WO2018025961A1 - Surface acoustic wave filter, high-frequency module, and multiplexer - Google Patents

Surface acoustic wave filter, high-frequency module, and multiplexer Download PDF

Info

Publication number
WO2018025961A1
WO2018025961A1 PCT/JP2017/028266 JP2017028266W WO2018025961A1 WO 2018025961 A1 WO2018025961 A1 WO 2018025961A1 JP 2017028266 W JP2017028266 W JP 2017028266W WO 2018025961 A1 WO2018025961 A1 WO 2018025961A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonator
acoustic wave
surface acoustic
wave filter
region
Prior art date
Application number
PCT/JP2017/028266
Other languages
French (fr)
Japanese (ja)
Inventor
健太 前田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2018025961A1 publication Critical patent/WO2018025961A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves

Definitions

  • the present invention relates to a surface acoustic wave filter, a high-frequency module using the surface acoustic wave filter, and the like.
  • an acoustic wave filter has been used as a filter used in a receiving circuit module of a mobile communication device.
  • a technique using a longitudinally coupled surface acoustic wave filter has been developed (see, for example, Patent Document 1).
  • This longitudinally coupled surface acoustic wave filter has a zero-order mode and a second-order mode as resonance modes.
  • a longitudinally coupled surface acoustic wave filter includes an IDT (InterDigital Transducer) electrode having a plurality of electrode fingers.
  • IDT InterDigital Transducer
  • the plurality of types of electrode finger pitches are arranged so as to change stepwise in the auxiliary excitation region.
  • the present invention provides a surface acoustic wave filter, a high-frequency module, and a multiplexer capable of realizing a broad band while suppressing the spread of winding of output impedance in the pass band on the Smith chart. Objective.
  • one aspect of a surface acoustic wave filter according to the present invention is a longitudinally coupled surface acoustic wave filter, wherein the surface acoustic wave filter is continuous in the propagation direction of the surface acoustic wave.
  • Each of the three resonators has a pair of comb electrodes each having a bus bar electrode and a plurality of parallel electrode fingers connected to the bus bar electrode,
  • the comb-shaped electrode is arranged such that the plurality of electrode fingers are alternately positioned in the surface acoustic wave propagation direction, and the first resonator arranged at the center of the three resonators is A second resonator connected to one of an input terminal and an output terminal of the surface acoustic wave filter and disposed adjacent to the first resonator; and the first resonator adjacent to the first resonator.
  • a third resonator disposed on the opposite side of the resonator is connected to the other of the input terminal and the output terminal, and at least one of the second resonator and the third resonator Has three or more regions having different pitches of the electrode fingers, and the pitch of the electrode fingers is constant in each of the three or more regions, and the first of the three or more regions is the first The pitch of the electrode fingers in the first region closest to the resonator is the smallest, and among the three or more regions, the pitch of the electrode fingers in the second region adjacent to the first region is the largest.
  • the pitch of the electrode fingers in the first region is minimized, and the pitch of the electrode fingers in the second region is Therefore, it is possible to realize a wide band while suppressing the spread of the winding of the output impedance in the pass band on the Smith chart.
  • both of the second resonator and the third resonator have the three or more regions having different pitches of the electrode fingers, and the second resonator and the third resonator In each of the three or more regions, the pitch of the electrode fingers in the first region is the smallest, and among the three or more regions, the pitch of the electrode fingers in the second region is the largest. May be.
  • the pitch of the electrode fingers in the first region is minimized, and the electrode fingers in the second region are Therefore, it is possible to further suppress the spread of the winding of the output impedance in the pass band on the Smith chart and further widen the pass band.
  • the pitch of the electrode fingers may be the same as each of the regions.
  • the pitch of the electrode fingers is symmetric with respect to the electrode finger arranged at the center of the three resonators. Therefore, it is possible to further suppress the spread of the winding of the output impedance in the pass band on the Smith chart and further widen the pass band.
  • the number of pairs of electrode fingers may be the same as each region of the region.
  • the logarithm of the electrode finger is symmetrical with respect to the electrode finger arranged at the center of the three resonators with respect to the resonator arranged at both ends of the three resonators constituting the surface acoustic wave filter. Therefore, it is possible to further suppress the spread of the winding of the output impedance in the pass band on the Smith chart and further widen the pass band.
  • At least one of the second resonator and the third resonator having three or more regions having different pitches of the electrode fingers has a logarithm of the electrode fingers in the first region as the first number. It may be smaller than the total number of pairs of the electrode fingers in the region other than the region.
  • the pitch of the electrode fingers in the first region is smaller than the pitch of the electrode fingers in the other region, and the number of electrode fingers in the first region is smaller than the number of electrode fingers in the other region.
  • a surface acoustic wave having a so-called narrow pitch region can be formed. Therefore, a surface acoustic wave filter with better transmission characteristics can be realized.
  • the first resonator is connected to the input terminal of the surface acoustic wave filter, and the second resonator and the third resonator are connected to the output terminal of the surface acoustic wave filter. It may be.
  • the output impedance in the pass band on the Smith chart can be suppressed and the pass bandwidth can be widened.
  • an aspect of the high-frequency module according to the present invention includes a surface acoustic wave filter having the characteristics described above, and a high-frequency wave connected to the surface acoustic wave filter and passed through the surface acoustic wave filter. And a low noise amplifier for amplifying the signal.
  • the matching between the surface acoustic wave filter and the low noise amplifier can be improved, the output impedance in the pass band of the high frequency module can be stabilized, and the pass band width can be widened.
  • an aspect of the multiplexer according to the present invention includes a plurality of surface acoustic wave filters having the above-described characteristics, and each of the plurality of surface acoustic wave filters is connected to a common terminal. Yes.
  • the multiplexer can stabilize the output impedance of each pass band and widen the pass band width.
  • a surface acoustic wave filter capable of realizing a broad band while suppressing the spread of winding of output impedance in the pass band on the Smith chart.
  • FIG. 1 is a conceptual diagram illustrating a configuration of the high-frequency module according to the first embodiment.
  • FIG. 2A is a schematic diagram illustrating a configuration of the surface acoustic wave filter according to the first exemplary embodiment.
  • FIG. 2B is a schematic diagram illustrating a specific example of the configuration of the surface acoustic wave filter illustrated in FIG. 2A.
  • 3A and 3B are schematic views showing a configuration of a general surface acoustic wave filter, in which FIG. 3A is a plan view, and
  • FIG. 4 is a schematic diagram illustrating the configuration of the surface acoustic wave filter according to the first embodiment.
  • FIG. 4A is a schematic diagram illustrating a configuration in which regions are divided into regions having different pitches, and FIG.
  • FIG. 5 is a schematic diagram illustrating a configuration of one resonator of the surface acoustic wave filter according to the first embodiment.
  • FIG. 6A is a diagram illustrating pass characteristics of the surface acoustic wave filter according to the first exemplary embodiment.
  • FIG. 6B is a diagram illustrating reflection characteristics on the input terminal side of the surface acoustic wave filter according to the first embodiment.
  • FIG. 6C is a diagram illustrating pass characteristics of the surface acoustic wave filter according to the first exemplary embodiment.
  • FIG. 6D is a diagram illustrating reflection characteristics on the output terminal side of the surface acoustic wave filter according to the first exemplary embodiment.
  • FIG. 6A is a diagram illustrating pass characteristics of the surface acoustic wave filter according to the first exemplary embodiment.
  • FIG. 6B is a diagram illustrating reflection characteristics on the input terminal side of the surface acoustic wave filter according to the first embodiment.
  • FIG. 6C is a diagram illustrating pass characteristics of the
  • FIG. 7 is a diagram illustrating a configuration of the surface acoustic wave filter of the surface acoustic wave filter according to the first comparative example.
  • FIG. 8A is a diagram illustrating pass characteristics of the surface acoustic wave filter according to Comparative Example 1.
  • FIG. 8B is a diagram illustrating reflection characteristics on the input terminal side of the surface acoustic wave filter according to Comparative Example 1.
  • FIG. 8C is a diagram illustrating pass characteristics of the surface acoustic wave filter according to Comparative Example 1.
  • FIG. 8D is a diagram illustrating reflection characteristics on the output terminal side of the surface acoustic wave filter according to Comparative Example 1.
  • FIG. 9A is a diagram illustrating pass characteristics of the surface acoustic wave filter according to Comparative Example 2.
  • FIG. 9B is a diagram illustrating reflection characteristics on the input terminal side of the surface acoustic wave filter according to Comparative Example 2.
  • FIG. 9C is a diagram illustrating pass characteristics of the surface acoustic wave filter according to Comparative Example 2.
  • FIG. 9D is a diagram illustrating reflection characteristics on the output terminal side of the surface acoustic wave filter according to Comparative Example 2.
  • FIG. 10 is a diagram illustrating a configuration of the surface acoustic wave filter of the surface acoustic wave filter according to the second embodiment
  • FIG. 10A is a schematic diagram illustrating a configuration in which regions are divided into regions having different pitches.
  • b) is a diagram relatively showing the size of the pitch in each region.
  • FIG. 11A is a diagram illustrating pass characteristics of the surface acoustic wave filter according to the second embodiment.
  • FIG. 11B is a diagram illustrating reflection characteristics on the input terminal side of the surface acoustic wave filter according to the second embodiment.
  • FIG. 11C is a diagram illustrating pass characteristics of the surface acoustic wave filter according to the second embodiment.
  • FIG. 11D is a diagram illustrating reflection characteristics on the output terminal side of the surface acoustic wave filter according to the second embodiment.
  • FIG. 12 is a diagram illustrating a configuration of a surface acoustic wave filter of the surface acoustic wave filter according to the third embodiment.
  • FIG. 13A is a diagram illustrating pass characteristics of the surface acoustic wave filter according to the third embodiment.
  • FIG. 13B is a diagram illustrating reflection characteristics on the output terminal side of the surface acoustic wave filter according to the third embodiment.
  • FIG. 13C is a diagram illustrating pass characteristics of the surface acoustic wave filter according to the third embodiment.
  • FIG. 13D is a diagram illustrating reflection characteristics on the input terminal side of the surface acoustic wave filter according to the third embodiment.
  • FIG. 14 is a diagram illustrating a configuration of a surface acoustic wave filter of a surface acoustic wave filter according to a fourth embodiment, and (a) is a schematic diagram illustrating a configuration in which regions are divided into regions having different pitches. b) is a diagram relatively showing the size of the pitch in each region.
  • FIG. 14 is a diagram illustrating a configuration of a surface acoustic wave filter of a surface acoustic wave filter according to a fourth embodiment, and (a) is a schematic diagram illustrating a configuration in which regions are divided into regions having different pitches. b
  • FIG. 15A is a diagram illustrating pass characteristics of the surface acoustic wave filter according to the first exemplary embodiment.
  • FIG. 15B is a diagram illustrating reflection characteristics on the input terminal side of the surface acoustic wave filter according to the first exemplary embodiment.
  • FIG. 15C is a diagram illustrating a pass characteristic of the surface acoustic wave filter according to the first embodiment.
  • FIG. 15D is a diagram illustrating reflection characteristics on the output terminal side of the surface acoustic wave filter according to the first exemplary embodiment.
  • each figure is a schematic diagram and is not necessarily shown strictly. In each figure, substantially the same components are denoted by the same reference numerals, and redundant descriptions are omitted or simplified.
  • the number of electrode fingers in the resonator and the reflector is smaller than the actual number of electrode fingers.
  • FIG. 1 is a conceptual diagram showing a configuration of a high-frequency module 1 according to the present embodiment.
  • the high-frequency module 1 includes a surface acoustic wave filter 10 and a low noise amplifier (LNA) 20.
  • the surface acoustic wave filter 10 is once connected to an antenna (not shown) and the other end is connected to the low noise amplifier 20.
  • the low noise amplifier 20 is an amplifier that amplifies a weak radio wave after reception without increasing noise as much as possible.
  • the input impedance refers to the impedance of the surface acoustic wave filter 10 when the surface acoustic wave filter 10 is viewed from the input terminal IN side of the high frequency module 1. That is, it means the SAW (Surface Acoustic Wave) input side impedance indicated by an arrow in FIG.
  • the output impedance refers to the impedance of the surface acoustic wave filter 10 when the surface acoustic wave filter 10 is viewed from a terminal (not shown) to which the low noise amplifier 20 that is the output destination of the high frequency signal is connected. That is, it means the SAW output side impedance indicated by an arrow in FIG.
  • the surface acoustic wave filter 10 is a longitudinally coupled surface acoustic wave filter. As shown in FIG. 2A, the surface acoustic wave filter 10 includes a resonator 13, a resonator 14, and a resonator 15, and a reflector 16 and a reflector 17 between the input terminal 11 and the output terminal 12. Yes.
  • the resonator 13, the resonator 14, and the resonator 15 are arranged in this order from the reflector 16 side to the reflector 17 side.
  • the resonator 13 has a configuration in which two IDT electrodes 13a and 13b are combined.
  • the IDT electrode 13 a of the resonator 13 is connected to the input terminal 11.
  • the IDT electrode 13b is connected to the ground.
  • the resonator 15 has a configuration in which two IDT electrodes 15a and 15b are combined.
  • the IDT electrode 15 a of the resonator 15 is connected to the input terminal 11.
  • the IDT electrode 15b is connected to the ground.
  • the resonator 14 disposed between the resonator 13 and the resonator 15 has a configuration in which two IDT electrodes 14a and 14b are combined.
  • the IDT electrode 14a of the resonator 14 is connected to the ground.
  • the IDT electrode 14 b is connected to the output terminal 12.
  • the reflector 16 is provided with a plurality of bus bar electrodes 16a and 16b, and between the bus bar electrode 16a and the bus bar electrode 16b, and electrode fingers 16c having both ends connected to the bus bar electrode 16a and the bus bar electrode 16b, respectively.
  • a plurality of reflectors 17 are provided between two bus bar electrodes 17a and 17b and between the bus bar electrode 17a and the bus bar electrode 17b, and electrode fingers having both ends connected to the bus bar electrode 17a and the bus bar electrode 17b, respectively. 17c.
  • FIG. 3A and 3B are schematic views showing a configuration of a general surface acoustic wave filter, in which FIG. 3A is a plan view, and FIG. 3B is a cross-sectional view taken along an alternate long and short dash line shown in FIG.
  • the resonator 100 includes a piezoelectric substrate 123 and an IDT electrode 101a and an IDT electrode 101b which are comb-shaped electrodes (comb-shaped electrodes).
  • the piezoelectric substrate 123 is made of, for example, a single crystal of LiNbO 3 cut at a predetermined cut angle. In the piezoelectric substrate 123, a surface acoustic wave propagates in a predetermined direction.
  • the IDT electrode 101a includes a plurality of electrode fingers 110a that are parallel to each other and a bus bar electrode 111a that connects the plurality of electrode fingers 110a.
  • the IDT electrode 101b includes a plurality of electrode fingers 110b that are parallel to each other and a bus bar electrode 111b that connects the plurality of electrode fingers 110b.
  • the IDT electrode 101a and the IDT electrode 101b are arranged such that a plurality of electrode fingers 110a and 110b are alternately positioned in the surface acoustic wave propagation direction. That is, the IDT electrode 101a and the IDT electrode 101b are configured such that each of the plurality of electrode fingers 110b of the IDT electrode 101b is disposed between each of the plurality of electrode fingers 110a of the IDT electrode 101a.
  • the IDT electrode 101a and the IDT electrode 101b have a structure in which an adhesion layer 124a and a main electrode layer 124b are laminated as shown in FIG.
  • the adhesion layer 124a is a layer for improving the adhesion between the piezoelectric substrate 123 and the main electrode layer 124b, and as a material, for example, NiCr is used.
  • the main electrode layer 124b may have a single layer structure composed of one layer, or may have a stacked structure in which a plurality of layers are stacked.
  • the protective layer 125 is formed so as to cover the IDT electrode 101a and the IDT electrode 101b.
  • the protective layer 125 is a layer for the purpose of protecting the main electrode layer 124b from the external environment, adjusting frequency temperature characteristics, and improving moisture resistance.
  • the protective layer 125 is a film containing, for example, silicon dioxide as a main component.
  • the protective layer 125 may have a single layer structure or a laminated structure.
  • the materials forming the adhesion layer 124a, the main electrode layer 124b, and the protective layer 125 are not limited to the materials described above. Furthermore, the IDT electrode 101a and the IDT electrode 101b do not have to have the above laminated structure.
  • the IDT electrode 101a and the IDT electrode 101b may be made of, for example, a metal or alloy such as Ti, Al, Cu, Pt, Au, Ag, or Pd, and a plurality of layers made of the above metal or alloy may be used. You may be comprised by the laminated structure laminated
  • ⁇ shown in FIG. 3B is referred to as the pitch between the electrode finger 110a and the electrode finger 110b constituting the IDT electrode 101a and the IDT electrode 101b.
  • the wavelength is defined by the pitch ⁇ of the plurality of electrode fingers 110a and electrode fingers 110b constituting the IDT electrode 101a and the IDT electrode 101b.
  • the pitch ⁇ refers to the length from the center of the width of one electrode finger to the center of the width of the other electrode finger in adjacent electrode fingers connected to the same bus bar electrode. For example, in FIG.
  • W shown in FIG. 3B refers to the width of the electrode finger 110a of the IDT electrode 101a and the electrode finger 110b of the IDT electrode 101b in the resonator 100.
  • S shown in (b) of FIG. 3 refers to an interval between the electrode finger 110a and the electrode finger 110b.
  • L shown in FIG. 3A is the cross width of the IDT electrode 101a and the IDT electrode 101b, and is the length of the electrode finger where the electrode finger 110a of the IDT electrode 101a and the electrode finger 110b of the IDT electrode 101b overlap. I mean.
  • the logarithm means the number of electrode fingers 110a or 110b.
  • the structure of the resonator 100 is not limited to the structure described in (a) and (b) of FIG.
  • the resonator 13, the resonator 14, and the resonator 15 according to the present embodiment are not limited to the configuration described above.
  • the resonator 13, the resonator 14, and the resonator 15 may have configurations in which the pitches and logarithms of the electrode fingers are different as described below.
  • FIGS. 2A and 2B are schematic diagrams illustrating the configuration of the resonator 13, wherein FIG. 4A is a schematic diagram illustrating a configuration in which regions are divided into regions having different pitches, and FIG. It is the figure shown relatively.
  • FIG. 5 is a schematic diagram showing the configuration of the resonator 13 more specifically.
  • the resonator 13, the resonator 14 and the resonator 15 each have a plurality of regions having different pitches.
  • the resonator 13 has a region I1, a region I2, and a region I3 in order from the reflector 16 side. As shown in FIG. 5, the resonator 13 includes an IDT electrode 13a and an IDT electrode 13b.
  • the IDT electrode 13a and the IDT electrode 13b correspond to comb-shaped electrodes in the present invention.
  • the IDT electrode 13a and the IDT electrode 13b form a pair of comb electrodes.
  • the IDT electrode 13a includes a bus bar electrode 131a that is commonly arranged in the region I1, the region I2, and the region I3, and a plurality of electrode fingers 132a that are connected at one end to the bus bar electrode 131a.
  • the IDT electrode 13b has a bus bar electrode 131b arranged in common to the region I1, the region I2, and the region I3, and a plurality of electrode fingers 132b having one end connected to the bus bar electrode 131b.
  • the pitches of the electrode fingers 132a and 131b are different in the region I1, the region I2, and the region I3, respectively.
  • the region I ⁇ b> 1 is disposed outside the surface acoustic wave filter 10, that is, at a position closest to the reflector 16.
  • the region I3 is disposed at the center side of the surface acoustic wave filter 10, that is, at a position closest to the resonator 14.
  • the region I2 is disposed between the region I1 and the region I3.
  • the pitch in each region is the smallest in the most central region I3 and the largest in the region I2 adjacent to the region I3. That is, as shown in FIG.
  • the pitch in the region I1 is ⁇ 1, the pitch in the region I2 is ⁇ 2, and the pitch in the region I3 is ⁇ 3, the pitch in each region satisfies the relationship of ⁇ 3 ⁇ 1 ⁇ 2.
  • ⁇ 1 5.15 ⁇ m
  • ⁇ 2 5.21 ⁇ m
  • ⁇ 3 4.63 ⁇ m.
  • the region I3 corresponds to the first region in the present invention
  • the region I2 corresponds to the second region in the present invention.
  • the logarithm of the electrode finger 110a and the electrode finger 110b in the region I1 is, for example, 17.
  • the logarithm of the electrode finger 110a and the electrode finger 110b in the region I2 is, for example, 6.
  • the logarithm of the electrode finger 110a and the electrode finger 110b in the region I3 is, for example, 3. That is, the number of pairs of the electrode fingers 110a and 110b in the region I3 closest to the resonator 14 is smaller than the total number of pairs of the electrode fingers 110a and 110b in the regions I1 and I2 other than the region I3.
  • the logarithm of the electrode finger 110a and the electrode finger 110b in each region is not limited to the logarithm described above, and may be changed.
  • the resonator 14 has a region I4, a region I5, and a region I6 in order from the side closer to the resonator 13. That is, the region I4 is disposed closest to the resonator 13, and the region I6 is disposed closest to the resonator 15.
  • the region I5 is arranged between the region I4 and the region I6.
  • the pitch ⁇ 4 in the region I4 and the pitch ⁇ 6 in the region I6 may be the same value or different values. Further, the pitch ⁇ 4 and the pitch ⁇ 6 may be the same value as the pitch ⁇ 3 of the region I3 in the resonator 13 as shown in FIG. 4B, or may be different values. Further, the pitch ⁇ 5 in the region I5 may be the same value as the pitch ⁇ 1 in the region I1 or the pitch ⁇ 2 in the region I2, or may be a different value.
  • the logarithm of the electrode finger 110a and the electrode finger 110b in the region I4 is, for example, 2.
  • the logarithm of the electrode finger 110a and the electrode finger 110b in the region I5 is, for example, 10.
  • the logarithm of the electrode finger 110a and the electrode finger 110b in the region I6 is, for example, 4.
  • the logarithm of the electrode finger 110a and the electrode finger 110b in each region is not limited to the logarithm described above, and may be changed.
  • the resonator 15 has a region I7, a region I8, and a region I9 in order from the side closer to the resonator 14.
  • the regions I7, I8, and I9 of the resonator 15 correspond to the regions I3, I2, and I1 of the resonator 13, respectively.
  • the region I7 is disposed at the center side of the surface acoustic wave filter 10, that is, at a position closest to the resonator 14.
  • the region I9 is disposed outside the surface acoustic wave filter 10, that is, at a position closest to the reflector 17.
  • the region I8 is disposed between the region I7 and the region I9. As shown in FIG.
  • the region I7 corresponds to the first region in the present invention, and the region I8 corresponds to the second region in the present invention.
  • the pitch ⁇ 7 in the region I7 may be the same as or different from the pitch ⁇ 3 in the region I3, the pitch ⁇ 4 in the region I4, and the pitch ⁇ 6 in the region I6. It may be. Further, the pitch ⁇ 8 in the region I8 may be the same as or different from the pitch ⁇ 2 in the region I2. Further, the pitch ⁇ 9 in the region I9 may be the same value as the pitch ⁇ 1 in the region I1, or may be a different value.
  • the logarithm of the electrode finger 110a and the electrode finger 110b in the region I7 is, for example, 5.
  • the logarithm of the electrode finger 110a and the electrode finger 110b in the region I8 is, for example, 5.
  • the logarithm of the electrode finger 110a and the electrode finger 110b in the region I9 is, for example, 15.
  • the logarithm of the electrode finger 110a and the electrode finger 110b in each region is not limited to the logarithm described above, and may be changed.
  • FIGS. 6A and 6C are diagrams showing the pass characteristics of the surface acoustic wave filter 10 according to the present embodiment.
  • FIG. 6B is a diagram illustrating reflection characteristics on the input terminal side of the surface acoustic wave filter 10 according to the present exemplary embodiment.
  • FIG. 6D is a diagram illustrating reflection characteristics on the output terminal side of the surface acoustic wave filter 10 according to the present exemplary embodiment.
  • the surface acoustic wave filter 10 in which the pitch relationship in the resonator 13 is ⁇ 3 ⁇ 1 ⁇ 2 and the pitch relationship in the resonator 15 is ⁇ 7 ⁇ 9 ⁇ 8 is used.
  • the solid line A represents the characteristic when using a surface acoustic wave filter (original surface acoustic wave filter) in which the characteristic is the broken line B and the pitch relationship between the resonator 13 and the resonator 15 is not changed as described above.
  • the impedance characteristics in the pass band of the surface acoustic wave filter 10 are indicated by bold lines.
  • the surface acoustic wave filter 10 includes a resonance frequency of a zeroth-order resonance mode and a resonance frequency of a second-order resonance mode for obtaining a pass band.
  • FIG. 6A shows the pass characteristic of the surface acoustic wave filter 10 when mismatch loss is removed in order to make the change in bandwidth easy to understand.
  • the relationship between the pitches of the region I1, the region I2, and the region I3 of the resonator 13 is ⁇ 3 ⁇ 1 ⁇ 2
  • the relationship between the pitches of the region I7, the region I8, and the region I9 of the resonator 15 is ⁇ 7 ⁇ 9.
  • the transmission characteristic (dashed line B) of the surface acoustic wave filter 10 with ⁇ 8 is 0 as compared with the pass characteristic (solid line A) of the surface acoustic wave filter when the pitch of the resonators 13 and 15 is not changed.
  • the resonance frequency of the next resonance mode moves to the low frequency side. Further, the resonance frequency of the secondary resonance mode does not change.
  • the coupling between these resonance modes is not weakened. Further, since the coupling between the zeroth-order resonance mode and the second-order resonance mode is not weakened, as shown in FIG. 6B, the Smith chart center of the input impedance (broken line B) in the passband of the surface acoustic wave filter 10 is used. Is smaller than the deviation of the input impedance (solid line A) of the originally designed surface acoustic wave filter.
  • the passband of the surface acoustic wave filter 10 The width (broken line B) is larger than the passband width (solid line A) of the original surface acoustic wave filter.
  • the coupling between the zeroth-order resonance mode and the second-order resonance mode is not weakened, as shown in FIG. 6D, the winding of the output impedance (broken line B) in the passband on the Smith chart is the original design. It does not spread beyond the winding of the output impedance (solid line A) of the surface acoustic wave filter. Therefore, in the surface acoustic wave filter 10, it can be said that the variation in output impedance is smaller than that in the case of the originally designed surface acoustic wave filter.
  • the surface acoustic wave filter 10 can realize a wide band while suppressing the spread of the winding of the output impedance in the pass band on the Smith chart.
  • FIG. 7 is a diagram showing a configuration of the surface acoustic wave filter 30 according to this comparative example.
  • the resonator 23 disposed at a position closest to the reflector 16 and the resonator 25 disposed at a position closest to the reflector 17 include an electrode finger 132a and an electrode finger, respectively.
  • 132b has two regions with different pitches.
  • the resonator 23 has a region I11 arranged on the reflector 16 side and a region I13 arranged on the resonator 14 side.
  • the pitch ⁇ 11 of the electrode finger 132a and the electrode finger 132b in the region I11 is larger than the pitch ⁇ 13 of the electrode finger 132a and the electrode finger 132b in the region I13. That is, the pitch in each region satisfies the relationship of ⁇ 13 ⁇ 11.
  • the resonator 25 has a region I17 disposed on the resonator 14 side and a region I18 disposed on the reflector 17 side.
  • the pitch ⁇ 18 of the electrode finger 132a and the electrode finger 132b in the region I18 is larger than the pitch ⁇ 17 of the electrode finger 132a and the electrode finger 132b in the region I17. That is, the pitch in each region satisfies the relationship of ⁇ 17 ⁇ 18.
  • the configuration of the resonator 14 disposed between the resonator 23 and the resonator 25 is the same as that of the resonator 14 in the surface acoustic wave filter 10 shown in the first embodiment, and thus the description thereof is omitted.
  • FIGS. 8A and 8C are diagrams illustrating the pass characteristics of the surface acoustic wave filter 30 according to the present embodiment.
  • FIG. 8B is a diagram illustrating reflection characteristics on the input terminal side of the surface acoustic wave filter 30 according to the present exemplary embodiment.
  • FIG. 8D is a diagram illustrating reflection characteristics on the output terminal side of the surface acoustic wave filter 30 according to the present embodiment.
  • the characteristics when the surface acoustic wave filter 30 in which the relationship of the pitch in the resonator 23 is ⁇ 13 ⁇ 11 and the relationship of the pitch in the resonator 25 is ⁇ 17 ⁇ 18 are used are the broken line C
  • the solid line A shows the characteristics when a surface acoustic wave filter (original surface acoustic wave filter) whose pitch relationship between the resonator 23 and the resonator 25 is not changed as described above is used.
  • 8B and 8D the impedance characteristics within the pass band of the surface acoustic wave filter 30 are indicated by bold lines.
  • the surface acoustic wave filter 10 in which the relationship between the pitches of the regions I11 and I13 of the resonator 23 is ⁇ 13 ⁇ 11, and the relationship between the pitches of the regions I17 and I18 of the resonator 25 is ⁇ 17 ⁇ 18.
  • the pass characteristic (broken line C) indicates that both the resonance frequency of the zeroth-order resonance mode and the resonance frequency of the second-order resonance mode are on the lower frequency side than the pass characteristic (solid line A) of the originally designed surface acoustic wave filter. Moving. Accordingly, since the interval between the resonance frequencies of the zeroth-order resonance mode and the second-order resonance mode is widened, the coupling between these resonance modes is weakened.
  • the input impedance (broken line C) in the passband is the elastic surface of the original design.
  • the center of the Smith chart is deviated.
  • both the resonance frequency of the zeroth-order resonance mode and the resonance frequency of the second-order resonance mode move to the lower frequency side, and the resonance frequency of the second-order resonance mode is the zeroth-order resonance mode.
  • the resonance frequency changes more greatly than the resonance frequency. Therefore, as shown in FIG. 8C, the pass bandwidth (dashed line C) of the surface acoustic wave filter 30 is larger than the pass bandwidth (solid line A) of the original surface acoustic wave filter.
  • the coupling between the zeroth-order resonance mode and the second-order resonance mode is weakened, and the input impedance in the band deviates from the center of the Smith chart.
  • the winding of the output impedance (broken line C) in the pass band is wider than the winding of the output impedance (solid line A) of the original surface acoustic wave filter. Therefore, in the surface acoustic wave filter 30 according to this modification, it can be said that the variation in output impedance is larger than that in the surface acoustic wave filter of the original design.
  • the surface acoustic wave filter 10 according to the present embodiment has an output within the passband on the Smith chart. Broadband can be realized while suppressing the spread of the winding of impedance.
  • the surface acoustic wave filter according to this comparative example includes a resonator 13, a resonator 14, and a resonator 15, similar to the surface acoustic wave filter 10 described above.
  • the resonator 13 has three regions I1, I2, and I3 having different pitches of the electrode fingers 132a and the electrode fingers 132b.
  • the resonator 15 has three regions I7, I8, and I9 having different pitches of the electrode fingers 132a and the electrode fingers 132b.
  • the pitch in the region I3 on the most central side is the smallest, and the pitch in the region I1 that is not adjacent to the region I3 is the largest. That is, the pitch in each region satisfies the relationship of ⁇ 3 ⁇ 2 ⁇ 1.
  • the pitch in the most central region I7 is the smallest, and the pitch in the region I9 not adjacent to the region I7 is the largest. That is, the pitch in each region satisfies the relationship of ⁇ 7 ⁇ 8 ⁇ 9.
  • the configuration of the resonator 14 disposed between the resonator 13 and the resonator 15 is the same as that of the resonator 14 in the surface acoustic wave filter 10 shown in the first embodiment, and thus the description thereof is omitted.
  • FIGS. 9A and 9C are diagrams showing pass characteristics of the surface acoustic wave filter 10 according to the present embodiment.
  • FIG. 9B is a diagram illustrating reflection characteristics on the input terminal side of the surface acoustic wave filter 10 according to the present exemplary embodiment.
  • FIG. 9D is a diagram illustrating reflection characteristics on the output terminal side of the surface acoustic wave filter 10 according to the present exemplary embodiment.
  • 9A to 9D as described above, the characteristics in the case of using the surface acoustic wave filter in which the pitch relationship in the resonator 13 is ⁇ 3 ⁇ 2 ⁇ 1 and the pitch relationship in the resonator 15 is ⁇ 7 ⁇ 8 ⁇ 9.
  • the solid line A shows the characteristics when using a surface acoustic wave filter (original surface acoustic wave filter) in which the relationship between the broken line D and the pitch of the resonator 13 and the resonator 15 is not changed as described above.
  • 9B and 9D the impedance characteristics within the pass band of the surface acoustic wave filter 10 are indicated by bold lines.
  • the relationship between the pitches of the region I1, the region I2, and the region I13 of the resonator 13 is ⁇ 3 ⁇ 2 ⁇ 1
  • the relationship between the pitches of the region I7, the region I8, and the region I9 of the resonator 15 is ⁇ 7 ⁇ 8.
  • the pass characteristic (dashed line D) of the surface acoustic wave filter with ⁇ 9 moves to the low frequency side in the secondary resonance mode compared to the pass characteristic (solid line A) of the original surface acoustic wave filter. .
  • the resonance frequency of the zeroth-order resonance mode does not change.
  • the coupling between these resonance modes is weakened.
  • the coupling between the zeroth-order resonance mode and the second-order resonance mode is weakened, as shown in FIG. 9B, in the surface acoustic wave filter according to this modification, the input impedance (broken line D) in the passband is Compared with the input impedance (solid line A) of the surface acoustic wave filter of the design, it will deviate from the center of the Smith chart.
  • the pass bandwidth (dashed line D) of the surface acoustic wave filter according to the present modification is compared with the pass bandwidth (solid line A) of the original surface acoustic wave filter. Does not change. Further, as described above, since the coupling between the zeroth-order resonance mode and the second-order resonance mode is weakened, and the input impedance in the passband deviates from the center of the Smith chart, as shown in FIG. 9D, the passband on the Smith chart. The winding of the output impedance (broken line D) is wider than the winding of the output impedance (solid line A) of the original surface acoustic wave filter. Therefore, in the surface acoustic wave filter according to this modification, it can be said that the variation in output impedance is larger than that in the surface acoustic wave filter of the original design.
  • the surface acoustic wave filter 10a according to the present embodiment differs from the surface acoustic wave filter 10 according to the first embodiment in that the resonator 13 disposed on the reflector 16 side has a different pitch in the surface acoustic wave filter 10a. Although the three regions I1, I2, and I3 are provided, the resonator 25 disposed on the reflector 17 side has two regions I17 and I18 having different pitches.
  • FIGS. 10A and 10B are diagrams showing the configuration of the surface acoustic wave filter 10a according to the present embodiment, in which FIG. 10A is a schematic diagram showing the configuration divided into regions having different pitches, and FIG. It is the figure which showed the magnitude
  • the surface acoustic wave filter 10a is a longitudinally coupled surface acoustic wave filter, like the surface acoustic wave filter 10 shown in the first embodiment.
  • the surface acoustic wave filter 10 a includes resonators 13, 14, and 25 in order from the reflector 16 side to the reflector 17 side between the reflector 16 and the reflector 17.
  • the configuration of the resonator 13 includes regions I1, I2, and I3 having different pitches, like the surface acoustic wave filter 10 shown in the first embodiment. As shown in FIG. 10B, the pitch in each region satisfies the relationship of ⁇ 3 ⁇ 1 ⁇ 2.
  • the region I3 corresponds to the first region in the present invention, and the region I2 corresponds to the second region in the present invention.
  • the resonator 25 includes a region I17 disposed on the resonator 14 side and a region I18 disposed on the reflector 17 side.
  • the pitch ⁇ 18 of the electrode finger 132a and the electrode finger 132b in the region I18 is larger than the pitch ⁇ 17 of the electrode finger 132a and the electrode finger 132b in the region I17. That is, the pitch in each region satisfies the relationship of ⁇ 17 ⁇ 18, as shown in FIG.
  • the configuration of the resonator 14 disposed between the resonator 13 and the resonator 25 is the same as that of the resonator 14 in the surface acoustic wave filter 10 shown in the first embodiment, and thus the description thereof is omitted.
  • FIGS. 11A and 11C are diagrams showing the pass characteristics of the surface acoustic wave filter 10 according to the present embodiment.
  • FIG. 11B is a diagram illustrating reflection characteristics on the input terminal side of the surface acoustic wave filter 10 according to the present exemplary embodiment.
  • FIG. 11D is a diagram illustrating reflection characteristics on the output terminal side of the surface acoustic wave filter 10 according to the present exemplary embodiment.
  • 11A to 11D the characteristics when the surface acoustic wave filter 10a is used in which the pitch relationship in the resonator 13 is ⁇ 3 ⁇ 1 ⁇ 2 and the pitch relationship in the resonator 25 is ⁇ 17 ⁇ 18 as described above.
  • a solid line A indicates the characteristics when a surface acoustic wave filter (original surface acoustic wave filter) in which the relationship between the broken line E, the pitch of the resonator 13 and the resonator 25 is not changed as described above is used.
  • 11B and 11D the impedance characteristics within the pass band of the surface acoustic wave filter 10a are indicated by bold lines.
  • the relationship between the pitch of the region I1, the region I2 and the region I3 of the resonator 13 is ⁇ 3 ⁇ 1 ⁇ 2, and the relationship between the pitch of the region I17 and the region I18 of the resonator 25 is ⁇ 17 ⁇ 18.
  • the pass characteristic (dashed line E) of the surface wave filter 10a is both the resonance frequency of the zeroth-order resonance mode and the resonance frequency of the second-order resonance mode compared to the pass characteristic (solid line A) of the originally designed surface acoustic wave filter. Moves to the low frequency side. At this time, the resonance frequency of the zeroth-order resonance mode changes more greatly than the resonance frequency of the second-order resonance mode.
  • the surface acoustic wave filter 10a has a Smith chart of the input impedance (broken line E) in the passband.
  • the deviation from the center is smaller than the deviation of the input impedance (solid line A) of the originally designed surface acoustic wave filter.
  • the deviation at this time is smaller than the deviation from the center of the Smith chart of the input impedance (broken line B) in the passband of the surface acoustic wave filter 10 shown in FIG. 6B.
  • the pass bandwidth (dashed line E) of the surface acoustic wave filter 10a is larger than the pass bandwidth (solid line A) of the original surface acoustic wave filter.
  • the pass bandwidth (broken line E) at this time is larger than the pass bandwidth (broken line B) of the surface acoustic wave filter 10 shown in FIG. 6C.
  • the winding of the output impedance (broken line E) in the passband on the Smith chart is the original design. It is not as wide as the winding of the output impedance (solid line A) of the surface acoustic wave filter.
  • the winding of the output impedance (broken line E) at this time is smaller than the winding of the output impedance (broken line B) of the surface acoustic wave filter 10 shown in FIG. 6D. Therefore, in the surface acoustic wave filter 10a, it can be said that the variation in output impedance is smaller than in the case of the originally designed surface acoustic wave filter.
  • the surface acoustic wave filter 10a As described above, according to the surface acoustic wave filter 10a according to the present embodiment, it is possible to realize a wide band while suppressing the spread of the winding of the output impedance in the pass band on the Smith chart.
  • the resonator 13 on the reflector 16 side has three regions having different pitches, and the resonator 25 on the reflector 17 side has two regions having different pitches.
  • the resonator on the reflector 17 side may have three regions with different pitches, and the resonator on the reflector 16 side may have two regions with different pitches.
  • the pitch value and the logarithm of the electrode finger 132a and the electrode finger 132b may be changed as appropriate.
  • the surface acoustic wave filter 10b according to the present embodiment is different from the surface acoustic wave filter 10 according to the first embodiment in that the resonator 13 and the reflector 17 arranged on the reflector 16 side in the surface acoustic wave filter 10b.
  • the configuration of the resonator 35 disposed on the side is symmetrical with respect to the resonator 14 disposed between the resonator 13 and the resonator 35.
  • the resonator 13 and the resonator 35 are connected to the output terminal 12, and the resonator 14 is connected to the input terminal 11.
  • FIG. 12 is a diagram showing a configuration of the surface acoustic wave filter 10b according to the present embodiment.
  • the surface acoustic wave filter 10b is a longitudinally coupled surface acoustic wave filter, like the surface acoustic wave filter 10 shown in the first embodiment.
  • the surface acoustic wave filter 10 b includes a resonator 13, a resonator 14, and a resonator 15 between the reflector 16 and the reflector 17 in order from the reflector 16 side to the reflector 17 side.
  • the configuration of the resonator 13 has regions I1, I2, and I3 having different pitches in order from the side closer to the reflector 16, as in the surface acoustic wave filter 10 shown in the first embodiment.
  • the logarithm of the electrode finger 110a and the electrode finger 110b in the region I1 is 18, for example.
  • the logarithm of the electrode finger 110a and the electrode finger 110b in the region I2 is, for example, 6.
  • the logarithm of the electrode finger 110a and the electrode finger 110b in the region I3 is, for example, 3.
  • the resonator 35 has regions I7, I8, and I9 having different pitches in order from the side closer to the resonator 14.
  • the region I7, region I8, and region I9 of the resonator 35 correspond to the region I3, region I2, and region I1 of the resonator 13, respectively.
  • the pitches of the electrode fingers in the regions I7, I8, and I9 of the resonator 35 are the electrode fingers in the regions I1, I2, and I3 of the resonator 13, respectively.
  • the pitch is the same.
  • the logarithm of the electrode finger 110a and the electrode finger 110b in the region I7 is, for example, 3.
  • the logarithm of the electrode finger 110a and the electrode finger 110b in the region I8 is, for example, 6.
  • the logarithm of the electrode finger 110a and the electrode finger 110b in the region I9 is, for example, 18. That is, the logarithms of the electrode fingers 132a and 132b in the region I7, the region I8, and the region I9 in the resonator 35 are the logarithms of the electrode fingers 132a and 132b in the region I1, the region I2, and the region I3 in the resonator 13, respectively.
  • the region I3 and the region I7 correspond to the first region in the present invention
  • the region I2 and the region I8 correspond to the second region in the present invention.
  • the configuration of the resonator 14 arranged between the resonator 13 and the resonator 35 is the same as that of the resonator 14 in the surface acoustic wave filter 10 shown in the first embodiment, and thus the description thereof is omitted.
  • the resonator 13 and the resonator 35 are symmetrical with respect to the resonator 14.
  • FIGS. 13A and 13C are diagrams showing the pass characteristics of the surface acoustic wave filter 10 according to the present embodiment.
  • FIG. 13B is a diagram illustrating reflection characteristics on the output terminal side of the surface acoustic wave filter 10 according to the present exemplary embodiment.
  • FIG. 13D is a diagram illustrating reflection characteristics on the input terminal side of the surface acoustic wave filter 10 according to the present exemplary embodiment.
  • the characteristics when the surface acoustic wave filter 10b in which the configurations of the resonator 13 and the resonator 35 are symmetrical with respect to the resonator 14 are used as described above are shown by the broken line F, the resonator 13 and the resonance.
  • a solid line A indicates the characteristics when a surface acoustic wave filter (originally designed surface acoustic wave filter) whose configuration of the element 35 is not symmetrical with respect to the resonator 14 is used.
  • the impedance characteristics in the passband of the surface acoustic wave filter 10b are indicated by bold lines.
  • the pass characteristic (dashed line F) of the surface acoustic wave filter 10b when the configuration of the resonator 13 and the resonator 35 is symmetrical with respect to the resonator 14 is the original surface acoustic wave filter.
  • the resonance frequency of the zeroth-order resonance mode moves to the low frequency side compared to the pass characteristic (solid line A).
  • the resonance frequency of the secondary resonance mode does not change. Therefore, since the interval between the resonance frequency of the zeroth-order resonance mode and the resonance frequency of the second-order resonance mode does not widen, the coupling between these resonance modes is not weakened. Further, since the coupling between the zeroth-order resonance mode and the second-order resonance mode is not weakened, as shown in FIG.
  • the surface acoustic wave filter 10b has a Smith chart of output impedance (broken line F) in the passband. The deviation from the center is smaller than the deviation of the output impedance (solid line A) of the original surface acoustic wave filter.
  • the resonator 13 and the resonator 35 are connected to the output terminal 12, and the resonator 14 is connected to the input terminal 11. Therefore, the relationship between the input impedance and the output impedance is shown in the first embodiment.
  • the pass bandwidth (dashed line F) of the surface acoustic wave filter 10b is larger than the pass bandwidth (solid line A) of the original surface acoustic wave filter.
  • the winding of the input impedance (broken line F) in the passband on the Smith chart is the original design. It does not spread as much as the winding of the input impedance (solid line A) of the surface acoustic wave filter. Therefore, in the surface acoustic wave filter 10b, it can be said that the variation in the input and output impedances is smaller than that in the original surface acoustic wave filter.
  • the surface acoustic wave filter 10b As described above, according to the surface acoustic wave filter 10b according to the present embodiment, it is possible to realize a wide band while suppressing the spread of the winding of the input impedance and the output impedance in the pass band on the Smith chart.
  • the resonator 13 and the resonator 35 are connected to the output terminal 12, and the resonator 14 is connected to the input terminal 11.
  • the surface acoustic wave described in the first embodiment is used. Similar to the filter 10, the resonator 13 and the resonator 35 may be connected to the input terminal 11, and the resonator 14 may be connected to the output terminal 12. Further, the pitch value and the logarithm of the electrode fingers 132 a and 132 b may be changed as appropriate as long as the resonator 13 and the resonator 35 are symmetric with respect to the resonator 14.
  • the surface acoustic wave filter 10c according to the present embodiment is different from the surface acoustic wave filter 10 according to the first embodiment in that the resonator 43 on the reflector 16 side and the resonator 45 on the reflector 17 side have different pitches. It is divided into four different areas.
  • FIG. 14A and 14B are diagrams showing the configuration of the surface acoustic wave filter 10c according to the present embodiment, in which FIG. 14A is a schematic diagram showing a configuration in which regions are divided into regions having different pitches, and FIG. It is the figure which showed the magnitude
  • the surface acoustic wave filter 10c is a longitudinally coupled surface acoustic wave filter, similar to the surface acoustic wave filter 10 shown in the first embodiment.
  • the surface acoustic wave filter 10 a includes a resonator 43, a resonator 14, and a resonator 45 between the reflector 16 and the reflector 17 in order from the reflector 16 side to the reflector 17 side.
  • the resonator 43 has a region I21, a region I22, a region I23, and a region I24 having different pitches in order from the side closer to the reflector 16.
  • the pitch in each region is the smallest in the region I24 on the most central side and the largest in the region I23 adjacent to the region I24. That is, as shown in FIG. 14B, when the pitch in the region I21 is ⁇ 21, the pitch in the region I22 is ⁇ 22, the pitch in the region I23 is ⁇ 23, and the pitch in the region I24 is ⁇ 24, the pitch in each region is ⁇ 24.
  • the relations of ⁇ 21 ⁇ 23 and ⁇ 24 ⁇ 22 ⁇ 23 are satisfied.
  • the region I24 corresponds to the first region in the present invention, and the region I23 corresponds to the second region in the present invention.
  • the logarithm of the electrode finger 110a and the electrode finger 110b in the region I21 is, for example, 10.
  • the logarithm of the electrode finger 110a and the electrode finger 110b in the region I22 is, for example, 4.
  • the logarithm of the electrode finger 110a and the electrode finger 110b in the region I23 is, for example, 8.
  • the logarithm of the electrode finger 110a and the electrode finger 110b in the region I24 is, for example, 3.
  • the resonator 45 has a region I26, a region I27, a region I28, and a region I29 having different pitches in order from the side closer to the resonator.
  • the pitch in each region is the smallest in the most central region I26 and the largest in the region I27 adjacent to the region I26. That is, as shown in FIG. 14B, when the pitch in the region I26 is ⁇ 26, the pitch in the region I27 is ⁇ 27, the pitch in the region I28 is ⁇ 28, and the pitch in the region I29 is ⁇ 29, the pitch in each region is ⁇ 26.
  • the relations of ⁇ 28 ⁇ 27 and ⁇ 26 ⁇ 29 ⁇ 27 are satisfied.
  • the region I26 corresponds to the first region in the present invention
  • the region I27 corresponds to the second region in the present invention.
  • the logarithm of the electrode finger 110a and the electrode finger 110b in the region I26 is, for example, 5.
  • the logarithm of the electrode finger 110a and the electrode finger 110b in the region I27 is, for example, 10.
  • the logarithm of the electrode finger 110a and the electrode finger 110b in the region I28 is, for example, 3.
  • the logarithm of the electrode finger 110a and the electrode finger 110b in the region I29 is, for example, 7.
  • the configuration of the resonator 14 arranged between the resonator 43 and the resonator 45 is the same as that of the resonator 14 in the surface acoustic wave filter 10 shown in the first embodiment, and thus the description thereof is omitted.
  • 15A and 15C are diagrams showing the pass characteristics of the surface acoustic wave filter 10 according to the present embodiment.
  • FIG. 15B is a diagram illustrating reflection characteristics on the input terminal side of the surface acoustic wave filter 10 according to the present exemplary embodiment.
  • FIG. 15D is a diagram illustrating reflection characteristics on the output terminal side of the surface acoustic wave filter 10 according to the present exemplary embodiment.
  • the pitch relationship in the resonator 43 is ⁇ 24 ⁇ 21 ⁇ 23, ⁇ 24 ⁇ 22 ⁇ 23, and the pitch relationship in the resonator 45 is ⁇ 26 ⁇ 28 ⁇ 27, ⁇ 26 ⁇ 29 ⁇ 27.
  • the surface acoustic wave filter 10c When the surface acoustic wave filter 10c is used, the surface acoustic wave filter whose characteristics are the broken line G and the pitch relationship between the resonator 43 and the resonator 45 is not changed as described above (original surface acoustic wave filter).
  • the solid line A indicates the characteristics when using. 15B and 15D, the impedance characteristics within the pass band of the surface acoustic wave filter 10c are indicated by thick lines.
  • the relationship between the pitches of the regions I21, I22, I23, and I24 of the resonator 43 is ⁇ 24 ⁇ 21 ⁇ 23 and ⁇ 24 ⁇ 22 ⁇ 23, the region I26, the region I27, and the region of the resonator 45.
  • the pass characteristic (dashed line G) of the surface acoustic wave filter 10c in which the relationship between the pitches of I28 and the region I29 is ⁇ 26 ⁇ 28 ⁇ 27 and ⁇ 26 ⁇ 29 ⁇ 27 is the pass characteristic (solid line A) of the original surface acoustic wave filter.
  • both the resonance frequency of the zeroth-order resonance mode and the resonance frequency of the second-order resonance mode move to the low frequency side.
  • the resonance frequency of the zeroth-order resonance mode changes more greatly than the resonance frequency of the second-order resonance mode. Therefore, the interval between the resonance frequency of the zeroth-order resonance mode and the resonance frequency of the second-order resonance mode does not increase. Therefore, the coupling of these resonance modes is not weakened. Further, since the coupling between the zeroth-order resonance mode and the second-order resonance mode is not weakened, as shown in FIG. 15B, in the surface acoustic wave filter 10c, the Smith chart of the input impedance (broken line G) in the passband The deviation from the center is smaller than the deviation of the input impedance (solid line A) of the originally designed surface acoustic wave filter.
  • the pass bandwidth (dashed line G) of the surface acoustic wave filter 10c is larger than the pass bandwidth (solid line A) of the original surface acoustic wave filter.
  • the winding of the output impedance (broken line G) in the passband on the Smith chart is the original design. It does not spread as much as the winding of the output impedance (solid line A) of the surface acoustic wave filter. Therefore, in the surface acoustic wave filter 10c, it can be said that the variation in output impedance is smaller than in the case of the originally designed surface acoustic wave filter.
  • the surface acoustic wave filter 10c As described above, according to the surface acoustic wave filter 10c according to the present embodiment, it is possible to realize a wide band while suppressing the spread of the winding of the output impedance in the pass band on the Smith chart.
  • the surface acoustic wave filter according to the above-described embodiment may be used for a high-frequency module.
  • the surface acoustic wave filter 10 may be connected to a low noise amplifier 20 that amplifies the high-frequency signal that has passed through the surface acoustic wave filter 10.
  • the surface acoustic wave filter according to the above-described embodiment may be used for a multiplexer.
  • the multiplexer has a plurality of surface acoustic wave filters, and each of the plurality of surface acoustic wave filters is connected to a common terminal.
  • the resonator 13 has three regions, that is, the region I1, the region I2, and the region I3.
  • the present invention is not limited to this, and the resonator 13 may have four regions, or the number of regions may be further increased as long as it includes three or more regions.
  • the number of resonators having three or more regions having different electrode finger pitches is not limited to one, but two resonators disposed at both ends of three resonators used in a surface acoustic wave filter. May be.
  • the pitches of the electrode fingers in the corresponding regions of the two resonators may be the same or different.
  • the number of electrode fingers in each corresponding region of the two resonators may be the same or different.
  • the materials for the substrate, electrodes, protective layer, etc. constituting the resonator are not limited to those described above, and may be appropriately changed.
  • the pitch and logarithm of the electrode fingers of each resonator may be changed as long as the above-described conditions are satisfied.
  • the present invention can be used for high-frequency modules, duplexers, multiplexers, receivers, etc. using surface acoustic wave filters.

Abstract

Provided is a longitudinally-coupled surface acoustic wave filter provided with a first resonator (13), a second resonator (14), and a third resonator (15), wherein: the second resonator (14) and/or the third resonator (15) includes three or more regions having different electrode finger pitches; the electrode finger pitch in a first region which is closest to the first resonator (13), among the three or more regions, is the smallest; and the electrode finger pitch in a second region which is adjacent to the first region, among the three or more regions, is the largest.

Description

弾性表面波フィルタ、高周波モジュールおよびマルチプレクサSurface acoustic wave filters, high frequency modules and multiplexers
 本発明は、弾性表面波フィルタおよび弾性表面波フィルタを用いた高周波モジュール等に関する。 The present invention relates to a surface acoustic wave filter, a high-frequency module using the surface acoustic wave filter, and the like.
 従来、移動体通信機器の受信回路モジュールに用いられるフィルタとして、弾性波フィルタが使用されている。近年の通信周波数帯域の広帯域化に伴い、受信回路モジュールの受信感度の向上のため、低損失化の要求が高まっている。この要求を満たすために、例えば、縦結合型の弾性表面波フィルタを用いた技術が開発されている(例えば、特許文献1参照)。この縦結合型の弾性表面波フィルタは、共振モードとして0次モードと2次モードとを有している。 Conventionally, an acoustic wave filter has been used as a filter used in a receiving circuit module of a mobile communication device. With the recent widening of the communication frequency band, there is an increasing demand for low loss in order to improve the receiving sensitivity of the receiving circuit module. In order to satisfy this requirement, for example, a technique using a longitudinally coupled surface acoustic wave filter has been developed (see, for example, Patent Document 1). This longitudinally coupled surface acoustic wave filter has a zero-order mode and a second-order mode as resonance modes.
 特許文献1に記載の技術では、縦結合型の弾性表面波フィルタは、複数の電極指を有するIDT(InterDigital Transducer)電極を備えている。IDT電極の電極指ピッチは、複数種類存在している。複数種類の電極指ピッチは、副励振領域において段階的に変化するように配置されている。 In the technique described in Patent Document 1, a longitudinally coupled surface acoustic wave filter includes an IDT (InterDigital Transducer) electrode having a plurality of electrode fingers. There are multiple types of electrode finger pitches for IDT electrodes. The plurality of types of electrode finger pitches are arranged so as to change stepwise in the auxiliary excitation region.
国際出願第2003/003574号International Application No. 2003/003574
 従来技術にかかる弾性表面波フィルタにおいて帯域幅を広くする場合、IDT電極のメインピッチを変更する方法がある。しかし、この方法では、弾性表面波フィルタにおいて複数の共振モードの共振周波数の間隔が広がることにより、共振モード間の結合が弱まり、弾性表面波フィルタの出力端から出力端子側をみたときに、スミスチャート上で、通過帯域内の出力インピーダンスの巻きの集中度が劣化する、すなわち、出力インピーダンスの巻きが広がるという問題が生じる。これは、通過帯域内において出力インピーダンスにばらつきが生じることを示している。 There is a method of changing the main pitch of the IDT electrode when the bandwidth is widened in the surface acoustic wave filter according to the conventional technology. However, in this method, the resonance frequency interval of the plurality of resonance modes in the surface acoustic wave filter is widened, so that the coupling between the resonance modes is weakened. When the output terminal side is viewed from the output end of the surface acoustic wave filter, Smith On the chart, the concentration of output impedance windings in the passband deteriorates, that is, the output impedance windings spread. This indicates that the output impedance varies within the pass band.
 上記課題に鑑み、本発明は、スミスチャート上において通過帯域内における出力インピーダンスの巻きの広がりを抑制しつつ、広帯域化を実現することができる弾性表面波フィルタ、高周波モジュールおよびマルチプレクサを提供することを目的とする。 In view of the above problems, the present invention provides a surface acoustic wave filter, a high-frequency module, and a multiplexer capable of realizing a broad band while suppressing the spread of winding of output impedance in the pass band on the Smith chart. Objective.
 上記目的を達成するために、本発明にかかる弾性表面波フィルタの一態様は、縦結合型の弾性表面波フィルタであって、前記弾性表面波フィルタは、弾性表面波の伝搬方向に連続して配置された3つの共振子を備え、前記3つの共振子のそれぞれは、バスバー電極と前記バスバー電極に接続された互いに平行な複数の電極指とを有する一対の櫛形電極を有し、一対の前記櫛形電極は、互いの前記複数の電極指が前記弾性表面波伝搬方向に交互に位置するように配置されており、前記3つの共振子のうち中央に配置された第1の共振子は、前記弾性表面波フィルタにおける入力端子および出力端子のうちの一方に接続され、前記第1の共振子に隣接して配置された第2の共振子と、前記第1の共振子に隣接し前記第1の共振子に対して前記第2の共振子と反対側に配置された第3の共振子は、前記入力端子および前記出力端子のうちの他方に接続され、前記第2の共振子および前記第3の共振子のうちの少なくとも一方は、前記電極指のピッチが異なる3つ以上の領域を有し、前記3つ以上の領域のそれぞれでは、前記電極指のピッチは一定であり、前記3つ以上の領域のうち、前記第1の共振子に最も近い第1の領域における前記電極指のピッチは最も小さく、前記3つ以上の領域のうち、前記第1の領域に隣接する第2の領域における前記電極指のピッチは最も大きい。 In order to achieve the above object, one aspect of a surface acoustic wave filter according to the present invention is a longitudinally coupled surface acoustic wave filter, wherein the surface acoustic wave filter is continuous in the propagation direction of the surface acoustic wave. Each of the three resonators has a pair of comb electrodes each having a bus bar electrode and a plurality of parallel electrode fingers connected to the bus bar electrode, The comb-shaped electrode is arranged such that the plurality of electrode fingers are alternately positioned in the surface acoustic wave propagation direction, and the first resonator arranged at the center of the three resonators is A second resonator connected to one of an input terminal and an output terminal of the surface acoustic wave filter and disposed adjacent to the first resonator; and the first resonator adjacent to the first resonator. For the first resonator A third resonator disposed on the opposite side of the resonator is connected to the other of the input terminal and the output terminal, and at least one of the second resonator and the third resonator Has three or more regions having different pitches of the electrode fingers, and the pitch of the electrode fingers is constant in each of the three or more regions, and the first of the three or more regions is the first The pitch of the electrode fingers in the first region closest to the resonator is the smallest, and among the three or more regions, the pitch of the electrode fingers in the second region adjacent to the first region is the largest. .
 これにより、弾性表面波フィルタを構成する3つの共振子のうちの一端に配置された共振子について、第1の領域における電極指のピッチを最も小さくし、第2の領域における前記電極指のピッチを最も大きくするので、スミスチャート上において通過帯域内における出力インピーダンスの巻きの広がりを抑制しつつ、広帯域化を実現することができる。 As a result, for the resonator disposed at one end of the three resonators constituting the surface acoustic wave filter, the pitch of the electrode fingers in the first region is minimized, and the pitch of the electrode fingers in the second region is Therefore, it is possible to realize a wide band while suppressing the spread of the winding of the output impedance in the pass band on the Smith chart.
 また、前記第2の共振子および前記第3の共振子の両方は、前記電極指のピッチが異なる前記3つ以上の領域を有し、前記第2の共振子および前記第3の共振子のそれぞれにおいて、前記3つ以上の領域のうち、前記第1の領域における前記電極指のピッチは最も小さく、前記3つ以上の領域のうち、前記第2の領域における前記電極指のピッチは最も大きくてもよい。 Further, both of the second resonator and the third resonator have the three or more regions having different pitches of the electrode fingers, and the second resonator and the third resonator In each of the three or more regions, the pitch of the electrode fingers in the first region is the smallest, and among the three or more regions, the pitch of the electrode fingers in the second region is the largest. May be.
 これにより、弾性表面波フィルタを構成する3つの共振子のうちの両端に配置された共振子の両方について、第1の領域における電極指のピッチを最も小さくし、第2の領域における前記電極指のピッチを最も大きくするので、スミスチャート上において通過帯域内における出力インピーダンスの巻きの広がりをより抑制するとともに、通過帯域幅をより広くすることができる。 As a result, for both of the resonators arranged at both ends of the three resonators constituting the surface acoustic wave filter, the pitch of the electrode fingers in the first region is minimized, and the electrode fingers in the second region are Therefore, it is possible to further suppress the spread of the winding of the output impedance in the pass band on the Smith chart and further widen the pass band.
 また、前記第2の共振子の前記3つ以上の領域の各領域と、前記第2の共振子の前記3つ以上の領域の各領域に対応する前記第3の共振子の前記3つ以上の領域の各領域とは、前記電極指のピッチがそれぞれ同一であってもよい。 Further, each of the three or more regions of the second resonator and the three or more of the third resonator corresponding to each of the three or more regions of the second resonator. The pitch of the electrode fingers may be the same as each of the regions.
 これにより、弾性表面波フィルタを構成する3つの共振子のうちの両端に配置された共振子について、3つの共振子のうちの中央に配置された電極指に対して電極指のピッチを対称にするので、スミスチャート上において通過帯域内における出力インピーダンスの巻きの広がりをより抑制するとともに、通過帯域幅をより広くすることができる。 Thereby, with respect to the resonators arranged at both ends of the three resonators constituting the surface acoustic wave filter, the pitch of the electrode fingers is symmetric with respect to the electrode finger arranged at the center of the three resonators. Therefore, it is possible to further suppress the spread of the winding of the output impedance in the pass band on the Smith chart and further widen the pass band.
 また、前記第2の共振子の前記3つ以上の領域の各領域と、前記第2の共振子の前記3つ以上の領域の各領域に対応する前記第3の共振子の前記3つ以上の領域の各領域とは、前記電極指の対数がそれぞれ同一であってもよい。 Further, each of the three or more regions of the second resonator and the three or more of the third resonator corresponding to each of the three or more regions of the second resonator. The number of pairs of electrode fingers may be the same as each region of the region.
 これにより、弾性表面波フィルタを構成する3つの共振子のうちの両端に配置された共振子について、3つの共振子のうちの中央に配置された電極指に対して電極指の対数を対称にするので、スミスチャート上において通過帯域内における出力インピーダンスの巻きの広がりをより抑制するとともに、通過帯域幅をより広くすることができる。 Thereby, the logarithm of the electrode finger is symmetrical with respect to the electrode finger arranged at the center of the three resonators with respect to the resonator arranged at both ends of the three resonators constituting the surface acoustic wave filter. Therefore, it is possible to further suppress the spread of the winding of the output impedance in the pass band on the Smith chart and further widen the pass band.
 また、前記電極指のピッチが異なる3つ以上の領域を有する前記第2の共振子および前記第3の共振子の少なくともいずれかは、前記第1の領域における前記電極指の対数が前記第1の領域以外の領域の前記電極指の対数の合計よりも少なくてもよい。 In addition, at least one of the second resonator and the third resonator having three or more regions having different pitches of the electrode fingers has a logarithm of the electrode fingers in the first region as the first number. It may be smaller than the total number of pairs of the electrode fingers in the region other than the region.
 これにより、第1の領域の電極指のピッチは他の領域の電極指のピッチよりも小さく、かつ、第1の領域の電極指の対数は他の領域の電極指の対数よりも少ない構成とすることにより、いわゆる狭ピッチの領域をもつ弾性表面波を構成することができる。よって、より伝送特性のよい弾性表面波フィルタを実現することができる。 Accordingly, the pitch of the electrode fingers in the first region is smaller than the pitch of the electrode fingers in the other region, and the number of electrode fingers in the first region is smaller than the number of electrode fingers in the other region. Thus, a surface acoustic wave having a so-called narrow pitch region can be formed. Therefore, a surface acoustic wave filter with better transmission characteristics can be realized.
 また、前記第1の共振子は、前記弾性表面波フィルタにおける前記入力端子に接続され、前記第2の共振子および前記第3の共振子は、前記弾性表面波フィルタにおける前記出力端子に接続されていてもよい。 The first resonator is connected to the input terminal of the surface acoustic wave filter, and the second resonator and the third resonator are connected to the output terminal of the surface acoustic wave filter. It may be.
 これにより、第1の共振子が入力端子に接続され、第2の共振子および前記第3の共振子が出力端子に接続される場合であっても、スミスチャート上において通過帯域内における出力インピーダンスの巻きの広がりを抑制するとともに、通過帯域幅を広くすることができる。 As a result, even when the first resonator is connected to the input terminal, and the second resonator and the third resonator are connected to the output terminal, the output impedance in the pass band on the Smith chart. The spread of the winding can be suppressed and the pass bandwidth can be widened.
 また、上記目的を達成するために、本発明にかかる高周波モジュールの一態様は、上述した特徴を有する弾性表面波フィルタと、前記弾性表面波フィルタに接続され、前記弾性表面波フィルタを通過した高周波信号を増幅する低雑音増幅器とを備える。 In order to achieve the above object, an aspect of the high-frequency module according to the present invention includes a surface acoustic wave filter having the characteristics described above, and a high-frequency wave connected to the surface acoustic wave filter and passed through the surface acoustic wave filter. And a low noise amplifier for amplifying the signal.
 これにより、弾性表面波フィルタと低雑音増幅器とのマッチングを良好にし、高周波モジュールについて、通過帯域内における出力インピーダンスを安定するとともに、通過帯域幅を広くすることができる。 Thus, the matching between the surface acoustic wave filter and the low noise amplifier can be improved, the output impedance in the pass band of the high frequency module can be stabilized, and the pass band width can be widened.
 また、上記目的を達成するために、本発明にかかるマルチプレクサの一態様は、上述した特徴を有する弾性表面波フィルタを複数備え、前記複数の弾性表面波フィルタのそれぞれは、共通端子に接続されている。 In order to achieve the above object, an aspect of the multiplexer according to the present invention includes a plurality of surface acoustic wave filters having the above-described characteristics, and each of the plurality of surface acoustic wave filters is connected to a common terminal. Yes.
 これにより、複数の弾性表面波フィルタの通過帯域内における出力インピーダンスを安定するとともに、通過帯域幅を広くすることができる。したがって、マルチプレクサについて、各通過帯域の出力インピーダンスを安定するとともに、通過帯域幅を広くすることができる。 This makes it possible to stabilize the output impedance in the passband of the plurality of surface acoustic wave filters and widen the passband width. Therefore, the multiplexer can stabilize the output impedance of each pass band and widen the pass band width.
 本発明によれば、スミスチャート上において通過帯域内における出力インピーダンスの巻きの広がりを抑制しつつ、広帯域化を実現することができる弾性表面波フィルタ、高周波モジュールおよびマルチプレクサを提供することができる。 According to the present invention, it is possible to provide a surface acoustic wave filter, a high-frequency module, and a multiplexer capable of realizing a broad band while suppressing the spread of winding of output impedance in the pass band on the Smith chart.
図1は、実施の形態1にかかる高周波モジュールの構成を示す概念図である。FIG. 1 is a conceptual diagram illustrating a configuration of the high-frequency module according to the first embodiment. 図2Aは、実施の形態1にかかる弾性表面波フィルタの構成を示す概略図である。FIG. 2A is a schematic diagram illustrating a configuration of the surface acoustic wave filter according to the first exemplary embodiment. 図2Bは、図2Aに示した弾性表面波フィルタの構成の具体例を示す概略図である。FIG. 2B is a schematic diagram illustrating a specific example of the configuration of the surface acoustic wave filter illustrated in FIG. 2A. 図3は、一般的な弾性表面波フィルタの構成を示す概略図であり、(a)は平面図、(b)は(a)に示した一点鎖線における矢視断面図である。3A and 3B are schematic views showing a configuration of a general surface acoustic wave filter, in which FIG. 3A is a plan view, and FIG. 図4は、実施の形態1にかかる弾性表面波フィルタの構成を示す概略図であり、(a)はピッチの異なる領域ごとに領域を分割して構成を示した概略図、(b)は各領域におけるピッチの大きさを相対的に示した図である。FIG. 4 is a schematic diagram illustrating the configuration of the surface acoustic wave filter according to the first embodiment. FIG. 4A is a schematic diagram illustrating a configuration in which regions are divided into regions having different pitches, and FIG. It is the figure which showed the magnitude | size of the pitch in an area | region relatively. 図5は、実施の形態1にかかる弾性表面波フィルタの1つの共振子の構成を示す概略図である。FIG. 5 is a schematic diagram illustrating a configuration of one resonator of the surface acoustic wave filter according to the first embodiment. 図6Aは、実施の形態1にかかる弾性表面波フィルタの通過特性を示す図である。FIG. 6A is a diagram illustrating pass characteristics of the surface acoustic wave filter according to the first exemplary embodiment. 図6Bは、実施の形態1にかかる弾性表面波フィルタの入力端子側の反射特性を示す図である。FIG. 6B is a diagram illustrating reflection characteristics on the input terminal side of the surface acoustic wave filter according to the first embodiment. 図6Cは、実施の形態1にかかる弾性表面波フィルタの通過特性を示す図である。FIG. 6C is a diagram illustrating pass characteristics of the surface acoustic wave filter according to the first exemplary embodiment. 図6Dは、実施の形態1にかかる弾性表面波フィルタの出力端子側の反射特性を示す図である。FIG. 6D is a diagram illustrating reflection characteristics on the output terminal side of the surface acoustic wave filter according to the first exemplary embodiment. 図7は、比較例1にかかる弾性表面波フィルタの弾性表面波フィルタの構成を示す図である。FIG. 7 is a diagram illustrating a configuration of the surface acoustic wave filter of the surface acoustic wave filter according to the first comparative example. 図8Aは、比較例1にかかる弾性表面波フィルタの通過特性を示す図である。FIG. 8A is a diagram illustrating pass characteristics of the surface acoustic wave filter according to Comparative Example 1. 図8Bは、比較例1にかかる弾性表面波フィルタの入力端子側の反射特性を示す図である。FIG. 8B is a diagram illustrating reflection characteristics on the input terminal side of the surface acoustic wave filter according to Comparative Example 1. 図8Cは、比較例1にかかる弾性表面波フィルタの通過特性を示す図である。FIG. 8C is a diagram illustrating pass characteristics of the surface acoustic wave filter according to Comparative Example 1. 図8Dは、比較例1にかかる弾性表面波フィルタの出力端子側の反射特性を示す図である。FIG. 8D is a diagram illustrating reflection characteristics on the output terminal side of the surface acoustic wave filter according to Comparative Example 1. 図9Aは、比較例2にかかる弾性表面波フィルタの通過特性を示す図である。FIG. 9A is a diagram illustrating pass characteristics of the surface acoustic wave filter according to Comparative Example 2. 図9Bは、比較例2にかかる弾性表面波フィルタの入力端子側の反射特性を示す図である。FIG. 9B is a diagram illustrating reflection characteristics on the input terminal side of the surface acoustic wave filter according to Comparative Example 2. 図9Cは、比較例2にかかる弾性表面波フィルタの通過特性を示す図である。FIG. 9C is a diagram illustrating pass characteristics of the surface acoustic wave filter according to Comparative Example 2. 図9Dは、比較例2にかかる弾性表面波フィルタの出力端子側の反射特性を示す図である。FIG. 9D is a diagram illustrating reflection characteristics on the output terminal side of the surface acoustic wave filter according to Comparative Example 2. 図10は、実施の形態2にかかる弾性表面波フィルタの弾性表面波フィルタの構成を示す図であり、(a)はピッチの異なる領域ごとに領域を分割して構成を示した概略図、(b)は各領域におけるピッチの大きさを相対的に示した図である。FIG. 10 is a diagram illustrating a configuration of the surface acoustic wave filter of the surface acoustic wave filter according to the second embodiment, and FIG. 10A is a schematic diagram illustrating a configuration in which regions are divided into regions having different pitches. b) is a diagram relatively showing the size of the pitch in each region. 図11Aは、実施の形態2にかかる弾性表面波フィルタの通過特性を示す図である。FIG. 11A is a diagram illustrating pass characteristics of the surface acoustic wave filter according to the second embodiment. 図11Bは、実施の形態2にかかる弾性表面波フィルタの入力端子側の反射特性を示す図である。FIG. 11B is a diagram illustrating reflection characteristics on the input terminal side of the surface acoustic wave filter according to the second embodiment. 図11Cは、実施の形態2にかかる弾性表面波フィルタの通過特性を示す図である。FIG. 11C is a diagram illustrating pass characteristics of the surface acoustic wave filter according to the second embodiment. 図11Dは、実施の形態2にかかる弾性表面波フィルタの出力端子側の反射特性を示す図である。FIG. 11D is a diagram illustrating reflection characteristics on the output terminal side of the surface acoustic wave filter according to the second embodiment. 図12は、実施の形態3にかかる弾性表面波フィルタの弾性表面波フィルタの構成を示す図である。FIG. 12 is a diagram illustrating a configuration of a surface acoustic wave filter of the surface acoustic wave filter according to the third embodiment. 図13Aは、実施の形態3にかかる弾性表面波フィルタの通過特性を示す図である。FIG. 13A is a diagram illustrating pass characteristics of the surface acoustic wave filter according to the third embodiment. 図13Bは、実施の形態3にかかる弾性表面波フィルタの出力端子側の反射特性を示す図である。FIG. 13B is a diagram illustrating reflection characteristics on the output terminal side of the surface acoustic wave filter according to the third embodiment. 図13Cは、実施の形態3にかかる弾性表面波フィルタの通過特性を示す図である。FIG. 13C is a diagram illustrating pass characteristics of the surface acoustic wave filter according to the third embodiment. 図13Dは、実施の形態3にかかる弾性表面波フィルタの入力端子側の反射特性を示す図である。FIG. 13D is a diagram illustrating reflection characteristics on the input terminal side of the surface acoustic wave filter according to the third embodiment. 図14は、実施の形態4にかかる弾性表面波フィルタの弾性表面波フィルタの構成を示す図であり、(a)はピッチの異なる領域ごとに領域を分割して構成を示した概略図、(b)は各領域におけるピッチの大きさを相対的に示した図である。FIG. 14 is a diagram illustrating a configuration of a surface acoustic wave filter of a surface acoustic wave filter according to a fourth embodiment, and (a) is a schematic diagram illustrating a configuration in which regions are divided into regions having different pitches. b) is a diagram relatively showing the size of the pitch in each region. 図15Aは、実施の形態1にかかる弾性表面波フィルタの通過特性を示す図である。FIG. 15A is a diagram illustrating pass characteristics of the surface acoustic wave filter according to the first exemplary embodiment. 図15Bは、実施の形態1にかかる弾性表面波フィルタの入力端子側の反射特性を示す図である。FIG. 15B is a diagram illustrating reflection characteristics on the input terminal side of the surface acoustic wave filter according to the first exemplary embodiment. 図15Cは、実施の形態1にかかる弾性表面波フィルタの通過特性を示す図である。FIG. 15C is a diagram illustrating a pass characteristic of the surface acoustic wave filter according to the first embodiment. 図15Dは、実施の形態1にかかる弾性表面波フィルタの出力端子側の反射特性を示す図である。FIG. 15D is a diagram illustrating reflection characteristics on the output terminal side of the surface acoustic wave filter according to the first exemplary embodiment.
 以下、本発明の実施の形態について説明する。なお、以下に説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。したがって、以下の実施の形態で示される、数値、形状、材料、構成要素、構成要素の配置位置及び接続形態などは一例であって本発明を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, embodiments of the present invention will be described. Note that each of the embodiments described below shows a preferred specific example of the present invention. Therefore, numerical values, shapes, materials, components, arrangement positions and connection forms of components shown in the following embodiments are merely examples, and are not intended to limit the present invention. Therefore, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims showing the highest concept of the present invention are described as optional constituent elements.
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略または簡略化する。また、図示した電極構造では、本発明の理解を容易とするために、共振子および反射器における電極指の本数を実際の電極指の本数よりも少なく図示している。 Each figure is a schematic diagram and is not necessarily shown strictly. In each figure, substantially the same components are denoted by the same reference numerals, and redundant descriptions are omitted or simplified. In the illustrated electrode structure, in order to facilitate understanding of the present invention, the number of electrode fingers in the resonator and the reflector is smaller than the actual number of electrode fingers.
 (実施の形態1)
 以下、実施の形態について、図1~図9Dを用いて説明する。
(Embodiment 1)
Hereinafter, embodiments will be described with reference to FIGS. 1 to 9D.
 [1.弾性表面波フィルタおよび高周波モジュールの構成]
 はじめに、本実施の形態にかかる高周波モジュール1の構成について説明する。図1は、本実施の形態にかかる高周波モジュール1の構成を示す概念図である。
[1. Structure of surface acoustic wave filter and high-frequency module]
First, the configuration of the high-frequency module 1 according to the present embodiment will be described. FIG. 1 is a conceptual diagram showing a configuration of a high-frequency module 1 according to the present embodiment.
 図1に示すように、本実施の形態にかかる高周波モジュール1は、弾性表面波フィルタ10と低雑音増幅器(Low Noise Amplifier:LNA)20とを備えている。弾性表面波フィルタ10は、一旦がアンテナ(図示せず)に接続され、他端が低雑音増幅器20に接続されている。低雑音増幅器20は、受信後の微弱な電波をできるだけ雑音を増加させずに増幅する増幅器である。 As shown in FIG. 1, the high-frequency module 1 according to this embodiment includes a surface acoustic wave filter 10 and a low noise amplifier (LNA) 20. The surface acoustic wave filter 10 is once connected to an antenna (not shown) and the other end is connected to the low noise amplifier 20. The low noise amplifier 20 is an amplifier that amplifies a weak radio wave after reception without increasing noise as much as possible.
 なお、弾性表面波フィルタ10において、入力インピーダンスとは、高周波モジュール1の入力端子IN側から弾性表面波フィルタ10をみたときの弾性表面波フィルタ10のインピーダンスのことをいう。つまり、図1に矢印で示したSAW(Surface Acoustic Wave)入力側インピーダンスのことをいう。また、出力インピーダンスとは、高周波信号の出力先である低雑音増幅器20が接続された端子(図示せず)から弾性表面波フィルタ10をみたときの弾性表面波フィルタ10のインピーダンスのことをいう。つまり、図1に矢印で示したSAW出力側インピーダンスのことをいう。 In the surface acoustic wave filter 10, the input impedance refers to the impedance of the surface acoustic wave filter 10 when the surface acoustic wave filter 10 is viewed from the input terminal IN side of the high frequency module 1. That is, it means the SAW (Surface Acoustic Wave) input side impedance indicated by an arrow in FIG. The output impedance refers to the impedance of the surface acoustic wave filter 10 when the surface acoustic wave filter 10 is viewed from a terminal (not shown) to which the low noise amplifier 20 that is the output destination of the high frequency signal is connected. That is, it means the SAW output side impedance indicated by an arrow in FIG.
 弾性表面波フィルタ10は、縦結合型の弾性表面波フィルタである。図2Aに示すように、弾性表面波フィルタ10は、入力端子11と出力端子12との間に、共振子13、共振子14および共振子15と、反射器16および反射器17とを備えている。共振子13、共振子14および共振子15は、反射器16側から反射器17側へと、この順に配置されている。 The surface acoustic wave filter 10 is a longitudinally coupled surface acoustic wave filter. As shown in FIG. 2A, the surface acoustic wave filter 10 includes a resonator 13, a resonator 14, and a resonator 15, and a reflector 16 and a reflector 17 between the input terminal 11 and the output terminal 12. Yes. The resonator 13, the resonator 14, and the resonator 15 are arranged in this order from the reflector 16 side to the reflector 17 side.
 図2Bに示すように、共振子13は、2つのIDT電極13aおよび13bが組み合わされた構成をしている。共振子13のIDT電極13aは、入力端子11に接続されている。IDT電極13bは、グランドに接続されている。同様に、共振子15は、2つのIDT電極15aおよび15bが組み合わされた構成をしている。共振子15のIDT電極15aは、入力端子11に接続されている。IDT電極15bは、グランドに接続されている。また、共振子13と共振子15との間に配置された共振子14は、2つのIDT電極14aおよび14bが組み合わされた構成をしている。共振子14のIDT電極14aは、グランドに接続されている。IDT電極14bは、出力端子12に接続されている。 As shown in FIG. 2B, the resonator 13 has a configuration in which two IDT electrodes 13a and 13b are combined. The IDT electrode 13 a of the resonator 13 is connected to the input terminal 11. The IDT electrode 13b is connected to the ground. Similarly, the resonator 15 has a configuration in which two IDT electrodes 15a and 15b are combined. The IDT electrode 15 a of the resonator 15 is connected to the input terminal 11. The IDT electrode 15b is connected to the ground. The resonator 14 disposed between the resonator 13 and the resonator 15 has a configuration in which two IDT electrodes 14a and 14b are combined. The IDT electrode 14a of the resonator 14 is connected to the ground. The IDT electrode 14 b is connected to the output terminal 12.
 また、反射器16は、2つのバスバー電極16aおよびバスバー電極16bと、バスバー電極16aとバスバー電極16bとの間に複数設けられ、バスバー電極16aおよびバスバー電極16bにそれぞれ両端が接続された電極指16cとを備えている。同様に、反射器17は、2つのバスバー電極17aおよびバスバー電極17bと、バスバー電極17aとバスバー電極17bとの間に複数設けられ、バスバー電極17aおよびバスバー電極17bにそれぞれ両端が接続された電極指17cとを備えている。 In addition, the reflector 16 is provided with a plurality of bus bar electrodes 16a and 16b, and between the bus bar electrode 16a and the bus bar electrode 16b, and electrode fingers 16c having both ends connected to the bus bar electrode 16a and the bus bar electrode 16b, respectively. And. Similarly, a plurality of reflectors 17 are provided between two bus bar electrodes 17a and 17b and between the bus bar electrode 17a and the bus bar electrode 17b, and electrode fingers having both ends connected to the bus bar electrode 17a and the bus bar electrode 17b, respectively. 17c.
 ここで、共振子の構成について、一般的な共振子100を用いてより詳細に説明する。図3は、一般的な弾性表面波フィルタの構成を示す概略図であり、(a)は平面図、(b)は(a)に示した一点鎖線における矢視断面図である。 Here, the configuration of the resonator will be described in more detail using a general resonator 100. 3A and 3B are schematic views showing a configuration of a general surface acoustic wave filter, in which FIG. 3A is a plan view, and FIG. 3B is a cross-sectional view taken along an alternate long and short dash line shown in FIG.
 図3の(a)および(b)に示すように、共振子100は、圧電基板123と、櫛形形状を有する電極(櫛形電極)であるIDT電極101aおよびIDT電極101bとで構成されている。 3A and 3B, the resonator 100 includes a piezoelectric substrate 123 and an IDT electrode 101a and an IDT electrode 101b which are comb-shaped electrodes (comb-shaped electrodes).
 圧電基板123は、例えば、所定のカット角で切断されたLiNbOの単結晶からなる。圧電基板123では、所定の方向に弾性表面波が伝搬する。 The piezoelectric substrate 123 is made of, for example, a single crystal of LiNbO 3 cut at a predetermined cut angle. In the piezoelectric substrate 123, a surface acoustic wave propagates in a predetermined direction.
 図3の(a)に示すように、圧電基板123の上には、対向する一対のIDT電極101aおよびIDT電極101bが形成されている。IDT電極101aは、互いに平行な複数の電極指110aと、複数の電極指110aを接続するバスバー電極111aとで構成されている。また、IDT電極101bは、互いに平行な複数の電極指110bと、複数の電極指110bを接続するバスバー電極111bとで構成されている。IDT電極101aとIDT電極101bとは、互いの複数の電極指110aおよび110bが弾性表面波伝搬方向に交互に位置するように配置されている。すなわち、IDT電極101aとIDT電極101bとは、IDT電極101aの複数の電極指110aのそれぞれの間に、IDT電極101bの複数の電極指110bのそれぞれが配置される構成となっている。 As shown in FIG. 3 (a), a pair of IDT electrodes 101a and IDT electrodes 101b facing each other are formed on the piezoelectric substrate 123. The IDT electrode 101a includes a plurality of electrode fingers 110a that are parallel to each other and a bus bar electrode 111a that connects the plurality of electrode fingers 110a. The IDT electrode 101b includes a plurality of electrode fingers 110b that are parallel to each other and a bus bar electrode 111b that connects the plurality of electrode fingers 110b. The IDT electrode 101a and the IDT electrode 101b are arranged such that a plurality of electrode fingers 110a and 110b are alternately positioned in the surface acoustic wave propagation direction. That is, the IDT electrode 101a and the IDT electrode 101b are configured such that each of the plurality of electrode fingers 110b of the IDT electrode 101b is disposed between each of the plurality of electrode fingers 110a of the IDT electrode 101a.
 また、IDT電極101aおよびIDT電極101bは、図3の(b)に示すように、密着層124aと主電極層124bとが積層された構造となっている。 Further, the IDT electrode 101a and the IDT electrode 101b have a structure in which an adhesion layer 124a and a main electrode layer 124b are laminated as shown in FIG.
 密着層124aは、圧電基板123と主電極層124bとの密着性を向上させるための層であり、材料としては、例えば、NiCrが用いられる。 The adhesion layer 124a is a layer for improving the adhesion between the piezoelectric substrate 123 and the main electrode layer 124b, and as a material, for example, NiCr is used.
 主電極層124bは、材料として、例えば、Ptが用いられる。主電極層124bは、1つの層で構成された単層構造であってもよいし、複数の層が積層された積層構造であってもよい。 For example, Pt is used as the material for the main electrode layer 124b. The main electrode layer 124b may have a single layer structure composed of one layer, or may have a stacked structure in which a plurality of layers are stacked.
 保護層125は、IDT電極101aおよびIDT電極101bを覆うように形成されている。保護層125は、主電極層124bを外部環境から保護する、周波数温度特性を調整する、および、耐湿性を高めるなどを目的とする層である。保護層125は、例えば、二酸化ケイ素を主成分とする膜である。保護層125は、単層構造であってもよいし積層構造であってもよい。 The protective layer 125 is formed so as to cover the IDT electrode 101a and the IDT electrode 101b. The protective layer 125 is a layer for the purpose of protecting the main electrode layer 124b from the external environment, adjusting frequency temperature characteristics, and improving moisture resistance. The protective layer 125 is a film containing, for example, silicon dioxide as a main component. The protective layer 125 may have a single layer structure or a laminated structure.
 なお、密着層124a、主電極層124bおよび保護層125を構成する材料は、上述した材料に限定されない。さらに、IDT電極101aおよびIDT電極101bは、上記積層構造でなくてもよい。IDT電極101aおよびIDT電極101bは、例えば、Ti、Al、Cu、Pt、Au、Ag、Pdなどの金属又は合金から構成されてもよく、また、上記の金属又は合金から構成される層が複数積層された積層構造で構成されてもよい。また、保護層125は、形成されていなくてもよい。 Note that the materials forming the adhesion layer 124a, the main electrode layer 124b, and the protective layer 125 are not limited to the materials described above. Furthermore, the IDT electrode 101a and the IDT electrode 101b do not have to have the above laminated structure. The IDT electrode 101a and the IDT electrode 101b may be made of, for example, a metal or alloy such as Ti, Al, Cu, Pt, Au, Ag, or Pd, and a plurality of layers made of the above metal or alloy may be used. You may be comprised by the laminated structure laminated | stacked. Further, the protective layer 125 may not be formed.
 ここで、IDT電極101aおよびIDT電極101bの設計パラメータについて説明する。図3の(b)に示すλは、IDT電極101aおよびIDT電極101bを構成する電極指110aおよび電極指110bのピッチという。弾性表面波フィルタにおいて、波長は、IDT電極101aおよびIDT電極101bを構成する複数の電極指110aおよび電極指110bのピッチλで規定される。ピッチλとは、詳細には、同一のバスバー電極に接続された隣り合う電極指において、一方の電極指の幅の中央から他方の電極指の幅の中央までの長さのことをいう。例えば、図3の(b)では、バスバー電極111aに接続された一の電極指110aの幅の中央から、当該一の電極指110aが接続されたバスバー電極111aと同一のバスバー電極111aに接続され、一の電極指110aに隣り合う他の電極指110aの幅の中央までの長さである。 Here, design parameters of the IDT electrode 101a and the IDT electrode 101b will be described. Λ shown in FIG. 3B is referred to as the pitch between the electrode finger 110a and the electrode finger 110b constituting the IDT electrode 101a and the IDT electrode 101b. In the surface acoustic wave filter, the wavelength is defined by the pitch λ of the plurality of electrode fingers 110a and electrode fingers 110b constituting the IDT electrode 101a and the IDT electrode 101b. Specifically, the pitch λ refers to the length from the center of the width of one electrode finger to the center of the width of the other electrode finger in adjacent electrode fingers connected to the same bus bar electrode. For example, in FIG. 3B, from the center of the width of one electrode finger 110a connected to the bus bar electrode 111a, it is connected to the same bus bar electrode 111a as the bus bar electrode 111a to which the one electrode finger 110a is connected. , The length to the center of the width of another electrode finger 110a adjacent to one electrode finger 110a.
 なお、図3の(b)に示すWは、共振子100におけるIDT電極101aの電極指110aおよびIDT電極101bの電極指110bの幅のことをいう。また、図3の(b)に示すSは、電極指110aと電極指110bとの間隔のことをいう。また、図3の(a)に示すLは、IDT電極101aおよびIDT電極101bの交叉幅といい、IDT電極101aの電極指110aとIDT電極101bの電極指110bとが重複する電極指の長さのことをいう。また、対数とは、電極指110aまたは電極指110bの本数のことをいう。 Note that W shown in FIG. 3B refers to the width of the electrode finger 110a of the IDT electrode 101a and the electrode finger 110b of the IDT electrode 101b in the resonator 100. Further, S shown in (b) of FIG. 3 refers to an interval between the electrode finger 110a and the electrode finger 110b. Further, L shown in FIG. 3A is the cross width of the IDT electrode 101a and the IDT electrode 101b, and is the length of the electrode finger where the electrode finger 110a of the IDT electrode 101a and the electrode finger 110b of the IDT electrode 101b overlap. I mean. The logarithm means the number of electrode fingers 110a or 110b.
 なお、共振子100の構造は、図3の(a)および(b)に記載された構造に限定されない。また、本実施の形態にかかる共振子13、共振子14および共振子15は、上述した構成に限らない。共振子13、共振子14および共振子15は、以下に示すように、電極指のピッチおよび対数がそれぞれ異なる構成であってもよい。 In addition, the structure of the resonator 100 is not limited to the structure described in (a) and (b) of FIG. Further, the resonator 13, the resonator 14, and the resonator 15 according to the present embodiment are not limited to the configuration described above. The resonator 13, the resonator 14, and the resonator 15 may have configurations in which the pitches and logarithms of the electrode fingers are different as described below.
 図2Aおよび図2Bに示した3つの共振子13、共振子14および共振子15のうち、共振子14を挟んで両端に配置された共振子13は、以下の特徴を有している。図4は、共振子13の構成を示す概略図であり、(a)はピッチの異なる領域ごとに領域を分割して構成を示した概略図、(b)は各領域におけるピッチの大きさを相対的に示した図である。図5は、共振子13の構成をより具体的に示す概略図である。 Of the three resonators 13, 14 and 15 shown in FIGS. 2A and 2B, the resonators 13 disposed at both ends with the resonator 14 interposed therebetween have the following characteristics. 4A and 4B are schematic diagrams illustrating the configuration of the resonator 13, wherein FIG. 4A is a schematic diagram illustrating a configuration in which regions are divided into regions having different pitches, and FIG. It is the figure shown relatively. FIG. 5 is a schematic diagram showing the configuration of the resonator 13 more specifically.
 図4の(a)および(b)に示すように、共振子13、共振子14および共振子15は、それぞれピッチの異なる領域を複数有している。 4A and 4B, the resonator 13, the resonator 14 and the resonator 15 each have a plurality of regions having different pitches.
 共振子13は、反射器16側から順に領域I1、領域I2および領域I3を有している。共振子13は、図5に示すように、IDT電極13aとIDT電極13bとで構成されている。IDT電極13aおよびIDT電極13bは、本発明における櫛形電極に相当する。IDT電極13aとIDT電極13bとで、一対の櫛形電極を成している。 The resonator 13 has a region I1, a region I2, and a region I3 in order from the reflector 16 side. As shown in FIG. 5, the resonator 13 includes an IDT electrode 13a and an IDT electrode 13b. The IDT electrode 13a and the IDT electrode 13b correspond to comb-shaped electrodes in the present invention. The IDT electrode 13a and the IDT electrode 13b form a pair of comb electrodes.
 IDT電極13aは、領域I1、領域I2、領域I3に共通して配置されたバスバー電極131aと、バスバー電極131aに一端が接続された複数の電極指132aを有している。同様に、IDT電極13bは、領域I1、領域I2、領域I3に共通して配置されたバスバー電極131bと、バスバー電極131bに一端が接続された複数の電極指132bを有している。電極指132aおよび131bのピッチは、領域I1、領域I2および領域I3でそれぞれ異なっている。 The IDT electrode 13a includes a bus bar electrode 131a that is commonly arranged in the region I1, the region I2, and the region I3, and a plurality of electrode fingers 132a that are connected at one end to the bus bar electrode 131a. Similarly, the IDT electrode 13b has a bus bar electrode 131b arranged in common to the region I1, the region I2, and the region I3, and a plurality of electrode fingers 132b having one end connected to the bus bar electrode 131b. The pitches of the electrode fingers 132a and 131b are different in the region I1, the region I2, and the region I3, respectively.
 共振子13において、領域I1は、弾性表面波フィルタ10における外側、すなわち、反射器16に最も近い位置に配置されている。領域I3は、弾性表面波フィルタ10における中央側、すなわち、共振子14に最も近い位置に配置されている。領域I2は、領域I1と領域I3との間に配置されている。それぞれの領域におけるピッチは、図4の(b)に示すように、最も中央側の領域I3におけるピッチが最も小さく、領域I3に隣接する領域I2におけるピッチが最も大きい。つまり、図5に示すように、領域I1におけるピッチをλ1、領域I2におけるピッチをλ2、領域I3におけるピッチをλ3とすると、各領域におけるピッチは、λ3<λ1<λ2の関係を満たしている。例えば、λ1=5.15μm、λ2=5.21μm、λ3=4.63μmである。領域I3は、本発明における第1の領域、領域I2は、本発明における第2の領域に相当する。 In the resonator 13, the region I <b> 1 is disposed outside the surface acoustic wave filter 10, that is, at a position closest to the reflector 16. The region I3 is disposed at the center side of the surface acoustic wave filter 10, that is, at a position closest to the resonator 14. The region I2 is disposed between the region I1 and the region I3. As shown in FIG. 4B, the pitch in each region is the smallest in the most central region I3 and the largest in the region I2 adjacent to the region I3. That is, as shown in FIG. 5, when the pitch in the region I1 is λ1, the pitch in the region I2 is λ2, and the pitch in the region I3 is λ3, the pitch in each region satisfies the relationship of λ3 <λ1 <λ2. For example, λ1 = 5.15 μm, λ2 = 5.21 μm, and λ3 = 4.63 μm. The region I3 corresponds to the first region in the present invention, and the region I2 corresponds to the second region in the present invention.
 また、領域I1における電極指110aおよび電極指110bの対数は、例えば17である。領域I2における電極指110aおよび電極指110bの対数は、例えば6である。領域I3における電極指110aおよび電極指110bの対数は、例えば3である。つまり、共振子14に最も近い領域I3における電極指110aおよび電極指110bの対数は、領域I3以外の領域I1および領域I2における電極指110aおよび電極指110bの対数の合計よりも少ない。なお、各領域における電極指110aおよび電極指110bの対数は、上述した対数に限らず、変更してもよい。 Further, the logarithm of the electrode finger 110a and the electrode finger 110b in the region I1 is, for example, 17. The logarithm of the electrode finger 110a and the electrode finger 110b in the region I2 is, for example, 6. The logarithm of the electrode finger 110a and the electrode finger 110b in the region I3 is, for example, 3. That is, the number of pairs of the electrode fingers 110a and 110b in the region I3 closest to the resonator 14 is smaller than the total number of pairs of the electrode fingers 110a and 110b in the regions I1 and I2 other than the region I3. The logarithm of the electrode finger 110a and the electrode finger 110b in each region is not limited to the logarithm described above, and may be changed.
 共振子14は、共振子13に近い側から順に領域I4、領域I5、領域I6を有している。つまり、領域I4は、共振子13に最も近く、領域I6は、共振子15に最も近い位置に配置されている。また、領域I5は、領域I4と領域I6との間に配置されている。 The resonator 14 has a region I4, a region I5, and a region I6 in order from the side closer to the resonator 13. That is, the region I4 is disposed closest to the resonator 13, and the region I6 is disposed closest to the resonator 15. The region I5 is arranged between the region I4 and the region I6.
 それぞれの領域におけるピッチは、図4の(b)に示すように、最も中央側の領域I5におけるピッチが最も大きく、領域I3および領域I5におけるピッチはλ5よりも小さい。つまり、領域I4におけるピッチをλ4、領域I5におけるピッチをλ5、領域I6におけるピッチをλ6とすると、各領域におけるピッチは、λ4<λ5、λ6<λ5の関係を満たしている。例えば、λ4=4.69μm、λ5=5.18μm、λ6=4.78μmである。 As shown in FIG. 4B, the pitch in each region is the largest in the central region I5, and the pitch in the regions I3 and I5 is smaller than λ5. That is, assuming that the pitch in the region I4 is λ4, the pitch in the region I5 is λ5, and the pitch in the region I6 is λ6, the pitch in each region satisfies the relationship of λ4 <λ5 and λ6 <λ5. For example, λ4 = 4.69 μm, λ5 = 5.18 μm, and λ6 = 4.78 μm.
 なお、領域I4におけるピッチλ4と領域I6におけるピッチλ6は、同一の値であってもよいし異なる値であってもよい。また、ピッチλ4およびピッチλ6は、図4の(b)に示すように共振子13における領域I3のピッチλ3と同一の値であってもよいし、異なる値であってもよい。また、領域I5におけるピッチλ5は、領域I1におけるピッチλ1または領域I2におけるピッチλ2と同一の値であってもよいし、異なる値であってもよい。 Note that the pitch λ4 in the region I4 and the pitch λ6 in the region I6 may be the same value or different values. Further, the pitch λ4 and the pitch λ6 may be the same value as the pitch λ3 of the region I3 in the resonator 13 as shown in FIG. 4B, or may be different values. Further, the pitch λ5 in the region I5 may be the same value as the pitch λ1 in the region I1 or the pitch λ2 in the region I2, or may be a different value.
 領域I4における電極指110aおよび電極指110bの対数は、例えば2である。領域I5における電極指110aおよび電極指110bの対数は、例えば10である。領域I6における電極指110aおよび電極指110bの対数は、例えば4である。各領域における電極指110aおよび電極指110bの対数は、上述した対数に限らず、変更してもよい。 The logarithm of the electrode finger 110a and the electrode finger 110b in the region I4 is, for example, 2. The logarithm of the electrode finger 110a and the electrode finger 110b in the region I5 is, for example, 10. The logarithm of the electrode finger 110a and the electrode finger 110b in the region I6 is, for example, 4. The logarithm of the electrode finger 110a and the electrode finger 110b in each region is not limited to the logarithm described above, and may be changed.
 共振子15は、共振子14に近い側から順に領域I7、領域I8、領域I9を有している。共振子15の領域I7、領域I8、領域I9は、共振子13の領域I3、領域I2、領域I1に対応している。領域I7は、弾性表面波フィルタ10における中央側、すなわち、共振子14に最も近い位置に配置されている。領域I9は、弾性表面波フィルタ10における外側、すなわち、反射器17に最も近い位置に配置されている。領域I8は、領域I7と領域I9との間に配置されている。それぞれの領域におけるピッチは、図4の(b)に示すように、最も中央側の領域I7におけるピッチが最も小さく、領域I7に隣接する領域I8におけるピッチが最も大きい。つまり、領域I7におけるピッチをλ7、領域I8におけるピッチをλ8、領域I9におけるピッチをλ9とすると、各領域におけるピッチは、λ7<λ9<λ8の関係を満たしている。例えば、λ7=4.88μm、λ8=5.18μm、λ9=5.13μmである。領域I7は、本発明における第1の領域、領域I8は、本発明における第2の領域に相当する。 The resonator 15 has a region I7, a region I8, and a region I9 in order from the side closer to the resonator 14. The regions I7, I8, and I9 of the resonator 15 correspond to the regions I3, I2, and I1 of the resonator 13, respectively. The region I7 is disposed at the center side of the surface acoustic wave filter 10, that is, at a position closest to the resonator 14. The region I9 is disposed outside the surface acoustic wave filter 10, that is, at a position closest to the reflector 17. The region I8 is disposed between the region I7 and the region I9. As shown in FIG. 4B, the pitch in each region is the smallest in the most central region I7 and the largest in the region I8 adjacent to the region I7. That is, assuming that the pitch in the region I7 is λ7, the pitch in the region I8 is λ8, and the pitch in the region I9 is λ9, the pitch in each region satisfies the relationship of λ7 <λ9 <λ8. For example, λ7 = 4.88 μm, λ8 = 5.18 μm, and λ9 = 5.13 μm. The region I7 corresponds to the first region in the present invention, and the region I8 corresponds to the second region in the present invention.
 なお、領域I7におけるピッチλ7は、図4の(b)に示すように、領域I3におけるピッチλ3、領域I4におけるピッチλ4および領域I6におけるピッチλ6のいずれかと同一であってもよいし、異なる値であってもよい。また、領域I8におけるピッチλ8は、領域I2におけるピッチλ2と同一であってもよいし異なる値であってもよい。また、領域I9におけるピッチλ9は、領域I1におけるピッチλ1と同一の値であってもよいし異なる値であってもよい。 As shown in FIG. 4B, the pitch λ7 in the region I7 may be the same as or different from the pitch λ3 in the region I3, the pitch λ4 in the region I4, and the pitch λ6 in the region I6. It may be. Further, the pitch λ8 in the region I8 may be the same as or different from the pitch λ2 in the region I2. Further, the pitch λ9 in the region I9 may be the same value as the pitch λ1 in the region I1, or may be a different value.
 領域I7における電極指110aおよび電極指110bの対数は、例えば5である。領域I8における電極指110aおよび電極指110bの対数は、例えば5である。領域I9における電極指110aおよび電極指110bの対数は、例えば15である。なお、各領域における電極指110aおよび電極指110bの対数は、上述した対数に限らず、変更してもよい。 The logarithm of the electrode finger 110a and the electrode finger 110b in the region I7 is, for example, 5. The logarithm of the electrode finger 110a and the electrode finger 110b in the region I8 is, for example, 5. The logarithm of the electrode finger 110a and the electrode finger 110b in the region I9 is, for example, 15. The logarithm of the electrode finger 110a and the electrode finger 110b in each region is not limited to the logarithm described above, and may be changed.
 [2.弾性表面波フィルタの伝送特性]
 ここで、上述した構成の共振子13、14および15を有する弾性表面波フィルタ10の伝送特性について説明する。図6Aおよび図6Cは、本実施の形態にかかる弾性表面波フィルタ10の通過特性を示す図である。図6Bは、本実施の形態にかかる弾性表面波フィルタ10の入力端子側の反射特性を示す図である。図6Dは、本実施の形態にかかる弾性表面波フィルタ10の出力端子側の反射特性を示す図である。図6A~図6Dでは、上述したように共振子13におけるピッチの関係をλ3<λ1<λ2、共振子15におけるピッチの関係をλ7<λ9<λ8とした弾性表面波フィルタ10を用いた場合の特性を破線B、共振子13および共振子15のピッチの関係を上述のように変更していない弾性表面波フィルタ(元設計の弾性表面波フィルタ)を用いた場合の特性を実線Aで示している。また、図6Bおよび図6Dの実線Aおよび破線Bについては、弾性表面波フィルタ10の通過帯域内でのインピーダンス特性を太線で示している。
[2. Transmission characteristics of surface acoustic wave filter]
Here, the transmission characteristic of the surface acoustic wave filter 10 having the resonators 13, 14 and 15 having the above-described configuration will be described. 6A and 6C are diagrams showing the pass characteristics of the surface acoustic wave filter 10 according to the present embodiment. FIG. 6B is a diagram illustrating reflection characteristics on the input terminal side of the surface acoustic wave filter 10 according to the present exemplary embodiment. FIG. 6D is a diagram illustrating reflection characteristics on the output terminal side of the surface acoustic wave filter 10 according to the present exemplary embodiment. 6A to 6D, as described above, the surface acoustic wave filter 10 in which the pitch relationship in the resonator 13 is λ3 <λ1 <λ2 and the pitch relationship in the resonator 15 is λ7 <λ9 <λ8 is used. The solid line A represents the characteristic when using a surface acoustic wave filter (original surface acoustic wave filter) in which the characteristic is the broken line B and the pitch relationship between the resonator 13 and the resonator 15 is not changed as described above. Yes. 6B and 6D, the impedance characteristics in the pass band of the surface acoustic wave filter 10 are indicated by bold lines.
 図6Aに示すように、弾性表面波フィルタ10は、通過帯域を得るための0次の共振モードの共振周波数と2次の共振モードの共振周波数を含んでいる。なお、図6Aは、帯域幅の変化を分かりやすくするために、不整合損失を除去したときの弾性表面波フィルタ10の通過特性を示している。 As shown in FIG. 6A, the surface acoustic wave filter 10 includes a resonance frequency of a zeroth-order resonance mode and a resonance frequency of a second-order resonance mode for obtaining a pass band. FIG. 6A shows the pass characteristic of the surface acoustic wave filter 10 when mismatch loss is removed in order to make the change in bandwidth easy to understand.
 図6Aに示すように、共振子13の領域I1、領域I2および領域I3のピッチの関係をλ3<λ1<λ2、共振子15の領域I7、領域I8および領域I9のピッチの関係をλ7<λ9<λ8とした弾性表面波フィルタ10の透過特性(破線B)は、元設計すなわち共振子13および15のピッチを異ならせない場合の弾性表面波フィルタの通過特性(実線A)に比べて、0次の共振モードの共振周波数が低周波側に移動する。また、2次の共振モードの共振周波数については、共振周波数の変化はない。したがって、0次の共振モードの共振周波数と2次の共振モードの共振周波数の間隔は広がらないため、これらの共振モードの結合は弱まらない。また、0次の共振モードと2次の共振モードの結合は弱まらないため、図6Bに示すように、弾性表面波フィルタ10の通過帯域内における入力インピーダンス(破線B)のスミスチャートの中心からのずれは、元設計の弾性表面波フィルタの入力インピーダンス(実線A)のずれに比べて小さくなる。 6A, the relationship between the pitches of the region I1, the region I2, and the region I3 of the resonator 13 is λ3 <λ1 <λ2, and the relationship between the pitches of the region I7, the region I8, and the region I9 of the resonator 15 is λ7 <λ9. The transmission characteristic (dashed line B) of the surface acoustic wave filter 10 with <λ8 is 0 as compared with the pass characteristic (solid line A) of the surface acoustic wave filter when the pitch of the resonators 13 and 15 is not changed. The resonance frequency of the next resonance mode moves to the low frequency side. Further, the resonance frequency of the secondary resonance mode does not change. Therefore, since the interval between the resonance frequency of the zeroth-order resonance mode and the resonance frequency of the second-order resonance mode does not widen, the coupling between these resonance modes is not weakened. Further, since the coupling between the zeroth-order resonance mode and the second-order resonance mode is not weakened, as shown in FIG. 6B, the Smith chart center of the input impedance (broken line B) in the passband of the surface acoustic wave filter 10 is used. Is smaller than the deviation of the input impedance (solid line A) of the originally designed surface acoustic wave filter.
 また、上述のように、0次の共振モードの共振周波数のみ低周波側に移動し2次の共振モードの共振周波数は変化しないため、図6Cに示すように、弾性表面波フィルタ10の通過帯域幅(破線B)は、元設計の弾性表面波フィルタの通過帯域幅(実線A)よりも拡大する。また、0次の共振モードと2次の共振モードの結合は弱まらないため、図6Dに示すように、スミスチャート上において通過帯域内における出力インピーダンス(破線B)の巻きは、元設計の弾性表面波フィルタの出力インピーダンス(実線A)の巻きよりも広がらない。よって、弾性表面波フィルタ10では、出力インピーダンスのばらつきは、元設計の弾性表面波フィルタの場合よりも小さくなっているといえる。 Further, as described above, since only the resonance frequency of the zeroth-order resonance mode moves to the lower frequency side and the resonance frequency of the second-order resonance mode does not change, as shown in FIG. 6C, the passband of the surface acoustic wave filter 10 The width (broken line B) is larger than the passband width (solid line A) of the original surface acoustic wave filter. Further, since the coupling between the zeroth-order resonance mode and the second-order resonance mode is not weakened, as shown in FIG. 6D, the winding of the output impedance (broken line B) in the passband on the Smith chart is the original design. It does not spread beyond the winding of the output impedance (solid line A) of the surface acoustic wave filter. Therefore, in the surface acoustic wave filter 10, it can be said that the variation in output impedance is smaller than that in the case of the originally designed surface acoustic wave filter.
 以上より、本実施の形態にかかる弾性表面波フィルタ10は、スミスチャート上において通過帯域内における出力インピーダンスの巻きの広がりを抑制しつつ、広帯域化を実現することができる。 As described above, the surface acoustic wave filter 10 according to the present embodiment can realize a wide band while suppressing the spread of the winding of the output impedance in the pass band on the Smith chart.
 [3.比較例1]
 ここで、比較例1にかかる弾性表面波フィルタ30について、図7、図8A~図8Dを用いて説明する。図7は、本比較例にかかる弾性表面波フィルタ30の構成を示す図である。
[3. Comparative Example 1]
Here, the surface acoustic wave filter 30 according to Comparative Example 1 will be described with reference to FIGS. 7 and 8A to 8D. FIG. 7 is a diagram showing a configuration of the surface acoustic wave filter 30 according to this comparative example.
 本比較例にかかる弾性表面波フィルタ30では、反射器16に最も近い位置に配置された共振子23と反射器17に最も近い位置に配置された共振子25は、それぞれ電極指132aおよび電極指132bのピッチの異なる2つの領域を有している。 In the surface acoustic wave filter 30 according to this comparative example, the resonator 23 disposed at a position closest to the reflector 16 and the resonator 25 disposed at a position closest to the reflector 17 include an electrode finger 132a and an electrode finger, respectively. 132b has two regions with different pitches.
 図7に示すように、共振子23は、反射器16側に配置された領域I11と、共振子14側に配置された領域I13とを有している。領域I11における電極指132aおよび電極指132bのピッチλ11は、領域I13における電極指132aおよび電極指132bのピッチλ13よりも大きい。つまり、各領域におけるピッチは、λ13<λ11の関係を満たしている。 As shown in FIG. 7, the resonator 23 has a region I11 arranged on the reflector 16 side and a region I13 arranged on the resonator 14 side. The pitch λ11 of the electrode finger 132a and the electrode finger 132b in the region I11 is larger than the pitch λ13 of the electrode finger 132a and the electrode finger 132b in the region I13. That is, the pitch in each region satisfies the relationship of λ13 <λ11.
 同様に、共振子25は、共振子14側に配置された領域I17と、反射器17側に配置された領域I18とを有している。領域I18における電極指132aおよび電極指132bのピッチλ18は、領域I17における電極指132aおよび電極指132bのピッチλ17よりも大きい。つまり、各領域におけるピッチは、λ17<λ18の関係を満たしている。 Similarly, the resonator 25 has a region I17 disposed on the resonator 14 side and a region I18 disposed on the reflector 17 side. The pitch λ18 of the electrode finger 132a and the electrode finger 132b in the region I18 is larger than the pitch λ17 of the electrode finger 132a and the electrode finger 132b in the region I17. That is, the pitch in each region satisfies the relationship of λ17 <λ18.
 なお、共振子23と共振子25の間に配置された共振子14の構成は、実施の形態1に示した弾性表面波フィルタ10における共振子14と同様であるため、説明を省略する。 Note that the configuration of the resonator 14 disposed between the resonator 23 and the resonator 25 is the same as that of the resonator 14 in the surface acoustic wave filter 10 shown in the first embodiment, and thus the description thereof is omitted.
 以下、上述した構成の弾性表面波フィルタ30の伝送特性について説明する。図8Aおよび図8Cは、本実施の形態にかかる弾性表面波フィルタ30の通過特性を示す図である。図8Bは、本実施の形態にかかる弾性表面波フィルタ30の入力端子側の反射特性を示す図である。図8Dは、本実施の形態にかかる弾性表面波フィルタ30の出力端子側の反射特性を示す図である。図8A~図8Dでは、上述したように共振子23におけるピッチの関係をλ13<λ11、共振子25におけるピッチの関係をλ17<λ18とした弾性表面波フィルタ30を用いた場合の特性を破線C、共振子23および共振子25のピッチの関係を上述のように変更していない弾性表面波フィルタ(元設計の弾性表面波フィルタ)を用いた場合の特性を実線Aで示している。また、図8Bおよび図8Dの実線Aおよび破線Cについては、弾性表面波フィルタ30の通過帯域内でのインピーダンス特性を太線で示している。 Hereinafter, transmission characteristics of the surface acoustic wave filter 30 having the above-described configuration will be described. 8A and 8C are diagrams illustrating the pass characteristics of the surface acoustic wave filter 30 according to the present embodiment. FIG. 8B is a diagram illustrating reflection characteristics on the input terminal side of the surface acoustic wave filter 30 according to the present exemplary embodiment. FIG. 8D is a diagram illustrating reflection characteristics on the output terminal side of the surface acoustic wave filter 30 according to the present embodiment. 8A to 8D, as described above, the characteristics when the surface acoustic wave filter 30 in which the relationship of the pitch in the resonator 23 is λ13 <λ11 and the relationship of the pitch in the resonator 25 is λ17 <λ18 are used are the broken line C The solid line A shows the characteristics when a surface acoustic wave filter (original surface acoustic wave filter) whose pitch relationship between the resonator 23 and the resonator 25 is not changed as described above is used. 8B and 8D, the impedance characteristics within the pass band of the surface acoustic wave filter 30 are indicated by bold lines.
 図8Aに示すように、共振子23の領域I11および領域I13のピッチの関係をλ13<λ11、共振子25の領域I17および領域I18のピッチの関係をλ17<λ18とした弾性表面波フィルタ10の通過特性(破線C)は、元設計の弾性表面波フィルタの通過特性(実線A)に比べて、0次の共振モードの共振周波数および2次の共振モードの共振周波数の両方が低周波側に移動する。したがって、0次の共振モードと2次の共振モードの共振周波数の間隔は広がるため、これらの共振モードの結合は弱まる。また、0次の共振モードと2次の共振モードの結合は弱まるため、図8Bに示すように、弾性表面波フィルタ30では、通過帯域内における入力インピーダンス(破線C)は、元設計の弾性表面波フィルタの入力インピーダンス(実線A)と比べてスミスチャートの中心から外れることとなる。 As shown in FIG. 8A, the surface acoustic wave filter 10 in which the relationship between the pitches of the regions I11 and I13 of the resonator 23 is λ13 <λ11, and the relationship between the pitches of the regions I17 and I18 of the resonator 25 is λ17 <λ18. The pass characteristic (broken line C) indicates that both the resonance frequency of the zeroth-order resonance mode and the resonance frequency of the second-order resonance mode are on the lower frequency side than the pass characteristic (solid line A) of the originally designed surface acoustic wave filter. Moving. Accordingly, since the interval between the resonance frequencies of the zeroth-order resonance mode and the second-order resonance mode is widened, the coupling between these resonance modes is weakened. Further, since the coupling between the zeroth-order resonance mode and the second-order resonance mode is weakened, as shown in FIG. 8B, in the surface acoustic wave filter 30, the input impedance (broken line C) in the passband is the elastic surface of the original design. Compared with the input impedance (solid line A) of the wave filter, the center of the Smith chart is deviated.
 また、上述のように、0次の共振モードの共振周波数および2次の共振モードの共振周波数の両方が低周波側に移動し、2次の共振モードの共振周波数のほうが0次の共振モードの共振周波数よりも共振周波数が大きく変化する。したがって、図8Cに示すように、弾性表面波フィルタ30の通過帯域幅(破線C)は、元設計の弾性表面波フィルタの通過帯域幅(実線A)よりも拡大する。しかし、上述したように、弾性表面波フィルタ30では、0次の共振モードと2次の共振モードの結合は弱まり帯域内における入力インピーダンスがスミスチャートの中心から外れるため、図8Dに示すように、弾性表面波フィルタ30のスミスチャート上において通過帯域内における出力インピーダンス(破線C)の巻きは、元設計の弾性表面波フィルタの出力インピーダンス(実線A)の巻きよりも広がる。よって、本変形例にかかる弾性表面波フィルタ30では、出力インピーダンスのばらつきは、元設計の弾性表面波フィルタの場合よりも大きくなっているといえる。 Further, as described above, both the resonance frequency of the zeroth-order resonance mode and the resonance frequency of the second-order resonance mode move to the lower frequency side, and the resonance frequency of the second-order resonance mode is the zeroth-order resonance mode. The resonance frequency changes more greatly than the resonance frequency. Therefore, as shown in FIG. 8C, the pass bandwidth (dashed line C) of the surface acoustic wave filter 30 is larger than the pass bandwidth (solid line A) of the original surface acoustic wave filter. However, as described above, in the surface acoustic wave filter 30, the coupling between the zeroth-order resonance mode and the second-order resonance mode is weakened, and the input impedance in the band deviates from the center of the Smith chart. On the Smith chart of the surface acoustic wave filter 30, the winding of the output impedance (broken line C) in the pass band is wider than the winding of the output impedance (solid line A) of the original surface acoustic wave filter. Therefore, in the surface acoustic wave filter 30 according to this modification, it can be said that the variation in output impedance is larger than that in the surface acoustic wave filter of the original design.
 これに対し、本実施の形態にかかる弾性表面波フィルタ10では、図6Cおよび図6Dに示したように、本実施の形態にかかる弾性表面波フィルタ10は、スミスチャート上において通過帯域内における出力インピーダンスの巻きの広がりを抑制しつつ、広帯域化を実現することができる。 In contrast, in the surface acoustic wave filter 10 according to the present embodiment, as shown in FIGS. 6C and 6D, the surface acoustic wave filter 10 according to the present embodiment has an output within the passband on the Smith chart. Broadband can be realized while suppressing the spread of the winding of impedance.
 [4.比較例2]
 次に、比較例2について、図9A~図9Dを用いて説明する。
[4. Comparative Example 2]
Next, Comparative Example 2 will be described with reference to FIGS. 9A to 9D.
 本比較例にかかる弾性表面波フィルタは、上述した弾性表面波フィルタ10と同様、共振子13、共振子14および共振子15を備えている。共振子13は、電極指132aおよび電極指132bのピッチが異なる3つの領域I1、領域I2および領域I3を有している。共振子15は、電極指132aおよび電極指132bのピッチが異なる3つの領域I7、領域I8および領域I9を有している。 The surface acoustic wave filter according to this comparative example includes a resonator 13, a resonator 14, and a resonator 15, similar to the surface acoustic wave filter 10 described above. The resonator 13 has three regions I1, I2, and I3 having different pitches of the electrode fingers 132a and the electrode fingers 132b. The resonator 15 has three regions I7, I8, and I9 having different pitches of the electrode fingers 132a and the electrode fingers 132b.
 共振子13では、最も中央側の領域I3におけるピッチが最も小さく、領域I3に隣接しない領域I1におけるピッチが最も大きい。つまり、各領域におけるピッチは、λ3<λ2<λ1の関係を満たしている。 In the resonator 13, the pitch in the region I3 on the most central side is the smallest, and the pitch in the region I1 that is not adjacent to the region I3 is the largest. That is, the pitch in each region satisfies the relationship of λ3 <λ2 <λ1.
 同様に、共振子15では、最も中央側の領域I7におけるピッチが最も小さく、領域I7に隣接しない領域I9におけるピッチが最も大きい。つまり、各領域におけるピッチは、λ7<λ8<λ9の関係を満たしている。 Similarly, in the resonator 15, the pitch in the most central region I7 is the smallest, and the pitch in the region I9 not adjacent to the region I7 is the largest. That is, the pitch in each region satisfies the relationship of λ7 <λ8 <λ9.
 なお、共振子13と共振子15の間に配置された共振子14の構成は、実施の形態1に示した弾性表面波フィルタ10における共振子14と同様であるため、説明を省略する。 Note that the configuration of the resonator 14 disposed between the resonator 13 and the resonator 15 is the same as that of the resonator 14 in the surface acoustic wave filter 10 shown in the first embodiment, and thus the description thereof is omitted.
 ここで、上述した構成の弾性表面波フィルタの伝送特性について説明する。図9Aおよび図9Cは、本実施の形態にかかる弾性表面波フィルタ10の通過特性を示す図である。図9Bは、本実施の形態にかかる弾性表面波フィルタ10の入力端子側の反射特性を示す図である。図9Dは、本実施の形態にかかる弾性表面波フィルタ10の出力端子側の反射特性を示す図である。図9A~図9Dでは、上述したように共振子13におけるピッチの関係をλ3<λ2<λ1、共振子15におけるピッチの関係をλ7<λ8<λ9とした弾性表面波フィルタを用いた場合の特性を破線D、共振子13および共振子15のピッチの関係を上述のように変更していない弾性表面波フィルタ(元設計の弾性表面波フィルタ)を用いた場合の特性を実線Aで示している。また、図9Bおよび図9Dの実線Aおよび破線Dについては、弾性表面波フィルタ10の通過帯域内でのインピーダンス特性を太線で示している。 Here, the transmission characteristics of the surface acoustic wave filter configured as described above will be described. 9A and 9C are diagrams showing pass characteristics of the surface acoustic wave filter 10 according to the present embodiment. FIG. 9B is a diagram illustrating reflection characteristics on the input terminal side of the surface acoustic wave filter 10 according to the present exemplary embodiment. FIG. 9D is a diagram illustrating reflection characteristics on the output terminal side of the surface acoustic wave filter 10 according to the present exemplary embodiment. 9A to 9D, as described above, the characteristics in the case of using the surface acoustic wave filter in which the pitch relationship in the resonator 13 is λ3 <λ2 <λ1 and the pitch relationship in the resonator 15 is λ7 <λ8 <λ9. The solid line A shows the characteristics when using a surface acoustic wave filter (original surface acoustic wave filter) in which the relationship between the broken line D and the pitch of the resonator 13 and the resonator 15 is not changed as described above. . 9B and 9D, the impedance characteristics within the pass band of the surface acoustic wave filter 10 are indicated by bold lines.
 図9Aに示すように、共振子13の領域I1、領域I2および領域I13のピッチの関係をλ3<λ2<λ1、共振子15の領域I7、領域I8および領域I9のピッチの関係をλ7<λ8<λ9とした弾性表面波フィルタの通過特性(破線D)は、元設計の弾性表面波フィルタの通過特性(実線A)に比べて、2次の共振モードの共振周波数は低周波側に移動する。また、0次の共振モードの共振周波数は変わらない。したがって、0次の共振モードの共振周波数と2次の共振モードの共振周波数の間隔は広がるため、これらの共振モードの結合は弱まる。また、0次の共振モードと2次の共振モードの結合は弱まるため、図9Bに示すように、本変形例にかかる弾性表面波フィルタでは、通過帯域内における入力インピーダンス(破線D)は、元設計の弾性表面波フィルタの入力インピーダンス(実線A)と比べてスミスチャートの中心から外れることとなる。 As shown in FIG. 9A, the relationship between the pitches of the region I1, the region I2, and the region I13 of the resonator 13 is λ3 <λ2 <λ1, and the relationship between the pitches of the region I7, the region I8, and the region I9 of the resonator 15 is λ7 <λ8. The pass characteristic (dashed line D) of the surface acoustic wave filter with <λ9 moves to the low frequency side in the secondary resonance mode compared to the pass characteristic (solid line A) of the original surface acoustic wave filter. . Further, the resonance frequency of the zeroth-order resonance mode does not change. Accordingly, since the interval between the resonance frequency of the zeroth-order resonance mode and the resonance frequency of the second-order resonance mode is widened, the coupling between these resonance modes is weakened. Further, since the coupling between the zeroth-order resonance mode and the second-order resonance mode is weakened, as shown in FIG. 9B, in the surface acoustic wave filter according to this modification, the input impedance (broken line D) in the passband is Compared with the input impedance (solid line A) of the surface acoustic wave filter of the design, it will deviate from the center of the Smith chart.
 また、上述のように、図9Cに示すように、本変形例にかかる弾性表面波フィルタの通過帯域幅(破線D)は、元設計の弾性表面波フィルタの通過帯域幅(実線A)と比べて変化しない。また、上述したように、0次の共振モードと2次の共振モードの結合は弱まり通過帯域内における入力インピーダンスがスミスチャートの中心から外れるため、図9Dに示すように、スミスチャート上において通過帯域内における出力インピーダンス(破線D)の巻きは、元設計の弾性表面波フィルタの出力インピーダンス(実線A)の巻きよりも広がる。よって、本変形例にかかる弾性表面波フィルタでは、出力インピーダンスのばらつきは、元設計の弾性表面波フィルタの場合よりも大きくなっているといえる。 Further, as described above, as shown in FIG. 9C, the pass bandwidth (dashed line D) of the surface acoustic wave filter according to the present modification is compared with the pass bandwidth (solid line A) of the original surface acoustic wave filter. Does not change. Further, as described above, since the coupling between the zeroth-order resonance mode and the second-order resonance mode is weakened, and the input impedance in the passband deviates from the center of the Smith chart, as shown in FIG. 9D, the passband on the Smith chart. The winding of the output impedance (broken line D) is wider than the winding of the output impedance (solid line A) of the original surface acoustic wave filter. Therefore, in the surface acoustic wave filter according to this modification, it can be said that the variation in output impedance is larger than that in the surface acoustic wave filter of the original design.
 これに対し、本実施の形態にかかる弾性表面波フィルタ10では、図6Cおよび6Dに示したように、スミスチャート上において通過帯域内における出力インピーダンスの巻きの広がりを抑制しつつ、広帯域化を実現することができる。 On the other hand, in the surface acoustic wave filter 10 according to the present embodiment, as shown in FIGS. 6C and 6D, a wide band is realized while suppressing the spread of the output impedance winding in the pass band on the Smith chart. can do.
 [5.効果等]
 以上、本実施の形態にかかる弾性表面波フィルタ10によると、スミスチャート上において通過帯域内における出力インピーダンスの巻きの広がりを抑制しつつ、広帯域化を実現することができる。
[5. Effect]
As described above, according to the surface acoustic wave filter 10 according to the present embodiment, it is possible to realize a wide band while suppressing the spread of the winding of the output impedance in the pass band on the Smith chart.
 (実施の形態2)
 次に、実施の形態2について、図10および図11A~図11Dを用いて説明する。本実施の形態にかかる弾性表面波フィルタ10aが実施の形態1にかかる弾性表面波フィルタ10と異なる点は、弾性表面波フィルタ10aにおいて、反射器16側に配置された共振子13はピッチの異なる3つの領域I1、領域I2および領域I3を有しているが、反射器17側に配置された共振子25はピッチの異なる2つの領域I17および領域I18を有している点である。
(Embodiment 2)
Next, Embodiment 2 will be described with reference to FIG. 10 and FIGS. 11A to 11D. The surface acoustic wave filter 10a according to the present embodiment differs from the surface acoustic wave filter 10 according to the first embodiment in that the resonator 13 disposed on the reflector 16 side has a different pitch in the surface acoustic wave filter 10a. Although the three regions I1, I2, and I3 are provided, the resonator 25 disposed on the reflector 17 side has two regions I17 and I18 having different pitches.
 図10は、本実施の形態にかかる弾性表面波フィルタ10aの構成を示す図であり、(a)はピッチの異なる領域ごとに領域を分割して構成を示した概略図、(b)は各領域におけるピッチの大きさを相対的に示した図である。 10A and 10B are diagrams showing the configuration of the surface acoustic wave filter 10a according to the present embodiment, in which FIG. 10A is a schematic diagram showing the configuration divided into regions having different pitches, and FIG. It is the figure which showed the magnitude | size of the pitch in an area | region relatively.
 図10の(a)に示すように、弾性表面波フィルタ10aは、実施の形態1に示した弾性表面波フィルタ10と同様、縦結合型の弾性表面波フィルタである。弾性表面波フィルタ10aは、反射器16と反射器17との間に、反射器16側から反射器17側へと順に、共振子13、14および25を備えている。 As shown in FIG. 10A, the surface acoustic wave filter 10a is a longitudinally coupled surface acoustic wave filter, like the surface acoustic wave filter 10 shown in the first embodiment. The surface acoustic wave filter 10 a includes resonators 13, 14, and 25 in order from the reflector 16 side to the reflector 17 side between the reflector 16 and the reflector 17.
 共振子13の構成は、実施の形態1に示した弾性表面波フィルタ10と同様、ピッチの異なる領域I1、領域I2および領域I3を有している。各領域におけるピッチは、図10の(b)に示すように、λ3<λ1<λ2の関係を満たしている。領域I3は、本発明における第1の領域、領域I2は、本発明における第2の領域に相当する。 The configuration of the resonator 13 includes regions I1, I2, and I3 having different pitches, like the surface acoustic wave filter 10 shown in the first embodiment. As shown in FIG. 10B, the pitch in each region satisfies the relationship of λ3 <λ1 <λ2. The region I3 corresponds to the first region in the present invention, and the region I2 corresponds to the second region in the present invention.
 また、共振子25は、実施の形態1の比較例1に示した弾性表面波フィルタ30と同様、共振子14側に配置された領域I17と、反射器17側に配置された領域I18とを有している。領域I18における電極指132aおよび電極指132bのピッチλ18は、領域I17における電極指132aおよび電極指132bのピッチλ17よりも大きい。つまり、各領域におけるピッチは、図10の(b)に示すように、λ17<λ18の関係を満たしている。 Similarly to the surface acoustic wave filter 30 shown in the first comparative example of the first embodiment, the resonator 25 includes a region I17 disposed on the resonator 14 side and a region I18 disposed on the reflector 17 side. Have. The pitch λ18 of the electrode finger 132a and the electrode finger 132b in the region I18 is larger than the pitch λ17 of the electrode finger 132a and the electrode finger 132b in the region I17. That is, the pitch in each region satisfies the relationship of λ17 <λ18, as shown in FIG.
 なお、共振子13と共振子25の間に配置された共振子14の構成は、実施の形態1に示した弾性表面波フィルタ10における共振子14と同様であるため、説明を省略する。 The configuration of the resonator 14 disposed between the resonator 13 and the resonator 25 is the same as that of the resonator 14 in the surface acoustic wave filter 10 shown in the first embodiment, and thus the description thereof is omitted.
 ここで、上述した構成の弾性表面波フィルタ10aの伝送特性について説明する。図11Aおよび図11Cは、本実施の形態にかかる弾性表面波フィルタ10の通過特性を示す図である。図11Bは、本実施の形態にかかる弾性表面波フィルタ10の入力端子側の反射特性を示す図である。図11Dは、本実施の形態にかかる弾性表面波フィルタ10の出力端子側の反射特性を示す図である。図11A~図11Dでは、上述したように共振子13におけるピッチの関係をλ3<λ1<λ2、共振子25におけるピッチの関係をλ17<λ18とした弾性表面波フィルタ10aを用いた場合の特性を破線E、共振子13および共振子25のピッチの関係を上述のように変更していない弾性表面波フィルタ(元設計の弾性表面波フィルタ)を用いた場合の特性を実線Aで示している。また、図11Bおよび図11Dの実線Aおよび破線Eについては、弾性表面波フィルタ10aの通過帯域内でのインピーダンス特性を太線で示している。 Here, the transmission characteristics of the surface acoustic wave filter 10a configured as described above will be described. 11A and 11C are diagrams showing the pass characteristics of the surface acoustic wave filter 10 according to the present embodiment. FIG. 11B is a diagram illustrating reflection characteristics on the input terminal side of the surface acoustic wave filter 10 according to the present exemplary embodiment. FIG. 11D is a diagram illustrating reflection characteristics on the output terminal side of the surface acoustic wave filter 10 according to the present exemplary embodiment. 11A to 11D, the characteristics when the surface acoustic wave filter 10a is used in which the pitch relationship in the resonator 13 is λ3 <λ1 <λ2 and the pitch relationship in the resonator 25 is λ17 <λ18 as described above. A solid line A indicates the characteristics when a surface acoustic wave filter (original surface acoustic wave filter) in which the relationship between the broken line E, the pitch of the resonator 13 and the resonator 25 is not changed as described above is used. 11B and 11D, the impedance characteristics within the pass band of the surface acoustic wave filter 10a are indicated by bold lines.
 図11Aに示すように、共振子13の領域I1、領域I2および領域I3のピッチの関係をλ3<λ1<λ2、共振子25の領域I17および領域I18のピッチの関係をλ17<λ18とした弾性表面波フィルタ10aの通過特性(破線E)は、元設計の弾性表面波フィルタの通過特性(実線A)に比べて、0次の共振モードの共振周波数および2次の共振モードの共振周波数の両方が低周波側に移動する。このとき、0次の共振モードの共振周波数のほうが2次の共振モードの共振周波数よりも共振周波数が大きく変化する。したがって、0次の共振モードの共振周波数と2次の共振モードの共振周波数の間隔は広がらない。よって、これらの共振モードの結合は弱まらない。また、0次の共振モードと2次の共振モードの結合は弱まらないため、図11Bに示すように、弾性表面波フィルタ10aでは、通過帯域内における入力インピーダンス(破線E)のスミスチャートの中心からのずれは、元設計の弾性表面波フィルタの入力インピーダンス(実線A)のずれに比べて小さくなる。このときのずれは、図6Bに示した、弾性表面波フィルタ10の、通過帯域内における入力インピーダンス(破線B)のスミスチャートの中心からのずれよりも小さい。 As shown in FIG. 11A, the relationship between the pitch of the region I1, the region I2 and the region I3 of the resonator 13 is λ3 <λ1 <λ2, and the relationship between the pitch of the region I17 and the region I18 of the resonator 25 is λ17 <λ18. The pass characteristic (dashed line E) of the surface wave filter 10a is both the resonance frequency of the zeroth-order resonance mode and the resonance frequency of the second-order resonance mode compared to the pass characteristic (solid line A) of the originally designed surface acoustic wave filter. Moves to the low frequency side. At this time, the resonance frequency of the zeroth-order resonance mode changes more greatly than the resonance frequency of the second-order resonance mode. Therefore, the interval between the resonance frequency of the zeroth-order resonance mode and the resonance frequency of the second-order resonance mode does not increase. Therefore, the coupling of these resonance modes is not weakened. Further, since the coupling between the zeroth-order resonance mode and the second-order resonance mode is not weakened, as shown in FIG. 11B, the surface acoustic wave filter 10a has a Smith chart of the input impedance (broken line E) in the passband. The deviation from the center is smaller than the deviation of the input impedance (solid line A) of the originally designed surface acoustic wave filter. The deviation at this time is smaller than the deviation from the center of the Smith chart of the input impedance (broken line B) in the passband of the surface acoustic wave filter 10 shown in FIG. 6B.
 また、図11Cに示すように、弾性表面波フィルタ10aの通過帯域幅(破線E)は、元設計の弾性表面波フィルタの通過帯域幅(実線A)よりも拡大する。このときの通過帯域幅(破線E)は、図6Cに示した、弾性表面波フィルタ10の、通過帯域幅(破線B)よりも大きい。また、0次の共振モードと2次の共振モードの結合は弱まらないため、図11Dに示すように、スミスチャート上において通過帯域内における出力インピーダンス(破線E)の巻きは、元設計の弾性表面波フィルタの出力インピーダンス(実線A)の巻きほど広がらない。また、このときの出力インピーダンス(破線E)の巻きは、図6Dに示した、弾性表面波フィルタ10の出力インピーダンス(破線B)の巻きよりも小さい。よって、弾性表面波フィルタ10aでは、出力インピーダンスのばらつきは、元設計の弾性表面波フィルタの場合よりも小さくなっているといえる。 Further, as shown in FIG. 11C, the pass bandwidth (dashed line E) of the surface acoustic wave filter 10a is larger than the pass bandwidth (solid line A) of the original surface acoustic wave filter. The pass bandwidth (broken line E) at this time is larger than the pass bandwidth (broken line B) of the surface acoustic wave filter 10 shown in FIG. 6C. Further, since the coupling between the zeroth-order resonance mode and the second-order resonance mode is not weakened, as shown in FIG. 11D, the winding of the output impedance (broken line E) in the passband on the Smith chart is the original design. It is not as wide as the winding of the output impedance (solid line A) of the surface acoustic wave filter. Further, the winding of the output impedance (broken line E) at this time is smaller than the winding of the output impedance (broken line B) of the surface acoustic wave filter 10 shown in FIG. 6D. Therefore, in the surface acoustic wave filter 10a, it can be said that the variation in output impedance is smaller than in the case of the originally designed surface acoustic wave filter.
 以上、本実施の形態にかかる弾性表面波フィルタ10aによると、スミスチャート上において通過帯域内における出力インピーダンスの巻きの広がりを抑制しつつ、広帯域化を実現することができる。 As described above, according to the surface acoustic wave filter 10a according to the present embodiment, it is possible to realize a wide band while suppressing the spread of the winding of the output impedance in the pass band on the Smith chart.
 なお、上述した弾性表面波フィルタ10aでは、反射器16側の共振子13がピッチの異なる3つの領域を有し、反射器17側の共振子25がピッチの異なる2つの領域を有していたが、反射器17側の共振子がピッチの異なる3つの領域を有し、反射器16側の共振子がピッチの異なる2つの領域を有していていもよい。また、ピッチの値、電極指132aおよび電極指132bの対数は、適宜変更してもよい。 In the surface acoustic wave filter 10a described above, the resonator 13 on the reflector 16 side has three regions having different pitches, and the resonator 25 on the reflector 17 side has two regions having different pitches. However, the resonator on the reflector 17 side may have three regions with different pitches, and the resonator on the reflector 16 side may have two regions with different pitches. Further, the pitch value and the logarithm of the electrode finger 132a and the electrode finger 132b may be changed as appropriate.
 (実施の形態3)
 次に、実施の形態3について、図12および図13A~図13Dを用いて説明する。本実施の形態にかかる弾性表面波フィルタ10bが実施の形態1にかかる弾性表面波フィルタ10と異なる点は、弾性表面波フィルタ10bにおいて、反射器16側に配置された共振子13と反射器17側に配置された共振子35の構成が、共振子13と共振子35の間に配置された共振子14に対して対称である点である。また、弾性表面波フィルタ10bにおいて、共振子13と共振子35は出力端子12に接続され、共振子14は入力端子11に接続されている。
(Embodiment 3)
Next, Embodiment 3 will be described with reference to FIG. 12 and FIGS. 13A to 13D. The surface acoustic wave filter 10b according to the present embodiment is different from the surface acoustic wave filter 10 according to the first embodiment in that the resonator 13 and the reflector 17 arranged on the reflector 16 side in the surface acoustic wave filter 10b. The configuration of the resonator 35 disposed on the side is symmetrical with respect to the resonator 14 disposed between the resonator 13 and the resonator 35. In the surface acoustic wave filter 10 b, the resonator 13 and the resonator 35 are connected to the output terminal 12, and the resonator 14 is connected to the input terminal 11.
 図12は、本実施の形態にかかる弾性表面波フィルタ10bの構成を示す図である。 FIG. 12 is a diagram showing a configuration of the surface acoustic wave filter 10b according to the present embodiment.
 図12に示すように、弾性表面波フィルタ10bは、実施の形態1に示した弾性表面波フィルタ10と同様、縦結合型の弾性表面波フィルタである。弾性表面波フィルタ10bは、反射器16と反射器17との間に、反射器16側から反射器17側へと順に、共振子13、共振子14および共振子15を備えている。 As shown in FIG. 12, the surface acoustic wave filter 10b is a longitudinally coupled surface acoustic wave filter, like the surface acoustic wave filter 10 shown in the first embodiment. The surface acoustic wave filter 10 b includes a resonator 13, a resonator 14, and a resonator 15 between the reflector 16 and the reflector 17 in order from the reflector 16 side to the reflector 17 side.
 共振子13の構成は、実施の形態1に示した弾性表面波フィルタ10と同様、反射器16に近い側から順に、ピッチの異なる領域I1、領域I2および領域I3を有している。各領域におけるピッチは、λ3<λ1<λ2の関係を満たしている。例えば、λ1=5.15μm、λ2=5.21μm、λ3=4.62μmである。 The configuration of the resonator 13 has regions I1, I2, and I3 having different pitches in order from the side closer to the reflector 16, as in the surface acoustic wave filter 10 shown in the first embodiment. The pitch in each region satisfies the relationship of λ3 <λ1 <λ2. For example, λ1 = 5.15 μm, λ2 = 5.21 μm, and λ3 = 4.62 μm.
 また、領域I1における電極指110aおよび電極指110bの対数は、例えば18である。領域I2における電極指110aおよび電極指110bの対数は、例えば6である。領域I3における電極指110aおよび電極指110bの対数は、例えば3である。 Further, the logarithm of the electrode finger 110a and the electrode finger 110b in the region I1 is 18, for example. The logarithm of the electrode finger 110a and the electrode finger 110b in the region I2 is, for example, 6. The logarithm of the electrode finger 110a and the electrode finger 110b in the region I3 is, for example, 3.
 共振子35は、実施の形態1に示した弾性表面波フィルタ10と同様、共振子14に近い側から順に、ピッチの異なる領域I7、領域I8、領域I9を有している。共振子35の領域I7、領域I8、領域I9は、共振子13の領域I3、領域I2、領域I1に対応している。領域I7、領域I8、領域I9の各領域におけるピッチは、λ7<λ9<λ8の関係を満たしている。例えば、λ7=4.62μm、λ8=5.21μm、λ9=5.15μmである。つまり、λ3=λ7、λ2=λ8、λ1=λ9であり、共振子35の領域I7、領域I8、領域I9における電極指のピッチは、共振子13の領域I1、領域I2、領域I3における電極指のピッチと同一である。 Similarly to the surface acoustic wave filter 10 shown in the first embodiment, the resonator 35 has regions I7, I8, and I9 having different pitches in order from the side closer to the resonator 14. The region I7, region I8, and region I9 of the resonator 35 correspond to the region I3, region I2, and region I1 of the resonator 13, respectively. The pitches in the regions I7, I8, and I9 satisfy the relationship of λ7 <λ9 <λ8. For example, λ7 = 4.62 μm, λ8 = 5.21 μm, and λ9 = 5.15 μm. That is, λ3 = λ7, λ2 = λ8, and λ1 = λ9, and the pitches of the electrode fingers in the regions I7, I8, and I9 of the resonator 35 are the electrode fingers in the regions I1, I2, and I3 of the resonator 13, respectively. The pitch is the same.
 また、領域I7における電極指110aおよび電極指110bの対数は、例えば3である。領域I8における電極指110aおよび電極指110bの対数は、例えば6である。領域I9における電極指110aおよび電極指110bの対数は、例えば18である。つまり、共振子35における領域I7、領域I8、領域I9における電極指132aおよび電極指132bの対数は、それぞれ共振子13における領域I1、領域I2、領域I3における電極指132aおよび電極指132bの対数と同一である。なお、領域I3および領域I7は、本発明における第1の領域、領域I2および領域I8は、本発明における第2の領域に相当する。 Further, the logarithm of the electrode finger 110a and the electrode finger 110b in the region I7 is, for example, 3. The logarithm of the electrode finger 110a and the electrode finger 110b in the region I8 is, for example, 6. The logarithm of the electrode finger 110a and the electrode finger 110b in the region I9 is, for example, 18. That is, the logarithms of the electrode fingers 132a and 132b in the region I7, the region I8, and the region I9 in the resonator 35 are the logarithms of the electrode fingers 132a and 132b in the region I1, the region I2, and the region I3 in the resonator 13, respectively. Are the same. The region I3 and the region I7 correspond to the first region in the present invention, and the region I2 and the region I8 correspond to the second region in the present invention.
 なお、共振子13と共振子35の間に配置された共振子14の構成は、実施の形態1に示した弾性表面波フィルタ10における共振子14と同様であるため、説明を省略する。 The configuration of the resonator 14 arranged between the resonator 13 and the resonator 35 is the same as that of the resonator 14 in the surface acoustic wave filter 10 shown in the first embodiment, and thus the description thereof is omitted.
 このように、弾性表面波フィルタ10bでは、共振子14に対して、共振子13と共振子35の構成は対称になっている。 As described above, in the surface acoustic wave filter 10b, the resonator 13 and the resonator 35 are symmetrical with respect to the resonator 14.
 ここで、上述した構成の弾性表面波フィルタ10bの伝送特性について説明する。図13Aおよび図13Cは、本実施の形態にかかる弾性表面波フィルタ10の通過特性を示す図である。図13Bは、本実施の形態にかかる弾性表面波フィルタ10の出力端子側の反射特性を示す図である。図13Dは、本実施の形態にかかる弾性表面波フィルタ10の入力端子側の反射特性を示す図である。図13A~図13Dでは、上述したように共振子13および共振子35の構成を共振子14に対して対称とした弾性表面波フィルタ10bを用いた場合の特性を破線F、共振子13および共振子35の構成を共振子14に対して対称としていない弾性表面波フィルタ(元設計の弾性表面波フィルタ)を用いた場合の特性を実線Aで示している。また、図13Bおよび図13Dの実線Aおよび破線Fについては、弾性表面波フィルタ10bの通過帯域内でのインピーダンス特性を太線で示している。 Here, the transmission characteristics of the surface acoustic wave filter 10b configured as described above will be described. 13A and 13C are diagrams showing the pass characteristics of the surface acoustic wave filter 10 according to the present embodiment. FIG. 13B is a diagram illustrating reflection characteristics on the output terminal side of the surface acoustic wave filter 10 according to the present exemplary embodiment. FIG. 13D is a diagram illustrating reflection characteristics on the input terminal side of the surface acoustic wave filter 10 according to the present exemplary embodiment. 13A to 13D, the characteristics when the surface acoustic wave filter 10b in which the configurations of the resonator 13 and the resonator 35 are symmetrical with respect to the resonator 14 are used as described above are shown by the broken line F, the resonator 13 and the resonance. A solid line A indicates the characteristics when a surface acoustic wave filter (originally designed surface acoustic wave filter) whose configuration of the element 35 is not symmetrical with respect to the resonator 14 is used. Further, for the solid line A and the broken line F in FIGS. 13B and 13D, the impedance characteristics in the passband of the surface acoustic wave filter 10b are indicated by bold lines.
 図13Aに示すように、共振子13と共振子35との構成を共振子14に対して対称とした場合の弾性表面波フィルタ10bの通過特性(破線F)は、元設計の弾性表面波フィルタの通過特性(実線A)に比べて、0次の共振モードの共振周波数が低周波側に移動する。2次の共振モードの共振周波数は、変化しない。したがって、0次の共振モードの共振周波数と2次の共振モードの共振周波数の間隔は広がらないため、これらの共振モードの結合は弱まらない。また、0次の共振モードと2次の共振モードの結合は弱まらないため、図13Dに示すように、弾性表面波フィルタ10bでは、通過帯域内における出力インピーダンス(破線F)のスミスチャートの中心からのずれは、元設計の弾性表面波フィルタの出力インピーダンス(実線A)のずれに比べて小さくなる。なお、弾性表面波フィルタ10bにおいて、共振子13と共振子35は出力端子12に接続され、共振子14は入力端子11に接続されているので、入力インピーダンスと出力インピーダンスの関係が実施の形態1に示した弾性表面波フィルタ10とは逆になっている。 As shown in FIG. 13A, the pass characteristic (dashed line F) of the surface acoustic wave filter 10b when the configuration of the resonator 13 and the resonator 35 is symmetrical with respect to the resonator 14 is the original surface acoustic wave filter. The resonance frequency of the zeroth-order resonance mode moves to the low frequency side compared to the pass characteristic (solid line A). The resonance frequency of the secondary resonance mode does not change. Therefore, since the interval between the resonance frequency of the zeroth-order resonance mode and the resonance frequency of the second-order resonance mode does not widen, the coupling between these resonance modes is not weakened. Further, since the coupling between the zeroth-order resonance mode and the second-order resonance mode is not weakened, as shown in FIG. 13D, the surface acoustic wave filter 10b has a Smith chart of output impedance (broken line F) in the passband. The deviation from the center is smaller than the deviation of the output impedance (solid line A) of the original surface acoustic wave filter. In the surface acoustic wave filter 10b, the resonator 13 and the resonator 35 are connected to the output terminal 12, and the resonator 14 is connected to the input terminal 11. Therefore, the relationship between the input impedance and the output impedance is shown in the first embodiment. The surface acoustic wave filter 10 shown in FIG.
 また、図13Cに示すように、弾性表面波フィルタ10bの通過帯域幅(破線F)は、元設計の弾性表面波フィルタの通過帯域幅(実線A)に比べて拡大する。また、0次の共振モードと2次の共振モードの結合は弱まらないため、図13Bに示すように、スミスチャート上において通過帯域内における入力インピーダンス(破線F)の巻きは、元設計の弾性表面波フィルタの入力インピーダンス(実線A)の巻きほど広がらない。よって、弾性表面波フィルタ10bでは、入力および出力インピーダンスのばらつきは、元設計の弾性表面波フィルタの場合よりも小さくなっているといえる。 Further, as shown in FIG. 13C, the pass bandwidth (dashed line F) of the surface acoustic wave filter 10b is larger than the pass bandwidth (solid line A) of the original surface acoustic wave filter. Further, since the coupling between the zeroth-order resonance mode and the second-order resonance mode is not weakened, as shown in FIG. 13B, the winding of the input impedance (broken line F) in the passband on the Smith chart is the original design. It does not spread as much as the winding of the input impedance (solid line A) of the surface acoustic wave filter. Therefore, in the surface acoustic wave filter 10b, it can be said that the variation in the input and output impedances is smaller than that in the original surface acoustic wave filter.
 以上、本実施の形態にかかる弾性表面波フィルタ10bによると、スミスチャート上において通過帯域内における入力インピーダンスおよび出力インピーダンスの巻きの広がりを抑制しつつ、広帯域化を実現することができる。 As described above, according to the surface acoustic wave filter 10b according to the present embodiment, it is possible to realize a wide band while suppressing the spread of the winding of the input impedance and the output impedance in the pass band on the Smith chart.
 なお、弾性表面波フィルタ10bでは、共振子13と共振子35は出力端子12に接続され、共振子14は入力端子11に接続されているとしたが、実施の形態1に示した弾性表面波フィルタ10と同様、共振子13と共振子35は入力端子11に接続され、共振子14は出力端子12に接続されてもよい。また、ピッチの値、電極指132aおよび電極指132bの対数は、共振子13と共振子35が共振子14に対して対称の構成であれば、適宜変更してもよい。 In the surface acoustic wave filter 10b, the resonator 13 and the resonator 35 are connected to the output terminal 12, and the resonator 14 is connected to the input terminal 11. However, the surface acoustic wave described in the first embodiment is used. Similar to the filter 10, the resonator 13 and the resonator 35 may be connected to the input terminal 11, and the resonator 14 may be connected to the output terminal 12. Further, the pitch value and the logarithm of the electrode fingers 132 a and 132 b may be changed as appropriate as long as the resonator 13 and the resonator 35 are symmetric with respect to the resonator 14.
 (実施の形態4)
 次に、実施の形態4について、図14および図15A~図15Dを用いて説明する。本実施の形態にかかる弾性表面波フィルタ10cが実施の形態1にかかる弾性表面波フィルタ10と異なる点は、反射器16側の共振子43と反射器17側の共振子45が、それぞれピッチの異なる4つの領域に分割されている点である。
(Embodiment 4)
Next, Embodiment 4 will be described with reference to FIG. 14 and FIGS. 15A to 15D. The surface acoustic wave filter 10c according to the present embodiment is different from the surface acoustic wave filter 10 according to the first embodiment in that the resonator 43 on the reflector 16 side and the resonator 45 on the reflector 17 side have different pitches. It is divided into four different areas.
 図14は、本実施の形態にかかる弾性表面波フィルタ10cの構成を示す図であり、(a)はピッチの異なる領域ごとに領域を分割して構成を示した概略図、(b)は各領域におけるピッチの大きさを相対的に示した図である。 14A and 14B are diagrams showing the configuration of the surface acoustic wave filter 10c according to the present embodiment, in which FIG. 14A is a schematic diagram showing a configuration in which regions are divided into regions having different pitches, and FIG. It is the figure which showed the magnitude | size of the pitch in an area | region relatively.
 図14の(a)に示すように、弾性表面波フィルタ10cは、実施の形態1に示した弾性表面波フィルタ10と同様、縦結合型の弾性表面波フィルタである。弾性表面波フィルタ10aは、反射器16と反射器17との間に、反射器16側から反射器17側へと順に、共振子43、共振子14および共振子45を備えている。 As shown in FIG. 14 (a), the surface acoustic wave filter 10c is a longitudinally coupled surface acoustic wave filter, similar to the surface acoustic wave filter 10 shown in the first embodiment. The surface acoustic wave filter 10 a includes a resonator 43, a resonator 14, and a resonator 45 between the reflector 16 and the reflector 17 in order from the reflector 16 side to the reflector 17 side.
 共振子43は、反射器16に近い側から順に、ピッチの異なる領域I21、領域I22、領域I23、領域I24を有している。それぞれの領域におけるピッチは、図14の(b)に示すように、最も中央側の領域I24におけるピッチが最も小さく、領域I24に隣接する領域I23におけるピッチが最も大きい。つまり、図14の(b)に示すように、領域I21におけるピッチをλ21、領域I22におけるピッチをλ22、領域I23におけるピッチをλ23、領域I24におけるピッチをλ24とすると、各領域におけるピッチは、λ24<λ21<λ23、λ24<λ22<λ23の関係を満たしている。領域I24は、本発明における第1の領域、領域I23は、本発明における第2の領域に相当する。なお、λ21とλ22は、同一の値であってもよいし異なる値であってもよい。例えば、λ21=5.15μm、λ22=5.16μm、λ23=5.20μm、λ24=4.63μmである。 The resonator 43 has a region I21, a region I22, a region I23, and a region I24 having different pitches in order from the side closer to the reflector 16. As shown in FIG. 14B, the pitch in each region is the smallest in the region I24 on the most central side and the largest in the region I23 adjacent to the region I24. That is, as shown in FIG. 14B, when the pitch in the region I21 is λ21, the pitch in the region I22 is λ22, the pitch in the region I23 is λ23, and the pitch in the region I24 is λ24, the pitch in each region is λ24. The relations of <λ21 <λ23 and λ24 <λ22 <λ23 are satisfied. The region I24 corresponds to the first region in the present invention, and the region I23 corresponds to the second region in the present invention. Note that λ21 and λ22 may be the same value or different values. For example, λ21 = 5.15 μm, λ22 = 5.16 μm, λ23 = 5.20 μm, and λ24 = 4.63 μm.
 また、領域I21における電極指110aおよび電極指110bの対数は、例えば10である。領域I22における電極指110aおよび電極指110bの対数は、例えば4である。領域I23における電極指110aおよび電極指110bの対数は、例えば8である。領域I24における電極指110aおよび電極指110bの対数は、例えば3である。 Further, the logarithm of the electrode finger 110a and the electrode finger 110b in the region I21 is, for example, 10. The logarithm of the electrode finger 110a and the electrode finger 110b in the region I22 is, for example, 4. The logarithm of the electrode finger 110a and the electrode finger 110b in the region I23 is, for example, 8. The logarithm of the electrode finger 110a and the electrode finger 110b in the region I24 is, for example, 3.
 共振子45は、共振子14に近い側から順に、ピッチの異なる領域I26、領域I27、領域I28、領域I29を有している。それぞれの領域におけるピッチは、図14の(b)に示すように、最も中央側の領域I26におけるピッチが最も小さく、領域I26に隣接する領域I27におけるピッチが最も大きい。つまり、図14の(b)に示すように、領域I26におけるピッチをλ26、領域I27におけるピッチをλ27、領域I28におけるピッチをλ28、領域I29におけるピッチをλ29とすると、各領域におけるピッチは、λ26<λ28<λ27、λ26<λ29<λ27の関係を満たしている。領域I26は、本発明における第1の領域、領域I27は、本発明における第2の領域に相当する。なお、λ28とλ29は、同一の値であってもよいし異なる値であってもよい。例えば、λ26=4.88μm、λ27=5.18μm、λ28=5.13μm、λ29=5.12μmである。 The resonator 45 has a region I26, a region I27, a region I28, and a region I29 having different pitches in order from the side closer to the resonator. As shown in FIG. 14B, the pitch in each region is the smallest in the most central region I26 and the largest in the region I27 adjacent to the region I26. That is, as shown in FIG. 14B, when the pitch in the region I26 is λ26, the pitch in the region I27 is λ27, the pitch in the region I28 is λ28, and the pitch in the region I29 is λ29, the pitch in each region is λ26. The relations of <λ28 <λ27 and λ26 <λ29 <λ27 are satisfied. The region I26 corresponds to the first region in the present invention, and the region I27 corresponds to the second region in the present invention. Note that λ28 and λ29 may be the same value or different values. For example, λ26 = 4.88 μm, λ27 = 5.18 μm, λ28 = 5.13 μm, and λ29 = 5.12 μm.
 また、領域I26における電極指110aおよび電極指110bの対数は、例えば5である。領域I27における電極指110aおよび電極指110bの対数は、例えば10である。領域I28における電極指110aおよび電極指110bの対数は、例えば3である。領域I29における電極指110aおよび電極指110bの対数は、例えば7である。 Further, the logarithm of the electrode finger 110a and the electrode finger 110b in the region I26 is, for example, 5. The logarithm of the electrode finger 110a and the electrode finger 110b in the region I27 is, for example, 10. The logarithm of the electrode finger 110a and the electrode finger 110b in the region I28 is, for example, 3. The logarithm of the electrode finger 110a and the electrode finger 110b in the region I29 is, for example, 7.
 なお、共振子43と共振子45の間に配置された共振子14の構成は、実施の形態1に示した弾性表面波フィルタ10における共振子14と同様であるため、説明を省略する。 Note that the configuration of the resonator 14 arranged between the resonator 43 and the resonator 45 is the same as that of the resonator 14 in the surface acoustic wave filter 10 shown in the first embodiment, and thus the description thereof is omitted.
 ここで、上述した構成の弾性表面波フィルタ10cの伝送特性について説明する。図15Aおよび図15Cは、本実施の形態にかかる弾性表面波フィルタ10の通過特性を示す図である。図15Bは、本実施の形態にかかる弾性表面波フィルタ10の入力端子側の反射特性を示す図である。図15Dは、本実施の形態にかかる弾性表面波フィルタ10の出力端子側の反射特性を示す図である。図15A~図15Dでは、上述したように共振子43におけるピッチの関係をλ24<λ21<λ23、λ24<λ22<λ23、共振子45におけるピッチの関係をλ26<λ28<λ27、λ26<λ29<λ27とした弾性表面波フィルタ10cを用いた場合の特性を破線G、共振子43および共振子45のピッチの関係を上述のように変更していない弾性表面波フィルタ(元設計の弾性表面波フィルタ)を用いた場合の特性を実線Aで示している。また、図15Bおよび図15Dの実線Aおよび破線Gについては、弾性表面波フィルタ10cの通過帯域内でのインピーダンス特性を太線で示している。 Here, the transmission characteristics of the surface acoustic wave filter 10c configured as described above will be described. 15A and 15C are diagrams showing the pass characteristics of the surface acoustic wave filter 10 according to the present embodiment. FIG. 15B is a diagram illustrating reflection characteristics on the input terminal side of the surface acoustic wave filter 10 according to the present exemplary embodiment. FIG. 15D is a diagram illustrating reflection characteristics on the output terminal side of the surface acoustic wave filter 10 according to the present exemplary embodiment. 15A to 15D, as described above, the pitch relationship in the resonator 43 is λ24 <λ21 <λ23, λ24 <λ22 <λ23, and the pitch relationship in the resonator 45 is λ26 <λ28 <λ27, λ26 <λ29 <λ27. When the surface acoustic wave filter 10c is used, the surface acoustic wave filter whose characteristics are the broken line G and the pitch relationship between the resonator 43 and the resonator 45 is not changed as described above (original surface acoustic wave filter). The solid line A indicates the characteristics when using. 15B and 15D, the impedance characteristics within the pass band of the surface acoustic wave filter 10c are indicated by thick lines.
 図15Aに示すように、共振子43の領域I21、領域I22、領域I23および領域I24のピッチの関係をλ24<λ21<λ23およびλ24<λ22<λ23、共振子45の領域I26、領域I27、領域I28および領域I29のピッチの関係をλ26<λ28<λ27およびλ26<λ29<λ27とした弾性表面波フィルタ10cの通過特性(破線G)は、元設計の弾性表面波フィルタの通過特性(実線A)に比べて、0次の共振モードの共振周波数および2次の共振モードの共振周波数の両方が低周波側に移動する。このとき、0次の共振モードの共振周波数のほうが2次の共振モードの共振周波数よりも共振周波数が大きく変化する。したがって、0次の共振モードの共振周波数と2次の共振モードの共振周波数の間隔は広がらない。よって、これらの共振モードの結合は弱まらない。また、0次の共振モードと2次の共振モードの結合は弱まらないため、図15Bに示すように、弾性表面波フィルタ10cでは、通過帯域内における入力インピーダンス(破線G)のスミスチャートの中心からのずれは、元設計の弾性表面波フィルタの入力インピーダンス(実線A)のずれに比べて小さくなる。 As shown in FIG. 15A, the relationship between the pitches of the regions I21, I22, I23, and I24 of the resonator 43 is λ24 <λ21 <λ23 and λ24 <λ22 <λ23, the region I26, the region I27, and the region of the resonator 45. The pass characteristic (dashed line G) of the surface acoustic wave filter 10c in which the relationship between the pitches of I28 and the region I29 is λ26 <λ28 <λ27 and λ26 <λ29 <λ27 is the pass characteristic (solid line A) of the original surface acoustic wave filter. In contrast, both the resonance frequency of the zeroth-order resonance mode and the resonance frequency of the second-order resonance mode move to the low frequency side. At this time, the resonance frequency of the zeroth-order resonance mode changes more greatly than the resonance frequency of the second-order resonance mode. Therefore, the interval between the resonance frequency of the zeroth-order resonance mode and the resonance frequency of the second-order resonance mode does not increase. Therefore, the coupling of these resonance modes is not weakened. Further, since the coupling between the zeroth-order resonance mode and the second-order resonance mode is not weakened, as shown in FIG. 15B, in the surface acoustic wave filter 10c, the Smith chart of the input impedance (broken line G) in the passband The deviation from the center is smaller than the deviation of the input impedance (solid line A) of the originally designed surface acoustic wave filter.
 また、図15Cに示すように、弾性表面波フィルタ10cの通過帯域幅(破線G)は、元設計の弾性表面波フィルタの通過帯域幅(実線A)に比べて拡大する。また、0次の共振モードと2次の共振モードの結合は弱まらないため、図15Dに示すように、スミスチャート上において通過帯域内における出力インピーダンス(破線G)の巻きは、元設計の弾性表面波フィルタの出力インピーダンス(実線A)の巻きほど広がらない。よって、弾性表面波フィルタ10cでは、出力インピーダンスのばらつきは、元設計の弾性表面波フィルタの場合よりも小さくなっているといえる。 Further, as shown in FIG. 15C, the pass bandwidth (dashed line G) of the surface acoustic wave filter 10c is larger than the pass bandwidth (solid line A) of the original surface acoustic wave filter. Further, since the coupling between the zeroth-order resonance mode and the second-order resonance mode is not weakened, as shown in FIG. 15D, the winding of the output impedance (broken line G) in the passband on the Smith chart is the original design. It does not spread as much as the winding of the output impedance (solid line A) of the surface acoustic wave filter. Therefore, in the surface acoustic wave filter 10c, it can be said that the variation in output impedance is smaller than in the case of the originally designed surface acoustic wave filter.
 以上、本実施の形態にかかる弾性表面波フィルタ10cによると、スミスチャート上において通過帯域内における出力インピーダンスの巻きの広がりを抑制しつつ、広帯域化を実現することができる。 As described above, according to the surface acoustic wave filter 10c according to the present embodiment, it is possible to realize a wide band while suppressing the spread of the winding of the output impedance in the pass band on the Smith chart.
 (その他の実施の形態)
 なお、本発明は、上述した実施の形態に記載した構成に限定されるものではなく、例えば以下に示す変形例のように、適宜変更を加えてもよい。
(Other embodiments)
In addition, this invention is not limited to the structure described in embodiment mentioned above, For example, you may add a change suitably like the modification shown below.
 例えば、上述した実施の形態にかかる弾性表面波フィルタは、高周波モジュールに用いられてもよい。このとき、図1に示したように、弾性表面波フィルタ10は、弾性表面波フィルタ10を通過した高周波信号を増幅する低雑音増幅器20に接続されていてもよい。 For example, the surface acoustic wave filter according to the above-described embodiment may be used for a high-frequency module. At this time, as shown in FIG. 1, the surface acoustic wave filter 10 may be connected to a low noise amplifier 20 that amplifies the high-frequency signal that has passed through the surface acoustic wave filter 10.
 また、上述した実施の形態にかかる弾性表面波フィルタは、マルチプレクサに用いられてもよい。この場合、マルチプレクサは、複数の弾性表面波フィルタを有し、複数の弾性表面波フィルタのそれぞれは、共通端子に接続されている構成となっている。 Further, the surface acoustic wave filter according to the above-described embodiment may be used for a multiplexer. In this case, the multiplexer has a plurality of surface acoustic wave filters, and each of the plurality of surface acoustic wave filters is connected to a common terminal.
 また、上述した実施の形態では、弾性表面波フィルタに用いられる3つの共振子のうち端に配置された共振子の少なくともいずれかが、電極指のピッチの異なる3つ以上の領域を有するとした。例えば、実施の形態1では、共振子13は、領域I1、領域I2および領域I3の3つの領域を有することとした。しかし、これに限らず、共振子13は、4つの領域を有してもよいし、3つ以上の領域を含む構成であればさらに領域数を多くしてもよい。 In the above-described embodiment, at least one of the three resonators used in the surface acoustic wave filter arranged at the end has three or more regions having different electrode finger pitches. . For example, in the first embodiment, the resonator 13 has three regions, that is, the region I1, the region I2, and the region I3. However, the present invention is not limited to this, and the resonator 13 may have four regions, or the number of regions may be further increased as long as it includes three or more regions.
 また、電極指のピッチの異なる3つ以上の領域を有する共振子は、1つに限らず、弾性表面波フィルタに用いられる3つの共振子のうちの両端に配置された2つの共振子であってもよい。この場合、2つの共振子の対応する各領域における電極指のピッチを同一にしてもよいし、異ならせてもよい。また、2つの共振子の対応する各領域における電極指の対数を同一にしてもよいし、異ならせてもよい。 Further, the number of resonators having three or more regions having different electrode finger pitches is not limited to one, but two resonators disposed at both ends of three resonators used in a surface acoustic wave filter. May be. In this case, the pitches of the electrode fingers in the corresponding regions of the two resonators may be the same or different. Further, the number of electrode fingers in each corresponding region of the two resonators may be the same or different.
 また、共振子を構成する基板、電極、保護層等の材料は、上述したものに限らず、適宜変更してもよい。また、各共振子の電極指のピッチおよび対数は、上述した条件をみたすものであれば変更してもよい。 Also, the materials for the substrate, electrodes, protective layer, etc. constituting the resonator are not limited to those described above, and may be appropriately changed. The pitch and logarithm of the electrode fingers of each resonator may be changed as long as the above-described conditions are satisfied.
 その他、上述の実施の形態及び変形例に対して当業者が思いつく各種変形を施して得られる形態、又は、本発明の趣旨を逸脱しない範囲で上述の実施の形態及び変形例における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。 In addition, the form obtained by making various modifications conceived by those skilled in the art with respect to the above-described embodiments and modifications, or the components and functions in the above-described embodiments and modifications without departing from the spirit of the present invention. Forms realized by arbitrarily combining these are also included in the present invention.
 本発明は、弾性表面波フィルタを用いた高周波モジュール、デュプレクサ、マルチプレクサ、受信装置等に利用することができる。 The present invention can be used for high-frequency modules, duplexers, multiplexers, receivers, etc. using surface acoustic wave filters.
 1 高周波モジュール
 10、10a、10b、10c、30 弾性表面波フィルタ
 11 入力端子
 12 出力端子
 13、14、15、23、25、35、43、45、100 共振子
 13a、13b、14a、14b、15a、15b、101a、101b IDT電極(櫛形電極)
 16、17 反射器
 16a、16b、17a、17b、111a、111b、131a、131b バスバー電極
 16c、17c、110a、110b、132a、132b 電極指
 123 圧電基板
 124a 密着層
 124b 主電極層
 125 保護層
DESCRIPTION OF SYMBOLS 1 High frequency module 10, 10a, 10b, 10c, 30 Surface acoustic wave filter 11 Input terminal 12 Output terminal 13, 14, 15, 23, 25, 35, 43, 45, 100 Resonator 13a, 13b, 14a, 14b, 15a , 15b, 101a, 101b IDT electrodes (comb electrodes)
16, 17 Reflector 16a, 16b, 17a, 17b, 111a, 111b, 131a, 131b Busbar electrode 16c, 17c, 110a, 110b, 132a, 132b Electrode finger 123 Piezoelectric substrate 124a Adhesion layer 124b Main electrode layer 125 Protective layer

Claims (8)

  1.  縦結合型の弾性表面波フィルタであって、
     前記弾性表面波フィルタは、弾性表面波の伝搬方向に連続して配置された3つの共振子を備え、
     前記3つの共振子のそれぞれは、バスバー電極と前記バスバー電極に接続された互いに平行な複数の電極指とを有する一対の櫛形電極を有し、
     一対の前記櫛形電極は、互いの前記複数の電極指が前記弾性表面波伝搬方向に交互に位置するように配置されており、
     前記3つの共振子のうち中央に配置された第1の共振子は、前記弾性表面波フィルタにおける入力端子および出力端子のうちの一方に接続され、
     前記第1の共振子に隣接して配置された第2の共振子と、前記第1の共振子に隣接し前記第1の共振子に対して前記第2の共振子と反対側に配置された第3の共振子は、前記入力端子および前記出力端子のうちの他方に接続され、
     前記第2の共振子および前記第3の共振子のうちの少なくとも一方は、前記電極指のピッチが異なる3つ以上の領域を有し、前記3つ以上の領域のそれぞれでは、前記電極指のピッチは一定であり、
     前記3つ以上の領域のうち、前記第1の共振子に最も近い第1の領域における前記電極指のピッチは最も小さく、
     前記3つ以上の領域のうち、前記第1の領域に隣接する第2の領域における前記電極指のピッチは最も大きい、
     弾性表面波フィルタ。
    A longitudinally coupled surface acoustic wave filter,
    The surface acoustic wave filter includes three resonators arranged continuously in the propagation direction of the surface acoustic wave,
    Each of the three resonators has a pair of comb electrodes having a bus bar electrode and a plurality of parallel electrode fingers connected to the bus bar electrode,
    The pair of comb-shaped electrodes are arranged such that the plurality of electrode fingers are alternately positioned in the surface acoustic wave propagation direction,
    The first resonator disposed at the center of the three resonators is connected to one of an input terminal and an output terminal of the surface acoustic wave filter,
    A second resonator disposed adjacent to the first resonator; and a second resonator disposed adjacent to the first resonator and disposed opposite to the second resonator with respect to the first resonator. A third resonator connected to the other of the input terminal and the output terminal;
    At least one of the second resonator and the third resonator has three or more regions having different pitches of the electrode fingers, and in each of the three or more regions, the electrode fingers The pitch is constant,
    Of the three or more regions, the pitch of the electrode fingers in the first region closest to the first resonator is the smallest,
    Of the three or more regions, the pitch of the electrode fingers in the second region adjacent to the first region is the largest,
    Surface acoustic wave filter.
  2.  前記第2の共振子および前記第3の共振子の両方は、前記電極指のピッチが異なる前記3つ以上の領域を有し、
     前記第2の共振子および前記第3の共振子のそれぞれにおいて、
     前記3つ以上の領域のうち、前記第1の領域における前記電極指のピッチは最も小さく、
     前記3つ以上の領域のうち、前記第2の領域における前記電極指のピッチは最も大きい、
     請求項1に記載の弾性表面波フィルタ。
    Both the second resonator and the third resonator have the three or more regions having different pitches of the electrode fingers,
    In each of the second resonator and the third resonator,
    Of the three or more regions, the pitch of the electrode fingers in the first region is the smallest,
    Of the three or more regions, the pitch of the electrode fingers in the second region is the largest,
    The surface acoustic wave filter according to claim 1.
  3.  前記第2の共振子の前記3つ以上の領域の各領域と、前記第2の共振子の前記3つ以上の領域の各領域に対応する前記第3の共振子の前記3つ以上の領域の各領域とは、前記電極指のピッチがそれぞれ同一である、
     請求項2に記載の弾性表面波フィルタ。
    Each of the three or more regions of the second resonator and each of the three or more regions of the third resonator corresponding to each of the three or more regions of the second resonator. The pitch of the electrode fingers is the same as each region of
    The surface acoustic wave filter according to claim 2.
  4.  前記第2の共振子の前記3つ以上の領域の各領域と、前記第2の共振子の前記3つ以上の領域の各領域に対応する前記第3の共振子の前記3つ以上の領域の各領域とは、前記電極指の対数がそれぞれ同一である、
     請求項2または3に記載の弾性表面波フィルタ。
    Each of the three or more regions of the second resonator and each of the three or more regions of the third resonator corresponding to each of the three or more regions of the second resonator. Each region has the same number of pairs of electrode fingers,
    The surface acoustic wave filter according to claim 2.
  5.  前記電極指のピッチが異なる3つ以上の領域を有する前記第2の共振子および前記第3の共振子の少なくともいずれかは、前記第1の領域における前記電極指の対数が前記第1の領域以外の領域の前記電極指の対数の合計よりも少ない、
     請求項1~4のいずれか1項に記載の弾性表面波フィルタ。
    At least one of the second resonator and the third resonator having three or more regions having different pitches of the electrode fingers is such that the number of pairs of the electrode fingers in the first region is the first region. Less than the total number of pairs of electrode fingers in the region other than
    The surface acoustic wave filter according to any one of claims 1 to 4.
  6.  前記第1の共振子は、前記弾性表面波フィルタにおける前記入力端子に接続され、
     前記第2の共振子および前記第3の共振子は、前記弾性表面波フィルタにおける前記出力端子に接続されている、
     請求項1~5のいずれか1項に記載の弾性表面波フィルタ。
    The first resonator is connected to the input terminal of the surface acoustic wave filter;
    The second resonator and the third resonator are connected to the output terminal in the surface acoustic wave filter,
    The surface acoustic wave filter according to any one of claims 1 to 5.
  7.  請求項1~6のいずれか1項に記載の弾性表面波フィルタと、
     前記弾性表面波フィルタに接続され、前記弾性表面波フィルタを通過した高周波信号を増幅する低雑音増幅器とを備える、
     高周波モジュール。
    The surface acoustic wave filter according to any one of claims 1 to 6,
    A low noise amplifier that is connected to the surface acoustic wave filter and amplifies a high-frequency signal that has passed through the surface acoustic wave filter;
    High frequency module.
  8.  請求項1~6のいずれか1項に記載の弾性表面波フィルタを複数備え、前記複数の弾性表面波フィルタのそれぞれは、共通端子に接続されている、
     マルチプレクサ。
    A plurality of the surface acoustic wave filters according to any one of claims 1 to 6, wherein each of the plurality of surface acoustic wave filters is connected to a common terminal.
    Multiplexer.
PCT/JP2017/028266 2016-08-05 2017-08-03 Surface acoustic wave filter, high-frequency module, and multiplexer WO2018025961A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-155023 2016-08-05
JP2016155023 2016-08-05

Publications (1)

Publication Number Publication Date
WO2018025961A1 true WO2018025961A1 (en) 2018-02-08

Family

ID=61072853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028266 WO2018025961A1 (en) 2016-08-05 2017-08-03 Surface acoustic wave filter, high-frequency module, and multiplexer

Country Status (1)

Country Link
WO (1) WO2018025961A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006333171A (en) * 2005-05-27 2006-12-07 Kyocera Corp Surface acoustic wave resonator, surface acoustic wave device and communication apparatus
WO2007049754A1 (en) * 2005-10-27 2007-05-03 Kyocera Corporation Surface acoustic wave apparatus and communication apparatus
WO2009001651A1 (en) * 2007-06-28 2008-12-31 Kyocera Corporation Surface acoustic wave device and communication apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006333171A (en) * 2005-05-27 2006-12-07 Kyocera Corp Surface acoustic wave resonator, surface acoustic wave device and communication apparatus
WO2007049754A1 (en) * 2005-10-27 2007-05-03 Kyocera Corporation Surface acoustic wave apparatus and communication apparatus
WO2009001651A1 (en) * 2007-06-28 2008-12-31 Kyocera Corporation Surface acoustic wave device and communication apparatus

Similar Documents

Publication Publication Date Title
KR102058177B1 (en) Acoustic Wave Filters, Multiplexers, Duplexers, High-Frequency Front-End Circuits, and Communications
WO2018003297A1 (en) Multiplexer, high-frequency front end circuit, and communication device
WO2016111262A1 (en) Composite filter device
JP6760480B2 (en) Extractor
WO2019111902A1 (en) Multiplexer, high-frequency front-end circuit, and communication device
JP6614329B2 (en) Bandstop and composite filters
JP4100249B2 (en) Surface acoustic wave device, communication device
WO2019131533A1 (en) Elastic wave filter, multiplexer, high-frequency front end circuit, and communication device
CN114270707A (en) Elastic wave device
KR20190054916A (en) Elastic wave device, high-frequency front-end circuit, and communication apparatus
US11569433B2 (en) Acoustic wave resonator, filter, and multiplexer
WO2020261763A1 (en) Elastic wave device
WO2018193830A1 (en) Elastic wave device, high-frequency front-end circuit and communication device
US10284170B2 (en) Surface acoustic wave filter, duplexer, and multiplexer
US10511283B2 (en) Surface acoustic wave filter, high frequency module, and multiplexer
JP7103420B2 (en) Filter device and multiplexer
JP6607323B2 (en) Elastic wave device, high-frequency front-end circuit, and communication device
WO2018025961A1 (en) Surface acoustic wave filter, high-frequency module, and multiplexer
JP4053038B2 (en) Surface acoustic wave device
WO2019117106A1 (en) Filter device and multiplexer
JP4995923B2 (en) Boundary acoustic wave device and communication device using the same
WO2018123545A1 (en) Multiplexer
JP2004023255A (en) Longitudinally coupled dual mode saw filter
WO2018079284A1 (en) Ladder type filter, duplexer, and elastic wave filter apparatus
JP7416080B2 (en) Acoustic wave devices, filter devices and multiplexers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17837062

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17837062

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP