computer-readable media described herein may further include processes, features, means, or instructions for configuring the third message to include an indication that the first message was received on the first cell based at least in part on determining that the first cell is an SCell or a C-SCell.
 In some examples of the methods, apparatuses, mobile devices, and non-transitory computer-readable media described herein, configuring the third message comprises configuring the third message to include an indication that it is in response to the first message received on the first cell.
 In some examples of the methods, apparatuses, mobile devices, and non-transitory computer-readable media described herein, the indication that the first message was received on the first cell comprises a cell identification.
 In some examples of the methods, apparatuses, mobile devices, and non-transitory computer-readable media described herein, the indication that the first message was received on the first cell comprises a frequency identification.
 In some examples of the methods, apparatuses, mobile devices, and non-transitory computer-readable media described herein, the indication that the first message was received on the first cell comprises a multicast/broadcast over a single frequency network (MBSFN) area identification.
 Some examples of the methods, apparatuses, mobile devices, and non-transitory computer-readable media described herein may further include processes, features, means, or instructions for configuring a fourth message in response to the second message based at least in part on receiving the first message on the first cell and receiving the second message on the second cell. Some examples of the methods, apparatuses, mobile devices, and non-transitory computer-readable media described herein may further include processes, features, means, or instructions for transmitting the fourth message on the second cell.
 In some examples of the methods, apparatuses, mobile devices, and non-transitory computer-readable media described herein, configuring the third message comprises configuring the third message with an indication that is responsive to the request in the first message and the request in the second message.
 Some examples of the methods, apparatuses, mobile devices, and non-transitory computer-readable media described herein may further include processes, features, means, or instructions for configuring the third message to include a selection of at least one service of the first set of MBMS services.
 Some examples of the methods, apparatuses, mobile devices, and non-transitory computer-readable media described herein may further include processes, features, means, or instructions for transmitting a fourth message indicating a desired frequency over which to receive at least one service from the first set of MBMS services or from the second set of MBMS services.
 Some examples of the methods, apparatuses, mobile devices, and non-transitory computer-readable media described herein may further include processes, features, means, or instructions for configuring the fourth message to include an identification of at least one service from the first set of MBMS services or from the second set of MBMS services.
 In some examples of the methods, apparatuses, mobile devices, and non-transitory computer-readable media described herein, the first message and the second message comprise MBMS counting request messages. In some examples of the methods, apparatuses,  mobile devices, and non-transitory computer-readable media described herein, the third message comprises an MBMS counting response message.
 A method of wireless communication is described. The method may include transmitting a first message on a first cell, wherein the first message includes a request for an indication of current reception or an indication of desired reception of at least one service of a first set of MBMS services, delaying, for a duration, transmission of a second message on a second cell, wherein the second message includes a request for an indication of current reception or an indication of desired reception of at least one service of a second set of MBMS services, wherein the predetermined duration is measured from transmission of the first message, and transmitting the second message after the duration.
 An apparatus for wireless communication is described. The apparatus may include means for transmitting a first message on a first cell, wherein the first message includes a request for an indication of current reception or an indication of desired reception of at least one service of a first set of MBMS services, means for delaying, for a duration, transmission of a second message on a second cell, wherein the second message includes a request for an indication of current reception or an indication of desired reception of at least one service of a second set of MBMS services, wherein the predetermined duration is measured from transmission of the first message, and means for transmitting the second message after the duration.
 A network device for wireless communication is described. The network device may include a processor, memory in electronic communication with the processor, and instructions stored in the memory. The instructions may be operable, when executed by the processor, to cause the network device to transmit a first message on a first cell, wherein the first message includes a request for an indication of current reception or an indication of desired reception of at least one service of a first set of MBMS services, delay, for a duration, transmission of a second message on a second cell, wherein the second message includes a request for an indication of current reception or an indication of desired reception of at least one service of a second set of MBMS services, wherein the predetermined duration is measured from transmission of the first message, and transmit the second message after the duration.
 A non-transitory computer readable medium for wireless communication is described. The non-transitory computer-readable medium may include instructions operable  to cause a processor to transmit a first message on a first cell, wherein the first message includes a request for an indication of current reception or an indication of desired reception of at least one service of a first set of MBMS services, delay, for a duration, transmission of a second message on a second cell, wherein the second message includes a request for an indication of current reception or an indication of desired reception of at least one service of a second set of MBMS services, wherein the predetermined duration is measured from transmission of the first message, and transmit the second message after the duration.
 In some examples of the methods, apparatuses, network devices, and non-transitory computer-readable media described herein, the duration may be based at least in part on a duration of a modification period of control signaling associated with the first message or the second message.
 A method of wireless communication is described. The method may include transmitting a first message on a first cell, wherein the first message includes a request for an indication of current reception or an indication of desired reception of at least one of a first set of MBMS services and receiving a second message on the first cell, wherein the second message is responsive to a third message transmitted on a second cell, and wherein the second message is configured based at least in part on the first message being transmitted on the first cell and the third message being transmitted on the second cell.
 An apparatus for wireless communication is described. The apparatus may include means for transmitting a first message on a first cell, wherein the first message includes a request for an indication of current reception or an indication of desired reception of at least one of a first set of MBMS services and means for receiving a second message on the first cell, wherein the second message is responsive to a third message transmitted on a second cell, and wherein the second message is configured based at least in part on the first message being transmitted on the first cell and the third message being transmitted on the second cell.
 A network device for wireless communication is described. The network device may include a processor, memory in electronic communication with the processor, and instructions stored in the memory. The instructions may be operable, when executed by the processor, to cause the network device to transmit a first message on a first cell, wherein the first message includes a request for an indication of current reception or an indication of desired reception of at least one of a first set of MBMS services and receive a second message on the first cell, wherein the second message is responsive to a third message  transmitted on a second cell, and wherein the second message is configured based at least in part on the first message being transmitted on the first cell and the third message being transmitted on the second cell.
 A non-transitory computer readable medium for wireless communication is described. The non-transitory computer-readable medium may include instructions operable to cause a processor to transmit a first message on a first cell, wherein the first message includes a request for an indication of current reception or an indication of desired reception of at least one of a first set of MBMS services and receive a second message on the first cell, wherein the second message is responsive to a third message transmitted on a second cell, and wherein the second message is configured based at least in part on the first message being transmitted on the first cell and the third message being transmitted on the second cell.
 Some examples of the methods, apparatuses, network devices, and non-transitory computer-readable media described herein may further include processes, features, means, or instructions for transmitting the third message on the second cell, wherein the third message includes a request for an indication of current reception or an indication of desired reception of at least one of a second set of MBMS services.
 In some examples of the methods, apparatuses, network devices, and non-transitory computer-readable media described herein, the second message includes an indication that the third message was transmitted on the second cell.
 In some examples of the methods, apparatuses, network devices, and non-transitory computer-readable media described herein, the indication that the third message was transmitted on the second cell comprises a cell identification.
 Some examples of the methods, apparatuses, network devices, and non-transitory computer-readable media described herein may further include processes, features, means, or instructions for forwarding the second message to the second cell based at least in part on the cell identification.
 In some examples of the methods, apparatuses, network devices, and non-transitory computer-readable media described herein, the second message may be forwarded to the second cell via an X2 interface.
 In some examples of the methods, apparatuses, network devices, and non-transitory computer-readable media described herein, the second message may be forwarded to the second cell indirectly via an S1 interface or another network entity, or both.
 In some examples of the methods, apparatuses, network devices, and non-transitory computer-readable media described herein, the indication that the third message was transmitted on the second cell comprises a frequency identification or a MBSFN area identification.
 Some examples of the methods, apparatuses, network devices, and non-transitory computer-readable media described herein may further include processes, features, means, or instructions for identifying the second cell based at least in part on the configuration of the second message. Some examples of the methods, apparatuses, network devices, and non-transitory computer-readable media described herein may further include processes, features, means, or instructions for forwarding the second message to the second cell based at least in part on the identification.
 Some examples of the methods, apparatuses, network devices, and non-transitory computer-readable media described herein may further include processes, features, means, or instructions for identifying the second cell based at least in part on the MBSFN area identification, a MBMS interest indication message, a system information block, a cell configuration of a neighbor base station, or a measurement report, or any combination thereof.
 In some examples of the methods, apparatuses, network devices, and non-transitory computer-readable media described herein, the first message and the third message comprise MBMS counting request messages. In some examples of the methods, apparatuses, network devices, and non-transitory computer-readable media described herein, the second message comprises an MBMS counting response message.
BRIEF DESCRIPTION OF THE DRAWINGS
 FIGs. 1 and 2 illustrate examples of a system for wireless communication that supports Multimedia Broadcast Multicast Service (MBMS) signaling for multiple cells in accordance with aspects of the present disclosure.
 FIGs. 3-6 illustrate examples of a process flow in a system that supports MBMS signaling for multiple cells in accordance with aspects of the present disclosure.
 FIGs. 7 through 9 show block diagrams of a device or devices that supports MBMS signaling for multiple cells in accordance with aspects of the present disclosure.
 FIG. 10 illustrates a block diagram of a system including a mobile device that supports MBMS signaling for multiple cells in accordance with aspects of the present disclosure.
 FIGs. 11 through 13 show block diagrams of a device or devices that support MBMS signaling for multiple cells in accordance with aspects of the present disclosure.
 FIG. 14 illustrates a block diagram of a system including a base station that supports MBMS signaling for multiple cells in accordance with aspects of the present disclosure.
 FIGs. 15 through 19 illustrate methods for MBMS signaling for multiple cells in accordance with aspects of the present disclosure.
DETAILED DESCRIPTION
 A wireless communications network that supports Multimedia Broadcast Multicast Service (MBMS) communications may transmit control messages (e.g., MBMS counting request messages) to a user equipment (UE) on different cells. A UE that receives multiple MBMS control messages on different cells may configure MBMS response messages (e.g., MBMS counting response messages) to include an indication of the cell associated with the corresponding control message. For example, the UE may configure a response message to include an indication of a cell identity, a frequency, or an area identity associated with the cell on which the corresponding request message was received. These response messages may provide additional information to the network to avoid ambiguity associated with receiving multiple MBMS control messages on multiple cells.
 The network may be able to determine which MBMS services the UE is receiving or is interested in receiving based on identifying the cell associated with the corresponding MBMS control message. In some cases, a UE may directly indicate the MBMS services that it is interested in receiving by including a list of the services in an MBMS control message. In some cases, the network may use information from neighboring cells, such as neighboring cell configurations or measurement reports, to determine the corresponding cell associated with an MBMS counting response.
 Additionally or alternatively, the network may use scheduling techniques to avoid potential ambiguity associated with transmitting multiple MBMS control messages on multiple cells. In some cases, the network may schedule a gap (e.g., a guard time) between subsequent counting requests to avoid transmitting multiple counting requests at approximately the same time. Such scheduling schemes may provide a UE sufficient time to respond to each MBMS counting request individually.
 Once the network determines the corresponding cell associated with a particular MBMS counting response message, the network may forward the counting response to the appropriate base station associated with the cell.
 Aspects of the disclosure introduced above are described below in the context of a wireless communications system. Examples of systems supporting prevention and resolution of ambiguity in MBMS signaling are described, and example process flows of prevention and resolution techniques in such systems are also described. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to MBMS signaling for multiple cells.
 FIG. 1 illustrates an example of a wireless communications system 100 in accordance with various aspects of the present disclosure. The wireless communications system 100 includes base stations 105, UEs 115, and a core network 130. In some examples, the wireless communications system 100 may be a LTE (or LTE-Advanced) network. The wireless communications system 100 may support MBMS communications between base stations 105 and UEs 115. One or more base stations 105 may transmit multiple MBMS control messages using multiple cells to a UE 115. In accordance with aspects of the present disclosure, a UE 115 may configure MBMS response messages to include an indication of the cell associated with the corresponding MBMS control message that the response message is response to.
 Base stations 105 may wirelessly communicate with UEs 115 via one or more base station antennas. Each base station 105 may provide communication coverage for a respective geographic coverage area 110. Communication links 125 shown in wireless communications system 100 may include uplink (UL) transmissions from a UE 115 to a base station 105, or downlink (DL) transmissions, from a base station 105 to a UE 115. UEs 115 may be dispersed throughout the wireless communications system 100, and each UE 115 may be stationary or mobile. A UE 115 may also be referred to as a mobile station, a subscriber  station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology. A UE 115 may be a cellular phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a tablet computer, a laptop computer, a cordless phone, a personal electronic device, a handheld device, a personal computer, a wireless local loop (WLL) station, an Internet of things (IoT) device, an Internet of Everything (IoE) device, a machine type communication (MTC) device, an appliance, an automobile, or the like.
 The communication links 125 may support one or more services between devices of the wireless communications system 100. Services may include, for example, point-to-point (e.g., unicast) services between two devices (e.g., between a network device such as a base station 105 and a UE 115, between a first UE 115 and a second UE 115, etc. ) , point-to-multipoint (e.g., broadcast or multicast) services between a device and a set of other devices (e.g., between a network device such as a base station 105 and a set of UEs 115, between a UE 115 and a set of other UEs 115, etc. ) , or services forwarded by devices such as those services provided by way of a mesh network.
 Examples of services include data services, data transfer services, data transfer services over transmission control protocol (TCP) , data transfer services over user datagram protocol (UDP) , voice services, voice-over-IP (VoIP) services, IP multimedia services, text messaging services, short message services (SMS) , emergency broadcast services, emergency call services, public warning system services, internet services, MBMS services, sensor data distribution services, vehicle-to-vehicle services, or the like, each of which may be considered as a type of service. Additionally or alternatively, types of services may include whether traffic associated with a service is latency sensitive (e.g., associated with a latency parameter, etc. ) or “mission critical” (e.g., associated with an acceptable or threshold error rate, etc. ) , a quality of service (QoS) parameter associated with a service, a priority or priority level of data associated with a service, an acknowledgement mode (AM) of a service, or the like.
 In some cases, wireless communications system 100 may support carrier aggregation (CA) to increase throughput and improve the overall efficiency of the network.  In CA, a base station 105 and a UE 115 may communicate using more than one carrier. Each aggregated carrier is referred to as a component carrier (CC) . Each CC can have a bandwidth of, e.g., 1.4, 3, 5, 10, 15 or 20 MHz. In some cases, the number of CCs can be limited to, e.g., a maximum of five CCs giving a maximum aggregated bandwidth of 100 MHz. Some systems may support a larger number of CCs, or CCs may be aggregated without a defined limit is some systems. In frequency division duplexing (FDD) , the number of aggregated carriers can be different in downlink and uplink. The number of uplink component carriers may be equal to or lower than the number of downlink component carriers. The individual component carriers can also be of different bandwidths. For TDD the number of CCs as well as the bandwidths of each CC will normally be the same for DL and UL. Component carriers may be arranged in a number of ways. For example, a CA configuration may be based on contiguous component carriers within the same operating frequency band, i.e., called intra-band contiguous CA. Non-contiguous allocations can also be used, where the component carriers may either be intra-band or inter-band.
 When CA is used, a UE 115 may communicate with one or more base stations 105 using multiple cells. For example, the UE 115 may communicate with a base station 105 on a primary serving cell (PCell) and on one or more secondary cells (SCells) . The UE 115 may transmit uplink data and receive downlink data as well as control information on the PCell. The UE 115 may receive downlink data on an SCell, but may or may not be configured to transmit uplink data. In some cases, the PCell may include an uplink control channel (e.g., PDCCH) , while SCells may not include an uplink control channel. In such cases, uplink control information for the PCell and for SCells is transmitted on the PCell, which may exacerbate or cause ambiguity about which cell the control information relates if there is no identifier of a particular cell in the control information.
 A UE 115 may also receive multiple CCs that are not aggregated. For example, a UE 115 may communication with one base station 105 on a PCell, and the UE 115 may communicate with another base station 105 on a configurable SCell (C-SCell) . To the base station 105 of the PCell, the C-SCell may be understood as a non-serving neighbor cell (i.e., not configured by the base station 105 but self-configured by the UE) . A UE 115 communicating with a PCell and C-SCell may thus coordinate communications with little or no involvement of the base stations 105 associated with the PCell and C-SCell.
 Base stations 105 may communicate with the core network 130 and with one another. For example, base stations 105 may interface with the core network 130 through backhaul links 132 (e.g., S1, etc. ) . Base stations 105 may communicate with one another over backhaul links 134 (e.g., X2, etc. ) either directly or indirectly (e.g., through core network 130) . Base stations 105 may perform radio configuration and scheduling for communication with UEs 115, or may operate under the control of a base station controller (not shown) . In some examples, base stations 105 may be macro cells, small cells, hot spots, or the like. Base stations 105 may also be referred to as eNodeBs (eNBs) 105. As discussed further below, communications between base stations 105 may be used to mitigate issues or confusion that results from a UE 115 communicating on a PCell and a C-SCell.
 The core network 130 may include a broadcast/multicast service center (BM-SC) , an MBMS gateway (MBMS-GW) , and a multicell/multicast coordination entity (MCE) . The BM-SC may connect a content provider to the MBMS-GW. The BM-SC may receive MBMS content (also referred to herein as MBMS services) from the content provider and relay the MBMS content to the MBMS-GW. Additionally, the BM-SC may transmit information about the quality of service of the content and, for example, a modulation and coding scheme (MCS) for base stations 105 to use when broadcasting MBMS content. The MBMS-GW may then forward this information to base stations 105 within an MBMS area in addition to, for example, a transmission time associated with the content. The MCE may then provide scheduling information to base stations within the MBMS area to allow synchronized transmissions to multiple UEs 115.
 Wireless communications system 100 may support MBMS techniques to broadcast multimedia data from one or more base stations 105 to multiple UEs 115. For example, wireless communications system 100 may be configured to broadcast steaming media, such as mobile TV content, or to multicast live event coverage to UEs 115 located near a live event such as a concert or sporting event. In some cases, this may enable more efficient utilization of downlink bandwidth. In some examples, a single base station 105 may simultaneously communicate with multiple UEs 115 using point-to-multipoint communication techniques, or multiple base stations 105 may communicate with multiple UEs 115 using multipoint-to-multipoint communication techniques.
 Wireless communications system 100 may support a single frequency network (SFN) (e.g., Multimedia Broadcast Single Frequency Network (MBSFN) ) and may include  SFN cells (e.g., MBSFN cells) associated with one or more base stations 105. An MBSFN base station (e.g., a base station 105) may include transmitters and receivers that send and receive control and data signals over a single frequency channel within a cell. In some examples, a base station 105 may cover multiple cells and each cell may be associated with a different frequency.
 Wireless communications system 100 may include multiple MBSFN areas. An MBSFN area may include a group of synchronized base stations (e.g., base stations 105) that may broadcast the same content at the same time using the same frequency resources. These synchronized base stations 105 may perform MBSFN transmissions collectively to increase the signal power of transmissions to multiple UEs 115. The signal power of the MBSFN transmissions are increased by constructive interference among signals transmitted by multiple base stations 105. Each MBSFN area may be identified by an MBSFN area ID. For example, an MBSFN area may be identified by an integer ranging from 0 to 255.
 In some cases, the multiple base stations 105 communicate with a UE 115 using an MBMS channel (MCH) . The MCH may include an MBMS control channel (MCCH) and an MBMS traffic channel (MTCH) . A base station 105 may send control information (e.g., configuration to receive the MBMS services) to a UE 115 via the MCCH, and the base station 105 may broadcast data to the UE 115 (e.g., a television station) via the MTCH.
 In some cases, a base station 105 advertises available MBMS services by transmitting a control message to a UE 115 via the MCCH that includes an identification of the available services (e.g., Temporary Mobile Group Identifier (TMGI) ) . In the case of CA, a UE 115 may receive one message on a PCell and another message on an SCell or a C-SCell. Additionally, the control message may include information about which cell the services are available on. For example, the control message may include an area identity associated with the cell (e.g., an MBSFN Area ID) . MBSFN areas may overlap and the cell may be associated with multiple MBSFN areas. In such cases, the control message may include a list of area identities associated with the cell. Additionally, the control information may include an E-UTRA Absolute Radio Frequency Channel Number (EARFCN) associated with the channel used for communication with a UE 115 within the cell.
 In response to the control message, the UE 115 may determine to send a message (e.g., an MBMS Interest Indication (MII) message) indicating that it is currently receiving or is interested in receiving one or more MBMS services indicated in the control message. The  UE 115 may indicate the frequency associated with the cell it is interested in receiving services on by including the EARFCN identity from the control information in the MII message. In the case of CA, the UE 115 may transmit the MII message on the PCell.
 A base station 105 or a group of base stations 105 within a particular area may transmit signaling to one or more UEs 115 to determine the number of UEs 115 within the area that are currently receiving or that are interested in receiving a specific MBMS service. For example, a base station 105 may transmit a message (e.g., an MBMS counting request message) to a UE 115 requesting an indication of which MBMS services the UE 115 is interested in receiving. The MBMS counting request message may include a list of the available MBMS services (e.g., a counting request list) . The MBMS counting request message may be in response to or otherwise based on a MII message transmitted by the UE 115, or the base station 105 may send the MBMS counting request periodically. In the case of CA, a UE 115 may receive one MBMS counting request message on a PCell and receive a different MBMS counting request message on an SCell or C-SCell.
 Upon receiving an MBMS counting request message, a UE 115 may then select the specific services it is interested in receiving from the MBMS counting request list indicated in the request message. The UE 115 may then transmit a message (e.g., an MBMS counting response message) to indicate which services it is interested in by indicating the index corresponding to the MBMS service listed in the MBMS counting request list . For example, if the UE 115 is interested in receiving the first MBMS service from the list, the index may include the value 0, and if the UE 115 is interested in receiving the second MBMS service from the list, the index may include the value 1. This indexed list of selected MBMS services may be referred to as an MBMS counting response list.
 The MBMS counting response message may also include the index corresponding to the list of area identities (e.g., an MBMS Area Info List within SIB 13) of the cell or cells on which the MBMS counting request message was transmitted. The network may use this information to determine to broadcast the data to multiple UEs 115 or allow the base station 105 to transmit the data to the UE 115 independently over the appropriate cell (e.g., in a unicast transmission) .
 In some cases, a UE 115 may receive a counting request message on the PCell and a different counting request on the SCell or C-SCell at approximately the same time (e.g., within the same modification period) . The SCell may be associated with the same base  station 105 as the PCell, or the SCell may be associated with a different base station 105. The UE 115 may then transmit a counting response message on the PCell in response to the first or second counting request message. However, the base station 105 that receives the counting response message may not be able to determine if the counting response message is associated with the counting request message received on the PCell or the counting request message received on the SCell. Therefore, the base station 105 may not be able to determine which MBMS services the UE 115 is receiving or is interested in receiving.
 In accordance with aspects of the present disclosure, a UE 115 may configure a counting response message to one of the counting request messages that includes information that identifies the cell associated with the corresponding request message. For example, the response message may include a cell identification, a frequency identification, or an area identification associated with the cell of the corresponding request message. A base station 105 receiving such a response message may use the indication to determine the appropriate cell associated with the request message and may forward the response to the appropriate base station 105. In some cases, a UE 115 may directly indicate the MBMS services it is receiving or interested in receiving by including a list of the services in an MBMS response message.
 FIG. 2A illustrates an example of a wireless communications system 200-a that supports MBMS signaling for multiple cells. Wireless communications system 200-a may include a base station 105-a and a UE 115-a, which may be examples of corresponding devices described with reference to FIG. 1. The base station 105-a and UE 115-a may communicate over PCell 205-a and SCell 210-a, which may each be associated with different carrier frequencies. The UE 115-amay receive an MBMS counting request messages on the PCell 205-a and a different MBMS counting request message on the SCell 210-a and may respond on the PCell 205-a with one or more MBMS counting response messages.
 FIG. 2B illustrates an example of a wireless communications system 200-b that supports MBMS signaling for multiple cells. Wireless communications system 200-b may include a base station 105-b, a base station 105-c, and a UE 115-b, which may be examples of corresponding devices described with reference to FIG. 1. The UE 115-b may communicate with base station 105-b over PCell 205-b and may communicate with base station 105-c over SCell 210-b. PCell 205-b and SCell 210-b may be associated with different carrier frequencies or the same carrier frequencies. The UE 115-b may receive an MBMS counting  request messages on the PCell 205-b and a different MBMS counting request message on the SCell 210-b and may respond on the PCell 205-b with one or more MBMS counting response messages.
 In either the example depicted in FIG. 2A or the example depicted in FIG. 2B, if the UE 115 responds to one of the requests with an MBMS counting response message, the receiving base station 105 may not be able to determine which counting request the response is associated with. Accordingly, without some additional indication provided by the UE 115, the base station 105 may be unable to determine the MBMS services the UE 115 is interested in receiving. This ambiguity may be caused by the network using different carrier frequencies or different base stations 105 to transmit multiple MBMS counting request messages to a UE 115.
 Accordingly, wireless communications systems 200 may support additional techniques to prevent or resolve ambiguity resulting from multiple MBMS request messages being transmitted using multiple cells. For example, the wireless communications systems 200 may support configuring MBMS counting response messages to include additional information such as an indication of a frequency, an area identity, or a cell identity associated with the cell on which the corresponding counting request was received. Additionally or alternatively, the wireless communications systems 200 may use different scheduling techniques to prevent ambiguity associated with sending multiple MBMS counting requests close in time. For example, a base station 105 may schedule a gap (e.g., a guard time) between subsequent counting requests to avoid transmitting multiple counting requests at approximately the same time.
 In some cases, a UE 115 may include an indication of a cell identity in a counting response message. For example, if a UE 115 receives a counting request on an SCell or a C-SCell (e.g., SCell 210) , then the UE 115 may include an indication of the cell identity of the SCell in the counting response. The cell identity may be included in an additional information element within the MBMS counting response message. The MBMS counting response message may include the cell identity along with an index of the area associated with the corresponding cell (e.g., an MBSF Area Index) and an index of the MBMS services that the UE 115 is interested in receiving (e.g., a Counting Response List) . In some examples, a UE 115 may aggregate multiple counting responses into a single counting response message.
 In some cases, if a UE 115 receives a counting request on a PCell (e.g., PCell 205) , the UE 115 may respond on the PCell without including an indication of the cell identity in the counting response. A base station 105 that receives a counting response message without an additional indication of the cell identity may determine that the response message corresponds to a request message sent on the PCell.
 A base station 105 receiving a response message with an additional cell indication may determine the cell associated with the counting response. For example, if the response message includes an indication that identifies an SCell, then the base station 105 may be able to identify the MBMS request message that the response message is responsive to. Accordingly, the network may be able to compare the MBMS service index in the response message to the MBMS service list in the request message and determine the services that the UE 115 is receiving or is interested in receiving.
 A base station 105 receiving a response message that includes a cell identity may be able to determine the appropriate cell even if the appropriate cell is not associated with the receiving base station 105. In such cases, the base station 105 may forward the response message to the appropriate base station 105. For example, referring to FIG. 2B, if base station 105-b receives a response message from UE 115-b that indicates a cell identity associated with base station 105-c (e.g., SCell 210-b) , base station 105-b may forward the response to base station 105-c either directly (e.g., via an X2 interface) or indirectly through one or more additional entities of the network (e.g., an MCE) .
 In some cases, a UE 115 may include an indication of a downlink carrier frequency associated with a cell in a counting response message. For example, if the UE 115 receives the counting request on an SCell or a C-SCell (e.g., SCell 210) , the UE may include an indication of the downlink carrier frequency associated with the SCell or C-SCell in the counting response. The indication of a downlink carrier may include a downlink carrier frequency identification. The downlink carrier identification may be included in an additional information element within the MBMS counting response message. The MBMS counting response message may include the downlink carrier identification along with an index of the area associated with the corresponding cell (e.g., an MBSF Area Index) and an index of the MBMS services that the UE 115 is interested in receiving (e.g., a Counting Response List) .
 In some examples, the indication of the downlink carrier frequency may include an Absolute Radio Frequency Channel Number (ARFCN) identification. The ARFCN  identification may allow the receiving base station 105 that covers the PCell to determine if the indicated frequency is associated with the a PCell, SCell, or C-SCell of the UE 115. In some cases, if a UE 115 receives a counting request on a PCell (e.g., PCell 205) , the UE 115 may respond on the PCell without including an indication of the downlink carrier frequency in the counting response.
 A base station 105 receiving a response message that includes an indication of a downlink carrier frequency may be able to determine the appropriate cell if the appropriate cell is associated with the receiving base station 105. In some cases, however, an indication of a downlink carrier frequency may not uniquely identify a cell if two different base stations 105 communicate with the UE 115 using the same downlink carrier frequency (e.g., if PCell 205-b and SCell 210-b use the same frequency) .
 A UE 115 may include an indication of an area identity associated with a cell in a counting response message. For example, if a UE 115 receives a counting request on an SCell or C-SCell (e.g., SCell 210) ) , the UE 115 may include an indication of the area identity in the counting response associated with the SCell. The area identity may be included in an additional information element within the MBMS counting response message. For example, the area identity may include an MBSFN Area Identification (e.g., an integer from 0 to 255) . The MBMS counting response message may include the area identity instead of (or in addition to) an index of the area associated with the corresponding cell (e.g., an MBSF Area Index) . The MBMS counting response message may also still include an index of the MBMS services that the UE 115 is interested in receiving (e.g., a Counting Response List) .
 A base station 105 receiving a response message with an additional area indication may determine the cell associated with the counting response. For example, if the response message includes an area indication that identifies an SCell, then the base station 105 may be able to identify the MBMS request message that the response message is responsive to. Accordingly, the network may be able to compare the MBMS service index in the response message to the MBMS service list in the request message and determine the services that the UE 115 is receiving or is interested in receiving.
 A base station 105 receiving a response message that includes an area identity may be able to determine the appropriate cell even if the appropriate cell is not associated with the receiving base station 105. In such cases, the base station 105 may forward the response message to the appropriate base station 105. For example, referring to FIG. 2B, if  base station 105-b receives a response message from UE 115-b that indicates an area identity associated with base station 105-c (e.g., SCell 210-b) , base station 105-b may forward the response to base station 105-c either directly (e.g., via an X2 interface) or indirectly through one or more additional entities of the network (e.g., an MCE) . In some cases, for an area identity to uniquely identify a cell, a network operator may need to use unique area IDs (e.g., unique MBSFN Area IDs) for different frequencies of different base stations 105.
 In some cases, if a UE 115 receives a counting request message on an SCell or C-S-Cell (or other non-primary cell) that is associated with a different base station 105 than the base station 105 associated with the PCell of the UE 115, the UE 115 may determine not to respond to the counting request. Such a determination may prevent potential ambiguity caused by receiving multiple MBMS request messages from different cells associated with different base stations 105.
 In some cases, a base station 105 (or a base station controller or some other network entity) may schedule a gap between subsequent counting requests to avoid transmitting multiple counting requests at approximately the same time. For example, if a previous counting request was transmitted within a predetermined duration of time, the network may postpone transmission of a subsequent counting request until the end of the duration. In some cases, the threshold amount of time is an example of a guard time. The guard time may be, for example, at least one modification period in addition to a processing delay and a transmission delay. The modification period, processing delay, and transmission delay may depend on network configurations and may be static or dynamic. So the guard time may be configurable by a UE 115, a base station 105, or any other network entity and may be static or dynamic.
 The processing delay may allow time for the UE 115 to determine the services it wants to receive from the list of services included in the counting request, and the transmission delay may include time for the UE 115 to transmit the counting response on the PCell and time for the primary serving base station 105 to forward the counting response to the network. Subsequently, the network may transmit the postponed counting request to the base station 105 to relay to the UE 115. These scheduling schemes prevent ambiguity since the counting response will be associated with a most recently transmitted counting request. In some cases, this scheduling scheme may introduce additional latency to a counting procedure.
 In some cases, a UE 115 may indicate the MBMS services it is interested in receiving by included a list or some other identity of the services in a message to a base station 105. For example, instead of including an index of the services that corresponds to a separate list of the services, the UE 115 my directly identify the services with a unique identifier. In some cases, the identifier of the MBMS services may include a Temporary Mobile Group Identifier (TMGI) . The TMGI values corresponding to the MBMS services may be included in a response message or some other control message sent from a UE 115 to a base station 105.
 For example, the TMGI indications may be included in an MBMS interested indication (MII) message. The MII message may be in response to one or more advertising messages sent to the UE 115 over the MCCH that advertise the available MBMS services. In some cases, the network may only need to send the advertising messages over the MCCH and receive the MII message to determine which MBMS services the UE 115 is interested. That is, the base station 105 may not transmit a counting request and the UE 115 may not respond with a counting response if the MII includes a direct indication of the MBMS services the UE 115 is interested in receiving. In other cases, an MII message that includes TMGI values may be used in addition to the counting request and counting response signaling.
 In some cases, a base station 105 that receives a counting response may use information about neighboring cells to determine which cell the counting response corresponds to. For example, the receiving base station 105 may analyze information included in the counting response (e.g., a frequency indication or an area indication) , information included in an MII message (e.g., an identification of an EARFCN value) , information from a control message (e.g., SIB15) , information regarding a neighbor cell configuration, and/or a measurement report from a neighboring cell to determine the appropriate cell associated with the counting response.
 Additionally, if an X2 interface (e.g., connection between primary serving base station and secondary serving base station) is unavailable, the primary serving base station may determine to ignore the counting response or forward the counting response to its MCE, and the MCE may forward the counting response to the MCE associated with the secondary serving base station. In some cases (e.g., when there are multiple neighbor cells) , the primary serving base station may not be able to determine the appropriate cell associated with a counting response.
 FIG. 3 illustrates an example of a process flow 300 in a system that supports MBMS signaling for multiple cells. Process flow 300 may include steps performed by UE 115-c, which may be an example of a UE 115 described above with reference to FIGs. 1 and 2. Process flow 300 may also include steps performed by a serving base station 105-d, which may be an example of a base station 105 described above with reference to FIGs. 1 and 2.
 In some cases, a base station 105-d may communicate with UE 115-c on PCell 305 or SCell 310.
 At step 315, base station 105-d may transmit, and UE 115-c may receive, control information on PCell 305 via MCCH. At step 320, base station 105-d may transmit, and UE 115-c may receive, control information on SCell 310 via MCCH. The control information may include an advertisement of MBMS services available on the respective cells. For example, the control information may include an indication of the frequency associated with the cell (e.g. an EARFCN value) , and indication of the area associated with the cell (e.g., and MBSFN Area ID) , and an indication of the MBMS services that are available (e.g., one or more TMGI values in a MBMS counting request list) . The MBMS services available on the PCell may include a first set of MBMS services and the services available on the SCell may include a second set of MBMS services.
 At step 325, UE 115-c may transmit a message to base station 105-d on PCell 305 indicating an interest in receiving services on a specific cell (e.g., PCell 305 or SCell 310) . The message may indicate a desired frequency over which to receive at least one service from a first set of MBMS services or a second set of MBMS services. For example, an indication of a desired frequency may include an EARFCN value associated with the cell that advertised the desired set of MBMS services. In some cases, base station 105-d may include the first set of MBMS services in the message transmitted at step 315, and the base station 105-d may include the second set of MBMS services in the message transmitted at step 320. In some examples, the message transmitted at step 325 may also include an indication of interest in at least one service from the first set of MBMS services, at least one service from the second set of MBMS services, or a combination thereof. For example, the indication of interest in a particular MBMS service may include a list of TMGI values that identify the desired MBMS services.
 At step 330, base station 105-d may transmit, and UE 115-c may receive, a message on PCell 305 requesting an indication of MBMS services the UE 115-c is interested  in receiving. Specifically, the message may include a request for an indication of current reception or an indication of desired reception of services of a set of MBMS services. In some cases, base station 105-d may include the set of MBMS services in the message transmitted on PCell 305 at step 330. The message transmitted at step 330 may be an example of an MBMS counting request message.
 At step 335, base station 105-d may transmit a message to UE 115-c on SCell 310 requesting an indication of MBMS services the UE 115-c is interested in receiving. Specifically, the message may include a request for an indication of current reception or an indication of desired reception of services of a set of MBMS services. In some cases, base station 105-d may include the set of MBMS services in the message transmitted on SCell 310 at step 335. The message transmitted at step 335 may be an example of an MBMS counting request message.
 At step 340, UE 115-c may transmit a response message to base station 105-d on PCell 305 indicating the MBMS services it is interested in receiving. In some cases, the message may be a response to the request received at step 330. UE 115-c may configure the response message based on receiving the request message at step 330 on PCell 305. For example, UE 115-c may configure the response message to include a cell identification, a frequency identification, or an MBSFN area identification. The message transmitted at step 340 may be an example of an MBMS counting response message.
 At step 345, UE 115-c may transmit a message to base station 105-d on PCell 305 indicating the MBMS services it is interested in receiving. In some cases, the message may be a response to the request received at step 335. UE 115-c may configure the response message based on receiving the request message at step 335 on SCell 310. For example, UE 115-c may configure the response message to include a cell identification, a frequency identification, or an MBSFN area identification. The message transmitted at step 345 may be an example of an MBMS counting response message. In some examples, UE 115-c may aggregate the messages transmitted at step 340 and at step 345 into a single response message.
 FIG. 4 illustrates an example of a process flow 400 in a system that supports MBMS signaling for multiple cells. Process flow 400 may include steps performed by UE 115-d, which may be an example of a UE 115 described above with reference to FIGs. 1 and 2. Process flow 400 may also include steps performed by a serving base station 105-e and a  neighboring base station 105-f, which may be examples of a base station 105 described above with reference to FIGs. 1 and 2.
 In some cases, base station 105-e and base station 105-f may communicate with UE 115-d on PCell 405 or SCell (or C-SCell) 410.
 At step 415, base station 105-e may transmit control information to UE 115-d on PCell 405 via MCCH. At step 420, base station 105-f may transmit control information to UE 115-d on SCell (or C-SCell) 410 via MCCH. The control information sent at step 415 and step 420 may be examples of the control information sent at step 315 and step 320 of FIG. 3.
 At step 425, UE 115-d may transmit a message to base station 105-e on PCell 405 indicating an interest in receiving services on a specific cell (e.g., PCell 405 or SCell (or C-SCell) 410) . The message may indicate a desired frequency over which to receive at least one service from a first set of MBMS services or a second set of MBMS services. In some cases, base station 105-e may include the first set of MBMS services in the message transmitted at step 415, and base station 105-f may include the second set of MBMS services in the message transmitted at step 420. In some examples, the message transmitted at step 425 may also include an indication of interest in at least one service from the first set of MBMS services, at least one service from the second set of MBMS services, or a combination thereof. The message sent at step 425 may be an example of the interest indication message sent at step 325 of FIG. 3.
 At step 430, base station 105-e may transmit a message to UE 115-d on PCell 405 requesting an indication of MBMS services the UE 115-d is interested in receiving. Specifically, the message may include a request for an indication of current reception or an indication of desired reception of services of a set of MBMS services. In some cases, base station 105-e may include the set of MBMS services in the message transmitted on PCell 405 at step 430. The message transmitted at step 430 may be an example of an MBMS counting request message.
 At step 435, base station 105-f may transmit a message to UE 115-d on SCell (or C-SCell) 410 requesting an indication of MBMS services the UE 115-d is interested in receiving. Specifically, the message may include a request for an indication of current reception or an indication of desired reception of services of a set of MBMS services. In some cases, base station 105-f may include the set of MBMS services in the message  transmitted on SCell (or C-SCell) 410 at step 435. The message transmitted at step 435 may be an example of an MBMS counting request message.
 At step 440, UE 115-d may transmit a message to base station 105-e on PCell 405 indicating the MBMS services it is interested in receiving. In some cases, the message may be a response to the request received at step 430. UE 115-d may configure the response message based on receiving the request message at step 430 on PCell 405. For example, UE 115-d may configure the response message to include a cell identification, a frequency identification, or an MBSFN area identification. The message transmitted at step 440 may be an example of an MBMS counting response message.
 At step 445, UE 115-d may transmit a message to base station 105-e on PCell 405 indicating the MBMS services it is interested in receiving. In some cases, the message may be a response to the request received at step 435. UE 115-d may configure the response message based on receiving the request message at step 435 on SCell (or C-SCell) 410. For example, UE 115-d may configure the response message to include a cell identification, a frequency identification, or an MBSFN area identification. The message transmitted at step 445 may be an example of an MBMS counting response message. In some examples, UE 115-d may aggregate the messages transmitted at step 440 and at step 445 into a single response message.
 FIG. 5 illustrates an example of a process flow 500 in a system that supports MBMS signaling for multiple cells. Process flow 500 may include steps performed by UE 115-e, which may be an example of a UE 115 described above with reference to FIGs. 1 and 2. Process flow 500 may also include steps performed by a serving base station 105-g, which may be example of a base station 105 described above with reference to FIGs. 1 and 2.
 In some cases, base station 105-g may communicate with UE 115-e on PCell 505 or SCell 510.
 At step 515, base station 105-g may transmit control information to UE 115-e on PCell 505 via MCCH. At step 520, base station 105-g may transmit control information to UE 115-e on SCell 510 via MCCH. The control information transmitted at step 515 and step 520 may be examples of the control information sent at step 315 and step 320 of FIG. 3.
 At step 525, UE 115-e may transmit a message to base station 105-g on PCell 505 indicating an interest in receiving services on a specific cell (e.g., PCell 505 or SCell 510) .  The message may indicate a desired frequency over which to receive at least one service from a first set of MBMS services or a second set of MBMS services. In some cases, base station 105-g may include the first set of MBMS services in the message transmitted at step 515, and base station 105-g may include the second set of MBMS services in the message transmitted at step 520. In some examples, the message transmitted at step 525 may also include an indication of interest in at least one service from the first set of MBMS services, at least one service from the second set of MBMS services, or a combination thereof. The message sent at step 525 may be an example of the interest indication message sent at step 325 of FIG. 3.
 At step 530, base station 105-g may transmit a message to UE 115-e on PCell 505 requesting an indication of MBMS services the UE 115-e is interested in receiving. Specifically, the message may include a request for an indication of current reception or an indication of desired reception of services of a set of MBMS services. In some cases, base station 105-g may include the set of MBMS services in the message transmitted on PCell 505 at step 530. The message transmitted at step 530 may be an example of an MBMS counting request message.
 At step 535, UE 115-e may transmit a message to base station 105-g on PCell 505 indicating the MBMS services it is interested in receiving. In some cases, the message may be a response to the request received at step 530. UE 115-e may configure the response message based on receiving the request message at step 530 on PCell 505. For example, UE 115-e may configure the response message to include a cell identification, a frequency identification, and/or an MBSFN area identification. The message transmitted at step 535 may be an example of an MBMS counting response message.
 At step 540, base station 105-g may transmit a message to UE 115-e on SCell 510 requesting an indication of MBMS services the UE 115-e is interested in receiving. Specifically, the message may include a request for an indication of current reception or an indication of desired reception of services of a set of MBMS services. In some cases, base station 105-g may include the set of MBMS services in the message transmitted on SCell 510 at step 540. The message transmitted at step 540 may be an example of an MBMS counting request message.
 At step 545, UE 115-e may transmit a message to base station 105-g on PCell 505 indicating the MBMS services it is interested in receiving. In some cases, the message may be a response to the request received at step 540. UE 115-e may configure the response  message based on receiving the request message at step 540 on SCell 510. For example, UE 115-e may configure the response message to include a cell identification, a frequency identification, or an MBSFN area identification. The message transmitted at step 545 may be an example of an MBMS counting response message.
 In some cases, base station 105-g may schedule a delay 550 between subsequent transmissions of a request for an indication of MBMS services the UE 115-e is interested in receiving. The delay 550 may be a predetermined delay that may be measured from the transmission of the request message at step 530. In some examples, the duration of the delay 550 may be based on a duration of a modification period of control signaling associated with the message transmitted at step 530 or the message transmitted at step 535.
 FIG. 6 illustrates an example of a process flow 600 in a system that supports MBMS signaling for multiple cells. Process flow 600 may include steps performed by UE 115-f, which may be an example of a UE 115 described above with reference to FIGs. 1 and 2. Process flow 600 may also include steps performed by a serving base station 105-h and a neighboring base station 105-i, which may be examples of a base station 105 described above with reference to FIGs. 1 and 2.
 In some cases, base station 105-h and base station 105-i may communicate with UE 115-f on PCell 605 or SCell (or C-SCell) 610.
 At step 615, base station 105-h may transmit control information to UE 115-f on PCell 605 via MCCH. At step 620, base station 105-g may transmit control information to UE 115-e on SCell (or C-SCell) 610 via MCCH. The control information transmitted at step 615 and step 620 may be examples of the control information transmitted at step 315 and step 320 in FIG. 3.
 At step 625, UE 115-f may transmit a message to base station 105-h on PCell 605 indicating an interest in receiving services on a specific cell (e.g., PCell 605 or SCell (or C-SCell) 610) . The message may indicate a desired frequency over which to receive at least one service from a first set of MBMS services or a second set of MBMS services. In some cases, base station 105-h may include the first set of MBMS services in the message transmitted at step 615, and base station 105-i may include the second set of MBMS services in the message transmitted at step 620. In some examples, the message transmitted at step 625 may also include an indication of interest in at least one service from the first set of MBMS services, at least one service from the second set of MBMS services, or a combination thereof. The  interest indication message transmitted at step 625 may be an example of the interested indication transmitted at step 325 in FIG. 3.
 At step 630, base station 105-h may transmit a message to UE 115-f on PCell 605 requesting an indication of MBMS services the UE 115-f is interested in receiving. Specifically, the message may include a request for an indication of current reception or an indication of desired reception of services of a set of MBMS services. In some cases, base station 105-h may include the set of MBMS services in the message transmitted on PCell 605 at step 630. The message transmitted at step 630 may be an example of an MBMS counting request message.
 At step 635, base station 105-i may transmit a message to UE 115-f on SCell (or C-SCell) 610 requesting an indication of MBMS services the UE 115-f is interested in receiving. Specifically, the message may include a request for an indication of current reception or an indication of desired reception of services of a set of MBMS services. In some cases, base station 105-i may include the set of MBMS services in the message transmitted on SCell (or C-SCell) 610 at step 635. The message transmitted at step 635 may be an example of an MBMS counting request message.
 At step 640, UE 115-f may transmit a message to base station 105-h on PCell 605 indicating the MBMS services it is interested in receiving. In some cases, the message may be a response to the request received at step 635. UE 115-f may configure the response message based on receiving the request message at step 635 on SCell (or C-SCell) 610. For example, UE 115-f may configure the response message to include a cell identification, a frequency identification, and/or an MBSFN area identification. The message transmitted at step 640 may be an example of an MBMS counting response message.
 At block 645, base station 105-h may identify the appropriate cell associated with the message received by base station 105-h at step 640. In some cases, base station 105-h may identify the appropriate cell based on the configuration of the message. Specifically, the base station 105-h may identify the appropriate cell based on a cell identification, frequency identification, or an MBSFN area identification included in the message received at step 640. In other cases, base station 105-h may identify the appropriate cell based on the MBSFN identification, an MBMS interest indication message, a system information block, a cell configuration of a neighbor base station, a measurement report, or any combination thereof.
 At step 650, base station 105-h may forward the message received at step 640 to base station 105-i based on the identification at block 645. In some cases, the base station 105-h may forward the message to base station 105-i via an X2 interface. In other cases, the base station 105-h may forward the message to base station 105-i via an S1 interface or another network entity or both.
 FIG. 7 illustrates an example of a process flow 700 in a system that supports MBMS signaling for multiple cells. Process flow 700 may include steps performed by UE 115-g, which may be an example of a UE 115 described above with reference to FIGs. 1 and 2. Process flow 700 may also include steps performed by a serving base station 105-j, neighboring base station 105-k, and neighboring base station 105-l, which may be examples of a base station 105 described above with reference to FIGs. 1 and 2.
 In some cases, base station 105-j, base station 105-k, and base station 105-l may communicate with UE 115-g on PCell 705 or SCell (or C-SCell) 710.
 At step 715, base station 105-j may transmit control information to UE 115-g on SCell (or C-SCell) 710 via MCCH. At step 720, base station 105-k may transmit control information to UE 115-g on SCell (or C-SCell) 710 via MCCH. At step 725, base station 105-l may transmit control information to UE 115-g on SCell (or C-SCell) 710 via MCCH. The control information transmitted at step 715, step 720, and step 725 may be examples of the control information transmitted at step 315 and step 320 of FIG. 3.
 At step 730, UE 115-g may transmit a message to base station 105-j on PCell 705 indicating an interest in receiving services on a specific cell (e.g., PCell 705 or SCell (or C-SCell) 710) . The message may indicate a desired frequency over which to receive at least one service from a first set of MBMS services, a second set of MBMS services, or a third set of MBMS services. In some cases, base station 105-j may include the first set of MBMS services in the message transmitted at step 715, base station 105-k may include the second set of MBMS services in the message transmitted at step 720, and base station 105-l may include the third set of MBMS services in the message transmitted at step 725. In some examples, the second set of services may be the same as the third set of services. The message transmitted at step 730 may also include an indication of interest in at least one service from the first set of MBMS services, at least one service from the second set of MBMS services, at least one service from the third set of MBMS services, or a combination thereof.
 At step 735, base station 105-k may broadcast data (e.g., a television broadcast video streaming) to UE 115-g on SCell (or C-SCell) 710. In some examples, base station 105-k may broadcast the data using MTCH. In some cases, the broadcasted data may be associated with a service selected at step 730 from the set of services included in messages transmitted at step 715, step 720, and step 725.
 At step 740, base station 105-j may transmit a configuration message (e.g., RRC Connection Reconfiguration) on PCell 705 requesting a measurement report from UE 115-g. In some cases, the configuration message may indicate a frequency or cell associated with the requested measurement report.
 At step 745, UE 115-g may transmit a measurement report to base station 105-j on PCell 705. The measurement report may include a reference signal received power (RSRP) associated with transmissions from base station 105-k and base station 105-l. The measurement report may include an indication of the corresponding cell ID associated with an RSRP. For example, the measurement report may include an indication of an RSRP of -30 dBm associated with reference signals transmitted on cell ID 2 from base station 105-k and an RSRP of -50 dBm associated with reference signals transmitted on cell ID 3 from base station 105-l. The cell identities included in the measurement report may be decoded from messages transmitted at step 715, step 720, and step 725.
 FIG. 8 shows a block diagram 800 of a wireless device 805 that supports MBMS signaling for multiple cells in accordance with various aspects of the present disclosure. Wireless device 805 may be an example of aspects of a UE 115 as described with reference to FIG. 1. Wireless device 805 may include receiver 810, UE MBMS manager 815, and transmitter 820. Wireless device 805 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
 Receiver 810 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to MBMS signaling for multiple cells, etc. ) . Information may be passed on to other components of the device. The receiver 810 may be an example of aspects of the transceiver 1135 described with reference to FIG. 11.
 UE MBMS manager 815 may be an example of aspects of the UE MBMS manager 1115 described with reference to FIG. 11.
 UE MBMS manager 815 may, in combination with receiver 810, receive a first message on a first cell, where the first message includes a request for an indication of current reception or an indication of desired reception of at least one service of a first set of multimedia broadcast multicast service (MBMS) services, receive a second message on a second cell, where the second message includes a request for an indication of current reception or an indication of desired reception of at least one service of a second set of MBMS services, and configure a third message in response to the request in the first message, where the configuration of the third message is based on receiving the first message on the first cell and receiving the second message on the second cell.
 Transmitter 820 may transmit signals generated by other components of the device. In some examples, the transmitter 820 may be collocated with a receiver 810 in a transceiver module. For example, the transmitter 820 may be an example of aspects of the transceiver 1135 described with reference to FIG. 11. The transmitter 820 may include a single antenna, or it may include a set of antennas.
 Transmitter 820 may transmit the third message on the second cell and transmit the fourth message on the second cell.
 FIG. 9 shows a block diagram 900 of a wireless device 905 that supports MBMS signaling for multiple cells in accordance with various aspects of the present disclosure. Wireless device 905 may be an example of aspects of a wireless device 805 or a UE 115 as described with reference to FIGs. 1 and 8. Wireless device 905 may include receiver 910, UE MBMS manager 915, and transmitter 920. Wireless device 905 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
 Receiver 910 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to MBMS signaling for multiple cells, etc. ) . Information may be passed on to other components of the device. The receiver 910 may be an example of aspects of the transceiver 1135 described with reference to FIG. 11.
 UE MBMS manager 915 may be an example of aspects of the UE MBMS manager 1115 described with reference to FIG. 11.
 UE MBMS manager 915 may also include request messaging component 925 and response configuration component 930.
 Request messaging component 925 may, in combination with receiver 910, receive a first message on a first cell, where the first message includes a request for an indication of current reception or an indication of desired reception of at least one service of a first set of multimedia broadcast multicast service (MBMS) services and receive a second message on a second cell, where the second message includes a request for an indication of current reception or an indication of desired reception of at least one service of a second set of MBMS services. In some cases, the first message and the second message include MBMS counting request messages.
 Response configuration component 930 may configure a third message in response to the request in the first message, where the configuration of the third message is based on receiving the first message on the first cell and receiving the second message on the second cell, determine that the first cell is a secondary cell (SCell) or a configurable secondary cell (C-SCell) , configure the third message to include an indication that the first message was received on the first cell based on determining that the first cell is an SCell or a C-SCell, and configure a fourth message in response to the second message based on receiving the first message on the first cell and receiving the second message on the second cell.
 In some cases, configuring the third message includes configuring the third message to include an indication that it is in response to the first message received on the first cell. In some cases, the indication that the first message was received on the first cell includes a cell identification, a frequency identification, and/or a multicast/broadcast over a single frequency network (MBSFN) area identification. In some cases, configuring the third message includes: configuring the third message with an indication that is responsive to the request in the first message and the request in the second message. In some cases, the third message includes an MBMS counting response message.
 Transmitter 920 may transmit signals generated by other components of the device. In some examples, the transmitter 920 may be collocated with a receiver 910 in a transceiver module. For example, the transmitter 920 may be an example of aspects of the transceiver 1135 described with reference to FIG. 11. The transmitter 920 may include a single antenna, or it may include a set of antennas.
 FIG. 10 shows a block diagram 1000 of a UE MBMS manager 1015 that supports MBMS signaling for multiple cells in accordance with various aspects of the present disclosure. The UE MBMS manager 1015 may be an example of aspects of a UE MBMS manager 815, a UE MBMS manager 915, or a UE MBMS manager 1115 described with reference to FIGs. 8, 9, and 11. The UE MBMS manager 1015 may include request messaging component 1020, response configuration component 1025, service selection component 1030, and frequency indication component 1035. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
 Request messaging component 1020 may receive a first message on a first cell, where the first message includes a request for an indication of current reception or an indication of desired reception of at least one service of a first set of multimedia broadcast multicast service (MBMS) services and receive a second message on a second cell, where the second message includes a request for an indication of current reception or an indication of desired reception of at least one service of a second set of MBMS services. In some cases, the first message and the second message include MBMS counting request messages.
 Response configuration component 1025 may configure a third message in response to the request in the first message, where the configuration of the third message is based on receiving the first message on the first cell and receiving the second message on the second cell, determine that the first cell is a secondary cell (SCell) or a configurable secondary cell (C-SCell) , configure the third message to include an indication that the first message was received on the first cell based on determining that the first cell is an SCell or a C-SCell, and configure a fourth message in response to the second message based on receiving the first message on the first cell and receiving the second message on the second cell.
 In some cases, configuring the third message includes: configuring the third message to include an indication that it is in response to the first message received on the first cell. In some cases, the indication that the first message was received on the first cell includes a cell identification, a frequency identification, and/or a multicast/broadcast over a single frequency network (MBSFN) area identification. In some cases, configuring the third message includes: configuring the third message with an indication that is responsive to the request in the first message and the request in the second message. In some cases, the third message includes an MBMS counting response message.
 Service selection component 1030 may coordinate with response configuration component 1025 to configure the third message to include a selection of at least one service of the first set of MBMS services and configure the fourth message to include an identification of at least one service from the first set of MBMS services or from the second set of MBMS services. Frequency indication component 1035 may transmit a fourth message indicating a desired frequency over which to receive at least one service from the first set of MBMS services or from the second set of MBMS services.
 FIG. 11 shows a diagram of a system 1100 including a mobile device 1105 that supports MBMS signaling for multiple cells in accordance with various aspects of the present disclosure. Device 1105 may be an example of or include the components of wireless device 805, wireless device 905, or a UE 115 as described above, e.g., with reference to FIGs. 1, 8 and 9. Device 1105 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including UE MBMS manager 1115, processor 1120, memory 1125, software 1130, transceiver 1135, antenna 1140, and I/O controller 1145. These components may be in electronic communication via one or more busses (e.g., bus 1110) . Device 1105 may communicate wirelessly with one or more base stations 105.
 Processor 1120 may include an intelligent hardware device, (e.g., a general-purpose processor, a digital signal processor (DSP) , a central processing unit (CPU) , a microcontroller, an application-specific integrated circuit (ASIC) , an field-programmable gate array (FPGA) , a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, processor 1120 may be configured to operate a memory array using a memory controller. In other cases, a memory controller may be integrated into processor 1120. Processor 1120 may be configured to execute computer-readable instructions stored in a memory to perform various functions (e.g., functions or tasks supporting MBMS signaling for multiple cells) .
 Memory 1125 may include random access memory (RAM) and read only memory (ROM) . The memory 1125 may store computer-readable, computer-executable software 1130 including instructions that, when executed, cause the processor to perform various functions described herein. In some cases, the memory 1125 may contain, among other things, a basic input/output system (BIOS) which may control basic hardware and/or software operation such as the interaction with peripheral components or devices.
 Software 1130 may include code to implement aspects of the present disclosure, including code to support MBMS signaling for multiple cells. Software 1130 may be stored in a non-transitory computer-readable medium such as system memory or other memory. In some cases, the software 1130 may not be directly executable by the processor but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
 Transceiver 1135 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 1135 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 1135 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
 In some cases, the wireless device may include a single antenna 1140. However, in some cases the device may have more than one antenna 1140, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
 I/O controller 1145 may manage input and output signals for device 1105. I/O controller 1145 may also manage peripherals not integrated into device 1105. In some cases, I/O controller 1145 may represent a physical connection or port to an external peripheral. In some cases, I/O controller 1145 may utilize an operating system such as
Figure PCTCN2016094615-appb-000001
Figure PCTCN2016094615-appb-000002
or another known operating system.
 FIG. 12 shows a block diagram 1200 of a wireless device 1205 that supports MBMS signaling for multiple cells in accordance with various aspects of the present disclosure. Wireless device 1205 may be an example of aspects of a base station 105 as described with reference to FIG. 1. Wireless device 1205 may include receiver 1210, base station MBMS manager 1215, and transmitter 1220. Wireless device 1205 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
 Receiver 1210 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to MBMS signaling for multiple cells, etc. ) . Information may be passed on to other components of the device. The receiver 1210 may be an example of aspects of the transceiver 1535 described with reference to FIG. 15.
 Base station MBMS manager 1215 may be an example of aspects of the base station MBMS manager 1515 described with reference to FIG. 15.
 Base station MBMS manager 1215 may, combination with transmitter 1220, transmit a first message on a first cell, where the first message includes a request for an indication of current reception or an indication of desired reception of at least one service of a first set of multimedia broadcast multicast service (MBMS) services. Base station MBMS manager 1215 may also delay, for a duration, transmission of a second message on a second cell, where the second message includes a request for an indication of current reception or an indication of desired reception of at least one service of a second set of MBMS services. In some cases, the predetermined duration may be measured from transmission of the first message.
 Additionally, the base station MBMS manager 1215 may transmit a first message on a first cell, where the first message includes a request for an indication of current reception or an indication of desired reception of at least one of a first set of multimedia broadcast multicast service (MBMS) services and receive a second message on the first cell, where the second message is responsive to a third message transmitted on a second cell, and where the second message is configured based on the first message being transmitted on the first cell and the third message being transmitted on the second cell.
 Transmitter 1220 may transmit signals generated by other components of the device. In some examples, the transmitter 1220 may be collocated with a receiver 1210 in a transceiver module. For example, the transmitter 1220 may be an example of aspects of the transceiver 1535 described with reference to FIG. 15. The transmitter 1220 may include a single antenna, or it may include a set of antennas. In some cases, transmitter 1220 may transmit the second message after the duration.
 FIG. 13 shows a block diagram 1300 of a wireless device 1305 that supports MBMS signaling for multiple cells in accordance with various aspects of the present disclosure. Wireless device 1305 may be an example of aspects of a wireless device 1205 or a base station 105 as described with reference to FIGs. 1 and 12. Wireless device 1305 may include receiver 1310, base station MBMS manager 1315, and transmitter 1320. Wireless device 1305 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
 Receiver 1310 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to MBMS signaling for multiple cells, etc. ) . Information may be passed on to other components of the device. The receiver 1310 may be an example of aspects of the transceiver 1535 described with reference to FIG. 15.
 Base station MBMS manager 1315 may be an example of aspects of the base station MBMS manager 1515 described with reference to FIG. 15. Base station MBMS manager 1315 may also include request messaging component 1325, transmission delaying component 1330, and response configuration component 1335.
 Request messaging component 1325 may, combination with transmitter 1320, transmit a first message on a first cell, where the first message includes a request for an indication of current reception or an indication of desired reception of at least one service of a first set of multimedia broadcast multicast service (MBMS) services and transmit a third message on a second cell, where the third message includes a request for an indication of current reception or an indication of desired reception of at least one of a second set of MBMS services. In some cases, the first message and the third message include MBMS counting request messages.
 Transmission delaying component 1330 may delay, for a duration, transmission of a second message on a second cell, where the second message includes a request for an indication of current reception or an indication of desired reception of at least one service of a second set of MBMS services, where the predetermined duration is measured from transmission of the first message. In some cases, the duration is based on a duration of a modification period of control signaling associated with the first message or the second message.
 Response configuration component 1335 may receive a second message on the first cell, where the second message is responsive to a third message transmitted on a second cell, and where the second message is configured based on the first message being transmitted on the first cell and the third message being transmitted on the second cell. In some cases, the second message includes an indication that the third message was transmitted on the second cell. In some cases, the indication that the third message was transmitted on the second cell includes a cell identification, a frequency identification, and/or a  multicast/broadcast over a single frequency network (MBSFN) area identification. In some cases, the second message includes an MBMS counting response message.
 Transmitter 1320 may transmit signals generated by other components of the device. In some examples, the transmitter 1320 may be collocated with a receiver 1310 in a transceiver module. For example, the transmitter 1320 may be an example of aspects of the transceiver 1535 described with reference to FIG. 15. The transmitter 1320 may include a single antenna, or it may include a set of antennas.
 FIG. 14 shows a block diagram 1400 of a base station MBMS manager 1415 that supports MBMS signaling for multiple cells in accordance with various aspects of the present disclosure. The base station MBMS manager 1415 may be an example of aspects of a base station MBMS manager 1515 described with reference to FIGs. 12, 13, and 15. The base station MBMS manager 1415 may include request messaging component 1420, transmission delaying component 1425, response configuration component 1430, and response forwarding component 1435. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
 Request messaging component 1420 may transmit a first message on a first cell, where the first message includes a request for an indication of current reception or an indication of desired reception of at least one service of a first set of multimedia broadcast multicast service (MBMS) services and transmit a third message on a second cell, where the third message includes a request for an indication of current reception or an indication of desired reception of at least one of a second set of MBMS services. In some cases, the first message and the third message include MBMS counting request messages.
 Transmission delaying component 1425 may delay, for a duration, transmission of a second message on a second cell, where the second message includes a request for an indication of current reception or an indication of desired reception of at least one service of a second set of MBMS services. In some cases, the predetermined duration may be measured from transmission of the first message. In some cases, the duration is based on a duration of a modification period of control signaling associated with the first message or the second message.
 Response configuration component 1430 may receive a second message on the first cell, where the second message is responsive to a third message transmitted on a second cell, and where the second message is configured based on the first message being  transmitted on the first cell and the third message being transmitted on the second cell. In some cases, the second message includes an indication that the third message was transmitted on the second cell. In some cases, the indication that the third message was transmitted on the second cell includes a cell identification, a frequency identification, and/or a multicast/broadcast over a single frequency network (MBSFN) area identification. In some cases, the second message includes an MBMS counting response message.
 Response forwarding component 1435 may forward the second message to the second cell based on the cell identification, identify the second cell based on the configuration of the second message, forward the second message to the second cell based on the identification, and identify the second cell based on the MBSFN area identification, a MBMS interest indication message, a system information block, a cell configuration of a neighbor base station, or a measurement report, or any combination thereof. In some cases, the second message is forwarded to the second cell via an X2 interface. In some cases, the second message is forwarded to the second cell indirectly via an S1 interface or another network entity, or both.
 FIG. 15 shows a diagram of a system 1500 including a network device 1505 that supports MBMS signaling for multiple cells in accordance with various aspects of the present disclosure. Device 1505 may be an example of or include the components of base station 105 as described above, e.g., with reference to FIG. 1. Device 1505 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including base station MBMS manager 1515, processor 1520, memory 1525, software 1530, transceiver 1535, antenna 1540, network communications manager 1545, and base station communications manager 1550. These components may be in electronic communication via one or more busses (e.g., bus 1510) . Device 1505 may communicate wirelessly with one or more UEs 115.
 Processor 1520 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, processor 1520 may be configured to operate a memory array using a memory controller. In other cases, a memory controller may be integrated into processor 1520. Processor 1520 may be configured to execute computer- readable instructions stored in a memory to perform various functions (e.g., functions or tasks supporting MBMS signaling for multiple cells) .
 Memory 1525 may include RAM and ROM. The memory 1525 may store computer-readable, computer-executable software 1530 including instructions that, when executed, cause the processor to perform various functions described herein. In some cases, the memory 1525 may contain, among other things, a BIOS which may control basic hardware and/or software operation such as the interaction with peripheral components or devices.
 Software 1530 may include code to implement aspects of the present disclosure, including code to support MBMS signaling for multiple cells. Software 1530 may be stored in a non-transitory computer-readable medium such as system memory or other memory. In some cases, the software 1530 may not be directly executable by the processor but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
 Transceiver 1535 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 1535 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 1535 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
 In some cases, the wireless device may include a single antenna 1540. However, in some cases the device may have more than one antenna 1540, which may be capable of concurrently transmitting or receiving multiple wireless transmissions. Network communications manager 1545 may manage communications with the core network (e.g., via one or more wired backhaul links) . For example, the network communications manager 1545 may manage the transfer of data communications for client devices, such as one or more UEs 115.
 Base station communications manager 1550 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the base station communications manager 1550 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, base station communications manager 1550 may provide an  X2 interface within an Long Term Evolution (LTE) /LTE-Awireless communication network technology to provide communication between base stations 105.
 FIG. 16 shows a flowchart illustrating a method 1600 for MBMS signaling for multiple cells in accordance with various aspects of the present disclosure. The operations of method 1600 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1600 may be performed by a UE MBMS manager as described with reference to FIGs. 8 through 11. In some examples, a UE 115 may execute a set of codes to control the functional elements of the device to perform the functions described below. Additionally or alternatively, the UE 115 may perform aspects the functions described below using special-purpose hardware.
 At block 1605 the UE 115 may receive a first message on a first cell, wherein the first message includes a request for an indication of current reception or an indication of desired reception of at least one service of a first set of multimedia broadcast multicast service (MBMS) services. The operations of block 1605 may be performed according to the methods described with reference to FIGs. 1 through 6. In certain examples, aspects of the operations of block 1605 may be performed by a request messaging component as described with reference to FIGs. 8 through 11.
 At block 1610 the UE 115 may receive a second message on a second cell, wherein the second message includes a request for an indication of current reception or an indication of desired reception of at least one service of a second set of MBMS services. The operations of block 1610 may be performed according to the methods described with reference to FIGs. 1 through 6. In certain examples, aspects of the operations of block 1610 may be performed by a request messaging component as described with reference to FIGs. 8 through 11.
 At block 1615 the UE 115 may configure a third message in response to the request in the first message, wherein the configuration of the third message is based at least in part on receiving the first message on the first cell and receiving the second message on the second cell. The operations of block 1615 may be performed according to the methods described with reference to FIGs. 1 through 6. In certain examples, aspects of the operations of block 1615 may be performed by a response configuration component as described with reference to FIGs. 8 through 11.
 At block 1620 the UE 115 may transmit the third message on the second cell. The operations of block 1620 may be performed according to the methods described with reference to FIGs. 1 through 6. In certain examples, aspects of the operations of block 1620 may be performed by a transmitter as described with reference to FIGs. 8 through 11.
 FIG. 17 shows a flowchart illustrating a method 1700 for MBMS signaling for multiple cells in accordance with various aspects of the present disclosure. The operations of method 1700 may be implemented by a base station 105 or its components as described herein. For example, the operations of method 1700 may be performed by a base station MBMS manager as described with reference to FIGs. 12 through 15. In some examples, a base station 105 may execute a set of codes to control the functional elements of the device to perform the functions described below. Additionally or alternatively, the base station 105 may perform aspects the functions described below using special-purpose hardware.
 At block 1705 the base station 105 may transmit a first message on a first cell, wherein the first message includes a request for an indication of current reception or an indication of desired reception of at least one service of a first set of multimedia broadcast multicast service (MBMS) services. The operations of block 1705 may be performed according to the methods described with reference to FIGs. 1 through 6. In certain examples, aspects of the operations of block 1705 may be performed by a request messaging component as described with reference to FIGs. 12 through 15.
 At block 1710 the base station 105 may delay, for a duration, transmission of a second message on a second cell, wherein the second message includes a request for an indication of current reception or an indication of desired reception of at least one service of a second set of MBMS services, wherein the predetermined duration is measured from transmission of the first message. The operations of block 1710 may be performed according to the methods described with reference to FIGs. 1 through 6. In certain examples, aspects of the operations of block 1710 may be performed by a transmission delaying component as described with reference to FIGs. 12 through 15.
 At block 1715 the base station 105 may transmit the second message after the duration. The operations of block 1715 may be performed according to the methods described with reference to FIGs. 1 through 6. In certain examples, aspects of the operations of block 1715 may be performed by a transmitter as described with reference to FIGs. 12 through 15.
 FIG. 18 shows a flowchart illustrating a method 1800 for MBMS signaling for multiple cells in accordance with various aspects of the present disclosure. The operations of method 1800 may be implemented by a base station 105 or its components as described herein. For example, the operations of method 1800 may be performed by a base station MBMS manager as described with reference to FIGs. 12 through 15. In some examples, a base station 105 may execute a set of codes to control the functional elements of the device to perform the functions described below. Additionally or alternatively, the base station 105 may perform aspects the functions described below using special-purpose hardware.
 At block 1805 the base station 105 may transmit a first message on a first cell, wherein the first message includes a request for an indication of current reception or an indication of desired reception of at least one of a first set of multimedia broadcast multicast service (MBMS) services. The operations of block 1805 may be performed according to the methods described with reference to FIGs. 1 through 6. In certain examples, aspects of the operations of block 1805 may be performed by a request messaging component as described with reference to FIGs. 12 through 15.
 At block 1810 the base station 105 may receive a second message on the first cell, wherein the second message is responsive to a third message transmitted on a second cell, and wherein the second message is configured based at least in part on the first message being transmitted on the first cell and the third message being transmitted on the second cell. The operations of block 1810 may be performed according to the methods described with reference to FIGs. 1 through 6. In certain examples, aspects of the operations of block 1810 may be performed by a response configuration component as described with reference to FIGs. 12 through 15.
 FIG. 19 shows a flowchart illustrating a method 1900 for MBMS signaling for multiple cells in accordance with various aspects of the present disclosure. The operations of method 1900 may be implemented by a base station 105 or its components as described herein. For example, the operations of method 1900 may be performed by a base station MBMS manager as described with reference to FIGs. 12 through 15. In some examples, a base station 105 may execute a set of codes to control the functional elements of the device to perform the functions described below. Additionally or alternatively, the base station 105 may perform aspects the functions described below using special-purpose hardware.
 At block 1905 the base station 105 may transmit a first message on a first cell, wherein the first message includes a request for an indication of current reception or an indication of desired reception of at least one of a first set of multimedia broadcast multicast service (MBMS) services. The operations of block 1905 may be performed according to the methods described with reference to FIGs. 1 through 6. In certain examples, aspects of the operations of block 1905 may be performed by a request messaging component as described with reference to FIGs. 12 through 15.
 At block 1910 the base station 105 may receive a second message on the first cell, wherein the second message is responsive to a third message transmitted on a second cell, and wherein the second message is configured based at least in part on the first message being transmitted on the first cell and the third message being transmitted on the second cell. The operations of block 1910 may be performed according to the methods described with reference to FIGs. 1 through 6. In certain examples, aspects of the operations of block 1910 may be performed by a response configuration component as described with reference to FIGs. 12 through 15.
 At block 1915 the base station 105 may the second message includes an indication that the third message was transmitted on the second cell. The operations of block 1915 may be performed according to the methods described with reference to FIGs. 1 through 6. In certain examples, aspects of the operations of block 1915 may be performed by a response configuration component as described with reference to FIGs. 12 through 15.
 At block 1920 the base station 105 may forward the second message to the second cell based at least in part on the cell identification. The operations of block 1920 may be performed according to the methods described with reference to FIGs. 1 through 6. In certain examples, aspects of the operations of block 1920 may be performed by a response forwarding component as described with reference to FIGs. 12 through 15. In some cases, the second message includes an indication that the third message was transmitted on the second cell.
 It should be noted that the methods described above describe possible implementations, and that the operations and the steps may be rearranged or otherwise modified and that other implementations are possible. Furthermore, aspects from two or more of the methods may be combined.
 Techniques described herein may be used for various wireless communications systems such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , single carrier frequency division multiple access (SC-FDMA) , and other systems. The terms “system” and “network” are often used interchangeably. A code division multiple access (CDMA) system may implement a radio technology such as CDMA2000, Universal Terrestrial Radio Access (UTRA) , etc. CDMA2000 covers IS-2000, IS-95, and IS-856 standards. IS-2000 Releases may be commonly referred to as CDMA2000 1X, 1X, etc. IS-856 (TIA-856) is commonly referred to as CDMA2000 1xEV-DO, High Rate Packet Data (HRPD) , etc. UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA. A time division multiple access (TDMA) system may implement a radio technology such as Global System for Mobile Communications (GSM) .
 An orthogonal frequency division multiple access (OFDMA) system may implement a radio technology such as Ultra Mobile Broadband (UMB) , Evolved UTRA (E-UTRA) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, etc. UTRA and E-UTRA are part of Universal Mobile Telecommunications system (UMTS) . 3GPP Long Term Evolution (LTE) and LTE-Advanced (LTE-A) are new releases of Universal Mobile Telecommunications System (UMTS) that use E-UTRA. UTRA, E-UTRA, UMTS, LTE, LTE-A, and Global System for Mobile communications (GSM) are described in documents from the organization named “3rd Generation Partnership Project” (3GPP) . CDMA2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) . The techniques described herein may be used for the systems and radio technologies mentioned above as well as other systems and radio technologies. While aspects an LTE system may be described for purposes of example, and LTE terminology may be used in much of the description, the techniques described herein are applicable beyond LTE applications.
 In LTE/LTE-Anetworks, including such networks described herein, the term evolved node B (eNB) may be generally used to describe the base stations. The wireless communications system or systems described herein may include a heterogeneous LTE/LTE-A network in which different types of evolved node B (eNBs) provide coverage for various geographical regions. For example, each eNB or base station may provide communication coverage for a macro cell, a small cell, or other types of cell. The term “cell” may be used to  describe a base station, a carrier or component carrier associated with a base station, or a coverage area (e.g., sector, etc. ) of a carrier or base station, depending on context.
 Base stations may include or may be referred to by those skilled in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, eNodeB (eNB) , Home NodeB, a Home eNodeB, or some other suitable terminology. The geographic coverage area for a base station may be divided into sectors making up only a portion of the coverage area. The wireless communications system or systems described herein may include base stations of different types (e.g., macro or small cell base stations) . The UEs described herein may be able to communicate with various types of base stations and network equipment including macro eNBs, small cell eNBs, relay base stations, and the like. There may be overlapping geographic coverage areas for different technologies.
 A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider. A small cell is a lower-powered base station, as compared with a macro cell, that may operate in the same or different (e.g., licensed, unlicensed, etc. ) frequency bands as macro cells. Small cells may include pico cells, femto cells, and micro cells according to various examples. A pico cell, for example, may cover a small geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider. A femto cell may also cover a small geographic area (e.g., a home) and may provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) . An eNB for a macro cell may be referred to as a macro eNB. An eNB for a small cell may be referred to as a small cell eNB, a pico eNB, a femto eNB, or a home eNB. An eNB may support one or multiple (e.g., two, three, four, and the like) cells (e.g., component carriers) . A UE may be able to communicate with various types of base stations and network equipment including macro eNBs, small cell eNBs, relay base stations, and the like.
 The wireless communications system or systems described herein may support synchronous or asynchronous operation. For synchronous operation, the base stations may have similar frame timing, and transmissions from different base stations may be approximately aligned in time. For asynchronous operation, the base stations may have different frame timing, and transmissions from different base stations may not be aligned in  time. The techniques described herein may be used for either synchronous or asynchronous operations.
 The downlink transmissions described herein may also be called forward link transmissions while the uplink transmissions may also be called reverse link transmissions. Each communication link described herein—including, for example,  wireless communications system  100 and 200 of FIGs. 1 and 2—may include one or more carriers, where each carrier may be a signal made up of multiple sub-carriers (e.g., waveform signals of different frequencies) .
 The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term “exemplary” used herein means “serving as an example, instance, or illustration, ” and not “preferred” or “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, well-known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
 In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label.
 Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
 The various illustrative blocks and modules described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the  functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
 The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described above can be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations. Also, as used herein, including in the claims, “or” as used in a list of items (for example, a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) . Also, as used herein, the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an exemplary step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. ”
 Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that can be accessed by a general purpose or special purpose computer. By way of example, and not limitation, non-transitory computer-readable media may comprise RAM, ROM, electrically erasable programmable read only memory (EEPROM) , compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.  Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
 The description herein is provided to enable a person skilled in the art to make or use the disclosure. Various modifications to the disclosure will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not limited to the examples and designs described herein, but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (60)

  1. A method for wireless communication, comprising:
    receiving a first message on a first cell, wherein the first message includes a request for an indication of current reception or an indication of desired reception of at least one service of a first set of multimedia broadcast multicast service (MBMS) services;
    receiving a second message on a second cell, wherein the second message includes a request for an indication of current reception or an indication of desired reception of at least one service of a second set of MBMS services;
    configuring a third message in response to the request in the first message, wherein the configuration of the third message is based at least in part on receiving the first message on the first cell and receiving the second message on the second cell; and
    transmitting the third message on the second cell.
  2. The method of claim 1, further comprising:
    determining that the first cell is a secondary cell (SCell) or a configurable secondary cell (C-SCell) ; and
    configuring the third message to include an indication that the first message was received on the first cell based at least in part on determining that the first cell is an SCell or a C-SCell.
  3. The method of claim 1, wherein configuring the third message comprises configuring the third message to include an indication that it is in response to the first message received on the first cell.
  4. The method of claim 3, wherein the indication that the first message was received on the first cell comprises a cell identification.
  5. The method of claim 3, wherein the indication that the first message was received on the first cell comprises a frequency identification.
  6. The method of claim 3, wherein the indication that the first message was received on the first cell comprises a multicast/broadcast over a single frequency network (MBSFN) area identification.
  7. The method of claim 1, further comprising:
    configuring a fourth message in response to the second message based at least in part on receiving the first message on the first cell and receiving the second message on the second cell; and
    transmitting the fourth message on the second cell.
  8. The method of claim 1, wherein configuring the third message comprises configuring the third message with an indication that is responsive to the request in the first message and the request in the second message.
  9. The method of claim 1, further comprising:
    configuring the third message to include a selection of at least one service of the first set of MBMS services.
  10. The method of claim 1, further comprising:
    transmitting a fourth message indicating a desired frequency over which to receive at least one service from the first set of MBMS services or from the second set of MBMS services.
  11. The method of claim 10, further comprising:
    configuring the fourth message to include an identification of at least one service from the first set of MBMS services or from the second set of MBMS services.
  12. The method of claim 1, wherein the first message and the second message comprise MBMS counting request messages.
  13. The method of claim 1, wherein the third message comprises an MBMS counting response message.
  14. A method for wireless communication, comprising:
    transmitting a first message on a first cell, wherein the first message includes a request for an indication of current reception or an indication of desired reception of at least one service of a first set of multimedia broadcast multicast service (MBMS) services;
    delaying, for a duration, transmission of a second message on a second cell, wherein the second message includes a request for an indication of current reception or an  indication of desired reception of at least one service of a second set of MBMS services, wherein the duration is measured from transmission of the first message; and
    transmitting the second message after the duration.
  15. The method of claim 14, wherein the duration is based at least in part on a duration of a modification period of control signaling associated with the first message or the second message.
  16. A method for wireless communication, comprising:
    transmitting a first message on a first cell, wherein the first message includes a request for an indication of current reception or an indication of desired reception of at least one of a first set of multimedia broadcast multicast service (MBMS) services; and
    receiving a second message on the first cell, wherein the second message is responsive to a third message transmitted on a second cell, and wherein the second message is configured based at least in part on the first message being transmitted on the first cell and the third message being transmitted on the second cell.
  17. The method of claim 16, further comprising:
    transmitting the third message on the second cell, wherein the third message includes a request for an indication of current reception or an indication of desired reception of at least one of a second set of MBMS services.
  18. The method of claim 16, wherein the second message includes an indication that the third message was transmitted on the second cell.
  19. The method of claim 18, wherein the indication that the third message was transmitted on the second cell comprises a cell identification.
  20. The method of claim 19, further comprising:
    forwarding the second message to the second cell based at least in part on the cell identification.
  21. The method of claim 20, wherein the second message is forwarded to the second cell via an X2 interface.
  22. The method of claim 20, wherein the second message is forwarded to the second cell indirectly via an S1 interface or another network entity, or both.
  23. The method of claim 18, wherein the indication that the third message was transmitted on the second cell comprises a frequency identification or a multicast/broadcast over a single frequency network (MBSFN) area identification.
  24. The method of claim 23, further comprising:
    identifying the second cell based at least in part on the configuration of the second message; and
    forwarding the second message to the second cell based at least in part on the identification.
  25. The method of claim 24, further comprising:
    identifying the second cell based at least in part on the MBSFN area identification, a MBMS interest indication message, a system information block, a cell configuration of a neighbor base station, or a measurement report, or any combination thereof.
  26. The method of claim 16, wherein the first message and the third message comprise MBMS counting request messages.
  27. The method of claim 16, wherein the second message comprises an MBMS counting response message.
  28. An apparatus for wireless communication, comprising:
    means for receiving a first message on a first cell, wherein the first message includes a request for an indication of current reception or an indication of desired reception of at least one service of a first set of multimedia broadcast multicast service (MBMS) services;
    means for receiving a second message on a second cell, wherein the second message includes a request for an indication of current reception or an indication of desired reception of at least one service of a second set of MBMS services;
    means for configuring a third message in response to the request in the first message, wherein the configuration of the third message is based at least in part on receiving the first message on the first cell and receiving the second message on the second cell; and
    means for transmitting the third message on the second cell.
  29. The apparatus of claim 28, further comprising:
    means for determining that the first cell is a secondary cell (SCell) or a configurable secondary cell (C-SCell) ; and
    means for configuring the third message to include an indication that the first message was received on the first cell based at least in part on determining that the first cell is an SCell or a C-SCell.
  30. The apparatus of claim 28, wherein the means for configuring the third message comprises means for configuring the third message to include an indication that it is in response to the first message received on the first cell.
  31. The apparatus of claim 30, wherein the indication that the first message was received on the first cell comprises a cell identification.
  32. The apparatus of claim 30, wherein the indication that the first message was received on the first cell comprises a frequency identification.
  33. The apparatus of claim 30, wherein the indication that the first message was received on the first cell comprises a multicast/broadcast over a single frequency network (MBSFN) area identification.
  34. The apparatus of claim 28, further comprising:
    means for configuring a fourth message in response to the second message based at least in part on receiving the first message on the first cell and receiving the second message on the second cell; and
    means for transmitting the fourth message on the second cell.
  35. The apparatus of claim 28, wherein the means for configuring the third message comprises means for configuring the third message with an indication that is responsive to the request in the first message and the request in the second message.
  36. The apparatus of claim 28, further comprising:
    means for configuring the third message to include a selection of at least one service of the first set of MBMS services.
  37. The apparatus of claim 28, further comprising:
    means for transmitting a fourth message indicating a desired frequency over which to receive at least one service from the first set of MBMS services or from the second set of MBMS services.
  38. The apparatus of claim 37, further comprising:
    means for configuring the fourth message to include an identification of at least one service from the first set of MBMS services or from the second set of MBMS services.
  39. The apparatus of claim 28, wherein the first message and the second message comprise MBMS counting request messages.
  40. The apparatus of claim 28, wherein the third message comprises an MBMS counting response message.
  41. An apparatus for wireless communication, comprising:
    means for transmitting a first message on a first cell, wherein the first message includes a request for an indication of current reception or an indication of desired reception of at least one service of a first set of multimedia broadcast multicast service (MBMS) services;
    means for delaying, for a duration, transmission of a second message on a second cell, wherein the second message includes a request for an indication of current reception or an indication of desired reception of at least one service of a second set of MBMS services, wherein the duration is measured from transmission of the first message; and
    means for transmitting the second message after the duration.
  42. The apparatus of claim 41, wherein the duration is based at least in part on a duration of a modification period of control signaling associated with the first message or the second message.
  43. An apparatus for wireless communication, comprising:
    means for transmitting a first message on a first cell, wherein the first message includes a request for an indication of current reception or an indication of desired reception of at least one of a first set of multimedia broadcast multicast service (MBMS) services; and
    means for receiving a second message on the first cell, wherein the second message is responsive to a third message transmitted on a second cell, and wherein the second message is configured based at least in part on the first message being transmitted on the first cell and the third message being transmitted on the second cell.
  44. The apparatus of claim 43, further comprising:
    means for transmitting the third message on the second cell, wherein the third message includes a request for an indication of current reception or an indication of desired reception of at least one of a second set of MBMS services.
  45. The apparatus of claim 43, wherein the second message includes an indication that the third message was transmitted on the second cell.
  46. The apparatus of claim 45, wherein the indication that the third message was transmitted on the second cell comprises a cell identification.
  47. The apparatus of claim 46, further comprising:
    means for forwarding the second message to the second cell based at least in part on the cell identification.
  48. The apparatus of claim 47, wherein the second message is forwarded to the second cell via an X2 interface.
  49. The apparatus of claim 47, wherein the second message is forwarded to the second cell indirectly via an S1 interface or another network entity, or both.
  50. The apparatus of claim 45, wherein the indication that the third message was transmitted on the second cell comprises a frequency identification or a multicast/broadcast over a single frequency network (MBSFN) area identification.
  51. The apparatus of claim 50, further comprising:
    means for identifying the second cell based at least in part on the configuration of the second message; and
    means for forwarding the second message to the second cell based at least in part on the identification.
  52. The apparatus of claim 51, further comprising:
    means for identifying the second cell based at least in part on the MBSFN area identification, a MBMS interest indication message, a system information block, a cell configuration of a neighbor base station, or a measurement report, or any combination thereof.
  53. The apparatus of claim 43, wherein the first message and the third message comprise MBMS counting request messages.
  54. The apparatus of claim 43, wherein the second message comprises an MBMS counting response message.
  55. A mobile device for wireless communication, comprising:
    a processor;
    memory in electronic communication with the processor; and
    instructions stored in the memory and operable, when executed by the processor, to cause the mobile device to:
    receive a first message on a first cell, wherein the first message includes a request for an indication of current reception or an indication of desired reception of at least one service of a first set of multimedia broadcast multicast service (MBMS) services;
    receive a second message on a second cell, wherein the second message includes a request for an indication of current reception or an indication of desired reception of at least one service of a second set of MBMS services;
    configure a third message in response to the request in the first message, wherein the configuration of the third message is based at least in part on receiving the first message on the first cell and receiving the second message on the second cell; and
    transmit the third message on the second cell.
  56. A network device for wireless communication, comprising:
    a processor;
    memory in electronic communication with the processor; and
    instructions stored in the memory and operable, when executed by the processor, to cause the network device to:
    transmit a first message on a first cell, wherein the first message includes a request for an indication of current reception or an indication of desired reception of at least one service of a first set of multimedia broadcast multicast service (MBMS) services;
    delay, for a duration, transmission of a second message on a second cell, wherein the second message includes a request for an indication of current reception or an indication of desired reception of at least one service of a second set of MBMS services, wherein the duration is measured from transmission of the first message; and
    transmit the second message after the duration.
  57. A network device for wireless communication, comprising:
    a processor;
    memory in electronic communication with the processor; and
    instructions stored in the memory and operable, when executed by the processor, to cause the network device to:
    transmit a first message on a first cell, wherein the first message includes a request for an indication of current reception or an indication of desired reception of at least one of a first set of multimedia broadcast multicast service (MBMS) services; and
    receive a second message on the first cell, wherein the second message is responsive to a third message transmitted on a second cell, and wherein the second message is configured based at least in part on the first message being transmitted on the first cell and the third message being transmitted on the second cell.
  58. A non-transitory computer readable medium storing code for wireless communication, the code comprising instructions executable to:
    receive a first message on a first cell, wherein the first message includes a request for an indication of current reception or an indication of desired reception of at least one service of a first set of multimedia broadcast multicast service (MBMS) services;
    receive a second message on a second cell, wherein the second message includes a request for an indication of current reception or an indication of desired reception of at least one service of a second set of MBMS services;
    configure a third message in response to the request in the first message, wherein the configuration of the third message is based at least in part on receiving the first message on the first cell and receiving the second message on the second cell; and
    transmit the third message on the second cell.
  59. A non-transitory computer readable medium storing code for wireless communication, the code comprising instructions executable to:
    transmit a first message on a first cell, wherein the first message includes a request for an indication of current reception or an indication of desired reception of at least one service of a first set of multimedia broadcast multicast service (MBMS) services;
    delay, for a duration, transmission of a second message on a second cell, wherein the second message includes a request for an indication of current reception or an indication of desired reception of at least one service of a second set of MBMS services, wherein the duration is measured from transmission of the first message; and
    transmit the second message after the duration.
  60. A non-transitory computer readable medium storing code for wireless communication, the code comprising instructions executable to:
    transmit a first message on a first cell, wherein the first message includes a request for an indication of current reception or an indication of desired reception of at least one of a first set of multimedia broadcast multicast service (MBMS) services; and
    receive a second message on the first cell, wherein the second message is responsive to a third message transmitted on a second cell, and wherein the second message is configured based at least in part on the first message being transmitted on the first cell and the third message being transmitted on the second cell.
PCT/CN2016/094615 2016-08-11 2016-08-11 Multimedia broadcast multicast service signaling for multiple cells WO2018027792A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/094615 WO2018027792A1 (en) 2016-08-11 2016-08-11 Multimedia broadcast multicast service signaling for multiple cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/094615 WO2018027792A1 (en) 2016-08-11 2016-08-11 Multimedia broadcast multicast service signaling for multiple cells

Publications (1)

Publication Number Publication Date
WO2018027792A1 true WO2018027792A1 (en) 2018-02-15

Family

ID=61161666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/094615 WO2018027792A1 (en) 2016-08-11 2016-08-11 Multimedia broadcast multicast service signaling for multiple cells

Country Status (1)

Country Link
WO (1) WO2018027792A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024000293A1 (en) * 2022-06-29 2024-01-04 Mediatek Singapore Pte. Ltd. Methods and apparatus of multicast broadcast services transmission and reception on scell or non-serving cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102264040A (en) * 2011-04-29 2011-11-30 电信科学技术研究院 Method and device for reporting multimedia broadcast multicast service (MBMS) state
CN102469412A (en) * 2010-11-12 2012-05-23 中兴通讯股份有限公司 Method and system for receiving service under condition of carrier aggregation
US20140119263A1 (en) * 2012-10-26 2014-05-01 Qualcomm Incorporated Primary cell signaling for embms in carrier aggregation
US20150223212A1 (en) * 2014-01-31 2015-08-06 Samsung Electronics Co., Ltd. Method and apparatus for implementing dual connectivity

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102469412A (en) * 2010-11-12 2012-05-23 中兴通讯股份有限公司 Method and system for receiving service under condition of carrier aggregation
CN102264040A (en) * 2011-04-29 2011-11-30 电信科学技术研究院 Method and device for reporting multimedia broadcast multicast service (MBMS) state
US20140119263A1 (en) * 2012-10-26 2014-05-01 Qualcomm Incorporated Primary cell signaling for embms in carrier aggregation
US20150223212A1 (en) * 2014-01-31 2015-08-06 Samsung Electronics Co., Ltd. Method and apparatus for implementing dual connectivity

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024000293A1 (en) * 2022-06-29 2024-01-04 Mediatek Singapore Pte. Ltd. Methods and apparatus of multicast broadcast services transmission and reception on scell or non-serving cell

Similar Documents

Publication Publication Date Title
US11690082B2 (en) Capability and coverage determination for multimedia broadcast multicast service
US10171958B2 (en) Managing a multimedia broadcast multicast service using an MBMS relay device
JP6707552B2 (en) Additional transmission of system information
JP6706266B2 (en) Update system information
US10123344B2 (en) Methods and apparatus for multi-subframe scheduling
US10477443B2 (en) Cell selection depending on MBMS capability
JP2022191417A (en) On-demand system information
CN110476456B (en) User equipment autonomous serving cell selection in a new radio
US11071162B2 (en) Broadcast or multicast physical layer configuration and channel structure
JP6301447B2 (en) Service continuity with EMBMS support on non-independent carrier frequencies
CN112544094A (en) Idle cell reselection and user equipment capability signaling
EP3132630A1 (en) Techniques for transmitting data over an unlicensed radio frequency spectrum band in accordance with an agreement between operators
WO2016138662A1 (en) Control signaling for flexible duplex in wireless communications
EP2952022B1 (en) Method, apparatus and computer program product for broadcasting a multicast session in wireless communications
CN114531217B (en) Method, apparatus, and computer program product for ultra-reliable low latency communication with multiple transmitting and receiving points
US20180077689A1 (en) Multiple bandwidth operation
US20170338924A1 (en) Csi-rs design with dynamic subframe structure
JP6763881B2 (en) Offloading via simplified multi-flow
KR102351464B1 (en) Ultra reliable link design
WO2018027792A1 (en) Multimedia broadcast multicast service signaling for multiple cells
US20230328659A1 (en) Sidelink power control

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16912247

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16912247

Country of ref document: EP

Kind code of ref document: A1