WO2018025656A1 - Production method for silicon wafer rough-polishing composition, silicon wafer rough-polishing composition set, and silicon wafer polishing method - Google Patents

Production method for silicon wafer rough-polishing composition, silicon wafer rough-polishing composition set, and silicon wafer polishing method Download PDF

Info

Publication number
WO2018025656A1
WO2018025656A1 PCT/JP2017/026406 JP2017026406W WO2018025656A1 WO 2018025656 A1 WO2018025656 A1 WO 2018025656A1 JP 2017026406 W JP2017026406 W JP 2017026406W WO 2018025656 A1 WO2018025656 A1 WO 2018025656A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
polishing
water
soluble polymer
polishing composition
Prior art date
Application number
PCT/JP2017/026406
Other languages
French (fr)
Japanese (ja)
Inventor
雄彦 村瀬
誠 田畑
恵 谷口
公亮 土屋
Original Assignee
株式会社フジミインコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジミインコーポレーテッド filed Critical 株式会社フジミインコーポレーテッド
Priority to JP2018531831A priority Critical patent/JP7026043B2/en
Publication of WO2018025656A1 publication Critical patent/WO2018025656A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a method for producing a polishing composition, a polishing composition set, and a polishing method. Specifically, the present invention relates to a method for producing a polishing composition used for rough polishing of a silicon wafer, a polishing composition set, and a method for polishing a silicon wafer using the polishing composition.
  • This application claims priority based on Japanese Patent Application No. 2016-152325 filed on Aug. 2, 2016, the entire contents of which are incorporated herein by reference.
  • Patent document 1 is mentioned as a prior art document which discloses the constituent for polish used for polish of a silicon substrate.
  • this type of polishing composition may be in a concentrated form before being supplied to the object to be polished from the viewpoint of convenience, cost reduction, and the like during production, distribution, storage, and the like. That is, the polishing composition may be in the form of a concentrated concentrate of polishing liquid. The prepared concentrated liquid is diluted with water and used for polishing.
  • Patent documents 2 and 3 are mentioned as literature which discloses this kind of prior art.
  • Patent Document 4 is a document disclosing the radius of inertia of hydroxycellulose used in the polishing composition.
  • the present inventors have used a water-soluble polymer having an inertial radius greater than or equal to a predetermined value after polishing, as shown in Examples below. It was found that the phenomenon of undesirably decreasing the thickness of the outer periphery (near the edge), that is, edge roll-off can be improved. However, a water-soluble polymer having a large inertial radius tends to be less stable when the polishing composition is stored as a concentrate. Specifically, since the concentrated liquid contains components such as abrasive grains and water-soluble polymers at a higher concentration than when used, there is a risk that good stability such as separation and aggregation of the contained components may not be obtained. is there.
  • the present invention has been made in view of the above circumstances, and is a composition for rough polishing of silicon wafers that can achieve both the advantages of the concentrate and excellent stability, and can improve edge roll-off. It aims at providing the manufacturing method of a thing. Another related object is to provide a composition set for rough polishing a silicon wafer and to provide a method for polishing a silicon wafer.
  • a method for producing a composition for rough polishing a silicon wafer containing abrasive grains, a basic compound and a water-soluble polymer includes: a step of preparing a liquid A containing the abrasive grains and the basic compound; and a step of preparing a liquid B containing a water-soluble polymer P1 having an inertial radius of 100 nm or more as the water-soluble polymer. And a step of mixing the liquid A and the liquid B.
  • the polishing composition obtained by such a method can improve edge roll-off in polishing a silicon substrate by including the water-soluble polymer P1 having a predetermined or larger inertia radius.
  • the polishing composition before completion in other words, before use, is a multi-drug type having a liquid A and a liquid B. Concentration such as convenience and cost reduction is achieved by increasing the concentration of each liquid (concentrated liquid). You can enjoy the benefits of liquid.
  • the abrasive grains and the water-soluble polymer P1 are separately stored in the liquid A and the liquid B, an event in which the dispersion of the water-soluble polymer P1 is hindered by the presence of the abrasive grains can be avoided.
  • the polishing composition before completion shows excellent stability in the state of liquid A and liquid B. Therefore, according to the present invention, it is possible to produce a silicon wafer rough polishing composition that is excellent in stability and can improve edge roll-off while enjoying the advantages of the concentrate.
  • a polishing composition set for producing a silicon wafer rough polishing composition containing abrasive grains, a basic compound and a water-soluble polymer.
  • a polishing composition set includes a liquid A containing the abrasive grains and the basic compound, and a liquid B containing a water-soluble polymer P1 having an inertia radius of 100 nm or more as the water-soluble polymer.
  • the liquid A and the liquid B each have excellent stability while enjoying the advantages of the concentrated liquid when used as a concentrated liquid before use, for example, during storage.
  • liquid A and liquid B are mixed at an appropriate timing to obtain a polishing composition (polishing slurry), and by using this, the edge roll-off of the silicon substrate can be improved.
  • the advantages of the concentrated liquid are convenience and cost reduction.
  • a silicon wafer polishing method including a rough polishing step and a final polishing step.
  • This polishing method includes a step of preparing a rough polishing composition used in the rough polishing step before the rough polishing step.
  • the step of preparing the rough polishing composition includes: a step of preparing a solution A containing abrasive grains and a basic compound; and a step of preparing a solution B containing a water-soluble polymer P1 having an inertia radius of 100 nm or more. And a step of mixing the liquid A and the liquid B.
  • the polishing composition before use can be made into a concentrated solution having excellent stability in a state where the polishing composition is separated into the liquid A and the liquid B. Moreover, edge roll-off of the silicon substrate can be improved by performing rough polishing using the polishing composition.
  • a method for producing a polishing composition a polishing composition set for producing the polishing composition, and a method for polishing a silicon wafer using the polishing composition are provided.
  • the polishing composition produced by the method disclosed herein will be described first, and then the production method, the polishing composition set, and the polishing method using the polishing composition will be described in this order.
  • the polishing composition disclosed herein contains abrasive grains.
  • the material and properties of the abrasive grains are not particularly limited, and can be appropriately selected according to the purpose of use and the mode of use.
  • Examples of the abrasive grains include inorganic particles, organic particles, and organic-inorganic composite particles.
  • the inorganic particles include silica particles, alumina particles, cerium oxide particles, chromium oxide particles, titanium dioxide particles, zirconium oxide particles, magnesium oxide particles, manganese dioxide particles, zinc oxide particles, oxide particles such as bengara particles; Examples thereof include nitride particles such as silicon nitride particles and boron nitride particles; carbide particles such as silicon carbide particles and boron carbide particles; diamond particles; carbonates such as calcium carbonate and barium carbonate.
  • the organic particles include polymethyl methacrylate (PMMA) particles, poly (meth) acrylic acid particles, and polyacrylonitrile particles. Such an abrasive grain may be used individually by 1 type, and may be used in combination of 2 or more type.
  • (meth) acrylic acid is the meaning which points out acrylic acid and methacrylic acid comprehensively.
  • a particularly preferable abrasive grain in the technology disclosed herein includes silica particles.
  • the technique disclosed here can be preferably implemented, for example, in a mode in which the abrasive grains are substantially composed of silica particles.
  • “substantially” means that 95% by weight or more of the particles constituting the abrasive grains are silica particles, preferably 98% by weight or more, more preferably 99% by weight or more are silica particles, 100% by weight of the particles constituting the abrasive grains may be silica particles.
  • the silica particles include colloidal silica, fumed silica, precipitated silica and the like.
  • Silica particles can be used alone or in combination of two or more.
  • Colloidal silica is particularly preferable because scratches are hardly generated on the surface of the object to be polished and good polishing performance can be exhibited.
  • the polishing performance is, for example, performance for reducing the surface roughness.
  • colloidal silica for example, colloidal silica produced using water glass (Na silicate) as a raw material by an ion exchange method or alkoxide colloidal silica can be preferably used.
  • the alkoxide colloidal silica refers to colloidal silica produced by hydrolysis condensation reaction of alkoxysilane. Colloidal silica can be used alone or in combination of two or more.
  • the true specific gravity of silica constituting the silica particles is preferably 1.5 or more, more preferably 1.6 or more, and even more preferably 1.7 or more. As the true specific gravity of silica increases, the polishing rate tends to increase. From this viewpoint, silica particles having a true specific gravity of 2.0 or more, such as 2.1 or more, are particularly preferable.
  • the upper limit of the true specific gravity of silica is not particularly limited, but is typically 2.3 or less, for example, 2.2 or less.
  • a measured value by a liquid substitution method using ethanol as a substitution liquid can be adopted.
  • the average primary particle diameter of the abrasive grains disclosed herein is not particularly limited. From the viewpoint of polishing rate and the like, the average primary particle size is suitably 5 nm or more, preferably 10 nm or more, more preferably 30 nm or more, still more preferably 40 nm or more, and particularly preferably 45 nm or more. In a particularly preferred embodiment, the average primary particle diameter is, for example, 50 nm or more.
  • the abrasive grains are typically silica particles.
  • the average primary particle diameter of the abrasive is suitably about 200 nm or less, preferably 100 nm or less, more preferably 80 nm or less, still more preferably 70 nm or less, particularly preferably 60 nm. It can be:
  • the specific surface area can be measured using, for example, a surface area measuring device manufactured by Micromeritex Corporation, a trade name “Flow Sorb II 2300”.
  • the shape (outer shape) of the abrasive grains may be spherical or non-spherical.
  • specific examples of the non-spherical particles include a peanut shape, a bowl shape, a confetti shape, and a rugby ball shape.
  • the peanut shape is that of a peanut shell.
  • abrasive grains in which many of the particles have a peanut shape can be preferably used.
  • the average value of the major axis / minor axis ratio (average aspect ratio) of the abrasive grains is theoretically 1.0 or more, preferably 1.05 or more, more preferably 1.1 or more. It is. By increasing the average aspect ratio, a higher polishing rate can be achieved.
  • the average aspect ratio of the abrasive grains is preferably 3.0 or less, more preferably 2.0 or less, and still more preferably 1.5 or less, from the viewpoint of reducing scratches.
  • the shape (outer shape) and average aspect ratio of the abrasive grains can be grasped by, for example, observation with an electron microscope.
  • an electron microscope As a specific procedure for grasping the average aspect ratio, for example, with a scanning electron microscope (SEM), for a predetermined number of silica particles capable of recognizing the shape of independent particles, the minimum circumscribing each particle image is performed.
  • the predetermined number is, for example, 200.
  • the value obtained by dividing the length of the long side (major axis value) by the length of the short side (minor axis value) is the major axis / minor axis ratio (aspect ratio). ).
  • An average aspect ratio can be obtained by arithmetically averaging the aspect ratios of the predetermined number of particles.
  • the content of the abrasive grains in the polishing composition disclosed herein is not particularly limited, preferably 0.05% by weight or more, more preferably 0.1% by weight or more, and further preferably 0.3% by weight or more. It is. In a further preferred embodiment, the content of the abrasive grains is, for example, 0.5% by weight or more. Higher polishing rates can be achieved by increasing the abrasive content. Further, from the viewpoint of removability from the polishing object, the content is suitably 10% by weight or less, preferably 7% by weight or less, more preferably 5% by weight or less, and further preferably 3% by weight or less. It is. In a more preferred embodiment, the content of the abrasive grains is, for example, 2% by weight or less.
  • the polishing composition disclosed herein includes a water-soluble polymer P1 having an inertia radius of 100 nm or more.
  • the edge roll-off is improved.
  • the reason is not particularly limited, but the water-soluble polymer P1 having a predetermined or larger inertia radius contained in the polishing composition (polishing slurry) strongly adsorbs to the end of the substrate to be polished. It is presumed that an increase in edge roll-off (end sagging) is suppressed by avoiding excessive polishing.
  • the inertial radius of the water-soluble polymer P1 is the size of one molecule of the water-soluble polymer P1 in the aqueous solution, and can be determined mainly by the hydrophilicity, molecular weight, etc. of the polymer P1.
  • the radius of inertia of the water-soluble polymer P1 is preferably 105 nm or more, more preferably 120 nm or more, and particularly preferably 140 nm or more.
  • the upper limit of the radius of inertia of the water-soluble polymer P1 is not particularly limited, and should be about 500 nm or less from the viewpoint of the stability and concentration efficiency of the B liquid used as the water-soluble polymer P1-containing liquid in polishing composition production.
  • the inertia radius of the water-soluble polymer P1 may be, for example, 150 nm or less and 120 nm or less.
  • the inertial radius of the water-soluble polymer in this specification is measured by the method described in Examples described later.
  • the type of the water-soluble polymer P1 contained in the polishing composition disclosed herein is not particularly limited, and can be appropriately selected from water-soluble polymer species known in the field of polishing compositions.
  • the water-soluble polymer P1 can be used alone or in combination of two or more.
  • Examples of the water-soluble polymer P1 include cellulose derivatives, starch derivatives, polymers containing oxyalkylene units, polymers containing nitrogen atoms, polyvinyl alcohol and the like. Among these, from the viewpoint of improving flatness, cellulose derivatives and starch derivatives are preferable, and cellulose derivatives are more preferable.
  • Cellulose derivatives are polymers containing ⁇ -glucose units as the main repeating unit.
  • Specific examples of the cellulose derivative include hydroxyethyl cellulose (HEC), hydroxypropyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl methyl cellulose, methyl cellulose, ethyl cellulose, ethyl hydroxyethyl cellulose, carboxymethyl cellulose and the like. Of these, HEC is preferable.
  • Starch derivatives are polymers that contain ⁇ -glucose units as the main repeating unit. Specific examples of starch derivatives include pregelatinized starch, pullulan, carboxymethyl starch, and cyclodextrin. Of these, pullulan is preferred.
  • Polymers containing oxyalkylene units include polyethylene oxide (PEO), block copolymers of ethylene oxide (EO) and propylene oxide (PO) or butylene oxide (BO), and random copolymerization of EO and PO or BO. Examples include coalescence. Among these, a block copolymer of EO and PO or a random copolymer of EO and PO is preferable.
  • the block copolymer of EO and PO may be a diblock body, a triblock body or the like including a PEO block and a polypropylene oxide (PPO) block. Examples of the triblock body include a PEO-PPO-PEO type triblock body and a PPO-PEO-PPO type triblock body.
  • the molar ratio [EO / PO] of EO and PO constituting the copolymer is from the viewpoint of solubility in water, detergency, and the like. It is preferably larger than 1, more preferably 2 or more, and further preferably 3 or more. In a more preferred embodiment, the molar ratio [EO / PO] is, for example, 5 or more.
  • both a polymer containing a nitrogen atom in the main chain and a polymer having a nitrogen atom in a side chain functional group (pendant group) can be used.
  • a polymer containing nitrogen atoms By using a polymer containing nitrogen atoms, the surface roughness of the substrate can be improved.
  • the polymer containing a nitrogen atom in the main chain include homopolymers and copolymers of N-acylalkylenimine type monomers.
  • Specific examples of the N-acylalkyleneimine monomer include N-acetylethyleneimine, N-propionylethyleneimine and the like.
  • the polymer having a nitrogen atom in the pendant group include a polymer containing an N-vinyl type monomer unit.
  • homopolymers and copolymers of N-vinylpyrrolidone can be employed.
  • at least one of a homopolymer and a copolymer of N-vinylpyrrolidone obtained by polymerizing N-vinylpyrrolidone at a ratio of 50 mol% or more (hereinafter also referred to as “PVP”).
  • PVP polymerizing N-vinylpyrrolidone at a ratio of 50 mol% or more
  • the saponification degree of the polyvinyl alcohol is not particularly limited.
  • the molecular weight of the water-soluble polymer P1 is not particularly limited.
  • the weight average molecular weight (Mw) of the water-soluble polymer P1 can be about 300 ⁇ 10 4 or less, and is preferably 150 ⁇ 10 4 or less.
  • the Mw may be, for example, 130 ⁇ 10 4 or less and 110 ⁇ 10 4 or less.
  • Mw is suitably 1 ⁇ 10 4 or more, preferably 10 ⁇ 10 4 or more, more preferably 20 ⁇ 10 4 or more.
  • the Mw is, for example, 50 ⁇ 10 4 or more, and further 80 ⁇ 10 4 or more.
  • the Mw may be, for example, 110 ⁇ 10 4 or more and 130 ⁇ 10 4 or more.
  • the Mw can be particularly preferably adopted for the cellulose derivative. Examples of the cellulose derivative include HEC.
  • the relationship between the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the water-soluble polymer P1 is not particularly limited. From the viewpoint of preventing the occurrence of aggregates, for example, the molecular weight distribution [Mw / Mn] is preferably 10.0 or less, and more preferably 7.0 or less.
  • Mw and Mn of the water-soluble polymer P1 values based on an aqueous gel permeation chromatography (GPC) (aqueous, polyethylene oxide equivalent) can be adopted.
  • GPC gel permeation chromatography
  • the content of the water-soluble polymer P1 in the polishing composition is suitably 1 ⁇ 10 ⁇ 5 wt% or more, for example, 5 ⁇ 10 ⁇ 5 wt% or more, from the viewpoint of improving polishing performance and surface quality. Preferably, it is 1 ⁇ 10 ⁇ 4 wt% or more. In a preferred embodiment, the content of the water-soluble polymer P1 is, for example, 2 ⁇ 10 ⁇ 4 wt% or more.
  • the upper limit of the content of the water-soluble polymer P1 in the polishing composition can be, for example, 1% by weight or less.
  • the content of the water-soluble polymer P1 is preferably 0.1% by weight or less, more preferably 0.05% by weight or less, and still more preferably It is 0.02% by weight or less, particularly preferably 0.01% by weight or less. In a particularly preferred embodiment, the content of the water-soluble polymer P1 is, for example, 0.005% by weight or less, typically 0.001% by weight or less.
  • the concentrated liquid is typically B liquid.
  • the content of the water-soluble polymer P1 in the polishing composition disclosed herein can also be specified by a relative relationship with the abrasive grains contained in the polishing composition.
  • the content of the water-soluble polymer P1 in the polishing composition is suitably 0.001 part by weight or more with respect to 100 parts by weight of the abrasive grains, from the viewpoint of improving edge roll-off, etc.
  • the amount is preferably 0.005 parts by weight or more, more preferably 0.01 parts by weight or more, and still more preferably 0.015 parts by weight or more.
  • the content of the water-soluble polymer P1 is suitably 10 parts by weight or less, preferably 1 part by weight or less, based on 100 parts by weight of the abrasive grains. Preferably it is 0.5 weight part or less, More preferably, it is 0.3 weight part or less.
  • the polishing composition further includes a water-soluble polymer P2 having an inertial radius of less than 100 nm in addition to the water-soluble polymer P1 having an inertial radius of 100 nm or more.
  • the water-soluble polymer P2 is a component that plays a role in protecting the substrate surface such as etching suppression and contributes to reducing the surface roughness.
  • the radius of inertia of the water-soluble polymer P2 is preferably less than 90 nm, more preferably less than 70 nm, and still more preferably less than 50 nm from the viewpoint of stability, concentration efficiency, and the like.
  • the inertial radius of the water-soluble polymer P2 is, for example, less than 30 nm, typically less than 5 nm.
  • the lower limit of the inertial radius of the water-soluble polymer P2 is not particularly limited, and may be 0.1 nm or more, for example, 1 nm or more.
  • the type of the water-soluble polymer P2 is not particularly limited, and can be appropriately selected from water-soluble polymer species known in the field of polishing compositions.
  • the water-soluble polymer P2 include cellulose derivatives exemplified as the water-soluble polymer P1, starch derivatives, polymers containing oxyalkylene units, polymers containing nitrogen atoms, and polyvinyl alcohol.
  • the water-soluble polymer P2 is preferably a polymer other than the cellulose derivative and / or the starch derivative, and more preferably a polymer containing a nitrogen atom.
  • the polymer other than the cellulose derivative and / or starch derivative is typically a polymer other than the cellulose derivative.
  • cellulose derivatives starch derivatives, polymers containing oxyalkylene units, polymers containing nitrogen atoms, and polyvinyl alcohol
  • one or more of those exemplified as the water-soluble polymer P1 can be used.
  • a polymer containing a nitrogen atom in the main chain and a polymer having a nitrogen atom in the side chain functional group (pendant group) are preferable, and a polymer containing an N-vinyl type monomer unit is more preferable.
  • N-vinylpyrrolidone homopolymers and copolymers are particularly preferred.
  • the molecular weight of the water-soluble polymer P2 is not particularly limited.
  • the weight average molecular weight (Mw) of the water-soluble polymer P2 can be about 300 ⁇ 10 4 or less, and is suitably 150 ⁇ 10 4 or less, for example, 50 ⁇ 10 4 or less. From the viewpoint of stability and the like, the Mw may be 30 ⁇ 10 4 or less, for example, 5 ⁇ 10 4 or less. Further, from the viewpoint of improving the protection of the substrate surface, Mw is suitably 1 ⁇ 10 4 or more, more preferably 2 ⁇ 10 4 or more, and further preferably 3 ⁇ 10 4 or more.
  • the above Mw can be particularly preferably employed for homopolymers and copolymers (typically PVP) of N-vinylpyrrolidone.
  • the relationship between the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the water-soluble polymer P2 is not particularly limited. From the viewpoint of preventing the occurrence of aggregates, for example, the molecular weight distribution [Mw / Mn] is preferably 10.0 or less, more preferably 7.0 or less, and even more preferably 5.0 or less. A value of 4.0 or less is particularly preferred, and a value of 3.0 or less is most preferred.
  • the mixing ratio of the water-soluble polymer P1 and the water-soluble polymer P2 is particularly
  • the water-soluble polymer P1: water-soluble polymer P2 is suitably 1: 9 to 9: 1, preferably 3: 7 to 8: 2, more preferably 5: 5 to 7: 3.
  • the water-soluble polymer P1 is a cellulose derivative such as HEC
  • the water-soluble polymer P2 is a polymer containing an N-vinyl type monomer unit such as PVP.
  • the content of the water-soluble polymer P2 is less than 100% by weight when the content of the water-soluble polymer P1 is 100% by weight, and is preferable from the viewpoint of stability. Is less than 80% by weight, more preferably less than 70% by weight. In a more preferred embodiment, the content of the water-soluble polymer P2 is, for example, less than 60% by weight. Further, from the viewpoint of reducing the surface roughness, the content of the water-soluble polymer P2 can be about 10% by weight or more when the content of the water-soluble polymer P1 is 100% by weight, and 30% by weight. % Or more is suitable, and preferably 50% by weight or more.
  • the content of the water-soluble polymer other than the water-soluble polymer P1 is the content of the water-soluble polymer P1, whether or not the polishing composition contains the water-soluble polymer P2.
  • the amount is 100% by weight, it can be less than about 200% by weight, for example, less than 150% by weight, and more preferably less than 100% by weight.
  • the content of the water-soluble polymer other than the water-soluble polymer P1 is preferably less than 80% by weight, more preferably 70% by weight when the content of the water-soluble polymer P1 is 100% by weight.
  • the content of the water-soluble polymer other than the water-soluble polymer P1 is, for example, less than 60% by weight.
  • the polishing composition disclosed herein contains a basic compound.
  • the basic compound refers to a compound having a function of dissolving in water and increasing the pH of an aqueous solution.
  • an organic or inorganic basic compound containing nitrogen an alkali metal hydroxide, an alkaline earth metal hydroxide, various carbonates, bicarbonates, or the like can be used.
  • Examples of basic compounds containing nitrogen include quaternary ammonium compounds, quaternary phosphonium compounds, ammonia, amines and the like.
  • the amine is preferably a water-soluble amine.
  • Such basic compounds can be used singly or in combination of two or more.
  • alkali metal hydroxide examples include potassium hydroxide and sodium hydroxide.
  • Specific examples of the carbonate or bicarbonate include ammonium bicarbonate, ammonium carbonate, potassium bicarbonate, potassium carbonate, sodium bicarbonate, sodium carbonate and the like.
  • amines include methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, ethylenediamine, monoethanolamine, N- ( ⁇ -aminoethyl) ethanolamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, anhydrous piperazine , Piperazine hexahydrate, 1- (2-aminoethyl) piperazine, N-methylpiperazine, guanidine, azoles such as imidazole and triazole, and the like.
  • quaternary phosphonium compound include quaternary phosphonium hydroxide such as tetramethylphosphonium hydroxide and tetraethylphosphonium hydroxide.
  • quaternary ammonium salt such as a tetraalkylammonium salt or a hydroxyalkyltrialkylammonium salt can be preferably used.
  • the quaternary ammonium salt is typically a strong base.
  • the anionic component in such a quaternary ammonium salt can be, for example, OH ⁇ , F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , ClO 4 ⁇ , BH 4 ⁇ and the like.
  • the anion is OH - a is a quaternary ammonium salt, i.e., include quaternary ammonium hydroxide.
  • quaternary ammonium hydroxide examples include hydroxides such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, tetrapentylammonium hydroxide, and tetrahexylammonium hydroxide.
  • tetraalkylammonium hydroxide is preferable, and tetramethylammonium hydroxide (TMAH) is particularly preferable.
  • the polishing composition disclosed herein may contain a combination of a quaternary ammonium compound and a weak acid salt as described above.
  • the quaternary ammonium compound is, for example, a tetraalkylammonium hydroxide such as TMAH.
  • TMAH tetraalkylammonium hydroxide
  • the weak acid salt one that can be used for polishing using silica particles and can exhibit a desired buffering action in combination with a quaternary ammonium compound can be appropriately selected.
  • the weak acid salts can be used alone or in combination of two or more.
  • weak acid salts include sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, sodium orthosilicate, potassium orthosilicate, sodium acetate, potassium acetate, sodium propionate, potassium propionate, calcium carbonate, calcium bicarbonate , Calcium acetate, calcium propionate, magnesium acetate, magnesium propionate, zinc propionate, manganese acetate, cobalt acetate and the like.
  • Weak acid salts in which the anion component is carbonate ion or hydrogen carbonate ion are preferred, and weak acid salts in which the anion component is carbonate ion are particularly preferred.
  • alkali metal ions such as potassium and sodium, are suitable.
  • Particularly preferred weak acid salts include sodium carbonate, potassium carbonate, sodium bicarbonate and potassium bicarbonate. Of these, potassium carbonate (K 2 CO 3 ) is preferable.
  • the blending ratio of the quaternary ammonium compound and the weak acid salt is not particularly limited.
  • the quaternary ammonium compound is, for example, a tetraalkylammonium hydroxide such as TMAH.
  • the weak acid salt is, for example, a weak acid salt whose anion component such as K 2 CO 3 is a carbonate ion.
  • the content of the basic compound in the polishing composition is, for example, 0.001% by weight or more, typically 0.01% by weight or more. From the viewpoint of improvement and the like, it is preferably 0.05% by weight or more, more preferably 0.08% by weight or more.
  • the stability of the liquid A can be improved by increasing the content of the basic compound.
  • the upper limit of the content of the basic compound is suitably 5% by weight or less, and preferably 1% by weight or less from the viewpoint of surface quality and the like. In a preferred embodiment, the content of the basic compound is, for example, 0.5% by weight or less, typically 0.2% by weight or less.
  • the polishing composition disclosed herein typically contains water.
  • water ion exchange water (deionized water), pure water, ultrapure water, distilled water and the like can be preferably used.
  • the water to be used preferably has, for example, a total content of transition metal ions of 100 ppb or less in order to avoid as much as possible the action of other components contained in the polishing composition.
  • the purity of water can be increased by operations such as removal of impurity ions with an ion exchange resin, removal of foreign matter with a filter, distillation, and the like.
  • the polishing composition disclosed here may further contain an organic solvent that can be uniformly mixed with water, if necessary.
  • the organic solvent is a lower alcohol, a lower ketone or the like.
  • the solvent contained in polishing composition it is preferable that 90 volume% or more is water, and it is more preferable that 95 volume% or more is water. In a more preferred embodiment, typically 99 to 100% by volume of the solvent contained in the concentrate is water.
  • aqueous solvent may be used as a general term including the solvent and water.
  • the polishing composition disclosed herein can contain a chelating agent as an optional component.
  • the chelating agent functions to suppress contamination of the object to be polished by metal impurities by forming complex ions with metal impurities that can be contained in the polishing composition and capturing them.
  • Examples of chelating agents include aminocarboxylic acid chelating agents and organic phosphonic acid chelating agents.
  • aminocarboxylic acid-based chelating agents include ethylenediaminetetraacetic acid, ethylenediaminetetraacetic acid sodium, nitrilotriacetic acid, nitrilotriacetic acid sodium, nitrilotriacetic acid ammonium, hydroxyethylethylenediaminetriacetic acid, hydroxyethylethylenediamine sodium triacetate, diethylenetriaminepentaacetic acid Diethylenetriamine sodium pentaacetate, triethylenetetramine hexaacetic acid and sodium triethylenetetramine hexaacetate.
  • organic phosphonic acid chelating agents examples include 2-aminoethylphosphonic acid, 1-hydroxyethylidene-1,1-diphosphonic acid, aminotri (methylenephosphonic acid), ethylenediaminetetrakis (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic).
  • ethylenediaminetetrakis methylenephosphonic acid
  • diethylenetriaminepenta methylenephosphonic acid
  • diethylenetriaminepentaacetic acid are preferable.
  • Particularly preferred chelating agents include ethylenediaminetetrakis (methylenephosphonic acid) and diethylenetriaminepenta (methylenephosphonic acid).
  • a chelating agent can be used individually by 1 type or in combination of 2 or more types.
  • the polishing composition disclosed herein is a surfactant, an organic acid, an organic acid salt, an inorganic acid, an inorganic acid salt, an antiseptic, an antifungal agent, etc., as long as the effects of the present invention are not significantly hindered. You may further contain the well-known additive which can be used for polishing slurry as needed.
  • the polishing slurry is typically a polishing slurry used in a silicon substrate polishing process.
  • the polishing composition disclosed here contains substantially no oxidizing agent.
  • the polishing slurry is supplied to the object to be polished (here, the silicon substrate), whereby the surface of the object to be polished is oxidized to form an oxide film. This is because the polishing rate may decrease.
  • the oxidizing agent herein include hydrogen peroxide (H 2 O 2 ), sodium persulfate, ammonium persulfate, sodium dichloroisocyanurate, and the like.
  • that polishing composition does not contain an oxidizing agent substantially means not containing an oxidizing agent at least intentionally.
  • the pH of the polishing composition in the technique disclosed herein is preferably 8.0 or more, for example 8.5 or more, more preferably 9.0 or more, and still more preferably 9.5 or more. Further, the pH of the polishing composition in a more preferable embodiment is 10.0 or more, for example. When the pH of the polishing liquid increases, the polishing rate tends to improve.
  • the upper limit of the pH of the polishing liquid is not particularly limited, it is preferably 12.0 or less, for example, 11.5 or less, and more preferably 11.0 or less, from the viewpoint of better polishing the object to be polished. . From the viewpoint of improving the surface quality, the pH is more preferably 10.8 or less.
  • the pH of the polishing composition in a further preferred embodiment is, for example, 10.6 or less, and typically 10.5 or less.
  • the surface quality improvement typically refers to a reduction in surface roughness.
  • the pH can be preferably used for a polishing liquid used for polishing a silicon wafer, for example.
  • the polishing liquid is, for example, a polishing liquid for rough polishing.
  • the pH of the liquid composition is adjusted to 3 using a pH buffer and a standard buffer solution, and then the glass electrode is placed in the composition to be measured. It can be grasped by measuring the value after a minute or more has passed and stabilized.
  • the liquid composition may be a polishing slurry, A liquid, B liquid, or the like.
  • As the pH meter for example, a glass electrode type hydrogen ion concentration indicator (model number F-23) manufactured by HORIBA, Ltd. is used.
  • the standard buffer solutions are phthalate pH buffer solution pH: 4.01 (25 ° C.), neutral phosphate pH buffer solution pH: 6.86 (25 ° C.), carbonate pH buffer solution pH: 10. 01 (25 ° C.).
  • the polishing composition disclosed herein can be produced by the following method. Specifically, the above manufacturing method prepares a liquid B containing a step of preparing liquid A containing abrasive grains and a basic compound (liquid A preparation step) and a water-soluble polymer P1 having an inertia radius of 100 nm or more. And a step of mixing the solution A and the solution B (mixing step). In addition, the order of A liquid preparation process and B liquid preparation process is not specifically limited.
  • a liquid A containing abrasive grains and a basic compound is prepared.
  • the 1 type (s) or 2 or more types of the various abrasive grains illustrated as an abrasive grain which may be contained in polishing composition can be used.
  • the various abrasive grains include silica particles, preferably colloidal silica.
  • the average primary particle diameter, shape, and average aspect ratio of the abrasive grains can be the average primary particle diameter, shape, and average aspect ratio that can be taken by the abrasive grains contained in the polishing composition.
  • the solution A is typically prepared in a form containing a higher concentration of the components than the polishing composition from the viewpoint of convenience of production, distribution, storage and the like. Therefore, the content of abrasive grains in the liquid A is also preferably higher than the content of abrasive grains in the polishing composition. Specifically, the content of the abrasive grains in the liquid A is suitably about 1% by weight or more, for example, 10% by weight or more, preferably 15% by weight or more, more preferably 20% by weight or more, Preferably it is 25 weight% or more. From the viewpoint of stability, filterability, etc., the content of the abrasive grains in the liquid A is, for example, suitably 50% by weight or less, and preferably 45% by weight or less. In a preferred embodiment, the content of abrasive grains in the liquid A is, for example, 40% by weight or less, typically 35% by weight or less.
  • the entire amount of abrasive grains contained in the polishing composition is contained in the liquid A, but the technique disclosed herein is not limited thereto. As long as the effects of the present invention are not significantly impaired, part of the abrasive grains contained in the polishing composition may be contained in the liquid A. Specifically, when the total amount of abrasive grains contained in the polishing composition is 100% by weight, it is appropriate that an amount exceeding 50% by weight is contained in the liquid A, and the polishing composition It is preferable that 80% by weight or more, for example, 90% by weight or more, more preferably 95% by weight or more, typically 99% by weight to 100% by weight, of the total amount of abrasive grains contained in is contained in the liquid A.
  • a liquid contains a combination of a quaternary ammonium compound and a weak acid salt as a basic compound
  • the blending ratio of the quaternary ammonium compound and the weak acid salt in the B liquid is not particularly limited. It is appropriate that the ratio of the quaternary ammonium compound: weak acid salt is 1: 9 to 9: 1, preferably 3: 7 to 8: 2, more preferably 5: 5 to 7: 3.
  • the quaternary ammonium compound is, for example, tetraalkylammonium hydroxide such as TMAH.
  • the weak acid salt is, for example, a weak acid salt in which an anion component such as K 2 CO 3 is a carbonate ion.
  • the content (concentration) of the basic compound in the liquid A is suitably, for example, 0.1% by weight or more, typically 0.5% by weight or more from the viewpoint of improving the polishing rate, preferably 1% by weight or more, more preferably 1.5% by weight or more, and further preferably 2.0% by weight or more.
  • the content of the basic compound in the liquid A is, for example, 2.5% by weight or more.
  • concentration of the abrasive grains after dilution may be relatively low, and the processing force by the abrasive grains may tend to decrease.
  • the upper limit of the content of the basic compound in the liquid A is suitably 10% by weight or less, preferably 5% by weight or less, from the viewpoints of storage stability and surface quality. In a preferred embodiment, the content of the basic compound in the liquid A is, for example, 3% by weight or less.
  • the content of the basic compound in the liquid A can also be specified by the relative relationship with the abrasive grains contained in the liquid A.
  • the content of the basic compound in the liquid A is suitably 0.1 parts by weight or more with respect to 100 parts by weight of the abrasive grains, and preferably 1 weight from the viewpoint of improving the polishing rate. Part or more, more preferably 3 parts by weight or more, still more preferably 6 parts by weight or more.
  • the content of the basic compound is suitably 50 parts by weight or less, preferably 30 parts by weight or less, more preferably 100 parts by weight of abrasive grains. 15 parts by weight or less, more preferably 12 parts by weight or less.
  • the entire amount of the basic compound contained in the polishing composition may be contained in the A liquid, or a part thereof may be contained in the A liquid.
  • the total amount of basic compounds contained in the polishing composition is 100% by weight, it is appropriate that an amount exceeding 50% by weight is contained in the liquid A. It is preferable that 80% by weight or more, for example 90% by weight or more, further 95% by weight or more, typically 99% by weight or more of the total amount of basic compounds contained in the product is contained in the liquid A.
  • the amount of the basic compound contained in the liquid A is 99.999% by weight or less, for example, 99.99% by weight or less when the total amount of the basic compound contained in the polishing composition is 100% by weight. Typically, it can be about 99.9% by weight or less.
  • the liquid A contains the water-soluble polymer P2 in the production of the polishing composition. This tends to improve the dispersion stability of the abrasive grains.
  • the water-soluble polymer P2 that can be contained in the liquid A one or more of the various water-soluble polymers P2 exemplified as the water-soluble polymer P2 that can be contained in the polishing composition can be used.
  • the content (concentration) of the water-soluble polymer P2 in the liquid A is 1 ⁇ 10 ⁇ 4 wt% from the viewpoint of sufficiently obtaining the effect of adding the water-soluble polymer P2.
  • the content of the water-soluble polymer P2 in the liquid A is, for example, 3 ⁇ 10 ⁇ 3 wt% or more.
  • the upper limit of the content of the water-soluble polymer P2 in the liquid A is not particularly limited. For example, it is appropriate to set it to 1 ⁇ 10 ⁇ 1 wt% or less, typically 1 ⁇ 10 ⁇ 2 wt% or less.
  • the polishing composition contains the water-soluble polymer P2
  • the total amount of the water-soluble polymer P2 may be contained in the liquid A, a part of which is contained in the liquid A, and the remainder is contained in the liquid B. The total amount thereof may be contained in the B liquid.
  • the technique disclosed here can be preferably implemented in a mode in which the liquid A does not substantially contain the water-soluble polymer P1, but is included in the polishing composition as long as the effects of the present invention are not significantly impaired.
  • a part of the water-soluble polymer P1 may be contained in the A liquid.
  • the said A liquid may typically contain the aqueous solvent represented by water.
  • Liquid A is an addition of a chelating agent, a surfactant, an organic acid, an organic acid salt, an inorganic acid, an inorganic acid salt, an antiseptic, an antifungal agent and the like that can be included as an optional component in the polishing composition disclosed herein. An agent may be further contained as necessary.
  • the pH of the solution A disclosed herein is typically 8.0 or higher, preferably 8.5 or higher, more preferably 9.0 or higher, still more preferably 9.5 or higher, for example 10.0 or higher. And particularly preferably 10.5 or more.
  • the polishing performance tends to be improved by increasing the pH of the liquid A.
  • the pH of the liquid A is suitably 12.0 or less and 11.8 or less from the viewpoint of preventing dissolution of the abrasive grains and suppressing a decrease in mechanical polishing action by the abrasive grains.
  • it is 11.5 or less.
  • the abrasive grains are, for example, silica particles.
  • each component contained in the liquid A may be mixed using a well-known mixing apparatus such as a blade-type stirrer, an ultrasonic disperser, or a homomixer.
  • a well-known mixing apparatus such as a blade-type stirrer, an ultrasonic disperser, or a homomixer.
  • the aspect which mixes these components is not specifically limited, For example, all the components may be mixed at once and may be mixed in the order set suitably.
  • the same mixing method can be appropriately employed for the later-described B liquid.
  • B liquid used for manufacture of the polishing composition disclosed here contains water-soluble polymer P1 whose inertia radius is 100 nm or more.
  • water-soluble polymer P1 contained in the liquid B one or more of various water-soluble polymers exemplified as the water-soluble polymer P1 that can be contained in the polishing composition can be used.
  • the liquid B is also typically prepared in a form containing a higher concentration of the components than the polishing composition from the viewpoint of convenience in production, distribution, storage, etc., as with the liquid A. Therefore, the content of the water-soluble polymer P1 in the liquid B is also preferably higher than the content of the water-soluble polymer P1 in the polishing composition. Specifically, the content of the water-soluble polymer P1 in the liquid B is suitably about 0.01% by weight or more, for example 0.02% by weight or more, preferably 0.05% by weight or more. is there. In a preferred embodiment, the content of the water-soluble polymer P1 in the liquid B is, for example, 0.1% by weight or more.
  • the content of the water-soluble polymer P1 in the liquid B is suitably 10% by weight or less, and preferably 3% by weight or less, for example.
  • the content of the water-soluble polymer P1 in the liquid B is, for example, 1% by weight or less, typically 0.5% by weight or less.
  • the entire amount of the water-soluble polymer P1 contained in the polishing composition is contained in the B solution, but the technique disclosed herein is not limited thereto.
  • a part of the water-soluble polymer P1 contained in the polishing composition may be contained in the liquid A as long as the effects of the present invention are not significantly impaired.
  • the total amount of the water-soluble polymer P1 contained in the polishing composition is 100% by weight, it is appropriate that an amount exceeding 50% by weight is contained in the B liquid. It is preferable that 80% by weight or more, for example, 90% by weight or more, further 95% by weight or more, typically 99% by weight or more of the total amount of the water-soluble polymer P1 contained in the composition for use is contained in the B liquid.
  • the liquid B includes a part of the basic compound contained in the polishing composition. Thereby, the pH difference with A liquid containing a basic compound is reduced, and A liquid and B liquid can be mixed smoothly.
  • the basic compound is not particularly limited, but at least one of the basic compound contained in the liquid A to be mixed or the basic compound used as an additive during circulation use It is preferable to use the same type as.
  • potassium hydroxide or a quaternary ammonium compound can be used.
  • the quaternary ammonium compound is, for example, a tetraalkylammonium hydroxide such as TMAH.
  • the polishing composition disclosed herein contains the water-soluble polymer P2
  • the whole or part of the water-soluble polymer P2 may be contained in the B liquid.
  • the inertial radius of the total water-soluble polymer contained in the liquid B can be less than 100 nm, but it is contained in the liquid B even when the liquid B contains the water-soluble polymer P2 or not. It is preferable that the inertial radius of all water-soluble polymers is 100 nm or more. In a more preferred embodiment, the radius of inertia of the total water-soluble polymer contained in the liquid B is 105 nm or more, more preferably 120 nm or more, and particularly preferably 140 nm or more.
  • the upper limit of the radius of inertia of the total water-soluble polymer contained in the B liquid is not particularly limited, and is suitably about 500 nm or less, preferably 300 nm or less, from the viewpoint of the stability and concentration efficiency of the B liquid. More preferably, it is 250 nm or less, More preferably, it is 220 nm or less, or about 150 nm or less, for example, 120 nm or less may be sufficient.
  • the technique disclosed here can be preferably implemented in a mode in which the liquid B does not substantially contain abrasive grains, one of the abrasive grains contained in the polishing composition is within a range that does not significantly impair the effects of the invention.
  • Part may be contained in the B liquid.
  • the said B liquid may contain the aqueous solvent represented by water.
  • Liquid B is an addition of a chelating agent, surfactant, organic acid, organic acid salt, inorganic acid, inorganic acid salt, preservative, antifungal agent, etc. that can be included as an optional component in the polishing composition disclosed herein. An agent may be further contained as necessary.
  • the pH of the B liquid disclosed here is not particularly limited. From the viewpoint of suppressing the pH change during mixing with the liquid A, the pH of the liquid B is suitably within ⁇ 3 of the pH of the liquid A, preferably within ⁇ 2, more preferably within ⁇ 1. is there. In a more preferred embodiment, the pH of the solution B is, for example, within ⁇ 0.5.
  • the mixing method is not particularly limited, and may be performed using a well-known and conventional mixing device as necessary.
  • the timing of the mixing is not particularly limited, and the A liquid and the B liquid may be mixed at an appropriate timing before using the polishing composition, that is, before polishing using the polishing composition.
  • the period from the mixing to the use of the polishing composition can be, for example, within 2 weeks, and is suitably within 3 days.
  • the polishing composition after mixing it is preferably within 24 hours of starting polishing using the polishing composition, typically within 12 hours, immediately before the start of polishing, For example, it is more preferable to carry out the mixing step within 6 hours, typically within 3 hours. Or you may supply the manufactured polishing composition to a grinding
  • the mixing ratio of the liquid A and the liquid B is appropriately set so that the composition of the polishing composition is in a desired range.
  • the liquid A: the liquid B is in a ratio of 1: 1 to 100: 1, for example 5: 1 to 70: 1, typically 15: 1 to 50: 1 on a volume basis. Mixed.
  • dilution is performed using an aqueous solvent such as water before or after the mixing of the liquid A and the liquid B or simultaneously with the mixing.
  • an aqueous solvent such as water
  • the polishing composition obtained by diluting can exhibit an excellent edge roll-off reducing effect.
  • the liquid A, the liquid B and the aqueous solvent for dilution are mixed almost simultaneously or continuously added and mixed.
  • the order of addition is not particularly limited.
  • the liquid B is diluted with the aqueous solvent for dilution and then the liquid B is added to the diluted liquid A is preferably employed.
  • the liquid used for dilution it is preferable to use an aqueous solvent consisting essentially of water from the viewpoints of handleability and workability.
  • the water is typically ion exchange water.
  • the aqueous solvent is, for example, an aqueous solvent in which 99.5 to 100% by volume is water.
  • the aqueous solvent is a mixed solvent, only a part of the components of the aqueous solvent may be added for dilution, and a mixture containing these components in a different ratio from the aqueous solvent.
  • a solvent may be added for dilution.
  • the dilution ratio with the above-mentioned aqueous solvent for dilution is larger than 2 times on a volume basis with respect to the total amount of the liquid A and the liquid B.
  • a polishing composition having a composition suitable for polishing is obtained from the concentrated liquid A and liquid B.
  • the dilution can be performed at a magnification larger than 10 times on a volume basis, typically 15 times or more, for example, 25 times or more, based on the total amount of the liquid A and the liquid B. preferable.
  • the upper limit of the dilution ratio is not particularly limited, but may be about 100 times or less, for example 50 times or less, typically 40 times or less on a volume basis. Therefore, the composition of the pure liquid mixture of liquid A and liquid B itself can correspond to the composition obtained by concentrating the polishing composition disclosed herein at the above magnification.
  • the liquid mixture of the liquid A and the liquid B may be a concentrated liquid obtained by concentrating the polishing composition having the composition described above at a magnification (concentration ratio) of more than 2 times on a volume basis.
  • the concentration factor may be preferably greater than 10 times on a volume basis, typically 15 times or more, for example 25 times or more.
  • the mixing method of the liquid A, the liquid B, and the aqueous solvent for dilution used as necessary is not particularly limited. If necessary, the liquid may be mixed using a known mixing device such as a blade-type stirrer, an ultrasonic disperser, or a homomixer.
  • the aspect which mixes the said liquid is not specifically limited, For example, A liquid, B liquid, and the aqueous solvent for dilution may be mixed at once, and you may mix in the order set suitably.
  • one or two or more additional agents in addition to the liquid A and the liquid B, one or two or more additional agents (liquid C) containing a part of the components contained in the polishing composition , D liquid, etc.) can be mixed as optional components.
  • the polishing composition set disclosed here is a multi-drug polishing composition set used for producing the polishing composition, and includes at least the above-described A liquid and B liquid.
  • the liquid A contains at least abrasive grains and a basic compound
  • the liquid B contains at least a water-soluble polymer P1.
  • the polishing composition set according to a preferred embodiment is a two-component type set consisting of A liquid and B liquid.
  • the polishing composition set disclosed herein includes one or two or more additional agents (C liquid, D) containing a part of the components contained in the polishing composition in addition to liquid A and liquid B. It may be referred to as a liquid or the like.
  • the A liquid, the B liquid, and the additional agent as an optional component are typically stored in separate containers until the mixing step in the production of the polishing composition.
  • the technique disclosed herein is preferably applied to polishing using a silicon substrate (particularly a silicon wafer) as an object to be polished.
  • a typical example of the silicon wafer here is a silicon single crystal wafer, for example, a silicon single crystal wafer obtained by slicing a silicon single crystal ingot.
  • the surface to be polished in the technique disclosed herein is typically a surface made of silicon.
  • the silicon substrate is subjected to general processing that can be performed on the silicon substrate in a process upstream of the rough polishing process, such as lapping and etching, before the polishing process using the polishing liquid disclosed herein. May be.
  • a finish polishing step can be performed on the silicon substrate after the polishing step (rough polishing step) using the polishing liquid.
  • the finishing process includes one or more polishing processes, and the final polishing is performed to finish the silicon wafer into a high-quality mirror surface.
  • final polishing refers to the final polishing step in the manufacturing process of the object. That is, final polishing refers to a process in which no further polishing is performed after that process.
  • the polishing liquid disclosed herein, A liquid, and B liquid can be used for polishing a lapped silicon wafer. Moreover, the said polishing liquid etc. can be used for the rough polishing performed before final polishing of a silicon wafer. Rough polishing is also called preliminary polishing.
  • Polishing of the object to be polished can be performed, for example, as follows. That is, by adopting the manufacturing method disclosed herein, specifically, the A liquid preparation step, the B liquid preparation step, and the mixing step of the A liquid and the B liquid are performed, and dilution is performed as necessary. Then, a polishing composition (polishing slurry) is prepared. Next, the polishing slurry (working slurry) is supplied to the object to be polished and polished by a conventional method.
  • an object to be polished (silicon wafer) that has undergone a lapping process is set in a polishing apparatus, and the above-mentioned is performed through a polishing pad fixed to a surface plate (polishing surface plate) of the polishing apparatus.
  • a polishing slurry is supplied to the surface of the object to be polished (surface to be polished).
  • the polishing pad is pressed against the surface of the object to be polished, and the two are relatively moved.
  • the polishing of the object to be polished is completed through this polishing step.
  • the movement is, for example, a rotational movement.
  • the polishing pad used in the above polishing process is not particularly limited.
  • a polishing pad of foamed polyurethane type, non-woven fabric type, suede type or the like can be used.
  • Each polishing pad may include abrasive grains or may not include abrasive grains.
  • a double-side polishing apparatus that simultaneously polishes both sides of the object to be polished, or a single-side polishing apparatus that polishes only one side of the object to be polished may be used.
  • a double-side polishing apparatus can be preferably employed in the rough polishing step.
  • the double-side polishing apparatus is, for example, a batch type double-side polishing apparatus.
  • the polishing apparatus may be a single wafer type polishing apparatus configured to polish one polishing object at a time, or a batch type polishing apparatus capable of simultaneously polishing a plurality of polishing objects on the same surface plate. But you can.
  • the polishing composition produced using the set disclosed herein is preferably used for polishing within a relatively short period of time after the production.
  • the period from the production of the polishing composition to its use can be, for example, within 2 weeks, suitably within 3 days, preferably within 24 hours, preferably within 12 hours. More preferred. The period may be within 6 hours, and may be within 3 hours. Or you may supply the manufactured polishing composition to a grinding
  • the above polishing composition may be used in a so-called “flowing” form once used for polishing, or may be repeatedly used after circulation.
  • a method of circulating and using the polishing composition there is a method of collecting a used polishing composition discharged from the polishing apparatus in a tank and supplying the recovered polishing composition to the polishing apparatus again. .
  • the environmental load can be reduced by reducing the amount of the used polishing composition to be treated as a waste liquid, compared with the case of using the polishing composition by pouring.
  • cost can be suppressed by reducing the usage-amount of polishing composition.
  • the polishing composition disclosed here is excellent in pH maintainability, it is suitable for the usage mode in which it is used in this manner. According to such a use mode, the significance of adopting the configuration of the present invention can be exhibited particularly well.
  • a new component, a component reduced by use, or a component desired to increase may be added to the polishing composition in use at any timing. Good.
  • the object to be polished that has finished the rough polishing step is typically cleaned before the finish polishing step is started. This washing can be performed using an appropriate washing solution.
  • the cleaning liquid to be used is not particularly limited, and for example, a common SC-1 cleaning liquid, SC-2 cleaning liquid, etc. in the field of semiconductors can be used.
  • the SC-1 cleaning liquid is a mixed liquid of ammonium hydroxide (NH 4 OH), hydrogen peroxide (H 2 O 2 ), and water (H 2 O).
  • the SC-2 cleaning solution is a mixed solution of HCl, H 2 O 2 and H 2 O.
  • the temperature of the cleaning liquid can be, for example, in the range from room temperature to about 90 ° C. Here, room temperature typically means about 15 ° C. to 25 ° C. From the viewpoint of improving the cleaning effect, a cleaning solution of about 50 ° C. to 85 ° C. can be preferably used.
  • the polishing object is a silicon substrate, typically a silicon single crystal wafer. Therefore, according to this specification, a method for producing a polished article including the polishing step is provided. Specifically, the manufacturing method is a method for manufacturing a silicon wafer.
  • the method of manufacturing the composition for silicon wafer rough polishing containing an abrasive grain, a basic compound, and a water-soluble polymer includes: a step of preparing a liquid A containing the abrasive grains and the basic compound; and a step of preparing a liquid B containing a water-soluble polymer P1 having an inertial radius of 100 nm or more as the water-soluble polymer. And a step of mixing the liquid A and the liquid B.
  • the polishing composition obtained by such a method can improve edge roll-off in polishing a silicon substrate by including the water-soluble polymer P1 having a predetermined or larger inertia radius.
  • the polishing composition before completion in other words, before use, is a multi-drug type having a liquid A and a liquid B. Concentration such as convenience and cost reduction is achieved by increasing the concentration of each liquid (concentrated liquid). You can enjoy the benefits of liquid.
  • the abrasive grains and the water-soluble polymer P1 are separately stored in the liquid A and the liquid B, an event in which the dispersion of the water-soluble polymer P1 is hindered by the presence of the abrasive grains can be avoided.
  • the polishing composition before completion shows excellent stability in the state of liquid A and liquid B. Therefore, according to the present invention, it is possible to produce a silicon wafer rough polishing composition that is excellent in stability and can improve edge roll-off while enjoying the advantages of the concentrate.
  • the method includes a step of diluting at least one of the liquid A, the liquid B, and a mixed liquid of the liquid A and the liquid B.
  • the dilution rate in the dilution step is a rate larger than 10 times on a volume basis with respect to the total amount of the liquid A and the liquid B.
  • the dilution step may be performed before the step of mixing the liquid A and the liquid B, simultaneously with the mixing step, or after the mixing step.
  • the technique disclosed here includes a method for manufacturing a composition for rough polishing of a silicon wafer, a composition set for rough polishing of a silicon wafer, a method for polishing a silicon wafer, and the like.
  • the inertial radius of the water-soluble polymer contained in the liquid B is 100 nm or more.
  • the content of the abrasive grains in the liquid A is 10% by weight or more.
  • the effect of the technique disclosed herein is preferably exhibited.
  • the content of the water-soluble polymer P1 in the liquid B is 0.01% by weight or more.
  • the effect by the technique disclosed herein is preferably exhibited.
  • a polishing composition set for producing a silicon wafer rough polishing composition containing abrasive grains, a basic compound and a water-soluble polymer is provided.
  • Such a polishing composition set includes a liquid A containing the abrasive grains and the basic compound, and a liquid B containing a water-soluble polymer P1 having an inertia radius of 100 nm or more as the water-soluble polymer.
  • the liquid A and the liquid B each have excellent stability while enjoying the advantages of the concentrated liquid when used as a concentrated liquid before use, for example, during storage.
  • liquid A and liquid B are mixed at an appropriate timing to obtain a polishing composition (polishing slurry), and by using this, the edge roll-off of the silicon substrate can be improved.
  • the advantages of the concentrated liquid are convenience and cost reduction.
  • a method for polishing a silicon wafer including a rough polishing step and a final polishing step includes a step of preparing a rough polishing composition used in the rough polishing step before the rough polishing step.
  • the step of preparing the rough polishing composition includes: a step of preparing a solution A containing abrasive grains and a basic compound; and a step of preparing a solution B containing a water-soluble polymer P1 having an inertia radius of 100 nm or more. And a step of mixing the liquid A and the liquid B.
  • the polishing composition before use can be made into a concentrated solution having excellent stability in a state where the polishing composition is separated into the liquid A and the liquid B. Moreover, edge roll-off of the silicon substrate can be improved by performing rough polishing using the polishing composition.
  • the rough polishing composition is used for polishing a lapped silicon wafer. More specifically, the rough polishing composition is used for rough polishing (preliminary polishing) performed before final polishing of a silicon wafer.
  • Example 1 By mixing colloidal silica (average primary particle diameter 55 nm) as abrasive grains, TMAH, K 2 CO 3 , water-soluble polymer P2 (PVP Mw 4.5 ⁇ 10 4 ), and ion-exchanged water, A liquid A containing abrasive grains, TMAH, K 2 CO 3 and water-soluble polymer P2 at concentrations of 32.97%, 1.62%, 1.05% and 0.0069%, respectively, was prepared. The pH of solution A was 11.2. Further, by mixing water-soluble polymer P1 (HEC), TMAH, and ion-exchanged water, liquid B containing water-soluble polymer P1 and TMAH at concentrations of 0.25% and 0.018%, respectively.
  • colloidal silica average primary particle diameter 55 nm
  • TMAH abrasive grains
  • K 2 CO 3 water-soluble polymer P2
  • PVP Mw 4.5 ⁇ 10 4 water-soluble polymer P2
  • the pH of solution B was 11.0.
  • the obtained liquid A and liquid B were diluted and mixed with ion-exchanged water to obtain a polishing liquid (working slurry) according to this example.
  • the mixing was performed such that A liquid: B liquid: ion-exchanged water had a volume ratio of 3.3: 0.1: 96.6.
  • Comparative Example 1 A liquid A and a liquid B were prepared in the same manner as in Example 1 except that HEC having a different inertial radius was used as the water-soluble polymer P1, and a polishing liquid (working slurry) according to this example was obtained.
  • Example 4 A liquid A and a B liquid were prepared in the same manner as in Example 3 except that the water-soluble polymer P2 was not used, and a polishing liquid (working slurry) according to this example was obtained.
  • Example 5 By mixing colloidal silica (average primary particle diameter 55 nm) as abrasive grains, TMAH, K 2 CO 3 , and ion-exchanged water, 32.97% of abrasive grains, TMAH and K 2 CO 3 are respectively obtained. Solution A containing 1.62% and 1.05% concentrations was prepared. The pH of solution A was 11.2.
  • water-soluble polymer P1 HEC
  • water-soluble polymer P2 PVP Mw4.5 ⁇ 10 4
  • TMAH TMAH
  • ion-exchanged water water-soluble polymer P1 Liquid B containing molecules P2 and TMAH at concentrations of 0.25%, 0.28%, and 0.018%, respectively.
  • the pH of solution B was 11.0.
  • a polishing liquid (working slurry) according to this example was obtained in the same manner as in Example 1 except that the obtained liquid A and liquid B were used.
  • Example 6 the polishing liquid (working slurry) according to this example was obtained in the same manner as in Example 3 except that 0.018% of TMAH contained in the B liquid was changed to 0.011% of potassium hydroxide (KOH). .
  • the obtained concentrated liquid was diluted with ion exchange water to obtain a polishing liquid (working slurry) according to this example.
  • the dilution was performed such that the ratio of concentrated solution: ion exchanged water was 3.3: 96.7 on a volume basis.
  • polishing liquid working slurry
  • polishing device Single-side polishing device manufactured by Nippon Engis Co., Ltd. Model “EJ-380IN” Polishing pad: Product name “MH S-15A”, manufactured by Nitta Haas Polishing pressure: 26.6 kPa Slurry flow rate: 100 mL / min Plate rotation speed: 50 rpm Head rotation speed: 50 rpm Polishing amount: 8 ⁇ m Work species: Bare Si P - ⁇ 100> Work size: ⁇ 60mm ⁇ 60mm

Abstract

The present invention provides a production method for a silicon wafer rough-polishing composition, said method being capable of simultaneously providing excellent stability and the advantage of a concentrated liquid, and enabling improvement in edge roll-off. The production method for a silicon wafer rough-polishing composition according to the present invention is a method for producing a silicon wafer rough-polishing composition that contains abrasive particles, a basic compound, and a water-soluble polymer. This production method comprises: a step for preparing liquid A that contains the abrasive particles and the basic compound; a step for preparing liquid B that contains, as the water-soluble polymer, a water-soluble polymer P1 having a radius of gyration of at least 100 nm; and a step for mixing liquid A and liquid B.

Description

シリコンウェーハ粗研磨用組成物の製造方法、シリコンウェーハ粗研磨用組成物セット、およびシリコンウェーハの研磨方法Method for producing silicon wafer rough polishing composition, silicon wafer rough polishing composition set, and silicon wafer polishing method
 本発明は、研磨用組成物の製造方法、研磨用組成物セット、および研磨方法に関する。詳しくは、シリコンウェーハ粗研磨に用いられる研磨用組成物の製造方法、研磨用組成物セット、および該研磨用組成物を用いたシリコンウェーハの研磨方法に関する。
 本出願は、2016年8月2日に出願された日本国特許出願2016-152325号に基づく優先権を主張しており、その出願の全内容は本明細書中に参照として組み入れられている。
The present invention relates to a method for producing a polishing composition, a polishing composition set, and a polishing method. Specifically, the present invention relates to a method for producing a polishing composition used for rough polishing of a silicon wafer, a polishing composition set, and a method for polishing a silicon wafer using the polishing composition.
This application claims priority based on Japanese Patent Application No. 2016-152325 filed on Aug. 2, 2016, the entire contents of which are incorporated herein by reference.
 半導体製品の製造等に用いられるシリコン基板の表面は、一般に、ラッピング工程とポリシング工程とを経て高品位の鏡面に仕上げられる。上記ポリシング工程は、典型的には、予備ポリシング工程(粗研磨工程)と仕上げポリシング工程(仕上げ研磨工程)とを含む。上記ポリシング工程は、研磨用組成物(研磨スラリー)を用いて実施される。シリコン基板の研磨に用いられる研磨用組成物を開示する先行技術文献としては、特許文献1が挙げられる。また、この種の研磨用組成物は、製造や流通、保存等の際における利便性やコスト低減等の観点から、研磨対象物に供給される前には濃縮された形態であり得る。すなわち、上記研磨用組成物は、研磨液の濃縮液の形態であり得る。調製された濃縮液は、水等で希釈された後、研磨に用いられる。この種の従来技術を開示する文献として、特許文献2および3が挙げられる。特許文献4は、研磨用組成物に用いられるヒドロキシセルロースの慣性半径を開示する文献である。 Generally, the surface of a silicon substrate used for manufacturing a semiconductor product is finished to a high-quality mirror surface through a lapping process and a polishing process. The polishing process typically includes a preliminary polishing process (rough polishing process) and a final polishing process (finish polishing process). The polishing step is performed using a polishing composition (polishing slurry). Patent document 1 is mentioned as a prior art document which discloses the constituent for polish used for polish of a silicon substrate. In addition, this type of polishing composition may be in a concentrated form before being supplied to the object to be polished from the viewpoint of convenience, cost reduction, and the like during production, distribution, storage, and the like. That is, the polishing composition may be in the form of a concentrated concentrate of polishing liquid. The prepared concentrated liquid is diluted with water and used for polishing. Patent documents 2 and 3 are mentioned as literature which discloses this kind of prior art. Patent Document 4 is a document disclosing the radius of inertia of hydroxycellulose used in the polishing composition.
日本国特許出願公開2014-216464号公報Japanese Patent Application Publication No. 2014-216464 日本国特許出願公開2012-89862号公報Japanese Patent Application Publication No. 2012-89862 日本国特許出願公開2015-155523号公報Japanese Patent Application Publication No. 2015-155523 日本国特許出願公開2015-124231号公報Japanese Patent Application Publication No. 2015-124231
 本発明者らは、シリコンウェーハ粗研磨用組成物の性能向上について検討を行った結果、後述の実施例に示すように、所定以上の慣性半径を有する水溶性高分子を用いることにより、研磨後に外周部(エッジ近傍)の厚さが不所望に減少する事象、すなわちエッジロールオフを改善し得るという知見を得た。しかし、慣性半径の大きい水溶性高分子は、研磨用組成物を濃縮液として保管しているときの安定性が低下傾向となる。具体的には、上記濃縮液は、砥粒、水溶性高分子等の成分を使用時よりも高濃度で含有するため、含有成分が分離、凝集するなど良好な安定性が得られないおそれがある。 As a result of examining the performance improvement of the composition for rough polishing of a silicon wafer, the present inventors have used a water-soluble polymer having an inertial radius greater than or equal to a predetermined value after polishing, as shown in Examples below. It was found that the phenomenon of undesirably decreasing the thickness of the outer periphery (near the edge), that is, edge roll-off can be improved. However, a water-soluble polymer having a large inertial radius tends to be less stable when the polishing composition is stored as a concentrate. Specifically, since the concentrated liquid contains components such as abrasive grains and water-soluble polymers at a higher concentration than when used, there is a risk that good stability such as separation and aggregation of the contained components may not be obtained. is there.
 本発明は、上記の事情に鑑みてなされたものであり、濃縮液の利点と、優れた安定性とを両立することができ、かつエッジロールオフを改善することができるシリコンウェーハ粗研磨用組成物の製造方法を提供することを目的とする。関連する他の目的は、シリコンウェーハ粗研磨用組成物セットを提供すること、およびシリコンウェーハの研磨方法を提供することである。 The present invention has been made in view of the above circumstances, and is a composition for rough polishing of silicon wafers that can achieve both the advantages of the concentrate and excellent stability, and can improve edge roll-off. It aims at providing the manufacturing method of a thing. Another related object is to provide a composition set for rough polishing a silicon wafer and to provide a method for polishing a silicon wafer.
 本発明によると、砥粒、塩基性化合物および水溶性高分子を含むシリコンウェーハ粗研磨用組成物を製造する方法が提供される。この製造方法は:前記砥粒および前記塩基性化合物を含むA液を調製する工程と;前記水溶性高分子として、慣性半径が100nm以上である水溶性高分子P1を含むB液を調製する工程と;前記A液と前記B液とを混合する工程と;を包含する。かかる方法によって得られる研磨用組成物は、所定以上の慣性半径を有する水溶性高分子P1を含むことで、シリコン基板の研磨においてエッジロールオフを改善することができる。また、完成前、換言すると使用前の研磨用組成物はA液およびB液を有する多剤型であり、各液を高濃度化(濃縮液化)することで、利便性、コスト低減等といった濃縮液の利点を享受することができる。また、砥粒、水溶性高分子P1はA液、B液にそれぞれ別に収容されているので、砥粒の存在によって水溶性高分子P1の分散が阻害される事象を回避することができる。その結果、完成前の研磨用組成物は、A液、B液の状態で優れた安定性を示す。したがって、本発明によると、濃縮液の利点を享受しつつ、安定性に優れ、かつエッジロールオフを改善し得るシリコンウェーハ粗研磨用組成物を製造することができる。 According to the present invention, there is provided a method for producing a composition for rough polishing a silicon wafer containing abrasive grains, a basic compound and a water-soluble polymer. The production method includes: a step of preparing a liquid A containing the abrasive grains and the basic compound; and a step of preparing a liquid B containing a water-soluble polymer P1 having an inertial radius of 100 nm or more as the water-soluble polymer. And a step of mixing the liquid A and the liquid B. The polishing composition obtained by such a method can improve edge roll-off in polishing a silicon substrate by including the water-soluble polymer P1 having a predetermined or larger inertia radius. Moreover, the polishing composition before completion, in other words, before use, is a multi-drug type having a liquid A and a liquid B. Concentration such as convenience and cost reduction is achieved by increasing the concentration of each liquid (concentrated liquid). You can enjoy the benefits of liquid. In addition, since the abrasive grains and the water-soluble polymer P1 are separately stored in the liquid A and the liquid B, an event in which the dispersion of the water-soluble polymer P1 is hindered by the presence of the abrasive grains can be avoided. As a result, the polishing composition before completion shows excellent stability in the state of liquid A and liquid B. Therefore, according to the present invention, it is possible to produce a silicon wafer rough polishing composition that is excellent in stability and can improve edge roll-off while enjoying the advantages of the concentrate.
 また、本発明によると、砥粒、塩基性化合物および水溶性高分子を含むシリコンウェーハ粗研磨用組成物を製造するための研磨用組成物セットが提供される。かかる研磨用組成物セットは、前記砥粒および前記塩基性化合物を含むA液と、前記水溶性高分子として慣性半径が100nm以上である水溶性高分子P1を含むB液と、を備える。かかる構成によると、使用前、例えば保管時には、A液およびB液は、それぞれを濃縮液とした場合に、濃縮液の利点を享受しつつ、それぞれが安定性に優れる。そして、適当なタイミングでA液とB液とを混合して研磨用組成物(研磨スラリー)とし、これを使用することにより、シリコン基板のエッジロールオフを改善することができる。濃縮液の利点は、利便性、コスト低減等である。 Further, according to the present invention, there is provided a polishing composition set for producing a silicon wafer rough polishing composition containing abrasive grains, a basic compound and a water-soluble polymer. Such a polishing composition set includes a liquid A containing the abrasive grains and the basic compound, and a liquid B containing a water-soluble polymer P1 having an inertia radius of 100 nm or more as the water-soluble polymer. According to such a configuration, the liquid A and the liquid B each have excellent stability while enjoying the advantages of the concentrated liquid when used as a concentrated liquid before use, for example, during storage. Then, liquid A and liquid B are mixed at an appropriate timing to obtain a polishing composition (polishing slurry), and by using this, the edge roll-off of the silicon substrate can be improved. The advantages of the concentrated liquid are convenience and cost reduction.
 また、本発明によると、粗研磨工程と仕上げ研磨工程とを含むシリコンウェーハの研磨方法が提供される。この研磨方法は、前記粗研磨工程の前に、該粗研磨工程に使用する粗研磨用組成物を調製する工程を含む。また、前記粗研磨用組成物を調製する工程は:砥粒および塩基性化合物を含むA液を調製する工程と;慣性半径が100nm以上である水溶性高分子P1を含むB液を調製する工程と;前記A液と前記B液とを混合する工程と;を含む。かかる方法によると、使用前の研磨用組成物は、A液とB液とに分離された状態で、安定性に優れた濃縮液とすることができる。また、当該研磨用組成物を用いて粗研磨を実施することにより、シリコン基板のエッジロールオフを改善することができる。 In addition, according to the present invention, a silicon wafer polishing method including a rough polishing step and a final polishing step is provided. This polishing method includes a step of preparing a rough polishing composition used in the rough polishing step before the rough polishing step. The step of preparing the rough polishing composition includes: a step of preparing a solution A containing abrasive grains and a basic compound; and a step of preparing a solution B containing a water-soluble polymer P1 having an inertia radius of 100 nm or more. And a step of mixing the liquid A and the liquid B. According to this method, the polishing composition before use can be made into a concentrated solution having excellent stability in a state where the polishing composition is separated into the liquid A and the liquid B. Moreover, edge roll-off of the silicon substrate can be improved by performing rough polishing using the polishing composition.
 以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。 Hereinafter, preferred embodiments of the present invention will be described. Note that matters other than matters specifically mentioned in the present specification and necessary for the implementation of the present invention can be grasped as design matters of those skilled in the art based on the prior art in this field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field.
 本明細書によると、研磨用組成物の製造方法、該研磨用組成物を製造するための研磨用組成物セット、および該研磨用組成物を用いたシリコンウェーハの研磨方法が提供される。以下、ここに開示される方法によって製造される研磨用組成物についてまず説明し、次いで、その製造方法、研磨用組成物セット、該研磨用組成物を用いた研磨方法の順で説明する。 According to the present specification, a method for producing a polishing composition, a polishing composition set for producing the polishing composition, and a method for polishing a silicon wafer using the polishing composition are provided. Hereinafter, the polishing composition produced by the method disclosed herein will be described first, and then the production method, the polishing composition set, and the polishing method using the polishing composition will be described in this order.
 <研磨用組成物>
  (砥粒)
 ここに開示される研磨用組成物は砥粒を含む。砥粒の材質や性状は特に制限されず、使用目的や使用態様等に応じて適宜選択することができる。砥粒の例としては、無機粒子、有機粒子、および有機無機複合粒子が挙げられる。無機粒子の具体例としては、シリカ粒子、アルミナ粒子、酸化セリウム粒子、酸化クロム粒子、二酸化チタン粒子、酸化ジルコニウム粒子、酸化マグネシウム粒子、二酸化マンガン粒子、酸化亜鉛粒子、ベンガラ粒子等の酸化物粒子;窒化ケイ素粒子、窒化ホウ素粒子等の窒化物粒子;炭化ケイ素粒子、炭化ホウ素粒子等の炭化物粒子;ダイヤモンド粒子;炭酸カルシウムや炭酸バリウム等の炭酸塩等が挙げられる。有機粒子の具体例としては、ポリメタクリル酸メチル(PMMA)粒子やポリ(メタ)アクリル酸粒子、ポリアクリロニトリル粒子等が挙げられる。このような砥粒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。なお、(メタ)アクリル酸とは、アクリル酸およびメタクリル酸を包括的に指す意味である。
<Polishing composition>
(Abrasive grains)
The polishing composition disclosed herein contains abrasive grains. The material and properties of the abrasive grains are not particularly limited, and can be appropriately selected according to the purpose of use and the mode of use. Examples of the abrasive grains include inorganic particles, organic particles, and organic-inorganic composite particles. Specific examples of the inorganic particles include silica particles, alumina particles, cerium oxide particles, chromium oxide particles, titanium dioxide particles, zirconium oxide particles, magnesium oxide particles, manganese dioxide particles, zinc oxide particles, oxide particles such as bengara particles; Examples thereof include nitride particles such as silicon nitride particles and boron nitride particles; carbide particles such as silicon carbide particles and boron carbide particles; diamond particles; carbonates such as calcium carbonate and barium carbonate. Specific examples of the organic particles include polymethyl methacrylate (PMMA) particles, poly (meth) acrylic acid particles, and polyacrylonitrile particles. Such an abrasive grain may be used individually by 1 type, and may be used in combination of 2 or more type. In addition, (meth) acrylic acid is the meaning which points out acrylic acid and methacrylic acid comprehensively.
 上記砥粒としては、無機粒子が好ましく、なかでも金属または半金属の酸化物からなる粒子が好ましい。ここに開示される技術において特に好ましい砥粒として、シリカ粒子が挙げられる。ここに開示される技術は、例えば、上記砥粒が実質的にシリカ粒子からなる態様で好ましく実施され得る。ここで「実質的に」とは、砥粒を構成する粒子の95重量%以上がシリカ粒子であることをいい、好ましくは98重量%以上、より好ましくは99重量%以上がシリカ粒子であり、砥粒を構成する粒子の100重量%がシリカ粒子であってもよい。 As the abrasive, inorganic particles are preferable, and particles made of metal or metalloid oxide are particularly preferable. A particularly preferable abrasive grain in the technology disclosed herein includes silica particles. The technique disclosed here can be preferably implemented, for example, in a mode in which the abrasive grains are substantially composed of silica particles. Here, “substantially” means that 95% by weight or more of the particles constituting the abrasive grains are silica particles, preferably 98% by weight or more, more preferably 99% by weight or more are silica particles, 100% by weight of the particles constituting the abrasive grains may be silica particles.
 シリカ粒子の具体例としては、コロイダルシリカ、フュームドシリカ、沈降シリカ等が挙げられる。シリカ粒子は、1種を単独でまたは2種以上を組み合わせて用いることができる。研磨対象物表面にスクラッチを生じにくく、かつ良好な研磨性能を発揮し得ることから、コロイダルシリカが特に好ましい。上記研磨性能は、表面粗さを低下させる性能等である。コロイダルシリカとしては、例えば、イオン交換法により水ガラス(珪酸Na)を原料として作製されたコロイダルシリカや、アルコキシド法コロイダルシリカを好ましく採用することができる。アルコキシド法コロイダルシリカとは、アルコキシシランの加水分解縮合反応により製造されたコロイダルシリカをいう。コロイダルシリカは、1種を単独でまたは2種以上を組み合わせて用いることができる。 Specific examples of the silica particles include colloidal silica, fumed silica, precipitated silica and the like. Silica particles can be used alone or in combination of two or more. Colloidal silica is particularly preferable because scratches are hardly generated on the surface of the object to be polished and good polishing performance can be exhibited. The polishing performance is, for example, performance for reducing the surface roughness. As the colloidal silica, for example, colloidal silica produced using water glass (Na silicate) as a raw material by an ion exchange method or alkoxide colloidal silica can be preferably used. The alkoxide colloidal silica refers to colloidal silica produced by hydrolysis condensation reaction of alkoxysilane. Colloidal silica can be used alone or in combination of two or more.
 シリカ粒子を構成するシリカの真比重は、1.5以上であることが好ましく、より好ましくは1.6以上、さらに好ましくは1.7以上である。シリカの真比重の増大により、研磨レートは高くなる傾向にある。かかる観点から、真比重が2.0以上、例えば2.1以上のシリカ粒子が特に好ましい。シリカの真比重の上限は特に限定されないが、典型的には2.3以下、例えば2.2以下である。シリカの真比重としては、置換液としてエタノールを用いた液体置換法による測定値を採用し得る。 The true specific gravity of silica constituting the silica particles is preferably 1.5 or more, more preferably 1.6 or more, and even more preferably 1.7 or more. As the true specific gravity of silica increases, the polishing rate tends to increase. From this viewpoint, silica particles having a true specific gravity of 2.0 or more, such as 2.1 or more, are particularly preferable. The upper limit of the true specific gravity of silica is not particularly limited, but is typically 2.3 or less, for example, 2.2 or less. As the true specific gravity of silica, a measured value by a liquid substitution method using ethanol as a substitution liquid can be adopted.
 ここに開示される砥粒の平均一次粒子径は特に限定されない。研磨レート等の観点から、上記平均一次粒子径は、5nm以上が適当であり、好ましくは10nm以上、より好ましくは30nm以上、さらに好ましくは40nm以上、特に好ましくは45nm以上である。特に好ましい一態様において、上記平均一次粒子径は、例えば50nm以上である。上記砥粒は、典型的にはシリカ粒子である。また、スクラッチ防止等の観点から、砥粒の平均一次粒子径は、200nm以下程度とすることが適当であり、好ましくは100nm以下、より好ましくは80nm以下、さらに好ましくは70nm以下、特に好ましくは60nm以下であり得る。
 なお、本明細書において平均一次粒子径とは、BET法により測定される比表面積(BET値)から、BET径[nm]=6000/(真密度[g/cm]×BET値[m/g])の式により算出される粒子径をいう。例えばシリカ粒子の場合、BET径[nm]=2727/BET値[m/g]によりBET径を算出することができる。比表面積の測定は、例えば、マイクロメリテックス社製の表面積測定装置、商品名「Flow Sorb II 2300」を用いて行うことができる。
The average primary particle diameter of the abrasive grains disclosed herein is not particularly limited. From the viewpoint of polishing rate and the like, the average primary particle size is suitably 5 nm or more, preferably 10 nm or more, more preferably 30 nm or more, still more preferably 40 nm or more, and particularly preferably 45 nm or more. In a particularly preferred embodiment, the average primary particle diameter is, for example, 50 nm or more. The abrasive grains are typically silica particles. From the viewpoint of preventing scratches and the like, the average primary particle diameter of the abrasive is suitably about 200 nm or less, preferably 100 nm or less, more preferably 80 nm or less, still more preferably 70 nm or less, particularly preferably 60 nm. It can be:
In addition, in this specification, the average primary particle diameter means a BET diameter [nm] = 6000 / (true density [g / cm 3 ] × BET value [m 2 ] from a specific surface area (BET value) measured by the BET method. / G]) is the particle diameter calculated by the equation. For example, in the case of silica particles, the BET diameter can be calculated from BET diameter [nm] = 2727 / BET value [m 2 / g]. The specific surface area can be measured using, for example, a surface area measuring device manufactured by Micromeritex Corporation, a trade name “Flow Sorb II 2300”.
 砥粒の形状(外形)は、球形であってもよく、非球形であってもよい。非球形をなす粒子の具体例としては、ピーナッツ形状、繭型形状、金平糖形状、ラグビーボール形状等が挙げられる。ピーナッツ形状は、すなわち、落花生の殻の形状である。例えば、粒子の多くがピーナッツ形状をした砥粒を好ましく採用し得る。 The shape (outer shape) of the abrasive grains may be spherical or non-spherical. Specific examples of the non-spherical particles include a peanut shape, a bowl shape, a confetti shape, and a rugby ball shape. The peanut shape is that of a peanut shell. For example, abrasive grains in which many of the particles have a peanut shape can be preferably used.
 特に限定するものではないが、砥粒の長径/短径比の平均値(平均アスペクト比)は、原理的に1.0以上であり、好ましくは1.05以上、さらに好ましくは1.1以上である。平均アスペクト比の増大によって、より高い研磨レートが実現され得る。また、砥粒の平均アスペクト比は、スクラッチ低減等の観点から、好ましくは3.0以下であり、より好ましくは2.0以下、さらに好ましくは1.5以下である。 Although not particularly limited, the average value of the major axis / minor axis ratio (average aspect ratio) of the abrasive grains is theoretically 1.0 or more, preferably 1.05 or more, more preferably 1.1 or more. It is. By increasing the average aspect ratio, a higher polishing rate can be achieved. The average aspect ratio of the abrasive grains is preferably 3.0 or less, more preferably 2.0 or less, and still more preferably 1.5 or less, from the viewpoint of reducing scratches.
 砥粒の形状(外形)や平均アスペクト比は、例えば、電子顕微鏡観察により把握することができる。平均アスペクト比を把握する具体的な手順としては、例えば、走査型電子顕微鏡(SEM)を用いて、独立した粒子の形状を認識できる所定個数のシリカ粒子について、各々の粒子画像に外接する最小の長方形を描く。所定個数とは、例えば200個である。そして、各粒子画像に対して描かれた長方形について、その長辺の長さ(長径の値)を短辺の長さ(短径の値)で除した値を長径/短径比(アスペクト比)として算出する。上記所定個数の粒子のアスペクト比を算術平均することにより、平均アスペクト比を求めることができる。 The shape (outer shape) and average aspect ratio of the abrasive grains can be grasped by, for example, observation with an electron microscope. As a specific procedure for grasping the average aspect ratio, for example, with a scanning electron microscope (SEM), for a predetermined number of silica particles capable of recognizing the shape of independent particles, the minimum circumscribing each particle image is performed. Draw a rectangle. The predetermined number is, for example, 200. For the rectangle drawn for each particle image, the value obtained by dividing the length of the long side (major axis value) by the length of the short side (minor axis value) is the major axis / minor axis ratio (aspect ratio). ). An average aspect ratio can be obtained by arithmetically averaging the aspect ratios of the predetermined number of particles.
 ここに開示される研磨用組成物における砥粒の含有量は、特に限定されず、好ましくは0.05重量%以上、より好ましくは0.1重量%以上、さらに好ましくは0.3重量%以上である。さらに好ましい一態様において、上記砥粒の含有量は、例えば0.5重量%以上である。砥粒の含有量の増大によって、より高い研磨レートが実現され得る。また、研磨対象物からの除去性等の観点から、上記含有量は、10重量%以下が適当であり、好ましくは7重量%以下、より好ましくは5重量%以下、さらに好ましくは3重量%以下である。さらに好ましい一態様において、上記砥粒の含有量は、例えば2重量%以下である。 The content of the abrasive grains in the polishing composition disclosed herein is not particularly limited, preferably 0.05% by weight or more, more preferably 0.1% by weight or more, and further preferably 0.3% by weight or more. It is. In a further preferred embodiment, the content of the abrasive grains is, for example, 0.5% by weight or more. Higher polishing rates can be achieved by increasing the abrasive content. Further, from the viewpoint of removability from the polishing object, the content is suitably 10% by weight or less, preferably 7% by weight or less, more preferably 5% by weight or less, and further preferably 3% by weight or less. It is. In a more preferred embodiment, the content of the abrasive grains is, for example, 2% by weight or less.
  (水溶性高分子P1)
 ここに開示される研磨用組成物は、慣性半径が100nm以上である水溶性高分子P1を含む。上記慣性半径を有する水溶性高分子P1を用いることによって、エッジロールオフが改善される。その理由は特に限定的に解釈されるものではないが、研磨用組成物(研磨スラリー)に含まれる所定以上の慣性半径を有する水溶性高分子P1が、研磨対象基板の端部に強く吸着し過剰な研磨を回避することで、エッジロールオフ(端部ダレ)の増大が抑制されるものと推察される。なお、水溶性高分子P1の慣性半径は、水溶液における水溶性高分子P1一分子のサイズであり、主には、当該高分子P1の親水性、分子量等によって決定され得る。エッジロールオフ改善の観点から、水溶性高分子P1の慣性半径は好ましくは105nm以上、より好ましくは120nm以上、特に好ましくは140nm以上である。水溶性高分子P1の慣性半径の上限は特に限定されず、研磨用組成物製造において水溶性高分子P1含有液として用いるB液の安定性や濃縮効率等の観点から、凡そ500nm以下とすることが適当であり、好ましくは300nm以下、より好ましくは250nm以下、さらに好ましくは220nm以下である。水溶性高分子P1の上記慣性半径は、例えば150nm以下、120nm以下であってもよい。なお、本明細書における水溶性高分子の慣性半径は、後述の実施例に記載の方法で測定される。
(Water-soluble polymer P1)
The polishing composition disclosed herein includes a water-soluble polymer P1 having an inertia radius of 100 nm or more. By using the water-soluble polymer P1 having the inertial radius, the edge roll-off is improved. The reason is not particularly limited, but the water-soluble polymer P1 having a predetermined or larger inertia radius contained in the polishing composition (polishing slurry) strongly adsorbs to the end of the substrate to be polished. It is presumed that an increase in edge roll-off (end sagging) is suppressed by avoiding excessive polishing. The inertial radius of the water-soluble polymer P1 is the size of one molecule of the water-soluble polymer P1 in the aqueous solution, and can be determined mainly by the hydrophilicity, molecular weight, etc. of the polymer P1. From the viewpoint of improving edge roll-off, the radius of inertia of the water-soluble polymer P1 is preferably 105 nm or more, more preferably 120 nm or more, and particularly preferably 140 nm or more. The upper limit of the radius of inertia of the water-soluble polymer P1 is not particularly limited, and should be about 500 nm or less from the viewpoint of the stability and concentration efficiency of the B liquid used as the water-soluble polymer P1-containing liquid in polishing composition production. Is preferably 300 nm or less, more preferably 250 nm or less, and even more preferably 220 nm or less. The inertia radius of the water-soluble polymer P1 may be, for example, 150 nm or less and 120 nm or less. In addition, the inertial radius of the water-soluble polymer in this specification is measured by the method described in Examples described later.
 ここに開示される研磨用組成物に含まれる水溶性高分子P1の種類は特に制限されず、研磨用組成物の分野において公知の水溶性高分子種のなかから適宜選択することができる。水溶性高分子P1は、1種を単独でまたは2種以上を組み合わせて用いることができる。水溶性高分子P1の例としては、セルロース誘導体、デンプン誘導体、オキシアルキレン単位を含むポリマー、窒素原子を含有するポリマー、ポリビニルアルコール等が挙げられる。なかでも、平坦度向上の観点から、セルロース誘導体、デンプン誘導体が好ましく、セルロース誘導体がより好ましい。 The type of the water-soluble polymer P1 contained in the polishing composition disclosed herein is not particularly limited, and can be appropriately selected from water-soluble polymer species known in the field of polishing compositions. The water-soluble polymer P1 can be used alone or in combination of two or more. Examples of the water-soluble polymer P1 include cellulose derivatives, starch derivatives, polymers containing oxyalkylene units, polymers containing nitrogen atoms, polyvinyl alcohol and the like. Among these, from the viewpoint of improving flatness, cellulose derivatives and starch derivatives are preferable, and cellulose derivatives are more preferable.
 セルロース誘導体は、主たる繰返し単位としてβ-グルコース単位を含むポリマーである。セルロース誘導体の具体例としては、ヒドロキシエチルセルロース(HEC)、ヒドロキシプロピルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロース、メチルセルロース、エチルセルロース、エチルヒドロキシエチルセルロース、カルボキシメチルセルロース等が挙げられる。なかでもHECが好ましい。 Cellulose derivatives are polymers containing β-glucose units as the main repeating unit. Specific examples of the cellulose derivative include hydroxyethyl cellulose (HEC), hydroxypropyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl methyl cellulose, methyl cellulose, ethyl cellulose, ethyl hydroxyethyl cellulose, carboxymethyl cellulose and the like. Of these, HEC is preferable.
 デンプン誘導体は、主たる繰返し単位としてα-グルコース単位を含むポリマーである。デンプン誘導体の具体例としては、アルファ化デンプン、プルラン、カルボキシメチルデンプン、シクロデキストリン等が挙げられる。なかでもプルランが好ましい。 Starch derivatives are polymers that contain α-glucose units as the main repeating unit. Specific examples of starch derivatives include pregelatinized starch, pullulan, carboxymethyl starch, and cyclodextrin. Of these, pullulan is preferred.
 オキシアルキレン単位を含むポリマーとしては、ポリエチレンオキサイド(PEO)や、エチレンオキサイド(EO)とプロピレンオキサイド(PO)またはブチレンオキサイド(BO)とのブロック共重合体、EOとPOまたはBOとのランダム共重合体等が例示される。そのなかでも、EOとPOのブロック共重合体またはEOとPOのランダム共重合体が好ましい。EOとPOとのブロック共重合体は、PEOブロックとポリプロピレンオキサイド(PPO)ブロックとを含むジブロック体、トリブロック体等であり得る。上記トリブロック体の例には、PEO-PPO-PEO型トリブロック体およびPPO-PEO-PPO型トリブロック体が含まれる。なかでも、PEO-PPO-PEO型トリブロック体がより好ましい。
 EOとPOとのブロック共重合体またはランダム共重合体において、該共重合体を構成するEOとPOとのモル比[EO/PO]は、水への溶解性や洗浄性等の観点から、1より大きいことが好ましく、2以上であることがより好ましく、3以上であることがさらに好ましい。さらに好ましい一態様において、上記モル比[EO/PO]は、例えば5以上である。
Polymers containing oxyalkylene units include polyethylene oxide (PEO), block copolymers of ethylene oxide (EO) and propylene oxide (PO) or butylene oxide (BO), and random copolymerization of EO and PO or BO. Examples include coalescence. Among these, a block copolymer of EO and PO or a random copolymer of EO and PO is preferable. The block copolymer of EO and PO may be a diblock body, a triblock body or the like including a PEO block and a polypropylene oxide (PPO) block. Examples of the triblock body include a PEO-PPO-PEO type triblock body and a PPO-PEO-PPO type triblock body. Among these, a PEO-PPO-PEO type triblock body is more preferable.
In the block copolymer or random copolymer of EO and PO, the molar ratio [EO / PO] of EO and PO constituting the copolymer is from the viewpoint of solubility in water, detergency, and the like. It is preferably larger than 1, more preferably 2 or more, and further preferably 3 or more. In a more preferred embodiment, the molar ratio [EO / PO] is, for example, 5 or more.
 窒素原子を含有するポリマーとしては、主鎖に窒素原子を含有するポリマーおよび側鎖官能基(ペンダント基)に窒素原子を有するポリマーのいずれも使用可能である。窒素原子を含有するポリマーを使用することで、基板の表面粗さを改善することができる。主鎖に窒素原子を含有するポリマーの例としては、N-アシルアルキレンイミン型モノマーの単独重合体および共重合体が挙げられる。N-アシルアルキレンイミン型モノマーの具体例としては、N-アセチルエチレンイミン、N-プロピオニルエチレンイミン等が挙げられる。ペンダント基に窒素原子を有するポリマーとしては、例えばN-ビニル型のモノマー単位を含むポリマー等が挙げられる。例えば、N-ビニルピロリドンの単独重合体および共重合体等を採用し得る。ここに開示される技術においては、N-ビニルピロリドンが50モル%以上の割合で重合されたN-ビニルピロリドンの単独重合体および共重合体の少なくとも1種(以下「PVP」ともいう。)が好ましく用いられる。 As the polymer containing a nitrogen atom, both a polymer containing a nitrogen atom in the main chain and a polymer having a nitrogen atom in a side chain functional group (pendant group) can be used. By using a polymer containing nitrogen atoms, the surface roughness of the substrate can be improved. Examples of the polymer containing a nitrogen atom in the main chain include homopolymers and copolymers of N-acylalkylenimine type monomers. Specific examples of the N-acylalkyleneimine monomer include N-acetylethyleneimine, N-propionylethyleneimine and the like. Examples of the polymer having a nitrogen atom in the pendant group include a polymer containing an N-vinyl type monomer unit. For example, homopolymers and copolymers of N-vinylpyrrolidone can be employed. In the technology disclosed herein, at least one of a homopolymer and a copolymer of N-vinylpyrrolidone obtained by polymerizing N-vinylpyrrolidone at a ratio of 50 mol% or more (hereinafter also referred to as “PVP”). Preferably used.
 水溶性高分子P1としてポリビニルアルコールを用いる場合、該ポリビニルアルコールのけん化度は特に限定されない。 When using polyvinyl alcohol as the water-soluble polymer P1, the saponification degree of the polyvinyl alcohol is not particularly limited.
 ここに開示される技術において水溶性高分子P1の分子量は特に限定されない。濃縮効率等の観点から、水溶性高分子P1の重量平均分子量(Mw)は、凡そ300×10以下とすることができ、150×10以下が適当である。上記Mwは、例えば130×10以下、110×10以下であってもよい。また、基板表面の保護性や研磨性能向上の観点から、Mwは1×10以上が適当であり、好ましくは10×10以上、より好ましくは20×10以上である。より好ましい一態様において、上記Mwは、例えば50×10以上、さらには80×10以上である。上記Mwは、例えば110×10以上、130×10以上であり得る。上記Mwは、セルロース誘導体に対して特に好ましく採用され得る。上記セルロース誘導体としては、例えばHECが挙げられる。 In the technique disclosed herein, the molecular weight of the water-soluble polymer P1 is not particularly limited. From the viewpoint of concentration efficiency and the like, the weight average molecular weight (Mw) of the water-soluble polymer P1 can be about 300 × 10 4 or less, and is preferably 150 × 10 4 or less. The Mw may be, for example, 130 × 10 4 or less and 110 × 10 4 or less. Further, from the viewpoint of protecting the substrate surface and improving the polishing performance, Mw is suitably 1 × 10 4 or more, preferably 10 × 10 4 or more, more preferably 20 × 10 4 or more. In a more preferred embodiment, the Mw is, for example, 50 × 10 4 or more, and further 80 × 10 4 or more. The Mw may be, for example, 110 × 10 4 or more and 130 × 10 4 or more. The Mw can be particularly preferably adopted for the cellulose derivative. Examples of the cellulose derivative include HEC.
 水溶性高分子P1の重量平均分子量(Mw)と数平均分子量(Mn)との関係は特に制限されない。凝集物の発生防止等の観点から、例えば分子量分布[Mw/Mn]が10.0以下であるものが好ましく、7.0以下であるものがさらに好ましい。 The relationship between the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the water-soluble polymer P1 is not particularly limited. From the viewpoint of preventing the occurrence of aggregates, for example, the molecular weight distribution [Mw / Mn] is preferably 10.0 or less, and more preferably 7.0 or less.
 なお、水溶性高分子P1のMwおよびMnとしては、水系のゲルパーミエーションクロマトグラフィ(GPC)に基づく値(水系、ポリエチレンオキサイド換算)を採用することができる。後述する水溶性高分子P2についても同様である。 As Mw and Mn of the water-soluble polymer P1, values based on an aqueous gel permeation chromatography (GPC) (aqueous, polyethylene oxide equivalent) can be adopted. The same applies to the water-soluble polymer P2 described later.
 上記研磨用組成物における水溶性高分子P1の含有量は、研磨性能や表面品質向上等の観点から、1×10-5重量%以上、例えば5×10-5重量%以上とすることが適当であり、好ましくは1×10-4重量%以上である。好ましい一態様において、上記水溶性高分子P1の含有量は、例えば2×10-4重量%以上である。上記研磨用組成物における水溶性高分子P1の含有量の上限は、例えば1重量%以下とすることができる。濃縮液段階での安定性や研磨レート、洗浄性等の観点から、水溶性高分子P1の含有量は、好ましくは0.1重量%以下、より好ましくは0.05重量%以下、さらに好ましくは0.02重量%以下、特に好ましくは0.01重量%以下である。特に好ましい一態様において、上記水溶性高分子P1の含有量は、例えば0.005重量%以下、典型的には0.001重量%以下である。上記濃縮液は、典型的にはB液である。 The content of the water-soluble polymer P1 in the polishing composition is suitably 1 × 10 −5 wt% or more, for example, 5 × 10 −5 wt% or more, from the viewpoint of improving polishing performance and surface quality. Preferably, it is 1 × 10 −4 wt% or more. In a preferred embodiment, the content of the water-soluble polymer P1 is, for example, 2 × 10 −4 wt% or more. The upper limit of the content of the water-soluble polymer P1 in the polishing composition can be, for example, 1% by weight or less. From the viewpoint of stability at the concentrate stage, polishing rate, detergency, etc., the content of the water-soluble polymer P1 is preferably 0.1% by weight or less, more preferably 0.05% by weight or less, and still more preferably It is 0.02% by weight or less, particularly preferably 0.01% by weight or less. In a particularly preferred embodiment, the content of the water-soluble polymer P1 is, for example, 0.005% by weight or less, typically 0.001% by weight or less. The concentrated liquid is typically B liquid.
 また、ここに開示される研磨用組成物における水溶性高分子P1の含有量は、研磨用組成物に含まれる砥粒との相対的関係によっても特定され得る。具体的には、研磨用組成物における水溶性高分子P1の含有量は、砥粒100重量部に対して0.001重量部以上とすることが適当であり、エッジロールオフ改善等の観点から、好ましくは0.005重量部以上、より好ましくは0.01重量部以上、さらに好ましくは0.015重量部以上である。また、安定性や研磨レート等の観点から、水溶性高分子P1の含有量は、砥粒100重量部に対して10重量部以下とすることが適当であり、好ましくは1重量部以下、より好ましくは0.5重量部以下、さらに好ましくは0.3重量部以下である。 Further, the content of the water-soluble polymer P1 in the polishing composition disclosed herein can also be specified by a relative relationship with the abrasive grains contained in the polishing composition. Specifically, the content of the water-soluble polymer P1 in the polishing composition is suitably 0.001 part by weight or more with respect to 100 parts by weight of the abrasive grains, from the viewpoint of improving edge roll-off, etc. The amount is preferably 0.005 parts by weight or more, more preferably 0.01 parts by weight or more, and still more preferably 0.015 parts by weight or more. From the viewpoint of stability and polishing rate, the content of the water-soluble polymer P1 is suitably 10 parts by weight or less, preferably 1 part by weight or less, based on 100 parts by weight of the abrasive grains. Preferably it is 0.5 weight part or less, More preferably, it is 0.3 weight part or less.
  (水溶性高分子P2)
 ここに開示される技術における好ましい一態様では、研磨用組成物は、慣性半径が100nm以上である水溶性高分子P1に加えて、慣性半径が100nm未満である水溶性高分子P2をさらに含む。かかる水溶性高分子P2は、水溶性高分子P1と異なり、エッチング抑制等の基板表面保護の役割を担って表面粗さ低減に貢献する成分であることから、基板表面保護剤ともいう。水溶性高分子P2の慣性半径は、安定性や濃縮効率等の観点から、好ましくは90nm未満、より好ましくは70nm未満、さらに好ましくは50nm未満である。さらに好ましい一態様において、上記水溶性高分子P2の慣性半径は、例えば30nm未満、典型的には5nm未満である。水溶性高分子P2の慣性半径の下限は特に限定されず、0.1nm以上、例えば1nm以上であり得る。
(Water-soluble polymer P2)
In a preferred embodiment of the technology disclosed herein, the polishing composition further includes a water-soluble polymer P2 having an inertial radius of less than 100 nm in addition to the water-soluble polymer P1 having an inertial radius of 100 nm or more. Unlike the water-soluble polymer P1, the water-soluble polymer P2 is a component that plays a role in protecting the substrate surface such as etching suppression and contributes to reducing the surface roughness. The radius of inertia of the water-soluble polymer P2 is preferably less than 90 nm, more preferably less than 70 nm, and still more preferably less than 50 nm from the viewpoint of stability, concentration efficiency, and the like. In a further preferred embodiment, the inertial radius of the water-soluble polymer P2 is, for example, less than 30 nm, typically less than 5 nm. The lower limit of the inertial radius of the water-soluble polymer P2 is not particularly limited, and may be 0.1 nm or more, for example, 1 nm or more.
 水溶性高分子P2の種類は、特に限定されず、研磨用組成物の分野において公知の水溶性高分子種のなかから適宜選択することができる。水溶性高分子P2の例としては、水溶性高分子P1として例示したセルロース誘導体、デンプン誘導体、オキシアルキレン単位を含むポリマー、窒素原子を含有するポリマー、ポリビニルアルコール等が挙げられる。水溶性高分子P2は、表面粗さを低減する観点から、セルロース誘導体および/またはデンプン誘導体以外の高分子であることが好ましく、窒素原子を含有するポリマーであることがより好ましい。上記セルロース誘導体および/またはデンプン誘導体以外の高分子は、典型的にはセルロース誘導体以外の高分子である。セルロース誘導体、デンプン誘導体、オキシアルキレン単位を含むポリマー、窒素原子を含有するポリマー、ポリビニルアルコールの具体例としては、水溶性高分子P1として例示したものの1種または2種以上を使用することができる。なかでも、主鎖に窒素原子を含有するポリマー、側鎖官能基(ペンダント基)に窒素原子を有するポリマーが好ましく、N-ビニル型のモノマー単位を含むポリマーがより好ましい。そのなかでも、N-ビニルピロリドンの単独重合体および共重合体(典型的にはPVP)等が特に好ましい。 The type of the water-soluble polymer P2 is not particularly limited, and can be appropriately selected from water-soluble polymer species known in the field of polishing compositions. Examples of the water-soluble polymer P2 include cellulose derivatives exemplified as the water-soluble polymer P1, starch derivatives, polymers containing oxyalkylene units, polymers containing nitrogen atoms, and polyvinyl alcohol. From the viewpoint of reducing the surface roughness, the water-soluble polymer P2 is preferably a polymer other than the cellulose derivative and / or the starch derivative, and more preferably a polymer containing a nitrogen atom. The polymer other than the cellulose derivative and / or starch derivative is typically a polymer other than the cellulose derivative. As specific examples of cellulose derivatives, starch derivatives, polymers containing oxyalkylene units, polymers containing nitrogen atoms, and polyvinyl alcohol, one or more of those exemplified as the water-soluble polymer P1 can be used. Among them, a polymer containing a nitrogen atom in the main chain and a polymer having a nitrogen atom in the side chain functional group (pendant group) are preferable, and a polymer containing an N-vinyl type monomer unit is more preferable. Among these, N-vinylpyrrolidone homopolymers and copolymers (typically PVP) are particularly preferred.
 水溶性高分子P2の分子量は、特に限定されない。水溶性高分子P2の重量平均分子量(Mw)は、凡そ300×10以下とすることができ、150×10以下、例えば50×10以下が適当である。安定性等の観点から、上記Mwは、30×10以下、例えば5×10以下であってもよい。また、基板表面の保護性向上の観点から、Mwが1×10以上が適当であり、2×10以上がより好ましく、3×10以上がさらに好ましい。上記Mwは、N-ビニルピロリドンの単独重合体および共重合体(典型的にはPVP)に対して特に好ましく採用され得る。 The molecular weight of the water-soluble polymer P2 is not particularly limited. The weight average molecular weight (Mw) of the water-soluble polymer P2 can be about 300 × 10 4 or less, and is suitably 150 × 10 4 or less, for example, 50 × 10 4 or less. From the viewpoint of stability and the like, the Mw may be 30 × 10 4 or less, for example, 5 × 10 4 or less. Further, from the viewpoint of improving the protection of the substrate surface, Mw is suitably 1 × 10 4 or more, more preferably 2 × 10 4 or more, and further preferably 3 × 10 4 or more. The above Mw can be particularly preferably employed for homopolymers and copolymers (typically PVP) of N-vinylpyrrolidone.
 水溶性高分子P2の重量平均分子量(Mw)と数平均分子量(Mn)との関係は特に制限されない。凝集物の発生防止等の観点から、例えば分子量分布[Mw/Mn]が10.0以下であるものが好ましく、7.0以下であるものがさらに好ましく、5.0以下であるものが一層好ましく、4.0以下であるものが特に好ましく、3.0以下であるものが最も好ましい。 The relationship between the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the water-soluble polymer P2 is not particularly limited. From the viewpoint of preventing the occurrence of aggregates, for example, the molecular weight distribution [Mw / Mn] is preferably 10.0 or less, more preferably 7.0 or less, and even more preferably 5.0 or less. A value of 4.0 or less is particularly preferred, and a value of 3.0 or less is most preferred.
 ここに開示される技術において、水溶性高分子として、水溶性高分子P1と水溶性高分子P2とを組み合わせて使用する場合、水溶性高分子P1と水溶性高分子P2との配合比率は特に限定されず、例えば、水溶性高分子P1:水溶性高分子P2は1:9~9:1とすることが適当であり、好ましくは3:7~8:2、より好ましくは5:5~7:3である。なお、上記水溶性高分子P1は、例えばHEC等のセルロース誘導体であり、上記水溶性高分子P2は、例えばPVP等のN-ビニル型のモノマー単位を含むポリマーである。 In the technique disclosed herein, when the water-soluble polymer P1 and the water-soluble polymer P2 are used in combination as the water-soluble polymer, the mixing ratio of the water-soluble polymer P1 and the water-soluble polymer P2 is particularly For example, the water-soluble polymer P1: water-soluble polymer P2 is suitably 1: 9 to 9: 1, preferably 3: 7 to 8: 2, more preferably 5: 5 to 7: 3. The water-soluble polymer P1 is a cellulose derivative such as HEC, and the water-soluble polymer P2 is a polymer containing an N-vinyl type monomer unit such as PVP.
 一態様に係る研磨用組成物では、水溶性高分子P2の含有量は、水溶性高分子P1の含有量を100重量%としたとき、100重量%未満であり、安定性の観点から、好ましくは80重量%未満、より好ましくは70重量%未満である。より好ましい一態様において、上記水溶性高分子P2の含有量は、例えば60重量%未満である。また、表面粗さ低減等の観点から、水溶性高分子P2の含有量は、水溶性高分子P1の含有量を100重量%としたとき、凡そ10重量%以上とすることができ、30重量%以上が適当であり、好ましくは50重量%以上である。ここに開示される技術において、研磨用組成物が水溶性高分子P2を含む場合も含まない場合も、水溶性高分子P1以外の水溶性高分子の含有量は、水溶性高分子P1の含有量を100重量%としたとき、200重量%未満程度とすることができ、例えば150重量%未満、さらには100重量%未満とすることが適当である。安定性の観点から、水溶性高分子P1以外の水溶性高分子の含有量は、水溶性高分子P1の含有量を100重量%としたとき、好ましくは80重量%未満、より好ましくは70重量%未満であり、さらには50重量%未満、例えば30重量%未満であってもよく、10重量%未満、例えば1重量%以下、具体的には0~1重量%であってもよい。より好ましい一態様において、水溶性高分子P1以外の水溶性高分子の含有量は、例えば60重量%未満である。 In the polishing composition according to one embodiment, the content of the water-soluble polymer P2 is less than 100% by weight when the content of the water-soluble polymer P1 is 100% by weight, and is preferable from the viewpoint of stability. Is less than 80% by weight, more preferably less than 70% by weight. In a more preferred embodiment, the content of the water-soluble polymer P2 is, for example, less than 60% by weight. Further, from the viewpoint of reducing the surface roughness, the content of the water-soluble polymer P2 can be about 10% by weight or more when the content of the water-soluble polymer P1 is 100% by weight, and 30% by weight. % Or more is suitable, and preferably 50% by weight or more. In the technique disclosed here, the content of the water-soluble polymer other than the water-soluble polymer P1 is the content of the water-soluble polymer P1, whether or not the polishing composition contains the water-soluble polymer P2. When the amount is 100% by weight, it can be less than about 200% by weight, for example, less than 150% by weight, and more preferably less than 100% by weight. From the viewpoint of stability, the content of the water-soluble polymer other than the water-soluble polymer P1 is preferably less than 80% by weight, more preferably 70% by weight when the content of the water-soluble polymer P1 is 100% by weight. %, Even less than 50% by weight, for example, less than 30% by weight, or less than 10% by weight, for example, 1% by weight or less, specifically 0 to 1% by weight. In a more preferred embodiment, the content of the water-soluble polymer other than the water-soluble polymer P1 is, for example, less than 60% by weight.
  (塩基性化合物)
 ここに開示される研磨用組成物は塩基性化合物を含有する。本明細書において塩基性化合物とは、水に溶解して水溶液のpHを上昇させる機能を有する化合物を指す。塩基性化合物としては、窒素を含む有機または無機の塩基性化合物、アルカリ金属の水酸化物、アルカリ土類金属の水酸化物、各種の炭酸塩や炭酸水素塩等を用いることができる。窒素を含む塩基性化合物の例としては、第四級アンモニウム化合物、第四級ホスホニウム化合物、アンモニア、アミン等が挙げられる。上記アミンは、好ましくは水溶性アミンである。このような塩基性化合物は、1種を単独でまたは2種以上を組み合わせて用いることができる。
(Basic compound)
The polishing composition disclosed herein contains a basic compound. In the present specification, the basic compound refers to a compound having a function of dissolving in water and increasing the pH of an aqueous solution. As the basic compound, an organic or inorganic basic compound containing nitrogen, an alkali metal hydroxide, an alkaline earth metal hydroxide, various carbonates, bicarbonates, or the like can be used. Examples of basic compounds containing nitrogen include quaternary ammonium compounds, quaternary phosphonium compounds, ammonia, amines and the like. The amine is preferably a water-soluble amine. Such basic compounds can be used singly or in combination of two or more.
 アルカリ金属の水酸化物の具体例としては、水酸化カリウム、水酸化ナトリウム等が挙げられる。炭酸塩または炭酸水素塩の具体例としては、炭酸水素アンモニウム、炭酸アンモニウム、炭酸水素カリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸ナトリウム等が挙げられる。アミンの具体例としては、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、エチレンジアミン、モノエタノールアミン、N-(β-アミノエチル)エタノールアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、無水ピペラジン、ピペラジン六水和物、1-(2-アミノエチル)ピペラジン、N-メチルピペラジン、グアニジン、イミダゾールやトリアゾール等のアゾール類等が挙げられる。第四級ホスホニウム化合物の具体例としては、水酸化テトラメチルホスホニウム、水酸化テトラエチルホスホニウム等の水酸化第四級ホスホニウムが挙げられる。 Specific examples of the alkali metal hydroxide include potassium hydroxide and sodium hydroxide. Specific examples of the carbonate or bicarbonate include ammonium bicarbonate, ammonium carbonate, potassium bicarbonate, potassium carbonate, sodium bicarbonate, sodium carbonate and the like. Specific examples of amines include methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, ethylenediamine, monoethanolamine, N- (β-aminoethyl) ethanolamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, anhydrous piperazine , Piperazine hexahydrate, 1- (2-aminoethyl) piperazine, N-methylpiperazine, guanidine, azoles such as imidazole and triazole, and the like. Specific examples of the quaternary phosphonium compound include quaternary phosphonium hydroxide such as tetramethylphosphonium hydroxide and tetraethylphosphonium hydroxide.
 第四級アンモニウム化合物としては、テトラアルキルアンモニウム塩、ヒドロキシアルキルトリアルキルアンモニウム塩等の第四級アンモニウム塩を好ましく用いることができる。上記第四級アンモニウム塩は、典型的には強塩基である。かかる第四級アンモニウム塩におけるアニオン成分は、例えば、OH、F、Cl、Br、I、ClO 、BH 等であり得る。なかでも好ましい例として、アニオンがOHである第四級アンモニウム塩、すなわち水酸化第四級アンモニウムが挙げられる。水酸化第四級アンモニウムの具体例としては、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラプロピルアンモニウム、水酸化テトラブチルアンモニウム、水酸化テトラペンチルアンモニウムおよび水酸化テトラヘキシルアンモニウム等の水酸化テトラアルキルアンモニウム;水酸化2-ヒドロキシエチルトリメチルアンモニウム(コリンともいう。)等の水酸化ヒドロキシアルキルトリアルキルアンモニウム;等が挙げられる。これらのうち水酸化テトラアルキルアンモニウムが好ましく、なかでも水酸化テトラメチルアンモニウム(TMAH)が好ましい。 As the quaternary ammonium compound, a quaternary ammonium salt such as a tetraalkylammonium salt or a hydroxyalkyltrialkylammonium salt can be preferably used. The quaternary ammonium salt is typically a strong base. The anionic component in such a quaternary ammonium salt can be, for example, OH , F , Cl , Br , I , ClO 4 , BH 4 − and the like. As Among these preferred examples, the anion is OH - a is a quaternary ammonium salt, i.e., include quaternary ammonium hydroxide. Specific examples of quaternary ammonium hydroxide include hydroxides such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, tetrapentylammonium hydroxide, and tetrahexylammonium hydroxide. Tetraalkylammonium hydroxide; hydroxyalkyltrialkylammonium hydroxide such as 2-hydroxyethyltrimethylammonium hydroxide (also referred to as choline); and the like. Of these, tetraalkylammonium hydroxide is preferable, and tetramethylammonium hydroxide (TMAH) is particularly preferable.
 ここに開示される研磨用組成物は、上述のような第四級アンモニウム化合物と弱酸塩とを組み合わせて含み得る。上記第四級アンモニウム化合物は、例えば、TMAH等の水酸化テトラアルキルアンモニウムである。弱酸塩としては、シリカ粒子を用いる研磨に使用可能であって、第四級アンモニウム化合物との組合せで所望の緩衝作用を発揮し得るものを適宜選択することができる。弱酸塩は、1種を単独でまたは2種以上を組み合わせて用いることができる。弱酸塩の具体例としては、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、オルト珪酸ナトリウム、オルト珪酸カリウム、酢酸ナトリウム、酢酸カリウム、プロピオン酸ナトリウム、プロピオン酸カリウム、炭酸カルシウム、炭酸水素カルシウム、酢酸カルシウム、プロピオン酸カルシウム、酢酸マグネシウム、プロピオン酸マグネシウム、プロピオン酸亜鉛、酢酸マンガン、酢酸コバルト等が挙げられる。アニオン成分が炭酸イオンまたは炭酸水素イオンである弱酸塩が好ましく、アニオン成分が炭酸イオンである弱酸塩が特に好ましい。また、カチオン成分としては、カリウム、ナトリウム等のアルカリ金属イオンが好適である。特に好ましい弱酸塩として、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウムおよび炭酸水素カリウムが挙げられる。なかでも炭酸カリウム(KCO)が好ましい。 The polishing composition disclosed herein may contain a combination of a quaternary ammonium compound and a weak acid salt as described above. The quaternary ammonium compound is, for example, a tetraalkylammonium hydroxide such as TMAH. As the weak acid salt, one that can be used for polishing using silica particles and can exhibit a desired buffering action in combination with a quaternary ammonium compound can be appropriately selected. The weak acid salts can be used alone or in combination of two or more. Specific examples of weak acid salts include sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, sodium orthosilicate, potassium orthosilicate, sodium acetate, potassium acetate, sodium propionate, potassium propionate, calcium carbonate, calcium bicarbonate , Calcium acetate, calcium propionate, magnesium acetate, magnesium propionate, zinc propionate, manganese acetate, cobalt acetate and the like. Weak acid salts in which the anion component is carbonate ion or hydrogen carbonate ion are preferred, and weak acid salts in which the anion component is carbonate ion are particularly preferred. Moreover, as a cation component, alkali metal ions, such as potassium and sodium, are suitable. Particularly preferred weak acid salts include sodium carbonate, potassium carbonate, sodium bicarbonate and potassium bicarbonate. Of these, potassium carbonate (K 2 CO 3 ) is preferable.
 塩基性化合物として、第四級アンモニウム化合物と、弱酸塩とを組み合わせて使用する場合、第四級アンモニウム化合物と弱酸塩との配合比率は特に限定されず、例えば、第四級アンモニウム化合物:弱酸塩を1:9~9:1とすることが適当であり、好ましくは3:7~8:2、より好ましくは5:5~7:3である。上記第四級アンモニウム化合物は、例えば、TMAH等の水酸化テトラアルキルアンモニウムである。弱酸塩は、例えば、KCO等のアニオン成分が炭酸イオンである弱酸塩である。 When a quaternary ammonium compound and a weak acid salt are used in combination as the basic compound, the blending ratio of the quaternary ammonium compound and the weak acid salt is not particularly limited. For example, the quaternary ammonium compound: the weak acid salt Is suitably 1: 9 to 9: 1, preferably 3: 7 to 8: 2, more preferably 5: 5 to 7: 3. The quaternary ammonium compound is, for example, a tetraalkylammonium hydroxide such as TMAH. The weak acid salt is, for example, a weak acid salt whose anion component such as K 2 CO 3 is a carbonate ion.
 ここに開示される技術において、研磨用組成物中の塩基性化合物の含有量は、例えば0.001重量%以上、典型的には0.01重量%以上とすることが適当であり、研磨レート向上等の観点から、好ましくは0.05重量%以上、より好ましくは0.08重量%以上である。塩基性化合物の含有量の増加によって、A液の安定性は向上し得る。上記塩基性化合物の含有量の上限は、5重量%以下とすることが適当であり、表面品質等の観点から、好ましくは1重量%以下である。好ましい一態様において、上記塩基性化合物の含有量は、例えば0.5重量%以下、典型的には0.2重量%以下である。 In the technique disclosed herein, it is appropriate that the content of the basic compound in the polishing composition is, for example, 0.001% by weight or more, typically 0.01% by weight or more. From the viewpoint of improvement and the like, it is preferably 0.05% by weight or more, more preferably 0.08% by weight or more. The stability of the liquid A can be improved by increasing the content of the basic compound. The upper limit of the content of the basic compound is suitably 5% by weight or less, and preferably 1% by weight or less from the viewpoint of surface quality and the like. In a preferred embodiment, the content of the basic compound is, for example, 0.5% by weight or less, typically 0.2% by weight or less.
  (水)
 ここに開示される研磨用組成物は、典型的には水を含む。水としては、イオン交換水(脱イオン水)、純水、超純水、蒸留水等を好ましく用いることができる。使用する水は、研磨用組成物に含まれる他の成分の働きが阻害されることを極力回避するため、例えば遷移金属イオンの合計含有量が100ppb以下であることが好ましい。例えば、イオン交換樹脂による不純物イオンの除去、フィルタによる異物の除去、蒸留等の操作によって水の純度を高めることができる。また、ここに開示される研磨用組成物は、必要に応じて、水と均一に混合し得る有機溶剤をさらに含有してもよい。上記有機溶剤は、低級アルコール、低級ケトン等である。研磨用組成物に含まれる溶媒は、その90体積%以上が水であることが好ましく、95体積%以上が水であることがより好ましい。より好ましい一態様において、典型的には、濃縮液に含まれる溶媒の99~100体積%が水である。なお本明細書では、上記溶媒および水を包含する総称として水系溶媒という語を用いる場合がある。
(water)
The polishing composition disclosed herein typically contains water. As water, ion exchange water (deionized water), pure water, ultrapure water, distilled water and the like can be preferably used. The water to be used preferably has, for example, a total content of transition metal ions of 100 ppb or less in order to avoid as much as possible the action of other components contained in the polishing composition. For example, the purity of water can be increased by operations such as removal of impurity ions with an ion exchange resin, removal of foreign matter with a filter, distillation, and the like. Moreover, the polishing composition disclosed here may further contain an organic solvent that can be uniformly mixed with water, if necessary. The organic solvent is a lower alcohol, a lower ketone or the like. As for the solvent contained in polishing composition, it is preferable that 90 volume% or more is water, and it is more preferable that 95 volume% or more is water. In a more preferred embodiment, typically 99 to 100% by volume of the solvent contained in the concentrate is water. In the present specification, the term “aqueous solvent” may be used as a general term including the solvent and water.
  (キレート剤)
 ここに開示される研磨用組成物には、任意成分として、キレート剤を含有させることができる。キレート剤は、研磨用組成物中に含まれ得る金属不純物と錯イオンを形成してこれを捕捉することにより、金属不純物による研磨対象物の汚染を抑制する働きをする。キレート剤の例としては、アミノカルボン酸系キレート剤および有機ホスホン酸系キレート剤が挙げられる。アミノカルボン酸系キレート剤の例には、エチレンジアミン四酢酸、エチレンジアミン四酢酸ナトリウム、ニトリロ三酢酸、ニトリロ三酢酸ナトリウム、ニトリロ三酢酸アンモニウム、ヒドロキシエチルエチレンジアミン三酢酸、ヒドロキシエチルエチレンジアミン三酢酸ナトリウム、ジエチレントリアミン五酢酸、ジエチレントリアミン五酢酸ナトリウム、トリエチレンテトラミン六酢酸およびトリエチレンテトラミン六酢酸ナトリウムが含まれる。有機ホスホン酸系キレート剤の例には、2-アミノエチルホスホン酸、1-ヒドロキシエチリデン-1,1-ジホスホン酸、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラキス(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)、エタン-1,1-ジホスホン酸、エタン-1,1,2-トリホスホン酸、エタン-1-ヒドロキシ-1,1-ジホスホン酸、エタン-1-ヒドロキシ-1,1,2-トリホスホン酸、エタン-1,2-ジカルボキシ-1,2-ジホスホン酸、メタンヒドロキシホスホン酸、2-ホスホノブタン-1,2-ジカルボン酸、1-ホスホノブタン-2,3,4-トリカルボン酸およびα-メチルホスホノコハク酸が含まれる。これらのうち有機ホスホン酸系キレート剤がより好ましい。なかでも好ましいものとして、エチレンジアミンテトラキス(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)およびジエチレントリアミン五酢酸が挙げられる。特に好ましいキレート剤として、エチレンジアミンテトラキス(メチレンホスホン酸)およびジエチレントリアミンペンタ(メチレンホスホン酸)が挙げられる。キレート剤は、1種を単独でまたは2種以上を組み合わせて用いることができる。
(Chelating agent)
The polishing composition disclosed herein can contain a chelating agent as an optional component. The chelating agent functions to suppress contamination of the object to be polished by metal impurities by forming complex ions with metal impurities that can be contained in the polishing composition and capturing them. Examples of chelating agents include aminocarboxylic acid chelating agents and organic phosphonic acid chelating agents. Examples of aminocarboxylic acid-based chelating agents include ethylenediaminetetraacetic acid, ethylenediaminetetraacetic acid sodium, nitrilotriacetic acid, nitrilotriacetic acid sodium, nitrilotriacetic acid ammonium, hydroxyethylethylenediaminetriacetic acid, hydroxyethylethylenediamine sodium triacetate, diethylenetriaminepentaacetic acid Diethylenetriamine sodium pentaacetate, triethylenetetramine hexaacetic acid and sodium triethylenetetramine hexaacetate. Examples of organic phosphonic acid chelating agents include 2-aminoethylphosphonic acid, 1-hydroxyethylidene-1,1-diphosphonic acid, aminotri (methylenephosphonic acid), ethylenediaminetetrakis (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic). Acid), ethane-1,1-diphosphonic acid, ethane-1,1,2-triphosphonic acid, ethane-1-hydroxy-1,1-diphosphonic acid, ethane-1-hydroxy-1,1,2-triphosphonic acid Ethane-1,2-dicarboxy-1,2-diphosphonic acid, methanehydroxyphosphonic acid, 2-phosphonobutane-1,2-dicarboxylic acid, 1-phosphonobutane-2,3,4-tricarboxylic acid and α-methylphospho Nosuccinic acid is included. Of these, organic phosphonic acid chelating agents are more preferred. Of these, ethylenediaminetetrakis (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic acid) and diethylenetriaminepentaacetic acid are preferable. Particularly preferred chelating agents include ethylenediaminetetrakis (methylenephosphonic acid) and diethylenetriaminepenta (methylenephosphonic acid). A chelating agent can be used individually by 1 type or in combination of 2 or more types.
  (その他の成分)
 ここに開示される研磨用組成物は、本発明の効果が著しく妨げられない範囲で、界面活性剤、有機酸、有機酸塩、無機酸、無機酸塩、防腐剤、防カビ剤等の、研磨スラリーに用いられ得る公知の添加剤を、必要に応じてさらに含有してもよい。上記研磨スラリーは、典型的には、シリコン基板のポリシング工程に用いられる研磨スラリーである。
(Other ingredients)
The polishing composition disclosed herein is a surfactant, an organic acid, an organic acid salt, an inorganic acid, an inorganic acid salt, an antiseptic, an antifungal agent, etc., as long as the effects of the present invention are not significantly hindered. You may further contain the well-known additive which can be used for polishing slurry as needed. The polishing slurry is typically a polishing slurry used in a silicon substrate polishing process.
 ここに開示される研磨用組成物は、酸化剤を実質的に含まないことが好ましい。研磨用組成物中に酸化剤が含まれていると、研磨スラリーが研磨対象物(ここではシリコン基板)に供給されることで該研磨対象物の表面が酸化されて酸化膜が生じ、これにより研磨レートが低下してしまうことがあり得るためである。ここでいう酸化剤の具体例としては、過酸化水素(H)、過硫酸ナトリウム、過硫酸アンモニウム、ジクロロイソシアヌル酸ナトリウム等が挙げられる。なお、研磨用組成物が酸化剤を実質的に含まないとは、少なくとも意図的には酸化剤を含有させないことをいう。 It is preferable that the polishing composition disclosed here contains substantially no oxidizing agent. When the polishing composition contains an oxidizing agent, the polishing slurry is supplied to the object to be polished (here, the silicon substrate), whereby the surface of the object to be polished is oxidized to form an oxide film. This is because the polishing rate may decrease. Specific examples of the oxidizing agent herein include hydrogen peroxide (H 2 O 2 ), sodium persulfate, ammonium persulfate, sodium dichloroisocyanurate, and the like. In addition, that polishing composition does not contain an oxidizing agent substantially means not containing an oxidizing agent at least intentionally.
 ここに開示される技術における研磨用組成物のpHは、8.0以上、例えば8.5以上であることが好ましく、より好ましくは9.0以上、さらに好ましくは9.5以上である。さらに好ましい一態様における研磨用組成物のpHは、例えば10.0以上である。研磨液のpHが高くなると、研磨レートが向上する傾向にある。研磨液のpHの上限値は特に制限されないが、研磨対象物をよりよく研磨する観点から、12.0以下、例えば11.5以下であることが好ましく、11.0以下であることがより好ましい。表面品質向上の観点から、上記pHは、10.8以下とすることがさらに好ましい。さらに好ましい一態様における研磨用組成物のpHは、例えば10.6以下、典型的には10.5以下である。上記表面品質向上とは、典型的には表面粗さ低減を指す。上記pHは、例えば、シリコンウェーハの研磨に用いられる研磨液に好ましく採用され得る。上記研磨液は、例えば粗研磨用の研磨液である。 The pH of the polishing composition in the technique disclosed herein is preferably 8.0 or more, for example 8.5 or more, more preferably 9.0 or more, and still more preferably 9.5 or more. Further, the pH of the polishing composition in a more preferable embodiment is 10.0 or more, for example. When the pH of the polishing liquid increases, the polishing rate tends to improve. Although the upper limit of the pH of the polishing liquid is not particularly limited, it is preferably 12.0 or less, for example, 11.5 or less, and more preferably 11.0 or less, from the viewpoint of better polishing the object to be polished. . From the viewpoint of improving the surface quality, the pH is more preferably 10.8 or less. The pH of the polishing composition in a further preferred embodiment is, for example, 10.6 or less, and typically 10.5 or less. The surface quality improvement typically refers to a reduction in surface roughness. The pH can be preferably used for a polishing liquid used for polishing a silicon wafer, for example. The polishing liquid is, for example, a polishing liquid for rough polishing.
 なお、ここに開示される技術において、液状の組成物のpHは、pHメーターを使用し、標準緩衝液を用いて3点校正した後で、ガラス電極を測定対象の組成物に入れて、2分以上経過して安定した後の値を測定することにより把握することができる。上記液状の組成物は、研磨スラリー、A液、B液等、その濃縮液等であり得る。また、pHメーターとしては、例えば、堀場製作所製のガラス電極式水素イオン濃度指示計(型番F-23)を使用する。さらに、標準緩衝液は、フタル酸塩pH緩衝液 pH:4.01(25℃)、中性リン酸塩pH緩衝液 pH:6.86(25℃)、炭酸塩pH緩衝液 pH:10.01(25℃)である。 In the technique disclosed herein, the pH of the liquid composition is adjusted to 3 using a pH buffer and a standard buffer solution, and then the glass electrode is placed in the composition to be measured. It can be grasped by measuring the value after a minute or more has passed and stabilized. The liquid composition may be a polishing slurry, A liquid, B liquid, or the like. As the pH meter, for example, a glass electrode type hydrogen ion concentration indicator (model number F-23) manufactured by HORIBA, Ltd. is used. Further, the standard buffer solutions are phthalate pH buffer solution pH: 4.01 (25 ° C.), neutral phosphate pH buffer solution pH: 6.86 (25 ° C.), carbonate pH buffer solution pH: 10. 01 (25 ° C.).
 <研磨用組成物の製造方法>
 ここに開示される研磨用組成物は、下記の方法で製造することができる。具体的には、上記製造方法は、砥粒および塩基性化合物を含むA液を調製する工程(A液調製工程)と、慣性半径が100nm以上である水溶性高分子P1を含むB液を調製する工程(B液調製工程)と、上記A液と上記B液とを混合する工程(混合工程)と、を含む。なお、A液調製工程とB液調製工程の順序は特に限定されない。
<Method for producing polishing composition>
The polishing composition disclosed herein can be produced by the following method. Specifically, the above manufacturing method prepares a liquid B containing a step of preparing liquid A containing abrasive grains and a basic compound (liquid A preparation step) and a water-soluble polymer P1 having an inertia radius of 100 nm or more. And a step of mixing the solution A and the solution B (mixing step). In addition, the order of A liquid preparation process and B liquid preparation process is not specifically limited.
  (A液調製工程)
 ここに開示される研磨用組成物を製造するにあたって、砥粒と塩基性化合物とを含むA液を調製する。A液に含まれる砥粒の種類としては、研磨用組成物に含まれ得る砥粒として例示した各種砥粒の1種または2種以上を使用することができる。各種砥粒としては、例えばシリカ粒子、好ましくはコロイダルシリカが挙げられる。同様に、砥粒の平均一次粒子径、形状、平均アスペクト比についても、研磨用組成物に含まれる砥粒がとり得る平均一次粒子径、形状、平均アスペクト比とすることができる。
(A liquid preparation process)
In manufacturing the polishing composition disclosed herein, a liquid A containing abrasive grains and a basic compound is prepared. As a kind of abrasive grain contained in A liquid, the 1 type (s) or 2 or more types of the various abrasive grains illustrated as an abrasive grain which may be contained in polishing composition can be used. Examples of the various abrasive grains include silica particles, preferably colloidal silica. Similarly, the average primary particle diameter, shape, and average aspect ratio of the abrasive grains can be the average primary particle diameter, shape, and average aspect ratio that can be taken by the abrasive grains contained in the polishing composition.
 A液は、製造、流通、保存等の利便性等の観点から、典型的には、研磨用組成物よりも含有成分を高濃度で含む形態で調製される。したがって、A液中の砥粒の含有量についても、研磨用組成物における砥粒の含有量よりも高いことが好ましい。具体的には、A液における砥粒の含有量は、凡そ1重量%以上、例えば10重量%以上とすることが適当であり、好ましくは15重量%以上、より好ましくは20重量%以上、さらに好ましくは25重量%以上である。安定性や濾過性等の観点から、A液における砥粒の含有量は、例えば50重量%以下とすることが適当であり、好ましくは45重量%以下である。好ましい一態様において、A液における砥粒の含有量は、例えば40重量%以下、典型的には35重量%以下である。 The solution A is typically prepared in a form containing a higher concentration of the components than the polishing composition from the viewpoint of convenience of production, distribution, storage and the like. Therefore, the content of abrasive grains in the liquid A is also preferably higher than the content of abrasive grains in the polishing composition. Specifically, the content of the abrasive grains in the liquid A is suitably about 1% by weight or more, for example, 10% by weight or more, preferably 15% by weight or more, more preferably 20% by weight or more, Preferably it is 25 weight% or more. From the viewpoint of stability, filterability, etc., the content of the abrasive grains in the liquid A is, for example, suitably 50% by weight or less, and preferably 45% by weight or less. In a preferred embodiment, the content of abrasive grains in the liquid A is, for example, 40% by weight or less, typically 35% by weight or less.
 好ましい一態様では、安定性の観点から、研磨用組成物に含まれる砥粒の全量がA液に含まれているが、ここに開示される技術はこれに限定されない。本発明の効果が著しく損なわれない範囲で、研磨用組成物に含まれる砥粒の一部がA液に含まれていてもよい。具体的には、研磨用組成物に含まれる砥粒の総量を100重量%としたとき、そのうち50重量%を超える量がA液中に含まれていることが適当であり、研磨用組成物に含まれる砥粒の総量の80重量%以上、例えば90重量%以上、さらには95重量%以上、典型的には99重量%~100重量%をA液に含ませることが好ましい。 In a preferred embodiment, from the viewpoint of stability, the entire amount of abrasive grains contained in the polishing composition is contained in the liquid A, but the technique disclosed herein is not limited thereto. As long as the effects of the present invention are not significantly impaired, part of the abrasive grains contained in the polishing composition may be contained in the liquid A. Specifically, when the total amount of abrasive grains contained in the polishing composition is 100% by weight, it is appropriate that an amount exceeding 50% by weight is contained in the liquid A, and the polishing composition It is preferable that 80% by weight or more, for example, 90% by weight or more, more preferably 95% by weight or more, typically 99% by weight to 100% by weight, of the total amount of abrasive grains contained in is contained in the liquid A.
 A液に含まれる塩基性化合物についても、砥粒の場合と同様に、研磨用組成物に含まれ得る塩基性化合物として例示した各種塩基性化合物の1種または2種以上を使用することができる。第四級アンモニウム化合物、弱酸塩、あるいは両者の併用が好ましい。B液が、塩基性化合物として、第四級アンモニウム化合物と、弱酸塩とを組み合わせて含む場合、B液における第四級アンモニウム化合物と弱酸塩との配合比率は特に限定されず、例えば、第四級アンモニウム化合物:弱酸塩を1:9~9:1とすることが適当であり、好ましくは3:7~8:2、より好ましくは5:5~7:3である。なお、上記第四級アンモニウム化合物は、例えば、TMAH等の水酸化テトラアルキルアンモニウムである。上記弱酸塩は、例えば、KCO等のアニオン成分が炭酸イオンである弱酸塩である。 Also about the basic compound contained in A liquid, 1 type, or 2 or more types of the various basic compounds illustrated as a basic compound which can be contained in polishing composition can be used similarly to the case of an abrasive grain. . A quaternary ammonium compound, a weak acid salt, or a combination of both is preferred. When the B liquid contains a combination of a quaternary ammonium compound and a weak acid salt as a basic compound, the blending ratio of the quaternary ammonium compound and the weak acid salt in the B liquid is not particularly limited. It is appropriate that the ratio of the quaternary ammonium compound: weak acid salt is 1: 9 to 9: 1, preferably 3: 7 to 8: 2, more preferably 5: 5 to 7: 3. The quaternary ammonium compound is, for example, tetraalkylammonium hydroxide such as TMAH. The weak acid salt is, for example, a weak acid salt in which an anion component such as K 2 CO 3 is a carbonate ion.
 A液における塩基性化合物の含有量(濃度)は、研磨レート向上等の観点から、例えば0.1重量%以上、典型的には0.5重量%以上とすることが適当であり、好ましくは1重量%以上、より好ましくは1.5重量%以上、さらに好ましくは2.0重量%以上である。さらに好ましい一態様において、A液における塩基性化合物の含有量は、例えば2.5重量%以上である。例えば、A液を高倍率で希釈して使用する場合には、希釈後における砥粒濃度は相対的に低くなり、砥粒による加工力も低下傾向となる場合がある。そのような場合においても、A液の段階で塩基性化合物を増量しておくことで、希釈後における化学的研磨を強化することができる。上記A液における塩基性化合物の含有量の上限は、保存安定性や表面品質等の観点から、10重量%以下とすることが適当であり、好ましくは5重量%以下である。好ましい一態様において、A液における塩基性化合物の含有量は、例えば3重量%以下である。 The content (concentration) of the basic compound in the liquid A is suitably, for example, 0.1% by weight or more, typically 0.5% by weight or more from the viewpoint of improving the polishing rate, preferably 1% by weight or more, more preferably 1.5% by weight or more, and further preferably 2.0% by weight or more. In a more preferred embodiment, the content of the basic compound in the liquid A is, for example, 2.5% by weight or more. For example, when the A liquid is used after being diluted at a high magnification, the concentration of the abrasive grains after dilution may be relatively low, and the processing force by the abrasive grains may tend to decrease. Even in such a case, chemical polishing after dilution can be strengthened by increasing the amount of the basic compound at the stage of the liquid A. The upper limit of the content of the basic compound in the liquid A is suitably 10% by weight or less, preferably 5% by weight or less, from the viewpoints of storage stability and surface quality. In a preferred embodiment, the content of the basic compound in the liquid A is, for example, 3% by weight or less.
 また、A液における塩基性化合物の含有量は、A液に含まれる砥粒との相対的関係によっても特定され得る。具体的には、A液における塩基性化合物の含有量は、砥粒100重量部に対して0.1重量部以上とすることが適当であり、研磨レート向上等の観点から、好ましくは1重量部以上、より好ましくは3重量部以上、さらに好ましくは6重量部以上である。また、安定性や表面品質等の観点から、塩基性化合物の含有量は、砥粒100重量部に対して50重量部以下とすることが適当であり、好ましくは30重量部以下、より好ましくは15重量部以下、さらに好ましくは12重量部以下である。 Further, the content of the basic compound in the liquid A can also be specified by the relative relationship with the abrasive grains contained in the liquid A. Specifically, the content of the basic compound in the liquid A is suitably 0.1 parts by weight or more with respect to 100 parts by weight of the abrasive grains, and preferably 1 weight from the viewpoint of improving the polishing rate. Part or more, more preferably 3 parts by weight or more, still more preferably 6 parts by weight or more. From the standpoint of stability and surface quality, the content of the basic compound is suitably 50 parts by weight or less, preferably 30 parts by weight or less, more preferably 100 parts by weight of abrasive grains. 15 parts by weight or less, more preferably 12 parts by weight or less.
 ここに開示される技術においては、研磨用組成物に含まれる塩基性化合物の全量がA液に含まれていてもよいし、その一部がA液に含まれていてもよい。具体的には、研磨用組成物に含まれる塩基性化合物の総量を100重量%としたとき、そのうち50重量%を超える量がA液中に含まれていることが適当であり、研磨用組成物に含まれる塩基性化合物の総量の80重量%以上、例えば90重量%以上、さらには95重量%以上、典型的には99重量%以上をA液に含ませることが好ましい。後述するB液との混合時にB液とのpH差を低減する観点から、研磨用組成物に含まれる塩基性化合物の一部をA液に含ませ、残部を後述のB液に含ませる態様が好ましく採用される。かかる態様では、A液に含まれる塩基性化合物の量は、研磨用組成物に含まれる塩基性化合物の総量を100重量%としたとき、99.999重量%以下、例えば99.99重量%以下、典型的には99.9重量%以下程度であり得る。 In the technique disclosed herein, the entire amount of the basic compound contained in the polishing composition may be contained in the A liquid, or a part thereof may be contained in the A liquid. Specifically, when the total amount of basic compounds contained in the polishing composition is 100% by weight, it is appropriate that an amount exceeding 50% by weight is contained in the liquid A. It is preferable that 80% by weight or more, for example 90% by weight or more, further 95% by weight or more, typically 99% by weight or more of the total amount of basic compounds contained in the product is contained in the liquid A. A mode in which a part of the basic compound contained in the polishing composition is included in the A liquid and the remainder is included in the B liquid described later from the viewpoint of reducing the pH difference from the B liquid when mixed with the B liquid described later. Is preferably employed. In such an embodiment, the amount of the basic compound contained in the liquid A is 99.999% by weight or less, for example, 99.99% by weight or less when the total amount of the basic compound contained in the polishing composition is 100% by weight. Typically, it can be about 99.9% by weight or less.
 ここに開示される研磨用組成物が上述の水溶性高分子P2を含む場合、当該研磨用組成物の製造において、A液に水溶性高分子P2を含ませることが好ましい。これによって、砥粒の分散安定性が改善する傾向がある。A液に含まれ得る水溶性高分子P2としては、研磨用組成物に含まれ得る水溶性高分子P2として例示した各種水溶性高分子P2の1種または2種以上を使用することができる。A液が水溶性高分子P2を含む場合、A液における水溶性高分子P2の含有量(濃度)は、水溶性高分子P2の添加効果を十分に得る観点から、1×10-4重量%以上とすることが適当であり、好ましくは1×10-3重量%以上である。好ましい一態様において、A液における水溶性高分子P2の含有量は、例えば3×10-3重量%以上である。A液における水溶性高分子P2の含有量の上限は特に限定されず、例えば1×10-1重量%以下、典型的には1×10-2重量%以下とすることが適当である。なお、研磨用組成物が水溶性高分子P2を含む場合、水溶性高分子P2の全量がA液に含まれていてもよく、その一部がA液に含まれ残部がB液に含まれていてもよく、その全量がB液に含まれていてもよい。 When the polishing composition disclosed here contains the water-soluble polymer P2 described above, it is preferable that the liquid A contains the water-soluble polymer P2 in the production of the polishing composition. This tends to improve the dispersion stability of the abrasive grains. As the water-soluble polymer P2 that can be contained in the liquid A, one or more of the various water-soluble polymers P2 exemplified as the water-soluble polymer P2 that can be contained in the polishing composition can be used. When the liquid A contains the water-soluble polymer P2, the content (concentration) of the water-soluble polymer P2 in the liquid A is 1 × 10 −4 wt% from the viewpoint of sufficiently obtaining the effect of adding the water-soluble polymer P2. The above is appropriate, and preferably 1 × 10 −3 wt% or more. In a preferred embodiment, the content of the water-soluble polymer P2 in the liquid A is, for example, 3 × 10 −3 wt% or more. The upper limit of the content of the water-soluble polymer P2 in the liquid A is not particularly limited. For example, it is appropriate to set it to 1 × 10 −1 wt% or less, typically 1 × 10 −2 wt% or less. In addition, when the polishing composition contains the water-soluble polymer P2, the total amount of the water-soluble polymer P2 may be contained in the liquid A, a part of which is contained in the liquid A, and the remainder is contained in the liquid B. The total amount thereof may be contained in the B liquid.
 ここに開示される技術は、A液が水溶性高分子P1を実質的に含まない態様で好ましく実施することができるが、本発明の効果を著しく損なわない範囲で、研磨用組成物に含まれる水溶性高分子P1の一部がA液に含まれていてもよい。また、上記A液には、典型的には、水に代表される水系溶媒が含まれ得る。A液は、ここに開示される研磨用組成物に任意成分として含まれ得るキレート剤、界面活性剤、有機酸、有機酸塩、無機酸、無機酸塩、防腐剤、防カビ剤等の添加剤を、必要に応じてさらに含有し得る。 The technique disclosed here can be preferably implemented in a mode in which the liquid A does not substantially contain the water-soluble polymer P1, but is included in the polishing composition as long as the effects of the present invention are not significantly impaired. A part of the water-soluble polymer P1 may be contained in the A liquid. Moreover, the said A liquid may typically contain the aqueous solvent represented by water. Liquid A is an addition of a chelating agent, a surfactant, an organic acid, an organic acid salt, an inorganic acid, an inorganic acid salt, an antiseptic, an antifungal agent and the like that can be included as an optional component in the polishing composition disclosed herein. An agent may be further contained as necessary.
 ここに開示されるA液のpHは、典型的には8.0以上であり、好ましくは8.5以上、より好ましくは9.0以上、さらに好ましくは9.5以上、例えば10.0以上であり、特に好ましくは10.5以上である。A液のpHが高くすることで、研磨性能が向上する傾向にある。一方、砥粒の溶解を防ぎ、該砥粒による機械的な研磨作用の低下を抑制する観点から、A液のpHは、12.0以下であることが適当であり、11.8以下であることが好ましく、11.5以下であることがより好ましい。上記砥粒は、例えばシリカ粒子である。 The pH of the solution A disclosed herein is typically 8.0 or higher, preferably 8.5 or higher, more preferably 9.0 or higher, still more preferably 9.5 or higher, for example 10.0 or higher. And particularly preferably 10.5 or more. The polishing performance tends to be improved by increasing the pH of the liquid A. On the other hand, the pH of the liquid A is suitably 12.0 or less and 11.8 or less from the viewpoint of preventing dissolution of the abrasive grains and suppressing a decrease in mechanical polishing action by the abrasive grains. Preferably, it is 11.5 or less. The abrasive grains are, for example, silica particles.
 A液の調製方法は特に限定されない。例えば、翼式攪拌機、超音波分散機、ホモミキサー等の周知の混合装置を用いて、A液に含まれる各成分を混合するとよい。これらの成分を混合する態様は特に限定されず、例えば全成分を一度に混合してもよく、適宜設定した順序で混合してもよい。後述のB液についても、同様の混合方法が適宜採用され得る。 The preparation method of the A liquid is not particularly limited. For example, each component contained in the liquid A may be mixed using a well-known mixing apparatus such as a blade-type stirrer, an ultrasonic disperser, or a homomixer. The aspect which mixes these components is not specifically limited, For example, all the components may be mixed at once and may be mixed in the order set suitably. The same mixing method can be appropriately employed for the later-described B liquid.
  (B液調製工程)
 ここに開示される研磨用組成物の製造に使用するB液は、慣性半径が100nm以上である水溶性高分子P1を含む。B液に含まれる水溶性高分子P1としては、研磨用組成物に含まれ得る水溶性高分子P1として例示した各種水溶性高分子の1種または2以上を使用することができる。
(B liquid preparation process)
B liquid used for manufacture of the polishing composition disclosed here contains water-soluble polymer P1 whose inertia radius is 100 nm or more. As the water-soluble polymer P1 contained in the liquid B, one or more of various water-soluble polymers exemplified as the water-soluble polymer P1 that can be contained in the polishing composition can be used.
 B液も、A液と同様に、製造、流通、保存等の利便性等の観点から、典型的には、研磨用組成物よりも含有成分を高濃度で含む形態で調製される。したがって、B液中の水溶性高分子P1の含有量についても、研磨用組成物における水溶性高分子P1の含有量よりも高いことが好ましい。具体的には、B液における水溶性高分子P1の含有量は、凡そ0.01重量%以上、例えば0.02重量%以上とすることが適当であり、好ましくは0.05重量%以上である。好ましい一態様において、B液における水溶性高分子P1の含有量は、例えば0.1重量%以上である。安定性や濾過性等の観点から、B液における水溶性高分子P1の含有量は、例えば10重量%以下とすることが適当であり、好ましくは3重量%以下である。好ましい一態様において、B液における水溶性高分子P1の含有量は、例えば1重量%以下、典型的には0.5重量%以下である。 The liquid B is also typically prepared in a form containing a higher concentration of the components than the polishing composition from the viewpoint of convenience in production, distribution, storage, etc., as with the liquid A. Therefore, the content of the water-soluble polymer P1 in the liquid B is also preferably higher than the content of the water-soluble polymer P1 in the polishing composition. Specifically, the content of the water-soluble polymer P1 in the liquid B is suitably about 0.01% by weight or more, for example 0.02% by weight or more, preferably 0.05% by weight or more. is there. In a preferred embodiment, the content of the water-soluble polymer P1 in the liquid B is, for example, 0.1% by weight or more. From the viewpoint of stability, filterability, etc., the content of the water-soluble polymer P1 in the liquid B is suitably 10% by weight or less, and preferably 3% by weight or less, for example. In a preferred embodiment, the content of the water-soluble polymer P1 in the liquid B is, for example, 1% by weight or less, typically 0.5% by weight or less.
 好ましい一態様では、安定性の観点から、研磨用組成物に含まれる水溶性高分子P1の全量がB液に含まれているが、ここに開示される技術はこれに限定されない。本発明の効果が著しく損なわれない範囲で、研磨用組成物に含まれる水溶性高分子P1の一部がA液に含まれていてもよい。具体的には、研磨用組成物に含まれる水溶性高分子P1の総量を100重量%としたとき、そのうち50重量%を超える量がB液中に含まれていることが適当であり、研磨用組成物に含まれる水溶性高分子P1の総量の80重量%以上、例えば90重量%以上、さらには95重量%以上、典型的には99重量%以上をB液に含ませることが好ましい。 In a preferred embodiment, from the viewpoint of stability, the entire amount of the water-soluble polymer P1 contained in the polishing composition is contained in the B solution, but the technique disclosed herein is not limited thereto. A part of the water-soluble polymer P1 contained in the polishing composition may be contained in the liquid A as long as the effects of the present invention are not significantly impaired. Specifically, when the total amount of the water-soluble polymer P1 contained in the polishing composition is 100% by weight, it is appropriate that an amount exceeding 50% by weight is contained in the B liquid. It is preferable that 80% by weight or more, for example, 90% by weight or more, further 95% by weight or more, typically 99% by weight or more of the total amount of the water-soluble polymer P1 contained in the composition for use is contained in the B liquid.
 好ましい一態様に係るB液には、研磨用組成物に含まれる塩基性化合物の一部が含まれている。これにより、塩基性化合物を含むA液とのpH差が低減され、A液とB液とを円滑に混合させることができる。B液が塩基性化合物を含む場合、当該塩基性化合物としては、特に限定されないが、混合するA液に含まれる塩基性化合物、または循環使用時の添加剤に使用する塩基性化合物の少なくとも1種と同一種のものを用いることが好ましい。例えば、水酸化カリウムや第四級アンモニウム化合物を用いることができる。上記第四級アンモニウム化合物は、例えば、TMAH等の水酸化テトラアルキルアンモニウムである。 The liquid B according to a preferred embodiment includes a part of the basic compound contained in the polishing composition. Thereby, the pH difference with A liquid containing a basic compound is reduced, and A liquid and B liquid can be mixed smoothly. When the B liquid contains a basic compound, the basic compound is not particularly limited, but at least one of the basic compound contained in the liquid A to be mixed or the basic compound used as an additive during circulation use It is preferable to use the same type as. For example, potassium hydroxide or a quaternary ammonium compound can be used. The quaternary ammonium compound is, for example, a tetraalkylammonium hydroxide such as TMAH.
 また、ここに開示される研磨用組成物が水溶性高分子P2を含む場合、当該水溶性高分子P2の全量または一部はB液に含まれていてもよい。この場合、B液に含まれる全水溶性高分子の慣性半径は100nm未満となり得るが、B液が水溶性高分子P2を含む場合においても、また当然含まない場合においても、B液に含まれる全水溶性高分子の慣性半径は100nm以上であることが好ましい。より好ましい一態様では、B液に含まれる全水溶性高分子の慣性半径は、105nm以上であり、さらに好ましくは120nm以上、特に好ましくは140nm以上である。B液に含まれる全水溶性高分子の慣性半径の上限は特に限定されず、B液の安定性や濃縮効率等の観点から、凡そ500nm以下とすることが適当であり、好ましくは300nm以下、より好ましくは250nm以下、さらに好ましくは220nm以下であり、あるいは凡そ150nm以下、例えば120nm以下であってもよい。 Further, when the polishing composition disclosed herein contains the water-soluble polymer P2, the whole or part of the water-soluble polymer P2 may be contained in the B liquid. In this case, the inertial radius of the total water-soluble polymer contained in the liquid B can be less than 100 nm, but it is contained in the liquid B even when the liquid B contains the water-soluble polymer P2 or not. It is preferable that the inertial radius of all water-soluble polymers is 100 nm or more. In a more preferred embodiment, the radius of inertia of the total water-soluble polymer contained in the liquid B is 105 nm or more, more preferably 120 nm or more, and particularly preferably 140 nm or more. The upper limit of the radius of inertia of the total water-soluble polymer contained in the B liquid is not particularly limited, and is suitably about 500 nm or less, preferably 300 nm or less, from the viewpoint of the stability and concentration efficiency of the B liquid. More preferably, it is 250 nm or less, More preferably, it is 220 nm or less, or about 150 nm or less, for example, 120 nm or less may be sufficient.
 ここに開示される技術は、B液が砥粒を実質的に含まない態様で好ましく実施することができるが、発明の効果を著しく損なわない範囲で、研磨用組成物に含まれる砥粒の一部がB液に含まれていてもよい。また、上記B液には、水に代表される水系溶媒が含まれ得る。B液は、ここに開示される研磨用組成物に任意成分として含まれ得るキレート剤、界面活性剤、有機酸、有機酸塩、無機酸、無機酸塩、防腐剤、防カビ剤等の添加剤を、必要に応じてさらに含有し得る。 Although the technique disclosed here can be preferably implemented in a mode in which the liquid B does not substantially contain abrasive grains, one of the abrasive grains contained in the polishing composition is within a range that does not significantly impair the effects of the invention. Part may be contained in the B liquid. Moreover, the said B liquid may contain the aqueous solvent represented by water. Liquid B is an addition of a chelating agent, surfactant, organic acid, organic acid salt, inorganic acid, inorganic acid salt, preservative, antifungal agent, etc. that can be included as an optional component in the polishing composition disclosed herein. An agent may be further contained as necessary.
 ここに開示されるB液のpHは特に限定されない。A液との混合時におけるpH変化を抑制する観点から、B液のpHは、A液のpHの±3以内であることが適当であり、好ましくは±2以内、より好ましくは±1以内である。より好ましい一態様において、B液のpHは、例えば±0.5以内である。 The pH of the B liquid disclosed here is not particularly limited. From the viewpoint of suppressing the pH change during mixing with the liquid A, the pH of the liquid B is suitably within ± 3 of the pH of the liquid A, preferably within ± 2, more preferably within ± 1. is there. In a more preferred embodiment, the pH of the solution B is, for example, within ± 0.5.
  (混合工程)
 次いで、上記のようにして調製したA液とB液とを混合する。混合の方法は特に限定されず、必要に応じて周知、慣用の混合装置を用いて行うとよい。上記混合のタイミングは、特に限定されず、研磨用組成物を使用する前、すなわち、当該研磨用組成物を用いた研磨前、の適当なタイミングでA液とB液とを混合するとよい。例えば、上記混合と、得られた研磨用組成物の使用、すなわち研磨、との間に保管等の工程を含まないことが好ましい。上記混合から研磨用組成物の使用までの期間は、例えば2週間以内とすることができ、3日以内とすることが適当である。混合後の研磨用組成物における分散状態等を考慮すると、上記研磨用組成物を用いた研磨を開始する24時間以内、典型的には12時間以内、とすることが好ましく、研磨開始の直前、例えば6時間以内、典型的には3時間以内、に上記混合工程を実施することがより好ましい。あるいは、A液とB液との混合を連続的に行いつつ、製造された研磨用組成物を研磨対象物に供給してもよい。
(Mixing process)
Subsequently, the A liquid and B liquid prepared as mentioned above are mixed. The mixing method is not particularly limited, and may be performed using a well-known and conventional mixing device as necessary. The timing of the mixing is not particularly limited, and the A liquid and the B liquid may be mixed at an appropriate timing before using the polishing composition, that is, before polishing using the polishing composition. For example, it is preferable not to include a process such as storage between the mixing and use of the obtained polishing composition, that is, polishing. The period from the mixing to the use of the polishing composition can be, for example, within 2 weeks, and is suitably within 3 days. In consideration of the dispersion state and the like in the polishing composition after mixing, it is preferably within 24 hours of starting polishing using the polishing composition, typically within 12 hours, immediately before the start of polishing, For example, it is more preferable to carry out the mixing step within 6 hours, typically within 3 hours. Or you may supply the manufactured polishing composition to a grinding | polishing target object, mixing A liquid and B liquid continuously.
 A液とB液との混合比は、研磨用組成物の組成が所望の範囲となるように適切に設定される。好ましい一態様では、上記混合工程において、A液:B液は体積基準で1:1~100:1、例えば5:1~70:1、典型的には15:1~50:1の割合で混合される。 The mixing ratio of the liquid A and the liquid B is appropriately set so that the composition of the polishing composition is in a desired range. In a preferred embodiment, in the mixing step, the liquid A: the liquid B is in a ratio of 1: 1 to 100: 1, for example 5: 1 to 70: 1, typically 15: 1 to 50: 1 on a volume basis. Mixed.
 好ましい一態様では、上記A液とB液との混合の前後、または当該混合と同時に水等の水系溶媒を用いて希釈を行う。このタイミングで希釈を行うことにより、研磨用組成物の使用前においては、A液、B液の状態で、濃縮液の利点と安定性とを両立することができる。濃縮液の利点は、利便性、コスト低減等である。また、希釈を行うことによって得られた研磨用組成物は、優れたエッジロールオフ低減効果を発揮することができる。特に好ましい一態様では、A液、B液および希釈用水系溶媒は、ほぼ同時に混合されるか、連続的に投入混合される。A液、B液および希釈用水系溶媒を連続的に混合する場合、添加の順序は特に限定されない。混合によるpH変化の影響を低減するため、A液を希釈用水系溶媒で希釈した後、希釈されたA液にB液を添加する態様が好ましく採用される。希釈に用いられる液体としては、取扱い性、作業性等の観点から、実質的に水からなる水系溶媒の使用が好ましい。水は、典型的にはイオン交換水である。上記水系溶媒は、例えば、99.5~100体積%が水である水系溶媒である。また、上記水系溶媒が混合溶媒である場合、該水系溶媒の構成成分のうち一部の成分のみを加えて希釈してもよく、それらの構成成分を上記水系溶媒とは異なる量比で含む混合溶媒を加えて希釈してもよい。 In a preferred embodiment, dilution is performed using an aqueous solvent such as water before or after the mixing of the liquid A and the liquid B or simultaneously with the mixing. By diluting at this timing, it is possible to achieve both the advantages and stability of the concentrated liquid in the state of liquid A and liquid B before use of the polishing composition. The advantages of the concentrated liquid are convenience and cost reduction. Moreover, the polishing composition obtained by diluting can exhibit an excellent edge roll-off reducing effect. In a particularly preferable embodiment, the liquid A, the liquid B and the aqueous solvent for dilution are mixed almost simultaneously or continuously added and mixed. When A liquid, B liquid, and the aqueous solvent for dilution are continuously mixed, the order of addition is not particularly limited. In order to reduce the influence of pH change due to mixing, an embodiment in which the liquid B is diluted with the aqueous solvent for dilution and then the liquid B is added to the diluted liquid A is preferably employed. As the liquid used for dilution, it is preferable to use an aqueous solvent consisting essentially of water from the viewpoints of handleability and workability. The water is typically ion exchange water. The aqueous solvent is, for example, an aqueous solvent in which 99.5 to 100% by volume is water. In addition, when the aqueous solvent is a mixed solvent, only a part of the components of the aqueous solvent may be added for dilution, and a mixture containing these components in a different ratio from the aqueous solvent. A solvent may be added for dilution.
 上記希釈用水系溶媒による希釈倍率は、A液およびB液の総量に対して体積基準で2倍よりも大きい倍率であることが適当である。上記の倍率で希釈されることによって、濃縮形態のA液、B液から、研磨に適した組成を有する研磨用組成物が得られる。ここに開示される技術によると、A液およびB液の総量を基準として、体積基準で10倍よりも大きい倍率、典型的には15倍以上、例えば25倍以上の倍率で希釈を行うことが好ましい。上記希釈倍率の上限は特に制限されないが、体積基準で凡そ100倍以下、例えば50倍以下、典型的には40倍以下であり得る。したがって、A液とB液との純粋な混合液そのものの組成は、ここに開示される研磨用組成物を上記の倍率で濃縮した組成と対応し得る。具体的には、A液とB液との混合液は、上記で説明した組成を有する研磨用組成物を、体積基準で2倍超の倍率(濃縮倍率)に濃縮した濃縮液であり得る。上記濃縮倍率は、好ましくは体積基準で10倍よりも大きい倍率、典型的には15倍以上、例えば25倍以上であり得る。 It is appropriate that the dilution ratio with the above-mentioned aqueous solvent for dilution is larger than 2 times on a volume basis with respect to the total amount of the liquid A and the liquid B. By diluting at the above magnification, a polishing composition having a composition suitable for polishing is obtained from the concentrated liquid A and liquid B. According to the technique disclosed herein, the dilution can be performed at a magnification larger than 10 times on a volume basis, typically 15 times or more, for example, 25 times or more, based on the total amount of the liquid A and the liquid B. preferable. The upper limit of the dilution ratio is not particularly limited, but may be about 100 times or less, for example 50 times or less, typically 40 times or less on a volume basis. Therefore, the composition of the pure liquid mixture of liquid A and liquid B itself can correspond to the composition obtained by concentrating the polishing composition disclosed herein at the above magnification. Specifically, the liquid mixture of the liquid A and the liquid B may be a concentrated liquid obtained by concentrating the polishing composition having the composition described above at a magnification (concentration ratio) of more than 2 times on a volume basis. The concentration factor may be preferably greater than 10 times on a volume basis, typically 15 times or more, for example 25 times or more.
 A液、B液、必要に応じて使用される希釈用水系溶媒の混合方法は特に限定されない。必要に応じて例えば、翼式攪拌機、超音波分散機、ホモミキサー等の周知の混合装置を用いて、上記液を混合するとよい。上記液を混合する態様は特に限定されず、例えばA液、B液、希釈用水系溶媒を一度に混合してもよく、適宜設定した順序で混合してもよい。なお、ここに開示される研磨用組成物の製造においては、A液およびB液に加えて、研磨用組成物に含まれる成分の一部を含有する1または2以上の追加の剤(C液、D液等と呼称し得る。)が任意構成要素として混合され得る。 The mixing method of the liquid A, the liquid B, and the aqueous solvent for dilution used as necessary is not particularly limited. If necessary, the liquid may be mixed using a known mixing device such as a blade-type stirrer, an ultrasonic disperser, or a homomixer. The aspect which mixes the said liquid is not specifically limited, For example, A liquid, B liquid, and the aqueous solvent for dilution may be mixed at once, and you may mix in the order set suitably. In the production of the polishing composition disclosed herein, in addition to the liquid A and the liquid B, one or two or more additional agents (liquid C) containing a part of the components contained in the polishing composition , D liquid, etc.) can be mixed as optional components.
 <研磨用組成物セット>
 ここに開示される研磨用組成物セットは、上記研磨用組成物を製造するために用いられる多剤型の研磨用組成物セットであり、少なくとも、上述のA液およびB液を備える。A液は少なくとも砥粒および塩基性化合物を含み、B液は少なくとも水溶性高分子P1を含む。好ましい一態様に係る研磨用組成物セットは、A液とB液とからなる2剤型のセットである。なお、A液およびB液の詳細は上述のとおりであるので、ここでは重複する説明は繰り返さない。また、ここに開示される研磨用組成物セットは、A液およびB液に加えて、研磨用組成物に含まれる成分の一部を含有する1または2以上の追加の剤(C液、D液等と呼称し得る。)を任意構成要素として備える3剤型以上のセットであってもよい。上記A液、B液、および任意構成要素としての追加の剤は、典型的には、研磨用組成物製造における混合工程までは、それぞれ別々の容器に保管される。
<Polishing composition set>
The polishing composition set disclosed here is a multi-drug polishing composition set used for producing the polishing composition, and includes at least the above-described A liquid and B liquid. The liquid A contains at least abrasive grains and a basic compound, and the liquid B contains at least a water-soluble polymer P1. The polishing composition set according to a preferred embodiment is a two-component type set consisting of A liquid and B liquid. In addition, since the detail of A liquid and B liquid is as above-mentioned, the overlapping description is not repeated here. Further, the polishing composition set disclosed herein includes one or two or more additional agents (C liquid, D) containing a part of the components contained in the polishing composition in addition to liquid A and liquid B. It may be referred to as a liquid or the like. The A liquid, the B liquid, and the additional agent as an optional component are typically stored in separate containers until the mixing step in the production of the polishing composition.
 <用途>
 ここに開示される技術は、シリコン基板(特にシリコンウェーハ)を研磨対象物とする研磨に好ましく適用される。ここでいうシリコンウェーハの典型例はシリコン単結晶ウェーハであり、例えば、シリコン単結晶インゴットをスライスして得られたシリコン単結晶ウェーハである。ここに開示される技術における研磨対象面は、典型的には、シリコンからなる表面である。
<Application>
The technique disclosed herein is preferably applied to polishing using a silicon substrate (particularly a silicon wafer) as an object to be polished. A typical example of the silicon wafer here is a silicon single crystal wafer, for example, a silicon single crystal wafer obtained by slicing a silicon single crystal ingot. The surface to be polished in the technique disclosed herein is typically a surface made of silicon.
 上記シリコン基板には、ここに開示される研磨液を用いた研磨工程の前に、ラッピングやエッチング等の、粗研磨工程より上流の工程においてシリコン基板に実施され得る一般的な処理が施されていてもよい。また、ここに開示される技術においては、上記研磨液を用いた研磨工程(粗研磨工程)の後に、シリコン基板に対して仕上げ研磨工程が実施され得る。上記仕上げ工程は、1または2以上のポリシング工程を含み、ファイナルポリシングを経て、シリコンウェーハは高品質な鏡面に仕上げられる。なお、ファイナルポリシングとは、目的物の製造プロセスにおける最後のポリシング工程を指す。すなわち、ファイナルポリシングとは、その工程の後にはさらなるポリシングを行わない工程を指す。したがって、ここに開示される研磨液や、A液、B液は、ラッピングを経たシリコンウェーハのポリシングに用いられ得る。また、上記研磨液等は、シリコンウェーハのファイナルポリシング前に行われる粗研磨に用いられ得る。粗研磨は、予備ポリシングともいう。 The silicon substrate is subjected to general processing that can be performed on the silicon substrate in a process upstream of the rough polishing process, such as lapping and etching, before the polishing process using the polishing liquid disclosed herein. May be. In the technique disclosed herein, a finish polishing step can be performed on the silicon substrate after the polishing step (rough polishing step) using the polishing liquid. The finishing process includes one or more polishing processes, and the final polishing is performed to finish the silicon wafer into a high-quality mirror surface. Note that final polishing refers to the final polishing step in the manufacturing process of the object. That is, final polishing refers to a process in which no further polishing is performed after that process. Therefore, the polishing liquid disclosed herein, A liquid, and B liquid can be used for polishing a lapped silicon wafer. Moreover, the said polishing liquid etc. can be used for the rough polishing performed before final polishing of a silicon wafer. Rough polishing is also called preliminary polishing.
 <研磨>
 研磨対象物の研磨は、例えば以下のようにして行うことができる。すなわち、ここに開示される製造方法を採用して、具体的には、A液調製工程、B液調製工程および該A液とB液との混合工程を実施して、必要に応じて希釈を行い、研磨用組成物(研磨スラリー)を用意する。次いで、その研磨スラリー(ワーキングスラリー)を研磨対象物に供給し、常法により研磨する。シリコンウェーハの粗研磨においては、典型的には、ラッピング工程を経た研磨対象物(シリコンウェーハ)を研磨装置にセットし、該研磨装置の定盤(研磨定盤)に固定された研磨パッドを通じて上記研磨対象物の表面(研磨対象面)に研磨スラリーを供給する。典型的には、上記研磨スラリーを連続的に供給しつつ、研磨対象物の表面に研磨パッドを押しつけて両者を相対的に移動させる。かかる研磨工程を経て研磨対象物の研磨が完了する。上記移動は、例えば回転移動である。
<Polishing>
Polishing of the object to be polished can be performed, for example, as follows. That is, by adopting the manufacturing method disclosed herein, specifically, the A liquid preparation step, the B liquid preparation step, and the mixing step of the A liquid and the B liquid are performed, and dilution is performed as necessary. Then, a polishing composition (polishing slurry) is prepared. Next, the polishing slurry (working slurry) is supplied to the object to be polished and polished by a conventional method. In rough polishing of a silicon wafer, typically, an object to be polished (silicon wafer) that has undergone a lapping process is set in a polishing apparatus, and the above-mentioned is performed through a polishing pad fixed to a surface plate (polishing surface plate) of the polishing apparatus. A polishing slurry is supplied to the surface of the object to be polished (surface to be polished). Typically, while continuously supplying the polishing slurry, the polishing pad is pressed against the surface of the object to be polished, and the two are relatively moved. The polishing of the object to be polished is completed through this polishing step. The movement is, for example, a rotational movement.
 上記研磨工程で使用される研磨パッドは特に限定されない。例えば、発泡ポリウレタンタイプ、不織布タイプ、スウェードタイプ等の研磨パッドを用いることができる。各研磨パッドは、砥粒を含んでもよく、砥粒を含まなくてもよい。 The polishing pad used in the above polishing process is not particularly limited. For example, a polishing pad of foamed polyurethane type, non-woven fabric type, suede type or the like can be used. Each polishing pad may include abrasive grains or may not include abrasive grains.
 研磨装置としては、研磨対象物の両面を同時に研磨する両面研磨装置を用いてもよく、研磨対象物の片面のみを研磨する片面研磨装置を用いてもよい。特に限定するものではないが、例えば、粗研磨工程においては両面研磨装置を好ましく採用し得る。両面研磨装置は、例えば、バッチ式の両面研磨装置である。研磨装置は、一度に一枚の研磨対象物を研磨するように構成された枚葉式の研磨装置でもよく、同一の定盤上で複数の研磨対象物を同時に研磨し得るバッチ式の研磨装置でもよい。 As the polishing apparatus, a double-side polishing apparatus that simultaneously polishes both sides of the object to be polished, or a single-side polishing apparatus that polishes only one side of the object to be polished may be used. Although not particularly limited, for example, a double-side polishing apparatus can be preferably employed in the rough polishing step. The double-side polishing apparatus is, for example, a batch type double-side polishing apparatus. The polishing apparatus may be a single wafer type polishing apparatus configured to polish one polishing object at a time, or a batch type polishing apparatus capable of simultaneously polishing a plurality of polishing objects on the same surface plate. But you can.
 特に限定するものではないが、ここに開示されるセットを用いて製造した研磨用組成物は、その製造後、比較的短期間のうちに研磨に使用することが好ましい。このことによって、該研磨用組成物を製造するためのセットを多剤型、すなわち、複数の剤を備える構成とすることの利点をよりよく活かすことができる。研磨用組成物の製造から使用までの期間は、例えば2週間以内とすることができ、3日以内とすることが適当であり、24時間以内とすることが好ましく、12時間以内とすることがより好ましい。上記期間を6時間以内としてもよく、さらには3時間以内としてもよい。あるいは、セットを用いた上記研磨用組成物の製造を連続的に行いつつ、製造された研磨用組成物を研磨対象物に供給してもよい。 Although not particularly limited, the polishing composition produced using the set disclosed herein is preferably used for polishing within a relatively short period of time after the production. By this, the advantage of setting the set for manufacturing this polishing composition to a multi-drug type, that is, a configuration comprising a plurality of agents can be better utilized. The period from the production of the polishing composition to its use can be, for example, within 2 weeks, suitably within 3 days, preferably within 24 hours, preferably within 12 hours. More preferred. The period may be within 6 hours, and may be within 3 hours. Or you may supply the manufactured polishing composition to a grinding | polishing target object, manufacturing the said polishing composition using a set continuously.
 上記研磨用組成物は、いったん研磨に使用したら使い捨てにする態様、いわゆる「かけ流し」、で使用されてもよいし、循環して繰り返し使用されてもよい。研磨用組成物を循環使用する方法の一例として、研磨装置から排出される使用済みの研磨用組成物をタンク内に回収し、回収した研磨用組成物を再度研磨装置に供給する方法が挙げられる。研磨用組成物を循環使用する場合には、かけ流しで使用する場合に比べて、廃液として処理される使用済みの研磨用組成物の量が減ることにより環境負荷を低減できる。また、研磨用組成物の使用量が減ることによりコストを抑えることができる。ここに開示される研磨用組成物は、pH維持性に優れることから、このように循環使用される使用態様に好適である。かかる使用態様によると、本発明の構成を採用することの意義が特によく発揮され得る。ここに開示される研磨用組成物を循環使用する場合、その使用中の研磨用組成物に、任意のタイミングで新たな成分、使用により減少した成分または増加させることが望ましい成分を添加してもよい。 The above polishing composition may be used in a so-called “flowing” form once used for polishing, or may be repeatedly used after circulation. As an example of a method of circulating and using the polishing composition, there is a method of collecting a used polishing composition discharged from the polishing apparatus in a tank and supplying the recovered polishing composition to the polishing apparatus again. . When the polishing composition is used in a circulating manner, the environmental load can be reduced by reducing the amount of the used polishing composition to be treated as a waste liquid, compared with the case of using the polishing composition by pouring. Moreover, cost can be suppressed by reducing the usage-amount of polishing composition. Since the polishing composition disclosed here is excellent in pH maintainability, it is suitable for the usage mode in which it is used in this manner. According to such a use mode, the significance of adopting the configuration of the present invention can be exhibited particularly well. When the polishing composition disclosed herein is used in a circulating manner, a new component, a component reduced by use, or a component desired to increase may be added to the polishing composition in use at any timing. Good.
 <洗浄>
 粗研磨工程を終えた研磨対象物は、仕上げ研磨工程を開始する前に、典型的には洗浄される。この洗浄は、適当な洗浄液を用いて行うことができる。使用する洗浄液は特に限定されず、例えば、半導体等の分野において一般的なSC-1洗浄液、SC-2洗浄液等を用いることができる。SC-1洗浄液は、水酸化アンモニウム(NHOH)と過酸化水素(H)と水(HO)との混合液である。SC-2洗浄液は、HClとHとHOとの混合液である。洗浄液の温度は、例えば室温以上、約90℃程度までの範囲とすることができる。ここで室温とは、典型的には約15℃~25℃をいう。洗浄効果を向上させる観点から、50℃~85℃程度の洗浄液を好ましく使用し得る。
<Washing>
The object to be polished that has finished the rough polishing step is typically cleaned before the finish polishing step is started. This washing can be performed using an appropriate washing solution. The cleaning liquid to be used is not particularly limited, and for example, a common SC-1 cleaning liquid, SC-2 cleaning liquid, etc. in the field of semiconductors can be used. The SC-1 cleaning liquid is a mixed liquid of ammonium hydroxide (NH 4 OH), hydrogen peroxide (H 2 O 2 ), and water (H 2 O). The SC-2 cleaning solution is a mixed solution of HCl, H 2 O 2 and H 2 O. The temperature of the cleaning liquid can be, for example, in the range from room temperature to about 90 ° C. Here, room temperature typically means about 15 ° C. to 25 ° C. From the viewpoint of improving the cleaning effect, a cleaning solution of about 50 ° C. to 85 ° C. can be preferably used.
 上述のような粗研磨工程や、洗浄工程、仕上げ研磨工程を経て、研磨対象物の研磨が完了する。上記研磨対象物は、ここではシリコン基板、典型的にはシリコン単結晶ウェーハである。したがって、この明細書によると、上記研磨工程を含む研磨物の製造方法が提供される。上記製造方法は、具体的には、シリコンウェーハの製造方法である。 The polishing of the object to be polished is completed through the rough polishing process, the cleaning process, and the final polishing process as described above. Here, the polishing object is a silicon substrate, typically a silicon single crystal wafer. Therefore, according to this specification, a method for producing a polished article including the polishing step is provided. Specifically, the manufacturing method is a method for manufacturing a silicon wafer.
 以上、本実施形態によると、砥粒、塩基性化合物および水溶性高分子を含むシリコンウェーハ粗研磨用組成物を製造する方法が提供される。この製造方法は:前記砥粒および前記塩基性化合物を含むA液を調製する工程と;前記水溶性高分子として、慣性半径が100nm以上である水溶性高分子P1を含むB液を調製する工程と;前記A液と前記B液とを混合する工程と;を包含する。かかる方法によって得られる研磨用組成物は、所定以上の慣性半径を有する水溶性高分子P1を含むことで、シリコン基板の研磨においてエッジロールオフを改善することができる。また、完成前、換言すると使用前の研磨用組成物はA液およびB液を有する多剤型であり、各液を高濃度化(濃縮液化)することで、利便性、コスト低減等といった濃縮液の利点を享受することができる。また、砥粒、水溶性高分子P1はA液、B液にそれぞれ別に収容されているので、砥粒の存在によって水溶性高分子P1の分散が阻害される事象を回避することができる。その結果、完成前の研磨用組成物は、A液、B液の状態で優れた安定性を示す。したがって、本発明によると、濃縮液の利点を享受しつつ、安定性に優れ、かつエッジロールオフを改善し得るシリコンウェーハ粗研磨用組成物を製造することができる。 As mentioned above, according to this embodiment, the method of manufacturing the composition for silicon wafer rough polishing containing an abrasive grain, a basic compound, and a water-soluble polymer is provided. The production method includes: a step of preparing a liquid A containing the abrasive grains and the basic compound; and a step of preparing a liquid B containing a water-soluble polymer P1 having an inertial radius of 100 nm or more as the water-soluble polymer. And a step of mixing the liquid A and the liquid B. The polishing composition obtained by such a method can improve edge roll-off in polishing a silicon substrate by including the water-soluble polymer P1 having a predetermined or larger inertia radius. Moreover, the polishing composition before completion, in other words, before use, is a multi-drug type having a liquid A and a liquid B. Concentration such as convenience and cost reduction is achieved by increasing the concentration of each liquid (concentrated liquid). You can enjoy the benefits of liquid. In addition, since the abrasive grains and the water-soluble polymer P1 are separately stored in the liquid A and the liquid B, an event in which the dispersion of the water-soluble polymer P1 is hindered by the presence of the abrasive grains can be avoided. As a result, the polishing composition before completion shows excellent stability in the state of liquid A and liquid B. Therefore, according to the present invention, it is possible to produce a silicon wafer rough polishing composition that is excellent in stability and can improve edge roll-off while enjoying the advantages of the concentrate.
 ここに開示される技術の好ましい一態様では、前記A液、前記B液、および該A液と該B液との混合液の少なくとも1種を希釈する工程を含む。また、前記希釈工程における希釈倍率は、前記A液および前記B液の総量に対して体積基準で10倍よりも大きい倍率である。このような方法を採用することにより、完成前の研磨用組成物は、濃縮液の利点と安定性とを両立することができ、使用時にはA液とB液とが混合された研磨用組成物として、エッジロールオフ低減効果を発揮することができる。濃縮液の利点は、利便性、コスト低減等である。上記希釈工程は、A液とB液とを混合する工程の前、該混合工程と同時、または該混合工程の後に実施され得る。なお、ここに開示される技術は、本明細書において、シリコンウェーハ粗研磨用組成物の製造方法、シリコンウェーハ粗研磨用組成物セット、シリコンウェーハの研磨方法その他を包含する。 In a preferred aspect of the technology disclosed herein, the method includes a step of diluting at least one of the liquid A, the liquid B, and a mixed liquid of the liquid A and the liquid B. Moreover, the dilution rate in the dilution step is a rate larger than 10 times on a volume basis with respect to the total amount of the liquid A and the liquid B. By adopting such a method, the polishing composition before completion can achieve both the advantages and stability of the concentrated liquid, and the polishing composition in which the liquid A and the liquid B are mixed at the time of use. As a result, an edge roll-off reduction effect can be exhibited. The advantages of the concentrated liquid are convenience and cost reduction. The dilution step may be performed before the step of mixing the liquid A and the liquid B, simultaneously with the mixing step, or after the mixing step. In addition, the technique disclosed here includes a method for manufacturing a composition for rough polishing of a silicon wafer, a composition set for rough polishing of a silicon wafer, a method for polishing a silicon wafer, and the like.
 ここに開示される技術の好ましい一態様では、前記B液に含まれる水溶性高分子の慣性半径は100nm以上である。かかるB液を調製後、必要に応じて保管し、そして研磨用組成物の使用時にA液と混合することにより、ここに開示される技術による効果は好ましく発揮される。 In a preferred embodiment of the technology disclosed herein, the inertial radius of the water-soluble polymer contained in the liquid B is 100 nm or more. After preparing this B liquid, if necessary, it is stored and mixed with the A liquid at the time of use of the polishing composition, whereby the effects of the technique disclosed herein are preferably exhibited.
 ここに開示される技術の好ましい一態様では、前記A液における前記砥粒の含有量は10重量%以上である。砥粒を所定以上の濃度で含むA液を用いる態様において、ここに開示される技術による効果は好ましく発揮される。 In a preferred embodiment of the technology disclosed herein, the content of the abrasive grains in the liquid A is 10% by weight or more. In the embodiment using the liquid A containing abrasive grains at a predetermined concentration or more, the effect of the technique disclosed herein is preferably exhibited.
 ここに開示される技術の好ましい一態様では、前記B液における前記水溶性高分子P1の含有量は0.01重量%以上である。水溶性高分子を所定以上の濃度で含むB液を用いる態様において、ここに開示される技術による効果は好ましく発揮される。 In a preferred embodiment of the technology disclosed herein, the content of the water-soluble polymer P1 in the liquid B is 0.01% by weight or more. In the embodiment using the liquid B containing the water-soluble polymer at a predetermined concentration or more, the effect by the technique disclosed herein is preferably exhibited.
 また、本実施形態によると、砥粒、塩基性化合物および水溶性高分子を含むシリコンウェーハ粗研磨用組成物を製造するための研磨用組成物セットが提供される。かかる研磨用組成物セットは、前記砥粒および前記塩基性化合物を含むA液と、前記水溶性高分子として慣性半径が100nm以上である水溶性高分子P1を含むB液と、を備える。かかる構成によると、使用前、例えば保管時には、A液およびB液は、それぞれを濃縮液とした場合に、濃縮液の利点を享受しつつ、それぞれが安定性に優れる。そして、適当なタイミングでA液とB液とを混合して研磨用組成物(研磨スラリー)とし、これを使用することにより、シリコン基板のエッジロールオフを改善することができる。濃縮液の利点は、利便性、コスト低減等である。 Also, according to this embodiment, a polishing composition set for producing a silicon wafer rough polishing composition containing abrasive grains, a basic compound and a water-soluble polymer is provided. Such a polishing composition set includes a liquid A containing the abrasive grains and the basic compound, and a liquid B containing a water-soluble polymer P1 having an inertia radius of 100 nm or more as the water-soluble polymer. According to such a configuration, the liquid A and the liquid B each have excellent stability while enjoying the advantages of the concentrated liquid when used as a concentrated liquid before use, for example, during storage. Then, liquid A and liquid B are mixed at an appropriate timing to obtain a polishing composition (polishing slurry), and by using this, the edge roll-off of the silicon substrate can be improved. The advantages of the concentrated liquid are convenience and cost reduction.
 また、本実施形態によると、粗研磨工程と仕上げ研磨工程とを含むシリコンウェーハの研磨方法が提供される。この研磨方法は、前記粗研磨工程の前に、該粗研磨工程に使用する粗研磨用組成物を調製する工程を含む。また、前記粗研磨用組成物を調製する工程は:砥粒および塩基性化合物を含むA液を調製する工程と;慣性半径が100nm以上である水溶性高分子P1を含むB液を調製する工程と;前記A液と前記B液とを混合する工程と;を含む。かかる方法によると、使用前の研磨用組成物は、A液とB液とに分離された状態で、安定性に優れた濃縮液とすることができる。また、当該研磨用組成物を用いて粗研磨を実施することにより、シリコン基板のエッジロールオフを改善することができる。 Further, according to the present embodiment, a method for polishing a silicon wafer including a rough polishing step and a final polishing step is provided. This polishing method includes a step of preparing a rough polishing composition used in the rough polishing step before the rough polishing step. The step of preparing the rough polishing composition includes: a step of preparing a solution A containing abrasive grains and a basic compound; and a step of preparing a solution B containing a water-soluble polymer P1 having an inertia radius of 100 nm or more. And a step of mixing the liquid A and the liquid B. According to this method, the polishing composition before use can be made into a concentrated solution having excellent stability in a state where the polishing composition is separated into the liquid A and the liquid B. Moreover, edge roll-off of the silicon substrate can be improved by performing rough polishing using the polishing composition.
 ここに開示される技術の典型的な一態様では、前記粗研磨用組成物は、ラッピングを経たシリコンウェーハのポリシングに用いられる。より具体的には、上記粗研磨用組成物は、シリコンウェーハのファイナルポリシング前に行われる粗研磨(予備ポリシング)に用いられる。 In a typical embodiment of the technology disclosed herein, the rough polishing composition is used for polishing a lapped silicon wafer. More specifically, the rough polishing composition is used for rough polishing (preliminary polishing) performed before final polishing of a silicon wafer.
 以下、本発明に関するいくつかの実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。なお、以下の説明において「%」は、特に断りがない限り重量基準である。 Hereinafter, some examples relating to the present invention will be described. However, the present invention is not intended to be limited to the examples shown in the examples. In the following description, “%” is based on weight unless otherwise specified.
 <実施例1>
 砥粒としてのコロイダルシリカ(平均一次粒子径55nm)と、TMAHと、KCOと、水溶性高分子P2(PVP Mw4.5×10)と、イオン交換水とを混合することにより、砥粒、TMAH、KCOおよび水溶性高分子P2をそれぞれ32.97%、1.62%、1.05%および0.0069%の濃度で含むA液を調製した。A液のpHは11.2であった。
 また、水溶性高分子P1(HEC)と、TMAHと、イオン交換水とを混合することにより、水溶性高分子P1およびTMAHをそれぞれ0.25%および0.018%の濃度で含むB液を調製した。B液のpHは11.0であった。
 得られたA液およびB液をイオン交換水で希釈混合し、本例に係る研磨液(ワーキングスラリー)を得た。上記混合は、A液:B液:イオン交換水が体積基準で3.3:0.1:96.6の比率となるよう行った。
<Example 1>
By mixing colloidal silica (average primary particle diameter 55 nm) as abrasive grains, TMAH, K 2 CO 3 , water-soluble polymer P2 (PVP Mw 4.5 × 10 4 ), and ion-exchanged water, A liquid A containing abrasive grains, TMAH, K 2 CO 3 and water-soluble polymer P2 at concentrations of 32.97%, 1.62%, 1.05% and 0.0069%, respectively, was prepared. The pH of solution A was 11.2.
Further, by mixing water-soluble polymer P1 (HEC), TMAH, and ion-exchanged water, liquid B containing water-soluble polymer P1 and TMAH at concentrations of 0.25% and 0.018%, respectively. Prepared. The pH of solution B was 11.0.
The obtained liquid A and liquid B were diluted and mixed with ion-exchanged water to obtain a polishing liquid (working slurry) according to this example. The mixing was performed such that A liquid: B liquid: ion-exchanged water had a volume ratio of 3.3: 0.1: 96.6.
 <実施例2~3、比較例1>
 水溶性高分子P1として、慣性半径の異なるHECを使用した他は実施例1と同様にしてA液とB液とを調製し、本例に係る研磨液(ワーキングスラリー)を得た。
<Examples 2 to 3, Comparative Example 1>
A liquid A and a liquid B were prepared in the same manner as in Example 1 except that HEC having a different inertial radius was used as the water-soluble polymer P1, and a polishing liquid (working slurry) according to this example was obtained.
 <実施例4>
 水溶性高分子P2を使用しなかった他は実施例3と同様にしてA液とB液とを調製し、本例に係る研磨液(ワーキングスラリー)を得た。
<Example 4>
A liquid A and a B liquid were prepared in the same manner as in Example 3 except that the water-soluble polymer P2 was not used, and a polishing liquid (working slurry) according to this example was obtained.
 <実施例5>
 砥粒としてのコロイダルシリカ(平均一次粒子径55nm)と、TMAHと、KCOと、イオン交換水とを混合することにより、砥粒、TMAHおよびKCOをそれぞれ32.97%、1.62%および1.05%の濃度で含むA液を調製した。A液のpHは11.2であった。
 また、水溶性高分子P1(HEC)と、水溶性高分子P2(PVP Mw4.5×10)と、TMAHと、イオン交換水とを混合することにより、水溶性高分子P1、水溶性高分子P2およびTMAHをそれぞれ0.25%、0.28%および0.018%の濃度で含むB液を調製した。B液のpHは11.0であった。
 得られたA液およびB液を用いた他は実施例1と同様にして本例に係る研磨液(ワーキングスラリー)を得た。
<Example 5>
By mixing colloidal silica (average primary particle diameter 55 nm) as abrasive grains, TMAH, K 2 CO 3 , and ion-exchanged water, 32.97% of abrasive grains, TMAH and K 2 CO 3 are respectively obtained. Solution A containing 1.62% and 1.05% concentrations was prepared. The pH of solution A was 11.2.
Further, by mixing water-soluble polymer P1 (HEC), water-soluble polymer P2 (PVP Mw4.5 × 10 4 ), TMAH and ion-exchanged water, water-soluble polymer P1, water-soluble polymer P1 Liquid B containing molecules P2 and TMAH at concentrations of 0.25%, 0.28%, and 0.018%, respectively, was prepared. The pH of solution B was 11.0.
A polishing liquid (working slurry) according to this example was obtained in the same manner as in Example 1 except that the obtained liquid A and liquid B were used.
 <実施例6>
 実施例3において、B液に含まれるTMAH0.018%を水酸化カリウム(KOH)0.011%に変更した他は実施例3と同様にして本例に係る研磨液(ワーキングスラリー)を得た。
<Example 6>
In Example 3, the polishing liquid (working slurry) according to this example was obtained in the same manner as in Example 3 except that 0.018% of TMAH contained in the B liquid was changed to 0.011% of potassium hydroxide (KOH). .
 <比較例2~5>
 砥粒としてのコロイダルシリカ(平均一次粒子径55nm)と、水溶性高分子P1(HEC)と、TMAHと、KCOと、水溶性高分子P2(PVP Mw4.5×10)と、イオン交換水とを混合することにより、比較例2~5に係る研磨用組成物の濃縮液(1剤型)をそれぞれ調製した。各例の濃縮液における砥粒、水溶性高分子P1、TMAH、KCOおよび水溶性高分子P2の濃度は、それぞれ32.97%、0.0061%、1.62%、1.05%および0.0069%である。
 得られた濃縮液をイオン交換水で希釈し、本例に係る研磨液(ワーキングスラリー)を得た。上記希釈は、濃縮液:イオン交換水が体積基準で3.3:96.7の比率となるよう行った。
<Comparative Examples 2 to 5>
Colloidal silica (average primary particle diameter 55 nm) as abrasive grains, water-soluble polymer P1 (HEC), TMAH, K 2 CO 3 , water-soluble polymer P2 (PVP Mw 4.5 × 10 4 ), Concentrated liquids (one agent type) of polishing compositions according to Comparative Examples 2 to 5 were prepared by mixing with ion-exchanged water. The concentrations of the abrasive grains, water-soluble polymer P1, TMAH, K 2 CO 3 and water-soluble polymer P2 in the concentrated liquid of each example were 32.97%, 0.0061%, 1.62%, and 1.05, respectively. % And 0.0069%.
The obtained concentrated liquid was diluted with ion exchange water to obtain a polishing liquid (working slurry) according to this example. The dilution was performed such that the ratio of concentrated solution: ion exchanged water was 3.3: 96.7 on a volume basis.
 <比較例6>
 水溶性高分子P2を使用しなかった他は比較例5と同様にして本例に係る研磨液(ワーキングスラリー)を得た。
<Comparative Example 6>
A polishing liquid (working slurry) according to this example was obtained in the same manner as in Comparative Example 5 except that the water-soluble polymer P2 was not used.
 [慣性半径の測定方法]
 水溶性高分子の慣性半径の測定は、まず、水溶性高分子の濃度が0.1~1mg/mLの範囲になるように水溶液を調製し、調製した各サンプルにつき光散乱光度計「DLS-8000」(大塚電子社製)を用い、測定角度20~150度の範囲で10度毎に測定を行い、1濃法プロット解析により慣性半径[nm]の算出を行った。測定は、水溶性高分子P1と、B液に含まれる水溶性高分子について実施した。B液中に複数種の水溶性高分子が含まれる場合は、その濃度比となるように水溶性高分子量を調節して測定を行った。測定結果を表1に示す。
[Measurement method of inertia radius]
In order to measure the inertial radius of the water-soluble polymer, first, an aqueous solution was prepared so that the concentration of the water-soluble polymer was in the range of 0.1 to 1 mg / mL, and a light scattering photometer “DLS- 8000 "(manufactured by Otsuka Electronics Co., Ltd.), measurement was performed every 10 degrees within a measurement angle range of 20 to 150 degrees, and the inertia radius [nm] was calculated by 1 concentration method plot analysis. The measurement was performed on the water-soluble polymer P1 and the water-soluble polymer contained in the B liquid. When a plurality of types of water-soluble polymers were contained in the liquid B, the measurement was carried out by adjusting the water-soluble polymer amount so that the concentration ratio would be the same. The measurement results are shown in Table 1.
 [安定性]
 実施例1~6、比較例1で調製したA液およびB液それぞれ100gを直径2.5cm、高さ25cmのガラス管に入れ、別々に25℃で静置して保管した。また、比較例2~6に係る濃縮液を上記と同条件で保管した。保管開始から24時間経過後におけるA液、B液、濃縮液の状態を目視により下記2基準で評価した。すなわち、液中成分の分離や凝集が認められなかった場合は「A」と評価し、分離や凝集が認められた場合は「B」と評価した。結果を表1に示す。
[Stability]
100 g of each of solution A and solution B prepared in Examples 1 to 6 and Comparative Example 1 was placed in a glass tube having a diameter of 2.5 cm and a height of 25 cm, and was stored separately at 25 ° C. Further, the concentrated solutions according to Comparative Examples 2 to 6 were stored under the same conditions as described above. The states of Liquid A, Liquid B, and concentrated liquid after the lapse of 24 hours from the start of storage were evaluated visually according to the following two criteria. That is, when separation or aggregation of the components in the liquid was not observed, it was evaluated as “A”, and when separation or aggregation was observed, it was evaluated as “B”. The results are shown in Table 1.
 [シリコンウェーハの研磨]
 各例に係る研磨液(ワーキングスラリー)を用いて下記の条件で粗研磨を実施した。
  (研磨条件)
 研磨装置:日本エンギス社製の片面研磨装置、型式「EJ-380IN」
 研磨パッド:ニッタハース社製、商品名「MH S-15A」
 研磨圧力:26.6kPa
 スラリー流量:100mL/分
 定盤回転数:50rpm
  ヘッド回転数:50rpm
 研磨量:8μm
 ワーク種:Bare Si P<100>
 ワークサイズ:□60mm×60mm
[Silicon wafer polishing]
Using the polishing liquid (working slurry) according to each example, rough polishing was performed under the following conditions.
(Polishing conditions)
Polishing device: Single-side polishing device manufactured by Nippon Engis Co., Ltd. Model “EJ-380IN”
Polishing pad: Product name “MH S-15A”, manufactured by Nitta Haas
Polishing pressure: 26.6 kPa
Slurry flow rate: 100 mL / min Plate rotation speed: 50 rpm
Head rotation speed: 50 rpm
Polishing amount: 8μm
Work species: Bare Si P - <100>
Work size: □ 60mm × 60mm
 [エッジロールオフ]
 非接触表面形状測定機(商品名「NewView 5032」、Zygo社製、キヤノン社より入手可能)を用いて、上記研磨後における研磨物表面の中心部(中心から20mm四方)から基準高さを求め、当該研磨物の外周端から約2.5mm位置における高さの変化を測定し、これをエッジロールオフ量とした。測定したエッジロールオフ量を下記の4基準で評価した。
  A:エッジロールオフ量 250nm未満
  B:エッジロールオフ量 250nm以上280nm未満
  C:エッジロールオフ量 280nm以上300nm未満
  D:エッジロールオフ量 300nm以上
 A~Cは実用上合格レベルであり、Dは不合格とみなした。結果を表1に示す。
[Edge roll-off]
Using a non-contact surface shape measuring instrument (trade name “NewView 5032”, manufactured by Zygo, available from Canon Inc.), the reference height is calculated from the center (20 mm square from the center) of the polished surface after polishing. The change in height at a position of about 2.5 mm from the outer peripheral edge of the polished article was measured, and this was used as the edge roll-off amount. The measured edge roll-off amount was evaluated according to the following four criteria.
A: Edge roll-off amount less than 250 nm B: Edge roll-off amount 250 nm or more and less than 280 nm C: Edge roll-off amount 280 nm or more and less than 300 nm D: Edge roll-off amount 300 nm or more A to C are practically acceptable levels, D is not acceptable Considered a pass. The results are shown in Table 1.
 [表面粗さRa]
 各例に係る粗研磨後のシリコンウェーハ(粗研磨およびその後の洗浄を終えた試験片)につき、非接触表面形状測定機(商品名「NewView 5032」、Zygo社製、キヤノン社より入手可能)を用いて表面粗さRa(算術平均表面粗さ)を測定した。得られた測定値を、実施例4の表面粗さRaを100%とする相対値に換算して以下の2段階で評価した。結果を表1に示す。
  A:100%未満
  B:100%以上
[Surface roughness Ra]
For the silicon wafer after rough polishing according to each example (test piece after rough polishing and subsequent cleaning), a non-contact surface shape measuring machine (trade name “NewView 5032”, manufactured by Zygo, available from Canon Inc.) The surface roughness Ra (arithmetic average surface roughness) was measured. The obtained measured value was converted into a relative value with the surface roughness Ra of Example 4 as 100% and evaluated in the following two steps. The results are shown in Table 1.
A: Less than 100% B: 100% or more
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、砥粒および塩基性化合物を含むA液と、水溶性高分子P1を含むB液とを別々に調製した実施例1~6では、A液、B液ともに安定性に優れていた。一方、1剤型の濃縮液を使用した比較例3~6では、良好な安定性を得ることができなかった。また、慣性半径が100nm以上である水溶性高分子P1を使用した実施例1~6では、慣性半径100nm未満の水溶性高分子を使用した比較例1,2と比べて、エッジロールオフが改善された。さらに、水溶性高分子P2を併用した実施例1~3、5および6では、水溶性高分子P2を使用しなかった実施例4と比べて、表面粗さRaも改善される傾向が認められた。 As shown in Table 1, in Examples 1 to 6 in which A liquid containing abrasive grains and a basic compound and B liquid containing water-soluble polymer P1 were prepared separately, both A liquid and B liquid were stable. It was excellent. On the other hand, in Comparative Examples 3 to 6 using a one-pack type concentrate, good stability could not be obtained. Further, in Examples 1 to 6 using the water-soluble polymer P1 having an inertia radius of 100 nm or more, the edge roll-off is improved as compared with Comparative Examples 1 and 2 using the water-soluble polymer having an inertia radius of less than 100 nm. It was done. Further, in Examples 1 to 3, 5 and 6 in which the water-soluble polymer P2 was used in combination, the surface roughness Ra tended to be improved as compared with Example 4 in which the water-soluble polymer P2 was not used. It was.
 以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。 Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.

Claims (7)

  1.  砥粒、塩基性化合物および水溶性高分子を含むシリコンウェーハ粗研磨用組成物を製造する方法であって、
     前記砥粒および前記塩基性化合物を含むA液を調製する工程と;
     前記水溶性高分子として、慣性半径が100nm以上である水溶性高分子P1を含むB液を調製する工程と;
     前記A液と前記B液とを混合する工程と;
     を包含する、シリコンウェーハ粗研磨用組成物の製造方法。
    A method for producing a silicon wafer rough polishing composition comprising abrasive grains, a basic compound and a water-soluble polymer,
    Preparing a liquid A containing the abrasive grains and the basic compound;
    Preparing a solution B containing the water-soluble polymer P1 having an inertial radius of 100 nm or more as the water-soluble polymer;
    Mixing the liquid A and the liquid B;
    The manufacturing method of the composition for silicon wafer rough polishing including this.
  2.  前記A液、前記B液、および該A液と該B液との混合液の少なくとも1種を希釈する工程を含み、
     前記希釈工程における希釈倍率は、前記A液および前記B液の総量に対して体積基準で10倍よりも大きい倍率である、請求項1に記載の製造方法。
    Diluting at least one of the liquid A, the liquid B, and a mixed liquid of the liquid A and the liquid B,
    The production method according to claim 1, wherein a dilution ratio in the dilution step is a magnification larger than 10 times on a volume basis with respect to a total amount of the liquid A and the liquid B.
  3.  前記B液に含まれる水溶性高分子の慣性半径は100nm以上である、請求項1または2に記載の製造方法。 The manufacturing method according to claim 1 or 2, wherein the inertial radius of the water-soluble polymer contained in the liquid B is 100 nm or more.
  4.  前記A液における前記砥粒の含有量は10重量%以上である、請求項1~3のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 3, wherein the content of the abrasive grains in the liquid A is 10% by weight or more.
  5.  前記B液における前記水溶性高分子P1の含有量は0.01重量%以上である、請求項1~4のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 4, wherein the content of the water-soluble polymer P1 in the liquid B is 0.01 wt% or more.
  6.  砥粒、塩基性化合物および水溶性高分子を含むシリコンウェーハ粗研磨用組成物を製造するための研磨用組成物セットであって、
     前記砥粒および前記塩基性化合物を含むA液と、前記水溶性高分子として慣性半径が100nm以上である水溶性高分子P1を含むB液と、を備える、シリコンウェーハ粗研磨用組成物セット。
    A polishing composition set for producing a silicon wafer rough polishing composition comprising abrasive grains, a basic compound and a water-soluble polymer,
    A silicon wafer rough polishing composition set comprising: A liquid containing the abrasive grains and the basic compound; and B liquid containing water-soluble polymer P1 having an inertial radius of 100 nm or more as the water-soluble polymer.
  7.  粗研磨工程と仕上げ研磨工程とを含むシリコンウェーハの研磨方法であって、
     前記粗研磨工程の前に、該粗研磨工程に使用する粗研磨用組成物を調製する工程を含み、
     前記粗研磨用組成物を調製する工程は、
      砥粒および塩基性化合物を含むA液を調製する工程と;
      慣性半径が100nm以上である水溶性高分子P1を含むB液を調製する工程と;
      前記A液と前記B液とを混合する工程と;
     を含む、シリコンウェーハの研磨方法。
    A silicon wafer polishing method including a rough polishing step and a final polishing step,
    Before the rough polishing step, including a step of preparing a composition for rough polishing used in the rough polishing step,
    The step of preparing the rough polishing composition comprises:
    Preparing a liquid A containing abrasive grains and a basic compound;
    Preparing a solution B containing a water-soluble polymer P1 having an inertia radius of 100 nm or more;
    Mixing the liquid A and the liquid B;
    A method for polishing a silicon wafer, comprising:
PCT/JP2017/026406 2016-08-02 2017-07-21 Production method for silicon wafer rough-polishing composition, silicon wafer rough-polishing composition set, and silicon wafer polishing method WO2018025656A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018531831A JP7026043B2 (en) 2016-08-02 2017-07-21 A method for manufacturing a composition for rough polishing a silicon wafer, a composition set for rough polishing a silicon wafer, and a method for polishing a silicon wafer.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-152325 2016-08-02
JP2016152325 2016-08-02

Publications (1)

Publication Number Publication Date
WO2018025656A1 true WO2018025656A1 (en) 2018-02-08

Family

ID=61073742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026406 WO2018025656A1 (en) 2016-08-02 2017-07-21 Production method for silicon wafer rough-polishing composition, silicon wafer rough-polishing composition set, and silicon wafer polishing method

Country Status (3)

Country Link
JP (1) JP7026043B2 (en)
TW (1) TW201815906A (en)
WO (1) WO2018025656A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022154016A1 (en) * 2021-01-18 2022-07-21 株式会社フジミインコーポレーテッド Polishing composition
WO2022154015A1 (en) * 2021-01-18 2022-07-21 株式会社フジミインコーポレーテッド Polishing composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098777A1 (en) * 2013-12-25 2015-07-02 ニッタ・ハース株式会社 Wetting agent for semiconductor substrate, and polishing composition
JP2016135882A (en) * 2013-03-19 2016-07-28 株式会社フジミインコーポレーテッド Polishing composition, method for producing polishing composition and kit for preparing polishing composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014041978A (en) 2012-08-23 2014-03-06 Fujimi Inc Polishing composition, manufacturing method of polishing composition, and manufacturing method of polishing composition undiluted solution

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016135882A (en) * 2013-03-19 2016-07-28 株式会社フジミインコーポレーテッド Polishing composition, method for producing polishing composition and kit for preparing polishing composition
WO2015098777A1 (en) * 2013-12-25 2015-07-02 ニッタ・ハース株式会社 Wetting agent for semiconductor substrate, and polishing composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022154016A1 (en) * 2021-01-18 2022-07-21 株式会社フジミインコーポレーテッド Polishing composition
WO2022154015A1 (en) * 2021-01-18 2022-07-21 株式会社フジミインコーポレーテッド Polishing composition

Also Published As

Publication number Publication date
TW201815906A (en) 2018-05-01
JPWO2018025656A1 (en) 2019-06-20
JP7026043B2 (en) 2022-02-25

Similar Documents

Publication Publication Date Title
WO2016063505A1 (en) Composition for polishing
JP6279593B2 (en) Polishing composition, method for producing polishing composition, and method for producing silicon wafer
JP6185432B2 (en) Silicon wafer polishing composition
JP6649828B2 (en) Polishing method of silicon substrate and polishing composition set
TWI781197B (en) Polishing method of substrate and polishing composition set
WO2017150158A1 (en) Method for polishing silicon substrate and polishing composition set
JP6482200B2 (en) Polishing composition
JP6691774B2 (en) Polishing composition and method for producing the same
CN108966673B (en) Polishing method for silicon substrate and polishing composition set
WO2018150945A1 (en) Silicon substrate intermediate polishing composition and silicon substrate polishing composition set
JP7026043B2 (en) A method for manufacturing a composition for rough polishing a silicon wafer, a composition set for rough polishing a silicon wafer, and a method for polishing a silicon wafer.
JP6916792B2 (en) Concentrate of composition for rough polishing of silicon wafer
JP5859055B2 (en) Silicon wafer polishing composition
JP6348927B2 (en) Silicon wafer polishing composition
JP6562605B2 (en) Method for producing polishing composition
TWI572703B (en) Silicon wafer grinding composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17836762

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018531831

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17836762

Country of ref document: EP

Kind code of ref document: A1