WO2018026076A1 - Co2 absorbent spray nozzle and spray tower type co2 absorption device comprising same - Google Patents

Co2 absorbent spray nozzle and spray tower type co2 absorption device comprising same Download PDF

Info

Publication number
WO2018026076A1
WO2018026076A1 PCT/KR2017/000432 KR2017000432W WO2018026076A1 WO 2018026076 A1 WO2018026076 A1 WO 2018026076A1 KR 2017000432 W KR2017000432 W KR 2017000432W WO 2018026076 A1 WO2018026076 A1 WO 2018026076A1
Authority
WO
WIPO (PCT)
Prior art keywords
absorbent
nozzle
spray
reactor
pressure
Prior art date
Application number
PCT/KR2017/000432
Other languages
French (fr)
Korean (ko)
Inventor
이진원
조민기
최문경
Original Assignee
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항공과대학교 산학협력단 filed Critical 포항공과대학교 산학협력단
Publication of WO2018026076A1 publication Critical patent/WO2018026076A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/02Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/02Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape
    • B05B1/10Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape in the form of a fine jet, e.g. for use in wind-screen washers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/12Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means capable of producing different kinds of discharge, e.g. either jet or spray
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/14Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with multiple outlet openings; with strainers in or outside the outlet opening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to a CO2 absorbent spray nozzle and a spray tower type CO2 absorber including the same, and in particular to spray the absorbent uniformly in the form of droplets (droplet) in the spray tower CO2 absorbent spray to significantly improve the capture performance of carbon dioxide It relates to a nozzle and a spray tower type CO2 absorber including the same.
  • Carbon dioxide is one of the main causes of atmospheric warming.
  • the largest source of carbon dioxide is various combustion apparatuses such as an engine and a power plant, and chemical absorption using a liquid absorbent is well known as a representative technique for capturing and recovering carbon dioxide from exhaust gases emitted from these combustion apparatuses.
  • Chemical absorption is more economical than other technologies, and the CO2 capture rate and capacity is higher.
  • Collection techniques by chemical absorption can be broadly classified into a packing tower method and a spray tower method.
  • the filling tower method is to fill a small size of packing material inside the absorption tower and collect carbon dioxide by flowing an absorbent over the surface of the filling material.
  • the spray tower method sprays the absorbent into the spray tower in the form of small droplets. This method maximizes the contact area with the gas.
  • a thin film formed on the surface of the filler material is in contact with the target gas (carbon dioxide). Because of the small surface area created by the given amount of liquid, the gas-absorbing surface is confined to one side exposed to the gas, and the capture rate is slow because the gas adsorbed on the surface flows in one direction only from the surface into the filler.
  • target gas carbon dioxide
  • Liquid droplet
  • the theoretical collection performance is superior to that of the spray tower method compared to the absorption tower method.
  • Liquid droplet
  • Liquid has to have a contact area with the largest form between creating gas and a liquid which may have a given liquid, and the adsorbed gas on the surface to maximize the absorption speed because the spread in the center of droplets in all directions Because of the view.
  • the actual experiment shows that the spray tower method has a significantly lower gas collection performance than the packed tower method. Therefore, the existing commercialized capture device is mostly using the filling tower method. While the actual performance of the spray tower method is far short of the theoretical performance, the performance of the packed tower method is close to the theoretical performance and has several practical advantages.
  • a regeneration facility is provided for repetitive use by regenerating expensive absorbents.
  • the regeneration facility basically has a mechanism to heat the absorbent used for gas collection, return it to its original state and feed it back to the collecting device.
  • the biggest obstacle to the practical use of the facility is the cost of thermal energy for regeneration.
  • thermal energy for regeneration should be kept to a minimum.
  • the thermal energy required for regeneration is directly proportional to the amount of absorbent to be heated. Therefore, the use of absorbents should be minimized to minimize the use of thermal energy.
  • the absorbent is reduced, the collection performance of the gas (carbon dioxide contained in the exhaust gas) of the device is inevitably deteriorated.
  • the collection tower type capture performance is good.
  • it is difficult to control the thickness or speed of the absorbent liquid film (film) which determines the collection performance by the current technology, and thus it is difficult to expect the improvement of the filling tower performance.
  • the spray tower method is theoretically expected to outperform the packed tower method, but the actual performance is quite low.
  • gas adsorbed on the surface of the droplet must diffuse into the droplet to continuously absorb new gas on the surface.
  • the larger the droplets the longer the diffusion time inside (approximately proportional to the square of the diameter), but the less time the reactor falls (roughly inversely proportional to the diameter), and the larger the droplets, the lower the saturation.
  • the amount of liquid in the droplets is proportional to the cube of the diameter.
  • most of the supplied liquids (absorbents) are concentrated in a large droplet state, and a large droplet of absorbent has low saturation, so the overall average saturation is inevitably lowered.
  • the more uniform the size distribution of the droplets the more the gas absorption proceeds substantially the same, which in turn means that the overall average saturation can be increased.
  • the technical problem to be solved by the present invention is to provide a CO2 absorbent spray nozzle for spraying the CO2 absorbent in the form of droplets (droplet) to have an optimal spatiotemporal distribution in the reactor and a spray tower type CO2 absorber including the same.
  • a nozzle body having a lower open tubular structure having a single CO 2 absorbent supply pipe connected to the upper portion thereof, and having any volume of the absorbent containing portion therein;
  • a nozzle plate installed in the lower opening of the nozzle body, the nozzle plate having a plurality of nozzle holes having the same size or different one or more of arrangement, shape, size, and number of areas in the entire area.
  • the pressure tube is connected to the other side of the upper part of the nozzle body, and the CO 2 absorbent filled to the receiving part at an arbitrary height under the control of a pressure regulator connected to the pressure tube is formed in the form of droplets atomized through the nozzle hole. It provides a CO 2 absorbent spray nozzle, characterized in that spraying in a uniform distribution in the collection reactor.
  • the absorbent accommodating part inside the nozzle body may be divided into a plurality of partition partition walls, and the nozzle plate is a CO2 capture reactor in combination with a single structure or a plurality of unit nozzle plates corresponding to the cross-sectional shape and size of the CO2 capture reactor. It may be configured in the form of an assembly structure to correspond to the cross-sectional shape and size of.
  • the nozzle plate may be configured in the form of a convex plate or a concave plate in which the outlet direction of each nozzle hole is the same, or a convex plate or a concave plate that is concave up or down.
  • the shape and size of nozzle holes in the same area are the same, and at least one or more of the arrangement, shape, size and number of nozzle holes are different between different areas, so that optimal CO 2 absorption is achieved. It is desirable to allow the spraying of the CO 2 absorbent to take place in a distribution that can be exerted.
  • the CO2 absorbent spray nozzle is controlled by the pressure regulator to control the CO2 absorbent spray flow rate and pressure through the nozzle plate by adjusting the pressure inside the receiving portion by the pressure control gas supplied to the receiving portion through the pressure tube.
  • the pressure regulator to control the CO2 absorbent spray flow rate and pressure through the nozzle plate by adjusting the pressure inside the receiving portion by the pressure control gas supplied to the receiving portion through the pressure tube.
  • a spray tower type CO2 absorber that sprays a CO2 absorbent into a reactor in the form of droplets to absorb and recover CO2.
  • a CO2 capture reactor having a reaction space in which a mixed gas introduced through the lower mixed gas inlet is moved upwardly and a CO2 capture reaction is caused by a CO2 absorbent;
  • a CO2 absorbent spray nozzle installed at an upper end of the CO2 capture reactor and spraying a CO2 absorbent in a uniform distribution into the reaction space in the form of atomized droplets;
  • a spray baffle installed in the CO2 capture reactor above the mixed gas inlet and having a plurality of slits or holes formed in the reaction space so that the mixed gas to be treated flows into a uniform velocity distribution; It provides a CO2 absorption device of the type.
  • the absorbent outlet may be formed at the bottom side of the CO2 capture reactor, and the mixed gas outlet may be formed at the top of the CO2 capture reactor on one side or on both sides of the CO2 absorbent spray nozzle opposite the absorbent outlet.
  • baffles may be formed with slits or holes having the same size at equal intervals, or slits or holes with different sizes may be formed at equal intervals.
  • slits or holes of different sizes may be formed at uneven intervals.
  • the CO2 absorbent spray nozzle from at least one droplet saturation sensor provided in the CO2 capture reactor and the droplet saturation information for each position provided by the droplet saturation sensor
  • the control unit may further include a control unit for outputting a pressure control signal, wherein the control unit determines a control value of the pressure regulator from the droplet saturation information provided by the droplet saturation sensor, and controls the pressure regulator with the determined control value to control the CO 2 absorbent.
  • the CO 2 absorbent spray flow rate and pressure through the spray nozzle can be controlled.
  • the liquid absorbent may be sprayed to have an optimal spatiotemporal distribution in the reactor in the form of droplets of uniform size.
  • the absorbent spray nozzle unit by eliminating the non-uniformity of the droplet size having the greatest effect on the performance in the spray tower type capture technology through the absorbent spray nozzle unit, a significant performance improvement in CO2 treatment through the spray tower method can be expected.
  • the gas inlet Baffles can be applied to resolve the nonuniformity of gas flow, another major factor that greatly affects the collection performance.
  • Figure 1 is a schematic diagram showing a preferred embodiment of the spray tower type CO2 absorber comprising a CO2 absorbent spray nozzle.
  • FIG. 2 through 4 illustrate various preferred embodiments of the baffle shown in FIG. 1.
  • FIG. 5 is an enlarged conceptual view of the CO 2 absorbent spray nozzle shown in FIG. 1;
  • 6 to 7 illustrate various embodiments of the nozzle plate.
  • Fig. 8 illustrates a preferred arrangement of nozzle holes formed in the nozzle plate.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • ... unit means a unit that processes at least one function or operation, which may be implemented by hardware or software or a combination of hardware and software. Can be.
  • FIG. 1 is a schematic diagram showing a preferred embodiment of a spray tower type CO2 absorber including a CO2 absorbent spray nozzle.
  • the spray tower type CO2 absorber 1 is largely a spray tower type CO2 absorber that sprays a CO2 absorbent into the reactor 10 in the form of droplets to absorb CO2 from the mixed gas.
  • a CO 2 capture reactor 10 which forms a reaction space 100 in which a CO 2 capture reaction occurs, and a CO 2 absorbent spray nozzle 20 spraying the CO 2 absorbent into the reaction space 100 in the form of droplets.
  • the CO 2 capture reactor 10 has a reaction space 100 formed therein and a mixed gas inlet 12 at one lower side thereof.
  • the mixed gas containing the CO 2 to be treated is introduced into the reaction space 100 through the mixed gas inlet 12, and the mixed gas is moved upward by the specific gravity difference with air, among which CO 2 is the CO 2 absorbent spray nozzle. 20 is trapped in the CO2 absorbent to spray.
  • An absorbent outlet 16 is formed at the bottom side of the CO 2 capture reactor 10.
  • the mixed gas outlet 14 is formed on the upper side of the CO2 capture reactor 10 on one side or both sides of the opposite CO2 absorbent spray nozzle 20. Accordingly, the mixed gas from which the CO 2 is removed through the capture reaction is discharged to the outside through the mixed gas outlet 14, and the absorbent that collects the CO 2 is moved to the subsequent treatment facility through the absorbent outlet 16.
  • Subsequent treatment facilities may be configured to regenerate, via heating, the absorbent that captured the CO 2.
  • the subsequent treatment facility may be configured in the form of a heating means, such as one or more burners and a condenser, wherein the CO 2 absorbent spray nozzle 20 is located above the reaction space 100 of the CO 2 capture reactor 10. CO 2 absorber is sprayed in a uniform distribution in the form of atomized droplets.
  • the CO 2 absorbent spray nozzle 20 is installed on the top of the CO 2 capture reactor 10 to spray the CO 2 absorbent in a uniform distribution in the reaction space 100 in the form of droplets. Unlike the conventional method of forming droplets from a liquid column or a liquid film using centrifugal force or electromagnetic vibration, it has a simple mechanism of separating and producing a very thin liquid column using only hydrodynamic instability due to the surface tension of the liquid.
  • the spray flow rate and pressure of the droplet form CO 2 absorbent through the CO 2 absorbent spray nozzle 20 can be adjusted from the control of the pressure regulator 70 by the controller 60.
  • the control unit 60 is preferably a pressure of the CO2 absorbent spray nozzle 20 from the droplet saturation information for each position in the reaction space 100 provided by one or more droplet saturation sensor 50 provided in the CO2 capture reactor 10 Output a control signal.
  • the controller 60 determines a control value of the pressure regulator 70 from information provided by the droplet saturation sensor 50. And by controlling the pressure regulator 70 to the determined control value by adjusting the amount of pressure control gas supplied to the inner receiving portion 220 of the CO2 absorbent spray nozzle 20, the flow rate of the mixed gas in the reactor 10 Depending on the distribution, the CO2 absorbent is controlled to be sprayed at a spray flow rate and pressure that can achieve an optimal trapping performance.
  • the pressure regulator 70 by feedback control of the pressure regulator 70 by the controller 60 performed based on the information provided by the droplet saturation sensor 50, it is introduced into the reaction space 100 through the mixed gas inlet 12 and is raised.
  • the CO2 absorbent is sprayed at a spray flow rate and a pressure at which an optimal trapping performance can be exhibited according to the flow rate or distribution in the reaction space 100 of the treated gas mixture (combustion gas containing CO2 components) to be moved.
  • Reference numeral 30 denotes a baffle mounted in the CO 2 capture reactor 10 above the mixed gas inlet 12.
  • the baffle 30 is introduced into the reaction space 100 through the mixed gas inlet 12 in a uniform velocity distribution so that the optimum capture reaction with the CO 2 absorbent in the reaction space 100 can occur. It may be configured in the form of a porous panel having a plurality of slits (Slit, 300) or holes (Hole).
  • FIGS. 2 to 4 are views illustrating various preferred embodiments of the baffle applied to the present embodiment, and slit baffles are shown as an example.
  • the slits Slit 300 formed in the baffle 30 may be formed at equal intervals with the same size (see FIG. 2), or may be formed at equal intervals with different sizes (FIG. 3). Reference). Unlike this, as illustrated in FIG. 4, slits 300 having different sizes may be formed at uneven intervals. Of course, it is not limited to the illustrated slit (Slit, 300) shape can be replaced by a hole (Hole).
  • the width (or size of the hole) of the slit 300 increases, or the distance between the slits 300 (or the distance between the holes) is narrowed, so that more slits (
  • the mixed gas introduced from the mixed gas inlet 12 can flow into the reaction space 100 at a uniform velocity distribution (flow velocity distribution) while passing through the baffle 30. It is good.
  • the velocity distribution may vary depending on the position of the mixed gas inlet 12. Therefore, the distribution of the inhomogeneous flow resistance of the inlet side of the baffle 30, which depends on the position of the mixed gas inlet 12, is derived through pre-simulation or repeated experiments, and after passing through the baffle 30 based on the result, the gas Arrange the slits 300, or holes so that the flow velocity and pressure of V have a desired flow velocity and pressure distribution.
  • FIG. 5 is an enlarged conceptual view of the CO 2 absorbent spray nozzle shown in FIG. 1.
  • the CO 2 absorbent spray nozzle 20 includes a nozzle body 22 and a nozzle plate 24 mounted below the nozzle body 22. Any volume of CO 2 absorbent is accommodated in the nozzle body 22, the CO2 absorbent filled in the nozzle body 22 is sprayed in the form of droplets (fine droplets) of fine size in the reaction space 100 described above. A plurality of nozzle holes 240 having a fine size are formed.
  • the nozzle body 22 is a bottom open cylindrical structure having any volume of absorbent accommodating portion 220 formed therein, and supplies a single CO 2 absorbent to the upper portion so that the CO 2 absorbent is always maintained at a constant level.
  • Pipe 23 may be connected.
  • the pressure tube 40 is connected to the other side of the upper part of the nozzle body 22, and the pressure regulating gas is supplied to the upper space of the receiving part 220 through the pressure tube 40.
  • the pressure regulating gas supplied through the pressure tube 40 is applied to the surface of the CO 2 absorbent in the nozzle body 22 through the nozzle hole 240 and the CO 2 absorbent in the form of droplets of CO 2 at a predetermined spray flow rate and pressure. It can be sprayed in a uniform distribution in the collection reactor 10, the pressure regulator 70, which is operated under the control of the control unit 60 controls the amount of pressure control gas supplied to the pressure tube (40).
  • the controller 60 determines a control value of the pressure regulator 70 from information provided by the droplet saturation sensor 50. And to control the pressure regulator 70 to the determined value to adjust the amount of pressure control gas supplied to the receiving portion (220). Accordingly, the CO 2 absorbent may be sprayed at a spray flow rate and a pressure at which the optimum trapping performance can be exhibited according to the flow rate or distribution of the mixed gas in the CO 2 trapping reactor 10.
  • the nozzle plate 24 is installed in the lower opening of the nozzle body 22.
  • the nozzle plate 24 is provided with a plurality of nozzle holes 240 having the same size or different one or more of arrangement, shape, size, and number of the areas on the front surface.
  • the size of the nozzle hole 240 formed in the nozzle plate 24 may vary depending on the cross-sectional area of the CO 2 capture reactor 10 in consideration of the mixed gas treatment capacity, but may preferably be 10 to 1000 ⁇ m.
  • 6 to 7 illustrate various embodiments of the nozzle plate.
  • the nozzle plate 24 is a single structure (FIG. 6A) corresponding to the cross-sectional shape and size of the CO 2 capture reactor 10 or a plurality of unit nozzle plates having a fan shape ( 24a ⁇ 24d) may be a prefabricated structure configured to correspond to the cross-sectional shape and size of the CO2 capture reactor 10.
  • the nozzle body 22 may also be divided into a plurality of inner receiving portions 220 by partition partitions (not shown) installed therein.
  • the nozzle plate 24 may be configured in the form of a flat plate having the same exit direction of each nozzle hole 240 as shown in FIG.
  • each nozzle hole formed in the nozzle plate 24 may be configured in the form of a convex plate in which the center is convex upward, as shown in FIG. 7B, or a concave plate in which the center illustrated in FIG. 7C is convex downward.
  • the outlet direction of 240 may be configured to be different.
  • FIG. 8 is a diagram illustrating a preferred arrangement of nozzle holes formed in the nozzle plate.
  • the nozzle hole 240 may be formed in the same size and shape throughout the nozzle plate 24, as shown in FIG. However, in this case, the spacing or arrangement between the nozzle holes 240 and the number (density) distribution for each location may be varied depending on the size, processing capacity, mixed gas injection amount, etc. of the CO2 capture reactor 10. Therefore, it is not limited to a specific interval, arrangement, or number (density) distribution by location.
  • the droplets can be distributed in the CO2 capture reactor 10 with a space distribution and a size distribution that can maximize the collection performance of the gas to be treated (CO2), wherein the space distribution and the size distribution of the droplets are CO2 capture reactors. (10) In consideration of the cross-sectional distribution of the gas flow rate, it can be derived by analysis or iterative experiment through pre-simulation to have a distribution that can achieve the optimum collection efficiency.
  • the nozzle hole 240 may also be formed differently in size, shape, arrangement, etc. for each region, as illustrated in FIG. 8B.
  • the nozzle holes 240 in the same area A1 may be formed in the same shape, size, arrangement, and number, and among the arrangement, shape, size, and number of nozzle holes 240 between the different areas A1 and A2. At least one or more may be formed in different forms from each other.
  • the interval or arrangement, shape, size, and number (density) distribution between the nozzle holes 240 may vary depending on the device environment. Density) distribution is not limited. As long as the size distribution satisfies the monodistribution distribution with a geometric standard deviation of 1.2 or less, it is only necessary to construct the droplets.
  • the liquid absorbent may be sprayed to have an optimal space-time distribution in the reactor in the form of droplets (droplet) of uniform size.
  • droplets droplets
  • control unit 70 pressure regulator
  • reaction space 220 receiving part

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

Disclosed are a CO2 absorbent spray nozzle and a spray tower type CO2 absorption device comprising the same. A CO2 absorbent spray nozzle according to an aspect of the present invention comprises: a nozzle body having a cylindrical structure in which a single CO2 absorbent supply pipe is connected to the upper portion thereof, an absorbent receiving part having a predetermined volume is formed inside thereof, and an opening is formed in the lower portion thereof; and a nozzle plate installed in the lower opening of the nozzle body and having a plurality of nozzle holes, the sizes of which are the same over the entire nozzle plate or are different in each area of the nozzle plate, wherein a pressure pipe is connected to the upper portion of the nozzle body on the other side thereof, and under the control of a pressure regulator connected to the pressure pipe, a CO2 absorbent filled to a predetermined height in the receiving part is sprayed into a CO2 capturing reactor through the nozzle holes, such that the CO2 absorbent is uniformly distributed in the form of atomized droplets in the reactor.

Description

CO2 흡수제 분무 노즐 및 이를 포함하는 분무탑 방식의 CO2 흡수장치CO2 absorbent spray nozzle and spray tower type CO2 absorber including the same
본 발명은 CO2 흡수제 분무 노즐 및 이를 포함하는 분무탑 방식의 CO2 흡수장치에 관한 것으로, 특히 흡수제를 액적(droplet) 형태로 균일하게 분무탑 내에 분사하여 이산화탄소의 포집성능을 획기적으로 개선시킨 CO2 흡수제 분무 노즐 및 이를 포함하는 분무탑 방식의 CO2 흡수장치에 관한 것이다.The present invention relates to a CO2 absorbent spray nozzle and a spray tower type CO2 absorber including the same, and in particular to spray the absorbent uniformly in the form of droplets (droplet) in the spray tower CO2 absorbent spray to significantly improve the capture performance of carbon dioxide It relates to a nozzle and a spray tower type CO2 absorber including the same.
이산화탄소는 대기 온난화의 주된 원인 중 하나이다. 이산화탄소의 가장 큰 배출원은 엔진이나 발전소 등의 각종 연소장치이며, 이들 연소장치에서 배출되는 배기가스로부터 이산화탄소를 포집 및 회수하는 대표적인 기술로써 액체 흡수제를 이용한 화학적 흡수법이 잘 알려져 있다. 화학적 흡수법은 다른 기술에 비해 경제적이고 이산탄소의 포집속도와 용량이 크다. Carbon dioxide is one of the main causes of atmospheric warming. The largest source of carbon dioxide is various combustion apparatuses such as an engine and a power plant, and chemical absorption using a liquid absorbent is well known as a representative technique for capturing and recovering carbon dioxide from exhaust gases emitted from these combustion apparatuses. Chemical absorption is more economical than other technologies, and the CO2 capture rate and capacity is higher.
화학적 흡수에 의한 포집기술은 크게, 충진탑 방식과 분무탑 방식으로 분류될 수 있다. 충진탑 방식은 흡수탑 내부에 작은 크기의 충진재(packing material)를 채우고 충진재 표면 위로 흡수제를 흘려 보내 이산화탄소를 포집하는 방식이며, 분무탑 방식은 흡수제를 작은 액적(droplet) 형태로 분무탑 내에 분무하여 기체와의 접촉면적을 극대화한 방식이다. Collection techniques by chemical absorption can be broadly classified into a packing tower method and a spray tower method. The filling tower method is to fill a small size of packing material inside the absorption tower and collect carbon dioxide by flowing an absorbent over the surface of the filling material. The spray tower method sprays the absorbent into the spray tower in the form of small droplets. This method maximizes the contact area with the gas.
충진탑 방식의 경우 충진재의 표면에 형성된 얇은 막으로 된 부분이 대상 기체(이산화탄소)와 접촉면이 된다. 때문에 주어진 액체 양으로 만들어지는 표면적이 작고, 기체를 흡수하는 표면이 기체에 노출된 한 면에만 국한되며, 또한 표면에 흡착된 기체가 표면에서 충진재 내측으로 한 방향으로만 흐르기 때문에 포집속도가 느리다. In the case of the packed tower method, a thin film formed on the surface of the filler material is in contact with the target gas (carbon dioxide). Because of the small surface area created by the given amount of liquid, the gas-absorbing surface is confined to one side exposed to the gas, and the capture rate is slow because the gas adsorbed on the surface flows in one direction only from the surface into the filler.
또한, 고가의 충진재가 사용되기 때문에 제작에 비용소요가 크며, 운전 중 흡수제에 생기는 고형분으로 인해 충진재에 막힘(fouling) 등이 생겨 성능이 떨어지는 단점이 있고, 설비가 차지하는 공간이 크며 설치 및 운용에 비용이 많이 드는 단점이 있다. 물론 기체와 흡수제의 부하변동에 융통성 있고 압력 손실이 크지 않으며 제작이 용이하다는 실용적인 장점도 있다.In addition, since expensive fillers are used, they are costly to manufacture, and there is a drawback in performance due to clogging (filling) of the fillers due to solids generated in the absorbent during operation. There is a costly disadvantage. Of course, there are practical advantages such as flexibility in load fluctuation of gas and absorbent, low pressure loss and ease of manufacture.
이론적인 포집성능은 분무탑 방식이 상기 흡수탑 방식에 비해에 비해 우수하다. 액적(droplet)은 주어진 액체를 가지고 만들 수 있는 기체와 액체 사이의 접촉면적이 가장 큰 형태이고, 또한 표면에 흡착된 기체가 모든 방향에서 액적의 중심으로 확산되기 때문에 포집속도를 극대화시킬 수 있을 것으로 보기 때문이다. The theoretical collection performance is superior to that of the spray tower method compared to the absorption tower method. Liquid (droplet) has to have a contact area with the largest form between creating gas and a liquid which may have a given liquid, and the adsorbed gas on the surface to maximize the absorption speed because the spread in the center of droplets in all directions Because of the view.
그러나 실제 실험에 의하면 분무탑 방식이 충진탑 방식에 비해 기체 포집성능이 상당히 낮은 수준으로 나타나고 있다. 따라서 기존의 상용화된 포집장치는 대부분이 충진탑 방식을 사용하고 있다. 분무탑 방식의 실제 성능이 이론적 성능에 한참 못 미치는 반면, 충진탑 방식의 성능은 이론적 성능에 가깝고, 여러 실용적 장점이 있기 때문이다. However, the actual experiment shows that the spray tower method has a significantly lower gas collection performance than the packed tower method. Therefore, the existing commercialized capture device is mostly using the filling tower method. While the actual performance of the spray tower method is far short of the theoretical performance, the performance of the packed tower method is close to the theoretical performance and has several practical advantages.
한편, 실용적인 이산화탄소 포집장치에 사용되는 흡수제는 상당히 고가이다. 따라서 고가의 흡수제를 재생시켜 반복 사용을 위해 재생설비를 구비하고 있다. 재생설비는 기본적으로 기체 포집에 사용된 흡수제에 열을 가해 원래의 상태로 되돌려 포집장치로 다시 공급하는 메커니즘을 갖는다. 설비 실용화에 가장 큰 걸림돌이 바로 재생에 소요되는 열에너지 비용이다. On the other hand, absorbents used in practical carbon dioxide capture devices are quite expensive. Therefore, a regeneration facility is provided for repetitive use by regenerating expensive absorbents. The regeneration facility basically has a mechanism to heat the absorbent used for gas collection, return it to its original state and feed it back to the collecting device. The biggest obstacle to the practical use of the facility is the cost of thermal energy for regeneration.
장치 운영의 경제성을 확보하기 위해서는 재생에 필요한 열에너지의 사용을 최대한 낮추어야 한다. 재생에 소요되는 열에너지는 피가열 대상물인 흡수제의 양에 정비례한다. 때문에 열에너지의 사용을 최소화하려면 흡수제의 사용을 최대한 줄여야 한다. 하지만 흡수제를 줄이면 장치의 기체(배출가스에 포함된 이산화탄소)의 포집성능은 저하될 수 밖에 없다.In order to ensure the economics of the operation of the device, the use of thermal energy for regeneration should be kept to a minimum. The thermal energy required for regeneration is directly proportional to the amount of absorbent to be heated. Therefore, the use of absorbents should be minimized to minimize the use of thermal energy. However, if the absorbent is reduced, the collection performance of the gas (carbon dioxide contained in the exhaust gas) of the device is inevitably deteriorated.
실험에 의하면 충진탑 방식의 포집성능이 좋다. 하지만 충진탑 방식의 경우 현재 기술로는 포집성능을 좌우하는 흡수제 액체 필름(film)의 두께나 속도를 더 이상 조절하기 곤란하며, 따라서 충진탑의 성능개선을 기대하기 어렵다. 분무탑 방식은 이론적으로는 충진탑방식에 비해 성능이 더 높을 것으로 기대되지만 실제의 성능은 상당히 낮다. According to the experiment, the collection tower type capture performance is good. However, in the case of the filling tower method, it is difficult to control the thickness or speed of the absorbent liquid film (film) which determines the collection performance by the current technology, and thus it is difficult to expect the improvement of the filling tower performance. The spray tower method is theoretically expected to outperform the packed tower method, but the actual performance is quite low.
분무탑 내의 실제 조건이 이론에서 가정하는 이상적 조건과는 상당히 달라 예측이 어려운 여러 요인이 작용하기 때문이다. 그 중에서도 주된 요인은, 흡수탑 내 기체의 유동속도 불균일, 분무 액적(droplet)의 공간적 불균일한 분포, 분무 액적의 불균일 크기, 그리고 분무 액적 중 큰 액적의 벽으로의 유실 등을 들 수 있다. 그 중에서도 불균일한 액적 크기가 가장 큰 주된 요인이다.This is because the actual conditions in the spray tower are quite different from the ideal conditions assumed in theory, and there are many factors that are difficult to predict. Among the main factors that are, and the like can be given flow rate of the gas in the absorption tower non-uniform, a spray droplet (droplet) spatially non-uniform distribution, the spray droplet size non-uniformity, and spraying a large amount of loss of the wall of the enemy drops of. Among them, non-uniform droplet size is the main factor.
분무탑 방식의 경우 액적(흡수제) 표면에 흡착된 기체가 액적 내부로 확산해 들어가야만 표면에 새로운 기체를 계속해서 흡수할 수 있다. 그러나 액적이 클수록 내부로의 확산시간은 길어지는 대신에(대략 직경의 제곱에 비례) 반응기에서의 낙하하는 시간은 오히려 감소하여(대략 직경에 반비례) 액적이 클수록 포화도는 급격히 낮아진다. In the case of the spray tower method, gas adsorbed on the surface of the droplet (absorbent) must diffuse into the droplet to continuously absorb new gas on the surface. However, the larger the droplets, the longer the diffusion time inside (approximately proportional to the square of the diameter), but the less time the reactor falls (roughly inversely proportional to the diameter), and the larger the droplets, the lower the saturation.
또한, 액적의 액체 양은 직경의 세제곱에 비례한다. 때문에 공급되는 액체(흡수제)는 대부분이 큰 액적 상태로 몰려있게 되고, 큰 액적의 흡수제는 포화도가 낮기 때문에 전체적인 평균 포화도는 낮아질 수 밖에 없다. 반대로 액적의 크기분포를 균일하게 하면 할수록 기체 흡수가 거의 동일하게 진행되므로 결과적으로는 전체적인 평균 포화도를 증가시킬 수 있음을 의미한다.In addition, the amount of liquid in the droplets is proportional to the cube of the diameter. As a result, most of the supplied liquids (absorbents) are concentrated in a large droplet state, and a large droplet of absorbent has low saturation, so the overall average saturation is inevitably lowered. On the contrary, the more uniform the size distribution of the droplets, the more the gas absorption proceeds substantially the same, which in turn means that the overall average saturation can be increased.
분무탑 방식의 성능 개선을 위한 노력이 다방면으로 이루지고 있다. 대부분의 연구는 흡수 효율 증대를 목표로 한다. 그러나 흡수제의 유량을 증가시키거나 기체 유동 또는 액적 유동에 회전 성분을 주는 정도의 제한적인 시도에 머무르고 있는 실정이며, 이러한 시도에도 불구하고 그로부터 얻는 개선효과는 상당히 미미한 수준이다. Efforts to improve the performance of the spray tower method has been made in many ways. Most studies aim to increase absorption efficiency. However, there is a limited attempt to increase the flow rate of the absorbent or to give the rotational component to the gas flow or the droplet flow, and despite these attempts, the improvement effect obtained from them is very small.
더욱이, 흡수제의 유량을 증가시키는 것은 흡수효율을 증가시키기는 효과는 분명 있으나, 앞서 언급했듯이 재생에 보다 많은 열에너지를 필요로 하기 때문에 경제성 측면에서 불리하다는 딜레마(dilemma)가 있다. 결국, 분무탑 내에 분무되는 액적의 크기분포를 균일하게 하는 방안이 평균 포화도를 증가시킬 수 있는 유일한 해결책이며 이에 본 발명을 창안하기에 이르렀다. Moreover, while increasing the flow rate of the absorbent is obviously effective in increasing the absorption efficiency, as mentioned above, there is a dilemma that is disadvantageous in terms of economic efficiency because more heat energy is required for regeneration. As a result, the method of uniformizing the size distribution of the droplets sprayed in the spray tower is the only solution that can increase the average saturation, and thus, the present invention has been devised.
본 발명이 해결하고자 하는 기술적 과제는, CO2 흡수제를 액적(droplet) 형태로 반응기 내에 최적 시공간분포를 가지도록 분무하는 CO2 흡수제 분무 노즐 및 이를 포함하는 분무탑 방식의 CO2 흡수장치를 제공하고자 하는 것이다.The technical problem to be solved by the present invention is to provide a CO2 absorbent spray nozzle for spraying the CO2 absorbent in the form of droplets (droplet) to have an optimal spatiotemporal distribution in the reactor and a spray tower type CO2 absorber including the same.
과제의 해결 수단으로서 본 발명의 일 측면에 따르면, According to one aspect of the present invention as a means for solving the problem,
CO2 포집 반응기의 내부에 CO2 흡수제를 분무하는 노즐로서, A nozzle for spraying a CO 2 absorbent inside the CO 2 capture reactor,
상부에 단일의 CO2 흡수제 공급배관이 연결되며, 내부에 임의 체적의 흡수제 수용부가 형성된 하부 개방형 통형 구조의 노즐바디; 및A nozzle body having a lower open tubular structure having a single CO 2 absorbent supply pipe connected to the upper portion thereof, and having any volume of the absorbent containing portion therein; And
노즐바디의 하부 개구부에 설치되며, 전면에 걸쳐 크기가 동일하거나 영역마다 배열, 형상, 크기 및 개수 중 하나 이상이 서로 다른 다수의 노즐구멍이 형성된 노즐판;을 포함하며, And a nozzle plate installed in the lower opening of the nozzle body, the nozzle plate having a plurality of nozzle holes having the same size or different one or more of arrangement, shape, size, and number of areas in the entire area.
상기 노즐바디의 상부 다른 일측에 압력관이 연결되고, 압력관에 연결된 하나의 압력조절기의 통제를 받아 상기 수용부에 임의 높이로 채워진 CO2 흡수제를 상기 노즐구멍을 통해 미립화된 액적(droplet) 형태로 상기 CO2 포집 반응기 내에 균일한 분포로 분무하는 것을 특징으로 하는 CO2 흡수제 분무 노즐을 제공한다.The pressure tube is connected to the other side of the upper part of the nozzle body, and the CO 2 absorbent filled to the receiving part at an arbitrary height under the control of a pressure regulator connected to the pressure tube is formed in the form of droplets atomized through the nozzle hole. It provides a CO 2 absorbent spray nozzle, characterized in that spraying in a uniform distribution in the collection reactor.
여기서, 상기 노즐바디 내부의 상기 흡수제 수용부가 구획 격벽을 통해 다수로 구획될 수 있으며, 노즐판은 CO2 포집 반응기의 단면형상과 크기에 대응되는 단일 구조체 또는 다수의 단위 노즐판을 조합하여 CO2 포집 반응기의 단면형상과 크기에 대응하도록 된 조립 구조체의 형태로 구성될 수 있다.Here, the absorbent accommodating part inside the nozzle body may be divided into a plurality of partition partition walls, and the nozzle plate is a CO2 capture reactor in combination with a single structure or a plurality of unit nozzle plates corresponding to the cross-sectional shape and size of the CO2 capture reactor. It may be configured in the form of an assembly structure to correspond to the cross-sectional shape and size of.
바람직하게, 상기 노즐판은 각 노즐구멍의 출구방향이 동일한 평판 또는 중심부가 위로 볼록하거나 아래로 오목한 볼록판 또는 오목판 형태로 구성되어 노즐구멍의 출구방향이 서로 다른 구성일 수 있다. Preferably, the nozzle plate may be configured in the form of a convex plate or a concave plate in which the outlet direction of each nozzle hole is the same, or a convex plate or a concave plate that is concave up or down.
또한, 영역 별로 구획된 경우, 같은 영역 안에 있는 노즐구멍의 형상과 크기는 동일하고, 다른 영역 간에는 노즐 구멍의 배열, 형상, 크기 및 개수 중 적어도 하나 이상을 서로 다르게 구성함으로써, 최적의 CO2 흡수가 발휘될 수 있는 분포로 CO2 흡수제의 분무가 이루어지도록 하는 것이 바람직하다.In addition, when partitioned by area, the shape and size of nozzle holes in the same area are the same, and at least one or more of the arrangement, shape, size and number of nozzle holes are different between different areas, so that optimal CO 2 absorption is achieved. It is desirable to allow the spraying of the CO 2 absorbent to take place in a distribution that can be exerted.
또한, 본 발명의 일 측면에 따른 CO2 흡수제 분무 노즐은 압력조절기의 통제로 압력관을 통해 수용부에 공급되는 압력조절가스에 의한 수용부 내부 압력 조절로서 노즐판을 통한 CO2 흡수제 분무유량과 압력이 조절될 수 있다.In addition, the CO2 absorbent spray nozzle according to an aspect of the present invention is controlled by the pressure regulator to control the CO2 absorbent spray flow rate and pressure through the nozzle plate by adjusting the pressure inside the receiving portion by the pressure control gas supplied to the receiving portion through the pressure tube. Can be.
과제의 해결 수단으로서 본 발명의 다른 측면에 따르면, According to another aspect of the present invention as a means of solving the problem,
CO2흡수제를 액적(droplet) 형태로 반응기 내에 분무하여 CO2 를 흡수 및 회수하는 분무탑 방식의 CO2 흡수장치로서, A spray tower type CO2 absorber that sprays a CO2 absorbent into a reactor in the form of droplets to absorb and recover CO2.
하부의 혼합기체 주입구를 통해 도입된 혼합기체가 상승 이동되면서 CO2흡수제에 의한 CO2 포집반응이 일어나는 반응공간을 갖춘 CO2 포집 반응기;A CO2 capture reactor having a reaction space in which a mixed gas introduced through the lower mixed gas inlet is moved upwardly and a CO2 capture reaction is caused by a CO2 absorbent;
상기 CO2 포집 반응기의 상단에 설치되며, CO2흡수제를 미립화된 액적(droplet) 형태로 상기 반응공간에 균일한 분포로 분무하는 일 측면에 따른 CO2 흡수제 분무 노즐; 및A CO2 absorbent spray nozzle installed at an upper end of the CO2 capture reactor and spraying a CO2 absorbent in a uniform distribution into the reaction space in the form of atomized droplets; And
상기 혼합기체 주입구 상부의 CO2 포집 반응기 내에 장착되며, 상기 반응공간 내에 처리대상 혼합기체가 균일한 속도분포로 유입되도록 슬릿(Slit) 또는 구멍(Hole)이 다수 형성된 배플;을 포함하는 포함하는 분무탑 방식의 CO2 흡수장치를 제공한다.A spray baffle installed in the CO2 capture reactor above the mixed gas inlet and having a plurality of slits or holes formed in the reaction space so that the mixed gas to be treated flows into a uniform velocity distribution; It provides a CO2 absorption device of the type.
여기서, 상기 CO2 포집 반응기의 바닥 측에 흡수제 배출구가 형성되고, 흡수제 배출구 반대편의 CO2 흡수제 분무 노즐 일측 또는 양측의 CO2 포집 반응기 상단에 혼합기체 배출구가 형성될 수 있다.Here, the absorbent outlet may be formed at the bottom side of the CO2 capture reactor, and the mixed gas outlet may be formed at the top of the CO2 capture reactor on one side or on both sides of the CO2 absorbent spray nozzle opposite the absorbent outlet.
또한, 상기 배플에는 크기가 동일한 슬릿(Slit) 또는 구멍(Hole)이 부등간격으로 형성되거나, 크기가 다른 슬릿(Slit) 또는 구멍(Hole)이 등간격으로 형성될 수 있다.In addition, the baffles may be formed with slits or holes having the same size at equal intervals, or slits or holes with different sizes may be formed at equal intervals.
이와는 다르게, 크기가 다른 슬릿(Slit) 또는 구멍(Hole)이 부등간격으로 형성될 수도 있다.Alternatively, slits or holes of different sizes may be formed at uneven intervals.
또한, 본 발명의 다른 측면에 따른 상기 분무탑 방식의 CO2 흡수장치는, 상기 CO2 포집 반응기 내부에 구비되는 하나 이상의 액적 포화도 센서 및 상기 액적 포화도 센서가 제공하는 위치 별 액적 포화도 정보로부터 CO2 흡수제 분무 노즐의 압력 제어 신호를 출력하는 제어부를 더 포함할 수 있으며, 상기 액적 포화도 센서가 제공하는 액적 포화도 정보로부터 제어부가 압력조절기의 제어 값을 결정하고, 결정된 제어 값으로 상기 압력조절기를 통제함으로써 상기 CO2 흡수제 분무 노즐을 통한 CO2 흡수제 분무유량과 압력이 조절될 수 있다. In addition, the spray tower type CO2 absorber according to another aspect of the present invention, the CO2 absorbent spray nozzle from at least one droplet saturation sensor provided in the CO2 capture reactor and the droplet saturation information for each position provided by the droplet saturation sensor The control unit may further include a control unit for outputting a pressure control signal, wherein the control unit determines a control value of the pressure regulator from the droplet saturation information provided by the droplet saturation sensor, and controls the pressure regulator with the determined control value to control the CO 2 absorbent. The CO 2 absorbent spray flow rate and pressure through the spray nozzle can be controlled.
본 발명의 일 측면에 따른 CO2 흡수제 분무 노즐에 의하면, 액상의 흡수제를 균일한 크기의 액적(droplet) 형태로 반응기 내에 최적 시공간분포를 가지도록 분무할 수 있다. 즉 분무탑 방식의 포집기술에서 성능에 미치는 영향이 가장 큰 액적 크기의 불균일을 흡수제 분무 노즐유닛을 통해 해소함으로써, 분무탑 방식을 통한 CO2 처리에 있어 현저한 성능 향상을 기대할 수 있다.According to the CO 2 absorbent spray nozzle according to an aspect of the present invention, the liquid absorbent may be sprayed to have an optimal spatiotemporal distribution in the reactor in the form of droplets of uniform size. In other words, by eliminating the non-uniformity of the droplet size having the greatest effect on the performance in the spray tower type capture technology through the absorbent spray nozzle unit, a significant performance improvement in CO2 treatment through the spray tower method can be expected.
또한, 본 발명의 다른 측면에 따른 분무탑 방식의 CO2 흡수장치에 의하면, 액상의 흡수제를 단일 줄기의 균일한 크기를 가진 액적(droplet) 형태로 반응기 내에 분사하는 노즐유닛을 사용하면서, 기체 주입구에 배플을 적용하여 포집성능에 큰 영향을 미치는 다른 주된 요인인 기체유동의 불균일성을 해소함으로써 포집성능 획기적인 개선을 도모할 수 있다.In addition, according to the spray tower type CO2 absorber according to another aspect of the present invention, while using a nozzle unit for injecting a liquid absorbent in the form of droplets (droplet) having a uniform size of a single stem, the gas inlet Baffles can be applied to resolve the nonuniformity of gas flow, another major factor that greatly affects the collection performance.
도 1은 CO2 흡수제 분무 노즐을 포함하여 구성되는 분무탑 방식 CO2 흡수장치의 바람직한 실시 예를 도시한 개략 구성도.Figure 1 is a schematic diagram showing a preferred embodiment of the spray tower type CO2 absorber comprising a CO2 absorbent spray nozzle.
도 2 내지 도 4는 도 1에 나타난 배플의 바람직한 다양한 실시 예들을 도시한 도면.2 through 4 illustrate various preferred embodiments of the baffle shown in FIG. 1.
도 5는 도 1에 도시된 CO2 흡수제 분무 노즐을 확대 도시한 개념도.5 is an enlarged conceptual view of the CO 2 absorbent spray nozzle shown in FIG. 1;
도 6 내지 도 7은 노즐판의 다양한 실시 예를 도시한 도면.6 to 7 illustrate various embodiments of the nozzle plate.
도 8은 노즐판에 형성되는 노즐구멍 바람직한 배열을 예시한 도면.Fig. 8 illustrates a preferred arrangement of nozzle holes formed in the nozzle plate.
이하, 본 발명의 첨부도면을 참조하여 본 발명의 바람직한 실시 예를 설명한다.Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings of the present invention.
이하 명세서에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서 "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. The terms "comprise" or "have" herein are intended to indicate that there is a feature, number, step, action, component, part, or combination thereof described on the specification, and that one or more other features It should be understood that it does not exclude in advance the possibility of the presence or addition of numbers, steps, operations, components, parts or combinations thereof.
또한, 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.In addition, terms such as first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
더하여, 명세서에 기재된 "…부", "…유닛", "…모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.In addition, the terms “… unit”, “… unit”, “… module”, etc. described in the specification mean a unit that processes at least one function or operation, which may be implemented by hardware or software or a combination of hardware and software. Can be.
첨부 도면을 참조하여 설명함에 있어, 동일한 구성 요소에 대해서는 동일도면 참조부호를 부여하기로 하며 이에 대한 중복되는 설명은 생략하기로 한다. 그리고 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.In the description with reference to the accompanying drawings, the same reference numerals are assigned to the same components, and duplicate description thereof will be omitted. In the following description of the present invention, if it is determined that the detailed description of the related known technology may unnecessarily obscure the gist of the present invention, the detailed description thereof will be omitted.
도 1은 CO2 흡수제 분무 노즐을 포함하여 구성되는 분무탑 방식 CO2 흡수장치의 바람직한 실시 예를 도시한 개략 구성도이다.1 is a schematic diagram showing a preferred embodiment of a spray tower type CO2 absorber including a CO2 absorbent spray nozzle.
도 1을 참조하면, 상기 분무탑 방식 CO2 흡수장치(1)는, CO2흡수제를 액적(droplet) 형태로 반응기(10) 내에 분무하여 혼합기체로부터 CO2 를 흡수하는 분무탑 방식의 CO2 흡수장치로서 크게, CO2 포집반응이 일어나는 반응공간(100)을 형성한 CO2 포집 반응기(10), CO2흡수제를 액적 상태로 상기 반응공간(100)에 분무하는 CO2 흡수제 분무 노즐(20)을 포함한다.Referring to FIG. 1, the spray tower type CO2 absorber 1 is largely a spray tower type CO2 absorber that sprays a CO2 absorbent into the reactor 10 in the form of droplets to absorb CO2 from the mixed gas. , A CO 2 capture reactor 10, which forms a reaction space 100 in which a CO 2 capture reaction occurs, and a CO 2 absorbent spray nozzle 20 spraying the CO 2 absorbent into the reaction space 100 in the form of droplets.
CO2 포집 반응기(10)는 내부에 반응공간(100)이 형성되고 그 하부 일측에 혼합기체 주입구(12)를 구비한다. 혼합기체 주입구(12)를 통해 처리대상 CO2를 포함하는 혼합기체가 반응공간(100)으로 도입되며, 도입된 혼합기체는 공기와의 비중차이에 의해 상승 이동되면서 그 중 CO2가 상기 CO2흡수제 분무 노즐(20)이 분무하는 CO2 흡수제에 포집된다. The CO 2 capture reactor 10 has a reaction space 100 formed therein and a mixed gas inlet 12 at one lower side thereof. The mixed gas containing the CO 2 to be treated is introduced into the reaction space 100 through the mixed gas inlet 12, and the mixed gas is moved upward by the specific gravity difference with air, among which CO 2 is the CO 2 absorbent spray nozzle. 20 is trapped in the CO2 absorbent to spray.
CO2 포집 반응기(10)의 바닥 측에는 흡수제 배출구(16)가 형성된다. 그리고 반대편의 CO2 흡수제 분무 노즐(20) 일측 또는 양측의 CO2 포집 반응기(10) 상단에는 혼합기체 배출구(14)가 형성된다. 이에 따라, 포집반응을 통해 CO2가 제거된 혼합기체는 혼합기체 배출구(14)를 통해 외부로 배출되고, CO2를 포집한 흡수제는 흡수제 배출구(16)를 통해 후속 처리시설로 이동된다.An absorbent outlet 16 is formed at the bottom side of the CO 2 capture reactor 10. And the mixed gas outlet 14 is formed on the upper side of the CO2 capture reactor 10 on one side or both sides of the opposite CO2 absorbent spray nozzle 20. Accordingly, the mixed gas from which the CO 2 is removed through the capture reaction is discharged to the outside through the mixed gas outlet 14, and the absorbent that collects the CO 2 is moved to the subsequent treatment facility through the absorbent outlet 16.
후속 처리시설(도시 생략)은 CO2를 포집한 흡수제를 가열을 통해 재생시키는 구성일 수 있다. 이를 위해 후속 처리시설은, 가열수단, 예컨대 하나 이상의 버너(Burner)와 응축기를 포함하는 형태로 구성될 수 있으며, CO2 흡수제 분무 노즐(20)은 CO2 포집 반응기(10)의 반응공간(100) 상부에서부터 CO2흡수제를 미립화된 액적(droplet) 형태로 균일한 분포로 분무한다. Subsequent treatment facilities (not shown) may be configured to regenerate, via heating, the absorbent that captured the CO 2. For this purpose, the subsequent treatment facility may be configured in the form of a heating means, such as one or more burners and a condenser, wherein the CO 2 absorbent spray nozzle 20 is located above the reaction space 100 of the CO 2 capture reactor 10. CO 2 absorber is sprayed in a uniform distribution in the form of atomized droplets.
CO2 흡수제 분무 노즐(20)은 CO2 포집 반응기(10)의 상단에 설치되어 CO2흡수제를 액적 형태로 반응공간(100)에 균일한 분포로 분무한다. 원심력 또는 전자기적 진동을 이용해서 액체기둥이나 액체막으로부터 액적을 형성하는 종래와는 달리, 액체의 표면장력에 의한 유체역학적 불안정성만을 이용하여 아주 가는 액체기둥을 액적으로 분리생성 하는 단순한 메커니즘을 갖는다. The CO 2 absorbent spray nozzle 20 is installed on the top of the CO 2 capture reactor 10 to spray the CO 2 absorbent in a uniform distribution in the reaction space 100 in the form of droplets. Unlike the conventional method of forming droplets from a liquid column or a liquid film using centrifugal force or electromagnetic vibration, it has a simple mechanism of separating and producing a very thin liquid column using only hydrodynamic instability due to the surface tension of the liquid.
CO2 흡수제 분무 노즐(20)을 통한 액적 형태 CO2 흡수제의 분무유량과 압력은 제어부(60)에 의한 압력조절기(70)의 통제로부터 조절될 수 있다. 제어부(60)는 바람직하게, CO2 포집 반응기(10) 내부에 구비되는 하나 이상의 액적 포화도 센서(50)가 제공하는 반응공간(100) 내 위치 별 액적 포화도 정보로부터 CO2 흡수제 분무 노즐(20)의 압력 제어 신호를 출력한다.The spray flow rate and pressure of the droplet form CO 2 absorbent through the CO 2 absorbent spray nozzle 20 can be adjusted from the control of the pressure regulator 70 by the controller 60. The control unit 60 is preferably a pressure of the CO2 absorbent spray nozzle 20 from the droplet saturation information for each position in the reaction space 100 provided by one or more droplet saturation sensor 50 provided in the CO2 capture reactor 10 Output a control signal.
제어부(60)는 구체적으로, 액적 포화도 센서(50)가 제공하는 정보로부터 압력조절기(70)의 제어 값을 결정한다. 그리고 그 결정된 제어 값으로 압력조절기(70)를 통제하여 CO2 흡수제 분무 노즐(20)의 내부 수용부(220)에 공급되는 압력조절가스의 양을 조절함으로써, 반응기(10) 내 혼합기체의 유속이나 분포에 따라 최적의 포집성능이 발휘될 수 있는 분무유량과 압력으로 CO2 흡수제가 분사되도록 제어한다.Specifically, the controller 60 determines a control value of the pressure regulator 70 from information provided by the droplet saturation sensor 50. And by controlling the pressure regulator 70 to the determined control value by adjusting the amount of pressure control gas supplied to the inner receiving portion 220 of the CO2 absorbent spray nozzle 20, the flow rate of the mixed gas in the reactor 10 Depending on the distribution, the CO2 absorbent is controlled to be sprayed at a spray flow rate and pressure that can achieve an optimal trapping performance.
즉 액적 포화도 센서(50)가 제공하는 정보에 기초하여 행해지는 제어부(60)에 의한 압력조절기(70)의 피드백 제어에 의하여, 혼합기체 주입구(12)를 통해 반응공간(100)에 도입되고 상승 이동되는 처리대상 혼합기체(CO2 성분을 포함하는 연소기체)의 상기 반응공간(100) 내 유속이나 분포에 따라 최적의 포집성능이 발휘될 수 있는 분무유량과 압력으로 CO2 흡수제가 분사되는 것이다.That is, by feedback control of the pressure regulator 70 by the controller 60 performed based on the information provided by the droplet saturation sensor 50, it is introduced into the reaction space 100 through the mixed gas inlet 12 and is raised. The CO2 absorbent is sprayed at a spray flow rate and a pressure at which an optimal trapping performance can be exhibited according to the flow rate or distribution in the reaction space 100 of the treated gas mixture (combustion gas containing CO2 components) to be moved.
도면부호 30은 혼합기체 주입구(12) 상부의 CO2 포집 반응기(10) 내에 장착되는 배플(Baffle)을 가리킨다. 배플(30)은 혼합기체 주입구(12)를 통해 반응공간(100)에 도입되는 처리대상 혼합기체가 균일한 속도분포로 유입되어 반응공간(100)에서 CO2 흡수제와 최적의 포집반응이 일어날 수 있도록, 다수의 슬릿(Slit, 300) 또는 구멍(Hole)을 구비한 다공성 패널 형태로 구성될 수 있다. Reference numeral 30 denotes a baffle mounted in the CO 2 capture reactor 10 above the mixed gas inlet 12. The baffle 30 is introduced into the reaction space 100 through the mixed gas inlet 12 in a uniform velocity distribution so that the optimum capture reaction with the CO 2 absorbent in the reaction space 100 can occur. It may be configured in the form of a porous panel having a plurality of slits (Slit, 300) or holes (Hole).
도 2 내지 도 4는 본 실시 예에 적용된 배플의 바람직한 다양한 실시 예를 도시한 도면으로서, 슬릿형 배플을 예를 들어 도시하고 있다. 2 to 4 are views illustrating various preferred embodiments of the baffle applied to the present embodiment, and slit baffles are shown as an example.
도 2 내지 도 4의 도와 같이, 배플(30)에 형성된 슬릿(Slit, 300)은 동일한 크기로 부등간격으로 형성되거나(도 2 참조), 다른 크기로 등간격에 걸쳐 형성될 수 있다(도 3 참조). 이와는 다르게, 도 4의 도시와 같이 다른 크기의 슬릿(Slit, 300)이 부등간격으로 형성된 구성일 수 있다. 물론 예시된 슬릿(Slit, 300) 형태에 국한되는 것은 아니며 구멍(Hole)으로 대체될 수 있다.As shown in FIGS. 2 to 4, the slits Slit 300 formed in the baffle 30 may be formed at equal intervals with the same size (see FIG. 2), or may be formed at equal intervals with different sizes (FIG. 3). Reference). Unlike this, as illustrated in FIG. 4, slits 300 having different sizes may be formed at uneven intervals. Of course, it is not limited to the illustrated slit (Slit, 300) shape can be replaced by a hole (Hole).
바람직하게는, 혼합기체 주입구(12)에서 멀어질수록 슬릿(300)의 폭(또는 구멍의 크기)이 커지도록 하거나, 슬릿(300) 간 간격(또는 구멍 간 간격)을 좁게 하여 더 많은 슬릿(300)(또는 구멍)이 분포하도록 함으로써, 혼합기체 주입구(12)로부터 도입된 혼합기체가 배플(30)을 통과하면서 균일한 속도분포(유속분포)로 반응공간(100)에 유입될 수 있도록 하는 것이 좋다.Preferably, as the distance from the gas inlet 12 increases, the width (or size of the hole) of the slit 300 increases, or the distance between the slits 300 (or the distance between the holes) is narrowed, so that more slits ( By distributing 300 (or holes), the mixed gas introduced from the mixed gas inlet 12 can flow into the reaction space 100 at a uniform velocity distribution (flow velocity distribution) while passing through the baffle 30. It is good.
물론, 혼합기체 주입구(12)의 위치에 따라 속도분포(유속분포)가 달라질 수 있다. 때문에 혼합기체 주입구(12)의 위치에 따라 달라지는 배플(30)의 입구 측 불균일 유동저항의 분포를 사전시뮬레이션이나 반복실험을 통해 도출하고, 도출된 결과에 기초하여 배플(30)을 통과한 후 기체의 유속과 압력이 목표하는 임의의 유속과 압력 분포를 가지도록 슬릿(300, 또는 구멍)을 배열한다. Of course, the velocity distribution (velocity distribution) may vary depending on the position of the mixed gas inlet 12. Therefore, the distribution of the inhomogeneous flow resistance of the inlet side of the baffle 30, which depends on the position of the mixed gas inlet 12, is derived through pre-simulation or repeated experiments, and after passing through the baffle 30 based on the result, the gas Arrange the slits 300, or holes so that the flow velocity and pressure of V have a desired flow velocity and pressure distribution.
도 5는 도 1에 도시된 CO2 흡수제 분무 노즐을 확대 도시한 개념도이다.FIG. 5 is an enlarged conceptual view of the CO 2 absorbent spray nozzle shown in FIG. 1.
도 5를 참조하면, CO2 흡수제 분무 노즐(20)은 노즐바디(22)와 노즐바디(22) 하부에 장착되는 노즐판(24)으로 구성된다. 임의 부피의 CO2흡수제가 상기 노즐바디(22)에 수용되며, 노즐판(24)에는 노즐바디(22)에 채워진 CO2흡수제가 전술한 반응공간(100)에 미세한 크기의 액적(droplet) 형태로 분사되도록 미세한 크기의 노즐구멍(240)이 다수 형성된다. Referring to FIG. 5, the CO 2 absorbent spray nozzle 20 includes a nozzle body 22 and a nozzle plate 24 mounted below the nozzle body 22. Any volume of CO 2 absorbent is accommodated in the nozzle body 22, the CO2 absorbent filled in the nozzle body 22 is sprayed in the form of droplets (fine droplets) of fine size in the reaction space 100 described above. A plurality of nozzle holes 240 having a fine size are formed.
노즐바디(22)는 그 내부에 임의 체적의 흡수제 수용부(220)가 형성된 하부 개방형 통형 구조로서, 상기 흡수제 수용부(220)에 CO2 흡수제가 항상 일정 수위로 유지되도록 상부에 단일의 CO2 흡수제 공급배관(23)이 연결될 수 있다. 노즐바디(22)의 상부 다른 일측에는 압력관(40)이 연결되며, 압력관(40)을 통해 수용부(220) 상부 공간에 압력조절가스가 공급된다.The nozzle body 22 is a bottom open cylindrical structure having any volume of absorbent accommodating portion 220 formed therein, and supplies a single CO 2 absorbent to the upper portion so that the CO 2 absorbent is always maintained at a constant level. Pipe 23 may be connected. The pressure tube 40 is connected to the other side of the upper part of the nozzle body 22, and the pressure regulating gas is supplied to the upper space of the receiving part 220 through the pressure tube 40.
압력관(40)을 통해 공급된 압력조절가스가 노즐바디(22) 내에서 상기 CO2 흡수제의 표면에 가하는 압력으로 상기 노즐구멍(240)을 통해 CO2 흡수제가 액적 형태로 소정의 분무유량과 압력으로 CO2 포집 반응기(10) 내에 균일한 분포로 분무될 수 있으며, 압력관(40)에 공급되는 압력조절가스의 양을 제어부(60) 통제를 받아 작동되는 전술한 압력조절기(70)가 조절한다. The pressure regulating gas supplied through the pressure tube 40 is applied to the surface of the CO 2 absorbent in the nozzle body 22 through the nozzle hole 240 and the CO 2 absorbent in the form of droplets of CO 2 at a predetermined spray flow rate and pressure. It can be sprayed in a uniform distribution in the collection reactor 10, the pressure regulator 70, which is operated under the control of the control unit 60 controls the amount of pressure control gas supplied to the pressure tube (40).
즉 제어부(60)의 통제에 따라 압력조절기(70)와 압력관(40)을 통해 수용부(220)에 공급되는 압력조절가스 조절에 따른 수용부(220) 내부 압력 조절로서, 수용부(220)에 임의 높이로 채워진 CO2 흡수제가 노즐판(24)에 다수로 형성되는 상기 노즐구멍(240)을 통해 미립화된 액적(droplet) 형태로 임의 유량과 압력으로 CO2 포집 반응기(10) 내에 균일하게 분무될 수 있는 것이다That is, according to the control of the control unit 60 as the pressure control unit 70 and the pressure control unit 70, the internal pressure control of the receiving unit 220 according to the pressure control gas supplied to the receiving unit 220 through the pressure tube 40, the receiving unit 220 CO 2 absorbents filled at any height in the nozzle plate 24 are uniformly sprayed into the CO 2 collection reactor 10 at any flow rate and pressure in the form of atomized droplets through the nozzle holes 240 formed in the nozzle plate 24. It can be
제어부(60)는 앞서도 설명했듯이, 액적 포화도 센서(50)가 제공하는 정보로부터 압력조절기(70)의 제어 값을 결정한다. 그리고 그 결정된 값으로 압력조절기(70)를 통제하여 상기 수용부(220)에 공급되는 압력조절가스의 양을 조절한다. 이에 따라, CO2 포집 반응기(10) 내 혼합기체의 유속이나 분포도에 따라 최적의 포집성능이 발휘될 수 있는 분무유량과 압력으로 CO2 흡수제가 분무될 수 있다.As described above, the controller 60 determines a control value of the pressure regulator 70 from information provided by the droplet saturation sensor 50. And to control the pressure regulator 70 to the determined value to adjust the amount of pressure control gas supplied to the receiving portion (220). Accordingly, the CO 2 absorbent may be sprayed at a spray flow rate and a pressure at which the optimum trapping performance can be exhibited according to the flow rate or distribution of the mixed gas in the CO 2 trapping reactor 10.
노즐판(24)은 상기 노즐바디(22)의 하부 개구부에 설치된다. 노즐판(24)에는 전면에 걸쳐 크기가 동일하거나 영역마다 배열, 형상, 크기 및 개수 중 하나 이상이 서로 다른 다수의 노즐구멍(240)이 형성된다. 노즐판(24)에 형성되는 노즐구멍(240)의 크기는 혼합기체 처리용량을 고려한 CO2 포집 반응기(10)의 단면적에 따라 달라질 수 있으나, 바람직하게는 10 내지 1000㎛ 일 수 있다.The nozzle plate 24 is installed in the lower opening of the nozzle body 22. The nozzle plate 24 is provided with a plurality of nozzle holes 240 having the same size or different one or more of arrangement, shape, size, and number of the areas on the front surface. The size of the nozzle hole 240 formed in the nozzle plate 24 may vary depending on the cross-sectional area of the CO 2 capture reactor 10 in consideration of the mixed gas treatment capacity, but may preferably be 10 to 1000 μm.
도 6 내지 도 7은 노즐판의 다양한 실시 예를 도시한 도면이다. 6 to 7 illustrate various embodiments of the nozzle plate.
도 6 내지 도 7을 참조하면, 노즐판(24)은 CO2 포집 반응기(10)의 단면형상과 크기에 대응되는 단일 구조체(도 6의 (a))이거나, 부채꼴 형상의 다수의 단위 노즐판(24a ~ 24d)을 조합하여 CO2 포집 반응기(10)의 단면형상과 크기에 대응하도록 구성한 조립식 구조일 수 있다. 조립식 구조의 경우, 노즐바디(22) 또한 내부에 설치되는 구획 격벽(도시 생략)에 의해 내부 수용부(220)가 다수로 구획될 수 있다.6 to 7, the nozzle plate 24 is a single structure (FIG. 6A) corresponding to the cross-sectional shape and size of the CO 2 capture reactor 10 or a plurality of unit nozzle plates having a fan shape ( 24a ~ 24d) may be a prefabricated structure configured to correspond to the cross-sectional shape and size of the CO2 capture reactor 10. In the case of the prefabricated structure, the nozzle body 22 may also be divided into a plurality of inner receiving portions 220 by partition partitions (not shown) installed therein.
노즐판(24)은 도 7의 (a)와 같이 각 노즐구멍(240)의 출구방향이 동일한 평판 형태로 구성될 수 있다. 이와는 다르게, 도 7의 (b)의 예시와 같이 중심부가 위로 볼록한 볼록판 또는 도 7의 (c)에 예시된 중심부가 아래로 볼록한 오목판 형태로 구성됨으로써 노즐판(24)에 형성된 각각의 노즐구멍(240)의 출구방향이 서로 다르게 형성된 구성일 수도 있다.The nozzle plate 24 may be configured in the form of a flat plate having the same exit direction of each nozzle hole 240 as shown in FIG. Alternatively, each nozzle hole formed in the nozzle plate 24 may be configured in the form of a convex plate in which the center is convex upward, as shown in FIG. 7B, or a concave plate in which the center illustrated in FIG. 7C is convex downward. The outlet direction of 240 may be configured to be different.
도 8은 노즐판에 형성되는 노즐구멍 바람직한 배열을 예시한 도면이다.8 is a diagram illustrating a preferred arrangement of nozzle holes formed in the nozzle plate.
노즐구멍(240)은 도 8의 (a)와 같이, 노즐판(24) 전반에 걸쳐 동일한 크기와 모양으로 형성될 수 있다. 그러나 이 경우 노즐구멍(240) 사이의 간격이나 배열, 위치 별 개수(밀도) 분포 등은 CO2 포집 반응기(10)의 크기나 처리용량, 혼합기체 주입량 등에 따라 달라질 수 있다. 때문에 특정 간격이나 배열, 위치 별 개수(밀도) 분포로 한정되는 것은 아니다. The nozzle hole 240 may be formed in the same size and shape throughout the nozzle plate 24, as shown in FIG. However, in this case, the spacing or arrangement between the nozzle holes 240 and the number (density) distribution for each location may be varied depending on the size, processing capacity, mixed gas injection amount, etc. of the CO2 capture reactor 10. Therefore, it is not limited to a specific interval, arrangement, or number (density) distribution by location.
처리대상 기체(CO2)의 포집성능을 극대화할 수 있는 공간분포와 크기분포로 CO2 포집 반응기(10) 내에 액적을 분포시킬 수는 배열이면 무방하며, 이때 액적의 공간분포와 크기분포는 CO2 포집 반응기(10) 내 기체유속의 단면분포를 고려하여 최적의 포집효율을 달성할 수 있는 분포를 가지도록 사전 시뮬레이션을 통한 해석 또는 반복실험으로 도출될 수 있다.It can be arranged that the droplets can be distributed in the CO2 capture reactor 10 with a space distribution and a size distribution that can maximize the collection performance of the gas to be treated (CO2), wherein the space distribution and the size distribution of the droplets are CO2 capture reactors. (10) In consideration of the cross-sectional distribution of the gas flow rate, it can be derived by analysis or iterative experiment through pre-simulation to have a distribution that can achieve the optimum collection efficiency.
노즐구멍(240)은 또한 도 8의 (b)의 예시와 같이, 크기나 형상, 배열 등이 영역 별로 다르게 형성될 수도 있다. 이때 같은 영역(A1) 안에 있는 노즐구멍(240)은 동일한 형상과 크기, 배열, 개수로 형성될 수 있으며, 다른 영역(A1과 A2) 간에는 노즐구멍(240)의 배열, 형상, 크기 및 개수 중 적어도 하나 이상이 서로 상이한 형태로 형성될 수 있다. The nozzle hole 240 may also be formed differently in size, shape, arrangement, etc. for each region, as illustrated in FIG. 8B. In this case, the nozzle holes 240 in the same area A1 may be formed in the same shape, size, arrangement, and number, and among the arrangement, shape, size, and number of nozzle holes 240 between the different areas A1 and A2. At least one or more may be formed in different forms from each other.
물론, 이때에도 영역마다 노즐구멍(240) 사이의 간격이나 배열, 형상, 크기, 위치 별 개수(밀도) 분포 등은 장치 환경에 따라 달라질 수 있기 때문에, 특정 간격이나 배열, 형상, 위치 별 개수(밀도) 분포로 한정되는 것은 아니다. 크기분포가 기하학적 표준편차 1.2 이하의 단분산 분포를 만족하도록 액적을 생성할 수 있는 구조이기만 하면 된다. Of course, even in this case, the interval or arrangement, shape, size, and number (density) distribution between the nozzle holes 240 may vary depending on the device environment. Density) distribution is not limited. As long as the size distribution satisfies the monodistribution distribution with a geometric standard deviation of 1.2 or less, it is only necessary to construct the droplets.
이상에서 살펴본 본 발명의 실시 예에 따르면, 액상의 흡수제를 균일한 크기의 액적(droplet) 형태로 반응기 내에 최적 시공간분포를 가지도록 분무할 수 있다. 즉 분무탑 방식의 포집기술에서 성능에 미치는 영향이 가장 큰 액적 크기의 불균일을 흡수제 분무 노즐유닛을 통해 해소함으로써, 분무탑 방식을 통한 CO2 처리에 있어 현저한 성능 향상을 기대할 수 있다.According to the embodiment of the present invention described above, the liquid absorbent may be sprayed to have an optimal space-time distribution in the reactor in the form of droplets (droplet) of uniform size. In other words, by eliminating the non-uniformity of the droplet size having the greatest effect on the performance in the spray tower type capture technology through the absorbent spray nozzle unit, a significant performance improvement in CO2 treatment through the spray tower method can be expected.
또한, 액상의 흡수제를 단일 줄기의 균일한 크기를 가진 액적(droplet) 형태로 반응기 내에 분사하는 노즐유닛을 사용하면서, 기체 주입구에 배플을 적용함으로써, CO2포집성능에 큰 영향을 미치는 다른 주된 요인인 기체유동의 불균일성을 해소할 수 있으며, 이에 따라 전반적인 장치의 포집성능을 획기적으로 개선시킬 수 있다.In addition, by applying a baffle to the gas inlet while using a nozzle unit for injecting a liquid absorbent into the reactor in the form of droplets having a uniform size of a single stem, another main factor that greatly affects CO 2 capture performance is The nonuniformity of gas flow can be eliminated, and the overall collection performance of the apparatus can be improved.
이상의 본 발명의 상세한 설명에서는 그에 따른 특별한 실시 예에 대해서만 기술하였다. 하지만 본 발명은 상세한 설명에서 언급되는 특별한 형태로 한정되는 것이 아닌 것으로 이해되어야 하며, 오히려 첨부된 청구범위에 의해 정의되는 본 발명의 정신과 범위 내에 있는 모든 변형물과 균등물 및 대체물을 포함하는 것으로 이해되어야 한다.In the detailed description of the present invention, only specific embodiments thereof have been described. It is to be understood, however, that the present invention is not limited to the specific forms referred to in the description, but rather includes all modifications, equivalents, and substitutions within the spirit and scope of the invention as defined by the appended claims. Should be.
[부호의 설명][Description of the code]
1 : CO2 흡수장치 10 : 반응기1: CO2 absorber 10: Reactor
12 : 혼합기체 주입구 14 : 혼합기체 배출구12: mixed gas inlet 14: mixed gas outlet
16 : 흡수제 배출구 20 : CO2 흡수제 분무 노즐16 absorbent outlet 20 CO2 absorbent spray nozzle
22 : 노즐바디 23 : CO2 흡수제 공급배관22: nozzle body 23: CO2 absorbent supply piping
24 : 노즐판 30 : 배플24: nozzle plate 30: baffle
40 : 압력관 50 : 액적 포화도 센서40: pressure tube 50: droplet saturation sensor
60 : 제어부 70 : 압력조절기60: control unit 70: pressure regulator
100 : 반응공간 220 : 수용부100: reaction space 220: receiving part
240 : 노즐구멍240 nozzle hole

Claims (13)

  1. CO2 포집 반응기의 내부에 CO2 흡수제를 분무하는 노즐로서, A nozzle for spraying a CO 2 absorbent inside the CO 2 capture reactor,
    상부에 단일의 CO2 흡수제 공급배관이 연결되며, 내부에 임의 체적의 흡수제 수용부가 형성된 하부 개방형 통형 구조의 노즐바디; 및A nozzle body having a lower open tubular structure having a single CO 2 absorbent supply pipe connected to the upper portion thereof, and having any volume of the absorbent accommodating portion formed therein; And
    노즐바디의 하부 개구부에 설치되며, 전면에 걸쳐 크기가 동일하거나 영역마다 배열, 형상, 크기 및 개수 중 하나 이상이 서로 다른 다수의 노즐구멍이 형성된 노즐판;을 포함하며, And a nozzle plate installed in the lower opening of the nozzle body, the nozzle plate having a plurality of nozzle holes having the same size or different one or more of arrangement, shape, size, and number of areas in the entire area.
    상기 노즐바디의 상부 다른 일측에 압력관이 연결되고, 압력관에 연결된 하나의 압력조절기의 통제를 받아 상기 수용부에 임의 높이로 채워진 CO2 흡수제를 상기 노즐구멍을 통해 미립화된 액적(droplet) 형태로 상기 CO2 포집 반응기 내에 균일한 분포로 분무하는 것을 특징으로 하는 CO2 흡수제 분무 노즐.The pressure tube is connected to the other side of the upper part of the nozzle body, and the CO 2 absorbent filled to the receiving unit at an arbitrary height under the control of a pressure regulator connected to the pressure tube is formed in the form of droplets atomized through the nozzle hole. CO2 absorbent spray nozzle, characterized in that the spray in a uniform distribution in the collection reactor.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 노즐바디 내부의 상기 흡수제 수용부가 구획 격벽을 통해 다수로 구획됨을 특징으로 하는 CO2 흡수제 분무 노즐.CO2 absorbent spray nozzle, characterized in that the absorbent receiving portion in the nozzle body is partitioned through a partition partition.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 노즐판은 CO2 포집 반응기의 단면형상과 크기에 대응되는 단일 구조체 또는 다수의 단위 노즐판을 조합하여 CO2 포집 반응기의 단면형상과 크기에 대응하도록 된 조립 구조체의 형태로 구성됨을 특징으로 하는 CO2 흡수제 분무 노즐.The nozzle plate is composed of a single structure corresponding to the cross-sectional shape and size of the CO 2 capture reactor or a combination of a plurality of unit nozzle plate in the form of an assembly structure adapted to correspond to the cross-sectional shape and size of the CO 2 capture reactor Spray nozzle.
  4. 제 3 항에 있어서,The method of claim 3, wherein
    상기 노즐판은 평판 형태로 구성됨을 특징으로 하는 CO2 흡수제 분무 노즐.CO2 absorbent spray nozzle, characterized in that the nozzle plate is configured in the form of a flat plate.
  5. 제 3 항에 있어서,The method of claim 3, wherein
    상기 노즐판이 중심부가 위로 볼록하거나 아래로 오목한 볼록판 또는 오목판 형태로 구성되어 노즐구멍의 출구방향이 서로 다른 것을 특징으로 하는 CO2 흡수제 분무 노즐.CO2 absorbent spray nozzle, characterized in that the nozzle plate is formed in the form of a convex plate or concave plate concave up or concave down the center is different from the exit direction of the nozzle hole.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 노즐판의 같은 영역 안에 있는 노즐구멍의 형상과 크기는 동일하고, 다른 영역 간에는 노즐 구멍의 배열, 형상, 크기 및 개수 중 적어도 하나 이상이 서로 다른 것을 특징으로 하는 CO2 흡수제 분무 노즐. The shape and size of the nozzle hole in the same area of the nozzle plate is the same, and at least one or more of the arrangement, shape, size and number of nozzle holes are different between different areas.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 압력조절기의 통제로 압력관을 통해 수용부에 공급되는 압력조절가스에 의한 수용부 내부 압력 조절로서 노즐판을 통한 CO2 흡수제 분무유량과 압력이 조절되는 것을 특징으로 하는 CO2 흡수제 분무 노즐.CO2 absorbent spray nozzle, characterized in that the pressure and the CO2 absorbent spray flow rate through the nozzle plate is controlled by the pressure control gas supplied to the receiving portion through the pressure tube by the control of the pressure regulator.
  8. CO2흡수제를 액적(droplet) 형태로 반응기 내에 분무하여 CO2 를 흡수 및 회수하는 분무탑 방식의 CO2 흡수장치로서, A spray tower type CO2 absorber that sprays a CO2 absorbent into a reactor in the form of droplets to absorb and recover CO2.
    하부의 혼합기체 주입구를 통해 도입된 혼합기체가 상승 이동되면서 CO2흡수제에 의한 CO2 포집반응이 일어나는 반응공간을 갖춘 CO2 포집 반응기;A CO2 capture reactor having a reaction space in which a mixed gas introduced through the lower mixed gas inlet is moved upwardly and a CO2 capture reaction is caused by a CO2 absorbent;
    상기 CO2 포집 반응기의 상단에 설치되며, CO2흡수제를 미립화된 액적(droplet) 형태로 상기 반응공간에 균일한 분포로 분무하는 제 1 항 내지 제 8 항 중 어느 하나의 항에 기재된 CO2 흡수제 분무 노즐; 및A CO2 absorbent spray nozzle according to any one of claims 1 to 8, installed at an upper end of the CO2 capture reactor and spraying a CO2 absorbent in a uniform distribution in the reaction space in the form of atomized droplets; And
    상기 혼합기체 주입구 상부의 CO2 포집 반응기 내에 장착되며, 상기 반응공간 내에 처리대상 혼합기체가 균일한 속도분포로 유입되도록 슬릿(Slit) 또는 구멍(Hole)이 다수 형성된 배플;을 포함하는 포함하는 분무탑 방식의 CO2 흡수장치.A spray baffle installed in the CO2 capture reactor above the mixed gas inlet and having a plurality of slits or holes formed in the reaction space so that the mixed gas to be treated flows into a uniform velocity distribution; CO2 absorber of the type.
  9. 제 8 항에 있어서,The method of claim 8,
    상기 CO2 포집 반응기의 바닥 측에 흡수제 배출구가 형성되고, 흡수제 배출구 반대편의 CO2 흡수제 분무 노즐 일측 또는 양측의 CO2 포집 반응기 상단에 혼합기체 배출구가 형성됨을 특징으로 하는 분무탑 방식의 CO2 흡수장치. An absorbent outlet is formed on the bottom side of the CO2 capture reactor, the mixture gas outlet is formed on the top of the CO2 capture reactor on one side or both sides of the CO2 absorbent spray nozzle opposite the absorber outlet.
  10. 제 8 항에 있어서,The method of claim 8,
    크기가 동일한 슬릿(Slit) 또는 구멍(Hole)이 부등간격으로 형성된 것을 특징으로 하는 분무탑 방식의 CO2 흡수장치.Spray tower type CO2 absorber characterized in that the same size of the slit (Slit) or hole (Hole) formed at an uneven interval.
  11. 제 8 항에 있어서,The method of claim 8,
    상기 배플에는 크기가 다른 슬릿(Slit) 또는 구멍(Hole)이 등간격으로 형성된 것을 특징으로 하는 분무탑 방식의 CO2 흡수장치.Spray baffle type CO2 absorber, characterized in that the baffles are formed with equally spaced slit (Slit) or holes (Hlit) of different sizes.
  12. 제 8 항에 있어서,The method of claim 8,
    상기 배플에는 크기가 다른 슬릿(Slit) 또는 구멍(Hole)이 부등간격으로 형성된 것을 특징으로 하는 분무탑 방식의 CO2 흡수장치.Spray baffle type CO2 absorber, characterized in that the baffle is formed with a different slit (Slit) or hole (Hole) at different intervals.
  13. 제 8 항에 있어서,The method of claim 8,
    상기 CO2 포집 반응기 내부에 구비되는 하나 이상의 액적 포화도 센서; 및One or more droplet saturation sensors provided in the CO 2 collection reactor; And
    상기 액적 포화도 센서가 제공하는 위치 별 액적 포화도 정보로부터 CO2 흡수제 분무 노즐의 압력 제어 신호를 출력하는 제어부;를 더 포함하며,And a controller for outputting a pressure control signal of the CO 2 absorbent spray nozzle from the droplet saturation information for each position provided by the droplet saturation sensor.
    상기 액적 포화도 센서가 제공하는 액적 포화도 정보로부터 제어부가 압력조절기의 제어 값을 결정하고, 결정된 제어 값으로 상기 압력조절기를 통제함으로써 상기 CO2 흡수제 분무 노즐을 통한 CO2 흡수제 분무유량과 압력이 조절되는 것을 특징으로 하는 분무탑 방식의 CO2 흡수장치.The control unit determines the control value of the pressure regulator from the droplet saturation information provided by the droplet saturation sensor, and by controlling the pressure regulator with the determined control value, the CO 2 absorbent spray flow rate and pressure through the CO 2 absorbent spray nozzle is controlled. CO2 absorption device of the spray tower method.
PCT/KR2017/000432 2016-08-02 2017-01-12 Co2 absorbent spray nozzle and spray tower type co2 absorption device comprising same WO2018026076A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0098438 2016-08-02
KR1020160098438A KR20180014951A (en) 2016-08-02 2016-08-02 CO2 capture droplet nozzle and Spray tower type CO2 capture device including the same

Publications (1)

Publication Number Publication Date
WO2018026076A1 true WO2018026076A1 (en) 2018-02-08

Family

ID=61074083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/000432 WO2018026076A1 (en) 2016-08-02 2017-01-12 Co2 absorbent spray nozzle and spray tower type co2 absorption device comprising same

Country Status (2)

Country Link
KR (1) KR20180014951A (en)
WO (1) WO2018026076A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024065164A1 (en) * 2022-09-26 2024-04-04 南京延长反应技术研究院有限公司 Micro-droplet enhanced carbon dioxide absorption system and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10128031A (en) * 1996-11-05 1998-05-19 Denso Corp Air purifier
JP2007000841A (en) * 2005-06-27 2007-01-11 Toshiba Corp System for and method of recovering carbon dioxide
JP2008238114A (en) * 2007-03-28 2008-10-09 Mitsubishi Heavy Ind Ltd Co2 recovery apparatus and recovery method of co2 absorption solution
US20110100217A1 (en) * 2009-10-30 2011-05-05 General Electric Company Spray process for the recovery of co2 from a gas stream and a related apparatus
KR20150006253A (en) * 2013-07-08 2015-01-16 포항공과대학교 산학협력단 an apparatus for trapping carbon dioxide

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10128031A (en) * 1996-11-05 1998-05-19 Denso Corp Air purifier
JP2007000841A (en) * 2005-06-27 2007-01-11 Toshiba Corp System for and method of recovering carbon dioxide
JP2008238114A (en) * 2007-03-28 2008-10-09 Mitsubishi Heavy Ind Ltd Co2 recovery apparatus and recovery method of co2 absorption solution
US20110100217A1 (en) * 2009-10-30 2011-05-05 General Electric Company Spray process for the recovery of co2 from a gas stream and a related apparatus
KR20150006253A (en) * 2013-07-08 2015-01-16 포항공과대학교 산학협력단 an apparatus for trapping carbon dioxide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024065164A1 (en) * 2022-09-26 2024-04-04 南京延长反应技术研究院有限公司 Micro-droplet enhanced carbon dioxide absorption system and method

Also Published As

Publication number Publication date
KR20180014951A (en) 2018-02-12

Similar Documents

Publication Publication Date Title
US20110132197A1 (en) Exhaust recycle system
WO2021006628A1 (en) Scrubber-type fine dust and white smoke removal device
CA2446171C (en) Flue gas desulfurization system with a stepped tray
JPH0327805B2 (en)
US4869734A (en) Air cleaning system
WO2018026076A1 (en) Co2 absorbent spray nozzle and spray tower type co2 absorption device comprising same
CN107107015B (en) For the method and apparatus of cross-flow reactor
US3606159A (en) Multi-spray device
CN113828109B (en) Flue gas purification system and moving bed adsorption tower with distributor thereof
KR101501931B1 (en) Vertical type incorporated reactor
CN216537701U (en) Flue gas purification system and moving bed adsorption tower thereof
WO2022177065A1 (en) Fluidized bed adsorption apparatus
JPH1147538A (en) Absorption tower
WO2020122356A1 (en) Highly efficient wet scrubber
CN115253675B (en) Plasma discharge is catalysis exhaust treatment device in coordination
CN221229975U (en) Asphalt flue gas removes steam device
KR200373262Y1 (en) Semi dry scrubber in an axial flow type
JPH0133153Y2 (en)
CN220907424U (en) Stripping equipment for processing white oil
KR102616739B1 (en) The thermal oxidizer
EP0302895B1 (en) Heater for carbon particles
CN213467300U (en) Low emission processing apparatus of prebaked anode production process
CN210356543U (en) Setting machine waste gas pretreatment system
RU2097111C1 (en) Gas-treatment apparatus
CN219964434U (en) Waste gas treatment device for paint production

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17837128

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17837128

Country of ref document: EP

Kind code of ref document: A1