WO2018025869A1 - Biomarker for predicting therapeutic effect of fstl1 inhibitor in cancer patient - Google Patents

Biomarker for predicting therapeutic effect of fstl1 inhibitor in cancer patient Download PDF

Info

Publication number
WO2018025869A1
WO2018025869A1 PCT/JP2017/027916 JP2017027916W WO2018025869A1 WO 2018025869 A1 WO2018025869 A1 WO 2018025869A1 JP 2017027916 W JP2017027916 W JP 2017027916W WO 2018025869 A1 WO2018025869 A1 WO 2018025869A1
Authority
WO
WIPO (PCT)
Prior art keywords
fstl1
cancer
dip2a
patient
expression level
Prior art date
Application number
PCT/JP2017/027916
Other languages
French (fr)
Japanese (ja)
Inventor
千恵 工藤
雅義 豊浦
有希子 石田
雄二 庄屋
Original Assignee
株式会社ファーマフーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ファーマフーズ filed Critical 株式会社ファーマフーズ
Priority to JP2018531930A priority Critical patent/JP7012363B2/en
Publication of WO2018025869A1 publication Critical patent/WO2018025869A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans

Definitions

  • the present invention relates to a method for predicting the therapeutic effect of an FSTL1 inhibitor in a cancer patient, a method for determining the start of administration of an FSTL1 inhibitor to a cancer patient, and a method for predicting the therapeutic effect of an FSTL1 inhibitor in a cancer patient. It relates to the kit.
  • companion diagnosis is to assist the optimal medication by examining biomarkers related to the efficacy and side effects of the drug before the drug is administered and predicting the patient's individual responsiveness to the drug before the treatment. .
  • biomarkers related to the efficacy and side effects of the drug There are no limitations on the testing method, and genetic abnormality testing, gene expression testing, tissue testing of proteins and metabolites, blood component testing, and the like are used.
  • Pharmaceutical companies around the world are developing companion diagnostics using biomarkers at the same time as developing new drugs. In the oncology field, the development of innovative therapies such as cancer immunotherapy and cancer vaccine therapy using immune checkpoint inhibitors is progressing, and the effectiveness of specific drugs and the individual differences in the occurrence of side effects are ascertained.
  • the establishment of an appropriate companion diagnostic method that assists in determining drug validity and dosage will continue to be an increasingly important issue for research and development of new anticancer drugs.
  • FSTL1 Follistatin-like protein 1
  • MSC cancer-related mesenchymal stem cells
  • FSTL1 is secreted mainly in the arthritic joint matrix, and it has been reported that FSTL1 secretion is stimulated by IL-1 ⁇ and that FSTL1 can be a useful biomarker for systemic juvenile rheumatoid arthritis (non- Patent Document 2) and FSTL1 as a biomarker for inflammatory diseases such as juvenile rheumatoid arthritis and Kawasaki disease have been filed (Patent Documents 2 and 3).
  • FSTL1 binds to various receptors through the cell membrane (FSTL1 receptor) and affects various physiological actions (Non-patent Document 3).
  • DIP2A disco-interacting protein 2 homolog A
  • FSTL1 receptor present in the endothelial cell membranes of various tissues (Non-patent Document 4), and according to the human protein expression information database (Human Protein Inatlas), In normal tissues, expression is observed in some tissues such as smooth muscle, female genital organs, gastrointestinal tract, and in cancer tissues, it is detected in colorectal cancer, breast cancer, prostate cancer, lung cancer, liver cancer and the like.
  • One of the challenges of cancer treatment is to identify whether the tumor is a malignant tumor with high metastasis by biopsy, and to determine the appropriate treatment policy based not only on the primary lesion but also on the presence or possibility of metastasis. Is to decide.
  • An anti-FSTL1 antibody that is an FSTL1 inhibitor not only inhibits MSC that induces immune disruption, but also inhibits metastasis of cancer cells, and thus may be an effective anticancer agent against malignant tumors that are prone to metastasis.
  • the development of biomarkers useful for companion diagnosis such as the effectiveness of anti-FSTL1 antibody treatment, is strongly desired.
  • the present invention finds a biomarker useful for companion diagnosis for selecting a cancer patient that can be expected to have a therapeutic effect by an FSTL1 inhibitor, a method for predicting the therapeutic effect by an FSTL1 inhibitor in a cancer patient, It is an object of the present invention to provide a method for determining the start of administration of an FSTL1 inhibitor and a kit for predicting the therapeutic effect of an FSTL1 inhibitor in cancer patients.
  • the present invention includes the following inventions in order to solve the above problems.
  • a method for predicting a therapeutic effect of an FSTL1 inhibitor in a cancer patient (1) measuring the expression level of FSTL1 and / or DIP2A in a sample collected from a patient; (2) a step of comparing the measured value with a reference value, and (3) a step of determining that a therapeutic effect can be expected when the measured value is higher than the reference value,
  • a method comprising the steps of: [2] The method according to [1], wherein in the step (1), the expression levels of both FSTL1 and DIP2A are measured.
  • [3] The method according to [1] or [2], wherein the sample is a sample containing cancer cells of a patient or blood of the patient.
  • [7] A method for determining the start of administration of an FSTL1 inhibitor to a cancer patient, (1) measuring the expression level of FSTL1 and / or DIP2A in a sample collected from a patient; (2) comparing the measured value with a reference value, and (3 ′) determining the start of administration of the FSTL1 inhibitor when the measured value is higher than the reference value, A method comprising the steps of: [8] The method according to [7], wherein in the step (1), the expression levels of both FSTL1 and DIP2A are measured. [9] The method according to [7] or [8] above, wherein the sample is a sample containing cancer cells of the patient or the blood of the patient.
  • the sample containing cancer cells of the patient is a biopsy cancer tissue or a cancer tissue obtained by excision surgery.
  • the expression level of FSTL1 and / or DIP2A and the blood FSTL1 concentration in a biopsy cancer tissue or a cancer tissue obtained by excision are measured, and the blood FSTL1 concentration is measured [7] ] Method.
  • the expression level of FSTL1 and / or DIP2A and the blood DIP2A soluble type concentration in a biopsy cancer tissue or a cancer tissue obtained by excision are measured. The method according to [7] above.
  • kits for predicting the therapeutic effect of an FSTL1 inhibitor in a cancer patient comprising a reagent for measuring the expression level of FSTL1 and / or DIP2A in a sample collected from the patient.
  • the reagent contains one or more selected from anti-FSTL1 antibody, anti-DIP2A antibody, FSTL1 RT-PCR primer set, and DIP2A RT-PCR primer set Kit.
  • the present invention also includes the following aspects.
  • a method for providing information on the therapeutic effect of an FSTL1 inhibitor against cancer comprising measuring the expression level of FSTL1 and / or DIP2A in a sample collected from a cancer patient.
  • a method for providing the cancer patient with information on when to start administration of an FSTL1 inhibitor which comprises measuring the expression level of FSTL1 and / or DIP2A in a sample collected from the cancer patient.
  • a method for predicting the therapeutic effect of an FSTL1 inhibitor in a cancer patient a method for determining the start of administration of an FSTL1 inhibitor to a cancer patient, and a method for predicting the therapeutic effect of an FSTL1 inhibitor in a cancer patient Kits can be provided.
  • FIG. It is a figure which shows the result of having administered anti-FSTL1 antibody to the mouse
  • both FSTL1 and DIP2A are strongly expressed in mouse cancer cell lines (B16-F10, CT26 and 3LL) in which anti-FSTL1 antibody has been confirmed to be successful in a tumor-bearing mouse model. confirmed.
  • the present invention provides a method for predicting the therapeutic effect of an FSTL1 inhibitor in cancer patients.
  • the therapeutic effect prediction method of the present invention only needs to include the following steps (1) to (3).
  • (1) A step of measuring the expression level of FSTL1 and / or DIP2A in a sample collected from a patient (2)
  • a therapeutic effect can be expected when the measured value is higher than the reference value
  • the therapeutic effect prediction method of the present invention may include steps other than the above steps (1) to (3) as long as the object of the present invention can be achieved, and the content thereof is not limited.
  • cancer there are no particular limitations on the type of cancer of the cancer patient for which the therapeutic effect is predicted, including skin cancer, colon cancer, breast cancer, lymphoma, lung cancer, prostate cancer, kidney cancer, head and neck cancer, and esophagus.
  • Examples of the substance that inhibits the binding between FSTL1 and its receptor include an antibody (anti-FSTL1 antibody) or peptide that specifically binds to FSTL1, or an antibody or peptide that specifically binds to the FSTL1 receptor.
  • a substance that inhibits the binding between FSTL1 and its receptor is preferable, and an anti-FSTL1 antibody is more preferable.
  • step (1) the expression level of FSTL1 and / or DIP2A in a sample collected from a patient is measured.
  • the sample collected from the patient is not particularly limited as long as it can measure the expression level of FSTL1 or the expression level of DIP2A.
  • tissues obtained by biopsy or surgery blood, tissue fluid, lymph fluid, bone marrow, cerebrospinal fluid, pus, mucus, runny nose, sputum, urine, feces, ascites, pleural effusion, etc .; nasal cavity, bronchial, skin, Examples of the washing liquid after washing various organs and bones;
  • a sample containing cancer cells or blood is preferred.
  • the sample containing cancer cells is preferably a biopsy cancer tissue or a cancer tissue obtained by excision.
  • the sample for measuring the expression level of FSTL1 and the sample for measuring the expression level of DIP2A may be the same or different. If it is a sample which can measure an expression level, it will not specifically limit.
  • the sample for measuring the expression level of FSTL1 is blood containing cancer cells
  • the sample for measuring the expression level of DIP2A is a biopsy cancer tissue or a cancer tissue obtained by excision surgery. It is done.
  • step (1) only the expression level of FSTL1 may be measured or only the expression level of DIP2A may be measured, but it is preferable to measure the expression levels of both FSTL1 and DIP2A. It has been confirmed that the accuracy of predicting the therapeutic effect of an FSTL1 inhibitor in cancer patients is improved by judging the combination of both expression levels. Moreover, since FSTL1 is a secreted protein, the expression level of FSTL1 can be evaluated based on the blood FSTL1 concentration. Therefore, as an aspect of measuring the expression level of FSTL1, only the expression level of FSTL1 in a sample containing cancer cells (cancer tissue) may be measured, or only the FSTL1 concentration in blood may be measured. May be measured.
  • an aspect of measuring only the expression level of FSTL1 an aspect of measuring only the blood FSTL1 concentration, an aspect of measuring only the expression level of DIP2A; the expression level of FSTL1 and the blood FSTL1 concentration
  • An embodiment for measuring both FSTL1 expression level and DIP2A expression level an embodiment for measuring blood FSTL1 concentration and DIP2A expression level; an FSTL1 expression level, DIP2A expression level and blood FSTL1 concentration
  • concentration are mentioned.
  • a method for measuring the expression level in a sample containing cancer cells is not particularly limited, a method for measuring the amount of target protein in the sample, and a method for measuring the amount of mRNA (target mRNA) of a gene encoding the target protein in the sample.
  • a method for measuring the expression level using an immunohistochemical method can be preferably used.
  • a sample containing cancer cells it is preferable to use a biopsy cancer tissue or a cancer tissue obtained by excision surgery.
  • the amount of target protein can be measured by extracting a protein from a sample by a known method and using a known protein measurement method such as Western blotting, EIA, ELISA, or RIA.
  • the target mRNA amount is measured by extracting RNA from a sample by a known method and using a known mRNA amount measuring method such as Northern blotting, RT-PCR, quantitative RT-PCR, or RNase protection assay. be able to.
  • a known mRNA amount measuring method such as Northern blotting, RT-PCR, quantitative RT-PCR, or RNase protection assay.
  • the RT-PCR method or the quantitative RT-PCR method is preferable, and the quantitative RT-PCR method is more preferable.
  • a method of preparing a tissue specimen according to a conventional method and performing immunostaining using an antibody that specifically binds to the target protein can be suitably used.
  • the sample is preferably a biopsy cancer tissue or a cancer tissue obtained by excision surgery.
  • any of the fluorescent antibody method, the enzyme antibody method, and the metal-labeled antibody method may be used, but the fluorescent antibody method is preferred.
  • the fluorescent antibody method may be performed by a direct method or an indirect method.
  • the fluorescence intensity of the antibody on the specimen indicates the expression level of the target protein.
  • the fluorescence intensity can be measured using a commercially available pixel counter or the like.
  • the expression level of FSTL1 can be measured by immunostaining using an anti-FSTL1 antibody
  • the expression level of DIP2A can be measured by immunostaining using an anti-DIP2A antibody.
  • FSTL1 and DIP2A can also be immunofluorescently stained using antibodies labeled with different fluorescent substances (double staining).
  • the in situ hybidization method can be used to measure the amount of target mRNA in the tissue specimen.
  • the blood FSTL1 concentration can be measured, for example, by separating serum from blood collected from a patient and quantifying the serum FSTL1 concentration using a known method such as ELISA. It has been confirmed that the blood FSTL1 concentration is high in patients suffering from highly metastatic cancer and advanced in degree of progression. Therefore, it can be expected that the therapeutic effect of the FSTL1 inhibitor in the metastatic lesion is predicted by performing the determination by combining the measured values of the blood FSTL1 concentration. Specifically, for example, in a cancer patient whose primary lesion has been completely removed, when the FSTL1 and / or DIP2A expression level of the resected cancer tissue is high and the blood FSTL1 concentration is also high, the primary lesion has already been removed.
  • the amino acid sequences of human FSTL1 and human DIP2A and the base sequence of the encoding gene can be obtained from a known database such as GenBank.
  • the NCBI accession number of the base sequence of the gene encoding human FSTL1 is NM_007085, and the NCBI accession number of the amino acid sequence of human FSTL1 is NP_009016.
  • the NCBI accession number of the nucleotide sequence of the gene encoding human DIP2A is NM_015151
  • the NCBI accession number of the amino acid sequence of human DIP2A is NP_055966.
  • step (2) the measured value of the expression level of FSTL1 and / or DIP2A obtained in step (1) is compared with each reference value.
  • the reference value the measured value of the expression level of FSTL1 and / or DIP2A in the healthy subject sample measured simultaneously in the step (1) can be used.
  • you may set arbitrary reference values based on the accumulated measurement value (health person accumulation data) of the expression level of FSTL1 and / or DIP2A in a healthy person sample. Therefore, the reference value in the present specification may be a measurement value obtained by simultaneously measuring the expression level of FSTL1 and / or DIP2A in a healthy subject sample or an accumulated measurement value, and the blood FSTL1 concentration of a healthy subject may be measured simultaneously.
  • step (3) when the measured value of the expression level of FSTL1 and / or DIP2A obtained in step (1) is higher than the reference value, it is determined that the cancer patient can expect a therapeutic effect by the FSTL1 inhibitor. .
  • the therapeutic effect can be expected when the measured value is five times higher than the reference value, and the therapeutic effect is expected when the measured value is ten times higher than the reference value. It is more preferable to determine that it is possible.
  • a therapeutic effect can be expected when the measured value is 1.5 times higher than the reference value, It is more preferable to determine that a therapeutic effect can be expected when the measured value is twice or more higher than the reference value.
  • the therapeutic effect prediction method of the present invention is based on the determination that the therapeutic effect in step (3) can be expected.
  • the sample provider is a patient whose primary lesion has been excised
  • the expression level of FSTL1 and / or DIP2A in the provided sample early detection of metastasis and early treatment with an FSTL1 inhibitor Information can be provided.
  • the expression of FSTL1 and / or DIP2A is significantly enhanced in the early stage cancer, it is possible to select an early stage cancer patient who can expect a therapeutic effect by the FSTL1 inhibitor with high accuracy.
  • FSTL1 in a sample containing cancer cells cancer tissue
  • DIP2A in a sample containing cancer cells cancer tissue
  • blood FSTL1 concentration blood FSTL1 concentration
  • this invention also provides the parameter
  • the present invention provides a method for determining the start of administration of an FSTL1 inhibitor to a cancer patient.
  • the administration start determination method of the present invention only needs to include the following steps (1), (2) and (3 ′).
  • (1) A step of measuring the expression level of FSTL1 and / or DIP2A in a sample collected from a patient
  • (2) A step of comparing the measured value with a reference value (3 ′) When the measured value is higher than the reference value, the FSTL1 inhibitor Step of determining the start of administration
  • the present invention provides a kit for predicting the therapeutic effect of an FSTL1 inhibitor in cancer patients. Since the kit of the present invention measures the expression level of FSTL1 and / or DIP2A, it contains either or both of a reagent for measuring the expression level of FSTL1 and a reagent for measuring the expression level of DIP2A. What is necessary is just to include the reagent for measuring the expression level of DIP2A preferably. Examples of the reagent for measuring the expression level of DIP2A include an anti-DIP2A antibody and a primer set for RT-PCR of DIP2A. The kit of the present invention preferably contains one or both of these. The anti-DIP2A antibody can be used for immunohistochemical staining, and the primer set can be used for quantification of DIP2A mRNA.
  • kit of the present invention contains an anti-DIP2A antibody
  • a secondary antibody a blocking reagent, a washing buffer, an instruction manual, etc.
  • a primer set for DIP2A RT-PCR in addition to this, a DNA synthase, a nucleotide serving as a substrate for the DNA synthase, an amplification reaction solution, a reaction tube, a sample preparation reagent, It is preferable to include an instruction manual and the like.
  • the kit of the present invention can also be suitably used for carrying out the method for determining the start of administration of the FSTL1 inhibitor to the cancer patient of the present invention. Therefore, the kit of the present invention can be rephrased as a kit for determining the start of administration of an FSTL1 inhibitor to cancer patients.
  • Example 1 Expression analysis of FSTL1 and DIP2A in high metastasis human cancer cell line and low metastasis human cancer cell line
  • FIG. 1 shows double-stained images of FSTL1 and DIP2A excluding DAPI nuclear staining.
  • Panc1-mock (upper left) contained a small amount of DIP2A positive cells, but FSTL1 showed only faint staining in the nuclei of some cells.
  • Panc1-Snail + (upper right), both FSTL1 and DIP2A were strongly positive in almost all cells.
  • DIP2A was basically expressed on the cell membrane, but accumulated with FSTL1 in the periphery of the nucleus, and this was also observed in the nucleus in some cells.
  • Example 2 Expression analysis of FSTL1 and DIP2A of a mouse cancer cell line in which anti-FSTL1 antibody is successful in a tumor-bearing model
  • Snail forced expression cell line of mouse melanoma B16-F10 (F10-snail +) 3.
  • Mouse colon cancer cell line CT26 4 Mouse colon cancer cell line CT26 4).
  • Mouse lung cancer cell line 3LL Using the same PE-labeled FSTL1 antibody and DIP2A antibody (Santa Cruz; combined with FITC-labeled secondary antibody) as in Example 1, immunostaining and observation were performed in the same manner as in Example 1.
  • Anti-FSTL1 Clone # 8-1 (1-2) Experimental procedure When Snail-positive tumor cells were transplanted subcutaneously and intravenously in mice, they metastasized not only to various organs but also to the bone marrow, which increased mesenchymal stem cells (MSC) starting from the bone marrow. It is known that the induction of anti-tumor immunity is strongly suppressed systemically (Cancer Research 73: 6185, 2013). Therefore, 5 ⁇ 10 5 GFP positive Snail positive B16-F10 tumor cells introduced by forced introduction of GFP gene and mouse Snail gene were subcutaneously injected into C57BL / 6N mice, and 1 ⁇ 10 5 cells were injected into the tail vein.
  • MSC mesenchymal stem cells
  • anti-FSTL1 antibody (# 6-55, # 7-34, # 8-1) prepared to 1 mg / mL with physiological saline or the Mouse IgG (anti-DNP antibody), which is an isotype, was intraperitoneally administered at a dose of 10 mg / kg as a control antibody. Saline was intraperitoneally administered to the untreated group.
  • Various immunological assays were performed 14 days after cell transplantation (Day 14). Subcutaneous tumor diameters were measured 7 days, 11 days, and 14 days after cell transplantation to calculate the tumor volume, and the inhibitory effect on subcutaneous tumor growth was evaluated. As an assay, the number of GFP positive Snail positive B16-F10 tumor cells in bone marrow cells, the number of CD45 negative cells in bone marrow cells, and body weight were measured.
  • FIG. 3 shows the results of the antitumor effect of the anti-FSTL1 antibody. All three anti-FSTL1 antibodies used significantly suppressed the growth of subcutaneous tumors relative to the control antibody.
  • the numerical value in parentheses is the P value when compared with the untreated group
  • the numerical value shown in the horizontal line is the cell transplantation day 14 between the group with one end of the horizontal line and the group with the other end. P value when compared later is shown.
  • FIG. 4 shows the effect on bone metastasis (left: GFP-positive Snail-positive B16-F10 tumor cells in the bone marrow), the effect on MSC increase (middle: the number of CD45-negative cells in the bone marrow), the effect on weight loss ( Right).
  • Anti-FSTL1 antibodies # 6-55 and # 8-1 showed an effect of suppressing weight loss.
  • all of the three types of anti-FSTL1 antibodies decreased MSC and showed bone metastasis inhibitory effect.
  • FIG. 5 shows the results of the antitumor effect
  • FIG. 6 shows the results of the antimetastatic effect.
  • Anti-FSTL1 antibody (# 6-55) suppressed CT26 subcutaneous tumor growth and lung metastasis very strongly. Specifically, the solid tumor disappeared in 3 out of 5 mice, and the number of lung metastases was very small (the average number of nodules in the control antibody group was 14 and the number of nodules in the anti-FSTL1 antibody group was 0). ⁇ 3).
  • the numerical value shown in the place of a horizontal line in FIG. 5 shows P value at the time of a cell transplant 14 days after a cell transplantation between the group with the one end of a horizontal line, and the group with the other end.
  • FIG. 7 shows the results of the antitumor effect
  • FIG. 8 shows the results of the effect on weight loss.
  • Anti-FSTL1 antibody (# 6-55) strongly suppressed the growth of 3LL subcutaneous tumors. Specifically, solid tumors disappeared in 2 out of 5 mice. In addition, no metastasis was observed in any organ. In the anti-FSTL1 antibody group, weight loss, thinning, and fluffing were not observed at all, and all mice were healthy.
  • Example 2 From the results of Example 2 and Reference Examples 1, 2, and 3, it can be confirmed that the anti-FSTL1 antibody has an antitumor effect against a mouse model transplanted with mouse cancer cells highly expressing FSTL1 and DIP2A. It was. In Example 1, since it was confirmed that both FSTL1 and DIP2A are highly expressed in human cancer cells with high metastasis, such a cancer that highly expresses FSTL1 and DIP2A was developed. The anti-FSTL1 antibody can be expected to have a therapeutic effect on existing cancer patients.
  • FSTL1 / DIP2A co-positive small Snail-induced MSC sMSC
  • large numbers of FSTL1 / DIP2A co-positive large cancer stem cell (CSC) -like tumor cells were also increased.
  • the vertical axis is the FSTL1 expression level and the horizontal axis is the DIP2A expression level, and the correlation between the expression in each tumor tissue has been confirmed.
  • FIG. 11 shows the results of analyzing the expression levels of FSTL1 and DIP2A in the above 6 cancer types according to the progression stage (stage I-IV).
  • black circles ( ⁇ ) indicate average values of expression levels in each stage, and white circles ( ⁇ ) indicate individual values. From this analysis result, it was revealed that both FSTL1 and DIP2A were enhanced in expression in stages I to III, and FSTL1 was particularly enhanced in stage I.
  • stage I the co-expression of FSTL1 and DIP2A at the same time is significantly enhanced compared to the other stages, and both molecules regulate cancer metastasis, so cancer cells are exactly It is speculated that FSTL1 and DIP2A expression is enhanced in the primary lesion to be detached, and that cancer progression and metastasis are promoted. From these results, it was suggested at the clinical level that detecting the expression of FSTL1 and DIP2A, particularly the co-expression of both molecules and their correlation, may lead to early detection and early treatment of cancer metastasis.
  • Example 4 Expression analysis of FSTL1 and DIP2A in tumor tissue derived from patients with advanced stage melanoma
  • a tumor tissue derived from an advanced stage melanoma patient a section set (Human malignant melanoma, product number CK2) containing a primary tumor tissue and a metastatic tumor tissue was purchased from Super Bio Chip, and the same method as in Example 3 was used. Immunostaining of FSTL1 and DIP2A was performed, and the expression intensity was analyzed by measuring the pixel count.
  • FIG. 13 shows the analysis of the expression levels of FSTL1 and DIP2A in the primary lesion by various classifications, but no significant correlation was found in age, sex, patient survival month, and the like.
  • FIG. 13 shows the analysis of the expression levels of FSTL1 and DIP2A in the primary lesion by various classifications, but no significant correlation was found in age, sex, patient survival month, and the like.
  • DIP2A is higher than the average value.
  • Patients with high expression and high expression of FSTL1 were also observed to have
  • Example 5 Measurement of serum FSTL1 concentration in various cancer patients
  • Serum of various types skin cancer, lung cancer, ovarian cancer, colon cancer, prostate cancer, breast cancer
  • stage IV terminal cancer patients
  • FSTL1 concentration in the serum was measured using an R & D Systems DuoSet ELISA Human FSTL1 (R & D Systems, Cat # DY1694). The measurement was performed according to the product protocol.
  • Example 6 Efficacy evaluation of anti-FSTL1 antibody using mouse osteosarcoma cell transplantation model
  • FIG. 15 shows the results of the antitumor effect
  • FIG. 16 shows the results of measuring the FSTL1 concentration in serum.
  • the anti-FSTL1 antibody (# 6-55) suppressed the growth of subcutaneous tumors and decreased the serum FSTL1 concentration to support the antitumor effect. From this, it was suggested that anti-FSTL1 antibody may be effective for osteosarcoma.

Abstract

A method for predicting the therapeutic effect of a FSTL1 inhibitor in a cancer patient, said method being characterized by comprising the steps of: (1) measuring the expression level of FSTL1 and/or DIP2A in a sample collected from the patient; (2) comparing a measurement value with a reference value; and (3) determining that the therapeutic effect is promised when the measurement value is higher than the reference value. For example, according to the present invention, a companion diagnosis for predicting the efficacy or the like of a treatment with a FSTL1 inhibitor can be performed suitably.

Description

がん患者におけるFSTL1阻害剤による治療効果を予測するためのバイオマーカーBiomarkers for predicting therapeutic effects of FSTL1 inhibitors in cancer patients
 本発明は、がん患者におけるFSTL1阻害剤による治療効果を予測する方法、がん患者に対するFSTL1阻害剤の投与開始を決定する方法、およびがん患者におけるFSTL1阻害剤による治療効果を予測するためのキットに関するものである。 The present invention relates to a method for predicting the therapeutic effect of an FSTL1 inhibitor in a cancer patient, a method for determining the start of administration of an FSTL1 inhibitor to a cancer patient, and a method for predicting the therapeutic effect of an FSTL1 inhibitor in a cancer patient. It relates to the kit.
 コンパニオン診断は、医薬品の効果や副作用に関与するバイオマーカーを医薬品の投薬前に検査し、医薬品に対する患者個人の反応性を治療前に予測することで、最適な投薬を補助することを目的とする。検査法に制限はなく、遺伝子異常検査、遺伝子発現検査、タンパク質や代謝物質などの組織検査や血液成分検査などが用いられる。世界中の製薬企業で新規医薬品の開発と同時に、バイオマーカーによるコンパニオン診断法の開発が行われている。がん分野では、免疫チェックポイント阻害剤によるがん免疫療法、がんワクチン療法などの革新的な治療法の開発が進展しており、特定の医薬品の有効性や副作用発現の個人差を把握し、投薬妥当性や投薬量決定を補助する適切なコンパニオン診断法の確立は、今後も新規抗がん剤研究開発の益々重要な課題である。 The purpose of companion diagnosis is to assist the optimal medication by examining biomarkers related to the efficacy and side effects of the drug before the drug is administered and predicting the patient's individual responsiveness to the drug before the treatment. . There are no limitations on the testing method, and genetic abnormality testing, gene expression testing, tissue testing of proteins and metabolites, blood component testing, and the like are used. Pharmaceutical companies around the world are developing companion diagnostics using biomarkers at the same time as developing new drugs. In the oncology field, the development of innovative therapies such as cancer immunotherapy and cancer vaccine therapy using immune checkpoint inhibitors is progressing, and the effectiveness of specific drugs and the individual differences in the occurrence of side effects are ascertained. The establishment of an appropriate companion diagnostic method that assists in determining drug validity and dosage will continue to be an increasingly important issue for research and development of new anticancer drugs.
 がんが悪化する原因として免疫抑制が知られるようになり、免疫抑制を解除するとがんの効果的な治療につながるとして、免疫チェックポイント阻害剤などによるがん免疫療法の研究開発が大きく進展している。特許文献1では、免疫抑制に関与する分子の一つとしてFSTL1(Follistatin-like Protein 1)が同定され、FSTL1の阻害剤が有用な抗がん剤となり得るとの報告がなされた。これまでの研究により、FSTL1は、がん細胞およびがん関連の間葉系幹細胞(mesenchymal stem cell、以下「MSC」と記す)から分泌され、オートクラインにMSCに作用し、MSCの増殖を促進し、T細胞免疫制御系を介して免疫抑制を誘導し、癌悪化の原因となること、さらに、FSTL1は癌細胞の転移性、特に骨転移性獲得も誘導することが明らかになっている(非特許文献1)。 Immunosuppression has become known as the cause of cancer deterioration, and releasing immunosuppression leads to effective treatment of cancer. Research and development of cancer immunotherapy with immune checkpoint inhibitors has greatly advanced. ing. In Patent Document 1, FSTL1 (Follistatin-like protein 1) was identified as one of the molecules involved in immunosuppression, and it was reported that an inhibitor of FSTL1 could be a useful anticancer agent. According to previous studies, FSTL1 is secreted from cancer cells and cancer-related mesenchymal stem cells (hereinafter referred to as “MSC”), acts on MSCs in autocrine, and promotes MSC proliferation. However, it has been clarified that immunosuppression is induced through the T cell immune control system and causes cancer deterioration, and that FSTL1 also induces metastasis of cancer cells, particularly acquisition of bone metastasis ( Non-patent document 1).
 FSTL1は主に関節炎の関節マトリクスにおいて分泌され、このFSTL1分泌はIL-1βにより促進されること、およびFSTL1が全身型若年性関節リウマチの有用なバイオマーカーになり得ることが報告されており(非特許文献2)、若年性関節リウマチや川崎病等の炎症性疾患のバイオマーカーとしてのFSTL1が特許出願されている(特許文献2および3)。 FSTL1 is secreted mainly in the arthritic joint matrix, and it has been reported that FSTL1 secretion is stimulated by IL-1β and that FSTL1 can be a useful biomarker for systemic juvenile rheumatoid arthritis (non- Patent Document 2) and FSTL1 as a biomarker for inflammatory diseases such as juvenile rheumatoid arthritis and Kawasaki disease have been filed (Patent Documents 2 and 3).
 FSTL1は、細胞膜を介する各種受容体(FSTL1受容体)に結合し、種々の生理作用に影響している(非特許文献3)。なかでも、DIP2A(disco-interacting protein 2 homolog A)は、各種組織の内皮細胞膜に存在するFSTL1受容体であり(非特許文献4)、ヒトのタンパク質発現情報データベース(Human Protein Atlas)によれば、正常組織では、平滑筋、女性生殖器、消化管など一部の組織で発現が見られ、がん組織では、大腸がん、乳がん、前立腺がん、肺ガン、肝ガンなどで検出されている。 FSTL1 binds to various receptors through the cell membrane (FSTL1 receptor) and affects various physiological actions (Non-patent Document 3). Among them, DIP2A (disco-interacting protein 2 homolog A) is an FSTL1 receptor present in the endothelial cell membranes of various tissues (Non-patent Document 4), and according to the human protein expression information database (Human Protein Inatlas), In normal tissues, expression is observed in some tissues such as smooth muscle, female genital organs, gastrointestinal tract, and in cancer tissues, it is detected in colorectal cancer, breast cancer, prostate cancer, lung cancer, liver cancer and the like.
 がん治療の課題のひとつは、発見された腫瘍について、転移性の高い悪性腫瘍かどうかを生検で鑑別し、原発巣ばかりでなく、転移の有無や可能性も踏まえて、適切な治療方針を決定することである。FSTL1阻害剤である抗FSTL1抗体は、免疫破綻を誘導するMSCを阻害するばかりでなく、癌細胞の転移を阻害することから、転移しやすい悪性腫瘍に対する効果的な抗がん剤となることが期待されている。さらに、抗FSTL1抗体によるがん治療薬開発に伴い、抗FSTL1抗体による治療の有効性等のコンパニオン診断に有用なバイオマーカーの開発が強く望まれている。 One of the challenges of cancer treatment is to identify whether the tumor is a malignant tumor with high metastasis by biopsy, and to determine the appropriate treatment policy based not only on the primary lesion but also on the presence or possibility of metastasis. Is to decide. An anti-FSTL1 antibody that is an FSTL1 inhibitor not only inhibits MSC that induces immune disruption, but also inhibits metastasis of cancer cells, and thus may be an effective anticancer agent against malignant tumors that are prone to metastasis. Expected. Furthermore, with the development of anti-FSTL1 antibody cancer therapeutics, the development of biomarkers useful for companion diagnosis, such as the effectiveness of anti-FSTL1 antibody treatment, is strongly desired.
国際公開第2009/028411号International Publication No. 2009/028411 国際公開第2009/097424号International Publication No. 2009/097424 国際公開第2012/019099号International Publication No. 2012/019099
 本発明は、FSTL1阻害剤による治療効果が期待できるがん患者を選択するためのコンパニオン診断に有用なバイオマーカーを見出し、がん患者におけるFSTL1阻害剤による治療効果を予測する方法、がん患者に対するFSTL1阻害剤の投与開始を決定する方法、およびがん患者におけるFSTL1阻害剤による治療効果を予測するためのキットを提供することを課題とする。 The present invention finds a biomarker useful for companion diagnosis for selecting a cancer patient that can be expected to have a therapeutic effect by an FSTL1 inhibitor, a method for predicting the therapeutic effect by an FSTL1 inhibitor in a cancer patient, It is an object of the present invention to provide a method for determining the start of administration of an FSTL1 inhibitor and a kit for predicting the therapeutic effect of an FSTL1 inhibitor in cancer patients.
 本発明は、上記の課題を解決するために以下の各発明を包含する。
[1]がん患者におけるFSTL1阻害剤による治療効果を予測する方法であって、
(1)患者から採取した試料におけるFSTL1および/またはDIP2Aの発現レベルを測定する工程、
(2)測定値を基準値と比較する工程、および
(3)測定値が基準値より高い場合に治療効果が期待できると判定する工程、
を含むことを特徴とする方法。
[2]工程(1)において、FSTL1とDIP2Aの両方の発現レベルを測定することを特徴とする前記[1]に記載の方法。
[3]試料が、患者のがん細胞を含む試料または患者の血液である前記[1]または[2]に記載の方法。
[4]患者のがん細胞を含む試料が、生検がん組織または切除手術で得られたがん組織である前記[3]に記載の方法。
[5]工程(1)において、生検がん組織または切除手術で得られたがん組織におけるFSTL1および/またはDIP2Aの発現レベルと、血中FSTL1濃度を測定することを特徴とする前記[1]に記載の方法。
[6]工程(1)において、発現レベルを免疫組織化学的に測定することを特徴とする前記[1]~[5]のいずれかに記載の方法。
[7]がん患者に対するFSTL1阻害剤の投与開始を決定する方法であって、
(1)患者から採取した試料におけるFSTL1および/またはDIP2Aの発現レベルを測定する工程、
(2)測定値を基準値と比較する工程、および
(3’)測定値が基準値より高い場合にFSTL1阻害剤の投与開始を決定する工程、
を含むことを特徴とする方法。
[8]工程(1)において、FSTL1とDIP2Aの両方の発現レベルを測定することを特徴とする前記[7]に記載の方法。
[9]試料が、患者のがん細胞を含む試料または患者の血液である前記[7]または[8]に記載の方法。
[10]患者のがん細胞を含む試料が、生検がん組織または切除手術で得られたがん組織である前記[9]に記載の方法。
[11]工程(1)において、生検がん組織または切除手術で得られたがん組織におけるFSTL1および/またはDIP2Aの発現レベルと、血中FSTL1濃度を測定することを特徴とする前記[7]に記載の方法。
[12]工程(1)において、生検がん組織または切除手術で得られたがん組織におけるFSTL1および/またはDIP2Aの発現レベルと、血中DIP2A可溶型濃度を測定することを特徴とする前記[7]に記載の方法。
[13]工程(1)において、発現レベルを免疫組織化学的に測定することを特徴とする前記[7]~[12]のいずれかに記載の方法。
[14]がん患者におけるFSTL1阻害剤による治療効果を予測するためのキットであって、患者から採取した試料中のFSTL1および/またはDIP2Aの発現レベルを測定するための試薬を含むキット。
[15]前記試薬が、抗FSTL1抗体、抗DIP2A抗体、FSTL1のRT-PCR用プライマーセットおよびDIP2AのRT-PCR用プライマーセットから選択される1種又は2種以上を含む前記[14]に記載のキット。
The present invention includes the following inventions in order to solve the above problems.
[1] A method for predicting a therapeutic effect of an FSTL1 inhibitor in a cancer patient,
(1) measuring the expression level of FSTL1 and / or DIP2A in a sample collected from a patient;
(2) a step of comparing the measured value with a reference value, and (3) a step of determining that a therapeutic effect can be expected when the measured value is higher than the reference value,
A method comprising the steps of:
[2] The method according to [1], wherein in the step (1), the expression levels of both FSTL1 and DIP2A are measured.
[3] The method according to [1] or [2], wherein the sample is a sample containing cancer cells of a patient or blood of the patient.
[4] The method according to [3] above, wherein the sample containing cancer cells of the patient is a biopsy cancer tissue or a cancer tissue obtained by excision surgery.
[5] In the step (1), the expression level of FSTL1 and / or DIP2A and the blood FSTL1 concentration in a biopsy cancer tissue or a cancer tissue obtained by excision are measured and the blood FSTL1 concentration is measured. ] Method.
[6] The method according to any one of [1] to [5], wherein the expression level is measured immunohistochemically in the step (1).
[7] A method for determining the start of administration of an FSTL1 inhibitor to a cancer patient,
(1) measuring the expression level of FSTL1 and / or DIP2A in a sample collected from a patient;
(2) comparing the measured value with a reference value, and (3 ′) determining the start of administration of the FSTL1 inhibitor when the measured value is higher than the reference value,
A method comprising the steps of:
[8] The method according to [7], wherein in the step (1), the expression levels of both FSTL1 and DIP2A are measured.
[9] The method according to [7] or [8] above, wherein the sample is a sample containing cancer cells of the patient or the blood of the patient.
[10] The method according to [9] above, wherein the sample containing cancer cells of the patient is a biopsy cancer tissue or a cancer tissue obtained by excision surgery.
[11] In the step (1), the expression level of FSTL1 and / or DIP2A and the blood FSTL1 concentration in a biopsy cancer tissue or a cancer tissue obtained by excision are measured, and the blood FSTL1 concentration is measured [7] ] Method.
[12] In the step (1), the expression level of FSTL1 and / or DIP2A and the blood DIP2A soluble type concentration in a biopsy cancer tissue or a cancer tissue obtained by excision are measured. The method according to [7] above.
[13] The method according to any one of [7] to [12], wherein the expression level is measured immunohistochemically in the step (1).
[14] A kit for predicting the therapeutic effect of an FSTL1 inhibitor in a cancer patient, comprising a reagent for measuring the expression level of FSTL1 and / or DIP2A in a sample collected from the patient.
[15] The above-mentioned [14], wherein the reagent contains one or more selected from anti-FSTL1 antibody, anti-DIP2A antibody, FSTL1 RT-PCR primer set, and DIP2A RT-PCR primer set Kit.
 本発明はまた、以下の態様も包含する。
[16]がん患者におけるFSTL1阻害剤による治療効果を予測するための、FSTL1および/またはDIP2Aの使用。
[17]がん患者に対するFSTL1阻害剤の投与開始を決定するための、FSTL1および/またはDIP2Aの使用。
[18]がん患者から採取した試料におけるFSTL1および/またはDIP2Aの発現レベルを測定することを特徴とする、がんに対するFSTL1阻害剤の治療効果に関する情報を提供する方法。
[19]がん患者から採取した試料におけるFSTL1および/またはDIP2Aの発現レベルを測定することを特徴とする、前記がん患者にFSTL1阻害剤投与を開始する時期の情報を提供する方法。
The present invention also includes the following aspects.
[16] Use of FSTL1 and / or DIP2A for predicting a therapeutic effect by an FSTL1 inhibitor in a cancer patient.
[17] Use of FSTL1 and / or DIP2A to determine the start of administration of an FSTL1 inhibitor to a cancer patient.
[18] A method for providing information on the therapeutic effect of an FSTL1 inhibitor against cancer, comprising measuring the expression level of FSTL1 and / or DIP2A in a sample collected from a cancer patient.
[19] A method for providing the cancer patient with information on when to start administration of an FSTL1 inhibitor, which comprises measuring the expression level of FSTL1 and / or DIP2A in a sample collected from the cancer patient.
 本発明により、がん患者におけるFSTL1阻害剤による治療効果を予測する方法、がん患者に対するFSTL1阻害剤の投与開始を決定する方法、およびがん患者におけるFSTL1阻害剤による治療効果を予測するためのキットを提供することができる。 According to the present invention, a method for predicting the therapeutic effect of an FSTL1 inhibitor in a cancer patient, a method for determining the start of administration of an FSTL1 inhibitor to a cancer patient, and a method for predicting the therapeutic effect of an FSTL1 inhibitor in a cancer patient Kits can be provided.
 また、本発明により、がん患者におけるFSTL1阻害剤による治療効果を予測することが可能になることから、ひいては、がん関連疾患における治療効果も予測することが可能になる。がん関連疾患としては、がんになる可能性の高い疾患やがんを増悪する疾患であり、例えば、肥満、糖尿病、リウマチなどが挙げられる。 Further, according to the present invention, it becomes possible to predict the therapeutic effect of an FSTL1 inhibitor in a cancer patient, so that the therapeutic effect in a cancer-related disease can also be predicted. Examples of cancer-related diseases include diseases that are highly likely to become cancer and diseases that exacerbate cancer. Examples include obesity, diabetes, and rheumatism.
ヒト膵がん細胞株Panc1の空ベクター導入細胞株(Panc1-mock)、ヒト膵がん細胞株Panc1のSnail強制発現細胞株(Panc1-snail+)、ヒト乳がん低転移性細胞株MCF7およびヒト乳がん高骨転移性細胞株MDA231におけるFSTL1とDIP2Aの発現を免疫組織蛍光染色により解析した結果を示す図である。Human pancreatic cancer cell line Panc1 empty vector introduced cell line (Panc1-mock), human pancreatic cancer cell line Panc1 Snail forced expression cell line (Panc1-snail +), human breast cancer low metastatic cell line MCF7 and human breast cancer high It is a figure which shows the result of having analyzed the expression of FSTL1 and DIP2A in the bone metastatic cell line MDA231 by immunohistochemical staining. マウスメラノーマB16-F10の空ベクター導入細胞株(F10-mock)、マウスメラノーマB16-F10のSnail強制発現細胞株(F10-snail+)、マウス大腸がん細胞株CT26およびマウス肺がん細胞株3LLにおけるFSTL1とDIP2Aの発現を免疫組織蛍光染色により解析した結果を示す図である。FSTL1 in mouse melanoma B16-F10 empty vector-introduced cell line (F10-mock), mouse melanoma B16-F10 Snail forced expression cell line (F10-snail +), mouse colon cancer cell line CT26 and mouse lung cancer cell line 3LL It is a figure which shows the result of having analyzed the expression of DIP2A by immunohistochemical fluorescence dyeing | staining. マウスメラノーマB16-F10のSnail強制発現細胞移植骨転移モデルに抗FSTL1抗体を投与し、皮下腫瘍増殖に対する阻害効果を評価した結果を示す図である。It is a figure which shows the result of having administered the anti-FSTL1 antibody to the Snail forced expression cell transplant bone transplantation model of mouse melanoma B16-F10, and evaluating the inhibitory effect with respect to subcutaneous tumor growth. マウスメラノーマB16-F10のSnail強制発現細胞移植骨転移モデルに抗FSTL1抗体を投与し、骨転移に対する効果(左)、MSC増加に対する効果(中央)および体重減少に対する抑制効果(右)を評価した結果を示す図である。Results of administration of anti-FSTL1 antibody to mouse melanoma B16-F10 Snail forced expression cell transplanted bone metastasis model, and evaluation of bone metastasis effect (left), MSC increase effect (middle) and weight loss suppression effect (right) FIG. マウス大腸がんCT26細胞移植骨転移モデルに抗FSTL1抗体を投与し、皮下腫瘍増殖に対する阻害効果を評価した結果を示す図である。It is a figure which shows the result of having administered anti-FSTL1 antibody to the mouse | mouth colorectal cancer CT26 cell transplant bone metastasis model, and evaluating the inhibitory effect with respect to subcutaneous tumor growth. マウス大腸がんCT26細胞移植骨転移モデルに抗FSTL1抗体を投与し、肺転移に対する抑制効果を評価した結果を示す図である。It is a figure which shows the result of having administered the anti-FSTL1 antibody to the mouse | mouth colorectal cancer CT26 cell transplant bone metastasis model, and evaluating the inhibitory effect with respect to lung metastasis. マウス肺がん3LL細胞移植骨転移モデルに抗FSTL1抗体を投与し、皮下腫瘍増殖に対する阻害効果を評価した結果を示す図である。It is a figure which shows the result of having administered the anti-FSTL1 antibody to the mouse | mouth lung cancer 3LL cell transplant bone metastasis model, and evaluating the inhibitory effect with respect to subcutaneous tumor growth. マウス肺がん3LL細胞移植骨転移モデルに抗FSTL1抗体を投与し、体重減少に対する抑制効果を評価した結果を示す図である。It is a figure which shows the result of having administered the anti-FSTL1 antibody to the mouse | mouth lung cancer 3LL cell transplant bone metastasis model, and evaluating the inhibitory effect with respect to a weight loss. 乳がん、肝がん、膀胱がん、卵巣がん、膵がん、前立腺がんの患者由来の組織切片におけるFSTL1とDIP2Aの発現レベルを免疫組織蛍光染色およびピクセルカウントにより解析した結果を示す図である。The figure which shows the result of having analyzed the expression level of FSTL1 and DIP2A in the tissue section derived from the patient of a breast cancer, a liver cancer, a bladder cancer, an ovarian cancer, a pancreatic cancer, and a prostate cancer by immunohistochemical fluorescent staining and pixel count. is there. 乳がん、肝がん、膀胱がん、卵巣がん、膵がん、前立腺がんの患者由来の組織切片におけるFSTL1発現レベルとDIP2A発現レベルの相関を解析した結果を示す図である。It is a figure which shows the result of having analyzed the correlation of the FSTL1 expression level and the DIP2A expression level in the tissue slice derived from the patient of a breast cancer, a liver cancer, a bladder cancer, an ovarian cancer, a pancreatic cancer, and a prostate cancer. 乳がん、肝がん、膀胱がん、卵巣がん、膵がん、前立腺がんの患者由来の組織切片におけるFSTL1発現レベル、DIP2A発現レベルおよびFSTL1/DIP2A共発現レベルを、がんの進行ステージ別に解析した結果を示す図である。FSTL1 expression level, DIP2A expression level and FSTL1 / DIP2A co-expression level in tissue sections derived from patients with breast cancer, liver cancer, bladder cancer, ovarian cancer, pancreatic cancer, prostate cancer according to the stage of cancer progression It is a figure which shows the result of having analyzed. 進行期メラノーマ患者由来の腫瘍組織におけるFSTL1とDIP2Aの発現レベルを免疫組織蛍光染色およびピクセルカウントにより解析した結果を示す図である。It is a figure which shows the result of having analyzed the expression level of FSTL1 and DIP2A in the tumor tissue derived from an advanced stage melanoma patient by immunohistochemical fluorescence staining and pixel count. 進行期メラノーマ患者由来の腫瘍組織におけるFSTL1発現レベルとDIP2A発現レベルの相関を解析した結果を示す図である。It is a figure which shows the result of having analyzed the correlation of the FSTL1 expression level and DIP2A expression level in the tumor tissue derived from an advanced stage melanoma patient. 各種末期がん患者(ステージIV)の血清中のFSTL1濃度を測定した結果を示す図である。It is a figure which shows the result of having measured the FSTL1 density | concentration in the serum of various terminal cancer patients (stage IV). マウス骨肉腫細胞移植モデルに抗FSTL1抗体を投与し、腫瘍増殖に対する阻害効果を評価した結果を示す図である。It is a figure which shows the result of having administered the anti-FSTL1 antibody to the mouse | mouth osteosarcoma cell transplant model, and evaluating the inhibitory effect with respect to tumor growth. マウス骨肉腫細胞移植モデルに抗FSTL1抗体を投与し、血清中のFSTL1濃度を測定した結果を示す図である。It is a figure which shows the result of having administered the anti-FSTL1 antibody to the mouse | mouth osteosarcoma cell transplant model, and measuring the FSTL1 density | concentration in serum.
 本発明者らは、高転移ヒトがん細胞株および低転移ヒトがん細胞株におけるFSTL1とDIP2Aの発現を解析した結果、高転移ヒトがん細胞株においてはFSTL1とDIP2Aのいずれもが強く発現していることを見出した。したがって、高転移性のがんを検出するためのバイオマーカーとして、FSTL1および/またはDIP2Aの発現を指標とすることができることを見出した。また、抗FSTL1抗体が担がんマウスモデルにおいて奏功することが確認されているマウスがん細胞株(B16-F10、CT26および3LL)においても、FSTL1とDIP2Aの両方が強く発現していることが確認された。したがって、FSTL1とDIP2Aのいずれか又は両方を高発現する、がんを発症しているがん患者に対して、抗FSTL1抗体による治療効果が期待できると考えられた。さらに、各種がん患者の血清中FSTL1濃度を測定したところ、末期の皮膚がん患者、特にメラノーマ患者の血清中FSTL1濃度が高いことが示された。これらの知見から、がん患者のがん組織におけるDIP2A発現レベルおよびFSTL1発現レベル、ならびに血清FSTL1濃度ががん患者におけるFSTL1阻害剤による治療効果を予測し、FSTL1阻害剤による治療効果が期待できるがん患者を選択するためのコンパニオン診断に有用なバイオマーカーであることが明らかになった。 As a result of analyzing the expression of FSTL1 and DIP2A in the high metastasis human cancer cell line and the low metastasis human cancer cell line, the present inventors strongly expressed both FSTL1 and DIP2A in the high metastasis human cancer cell line. I found out. Therefore, it has been found that the expression of FSTL1 and / or DIP2A can be used as an index as a biomarker for detecting highly metastatic cancer. Furthermore, both FSTL1 and DIP2A are strongly expressed in mouse cancer cell lines (B16-F10, CT26 and 3LL) in which anti-FSTL1 antibody has been confirmed to be successful in a tumor-bearing mouse model. confirmed. Therefore, it was thought that the therapeutic effect by an anti-FSTL1 antibody can be expected with respect to a cancer patient who develops cancer that highly expresses either or both of FSTL1 and DIP2A. Furthermore, when the serum FSTL1 concentration of various cancer patients was measured, it was shown that the serum FSTL1 concentration of end-stage skin cancer patients, particularly melanoma patients, was high. From these findings, the DIP2A expression level and the FSTL1 expression level in the cancer tissue of the cancer patient and the serum FSTL1 concentration predict the therapeutic effect by the FSTL1 inhibitor in the cancer patient, and the therapeutic effect by the FSTL1 inhibitor can be expected. It was revealed to be a useful biomarker for companion diagnosis to select cancer patients.
〔がん患者におけるFSTL1阻害剤による治療効果を予測する方法〕
 本発明は、がん患者におけるFSTL1阻害剤による治療効果を予測する方法を提供する。本発明の治療効果予測方法は、以下の工程(1)~(3)を含むものであればよい。
(1)患者から採取した試料におけるFSTL1および/またはDIP2Aの発現レベルを測定する工程
(2)測定値を基準値と比較する工程
(3)測定値が基準値より高い場合に治療効果が期待できると判定する工程
 本発明の治療効果予測方法は、本発明の目的を達成できる限り、上記工程(1)~(3)以外の工程を含んでいてもよく、その内容は限定されない。
[Method for predicting therapeutic effect of FSTL1 inhibitor in cancer patients]
The present invention provides a method for predicting the therapeutic effect of an FSTL1 inhibitor in cancer patients. The therapeutic effect prediction method of the present invention only needs to include the following steps (1) to (3).
(1) A step of measuring the expression level of FSTL1 and / or DIP2A in a sample collected from a patient (2) A step of comparing the measured value with a reference value (3) A therapeutic effect can be expected when the measured value is higher than the reference value The therapeutic effect prediction method of the present invention may include steps other than the above steps (1) to (3) as long as the object of the present invention can be achieved, and the content thereof is not limited.
 治療効果を予測する対象のがん患者のがんの種類は特に限定されず、皮膚がん、大腸がん、乳がん、リンパ腫、肺がん、前立腺がん、腎がん、頭頸部がん、食道がん、胃がん、膵がん、肝臓がん、胆道がん、脾臓がん、膀胱がん、子宮がん、卵巣がん、精巣がん、甲状腺がん、脳中枢神経腫瘍、肉腫、白血病、多発性骨髄腫などが挙げられる。好ましくは、皮膚がん(特にメラノーマ)、大腸がん、乳がん、肺がん、肝がん、膀胱がん、卵巣がんおよび膵がんである。 There are no particular limitations on the type of cancer of the cancer patient for which the therapeutic effect is predicted, including skin cancer, colon cancer, breast cancer, lymphoma, lung cancer, prostate cancer, kidney cancer, head and neck cancer, and esophagus. Cancer, stomach cancer, pancreatic cancer, liver cancer, biliary tract cancer, spleen cancer, bladder cancer, uterine cancer, ovarian cancer, testicular cancer, thyroid cancer, brain central nervous system tumor, sarcoma, leukemia, multiple Myeloma and the like. Preferred are skin cancer (particularly melanoma), colon cancer, breast cancer, lung cancer, liver cancer, bladder cancer, ovarian cancer and pancreatic cancer.
 FSTL1阻害剤は、FSTL1の生物活性を低下させるものであればよく、例えばFSTL1の発現を阻害する物質、FSTL1とその受容体との結合を阻害する物質などが挙げられる。FSTL1の発現を阻害する物質としては、例えばFSTL1の発現を阻害する核酸が挙げられる。このような核酸としては、例えばFSTL1遺伝子のsiRNA(short interfering RNA)、shRNA(short hairpin RNA)、アンチセンスオリゴヌクレオチドなどが挙げられる。FSTL1とその受容体との結合を阻害する物質としては、FSTL1と特異的に結合する抗体(抗FSTL1抗体)もしくはペプチド、またはFSTL1の受容体と特異的に結合する抗体もしくはペプチドなどが挙げられる。好ましくはFSTL1とその受容体との結合を阻害する物質であり、より好ましくは抗FSTL1抗体である。 The FSTL1 inhibitor is not particularly limited as long as it reduces the biological activity of FSTL1, and examples thereof include a substance that inhibits the expression of FSTL1, a substance that inhibits the binding between FSTL1 and its receptor, and the like. Examples of the substance that inhibits the expression of FSTL1 include a nucleic acid that inhibits the expression of FSTL1. Examples of such a nucleic acid include siRNA (shortsinterfering RNA), shRNA (short hairpin RNA), antisense oligonucleotide and the like of the FSTL1 gene. Examples of the substance that inhibits the binding between FSTL1 and its receptor include an antibody (anti-FSTL1 antibody) or peptide that specifically binds to FSTL1, or an antibody or peptide that specifically binds to the FSTL1 receptor. A substance that inhibits the binding between FSTL1 and its receptor is preferable, and an anti-FSTL1 antibody is more preferable.
 工程(1)では、患者から採取した試料におけるFSTL1および/またはDIP2Aの発現レベルを測定する。患者から採取した試料はFSTL1の発現レベルまたはDIP2Aの発現レベルが測定できる試料であれば特に限定されない。例えば、生検または手術により得られた組織;血液、組織液、リンパ液、骨髄、脳脊髄液、膿、粘液、鼻水、喀痰、尿、糞便、腹水、胸水等の体液類;鼻腔、気管支、皮膚、各種臓器、骨等を洗浄した後の洗浄液;透析排液などが挙げられる。好ましくは、がん細胞を含む試料または血液である。がん細胞を含む試料としては、生検がん組織または切除手術で得られたがん組織が好ましい。また、工程(1)においてFSTL1とDIP2Aの両方の発現レベルを測定する場合、FSTL1の発現レベルを測定する試料とDIP2Aの発現レベルを測定する試料は、同一であっても異なるものであっても、発現レベルが測定できる試料であれば特に限定されない。例えば、FSTL1の発現レベルを測定する試料ががん細胞を含む血液であって、DIP2Aの発現レベルを測定する試料が生検がん組織または切除手術で得られたがん組織である態様が挙げられる。 In step (1), the expression level of FSTL1 and / or DIP2A in a sample collected from a patient is measured. The sample collected from the patient is not particularly limited as long as it can measure the expression level of FSTL1 or the expression level of DIP2A. For example, tissues obtained by biopsy or surgery; blood, tissue fluid, lymph fluid, bone marrow, cerebrospinal fluid, pus, mucus, runny nose, sputum, urine, feces, ascites, pleural effusion, etc .; nasal cavity, bronchial, skin, Examples of the washing liquid after washing various organs and bones; A sample containing cancer cells or blood is preferred. The sample containing cancer cells is preferably a biopsy cancer tissue or a cancer tissue obtained by excision. Moreover, when measuring the expression level of both FSTL1 and DIP2A in the step (1), the sample for measuring the expression level of FSTL1 and the sample for measuring the expression level of DIP2A may be the same or different. If it is a sample which can measure an expression level, it will not specifically limit. For example, an embodiment in which the sample for measuring the expression level of FSTL1 is blood containing cancer cells, and the sample for measuring the expression level of DIP2A is a biopsy cancer tissue or a cancer tissue obtained by excision surgery. It is done.
 工程(1)では、FSTL1の発現レベルのみを測定してもよく、DIP2Aの発現レベルのみを測定してもよいが、FSTL1とDIP2Aの両方の発現レベルを測定することが好ましい。両者の発現レベルを組み合わせて判断することにより、がん患者におけるFSTL1阻害剤による治療効果の予測精度が向上することが確認されている。また、FSTL1は分泌タンパク質であるため、血中FSTL1濃度によってFSTL1の発現レベルを評価することができる。したがって、FSTL1の発現レベルを測定する態様としては、がん細胞(がん組織)を含む試料におけるFSTL1の発現レベルのみを測定してもよく、血中FSTL1濃度のみを測定してもよく、両方を測定してもよい。好ましくは、がん細胞(がん組織)を含む試料におけるFSTL1の発現レベルと血中FSTL1濃度の両方を測定することである。なお、本明細書において、FSTL1および/またはDIP2Aの発現レベルを測定するとは、FSTL1およびDIP2Aそのもののレベルを測定する態様であっても、それらの可溶型レベルを測定する態様であってもよい。よって、工程(1)の態様としては、FSTL1の発現レベルのみを測定する態様、血中FSTL1濃度のみを測定する態様、DIP2Aの発現レベルのみを測定する態様;FSTL1の発現レベルと血中FSTL1濃度の両方を測定する態様、FSTL1の発現レベルとDIP2Aの発現レベルを測定する態様、血中FSTL1濃度とDIP2Aの発現レベルを測定する態様;FSTL1の発現レベルとDIP2Aの発現レベルと血中FSTL1濃度の3種を測定する態様、FSTL1の発現レベルとDIP2Aの発現レベルと血中DIP2A可溶型濃度の3種を測定する態様が挙げられる。 In step (1), only the expression level of FSTL1 may be measured or only the expression level of DIP2A may be measured, but it is preferable to measure the expression levels of both FSTL1 and DIP2A. It has been confirmed that the accuracy of predicting the therapeutic effect of an FSTL1 inhibitor in cancer patients is improved by judging the combination of both expression levels. Moreover, since FSTL1 is a secreted protein, the expression level of FSTL1 can be evaluated based on the blood FSTL1 concentration. Therefore, as an aspect of measuring the expression level of FSTL1, only the expression level of FSTL1 in a sample containing cancer cells (cancer tissue) may be measured, or only the FSTL1 concentration in blood may be measured. May be measured. Preferably, both the expression level of FSTL1 and the blood FSTL1 concentration in a sample containing cancer cells (cancer tissue) are measured. In this specification, the measurement of the expression level of FSTL1 and / or DIP2A may be an aspect of measuring the level of FSTL1 and DIP2A itself, or an aspect of measuring their soluble type levels. . Therefore, as an aspect of the step (1), an aspect of measuring only the expression level of FSTL1, an aspect of measuring only the blood FSTL1 concentration, an aspect of measuring only the expression level of DIP2A; the expression level of FSTL1 and the blood FSTL1 concentration An embodiment for measuring both FSTL1 expression level and DIP2A expression level, an embodiment for measuring blood FSTL1 concentration and DIP2A expression level; an FSTL1 expression level, DIP2A expression level and blood FSTL1 concentration The aspect which measures 3 types, the aspect which measures 3 types, the expression level of FSTL1, the expression level of DIP2A, and a blood DIP2A soluble type density | concentration are mentioned.
 がん細胞を含む試料における発現レベルを測定する方法は特に限定されず、試料中の標的タンパク質量を測定する方法、試料中の標的タンパク質をコードする遺伝子のmRNA(標的mRNA)量を測定する方法、免疫組織化学的手法を用いて発現レベルを測定する方法などを好適に用いることができる。がん細胞を含む試料としては、生検がん組織または切除手術で得られたがん組織を用いることが好ましい。例えば標的タンパク質量の測定は、公知の方法で試料からタンパク質を抽出し、ウエスタンブロット法、EIA法、ELISA法、RIA法などの公知のタンパク質測定方法を用いて行うことができる。また、標的mRNA量の測定は、公知の方法で試料からRNAを抽出し、ノーザンブロット法、RT-PCR法、定量RT-PCR法、RNaseプロテクションアッセイなどの公知のmRNA量測定方法を用いて行うことができる。好ましくは、RT-PCR法または定量RT-PCR法であり、より好ましくは定量RT-PCR法である。 A method for measuring the expression level in a sample containing cancer cells is not particularly limited, a method for measuring the amount of target protein in the sample, and a method for measuring the amount of mRNA (target mRNA) of a gene encoding the target protein in the sample. A method for measuring the expression level using an immunohistochemical method can be preferably used. As a sample containing cancer cells, it is preferable to use a biopsy cancer tissue or a cancer tissue obtained by excision surgery. For example, the amount of target protein can be measured by extracting a protein from a sample by a known method and using a known protein measurement method such as Western blotting, EIA, ELISA, or RIA. The target mRNA amount is measured by extracting RNA from a sample by a known method and using a known mRNA amount measuring method such as Northern blotting, RT-PCR, quantitative RT-PCR, or RNase protection assay. be able to. The RT-PCR method or the quantitative RT-PCR method is preferable, and the quantitative RT-PCR method is more preferable.
 免疫組織化学的手法を用いて標的タンパク質の発現レベルを測定する場合、定法に従って組織標本を作製し、標的タンパク質に特異的に結合する抗体を用いて免疫染色を行う方法を好適に用いることができる。試料は、生検がん組織または切除手術で得られたがん組織を用いることが好ましい。免疫染色は、蛍光抗体法、酵素抗体法、金属標識抗体法のいずれの方法を用いてもよいが、蛍光抗体法が好ましい。蛍光抗体法は直接法で行ってもよく、間接法で行ってもよい。蛍光抗体法で標的タンパク質を染色した場合、標本上の抗体の蛍光強度が標的タンパク質の発現レベルを示す。蛍光強度は、市販のピクセルカウンター等を用いて測定することができる。したがって、抗FSTL1抗体を用いた免疫染色によりFSTL1の発現レベルを測定することができ、抗DIP2A抗体を用いた免疫染色によりDIP2Aの発現レベルを測定することができる。また、1つの標本において、FSTL1とDIP2Aを異なる蛍光物質で標識された抗体を用いてそれぞれ蛍光免疫染色することもできる(二重染色)。組織標本における標的mRNA量の測定には、in situ hybidization法を用いることができる。 When measuring the expression level of a target protein using an immunohistochemical method, a method of preparing a tissue specimen according to a conventional method and performing immunostaining using an antibody that specifically binds to the target protein can be suitably used. . The sample is preferably a biopsy cancer tissue or a cancer tissue obtained by excision surgery. For immunostaining, any of the fluorescent antibody method, the enzyme antibody method, and the metal-labeled antibody method may be used, but the fluorescent antibody method is preferred. The fluorescent antibody method may be performed by a direct method or an indirect method. When the target protein is stained by the fluorescent antibody method, the fluorescence intensity of the antibody on the specimen indicates the expression level of the target protein. The fluorescence intensity can be measured using a commercially available pixel counter or the like. Therefore, the expression level of FSTL1 can be measured by immunostaining using an anti-FSTL1 antibody, and the expression level of DIP2A can be measured by immunostaining using an anti-DIP2A antibody. In one specimen, FSTL1 and DIP2A can also be immunofluorescently stained using antibodies labeled with different fluorescent substances (double staining). The in situ hybidization method can be used to measure the amount of target mRNA in the tissue specimen.
 血中FSTL1濃度の測定は、例えば、患者から採取した血液から血清を分離し、血清中のFSTL1濃度をELISA法などの公知の方法を用いて定量することができる。血中FSTL1濃度は、転移性が高いがんに罹患し、かつ進行度が進んだ患者において高値を示すことが確認されている。それゆえ、血中FSTL1濃度の測定値を組み合わせて判定を行うことにより、転移巣におけるFSTL1阻害剤治療効果を予測することが期待できる。具体的には、例えば、原発巣を全部切除したがん患者において、切除したがん組織のFSTL1および/またはDIP2Aの発現レベルが高く、かつ血中FSTL1濃度も高い場合は、原発巣がすでに切除されていても転移巣に対するFSTL1阻害剤による治療効果を予測することが期待できる。したがって、FSTL1および/またはDIP2Aの発現レベルと血中FSTL1濃度を組み合わせて評価することにより、がん患者におけるFSTL1阻害剤による治療効果の予測精度がさらに向上すると考えられる。 The blood FSTL1 concentration can be measured, for example, by separating serum from blood collected from a patient and quantifying the serum FSTL1 concentration using a known method such as ELISA. It has been confirmed that the blood FSTL1 concentration is high in patients suffering from highly metastatic cancer and advanced in degree of progression. Therefore, it can be expected that the therapeutic effect of the FSTL1 inhibitor in the metastatic lesion is predicted by performing the determination by combining the measured values of the blood FSTL1 concentration. Specifically, for example, in a cancer patient whose primary lesion has been completely removed, when the FSTL1 and / or DIP2A expression level of the resected cancer tissue is high and the blood FSTL1 concentration is also high, the primary lesion has already been removed. Even if it is done, it can be expected to predict the therapeutic effect of the FSTL1 inhibitor on the metastatic lesion. Therefore, it is considered that the accuracy of predicting the therapeutic effect of an FSTL1 inhibitor in cancer patients is further improved by evaluating the combination of the expression level of FSTL1 and / or DIP2A and the blood FSTL1 concentration.
 ヒトFSTL1およびヒトDIP2Aのアミノ酸配列およびコードする遺伝子の塩基配列は、GenBankなどの公知のデータベースから取得することができる。ヒトFSTL1をコードする遺伝子の塩基配列のNCBIアクセッション番号はNM_007085であり、ヒトFSTL1のアミノ酸配列のNCBIアクセッション番号はNP_009016である。また、ヒトDIP2Aをコードする遺伝子の塩基配列のNCBIアクセッション番号はNM_015151であり、ヒトDIP2Aのアミノ酸配列のNCBIアクセッション番号はNP_055966である。得られた塩基配列情報に基づいて、RT-PCR用のプライマーセットを設計することができる。 The amino acid sequences of human FSTL1 and human DIP2A and the base sequence of the encoding gene can be obtained from a known database such as GenBank. The NCBI accession number of the base sequence of the gene encoding human FSTL1 is NM_007085, and the NCBI accession number of the amino acid sequence of human FSTL1 is NP_009016. In addition, the NCBI accession number of the nucleotide sequence of the gene encoding human DIP2A is NM_015151, and the NCBI accession number of the amino acid sequence of human DIP2A is NP_055966. Based on the obtained base sequence information, a primer set for RT-PCR can be designed.
 工程(2)では、工程(1)で得られたFSTL1および/またはDIP2Aの発現レベルの測定値をそれぞれの基準値と比較する。基準値には、工程(1)で同時に測定した健常者試料におけるFSTL1および/またはDIP2Aの発現レベルの測定値を用いることができる。また、健常者試料におけるFSTL1および/またはDIP2Aの発現レベルの蓄積された測定値(健常者蓄積データ)に基づいて任意の基準値を設定してもよい。よって、本明細書における基準値としては、健常者試料におけるFSTL1および/またはDIP2Aの発現レベルを同時に測定した測定値あるいは蓄積された測定値であってもよく、健常者の血中FSTL1濃度を同時に測定した測定値あるいは蓄積された測定値であってもよい。好ましくは、健常者蓄積データに基づいて設定された基準値を用いることである。健常者は、慢性疾患に罹患していない成人が好ましく性別は問わない。高齢でないこと(例えば20代~40代)がより好ましい。また、健常者試料としては、工程(1)で用いた患者から採取した試料と同様にして健常者から採取した試料であることが好ましい。 In step (2), the measured value of the expression level of FSTL1 and / or DIP2A obtained in step (1) is compared with each reference value. As the reference value, the measured value of the expression level of FSTL1 and / or DIP2A in the healthy subject sample measured simultaneously in the step (1) can be used. Moreover, you may set arbitrary reference values based on the accumulated measurement value (health person accumulation data) of the expression level of FSTL1 and / or DIP2A in a healthy person sample. Therefore, the reference value in the present specification may be a measurement value obtained by simultaneously measuring the expression level of FSTL1 and / or DIP2A in a healthy subject sample or an accumulated measurement value, and the blood FSTL1 concentration of a healthy subject may be measured simultaneously. It may be a measured value or an accumulated measured value. Preferably, a reference value set based on healthy person accumulated data is used. A healthy person is preferably an adult who does not suffer from a chronic disease, regardless of gender. It is more preferable that the patient is not old (for example, 20s to 40s). Moreover, as a healthy person sample, it is preferable that it is the sample extract | collected from the healthy person similarly to the sample extract | collected from the patient used at process (1).
 工程(3)では、工程(1)で得られたFSTL1および/またはDIP2Aの発現レベルの測定値が基準値より高い場合に、当該がん患者はFSTL1阻害剤による治療効果が期待できると判定する。例えば、血中FSTL1濃度の場合は、測定値が基準値より5倍以上高い場合に治療効果が期待できると判定することが好ましく、測定値が基準値より10倍以上高い場合に治療効果が期待できると判定することがより好ましい。例えば、がん細胞(がん組織)を含む試料におけるFSTL1またはDIP2AのmRNAレベルの場合は、測定値が基準値より1.5倍以上高い場合に治療効果が期待できると判定することが好ましく、測定値が基準値より2倍以上高い場合に治療効果が期待できると判定することがより好ましい。例えば、がん細胞(がん組織)を含む試料におけるFSTL1またはDIP2Aの発現レベルを免疫組織蛍光染色における蛍光強度で評価する場合は、ピクセルカウンターで測定した数値が基準値より3倍以上高い場合に治療効果が期待できると判定することが好ましく、基準値より6倍以上高い場合に治療効果が期待できると判定することがより好ましい。よって、本発明の治療効果予測方法とは、工程(3)での治療効果が期待できるとの判定に基づくものであり、ここで、「(FSTL1阻害剤による)治療効果が期待できる」とは、がんをFSTL1阻害剤によって治療できる可能性が有ることを意味し、測定値が基準値より高いことが明確であれば、その可能性をより正確に判断することを含む。してみれば、本発明の治療効果予測方法とは、試料提供者に、FSTL1阻害剤によるがん治療が有効な方法であるか否かの情報を提供する方法でもあり、例えば、測定値が基準値より高いことが明確な場合に、FSTL1阻害剤の投与が有効な方法であるとの情報の正確性が高くなるものである。また、試料提供者が原発巣を切除した患者である場合には、提供された試料におけるFSTL1および/またはDIP2Aの発現レベルを測定することで、転移の早期発見やFSTL1阻害剤による早期治療についての情報を提供することができる。さらには、FSTL1および/またはDIP2Aは、初期のがんにおいて有意に発現が増強することから、FSTL1阻害剤による治療効果が期待できる初期のがん患者を精度高く選択することも可能となる。また、本発明では、試料提供者の抗がん剤投与前後の試料を用いることで、投与後の試料におけるFSTL1および/またはDIP2Aの発現レベルが投与前の試料より高いようであれば、FSTL1阻害剤によって治療できる可能性が有ると判断することが可能となり、ひいては投与した抗がん剤の治療有効性も評価することが可能となる。 In step (3), when the measured value of the expression level of FSTL1 and / or DIP2A obtained in step (1) is higher than the reference value, it is determined that the cancer patient can expect a therapeutic effect by the FSTL1 inhibitor. . For example, in the case of the blood FSTL1 concentration, it is preferable to determine that the therapeutic effect can be expected when the measured value is five times higher than the reference value, and the therapeutic effect is expected when the measured value is ten times higher than the reference value. It is more preferable to determine that it is possible. For example, in the case of FSTL1 or DIP2A mRNA level in a sample containing cancer cells (cancer tissue), it is preferable to determine that a therapeutic effect can be expected when the measured value is 1.5 times higher than the reference value, It is more preferable to determine that a therapeutic effect can be expected when the measured value is twice or more higher than the reference value. For example, when the expression level of FSTL1 or DIP2A in a sample containing cancer cells (cancer tissue) is evaluated by the fluorescence intensity in immunohistochemical fluorescence staining, when the numerical value measured by the pixel counter is three times higher than the reference value It is preferable to determine that the therapeutic effect can be expected, and it is more preferable to determine that the therapeutic effect can be expected when the therapeutic effect is 6 times higher than the reference value. Therefore, the therapeutic effect prediction method of the present invention is based on the determination that the therapeutic effect in step (3) can be expected. Here, “the therapeutic effect (by the FSTL1 inhibitor) can be expected” means This means that there is a possibility that the cancer can be treated with the FSTL1 inhibitor, and if it is clear that the measured value is higher than the reference value, this includes determining the possibility more accurately. Thus, the therapeutic effect prediction method of the present invention is a method of providing information to a sample provider as to whether or not cancer treatment with an FSTL1 inhibitor is an effective method. When it is clear that it is higher than the reference value, the accuracy of information that administration of the FSTL1 inhibitor is an effective method is improved. In addition, when the sample provider is a patient whose primary lesion has been excised, by measuring the expression level of FSTL1 and / or DIP2A in the provided sample, early detection of metastasis and early treatment with an FSTL1 inhibitor Information can be provided. Furthermore, since the expression of FSTL1 and / or DIP2A is significantly enhanced in the early stage cancer, it is possible to select an early stage cancer patient who can expect a therapeutic effect by the FSTL1 inhibitor with high accuracy. Further, in the present invention, if the sample provider's sample before and after administration of the anticancer agent is used and the expression level of FSTL1 and / or DIP2A in the sample after administration is higher than that of the sample before administration, FSTL1 inhibition It is possible to determine that there is a possibility of being treated by the agent, and as a result, it is possible to evaluate the therapeutic effectiveness of the administered anticancer agent.
 また、がん細胞(がん組織)を含む試料におけるFSTL1の発現レベル、がん細胞(がん組織)を含む試料におけるDIP2Aの発現レベル、および血中FSTL1濃度から選ばれる2つ以上を測定した場合においては、少なくとも1つの測定値が基準値より高い場合に当該がん患者はFSTL1阻害剤による治療効果が期待できると判定することができるが、2つの測定値が基準値より高い患者はより高い治療効果が期待でき、3つの測定値が基準値より高い患者はさらに高い治療効果が期待できる。即ち、少なくとも1つの測定値が基準値より高い患者はがんをFSTL1阻害剤によって治療できる可能性が有り、2つの測定値が基準値より高い患者はがんをFSTL1阻害剤によって治療できる可能性がより高く、3つの測定値が基準値より高い患者はがんをFSTL1阻害剤によって治療できる可能性がさらに高いものである。よって、本発明は、数多ある抗がん剤の中から、当該患者が罹患するがん治療に最適な抗がん剤としてFSTL1阻害剤を選択する指標を提供するものでもある。 Moreover, two or more selected from the expression level of FSTL1 in a sample containing cancer cells (cancer tissue), the expression level of DIP2A in a sample containing cancer cells (cancer tissue), and the blood FSTL1 concentration were measured. In some cases, if at least one measurement value is higher than the reference value, the cancer patient can be determined to be able to expect a therapeutic effect by the FSTL1 inhibitor, but patients whose two measurement values are higher than the reference value are more likely. A high therapeutic effect can be expected, and a patient with three measured values higher than the reference value can expect a higher therapeutic effect. That is, patients with at least one measured value higher than the reference value may be able to treat cancer with an FSTL1 inhibitor, and patients with two measured values higher than the reference value may be able to treat cancer with an FSTL1 inhibitor Patients with higher and three measured values above the reference value are more likely to be able to treat the cancer with an FSTL1 inhibitor. Therefore, this invention also provides the parameter | index which selects a FSTL1 inhibitor as an anticancer agent optimal for the cancer treatment which the said patient suffers from among many anticancer agents.
〔がん患者に対するFSTL1阻害剤の投与開始を決定する方法〕
 本発明は、がん患者に対するFSTL1阻害剤の投与開始を決定する方法を提供する。本発明の投与開始決定方法は、以下の工程(1)、(2)および(3’)を含むものであればよい。
(1)患者から採取した試料におけるFSTL1および/またはDIP2Aの発現レベルを測定する工程
(2)測定値を基準値と比較する工程
(3’)測定値が基準値より高い場合にFSTL1阻害剤の投与開始を決定する工程
[Method for Determining Start of Administration of FSTL1 Inhibitor to Cancer Patient]
The present invention provides a method for determining the start of administration of an FSTL1 inhibitor to a cancer patient. The administration start determination method of the present invention only needs to include the following steps (1), (2) and (3 ′).
(1) A step of measuring the expression level of FSTL1 and / or DIP2A in a sample collected from a patient (2) A step of comparing the measured value with a reference value (3 ′) When the measured value is higher than the reference value, the FSTL1 inhibitor Step of determining the start of administration
 本発明の投与開始決定方法は、工程(3’)において測定値が基準値より高いと判定した場合、可能な限り速やかにFSTL1阻害剤の投与を開始することが好ましく、直ちにFSTL1阻害剤の投与を開始することがより好ましい。本発明の投与開始決定方法は、上記本発明の治療効果予測方法と実質的に同様にして実施することができる。したがって、重複を避けるため、本発明の投与開始決定方法の説明を省略する。 In the administration start determination method of the present invention, when it is determined in step (3 ′) that the measured value is higher than the reference value, it is preferable to start administration of the FSTL1 inhibitor as soon as possible, and administration of the FSTL1 inhibitor immediately It is more preferable to start. The administration start determination method of the present invention can be carried out in substantially the same manner as the therapeutic effect prediction method of the present invention. Therefore, in order to avoid duplication, description of the administration start determination method of the present invention is omitted.
〔キット〕
 本発明は、がん患者におけるFSTL1阻害剤による治療効果を予測するためのキットを提供する。本発明のキットは、FSTL1および/またはDIP2Aの発現レベルを測定することから、FSTL1の発現レベルを測定するための試薬、DIP2Aの発現レベルを測定するための試薬のいずれか又は両者を含むものであればよく、好ましくはDIP2Aの発現レベルを測定するための試薬を含むものであればよい。DIP2Aの発現レベルを測定するための試薬としては、例えば、抗DIP2A抗体およびDIP2AのRT-PCR用プライマーセットが挙げられる。本発明のキットは、これらの一方または両方を含むことが好ましい。抗DIP2A抗体は免疫組織染色に使用することができ、プライマーセットはDIP2A mRNAの定量に使用することができる。
〔kit〕
The present invention provides a kit for predicting the therapeutic effect of an FSTL1 inhibitor in cancer patients. Since the kit of the present invention measures the expression level of FSTL1 and / or DIP2A, it contains either or both of a reagent for measuring the expression level of FSTL1 and a reagent for measuring the expression level of DIP2A. What is necessary is just to include the reagent for measuring the expression level of DIP2A preferably. Examples of the reagent for measuring the expression level of DIP2A include an anti-DIP2A antibody and a primer set for RT-PCR of DIP2A. The kit of the present invention preferably contains one or both of these. The anti-DIP2A antibody can be used for immunohistochemical staining, and the primer set can be used for quantification of DIP2A mRNA.
 本発明のキットに抗DIP2A抗体を含む場合には、これ以外に二次抗体、ブロッキング用試薬、洗浄用バッファー、取扱説明書等を含むことが好ましい。本発明のキットにDIP2AのRT-PCR用プライマーセットを含む場合は、これ以外に、DNA合成酵素、DNA合成酵素の基質となるヌクレオチド、増幅用反応液、反応用チューブ、試料調製用試薬類、取扱説明書等を含むことが好ましい。 When the kit of the present invention contains an anti-DIP2A antibody, it is preferable to include a secondary antibody, a blocking reagent, a washing buffer, an instruction manual, etc. in addition to this. When the kit of the present invention contains a primer set for DIP2A RT-PCR, in addition to this, a DNA synthase, a nucleotide serving as a substrate for the DNA synthase, an amplification reaction solution, a reaction tube, a sample preparation reagent, It is preferable to include an instruction manual and the like.
 本発明のキットには、さらに、がん細胞またはがん組織におけるFSTL1の発現レベルを測定するための試薬および/または血中FSTL1濃度を測定するための試薬を含むことが好ましい。このような試薬としては、抗FSTL1抗体およびFSTL1のRT-PCR用プライマーセットが挙げられる。本発明のキットは、上記DIP2Aの発現レベルを測定するための試薬に加えて、これらの一方または両方を含むことが好ましい。抗DIP2A抗体は免疫組織染色および血中FSTL1濃度の測定に使用することができ、プライマーセットはDIP2A mRNAの定量に使用することができる。 The kit of the present invention preferably further contains a reagent for measuring the expression level of FSTL1 in cancer cells or cancer tissues and / or a reagent for measuring blood FSTL1 concentration. Examples of such a reagent include an anti-FSTL1 antibody and a primer set for RT-PCR of FSTL1. The kit of the present invention preferably contains one or both of these in addition to the reagent for measuring the expression level of DIP2A. The anti-DIP2A antibody can be used for immunohistochemical staining and measurement of blood FSTL1 concentration, and the primer set can be used for quantification of DIP2A mRNA.
 本発明のキットは、上記本発明のがん患者に対するFSTL1阻害剤の投与開始を決定する方法の実施にも、好適に用いることができる。したがって、本発明のキットは、がん患者に対するFSTL1阻害剤の投与開始を決定するためのキットと換言することができる。 The kit of the present invention can also be suitably used for carrying out the method for determining the start of administration of the FSTL1 inhibitor to the cancer patient of the present invention. Therefore, the kit of the present invention can be rephrased as a kit for determining the start of administration of an FSTL1 inhibitor to cancer patients.
 以下、実施例により本発明を詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in detail by way of examples, but the present invention is not limited thereto.
〔実施例1:高転移ヒトがん細胞株および低転移ヒトがん細胞株におけるFSTL1とDIP2Aの発現解析〕
(1)実験方法
 PE標識FSTL1抗体と、DIP2A抗体(Santa Cruz;FITC標識二次抗体を併用)を用いて、以下の4種のヒト腫瘍細胞株を免疫染色し、FSTL1とDIP2Aの発現の有無および発現分布を免疫組織化学的に解析した。
1.ヒト膵がん細胞株Panc1の空ベクター導入細胞株(Panc1-mock)
2.ヒト膵がん細胞株Panc1のSnail強制発現細胞株(Panc1-snail+)
3.ヒト乳がん低転移性細胞株MCF7
4.ヒト乳がん高骨転移性細胞株MDA231
[Example 1: Expression analysis of FSTL1 and DIP2A in high metastasis human cancer cell line and low metastasis human cancer cell line]
(1) Experimental method Using the PE-labeled FSTL1 antibody and the DIP2A antibody (Santa Cruz; combined with FITC-labeled secondary antibody), the following four types of human tumor cell lines are immunostained to determine whether FSTL1 and DIP2A are expressed: And the expression distribution was analyzed immunohistochemically.
1. Empty vector introduced cell line of human pancreatic cancer cell line Panc1 (Panc1-mock)
2. Snail forced expression cell line of human pancreatic cancer cell line Panc1 (Panc1-snail +)
3. Human breast cancer low metastatic cell line MCF7
4). Human breast cancer high bone metastatic cell line MDA231
 まず、マイクロスライドチャンバー(日本ジェネティクス社、品番ib-80821)を用いて、2×10個/300μL/wellの腫瘍細胞を10%FCS含有DMEM培地で播種・培養し、その2日後に培養上清を捨て、細胞内に存在するFSTL1を染色するためにBD Cytofix/Cytoperm solution(BD Pharmingen社、品番554714)を加え、室温で20分間処理して細胞膜の透過性を高めた。これを捨てた後、BD Perm/Wash buffer(BD Pharmingen社、品番554723)で希釈した1μg/mLの抗DIP2A抗体(Santa Cruz社、品番sc-67556)を200μL/well加え、室温で1時間反応させた。その後、抗体液を捨ててPBSを加えて細胞を洗浄し、そこにBD Perm/Wash bufferで希釈した1μg/mLのPE標識FSTL1抗体(抗FSTL1抗体をDOJINDO社のR-Phycoerythrin Labeling Kit - NH2、品番LK23 を用いてPE標識した抗体)を200μL/well加え、室温で1時間反応させた。その後、抗体液を捨ててPBSを加えて細胞を洗浄し、そこに4%PFA/PBSを200μL/well加えて室温で15分間処理して細胞を固定し、これを捨てて、200μL/wellのVectashield Mounting Medium(Vector Laboratories社、品番H-1000)を入れて封入した。染色した細胞は、共焦点レーザスキャン顕微鏡(Carl Zeiss社、品番LSM700)下で観察し、写真を撮影した。 First, using a microslide chamber (Nippon Genetics, product number ib-80821), 2 × 10 4 cells / 300 μL / well of tumor cells were seeded and cultured in DMEM medium containing 10% FCS, and cultured 2 days later. The supernatant was discarded, and BD Cytofix / Cytoperm solution (BD Pharmingen, product number 554714) was added to stain FSTL1 present in the cells, and the membrane was treated at room temperature for 20 minutes to increase the permeability of the cell membrane. After discarding this, 200 μL / well of 1 μg / mL anti-DIP2A antibody (Santa Cruz, product number sc-67556) diluted with BD Perm / Wash buffer (BD Pharmingen, product number 554723) was added and reacted at room temperature for 1 hour. I let you. Thereafter, the antibody solution was discarded, PBS was added to wash the cells, and 1 μg / mL PE-labeled FSTL1 antibody diluted with BD Perm / Wash buffer (anti-FSTL1 antibody was converted to DOJINDO's R-Phycoerythrin Labeling Kit-NH2, 200 μL / well of a PE-labeled antibody using product number LK23) was added and reacted at room temperature for 1 hour. Thereafter, the antibody solution is discarded, and PBS is added to wash the cells. Then, 4% PFA / PBS is added at 200 μL / well and treated at room temperature for 15 minutes to fix the cells. The cells are discarded and discarded at 200 μL / well. Vectashield Mounting Medium (Vector Laboratories, product number H-1000) was placed and sealed. The stained cells were observed under a confocal laser scanning microscope (Carl Zeiss, product number LSM700) and photographed.
(2)結果
 図1にDAPI核染色を除いたFSTL1とDIP2Aの二重染色像を示した。Panc1-mock(上段左)では、DIP2A陽性細胞がわずかに含まれていたが、FSTL1は一部の細胞の核内でかすかな染色が観察されただけであった。一方、Panc1-Snail+(上段右)では、ほぼ全ての細胞でFSTL1とDIP2Aの両方が強陽性を示した。DIP2Aは、基本的には細胞膜上に発現していたが、核周辺部にFSTL1とともに集積しており、これが一部の細胞では核内でも観察された。これは、細胞外に分泌されたFSTL1がDIP2Aに結合し、細胞内に取り込まれて核周辺に移行したと推測され、DIP2Aを介したシグナル伝達上、極めて重要な現象と考えられる。
(2) Results FIG. 1 shows double-stained images of FSTL1 and DIP2A excluding DAPI nuclear staining. Panc1-mock (upper left) contained a small amount of DIP2A positive cells, but FSTL1 showed only faint staining in the nuclei of some cells. On the other hand, in Panc1-Snail + (upper right), both FSTL1 and DIP2A were strongly positive in almost all cells. DIP2A was basically expressed on the cell membrane, but accumulated with FSTL1 in the periphery of the nucleus, and this was also observed in the nucleus in some cells. This is presumed that FSTL1 secreted outside the cell binds to DIP2A, is taken into the cell and moves to the periphery of the nucleus, and is considered to be a very important phenomenon in terms of signal transduction via DIP2A.
 一方、低転移性のMCF7(下段左)では、一部の細胞の核内でFSTL1がわずかに陽性を示したが、DIP2Aはほとんど観察されなかった。一方、高骨転移性のMDA231(下段右)では、Panc1のSnail強制発現細胞株より若干弱いものの、ほぼ全ての細胞でFSTL1とDIP2Aの両方が強陽性を示した。ただし、FSTL1とDIP2Aの二重染色分子は核周辺部に集積していたものの、Panc1のSnail強制発現細胞株のように核の片側で濃厚な染色パターンを示すのではなく、核の片側あるいは周辺にまんべんなく散在するドット状を呈した。この理由は、Panc1のSnail強制発現細胞株に比べてMDA231のFSTL1産生量が少ないためと推測される。 On the other hand, in low-metastatic MCF7 (lower left), FSTL1 was slightly positive in the nuclei of some cells, but DIP2A was hardly observed. On the other hand, MDA231 with high bone metastasis (lower right) was slightly weaker than the Panc1 Snail forced expression cell line, but both FSTL1 and DIP2A were strongly positive in almost all cells. However, although double-staining molecules of FSTL1 and DIP2A were accumulated in the periphery of the nucleus, they do not show a dense staining pattern on one side of the nucleus as in the Panc1 Snail forced expression cell line, but on one side or the periphery of the nucleus. The dots were scattered evenly. This is presumably because MDA231 produces less FSTL1 than Panc1 Snail forced expression cell line.
 以上の結果から、FSTL1とDIP2Aは、共に高発現することが高増殖性や高転移性を特徴とするがんの悪性形質(または難治性形質)、例えば、骨転移性を含めた転移性を制御する上で重要であることが示唆された。 From the above results, FSTL1 and DIP2A are both highly expressed in cancer malignant traits (or refractory traits) characterized by high proliferation and metastasis, such as metastasis including bone metastasis. It was suggested that it is important in controlling.
〔実施例2:担がんモデルで抗FSTL1抗体が奏功するマウスがん細胞株のFSTL1とDIP2Aの発現解析〕
(1)実験方法
 インビボ薬効評価(参考例参照)で使用している以下の4種のマウス腫瘍細胞株におけるFSTL1とDIP2Aの発現を免疫組織化学的に解析した。
1.マウスメラノーマB16-F10の空ベクター導入細胞株(F10-mock)
2.マウスメラノーマB16-F10のSnail強制発現細胞株(F10-snail+)
3.マウス大腸がん細胞株CT26
4.マウス肺がん細胞株3LL
 実施例1と同じPE標識FSTL1抗体とDIP2A抗体(Santa Cruz;FITC標識二次抗体を併用)を用い、実施例1と同じ方法で免疫染色および観察を行った。
[Example 2: Expression analysis of FSTL1 and DIP2A of a mouse cancer cell line in which anti-FSTL1 antibody is successful in a tumor-bearing model]
(1) Experimental method The expression of FSTL1 and DIP2A in the following four types of mouse tumor cell lines used for in vivo drug efficacy evaluation (see Reference Examples) was analyzed immunohistochemically.
1. Mouse melanoma B16-F10 empty vector-introduced cell line (F10-mock)
2. Snail forced expression cell line of mouse melanoma B16-F10 (F10-snail +)
3. Mouse colon cancer cell line CT26
4). Mouse lung cancer cell line 3LL
Using the same PE-labeled FSTL1 antibody and DIP2A antibody (Santa Cruz; combined with FITC-labeled secondary antibody) as in Example 1, immunostaining and observation were performed in the same manner as in Example 1.
(2)結果
 結果を図2に示した。F10-mockには、ごく低いレベルのDIP2Aと核近傍にFSTL1を発現する細胞が少数存在することが観察された。一方、F10-Snail+では、全ての細胞でFSTL1とDIP2Aの両方が高発現していることが観察された。また、CT26と3LLにもFSTL1とDIP2Aの両方が高発現していることを今回初めて確認した。特に、3LLの細胞質内は、FSTL1と結合して細胞内に取り込まれたと考えられるDIP2Aで満たされており、DIP2A下流のシグナル伝達系が活性化していると推測された。
(2) Results The results are shown in FIG. F10-mock was observed to have very few levels of DIP2A and a small number of cells expressing FSTL1 near the nucleus. On the other hand, in F10-Snail +, it was observed that both FSTL1 and DIP2A were highly expressed in all cells. It was also confirmed for the first time that both FSTL1 and DIP2A were highly expressed in CT26 and 3LL. In particular, it was speculated that the 3LL cytoplasm was filled with DIP2A, which was considered to be incorporated into the cell by binding to FSTL1, and that the signal transduction system downstream of DIP2A was activated.
〔参考例1:マウスメラノーマB16-F10のSnail強制発現細胞移植骨転移モデルを用いた抗FSTL1抗体の薬効評価〕
(1)実験方法
 マウスメラノーマB16-F10のSnail強制発現細胞をC57BL/6Nマウスの皮下および静脈内に移植した骨転移モデルを用いて、抗腫瘍効果および免疫抑制解除効果を解析した。
(1-1)実験群(n=5)
1. No treatment (0.9% NaCl as a sham)
2. Control IgG (anti-DNP)
3. Anti-FSTL1 Clone #6-55
4. Anti-FSTL1 Clone #7-34
5. Anti-FSTL1 Clone #8-1
(1-2)実験手順
 Snail陽性腫瘍細胞をマウスの皮下および静脈内へ移植すると、様々な臓器の他、骨髄に優位に転移し、これが骨髄を起点とした間葉系幹細胞(MSC)の増加を招いて全身的に強く抗腫瘍免疫の誘導が抑制されてしまうことが知られている(Cancer Research 73:6185,2013)。そこで、GFP遺伝子とマウスSnail遺伝子を導入して強制発現させたGFP陽性Snail陽性B16-F10腫瘍細胞を、C57BL/6Nマウスの皮下に5×10個、および尾静脈内に1×10個移植し(Day0)、その5日後(Day5)および10日後(Day10)に生理食塩水で1mg/mLに調製した抗FSTL1抗体(#6-55、#7-34、#8-1)またはそのアイソタイプであるマウスIgG(抗DNP抗体)をコントロール抗体として10mg/kgの用量で腹腔内投与した。無処置群には生理食塩水を腹腔内投与した。細胞移植14日後(Day14)に各種免疫学的アッセイを行った。細胞移植7、11、14日後に皮下腫瘍径を測定して腫瘍体積を算出し、皮下腫瘍増殖に対する阻害効果を評価した。アッセイとしては、骨髄細胞中のGFP陽性Snail陽性B16-F10腫瘍細胞数の測定、骨髄細胞中のCD45陰性細胞数の測定および体重測定を行った。
[Reference Example 1: Evaluation of drug efficacy of anti-FSTL1 antibody using Snail forced expression cell transplanted bone metastasis model of mouse melanoma B16-F10]
(1) Experimental Method Antitumor effect and immune suppression release effect were analyzed using a bone metastasis model in which Snail forced expression cells of mouse melanoma B16-F10 were transplanted subcutaneously and intravenously into C57BL / 6N mice.
(1-1) Experimental group (n = 5)
1. No treatment (0.9% NaCl as a sham)
2. Control IgG (anti-DNP)
3. Anti-FSTL1 Clone # 6-55
4. Anti-FSTL1 Clone # 7-34
5. Anti-FSTL1 Clone # 8-1
(1-2) Experimental procedure When Snail-positive tumor cells were transplanted subcutaneously and intravenously in mice, they metastasized not only to various organs but also to the bone marrow, which increased mesenchymal stem cells (MSC) starting from the bone marrow. It is known that the induction of anti-tumor immunity is strongly suppressed systemically (Cancer Research 73: 6185, 2013). Therefore, 5 × 10 5 GFP positive Snail positive B16-F10 tumor cells introduced by forced introduction of GFP gene and mouse Snail gene were subcutaneously injected into C57BL / 6N mice, and 1 × 10 5 cells were injected into the tail vein. Transplanted (Day 0), 5 days later (Day 5) and 10 days later (Day 10) anti-FSTL1 antibody (# 6-55, # 7-34, # 8-1) prepared to 1 mg / mL with physiological saline or the Mouse IgG (anti-DNP antibody), which is an isotype, was intraperitoneally administered at a dose of 10 mg / kg as a control antibody. Saline was intraperitoneally administered to the untreated group. Various immunological assays were performed 14 days after cell transplantation (Day 14). Subcutaneous tumor diameters were measured 7 days, 11 days, and 14 days after cell transplantation to calculate the tumor volume, and the inhibitory effect on subcutaneous tumor growth was evaluated. As an assay, the number of GFP positive Snail positive B16-F10 tumor cells in bone marrow cells, the number of CD45 negative cells in bone marrow cells, and body weight were measured.
(2)結果
 図3に抗FSTL1抗体による抗腫瘍効果の結果を示した。使用した3種類の抗FSTL1抗体のいずれも、コントロール抗体に対して有意に皮下腫瘍の増殖を抑制した。なお、図中、括弧内の数値は無処置群と比較した場合のP値であり、横線のところに示した数値は、横線の一端がある群と他端がある群間で細胞移植14日後に比較した場合のP値を示す。
 図4に骨転移に対する効果(左:骨髄中のGFP陽性Snail陽性B16-F10腫瘍細胞数)の結果、MSC増加に対する効果(中央:骨髄中のCD45陰性細胞数)の結果、体重減少に対する効果(右)を示した。抗FSTL1抗体の#6-55および#8-1は、体重減少抑制効果を示した。また、3種類の抗FSTL1抗体のいずれもMSCを減少させ、骨転移抑制効果を示した。
(2) Results FIG. 3 shows the results of the antitumor effect of the anti-FSTL1 antibody. All three anti-FSTL1 antibodies used significantly suppressed the growth of subcutaneous tumors relative to the control antibody. In the figure, the numerical value in parentheses is the P value when compared with the untreated group, and the numerical value shown in the horizontal line is the cell transplantation day 14 between the group with one end of the horizontal line and the group with the other end. P value when compared later is shown.
FIG. 4 shows the effect on bone metastasis (left: GFP-positive Snail-positive B16-F10 tumor cells in the bone marrow), the effect on MSC increase (middle: the number of CD45-negative cells in the bone marrow), the effect on weight loss ( Right). Anti-FSTL1 antibodies # 6-55 and # 8-1 showed an effect of suppressing weight loss. In addition, all of the three types of anti-FSTL1 antibodies decreased MSC and showed bone metastasis inhibitory effect.
〔参考例2:マウス大腸がんCT26細胞移植肺転移モデルを用いた抗FSTL1抗体の薬効評価〕
(1)実験方法
 マウス大腸がんCT26細胞をBALB/cマウスの皮下および静脈内に移植した骨転移モデルを用いて、抗腫瘍効果および抗転移効果を解析した。抗FSTL1抗体としてクローン#6-55を用いた。実験は参考例1と同じ手順で行った。評価は、皮下腫瘍増殖と肺転移について行った。肺転移の評価は肺における腫瘍結節数を肉眼的に計数した。
[Reference Example 2: Drug efficacy evaluation of anti-FSTL1 antibody using mouse colon cancer CT26 cell transplanted lung metastasis model]
(1) Experimental Method Antitumor effect and antimetastatic effect were analyzed using a bone metastasis model in which mouse colon cancer CT26 cells were transplanted subcutaneously and intravenously in BALB / c mice. Clone # 6-55 was used as an anti-FSTL1 antibody. The experiment was performed in the same procedure as in Reference Example 1. Evaluation was made on subcutaneous tumor growth and lung metastasis. Assessment of lung metastasis was performed by macroscopically counting the number of tumor nodules in the lung.
(2)結果
 図5に抗腫瘍効果の結果を示し、図6に抗転移効果の結果を示した。抗FSTL1抗体(#6-55)はCT26皮下腫瘍の増殖および肺転移を極めて強く抑制した。具体的には5匹中3匹のマウスで固形腫瘍は消失し、肺転移結節数も極わずかであった(コントロール抗体群の平均結節数14個に対して抗FSTL1抗体群の結節数は0~3個)。なお、図5中、横線のところに示した数値は、横線の一端がある群と他端がある群間で細胞移植14日後に比較した場合のP値を示す。
(2) Results FIG. 5 shows the results of the antitumor effect, and FIG. 6 shows the results of the antimetastatic effect. Anti-FSTL1 antibody (# 6-55) suppressed CT26 subcutaneous tumor growth and lung metastasis very strongly. Specifically, the solid tumor disappeared in 3 out of 5 mice, and the number of lung metastases was very small (the average number of nodules in the control antibody group was 14 and the number of nodules in the anti-FSTL1 antibody group was 0). ~ 3). In addition, the numerical value shown in the place of a horizontal line in FIG. 5 shows P value at the time of a cell transplant 14 days after a cell transplantation between the group with the one end of a horizontal line, and the group with the other end.
〔参考例3:マウス肺がん3LL細胞移植肺転移モデルを用いた抗FSTL1抗体の薬効評価〕
(1)実験方法
 マウス肺がん3LL細胞をBALB/cマウスの皮下および静脈内に移植した骨転移モデルを用いて、抗腫瘍効果および抗転移効果を解析した。抗FSTL1抗体としてクローン#6-55を用いた。実験は参考例1と同じ手順で行った。評価は、皮下腫瘍増殖と体重について行った。また、腫瘍臓器への転移の有無を肉眼的に観察した。
[Reference Example 3: Drug efficacy evaluation of anti-FSTL1 antibody using mouse lung cancer 3LL cell transplantation lung metastasis model]
(1) Experimental method The antitumor effect and the antimetastatic effect were analyzed using a bone metastasis model in which mouse lung cancer 3LL cells were transplanted subcutaneously and intravenously in BALB / c mice. Clone # 6-55 was used as an anti-FSTL1 antibody. The experiment was performed in the same procedure as in Reference Example 1. Evaluation was made on subcutaneous tumor growth and body weight. In addition, the presence or absence of metastasis to tumor organs was visually observed.
(2)結果
 図7に抗腫瘍効果の結果を示し、図8に体重減少に対する効果の結果を示した。抗FSTL1抗体(#6-55)は3LL皮下腫瘍の増殖を強く抑制した。具体的には5匹中2匹のマウスで固形腫瘍は消失した。また、いずれの臓器においても肉眼的に転移は観察されなかった。抗FSTL1抗体群では体重減少や痩せ、毛羽立ちなどは一切観察されず、全マウスが元気であった。
(2) Results FIG. 7 shows the results of the antitumor effect, and FIG. 8 shows the results of the effect on weight loss. Anti-FSTL1 antibody (# 6-55) strongly suppressed the growth of 3LL subcutaneous tumors. Specifically, solid tumors disappeared in 2 out of 5 mice. In addition, no metastasis was observed in any organ. In the anti-FSTL1 antibody group, weight loss, thinning, and fluffing were not observed at all, and all mice were healthy.
 実施例2および参考例1、2、3の結果から、FSTL1およびDIP2Aを高発現しているマウスがん細胞を移植したマウスモデルに対して、抗FSTL1抗体は抗腫瘍効果を有することが確認できた。実施例1において、転移性の高いヒトがん細胞にはFSTL1とDIP2Aの両方が高発現していることが確認されたことから、このようなFSTL1およびDIP2Aを高発現するがんを発症しているがん患者に対して、抗FSTL1抗体は治療効果を有することが期待できる。 From the results of Example 2 and Reference Examples 1, 2, and 3, it can be confirmed that the anti-FSTL1 antibody has an antitumor effect against a mouse model transplanted with mouse cancer cells highly expressing FSTL1 and DIP2A. It was. In Example 1, since it was confirmed that both FSTL1 and DIP2A are highly expressed in human cancer cells with high metastasis, such a cancer that highly expresses FSTL1 and DIP2A was developed. The anti-FSTL1 antibody can be expected to have a therapeutic effect on existing cancer patients.
〔実施例3:様々ながん種の患者由来腫瘍組織のFSTL1とDIP2Aの発現解析〕
(1)実験方法
 抗FSTL1抗体の適用がん種を検討するために、市販の様々ながん種の患者由来腫瘍組織切片(下記参照)を用いて、FSTL1とDIP2Aの発現レベルを免疫組織化学的に解析した。組織切片は、キシレンおよびエタノールを用いて脱パラフィン処置後、抗原を賦活化させるために0.1%トリプシンで37℃30分間処理し、その後、非特異的な染色を抑止するために20%ImmunoBlock(DS Pharma社、品番CTKN001)で室温15分間処置した。その後、1%BSA/PBSで希釈した5μg/mLの抗DIP2A抗体液(Santa Cruz社、品番sc-67556)で切片全体をカバーし、4℃で24時間、湿潤箱内で反応させた。その後PBSで切片を十分に洗浄し、そこに1%BSA/PBSで希釈した5μg/mLのPE標識FSTL1抗体液(抗FSTL1抗体をDOJINDO社のR-Phycoerythrin Labeling Kit - NH2、品番LK23 を用いてPE標識した抗体)で切片全体をカバーし、4℃で24時間、湿潤箱内で反応させた。その後、エタノールおよびキシレンで脱水・固定し、Vectashield Mounting Medium(Vector Laboratories社、品番H-1000)で切片を封入し、共焦点レーザスキャン顕微鏡(Carl Zeiss社、品番LSM700)下で観察した。FSTL1とDIP2Aの発現レベルは、顕微鏡に内蔵された蛍光強度自動測定機能を活用してピクセルカウントを計測して解析した。
<パラフィン切片セット(Super Bio Chips社)>
MB4(Human common cancers-2):乳がん、肝がん、膀胱がん、卵巣がん、膵がん、前立腺がん(n=9~10)
[Example 3: Expression analysis of FSTL1 and DIP2A in tumor tissues derived from patients of various cancer types]
(1) Experimental method In order to examine the cancer types to which the anti-FSTL1 antibody is applied, immunohistochemistry is used to determine the expression levels of FSTL1 and DIP2A using commercially available patient tissue sections (see below) of various cancer types. Analysis. Tissue sections were deparaffinized with xylene and ethanol, then treated with 0.1% trypsin for 30 minutes at 37 ° C. to activate the antigen, and then 20% ImmunoBlock to suppress non-specific staining. (DS Pharma, product number CTKN001) was treated for 15 minutes at room temperature. Thereafter, the entire section was covered with 5 μg / mL anti-DIP2A antibody solution (Santa Cruz, product number sc-67556) diluted with 1% BSA / PBS, and allowed to react at 4 ° C. for 24 hours in a wet box. Thereafter, the section was washed thoroughly with PBS, and 5 μg / mL PE-labeled FSTL1 antibody solution (anti-FSTL1 antibody was diluted with 1% BSA / PBS) using DOJINDO's R-Phycoerythrin Labeling Kit-NH2, product number LK23. The whole section was covered with a PE-labeled antibody) and reacted in a wet box at 4 ° C. for 24 hours. Thereafter, it was dehydrated and fixed with ethanol and xylene, the section was sealed with Vectashield Mounting Medium (Vector Laboratories, product number H-1000), and observed under a confocal laser scanning microscope (Carl Zeiss, product number LSM700). The expression levels of FSTL1 and DIP2A were analyzed by measuring the pixel count using the fluorescence intensity automatic measurement function built in the microscope.
<Paraffin section set (Super Bio Chips)>
MB4 (Human common cancers-2): breast cancer, liver cancer, bladder cancer, ovarian cancer, pancreatic cancer, prostate cancer (n = 9-10)
(2)結果
 結果を表1、図9および図10に示した。ステージI-IVの乳がん、肝がん、膀胱がん、卵巣がん、膵がん、前立腺がんの6がん種についてFSTL1(PE/Red染色)とDIP2A(FITC/Green染色)の発現を解析したところ、FSTL1の発現は、肝がん、乳がん、膀胱がん、卵巣がん、膵がん、前立腺がんの順に高かった。一方、DIP2Aの発現は、乳がん、肝がん、膵がん、卵巣がん、前立腺がん、膀胱がんの順に高かった。FSTL1とDIP2Aの両方の発現が比較的高い4種(乳がん、肝がん、卵巣がん、膵がん)では、FSTL1/DIP2A共陽性の小型なSnail-induced MSC(sMSC)様細胞が多数浸潤していたほか、卵巣がんおよび膵がんではFSTL1/DIP2A共陽性の大型のがん幹細胞(CSC)様の腫瘍細胞も多数増加していた。縦軸にFSTL1発現レベルと横軸にDIP2A発現レベルをとり、各腫瘍組織における発現の相関性を確かめたところ、乳がん、肝がん、膀胱がん、卵巣がん、膵がんの間に統計学的に有意な相関性が観察された(図10)。以上の結果から、少なくとも肝がん、乳がん、膀胱がん、卵巣がんおよび膵がんには、抗FSTL1抗体治療が適用できる可能性が示唆された。
(2) Results The results are shown in Table 1, FIG. 9 and FIG. Expression of FSTL1 (PE / Red staining) and DIP2A (FITC / Green staining) for 6 types of breast cancer, stage I-IV breast cancer, liver cancer, bladder cancer, ovarian cancer, pancreatic cancer, prostate cancer As a result of analysis, the expression of FSTL1 was higher in the order of liver cancer, breast cancer, bladder cancer, ovarian cancer, pancreatic cancer and prostate cancer. On the other hand, the expression of DIP2A was higher in the order of breast cancer, liver cancer, pancreatic cancer, ovarian cancer, prostate cancer, and bladder cancer. In four types (breast cancer, liver cancer, ovarian cancer, pancreatic cancer) with relatively high expression of both FSTL1 and DIP2A, many FSTL1 / DIP2A co-positive small Snail-induced MSC (sMSC) -like cells infiltrate In addition, in ovarian cancer and pancreatic cancer, large numbers of FSTL1 / DIP2A co-positive large cancer stem cell (CSC) -like tumor cells were also increased. The vertical axis is the FSTL1 expression level and the horizontal axis is the DIP2A expression level, and the correlation between the expression in each tumor tissue has been confirmed. Statistics among breast cancer, liver cancer, bladder cancer, ovarian cancer, pancreatic cancer A scientifically significant correlation was observed (Figure 10). From the above results, it was suggested that anti-FSTL1 antibody treatment could be applied to at least liver cancer, breast cancer, bladder cancer, ovarian cancer and pancreatic cancer.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 さらに、上記6がん種におけるFSTL1とDIP2Aの発現レベルを進行ステージ(ステージI-IV)別に解析した結果を図11に示した。図中、黒丸(●)は各ステージにおける発現レベルの平均値、白抜丸(○)は各個体値を示す。この解析結果から、FSTL1およびDIP2Aともに、ステージI~IIIで発現が増強されており、FSTL1は特にステージIで増強されていることが明らかとなった。また、ステージIでは、他のステージに比べてFSTL1とDIP2Aを同時に発現する共発現性が有意に増強されて見られ、両分子ががん転移を制御していることから、まさにがん細胞は離脱しようとする原発巣でFSTL1とDIP2Aの発現を増強し、がんの進展や転移を促進していると推測される。この結果から、FSTL1とDIP2Aの発現、特に両分子の共発現とその相関性を検出することが、がん転移の早期発見や早期治療に結び付く可能性が臨床レベルで示唆された。 Further, FIG. 11 shows the results of analyzing the expression levels of FSTL1 and DIP2A in the above 6 cancer types according to the progression stage (stage I-IV). In the figure, black circles (●) indicate average values of expression levels in each stage, and white circles (◯) indicate individual values. From this analysis result, it was revealed that both FSTL1 and DIP2A were enhanced in expression in stages I to III, and FSTL1 was particularly enhanced in stage I. In stage I, the co-expression of FSTL1 and DIP2A at the same time is significantly enhanced compared to the other stages, and both molecules regulate cancer metastasis, so cancer cells are exactly It is speculated that FSTL1 and DIP2A expression is enhanced in the primary lesion to be detached, and that cancer progression and metastasis are promoted. From these results, it was suggested at the clinical level that detecting the expression of FSTL1 and DIP2A, particularly the co-expression of both molecules and their correlation, may lead to early detection and early treatment of cancer metastasis.
〔実施例4:進行期メラノーマ患者由来の腫瘍組織におけるFSTL1とDIP2Aの発現解析〕
(1)実験方法
 進行期メラノーマ患者由来の腫瘍組織として、原発腫瘍組織および転移腫瘍組織を含む切片セット(Human malignant melanoma、品番CK2)をSuper Bio Chip社より購入し、実施例3と同じ方法でFSTL1とDIP2Aの免疫染色を行い、ピクセルカウントを測定して発現強度を解析した。
[Example 4: Expression analysis of FSTL1 and DIP2A in tumor tissue derived from patients with advanced stage melanoma]
(1) Experimental method As a tumor tissue derived from an advanced stage melanoma patient, a section set (Human malignant melanoma, product number CK2) containing a primary tumor tissue and a metastatic tumor tissue was purchased from Super Bio Chip, and the same method as in Example 3 was used. Immunostaining of FSTL1 and DIP2A was performed, and the expression intensity was analyzed by measuring the pixel count.
(2)結果
 結果を図12および図13に示した。図12のピクセルカウント数からわかるように、原発腫瘍組織および転移腫瘍組織(主にリンパ節)における両分子の発現レベルに統計学的有意差はなかったが、原発巣で比較的高い傾向にあった。一方、縦軸にFSTL1発現レベルと横軸にDIP2A発現レベルを用いた図から、転移腫瘍組織と異なり、原発腫瘍組織ではFSTL1/DIP2A共発現の発現様式が多く見られ、FSTL1とDIP2Aとの間に相関性が見られた。つまり、上記実施例3でも考察したように、原発巣におけるFSTL1とDIP2Aの発現やその相関性を検出することが、がん転移の早期発見や早期治療に結び付く可能性が示唆された。
(2) Results The results are shown in FIG. 12 and FIG. As can be seen from the pixel count numbers in FIG. 12, there was no statistically significant difference in the expression levels of both molecules in the primary tumor tissue and metastatic tumor tissue (mainly lymph nodes), but there was a tendency to be relatively high in the primary tumor. It was. On the other hand, from the figure using the FSTL1 expression level on the vertical axis and the DIP2A expression level on the horizontal axis, unlike the metastatic tumor tissue, many expression patterns of FSTL1 / DIP2A co-expression are seen in the primary tumor tissue, and between FSTL1 and DIP2A There was a correlation. That is, as discussed in Example 3 above, it was suggested that detecting the expression of FSTL1 and DIP2A in the primary lesion and the correlation thereof may lead to early detection and early treatment of cancer metastasis.
 また、図13は原発巣におけるFSTL1とDIP2Aの発現レベルを種々の分類で解析したものであるが、年齢や性別、患者生存月数などでは有意な相関は認められなかった。ただし、DIP2Aを全体の平均値以上に高発現する患者の場合には生存期間が短く(低発現41.0ヶ月vs高発現34.0ヶ月;P=0.3103)、DIP2Aを平均値以上に高発現し、かつFSTL1も同時に高発現する患者はさらに生存期間が短くなる傾向が観察された(F高発現21.8ヶ月vsF低発現39.4ヶ月;P=0.1608)。一方、図13に示したように、全患者の平均生存月数「38ヶ月間」を基準にグループ分けして原発巣におけるFSTL1とDIP2Aの発現を比較すると、FSTL1発現レベルに差が見られなかったものの、DIP2A発現(短期生存者17408vs長期生存者7938)ならびにFSTL1とDIP2Aの共発現(短期生存者7635vs長期生存者3288)のレベルが短期生存患者では増強されていることが分かった。また、FSTL1発現とDIP2A発現との相関性は男性患者でのみ見られ、平均生存月数「36ヶ月間」を基準にしてグループ分けした場合にも、短期生存男性患者でのみ両分子の発現が相関することが分かった。以上の結果から、メラノーマ患者においては、FSTL1とDIP2Aの両方の発現レベルが患者の予後、特に、男性患者の予後を規定する因子となる可能性が示唆された。 FIG. 13 shows the analysis of the expression levels of FSTL1 and DIP2A in the primary lesion by various classifications, but no significant correlation was found in age, sex, patient survival month, and the like. However, in the case of patients expressing DIP2A higher than the overall average value, the survival time is short (low expression 41.0 months vs high expression 34.0 months; P = 0.3103), and DIP2A is higher than the average value. Patients with high expression and high expression of FSTL1 were also observed to have a shorter survival period (high expression of F 21.8 months vs low expression of 39.4 months; P = 0.1608). On the other hand, as shown in FIG. 13, when FSTL1 and DIP2A expression in the primary lesions were compared by grouping on the basis of the average survival period of “38 months” of all patients, no difference was found in the FSTL1 expression level. However, it was found that the levels of DIP2A expression (short-term survivor 17408 vs long-term survivor 7938) and FSTL1 and DIP2A co-expression (short-term survivor 7635 vs long-term survivor 3288) were enhanced in short-term survivors. In addition, the correlation between FSTL1 expression and DIP2A expression is seen only in male patients, and even when grouped on the basis of the average survival period of “36 months”, the expression of both molecules is observed only in short-lived male patients. It turns out that it correlates. From the above results, it was suggested that in melanoma patients, the expression level of both FSTL1 and DIP2A may be a factor that defines the prognosis of patients, particularly the prognosis of male patients.
〔実施例5:各種がん患者の血清中FSTL1濃度測定〕
(1)実験方法
 各種(皮膚がん、肺がん、卵巣がん、大腸がん、前立腺がん、乳がん)末期がん患者(ステージIV)の血清を購入し(ProMedDx社)、血清中のFSTL1濃度を、R&D Systems DuoSet ELISA Human FSTL1(R&D Systems社、Cat# DY1694)を使用して測定した。測定は製品のプロトコールに従って行った。
[Example 5: Measurement of serum FSTL1 concentration in various cancer patients]
(1) Experimental method Serum of various types (skin cancer, lung cancer, ovarian cancer, colon cancer, prostate cancer, breast cancer) terminal cancer patients (stage IV) is purchased (ProMedDx), and FSTL1 concentration in the serum Was measured using an R & D Systems DuoSet ELISA Human FSTL1 (R & D Systems, Cat # DY1694). The measurement was performed according to the product protocol.
(2)結果
 結果を図14に示した。図中黒丸(●)は、各がん患者の血清中FSTL1濃度の平均値を示す。各種末期がん患者の血清中のFSTL1濃度は、皮膚がん、肺がん、卵巣がん、大腸がん、前立腺がん、乳がんの順で高かった。末期がん患者では一般に転移を起こしている可能性が高く、特にメラノーマなどの皮膚がんの末期患者は転移の頻度が高いことが知られている。皮膚がんの患者の血清中FSTL1濃度の平均値は77.7ng/mLであり、うち2名はメラノーマ患者で、うち1名の患者の血清中FSTL1濃度は285.9ng/mLと高かった。正常人の血清中FSTL1濃度はおおよそ10ng/mL以下であることが報告されているが(Arthritis Res Ther. 2011 Feb)、メラノーマ患者血清中のFSTL1濃度は平均で77.7ng/mLであったことから、明らかに正常人との違いを識別できる。この結果から、血清中のFSTL1濃度が高い患者に対して、抗FSTL1抗体治療が奏功する可能性が期待できることが示唆された。
(2) Results The results are shown in FIG. Black circles (●) in the figure indicate the average value of serum FSTL1 concentration of each cancer patient. The FSTL1 concentration in serum of various terminal cancer patients was higher in the order of skin cancer, lung cancer, ovarian cancer, colon cancer, prostate cancer, and breast cancer. Terminal cancer patients generally have a high possibility of metastasis, and in particular, terminal cancer patients such as melanoma are known to have a high frequency of metastasis. The average serum FSTL1 concentration of skin cancer patients was 77.7 ng / mL, of which 2 were melanoma patients, and 1 of them had a high serum FSTL1 concentration of 285.9 ng / mL. Although it has been reported that the FSTL1 concentration in normal human serum is approximately 10 ng / mL or less (Arthritis Res Ther. 2011 Feb), the average FSTL1 concentration in melanoma patient serum was 77.7 ng / mL From the above, the difference from the normal person can be clearly identified. From this result, it was suggested that anti-FSTL1 antibody treatment can be expected to be successful for patients with high serum FSTL1 concentration.
〔実施例6:マウス骨肉腫細胞移植モデルを用いた抗FSTL1抗体の薬効評価〕
(1)実験方法
 マウス骨肉腫細胞株であるNHOS細胞をBALB/cマウスの皮下に移植したモデルを用いて、抗腫瘍効果を解析した。抗FSTL1抗体としてクローン#6-55を用いた。実験は、抗体の投与日がNHOS細胞移植後の7日後である以外は参考例1と同じ手順で行った。評価は、皮下腫瘍増殖と血清中のFSTL1濃度について行った。血清中のFSTL1濃度測定は発明者らが予め取得した抗FSTL1抗体2種を用いたサンドイッチELISA系を用いて測定した。具体的には、5μg/mLの#6-55抗体を50μLプレートに添加し、終夜4℃で固相化した。ブロッキング後、洗浄を行い、各サンプルを添加し室温で2時間インキュベートした。洗浄後、ビオチン標識した#33抗体を室温で1時間反応させた。洗浄後、ストレプトアビジン-PolyHRP80複合体を1000倍希釈で添加し、遮光して室温で30分反応させた。洗浄後、発色基質を加え30分反応させた後、吸光度を測定した。
[Example 6: Efficacy evaluation of anti-FSTL1 antibody using mouse osteosarcoma cell transplantation model]
(1) Experimental method The antitumor effect was analyzed using a model in which NHOS cells, which are mouse osteosarcoma cell lines, were transplanted subcutaneously into BALB / c mice. Clone # 6-55 was used as an anti-FSTL1 antibody. The experiment was performed in the same procedure as in Reference Example 1 except that the antibody administration day was 7 days after NHOS cell transplantation. Evaluation was performed on subcutaneous tumor growth and FSTL1 concentration in serum. Serum FSTL1 concentration was measured using a sandwich ELISA system using two anti-FSTL1 antibodies previously obtained by the inventors. Specifically, 5 μg / mL # 6-55 antibody was added to a 50 μL plate and immobilized at 4 ° C. overnight. After blocking, washing was performed, each sample was added, and incubated at room temperature for 2 hours. After washing, biotin-labeled # 33 antibody was reacted at room temperature for 1 hour. After washing, streptavidin-PolyHRP80 complex was added at a 1000-fold dilution, and allowed to react at room temperature for 30 minutes in the dark. After washing, a coloring substrate was added and reacted for 30 minutes, and then the absorbance was measured.
(2)結果
 図15に抗腫瘍効果の結果を示し、図16に血清中のFSTL1濃度測定の結果を示した。抗FSTL1抗体(#6-55)は皮下腫瘍の増殖を抑制し、血清中のFSTL1濃度も低下して抗腫瘍効果を支持するものであった。このことから、抗FSTL1抗体が骨肉腫に対しても奏功する可能性が示唆された。
(2) Results FIG. 15 shows the results of the antitumor effect, and FIG. 16 shows the results of measuring the FSTL1 concentration in serum. The anti-FSTL1 antibody (# 6-55) suppressed the growth of subcutaneous tumors and decreased the serum FSTL1 concentration to support the antitumor effect. From this, it was suggested that anti-FSTL1 antibody may be effective for osteosarcoma.
 なお本発明は上述した各実施形態および実施例に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、本明細書中に記載された学術文献および特許文献の全てが、本明細書中において参考として援用される。 The present invention is not limited to the above-described embodiments and examples, and various modifications are possible within the scope shown in the claims, and technical means disclosed in different embodiments are appropriately combined. The obtained embodiment is also included in the technical scope of the present invention. Moreover, all the academic literatures and patent literatures described in this specification are incorporated herein by reference.

Claims (15)

  1.  がん患者におけるFSTL1阻害剤による治療効果を予測する方法であって、
    (1)患者から採取した試料におけるFSTL1および/またはDIP2Aの発現レベルを測定する工程、
    (2)測定値を基準値と比較する工程、および
    (3)測定値が基準値より高い場合に治療効果が期待できると判定する工程、
    を含むことを特徴とする方法。
    A method for predicting the therapeutic effect of an FSTL1 inhibitor in a cancer patient,
    (1) measuring the expression level of FSTL1 and / or DIP2A in a sample collected from a patient;
    (2) a step of comparing the measured value with a reference value, and (3) a step of determining that a therapeutic effect can be expected when the measured value is higher than the reference value,
    A method comprising the steps of:
  2.  工程(1)において、FSTL1とDIP2Aの両方の発現レベルを測定することを特徴とする請求項1に記載の方法。 The method according to claim 1, wherein in the step (1), the expression levels of both FSTL1 and DIP2A are measured.
  3.  試料が、患者のがん細胞を含む試料または患者の血液である請求項1または2に記載の方法。 3. The method according to claim 1 or 2, wherein the sample is a sample containing a patient's cancer cells or a patient's blood.
  4.  患者のがん細胞を含む試料が、生検がん組織または切除手術で得られたがん組織である請求項3に記載の方法。 4. The method according to claim 3, wherein the sample containing cancer cells of the patient is a biopsy cancer tissue or a cancer tissue obtained by excision surgery.
  5.  工程(1)において、生検がん組織または切除手術で得られたがん組織におけるFSTL1および/またはDIP2Aの発現レベルと、血中FSTL1濃度を測定することを特徴とする請求項1に記載の方法。 The FSTL1 and / or DIP2A expression level and blood FSTL1 concentration in a biopsy cancer tissue or a cancer tissue obtained by excision surgery and blood FSTL1 concentration are measured in the step (1). Method.
  6.  工程(1)において、発現レベルを免疫組織化学的に測定することを特徴とする請求項1~5のいずれかに記載の方法。 The method according to any one of claims 1 to 5, wherein in the step (1), the expression level is measured immunohistochemically.
  7.  がん患者に対するFSTL1阻害剤の投与開始を決定する方法であって、
    (1)患者から採取した試料におけるFSTL1および/またはDIP2Aの発現レベルを測定する工程、
    (2)測定値を基準値と比較する工程、および
    (3’)測定値が基準値より高い場合にFSTL1阻害剤の投与開始を決定する工程、
    を含むことを特徴とする方法。
    A method for determining the start of administration of an FSTL1 inhibitor to a cancer patient comprising:
    (1) measuring the expression level of FSTL1 and / or DIP2A in a sample collected from a patient;
    (2) comparing the measured value with a reference value, and (3 ′) determining the start of administration of the FSTL1 inhibitor when the measured value is higher than the reference value,
    A method comprising the steps of:
  8.  工程(1)において、FSTL1とDIP2Aの両方の発現レベルを測定することを特徴とする請求項7に記載の方法。 The method according to claim 7, wherein the expression levels of both FSTL1 and DIP2A are measured in step (1).
  9.  試料が、患者のがん細胞を含む試料または患者の血液である請求項7または8に記載の方法。 9. The method according to claim 7 or 8, wherein the sample is a sample containing cancer cells of a patient or blood of the patient.
  10.  患者のがん細胞を含む試料が、生検がん組織または切除手術で得られたがん組織である請求項9に記載の方法。 The method according to claim 9, wherein the sample containing cancer cells of the patient is a biopsy cancer tissue or a cancer tissue obtained by excision surgery.
  11.  工程(1)において、生検がん組織または切除手術で得られたがん組織におけるFSTL1および/またはDIP2Aの発現レベルと、血中FSTL1濃度を測定することを特徴とする請求項7に記載の方法。 The step (1) comprises measuring the expression level of FSTL1 and / or DIP2A and the blood FSTL1 concentration in a biopsy cancer tissue or a cancer tissue obtained by excision surgery, Method.
  12.  工程(1)において、生検がん組織または切除手術で得られたがん組織におけるFSTL1および/またはDIP2Aの発現レベルと、血中DIP2A可溶型濃度を測定することを特徴とする請求項7に記載の方法。 In the step (1), the expression level of FSTL1 and / or DIP2A and the blood DIP2A soluble type concentration in a biopsy cancer tissue or a cancer tissue obtained by excision surgery are measured. The method described in 1.
  13.  工程(1)において、発現レベルを免疫組織化学的に測定することを特徴とする請求項7~12のいずれかに記載の方法。 The method according to any one of claims 7 to 12, wherein in the step (1), the expression level is measured immunohistochemically.
  14.  がん患者におけるFSTL1阻害剤による治療効果を予測するためのキットであって、患者から採取した試料中のFSTL1および/またはDIP2Aの発現レベルを測定するための試薬を含むキット。 A kit for predicting the therapeutic effect of an FSTL1 inhibitor in a cancer patient, comprising a reagent for measuring the expression level of FSTL1 and / or DIP2A in a sample collected from the patient.
  15.  前記試薬が、抗FSTL1抗体、抗DIP2A抗体、FSTL1のRT-PCR用プライマーセットおよびDIP2AのRT-PCR用プライマーセットから選択される1種又は2種以上を含む請求項14に記載のキット。 The kit according to claim 14, wherein the reagent comprises one or more selected from anti-FSTL1 antibody, anti-DIP2A antibody, FSTL1 RT-PCR primer set, and DIP2A RT-PCR primer set.
PCT/JP2017/027916 2016-08-01 2017-08-01 Biomarker for predicting therapeutic effect of fstl1 inhibitor in cancer patient WO2018025869A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018531930A JP7012363B2 (en) 2016-08-01 2017-08-01 Biomarkers for predicting the therapeutic effect of FSTL1 inhibitors in cancer patients

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016151552 2016-08-01
JP2016-151552 2016-08-01

Publications (1)

Publication Number Publication Date
WO2018025869A1 true WO2018025869A1 (en) 2018-02-08

Family

ID=61072706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027916 WO2018025869A1 (en) 2016-08-01 2017-08-01 Biomarker for predicting therapeutic effect of fstl1 inhibitor in cancer patient

Country Status (2)

Country Link
JP (1) JP7012363B2 (en)
WO (1) WO2018025869A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112175078A (en) * 2020-09-27 2021-01-05 南开大学 Neutralizing antibody of cystatin-like protein 1 and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009028411A1 (en) * 2007-08-24 2009-03-05 Keio University Immunosuppression weaning agent comprising tumor cell and antitumor agent using the same
WO2012133047A1 (en) * 2011-03-25 2012-10-04 コニカミノルタエムジー株式会社 Immunohistological staining method and method for determining effectiveness of antibody preparation using same
JP2015111155A (en) * 2007-08-16 2015-06-18 ザ ロイヤル インスティチューション フォー ザ アドバンスメント オブ ラーニング/マギル ユニバーシティ Microvesicle originated in tumor cell
US20150290289A1 (en) * 2012-07-27 2015-10-15 Agency For Science, Technology And Research Method of promoting wound healing
WO2016133059A1 (en) * 2015-02-16 2016-08-25 株式会社ファーマフーズ Anti-cancer agent and antimetastatic agent using fstl1, and concomitant drug for same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015111155A (en) * 2007-08-16 2015-06-18 ザ ロイヤル インスティチューション フォー ザ アドバンスメント オブ ラーニング/マギル ユニバーシティ Microvesicle originated in tumor cell
WO2009028411A1 (en) * 2007-08-24 2009-03-05 Keio University Immunosuppression weaning agent comprising tumor cell and antitumor agent using the same
WO2012133047A1 (en) * 2011-03-25 2012-10-04 コニカミノルタエムジー株式会社 Immunohistological staining method and method for determining effectiveness of antibody preparation using same
US20150290289A1 (en) * 2012-07-27 2015-10-15 Agency For Science, Technology And Research Method of promoting wound healing
WO2016133059A1 (en) * 2015-02-16 2016-08-25 株式会社ファーマフーズ Anti-cancer agent and antimetastatic agent using fstl1, and concomitant drug for same

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
BAE KIEUN: "FSTL1 inhibition induces mitotic cell death associated with up-regulated cleaved Mcl-1 and c-Jun in lung cancer cells", ANNUAL MEETING OF THE JAPAN CANCER ASSOCIATION SHOROKUSHU, vol. 73rd, 2014, pages P- 3106 *
CHIE KUDO: "Ko-FSTL1 Kotai ni yoru Kokateki na Hone Ten`i Sogai", ANNUAL MEETING OF THE JAPANESE ASSOCIATION FOR METASTASIS RESEARCH PROGRAM SHOROKUSHU, vol. 24, 2015, pages 63 W6-3 *
HENNMI MARINA: "Targeting FSTL1 is a new approach to treatment of pediatric cancers", ANNUAL MEETING OF THE JAPAN CANCER ASSOCIATION SHOROKUSHU, vol. 75th, 2016, pages J-1006 *
KO SATO: "Discovery of a Biomarker That Predicts Increased Sensitivity to Immune Checkpoint Blocking Agents", THE ST. MARIANNA MEDICAL JOURNAL, vol. 43, no. 4, March 2016 (2016-03-01), pages 237 - 243, XP055604725 *
KUDO-SAITO CHIE: "Targeting FSTL1 Prevents Tumor Bone Metastasis and Consequent Immune Dysfunction", CANCER RES, vol. 73, no. 20, 15 October 2013 (2013-10-15), pages 6185 - 6193, XP055473410, DOI: doi:10.1158/0008-5472.CAN-13-1364 *
OUCHI NORIYUKI: "DIP2A Functions as a FSTL1 Receptor", J BIOL CHEM, vol. 285, no. 10, 5 March 2010 (2010-03-05), pages 7127 - 7134, XP055604716 *
TANAKA MASAO: "DIP2 disco-interacting protein 2 homolog A (Drosophila) is a candidate receptor for follistatin-related protein/follistatin-like 1 - analysis of their binding with TGF-beta superfamily proteins", FEBS J, vol. 277, no. 20, October 2010 (2010-10-01), pages 4278 - 4289, XP55604719 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112175078A (en) * 2020-09-27 2021-01-05 南开大学 Neutralizing antibody of cystatin-like protein 1 and application thereof

Also Published As

Publication number Publication date
JP7012363B2 (en) 2022-01-28
JPWO2018025869A1 (en) 2019-07-11

Similar Documents

Publication Publication Date Title
Zhao et al. High‐mobility group box 1 released by autophagic cancer‐associated fibroblasts maintains the stemness of luminal breast cancer cells
Necela et al. Folate receptor-α (FOLR1) expression and function in triple negative tumors
Wang-Johanning et al. Immunotherapeutic potential of anti-human endogenous retrovirus-K envelope protein antibodies in targeting breast tumors
Feng et al. EGFR phosphorylation of DCBLD2 recruits TRAF6 and stimulates AKT-promoted tumorigenesis
Chiavarina et al. Metastatic colorectal cancer cells maintain the TGFβ program and use TGFBI to fuel angiogenesis
EP2529223B1 (en) Biomarkers for circulating tumor cells
JP5774309B2 (en) Cancer markers and therapeutic targets
Kislin et al. NHERF-1: modulator of glioblastoma cell migration and invasion
GB2546213A (en) Method of isolating circulating tumor cells
Wang et al. Prominent oncogenic roles of EVI1 in breast carcinoma
JP2013520958A (en) Method of using AXL as a biomarker for epithelial-mesenchymal transition
Jin et al. Assessment of a novel VEGF targeted agent using patient-derived tumor tissue xenograft models of colon carcinoma with lymphatic and hepatic metastases
Gong et al. DYNC1I1 promotes the proliferation and migration of gastric cancer by up-regulating IL-6 expression
JP7298827B2 (en) Method for predicting efficacy of anti-PD-1 antibody or anti-PD-L1 antibody therapy, method for evaluating malignancy of cancer, and method for increasing efficacy of anti-PD-1 antibody or anti-PD-L1 antibody therapy
Jiang et al. Over expression of amphiregulin promoted malignant progression in gastric cancer
JP6316498B2 (en) Anti-tumor agent with CCAP4 as target molecule
Zhang et al. EFEMP1 binds to STEAP1 to promote osteosarcoma proliferation and invasion via the Wnt/β-catenin and TGF-β/Smad2/3 signal pathways
Karabid et al. Angpt2/Tie2 autostimulatory loop controls tumorigenesis
JP7012363B2 (en) Biomarkers for predicting the therapeutic effect of FSTL1 inhibitors in cancer patients
WO2011129427A9 (en) Diagnostic agent and therapeutic agent for cancer
JP6312700B2 (en) PODXL in bladder cancer
KR101952649B1 (en) Biomarker composition for diagnosing radiation resistant cancer or predicting prognosis of radiation therapy comprising LRP-1
Wang et al. CHRDL2 promotes cell proliferation by activating the YAP/TAZ signaling pathway in gastric cancer
US20180080939A1 (en) Cancer marker and the use thereof
JP7042753B2 (en) How to select individuals to receive immune checkpoint inhibitors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17836972

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018531930

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17836972

Country of ref document: EP

Kind code of ref document: A1