WO2018025594A1 - All-solid-state lithium battery - Google Patents

All-solid-state lithium battery Download PDF

Info

Publication number
WO2018025594A1
WO2018025594A1 PCT/JP2017/025258 JP2017025258W WO2018025594A1 WO 2018025594 A1 WO2018025594 A1 WO 2018025594A1 JP 2017025258 W JP2017025258 W JP 2017025258W WO 2018025594 A1 WO2018025594 A1 WO 2018025594A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
solid
oriented
lithium
electrode plate
Prior art date
Application number
PCT/JP2017/025258
Other languages
French (fr)
Japanese (ja)
Inventor
美香子 新村
千織 鈴木
幸信 由良
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2018531804A priority Critical patent/JP6906522B2/en
Publication of WO2018025594A1 publication Critical patent/WO2018025594A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an all solid lithium battery.
  • Patent Document 1 International Publication No. 2017/006591 discloses an alignment positive electrode plate made of a lithium composite oxide such as lithium cobaltate (LiCoO 2 ) and a lithium phosphate oxynitride glass electrolyte (LiPON).
  • An all-solid-state lithium battery including a solid electrolyte layer made of a lithium ion conductive material such as) and a negative electrode layer made of lithium metal is disclosed.
  • an intermediate layer containing a metal that can be alloyed with lithium between the solid electrolyte layer and the negative electrode layer it is possible to prevent internal short circuit and peeling of the negative electrode layer due to the reflow soldering process. are listed.
  • the positive electrode active material composed of a lithium composite oxide having a layered rock salt structure has an arbitrary diffusion plane in the plane of the (003) plane (that is, in a plane parallel to the (003) plane). It is known that lithium ions enter and exit in crystal planes other than the (003) plane (for example, (101) plane or (104) plane). Therefore, in this type of positive electrode active material, a surface that comes into contact with the electrolyte more in a crystal plane (a plane other than the (003) plane, for example, the (101) plane or the (104) plane) on which lithium ions can enter and exit satisfactorily. Attempts have been made to improve the battery characteristics of lithium secondary batteries by exposing them to the above.
  • the lithium transition metal oxide particles are oriented so that the (003) plane intersects the plate surface of the oriented positive electrode plate, so that a plane other than the (003) plane (for example, (101) ) Plane and (104) plane) are disclosed.
  • the conventional oriented positive electrode plate as disclosed in Patent Document 1 generally has the primary particles oriented such that the (003) plane is inclined by 45 to 75 ° with respect to the plate surface. Is.
  • the conventional oriented positive electrode plate is designed according to the concept that it is better to expose as many surfaces as possible to the entry and exit of lithium ions (for example, the (101) plane and the (104) plane).
  • an all-solid lithium battery as disclosed in Patent Document 1 employing such a conventional oriented positive electrode plate is short-circuited locally when a long-term cycle test is performed or when it is operated at a high temperature. May occur and the cycle performance may deteriorate.
  • orientation positive electrode plate in which the primary particles are oriented at the angles as described above tends to cause expansion and contraction during charge and discharge in the direction parallel to the plate surface of the orientation positive electrode plate, and therefore stress is applied to the interface with the fixed electrolyte layer. It is because it is easy to generate. This interfacial stress can cause defects in the solid electrolyte layer and sometimes cause a local short circuit, resulting in degradation of cycle performance and battery failure.
  • the present inventors have recently adopted an oriented positive electrode plate in which a plurality of primary particles are oriented at an average orientation angle of more than 0 ° and not more than 30 ° with respect to the plate surface of the oriented positive electrode plate, and the oriented positive electrode of the solid electrolyte layer It was found that by providing a predetermined intermediate layer on the surface opposite to the plate (that is, the surface on the negative electrode side), it is possible to provide an all-solid-state lithium battery with greatly improved cycle performance when repeated charge and discharge are performed. .
  • an object of the present invention is to provide an all-solid-state lithium battery with greatly improved cycle performance when charging and discharging are repeated.
  • an oriented positive electrode plate having a thickness of 30 ⁇ m or more constituted by an oriented sintered body, wherein the oriented sintered body comprises a plurality of lithium composite oxides having a layered rock salt structure.
  • An oriented positive electrode plate comprising primary particles, wherein the plurality of primary particles are oriented at an average orientation angle of more than 0 ° and not more than 30 ° with respect to the plate surface of the oriented positive electrode plate;
  • a solid electrolyte layer provided on the oriented positive electrode plate and made of a lithium ion conductive material;
  • An intermediate layer provided on the solid electrolyte layer and containing a metal that can be alloyed with lithium and having a thickness of 0.001 to 1 ⁇ m;
  • An all-solid lithium battery is provided.
  • FIG. 1 It is a schematic cross section which shows an example of the all-solid-state lithium battery of this invention. It is a model top view of the all-solid-state lithium battery shown by FIG. It is a schematic cross section which shows another example of the all-solid-state lithium battery of this invention. It is a schematic cross section which shows another example of the all-solid-state lithium battery of this invention. It is a schematic cross section for conceptually explaining the lithium ion conduction direction and the expansion / contraction method of the lithium composite oxide primary particles contained in the oriented positive electrode plate of the present invention. It is a schematic cross section for conceptually explaining a lithium ion conduction direction and an expansion / contraction method in an example of a conventional oriented positive electrode plate.
  • FIG. 8 is a schematic cross-sectional view for conceptually explaining the lithium ion conduction direction and the expansion / contraction method in the oriented positive electrode plate used in the present invention as shown in FIG. 7. It is a SEM image which shows an example of a cross section perpendicular
  • FIGS. 1 and 2 schematically show an example of an all solid lithium battery according to the present invention.
  • the all solid lithium battery 10 shown in FIGS. 1 and 2 includes an oriented positive electrode plate 12, a solid electrolyte layer 14, an intermediate layer 15, and optionally a negative electrode layer 16.
  • the all-solid lithium battery 10 shown in FIG. 1 includes two unit batteries each composed of an oriented positive electrode plate 12, an intermediate layer 13, a solid electrolyte layer 14, an intermediate layer 15, a negative electrode layer 16, and a positive electrode current collector 20. It has a configuration in which the negative electrode current collector 24 is laminated in parallel vertically symmetrically.
  • the present invention is not limited to this, and may be configured by one unit cell 10 ′ as schematically shown in FIG.
  • the oriented positive plate 12 is a plate having a thickness of 30 ⁇ m or more constituted by an oriented sintered body, and the oriented sintered body includes a plurality of primary particles constituted by a lithium composite oxide having a layered rock salt structure.
  • the plurality of primary particles are oriented at an average orientation angle of more than 0 ° and not more than 30 ° with respect to the plate surface of the oriented positive electrode plate.
  • the average orientation angle is an average value of inclination angles formed by the (003) planes of the primary particles with respect to the plate surface direction.
  • the solid electrolyte layer 14 is made of a lithium ion conductive material and is provided on the oriented positive electrode plate 12.
  • the intermediate layer 15 is a layer having a thickness of 0.001 to 1 ⁇ m containing a metal that can be alloyed with lithium, and is provided on the solid electrolyte layer 14.
  • the oriented positive electrode plate 12 in which a plurality of primary particles are oriented at an average orientation angle of more than 0 ° and not more than 30 ° with respect to the plate surface of the oriented positive electrode plate 12, and (ii) a solid electrolyte is employed.
  • a plurality of primary particles are more than 0 ° and 30 ° with respect to the plate surface of the alignment positive electrode plate 12.
  • the primary particles 11 of the lithium composite oxide have a lithium ion movement direction LiD parallel to the (003) plane and an expansion / contraction direction ECD perpendicular to the (003) plane. is doing. Therefore, as shown in FIG. 6, in the conventional oriented positive electrode plate 12 ′ in which the primary particles are oriented so that the (003) plane is inclined by 45 to 75 ° with respect to the plate surface, a plurality of primary particles 11 are formed.
  • the expansion / contraction causes expansion / contraction in the direction parallel to the plate surface of the oriented positive electrode plate 12 ′ as a whole, that is, the expansion / contraction direction ECD is parallel to the plate surface.
  • the oriented positive electrode plate 12 employed in the present invention has an average orientation angle of primary particles, that is, an average orientation angle of the (003) plane of more than 0 ° and 30 °, as conceptually depicted in FIG.
  • an average orientation angle of the (003) plane of more than 0 ° and 30 °, as conceptually depicted in FIG.
  • miniaturization becomes small.
  • the tensile stress to the solid electrolyte layer 14 due to the expansion and contraction of the oriented positive electrode plate 12 at the time of charging / discharging is reduced, and an electrical short circuit or an increase in resistance due to the breakage or peeling of the solid electrolyte layer 14 or the occurrence of cracks is prevented.
  • the orientation positive electrode plate having an average orientation angle of more than 0 ° and not more than 30 ° is not only a lithium ion entrance / exit surface (for example, (101) surface or (104) surface) but also lithium ion as understood from FIG.
  • the (003) surface where ions do not enter and exit is significantly exposed on the negative electrode side surface of the solid electrolyte layer 14. That is, lithium is likely to precipitate on the exposed surface of the entry / exit surface of lithium ions (for example, (101) surface or (104) surface), while lithium is difficult to precipitate on the exposed portion of the (003) surface where lithium ions do not enter or exit.
  • the above problem becomes more conspicuous because the absolute amount of lithium is large.
  • the above problem is solved by providing an intermediate layer 15 having a thickness of 0.001 to 1 ⁇ m containing a metal that can be alloyed with lithium on the solid electrolyte layer 14.
  • the cycle performance when charging / discharging is repeated can be greatly improved. This is considered due to the fact that the intermediate layer 15 homogenizes the resistance of the solid electrolyte layer 14 that affects lithium deposition in the in-plane direction.
  • the oriented positive electrode plate 12 is a plate having a thickness of 30 ⁇ m or more formed of an oriented sintered body.
  • the oriented sintered body includes a plurality of primary particles composed of a lithium composite oxide having a layered rock salt structure, and the plurality of primary particles has an average orientation angle of more than 0 ° and not more than 30 ° with respect to the plate surface of the oriented positive electrode plate. Is oriented.
  • FIG. 8 shows an example of a cross-sectional SEM image perpendicular to the plate surface of the alignment positive electrode plate 12, while FIG. 9 shows an electron backscatter diffraction (EBSD) image in a cross section perpendicular to the plate surface of the alignment positive electrode plate 12. Indicates.
  • FIG. 8 shows an example of a cross-sectional SEM image perpendicular to the plate surface of the alignment positive electrode plate 12
  • FIG. 9 shows an electron backscatter diffraction (EBSD) image in a cross section perpendicular to the plate surface of the
  • FIG. 10 is a histogram showing the orientation angle distribution of the primary particles 11 in the EBSD image of FIG.
  • discontinuity of crystal orientation can be observed.
  • the orientation angle of each primary particle 11 is shown in shades of color, and the darker the color, the smaller the orientation angle.
  • the orientation angle is an inclination angle formed by the (003) plane of each primary particle 11 with respect to the plate surface direction.
  • the portions displayed in black inside the aligned positive electrode plate 12 are pores.
  • the oriented positive electrode plate 12 is an oriented sintered body composed of a plurality of primary particles 11 bonded to each other.
  • Each primary particle 11 is mainly plate-shaped, but may include particles formed in a rectangular parallelepiped shape, a cubic shape, a spherical shape, or the like.
  • the cross-sectional shape of each primary particle 11 is not particularly limited, and may be a rectangle, a polygon other than a rectangle, a circle, an ellipse, or a complex shape other than these.
  • Each primary particle 11 is composed of a lithium composite oxide.
  • the lithium composite oxide is Li x MO 2 (0.05 ⁇ x ⁇ 1.10, M is at least one transition metal, and M is typically one or more of Co, Ni, and Mn. It is an oxide represented by.
  • the lithium composite oxide has a layered rock salt structure.
  • the layered rock salt structure is a crystal structure in which lithium layers and transition metal layers other than lithium are alternately stacked with oxygen layers in between, that is, the transition metal ion layer and the lithium single layer are alternately arranged via oxide ions.
  • lithium composite oxide examples include Li x CoO 2 (lithium cobaltate), Li x NiO 2 (lithium nickelate), Li x MnO 2 (lithium manganate), Li x NiMnO 2 (nickel / lithium manganate) , Li x NiCoO 2 (nickel / lithium cobaltate), Li x CoNiMnO 2 (cobalt / nickel / lithium manganate), Li x CoMnO 2 (cobalt / lithium manganate), and the like, particularly preferably Li x CoO 2.
  • the lithium composite oxide includes Mg, Al, Si, Ca, Ti, V, Cr, Fe, Cu, Zn, Ga, Ge, Sr, Y, Zr, Nb, Mo, Ag, Sn, Sb, Te, Ba
  • One or more elements selected from Bi, Bi, and W may be included.
  • the average value of the orientation angles of the primary particles 11, that is, the average orientation angle is more than 0 ° and not more than 30 °.
  • the orientation positive electrode in the plate plane direction is reduced by reducing the inclination angle of the (003) plane with respect to the plate plane direction.
  • the expansion / contraction amount of the plate 12 is reduced, and it is possible to suppress the occurrence of stress between the oriented positive electrode plate 12 and the solid electrolyte layer 14.
  • rate characteristics can be further improved.
  • the expansion / contraction in the thickness direction is more dominant than the plate surface direction, so that the expansion / contraction of the alignment positive electrode plate 12 becomes smooth. This is because lithium ions can go in and out smoothly.
  • the average orientation angle of the primary particles 11 can be obtained by the following method. First, in an EBSD image obtained by observing a 95 ⁇ m ⁇ 125 ⁇ m rectangular region as shown in FIG. 9 at a magnification of 1000 times, three horizontal lines that equally divide the alignment positive electrode plate 12 in the thickness direction, and the alignment positive electrode plate 12 Draw three vertical lines that equally divide the Next, the average orientation angle of the primary particles 11 is obtained by arithmetically averaging the orientation angles of all the primary particles 11 intersecting at least one of the three horizontal lines and the three vertical lines.
  • the average orientation angle of the primary particles 11 is preferably 30 ° or less, more preferably 25 ° or less, from the viewpoint of further improving the rate characteristics.
  • the average orientation angle of the primary particles 11 is preferably 2 ° or more, more preferably 5 ° or more, from the viewpoint of further improving the rate characteristics.
  • the orientation angle of each primary particle 11 may be widely distributed from 0 ° to 90 °, but most of it is distributed in a region of more than 0 ° and not more than 30 °. Is preferred. That is, the oriented sintered body constituting the oriented positive electrode plate 12 has an orientation angle with respect to the plate surface of the oriented positive electrode plate 12 of the primary particles 11 included in the analyzed cross section when the cross section is analyzed by EBSD.
  • the total area of primary particles 11 (hereinafter referred to as low-angle primary particles) having an angle of 30 ° or less is included in the cross section of primary particles 11 (specifically, 30 primary particles 11 used for calculating the average orientation angle).
  • the total area is preferably 70% or more, more preferably 80% or more.
  • the total area of the low-angle primary particles having an orientation angle of 20 ° or less is more preferably 50% or more with respect to the total area of the 30 primary particles 11 used for calculating the average orientation angle. . Furthermore, the total area of the low-angle primary particles having an orientation angle of 10 ° or less is more preferably 15% or more with respect to the total area of the 30 primary particles 11 used for calculating the average orientation angle. .
  • each primary particle 11 is mainly plate-shaped, the cross-section of each primary particle 11 extends in a predetermined direction as shown in FIGS. 8 and 9, and typically has a substantially rectangular shape. That is, when the cross section of the oriented sintered body is analyzed by EBSD, the total area of the primary particles 11 having an aspect ratio of 4 or more among the primary particles 11 included in the analyzed cross section is included in the cross section.
  • the total area of the particles 11 (specifically, 30 primary particles 11 used for calculating the average orientation angle) is preferably 70% or more, more preferably 80% or more. Specifically, in the EBSD image as shown in FIG. 9, the mutual adhesion between the primary particles 11 can be further improved, and as a result, the rate characteristics can be further improved.
  • the aspect ratio of the primary particles 11 is a value obtained by dividing the maximum ferret diameter of the primary particles 11 by the minimum ferret diameter.
  • the maximum ferret diameter is the maximum distance between the straight lines when the primary particle 11 is sandwiched between two parallel straight lines on the EBSD image when the cross section is observed.
  • the minimum ferret diameter is the minimum distance between the straight lines when the primary particle 11 is sandwiched between two parallel lines on the EBSD image.
  • the average particle size of the plurality of primary particles constituting the oriented sintered body is preferably 5 ⁇ m or more.
  • the average particle diameter of the 30 primary particles 11 used for calculating the average orientation angle is preferably 5 ⁇ m or more, more preferably 7 ⁇ m or more, and further preferably 12 ⁇ m or more.
  • the average particle diameter of the primary particles 11 is a value obtained by arithmetically averaging the equivalent circle diameters of the primary particles 11.
  • the equivalent circle diameter is the diameter of a circle having the same area as each primary particle 11 on the EBSD image.
  • the density of the oriented sintered body constituting the oriented positive electrode plate 12 is preferably 70% or more, more preferably 80% or more, and further preferably 90% or more. Thereby, since the mutual adhesiveness of primary particles 11 can be improved more, a rate characteristic can be improved more.
  • the denseness of the oriented sintered body is calculated by binarizing the obtained SEM image by observing the cross section of the positive electrode plate by CP (cross section polisher) polishing and then SEM observation at 1000 magnifications.
  • the average equivalent circle diameter of each pore formed inside the oriented sintered body is not particularly limited, but is preferably 8 ⁇ m or less.
  • the average equivalent circle diameter of each pore is smaller, the mutual adhesion between the primary particles 11 can be further improved, and as a result, the rate characteristics can be further improved.
  • the average equivalent circle diameter of the pores is a value obtained by arithmetically averaging the equivalent circle diameters of the ten pores on the EBSD image.
  • the equivalent circle diameter is the diameter of a circle having the same area as each pore on the EBSD image.
  • Each pore formed inside the oriented sintered body may be an open pore connected to the outside of the oriented positive plate 12, but preferably does not penetrate the oriented positive plate 12.
  • Each pore may be a closed pore.
  • the thickness of the alignment positive electrode plate 12 is 30 ⁇ m or more, preferably 40 ⁇ m or more, particularly preferably 50 ⁇ m or more, from the viewpoint of improving the energy density of the all-solid lithium battery 10 by increasing the active material capacity per unit area. Preferably it is 55 micrometers or more.
  • the thickness of the alignment positive electrode plate 12 is preferably less than 200 ⁇ m, more preferably from the viewpoint of suppressing deterioration of battery characteristics (particularly increase in resistance value) due to repeated charge and discharge. It is 150 ⁇ m or less, more preferably 120 ⁇ m or less, particularly preferably 100 ⁇ m or less, most preferably 90 ⁇ m or less, 80 ⁇ m or less, or 70 ⁇ m or less.
  • the size of the oriented positive electrode plate is preferably 5 mm ⁇ 5 mm square or more, more preferably 10 mm ⁇ 10 mm to 200 mm ⁇ 200 mm square, and further preferably 10 mm ⁇ 10 mm to 100 mm ⁇ 100 mm square. if, preferably 25 mm 2 or more, more preferably 100 ⁇ 40000 mm 2, more preferably from 100 ⁇ 10000 mm 2.
  • the oriented positive electrode plate 12 may include a conductive film 12a having a thickness of 0.01 ⁇ m or more and less than 5 ⁇ m on the surface opposite to the solid electrolyte layer 14 (that is, the surface on the positive electrode current collector 20 side).
  • the conductive film 12a is preferably made of metal and / or carbon. When the conductive film 12a is made of a metal, the conductive film 12a has a low electron conduction resistance with the positive electrode current collector 20 and the alignment positive electrode plate 12 and is a layer made of a metal that does not adversely affect the characteristics of the alignment positive electrode plate 12, in particular.
  • preferred examples include an Au sputtered layer and a Si sputtered layer.
  • a carbon layer may be used instead of a metal conductive film such as an Au sputter layer.
  • the thickness of the conductive film 12a is 0.01 ⁇ m or more and less than 5 ⁇ m, preferably 0.02 ⁇ m or more and 2 ⁇ m or less, more preferably 0.02 ⁇ m or more and 1 ⁇ m or less, and further preferably 0.04 ⁇ m or more and 1 ⁇ m or less.
  • the lithium ion conductive material constituting the solid electrolyte layer 14 is a garnet-based ceramic material, a nitride-based ceramic material, a perovskite-based ceramic material, a phosphate-based ceramic material, a sulfide-based ceramic material, or a lithium-chloride-based material. Or at least one selected from the group consisting of garnet-based ceramic materials, nitride-based ceramic materials, perovskite-based ceramic materials, and phosphate-based ceramic materials. is there.
  • garnet based ceramic materials include Li—La—Zr—O based materials (specifically, Li 7 La 3 Zr 2 O 12 etc.), Li—La—Ta—O based materials (specifically, Li 7 La 3 Ta 2 O 12 etc.).
  • An example of a nitride ceramic material is Li 3 N.
  • perovskite ceramic materials include Li—La—Zr—O based materials (specifically, LiLa 1-x Ti x O 3 (0.04 ⁇ x ⁇ 0.14), etc.).
  • phosphate ceramic materials include lithium phosphate, nitrogen-substituted lithium phosphate (LiPON), Li—Al—Ti—PO, Li—Al—Ge—PO, and Li—Al—Ti—.
  • Si—P—O specifically, Li 1 + x + y Al x Ti 2 ⁇ x Si y P 3 ⁇ y O 12 (0 ⁇ x ⁇ 0.4, 0 ⁇ y ⁇ 0.6), etc.
  • the lithium ion conductive material constituting the solid electrolyte layer 14 is composed of a Li—La—Zr—O based ceramic material and / or a lithium phosphate oxynitride (LiPON) based ceramic material.
  • the Li—La—Zr—O-based material is an oxide sintered body having a garnet-type or garnet-type similar crystal structure including Li, La, Zr, and O. Specifically, Li 7 It is a garnet-based ceramic material such as La 3 Zr 2 O 12 , and details thereof are disclosed in Patent Document 1, for example.
  • a lithium phosphate oxynitride (LiPON) ceramic material is also preferable.
  • LiPON is a group of compounds represented by the composition of Li 2.9 PO 3.3 N 0.46 . For example, Li a PO b N c (wherein a is 2 to 4 and b is 3 to 5 , C is 0.1 to 0.9).
  • the dimensions of the solid electrolyte layer 14 are not particularly limited, but the thickness is preferably 0.0005 mm to 0.1 mm, more preferably 0.001 mm to 0.05 mm, and still more preferably, from the viewpoint of charge / discharge rate characteristics and mechanical strength. Is 0.002 to 0.02 mm, particularly preferably 0.003 to 0.01 mm.
  • various particle jet coating methods, solid phase methods, solution methods, and gas phase methods can be used.
  • the particle jet coating method include an aerosol deposition (AD) method, a gas deposition (GD) method, a powder jet deposition (PJD) method, a cold spray (CS) method, and a thermal spraying method.
  • the aerosol deposition (AD) method is particularly preferable because it can form a film at room temperature, and does not cause a composition shift in the process or formation of a high resistance layer by reaction with an oriented positive electrode plate.
  • the solid phase method include a tape lamination method and a printing method.
  • the tape lamination method is preferable because the solid electrolyte layer 14 can be formed thin and the thickness can be easily controlled.
  • the solution method include a solvothermal method, a hydrothermal synthesis method, a sol-gel method, a precipitation method, a microemulsion method, and a solvent evaporation method.
  • the hydrothermal synthesis method is particularly preferable in that it is easy to obtain crystal grains having high crystallinity at a low temperature.
  • microcrystals synthesized using these methods may be deposited on the positive electrode or may be directly deposited on the positive electrode.
  • gas phase method examples include laser deposition (PLD) method, sputtering method, evaporation condensation (PVD) method, gas phase reaction method (CVD) method, vacuum deposition method, molecular beam epitaxy (MBE) method and the like.
  • PLD laser deposition
  • PVD evaporation condensation
  • CVD gas phase reaction method
  • MBE molecular beam epitaxy
  • the sputtering method is particularly preferable because there is little composition deviation and a film with relatively high adhesion can be easily obtained.
  • the interface between the oriented positive electrode plate 12 and the solid electrolyte layer 14 may be subjected to a treatment for reducing the interface resistance.
  • a treatment for reducing the interface resistance includes niobium oxide, titanium oxide, tungsten oxide, tantalum oxide, lithium-nickel composite oxide, lithium-titanium composite oxide, lithium-niobium compound, lithium-tantalum compound, lithium-
  • This can be done by coating the surface of the oriented positive electrode plate 12 and / or the surface of the solid electrolyte layer 14 with a tungsten compound, a lithium / titanium compound, and any combination or composite oxide thereof.
  • a coating film can exist at the interface between the oriented positive electrode plate 12 and the solid electrolyte layer 14, but the thickness of the coating film is extremely thin, for example, 20 nm or less.
  • the intermediate layer 15 is a layer having a thickness of 0.001 to 1 ⁇ m containing a metal that can be alloyed with lithium, and is provided on the surface of the solid electrolyte layer 14 opposite to the oriented positive electrode plate 12 (that is, the surface on the negative electrode side). It is done.
  • Metals that can be alloyed with lithium are Al (aluminum), Si (silicon), Zn (zinc), Ga (gallium), Ge (germanium), Ag (silver), Au (gold), Pt (platinum), Cd.
  • the intermediate layer may be formed by a known method such as an aerosol deposition (AD) method, a pulse laser deposition (PLD) method, a sputtering method, or an evaporation method.
  • the dimension of the intermediate layer is not particularly limited, but the thickness is 0.001 to 1 ⁇ m, preferably 0.001 to 0.5 ⁇ m, more preferably 0.001 to 0.1 ⁇ m, from the viewpoint of homogenizing resistance. Particularly preferred is 0.003 to 0.03 ⁇ m.
  • the negative electrode layer all solid lithium battery 10 typically further includes a negative electrode layer 16 on the intermediate layer 15.
  • the all solid lithium battery 10 of the present invention can operate without the negative electrode layer 16. This is because the lithium metal deposited on the intermediate layer 15 during charging can also be used as the negative electrode active material.
  • the negative electrode layer 16 is a layer containing lithium and is typically made of lithium metal.
  • the negative electrode layer 16 may be produced by placing a lithium metal in the form of a foil on the intermediate layer 15 or the negative electrode current collector 24, or a thin film of lithium metal on the intermediate layer 15 or the negative electrode current collector 24. May be formed by forming a lithium metal layer by vacuum deposition, sputtering, CVD, or the like.
  • the dimensions of the negative electrode layer 16 are not particularly limited, but the thickness is preferably 10 ⁇ m or more, more preferably 50 to 10 ⁇ m, from the viewpoint of securing a large amount of lithium in the all-solid lithium battery 10 with the adoption of the thick oriented positive electrode plate 12. More preferably, it is 40 to 10 ⁇ m, particularly preferably 20 to 10 ⁇ m.
  • the end insulating portion 18 may be provided so as to insulate the end portion of the solid electrolyte layer 14.
  • the end insulating portion 18 preferably includes an organic polymer material that can be adhered or adhered to the solid electrolyte layer 14.
  • the organic polymer material is preferably at least one selected from the group consisting of a binder, a hot melt resin, and an adhesive.
  • the binder include a cellulose resin, an acrylic resin, and a combination thereof.
  • the heat fusion resin include a fluorine resin, a polyolefin resin, and any combination thereof.
  • the hot-melt resin is preferably provided in the form of a heat-sealing film as will be described later.
  • a preferable example of the adhesive is a thermosetting adhesive using a thermosetting resin such as an epoxy resin. Therefore, as disclosed in Patent Document 1, the organic polymer material is preferably at least one selected from the group consisting of a cellulose resin, an acrylic resin, a fluorine resin, a polyolefin resin, and an epoxy resin. I can say that.
  • the end insulating portion 18 is preferably formed by applying a liquid or slurry containing an organic polymer material (preferably a binder) and optionally a filler or the like.
  • a liquid or slurry application method include a dispensing method, a screen printing method, a spray method, a stamping method, and the like.
  • the positive electrode current collector all solid lithium battery 10 preferably further includes a positive electrode current collector 20 on the surface of the oriented positive electrode plate 12 opposite to the solid electrolyte layer 14.
  • the positive electrode current collector 20 is a metal foil.
  • the thickness of the metal foil is 5 to 30 ⁇ m, preferably 5 to 25 ⁇ m, more preferably 10 to 25 ⁇ m, and still more preferably 10 to 20 ⁇ m. By increasing the thickness as described above, a sufficient current collecting function can be ensured. Moreover, since it is rich in flexibility when it is a very thin metal foil as described above, it becomes easy to adhere to the entire surface of the oriented positive electrode plate 12 uniformly.
  • the metal constituting the positive electrode current collector 20 is not particularly limited as long as it does not react with the aligned positive electrode plate 12, and may be an alloy.
  • Preferred examples of such metals include stainless steel, aluminum, copper, platinum, and nickel, and more preferably stainless steel and nickel.
  • the positive electrode current collector 20 is preferably brought into full contact with the surface of the oriented positive electrode plate 12 opposite to the solid electrolyte layer 14 in a non-adhesive state containing no adhesive. By doing so, no interfacial stress is generated between the aligned positive electrode plate 12 and the positive electrode current collector 20, and therefore, deterioration factors such as interfacial delamination can be eliminated, and long-term reliability is improved. Can do. That is, interfacial peeling caused by expansion and contraction of the alignment positive electrode plate 12 due to charge and discharge and an increase in contact resistance caused thereby can be significantly suppressed, and long-term reliability can be improved.
  • the positive electrode current collector 20 also serves as a positive electrode exterior material that covers the outer side of the aligned positive electrode plate 12.
  • the positive electrode current collector 20 also serves as a positive electrode exterior material that covers the outer side of the aligned positive electrode plate 12.
  • two unit cells are stacked in parallel symmetrically via a single negative electrode current collector 24 to expose the positive electrode current collector 20 to the outside of the all-solid-state lithium battery 10. It is good also as a structure.
  • the negative electrode current collector 24 can function as a current collector common to two adjacent unit batteries.
  • the positive electrode current collector 20 is preferably pressed against the aligned positive electrode plate 12. Since the metal foil which is the positive electrode current collector 20 is a flexible thin conductive material, a large number of contact points between the positive electrode current collector 20 and the alignment positive electrode plate 12 can be secured by pressing, and the alignment positive electrode plate 12 can be secured. Can be more uniformly adhered to the entire surface. Thereby, even in the case of an adhesive-free non-adhesive state, a desirable current collecting effect can be obtained.
  • the method of pressing is not particularly limited. For example, the pressing is performed from the outside of the positive electrode current collector 20 toward the alignment positive electrode plate 12 using a flexible pressing member (for example, foam metal) that does not damage the positive electrode current collector 20.
  • a method, a method using a pressure difference between the inside and outside of the positive electrode current collector 20, or the like can be employed.
  • the positive current collector 20 is pressed against the oriented positive electrode plate 12 due to a difference in internal and external pressures of the positive current collector 20. That is, it is only necessary that the orientation positive electrode plate 12 side of the positive electrode current collector 20 is depressurized or the side opposite to the orientation positive electrode plate 12 of the positive electrode current collector 20 is pressurized.
  • the metal foil as the positive electrode current collector 20 is a flexible thin conductive material according to the pressing using the internal and external pressure difference of the positive electrode current collector 20, the surface of the oriented positive electrode plate 12 Thus, the contact can be made at more contact points, and the current collecting effect can be further enhanced.
  • the positive electrode current collector 20 and the aligned positive electrode plate 12 are in a non-adhered state. This means that the positive electrode current collector 20 and the aligned positive electrode plate 12 are partially (for example, part of the outer peripheral portion of the aligned positive electrode plate 12) and are adhesive resins. It is not excluded that it is fixed by, for example. Such a resin is used for the purpose of temporary adhesion to prevent misalignment of the oriented positive electrode plate when assembling the battery.
  • the laminate including the oriented positive electrode plate 12, the solid electrolyte layer 14, the intermediate layer 15, and the negative electrode layer 16 (if present) is packaged or sealed with an exterior material.
  • the positive electrode current collector 20 constitutes a part of the exterior material, and the accommodation space of the laminate that is packaged or sealed with the exterior material is decompressed.
  • the storage space can be depressurized, for example, by packaging or sealing with an exterior material under reduced pressure, or by degassing the storage space after packaging or sealing the exterior material.
  • the metal foil that is the positive electrode current collector 20 is a flexible thin conductive material, the contact point of the positive electrode current collector 20 with the surface of the aligned positive electrode plate 12 is increased by reducing the storage space. Can be brought into close contact with. Moreover, if the packaging material is packaged or sealed in an airtight manner, it is possible to maintain a reduced pressure in the accommodation space of the laminate over a long period of time. Can be exerted over.
  • the degree of vacuum may be set as appropriate based on the flexibility of the metal and the strength of the laminate.
  • a negative electrode current collector 24 is preferably provided outside the negative electrode current collector negative electrode layer 16 (outside of the intermediate layer 15 when there is no negative electrode layer 16).
  • the negative electrode current collector 24 may also serve as a negative electrode exterior material that covers the outside of the negative electrode.
  • FIG. 4 contrary to the configuration shown in FIG. 1, two unit cells are stacked vertically and symmetrically via one positive current collector 20 to form a negative current collector 24. May be exposed to the outside of the all-solid-state lithium battery.
  • the positive electrode current collector 20 can function as a current collector common to two adjacent unit batteries.
  • the negative electrode current collector 24 may be made of the same or different material as the positive electrode current collector 20, but is preferably made of the same kind of material.
  • the metal constituting the negative electrode current collector 24 is not particularly limited as long as it does not react with the negative electrode layer 16 and may be an alloy. Preferred examples of such a metal include stainless steel, aluminum, copper, platinum and nickel, and more preferred are stainless steel and nickel.
  • the negative electrode current collector 24 is preferably a metal plate or a metal foil, and more preferably a metal foil. Therefore, it can be said that the most preferred current collector is a stainless steel foil or a nickel foil.
  • the preferred thickness of the metal foil is 1 to 30 ⁇ m, more preferably 5 to 25 ⁇ m, and still more preferably 10 to 20 ⁇ m.
  • the all-solid-state lithium battery 10 in the end sealing portion includes an oriented positive electrode plate 12, a solid electrolyte layer 14, an intermediate layer 15, a negative electrode layer 16, and (not present) that are not covered with the positive electrode current collector 20 and the negative electrode current collector 24.
  • an end sealing portion 26 made of a sealing material for sealing the exposed portion of the end insulating portion 18 is further provided.
  • the end sealing part 26 is provided, and the orientation positive electrode plate 12, the solid electrolyte layer 14, the intermediate layer 15, the negative electrode layer 16, and the end insulating part 18 are not covered with the positive electrode current collector 20 and the negative electrode current collector 24.
  • the end sealing portion 26 is made of a sealing material.
  • the sealing material can seal the exposed portion not covered with the positive electrode current collector 20, the negative electrode current collector 24, and the end insulating portion 18 to ensure excellent moisture resistance (preferably moisture resistance at high temperature). If it is a thing, it will not specifically limit. However, it goes without saying that it is desirable that the sealing material ensure electrical insulation between the positive electrode current collector 20 and the negative electrode current collector 24. In that sense, the sealing material preferably has a 1 ⁇ 10 6 ⁇ cm or more resistivity, more preferably 1 ⁇ 10 7 ⁇ cm or more, still more preferably 1 ⁇ 10 8 ⁇ cm or more.
  • the sealing material is preferably a resin-based sealing material containing a resin
  • the resin-based sealing material may be made of a mixture of a resin (preferably an insulating resin) and an inorganic material.
  • the sealing material may be a glass-based sealing material containing glass.
  • these sealing agents known ones as disclosed in Patent Document 1 can be used.
  • the all-solid lithium battery preferably has a thickness of 60 to 5000 ⁇ m, more preferably 70 to 4000 ⁇ m, still more preferably 80 to 3000 ⁇ m, and particularly preferably. Is from 90 to 2000 ⁇ m, most preferably from 100 to 1000 ⁇ m.
  • the oriented positive electrode plate can be made relatively thick, while the current collector also serves as an exterior material, so that the thickness of the entire battery can be made relatively thin.
  • the oriented positive electrode plate or oriented sintered plate used in the all solid lithium battery of the present invention may be produced by any method, but preferably, as exemplified below (1) Production of LiCoO 2 template particles, (2) Production of matrix particles, (3) Production of green sheets, and (4) Production of oriented sintered plates.
  • LiCoO 2 template particles Co 3 O 4 raw material powder and Li 2 CO 3 raw material powder are mixed.
  • the obtained mixed powder is fired at 500 to 900 ° C. for 1 to 20 hours to synthesize LiCoO 2 powder.
  • the obtained LiCoO 2 powder is pulverized to a volume-based D50 particle size of 0.1 to 10 ⁇ m by a pot mill to obtain plate-like LiCoO 2 particles capable of conducting lithium ions parallel to the plate surface.
  • the obtained LiCoO 2 particles are easily cleaved along the cleavage plane. It is to cleave by crushing the LiCoO 2 particles to prepare a LiCoO 2 template particles.
  • Such LiCoO 2 particles can be obtained by a method of crushing after growing a green sheet using LiCoO 2 powder slurry, a plate method such as a flux method, hydrothermal synthesis, single crystal growth using a melt, or a sol-gel method. It can also be obtained by a method of synthesizing crystals.
  • the profile of the primary particles 11 constituting the oriented positive electrode plate 12 can be controlled as follows. -By adjusting at least one of the aspect ratio and the particle size of the LiCoO 2 template particles, the total area ratio of the low-angle primary particles having an orientation angle of more than 0 ° and not more than 30 ° can be controlled. Specifically, the larger the aspect ratio of LiCoO 2 template particles, also, the larger the particle size of the LiCoO 2 template particles, it is possible to increase the total area ratio of the low-angle primary particles.
  • the aspect ratio and particle size of the LiCoO 2 template particles are the particle size of the Co 3 O 4 raw material powder and the Li 2 CO 3 raw material powder, the pulverization conditions (pulverization time, pulverization energy, pulverization method, etc.), and pulverization, respectively. It can be controlled by adjusting at least one of the subsequent classifications. -By adjusting the aspect ratio of the LiCoO 2 template particles, the total area ratio of the primary particles 11 having an aspect ratio of 4 or more can be controlled. Specifically, the total area ratio of the primary particles 11 having an aspect ratio of 4 or more can be increased as the aspect ratio of the LiCoO 2 template particles is increased.
  • the method for adjusting the aspect ratio of the LiCoO 2 template particles is as described above.
  • the average particle size of the primary particles 11 can be controlled by adjusting the particle size of the LiCoO 2 template particles.
  • the density of the aligned positive electrode plate 12 can be controlled by adjusting the particle size of the LiCoO 2 template particles. Specifically, the density of the aligned positive electrode plate 12 can be increased as the particle size of the LiCoO 2 template particles is reduced.
  • Co 3 O 4 raw material powder is used as matrix particles.
  • the volume-based D50 particle size of the Co 3 O 4 raw material powder is not particularly limited and can be, for example, 0.1 to 1.0 ⁇ m, but is preferably smaller than the volume-based D50 particle size of LiCoO 2 template particles.
  • the matrix particles can also be obtained by subjecting a Co (OH) 2 raw material to heat treatment at 500 to 800 ° C. for 1 to 10 hours. Further, the matrix particles, other Co 3 O 4, may be used Co (OH) 2 particles, may be used LiCoO 2 particles.
  • the profile of the primary particles 11 constituting the oriented positive electrode plate 12 can be controlled as follows. -Low angle primary whose orientation angle is greater than 0 ° and less than 30 ° by adjusting the ratio of the particle size of matrix particles to the particle size of LiCoO 2 template particles (hereinafter referred to as “matrix / template particle size ratio”)
  • matrix / template particle size ratio the ratio of the particle size of matrix particles to the particle size of LiCoO 2 template particles.
  • the total area ratio of the particles can be controlled. Specifically, the smaller the matrix / template particle size ratio, that is, the smaller the particle size of the matrix particles, the easier it is for the matrix particles to be incorporated into the LiCoO 2 template particles in the firing step described later.
  • the total area ratio can be increased.
  • the total area ratio of the primary particles 11 having an aspect ratio of 4 or more can be controlled by adjusting the matrix / template particle size ratio. Specifically, the smaller the matrix / template particle size ratio, that is, the smaller the particle size of the matrix particles, the higher the total area ratio of the primary particles 11 having an aspect ratio of 4 or more.
  • the density of the aligned positive electrode plate 12 can be controlled by adjusting the matrix / template particle size ratio. Specifically, the smaller the matrix / template particle size ratio, that is, the smaller the particle size of the matrix particles, the higher the density of the aligned positive electrode plate 12 can be.
  • the profile of the primary particles 11 constituting the oriented positive electrode plate 12 can be controlled as follows. -By adjusting the molding speed, the total area ratio of the low-angle primary particles whose orientation angle is more than 0 ° and not more than 30 ° can be controlled. Specifically, the higher the molding speed, the higher the total area ratio of the low-angle primary particles. -The average particle diameter of the primary particles 11 can be controlled by adjusting the density of the compact. Specifically, the average particle diameter of the primary particles 11 can be increased as the density of the molded body is increased. -The density of the aligned positive electrode plate 12 can also be controlled by adjusting the mixing ratio between the LiCoO 2 template particles and the matrix particles. Specifically, the density of the aligned positive electrode plate 12 can be lowered as the number of LiCoO 2 template particles is increased.
  • a slurry compact is placed on a zirconia setter and heat-treated (primary firing) at 500 to 900 ° C. for 1 to 10 hours to obtain a sintered plate as an intermediate .
  • This sintered plate is placed on a zirconia setter while being sandwiched between lithium sheets (for example, Li 2 CO 3 -containing sheets) and subjected to secondary firing to obtain a LiCoO 2 sintered plate.
  • a setter on which a sintered plate sandwiched between lithium sheets is placed is placed in an alumina sheath and baked at 700 to 850 ° C. for 1 to 20 hours in the atmosphere. It is sandwiched between sheets and fired at 750 to 900 ° C.
  • This firing step may be performed in two steps or may be performed once. When firing twice, it is preferable that the first firing temperature is lower than the second firing temperature.
  • the total amount of lithium sheet used in the secondary firing may be such that the Li / Co ratio, which is the molar ratio of the amount of Li in the green sheet and the lithium sheet, to 1.0 with respect to the amount of Co in the green sheet. .
  • the profile of the primary particles 11 constituting the oriented positive electrode plate 12 can be controlled as follows. -The total area ratio of the low-angle primary particles whose orientation angle is more than 0 ° and not more than 30 ° can be controlled by adjusting the heating rate during firing. Specifically, the higher the rate of temperature rise, the more the sintering of the matrix particles is suppressed, and the total area ratio of the low-angle primary particles can be increased. -The total area ratio of low-angle primary particles whose orientation angle is more than 0 ° and not more than 30 ° can also be controlled by adjusting the heat treatment temperature of the intermediate.
  • the lower the heat treatment temperature of the intermediate the more the sintering of the matrix particles is suppressed, and the total area ratio of the low-angle primary particles can be increased.
  • the average particle diameter of the primary particles 11 can be controlled by adjusting at least one of the heating rate during firing and the heat treatment temperature of the intermediate. Specifically, the average particle diameter of the primary particles 11 can be increased as the rate of temperature increase is increased and the heat treatment temperature of the intermediate is decreased. -Controlling the average particle diameter of the primary particles 11 also by adjusting at least one of the amount of Li (for example, Li 2 CO 3 ) and the amount of sintering aid (for example, boric acid or bismuth oxide) during firing. Can do.
  • Li for example, Li 2 CO 3
  • the amount of sintering aid for example, boric acid or bismuth oxide
  • the average particle diameter of the primary particles 11 can be increased as the amount of Li is increased and as the amount of the sintering aid is increased.
  • the density of the alignment positive electrode plate 12 can be controlled by adjusting the profile during firing. Specifically, the density of the aligned positive electrode plate 12 can be increased as the firing temperature is lowered and the firing time is lengthened.
  • Examples A1 to A8 (1) Preparation of oriented positive electrode plate (1a) Preparation of LCO template particles Co 3 O 4 raw material powder (volume basis D50 particle size 0.8 ⁇ m, manufactured by Shodo Chemical Co., Ltd.) and Li 2 CO 3 raw material powder (volume basis) D50 particle size 2.5 ⁇ m, manufactured by Honjo Chemical Co., Ltd.) was mixed and fired at 800 ° C. to 900 ° C. for 5 hours to synthesize LiCoO 2 raw material powder. The obtained LiCoO 2 powder was pulverized to obtain plate-like LiCoO 2 particles (hereinafter referred to as LCO template particles). The volume-based D50 particle size of the LCO template particles was adjusted to 0.5 ⁇ m.
  • Co 3 O 4 raw material powder (manufactured by Shodo Chemical Industry Co., Ltd.) was prepared as matrix particles.
  • the volume-based D50 particle size of the matrix particles was 0.3 ⁇ m.
  • the mixture was degassed by stirring under reduced pressure, and a slurry was prepared by adjusting the viscosity to 4000 cP.
  • the viscosity was measured with an LVT viscometer manufactured by Brookfield.
  • the prepared slurry was formed into a sheet shape on a PET film by a doctor blade method so that the thickness after drying was 48 ⁇ m at a forming speed of 100 m / h, and an LCO / Co 3 O 4 green sheet was formed. Obtained.
  • the resulting mixture was stirred and degassed under reduced pressure, and the viscosity was adjusted to 4000 cP to prepare a Li 2 CO 3 slurry.
  • the viscosity was measured with an LVT viscometer manufactured by Brookfield.
  • the prepared Li 2 CO 3 slurry was formed into a sheet on a PET film by a doctor blade method to form a Li 2 CO 3 green sheet (hereinafter referred to as a lithium sheet).
  • the sheet was sandwiched between upper and lower sheets and fired at 900 ° C. for 20 hours.
  • a LiCoO 2 sintered plate having a thickness of 40 ⁇ m was obtained as an oriented positive plate.
  • a lithium phosphate sintered body target having a length of 5 inches (about 12.7 cm) ⁇ width of 15 inches (about 38.1 cm) was prepared, and a sputtering apparatus (ILC- manufactured by Canon Anelva Co., Ltd.) was prepared. 702), an RF magnetron method was used to perform sputtering so that the gas type N 2 was 0.4 Pa, the output was 1.2 kW, and the film thickness was 3 ⁇ m.
  • a LiPON-based solid electrolyte layer having a thickness of 3 ⁇ m was formed on the oriented positive electrode plate.
  • the Au intermediate layer (Example A1), an Au film having a thickness of 20 nm was formed on the solid electrolyte layer by sputtering using an ion sputtering apparatus (manufactured by JEOL Ltd., JFC-1500). At this time, the size of the intermediate layer was set to 10 mm square using a mask so that the intermediate layer could be accommodated in the positive electrode region of 10.5 mm square.
  • a Sn target having a diameter of 4 inches (about 10 cm) A Si target, Bi target, or Al target is prepared, and is shown in Table 1 with a sputtering apparatus (SPF-210HS, manufactured by Canon Anelva Co., Ltd.) using an RF magnetron method with an Ar gas of 1 Pa and an output of 0.1 kW. Sputtering was performed to obtain a film thickness.
  • SPF-210HS sputtering apparatus
  • an RF magnetron method with an Ar gas of 1 Pa and an output of 0.1 kW.
  • Sputtering was performed to obtain a film thickness.
  • an intermediate layer having the composition and thickness shown in Table 1 was formed on the solid electrolyte layer.
  • the size of the intermediate layer was set to 10 mm square using a mask so that the intermediate layer could be accommodated in the positive electrode region of 10.5 mm square.
  • a negative electrode layer was formed on the intermediate layer as follows. First, a tungsten boat carrying lithium metal was prepared. A Li thin film was formed on the surface of the intermediate layer by vapor deposition using a vacuum vapor deposition apparatus (Sanyu Electronics Co., Ltd., carbon coater SVC-700) while vaporizing Li by resistance heating. At this time, using a mask, the size of the negative electrode layer was set to 10 mm square so that the negative electrode layer was within the 10.5 mm square positive electrode region. In this way, a unit cell was produced in which a Li-deposited film having a thickness of 10 ⁇ m was formed as a negative electrode layer on the solid electrolyte layer.
  • a vacuum vapor deposition apparatus Sanyu Electronics Co., Ltd., carbon coater SVC-700
  • Example A8 the negative electrode layer was not formed in order to use Li precipitated during charging as the negative electrode active material. Thus, a unit cell having no negative electrode layer on the solid electrolyte layer was produced.
  • Battery assembly A laminated sheet obtained by laminating a 20 ⁇ m thick Ni foil and a 15 ⁇ m thick nylon resin was cut into a 13 mm square to form a current collector plate. Adhere 0.9mm wide frame-shaped polychlorotrifluoroethylene resin (thickness 50 ⁇ m) with 12.8mm square outer edge shape and 11mm square hole punched inside it to the Ni foil side of the current collector plate Thus, an end sealing portion was formed. The composite member thus obtained was placed with the Ni foil side of the current collector plate facing up, and the unit cell obtained in (5) above was placed in the region surrounded by the end sealing portion with the negative electrode facing down. Placed.
  • the current collector On the positive electrode of the placed unit cell, the current collector was placed with the Ni foil side down, and using a pulse heat type heating device (manufactured by Nippon Avionics Co., Ltd., HT-13X13 (40) NTN), Under reduced pressure, the end sealing part was heated at 420 ° C. while applying a load of 3 kg. In this way, the end sealing portion and the two upper and lower current collecting plates were bonded and sealed so as to cover the entire outer periphery of the unit cell, thereby obtaining an all solid lithium battery in a sealed form.
  • a pulse heat type heating device manufactured by Nippon Avionics Co., Ltd., HT-13X13 (40) NTN
  • An EBSD image in a cross section perpendicular to the plate surface of the positive electrode was obtained using a scanning electron microscope (manufactured by JEOL Ltd., model JSM-7800M) with a backscattered electron diffraction image system.
  • the average orientation angle of primary particles was measured by the following procedure. First, in an EBSD image obtained by observing a rectangular area of 95 ⁇ m ⁇ 125 ⁇ m at a magnification of 1000 times, three horizontal lines that divide the positive electrode into four equal parts in the thickness direction and three vertical lines that divide the positive electrode into four equal parts in the plate surface direction And subtracted. Next, the average orientation angle of the primary particles was obtained by arithmetically averaging the orientation angles of all the primary particles intersecting at least one of the three horizontal lines and the three vertical lines.
  • Example A9 (comparison) A battery was fabricated and evaluated in the same manner as in Example A1 except that no intermediate layer was formed. The results were as shown in Table 1.
  • Example A10 (comparison) A battery was fabricated and evaluated in the same manner as in Example A1, except that a Cu intermediate layer having a thickness of 20 nm was formed instead of the Au intermediate layer.
  • the Cu intermediate layer is formed by preparing a Cu target having a diameter of 4 inches (about 10 cm), and using a sputtering apparatus (SPF-430H, manufactured by Canon Anelva Co., Ltd.) with a DC magnetron method, the gas species Ar is 0.3 Pa, The sputtering was performed at a current of 0.5 A so that the film thickness was 20 nm.
  • the results were as shown in Table 1.
  • Example A11 (comparison) A battery was produced and evaluated in the same manner as in Example A2, except that the oriented positive electrode plate was produced as follows. The results were as shown in Table 1.
  • a binder polyvinyl butyral: product number BM-2, manufactured by Sekisui Chemical Co., Ltd.
  • a plasticizer DOP : 4 parts by weight of di (2-ethylhexyl) phthalate (manufactured by Kurokin Kasei Co., Ltd.) and 2 parts by weight of a dispersant (product name: Leodol SP-O30, Kao Corporation) were mixed.
  • the mixture was defoamed by stirring under reduced pressure and adjusted to a viscosity of 4000 cP.
  • the viscosity was measured with an LVT viscometer manufactured by Brookfield.
  • the slurry prepared as described above was formed into a sheet shape on a PET (polyethylene terephthalate) film so that the thickness after drying was 45 ⁇ m by a doctor blade method to produce a green sheet.
  • the green sheet peeled off from the PET film was cut out, placed on the center of a zirconia setter (dimension 90 mm square, height 1 mm) with a protrusion height of 300 ⁇ m, and fired at 1300 ° C. for 5 hours
  • the temperature was lowered at a temperature drop rate of 50 ° C./h.
  • the portion not welded to the setter was taken out as a Co 3 O 4 oriented fired plate.
  • Examples B1 to B8 (1) orientation positive electrode plate prepared in (1a) Preparation of LCO template grains Co 3 O 4 raw material powder (volume basis D50 particle size 0.8 [mu] m, Seido Chemical Industry Co., Ltd.) and Li 2 CO 3 raw material powder (by volume D50 particle size 2.5 ⁇ m, manufactured by Honjo Chemical Co., Ltd.) was mixed and baked at 800 ° C. for 5 hours to synthesize LiCoO 2 raw material powder. At this time, by adjusting the firing temperature and firing time, the volume was adjusted reference D50 particle size of the LiCoO 2 material powder to values shown in Table 2. The obtained LiCoO 2 powder was pulverized to obtain plate-like LiCoO 2 particles (LCO template particles).
  • Example B1 In Examples B1, B2 and B4 to B8, a pot mill was used, and in Example B3, a wet jet mill was used. At this time, the volume-based D50 particle size of the LCO template particles was adjusted to the value shown in Table 2 by adjusting the pulverization time. Further, the aspect ratio of the LiCoO 2 template particles was as shown in Table 2. The aspect ratio of LiCoO 2 template particles was measured by SEM observation of the obtained template particles.
  • a binder polyvinyl butyral: product number BM-2, manufactured by Sekisui Chemical Co., Ltd.
  • a plasticizer DOP : 4 parts by weight of Di (2-ethylhexyl) phthalate (manufactured by Kurokin Kasei Co., Ltd.) and 2 parts by weight of a dispersant (product name: Leodol SP-O30, manufactured by Kao Corporation) were mixed.
  • the mixture was degassed by stirring under reduced pressure, and a slurry was prepared by adjusting the viscosity to 4000 cP.
  • the viscosity was measured with an LVT viscometer manufactured by Brookfield.
  • the prepared slurry was formed into a sheet on a PET film by a doctor blade method so that the thickness after drying was 40 ⁇ m at a forming speed of 100 m / h to obtain a green sheet.
  • the sheet was sandwiched between upper and lower sheets and fired at 900 ° C. for 20 hours.
  • Battery assembly A stainless foil with a thickness of 20 ⁇ m was cut into a 13 mm square to form a positive electrode current collector plate. Also, a 1 mm wide frame-shaped modified polypropylene resin film (thickness: 100 ⁇ m) having an outer edge shape of 13 mm square and an 11 mm square hole punched inside thereof was prepared. This frame-shaped resin film was laminated on the outer peripheral portion on the positive electrode current collector plate, and heat-pressed to form an end sealing portion. The unit cell was placed in a region surrounded by the end sealing portion on the positive electrode current collector plate. Similarly to the above, a stainless steel foil having a thickness of 20 ⁇ m was placed on the negative electrode side of the placed unit cell, and heated at 200 ° C. under reduced pressure while applying a load to the end sealing portion. Thus, the end sealing part and the upper and lower two stainless steel foils were bonded together over the entire outer periphery to seal the unit cell. Thus, an all solid lithium battery in a sealed form was obtained.
  • the ratio (%) of the total area of primary particles having an orientation angle of more than 0 ° and 30 ° or less to the total area of 30 primary particles used for calculating the average orientation angle was calculated.
  • the average particle diameter of 30 primary particles used for calculating the average orientation angle was calculated.
  • the arithmetic average value of the equivalent circle diameter of each of the 30 primary particles was defined as the average particle size of the primary particles.
  • the average aspect ratio of 30 primary particles used to calculate the average orientation angle was calculated.
  • the arithmetic average value of the value obtained by dividing the maximum ferret diameter of each of the 30 primary particles by the minimum ferret diameter was taken as the average aspect ratio of the primary particles.
  • the area ratio of primary particles having an aspect ratio of 4 or more was calculated among the 30 primary particles used for calculating the average orientation angle.
  • Example B9 (comparison) Batteries were prepared and evaluated in the same manner as in Examples B1 to B8, except that the LiCoO 2 powder was used as it was as the LCO template particles without being pulverized. The results were as shown in Table 3.
  • Example B10 (comparison) Batteries were prepared and evaluated in the same manner as in Examples B1 to B8, except that the volume-based D50 particle size of the Co 3 O 4 matrix particles was larger than those in Examples B1 to B8.
  • the volume-based D50 particle size of the matrix particles of this example was 3.0 ⁇ m, and the particle size ratio of the LCO template particles to the Co 3 O 4 matrix particles was 0.2. The results were as shown in Table 3.
  • Example B11 (comparison) Batteries were produced and evaluated in the same manner as in Examples B1 to B8, except that the green sheets were produced with a slurry using only Co 3 O 4 matrix particles without using LCO template particles. The results were as shown in Table 3.
  • Example B12 (comparison) Batteries were produced and evaluated in the same manner as in Examples B1 to B8 except that the firing temperature for primary firing was 1200 ° C. The results were as shown in Table 3.
  • Example B13 (comparison) A battery was produced and evaluated in the same manner as in Example B1, except that the positive electrode plate was produced as follows. The results were as shown in Table 3.
  • Example B1 (Preparation of positive electrode plate) The slurry prepared in Example B1 was dried as it was without being formed into a sheet. The dried product was fired in the same manner as in Example B1, and then polished to a thickness of 40 ⁇ m using a # 1200 SiC abrasive paper to obtain a positive electrode plate.

Abstract

Provided is an all-solid-state lithium battery having greatly improved cycle performance when charging and discharging are repeatedly performed. The all-solid-state lithium battery according to the present invention is provided with: an oriented positive electrode plate having a thickness of 30 μm or more and constituted of an oriented sintered body; a solid-state electrolyte layer disposed on the oriented positive electrode plate and constituted of a lithium ion conducting material; and an intermediate layer having a thickness of 0.001-1 μm disposed on the solid-state electrolyte layer and comprising a metal capable of forming an alloy with lithium. In the oriented positive electrode plate, the oriented sintered body comprises a plurality of primary particles constituted of a lithium composite oxide having a layered rock salt structure, and the plurality of primary particles are oriented at an average orientation angle of over 0° and 30° or less with respect to the plate surface of the oriented positive electrode plate.

Description

全固体リチウム電池All solid lithium battery
 本発明は、全固体リチウム電池に関するものである。 The present invention relates to an all solid lithium battery.
 従来、パーソナルコンピュータ、携帯電話等のポータブル機器といったような用途に用いられる電池においては、イオンを移動させる媒体として、リチウム塩を可燃性の有機溶媒へ溶解させた、液体の電解質(電解液)が従来使用されている。このような電解液を用いた電池においては、電解液の漏液や、発火、爆発等の問題を生ずる可能性がある。このような問題を解消すべく、本質的な安全性確保のために、液体の電解質に代えて固体電解質を使用するとともに、その他の要素の全てを固体で構成した全固体リチウム電池の開発が進められている。このような全固体リチウム電池は、電解質が固体であることから、発火の心配が少なく、漏液せず、また、腐食による電池性能の劣化等の問題も生じ難い。 2. Description of the Related Art Conventionally, in a battery used for a portable device such as a personal computer or a mobile phone, a liquid electrolyte (electrolytic solution) in which a lithium salt is dissolved in a flammable organic solvent is used as a medium for moving ions. Conventionally used. A battery using such an electrolytic solution may cause problems such as leakage of the electrolytic solution, ignition, and explosion. In order to solve these problems, in order to ensure essential safety, the development of an all-solid-state lithium battery in which a solid electrolyte is used instead of a liquid electrolyte and all other elements are made of solid is progressed. It has been. Such an all-solid-state lithium battery has a solid electrolyte, so there is little fear of ignition, no leakage, and problems such as deterioration of battery performance due to corrosion hardly occur.
 例えば、特許文献1(国際公開第2017/006591号公報)には、コバルト酸リチウム(LiCoO)等のリチウム複合酸化物で構成される配向正極板と、リン酸リチウムオキシナイトライドガラス電解質(LiPON)等のリチウムイオン伝導材料で構成される固体電解質層と、リチウム金属で構成される負極層とを備えた、全固体リチウム電池が開示されている。また、この文献には、固体電解質層と負極層の間にリチウムと合金化可能な金属を含む中間層を介在させることにより、リフローはんだ付けプロセスに伴う内部短絡や負極層の剥離を防止できることも記載されている。 For example, Patent Document 1 (International Publication No. 2017/006591) discloses an alignment positive electrode plate made of a lithium composite oxide such as lithium cobaltate (LiCoO 2 ) and a lithium phosphate oxynitride glass electrolyte (LiPON). An all-solid-state lithium battery including a solid electrolyte layer made of a lithium ion conductive material such as) and a negative electrode layer made of lithium metal is disclosed. In addition, in this document, by interposing an intermediate layer containing a metal that can be alloyed with lithium between the solid electrolyte layer and the negative electrode layer, it is possible to prevent internal short circuit and peeling of the negative electrode layer due to the reflow soldering process. Are listed.
 ところで、層状岩塩構造を有するリチウム複合酸化物で構成される正極活物質は、その内部でのリチウムイオンの拡散が(003)面の面内方向(すなわち(003)面と平行な平面内の任意の方向)で行われ、(003)面以外の結晶面(例えば(101)面や(104)面)でリチウムイオンの出入りが生じることが知られている。そこで、この種の正極活物質において、リチウムイオンの出入りが良好に行われる結晶面((003)面以外の面、例えば(101)面や(104)面))をより多く電解質と接触する表面に露出させることで、リチウム二次電池の電池特性を向上させる試みがなされている。実際、上述した特許文献1においても、(003)面が配向正極板の板面と交差するようにリチウム遷移金属酸化物粒子が配向されることで、(003)面以外の面(例えば(101)面や(104)面)の表面への露出を多くした配向正極板が開示されている。 By the way, the positive electrode active material composed of a lithium composite oxide having a layered rock salt structure has an arbitrary diffusion plane in the plane of the (003) plane (that is, in a plane parallel to the (003) plane). It is known that lithium ions enter and exit in crystal planes other than the (003) plane (for example, (101) plane or (104) plane). Therefore, in this type of positive electrode active material, a surface that comes into contact with the electrolyte more in a crystal plane (a plane other than the (003) plane, for example, the (101) plane or the (104) plane) on which lithium ions can enter and exit satisfactorily. Attempts have been made to improve the battery characteristics of lithium secondary batteries by exposing them to the above. In fact, also in the above-described Patent Document 1, the lithium transition metal oxide particles are oriented so that the (003) plane intersects the plate surface of the oriented positive electrode plate, so that a plane other than the (003) plane (for example, (101) ) Plane and (104) plane) are disclosed.
国際公開第2017/006591号International Publication No. 2017/006591
 本発明者らの知るかぎり、特許文献1に開示されるような従来の配向正極板は、概して、(003)面が板面に対して45~75°傾斜するように一次粒子が配向されたものである。すなわち、従来の配向正極板は、リチウムイオンの出入り面(例えば(101)面や(104)面)をできるだけ多く表面に露出させた方が良いとのコンセプトに従って設計されたものである。しかしながら、このような従来の配向正極板を採用した特許文献1に開示されるような全固体リチウム電池は、長期的にサイクル試験を行った場合又は高温で動作させた場合に、局所的な短絡が生じてしまい、サイクル性能が劣化することがある。これは、上述したような角度で一次粒子が配向する配向正極板は充放電時の膨張収縮が配向正極板の板面と平行方向に起こりやすく、それ故、固定電解質層との界面に応力を発生させやすいためである。この界面応力は、固体電解質層に欠陥を生じさせて時には局所的な短絡を引き起こし、その結果、サイクル性能の劣化や電池の破壊をもたらしうる。 As far as the present inventors know, the conventional oriented positive electrode plate as disclosed in Patent Document 1 generally has the primary particles oriented such that the (003) plane is inclined by 45 to 75 ° with respect to the plate surface. Is. In other words, the conventional oriented positive electrode plate is designed according to the concept that it is better to expose as many surfaces as possible to the entry and exit of lithium ions (for example, the (101) plane and the (104) plane). However, an all-solid lithium battery as disclosed in Patent Document 1 employing such a conventional oriented positive electrode plate is short-circuited locally when a long-term cycle test is performed or when it is operated at a high temperature. May occur and the cycle performance may deteriorate. This is because the orientation positive electrode plate in which the primary particles are oriented at the angles as described above tends to cause expansion and contraction during charge and discharge in the direction parallel to the plate surface of the orientation positive electrode plate, and therefore stress is applied to the interface with the fixed electrolyte layer. It is because it is easy to generate. This interfacial stress can cause defects in the solid electrolyte layer and sometimes cause a local short circuit, resulting in degradation of cycle performance and battery failure.
 本発明者らは、今般、複数の一次粒子が配向正極板の板面に対して0°超30°以下の平均配向角度で配向した配向正極板を採用し、かつ、固体電解質層の配向正極板と反対側の面(すなわち負極側の面)に所定の中間層を設けることにより、充放電を繰り返した際のサイクル性能が大幅に改善した全固体リチウム電池を提供できるとの知見を得た。 The present inventors have recently adopted an oriented positive electrode plate in which a plurality of primary particles are oriented at an average orientation angle of more than 0 ° and not more than 30 ° with respect to the plate surface of the oriented positive electrode plate, and the oriented positive electrode of the solid electrolyte layer It was found that by providing a predetermined intermediate layer on the surface opposite to the plate (that is, the surface on the negative electrode side), it is possible to provide an all-solid-state lithium battery with greatly improved cycle performance when repeated charge and discharge are performed. .
 したがって、本発明の目的は、充放電を繰り返した際のサイクル性能が大幅に改善した全固体リチウム電池を提供することにある。 Therefore, an object of the present invention is to provide an all-solid-state lithium battery with greatly improved cycle performance when charging and discharging are repeated.
 本発明の一態様によれば、配向焼結体で構成される厚さ30μm以上の配向正極板であって、前記配向焼結体が層状岩塩構造を有するリチウム複合酸化物で構成される複数の一次粒子を含み、前記複数の一次粒子が前記配向正極板の板面に対して0°超30°以下の平均配向角度で配向している、配向正極板と、
 前記配向正極板上に設けられ、リチウムイオン伝導材料で構成される固体電解質層と、
 前記固体電解質層上に設けられ、リチウムと合金化可能な金属を含む、厚さ0.001~1μmの中間層と、
を備えた、全固体リチウム電池が提供される。
According to one aspect of the present invention, there is provided an oriented positive electrode plate having a thickness of 30 μm or more constituted by an oriented sintered body, wherein the oriented sintered body comprises a plurality of lithium composite oxides having a layered rock salt structure. An oriented positive electrode plate comprising primary particles, wherein the plurality of primary particles are oriented at an average orientation angle of more than 0 ° and not more than 30 ° with respect to the plate surface of the oriented positive electrode plate;
A solid electrolyte layer provided on the oriented positive electrode plate and made of a lithium ion conductive material;
An intermediate layer provided on the solid electrolyte layer and containing a metal that can be alloyed with lithium and having a thickness of 0.001 to 1 μm;
An all-solid lithium battery is provided.
本発明の全固体リチウム電池の一例を示す模式断面図である。It is a schematic cross section which shows an example of the all-solid-state lithium battery of this invention. 図1に示される全固体リチウム電池の模式上面図である。It is a model top view of the all-solid-state lithium battery shown by FIG. 本発明の全固体リチウム電池の他の一例を示す模式断面図である。It is a schematic cross section which shows another example of the all-solid-state lithium battery of this invention. 本発明の全固体リチウム電池の更に他の一例を示す模式断面図である。It is a schematic cross section which shows another example of the all-solid-state lithium battery of this invention. 本発明の配向正極板に含まれるリチウム複合酸化物一次粒子のリチウムイオン伝導方向と膨張収縮方法とを概念的に説明するための模式断面図である。It is a schematic cross section for conceptually explaining the lithium ion conduction direction and the expansion / contraction method of the lithium composite oxide primary particles contained in the oriented positive electrode plate of the present invention. 従来の配向正極板の一例におけるリチウムイオン伝導方向と膨張収縮方法とを概念的に説明するための模式断面図である。It is a schematic cross section for conceptually explaining a lithium ion conduction direction and an expansion / contraction method in an example of a conventional oriented positive electrode plate. 図7に示されるような本発明に用いられる配向正極板におけるリチウムイオン伝導方向と膨張収縮方法とを概念的に説明するための模式断面図である。FIG. 8 is a schematic cross-sectional view for conceptually explaining the lithium ion conduction direction and the expansion / contraction method in the oriented positive electrode plate used in the present invention as shown in FIG. 7. 配向正極板の板面に垂直な断面の一例を示すSEM像である。It is a SEM image which shows an example of a cross section perpendicular | vertical to the plate | board surface of an orientation positive electrode plate. 図8に示される配向正極板の断面におけるEBSD像である。It is an EBSD image in the cross section of the orientation positive electrode plate shown by FIG. 図9のEBSD像における一次粒子の配向角度の分布を面積基準で示すヒストグラムである。10 is a histogram showing the distribution of primary particle orientation angles in the EBSD image of FIG. 9 on an area basis.
 全固体リチウム電池
 図1及び2に本発明による全固体リチウム電池の一例を模式的に示す。図1及び2に示される全固体リチウム電池10は、配向正極板12、固体電解質層14、中間層15、及び所望により負極層16を備える。図1に示される全固体リチウム電池10は、配向正極板12、中間層13、固体電解質層14、中間層15、負極層16、及び正極集電体20で構成される2個の単位電池を負極集電体24を介して上下対称に並列積層した構成を有している。もっとも、これに限らず、図3に模式的に示されるように1つの単位電池10’からなる構成であってもよいし、2つ以上の単位電池を並列又は直列に積層した構成であってもよい。配向正極板12は、配向焼結体で構成される厚さ30μm以上の板であって、配向焼結体は層状岩塩構造を有するリチウム複合酸化物で構成される複数の一次粒子を含む。これらの複数の一次粒子は配向正極板の板面に対して0°超30°以下の平均配向角度で配向している。平均配向角度とは各一次粒子の(003)面が板面方向に対して成す傾斜角度の平均値である。固体電解質層14は、リチウムイオン伝導材料で構成され、配向正極板12上に設けられる。中間層15は、リチウムと合金化可能な金属を含む、厚さ0.001~1μmの層であり、固体電解質層14上に設けられる。このように、(i)複数の一次粒子が配向正極板12の板面に対して0°超30°以下の平均配向角度で配向した配向正極板12を採用し、かつ、(ii)固体電解質層14の配向正極板12と反対側の面(すなわち負極側の面)に所定の中間層を介在させることにより、充放電を繰り返した際のサイクル性能が大幅に改善した全固体リチウム電池を提供することができる。このことは以下のように説明することができる。
All Solid Lithium Battery FIGS. 1 and 2 schematically show an example of an all solid lithium battery according to the present invention. The all solid lithium battery 10 shown in FIGS. 1 and 2 includes an oriented positive electrode plate 12, a solid electrolyte layer 14, an intermediate layer 15, and optionally a negative electrode layer 16. The all-solid lithium battery 10 shown in FIG. 1 includes two unit batteries each composed of an oriented positive electrode plate 12, an intermediate layer 13, a solid electrolyte layer 14, an intermediate layer 15, a negative electrode layer 16, and a positive electrode current collector 20. It has a configuration in which the negative electrode current collector 24 is laminated in parallel vertically symmetrically. However, the present invention is not limited to this, and may be configured by one unit cell 10 ′ as schematically shown in FIG. 3, or may be configured by stacking two or more unit cells in parallel or in series. Also good. The oriented positive plate 12 is a plate having a thickness of 30 μm or more constituted by an oriented sintered body, and the oriented sintered body includes a plurality of primary particles constituted by a lithium composite oxide having a layered rock salt structure. The plurality of primary particles are oriented at an average orientation angle of more than 0 ° and not more than 30 ° with respect to the plate surface of the oriented positive electrode plate. The average orientation angle is an average value of inclination angles formed by the (003) planes of the primary particles with respect to the plate surface direction. The solid electrolyte layer 14 is made of a lithium ion conductive material and is provided on the oriented positive electrode plate 12. The intermediate layer 15 is a layer having a thickness of 0.001 to 1 μm containing a metal that can be alloyed with lithium, and is provided on the solid electrolyte layer 14. Thus, (i) the oriented positive electrode plate 12 in which a plurality of primary particles are oriented at an average orientation angle of more than 0 ° and not more than 30 ° with respect to the plate surface of the oriented positive electrode plate 12, and (ii) a solid electrolyte is employed. By providing a predetermined intermediate layer on the surface of the layer 14 opposite to the oriented positive electrode plate 12 (that is, the surface on the negative electrode side), an all-solid lithium battery with greatly improved cycle performance upon repeated charge and discharge is provided. can do. This can be explained as follows.
(i)平均配向角度0°超30°以下の配向正極板による短絡の低減
 本発明の全固体リチウム電池10では、複数の一次粒子が配向正極板12の板面に対して0°超30°以下の平均配向角度で配向した配向正極板12を採用することで、固定電解質層との界面に発生しうる応力を低減させ、短絡不良を無くすことができる。具体的には以下のように考えられる。一次粒子を構成する層状岩塩構造のリチウム複合酸化物は、リチウムイオンが抜けるのに伴い、層間距離が広がる性質がある。すなわち、図5に概念的に示されるようにリチウム複合酸化物の一次粒子11は(003)面と平行にリチウムイオン移動方向LiDを有するとともに、(003)面と垂直に膨張収縮方向ECDを有している。したがって、図6に示されるように、(003)面が板面に対して45~75°傾斜するように一次粒子が配向した従来の配向正極板12’においては、複数個の一次粒子11の膨張収縮が、全体として配向正極板12’の板面と平行方向の膨張収縮をもたらす、すなわち膨張収縮方向ECDが板面と平行となる。これに対し、本発明で採用される配向正極板12は、図7に概念的に描かれるように、一次粒子の平均配向角度、すなわちその(003)面の平均配向角度が0°超30°以下となることで、リチウムイオンが抜けることに伴う配向正極板12の面方向の膨張が小さくなる。このため、充放電時における配向正極板12の膨張収縮による固体電解質層14への引張応力が低減され、固体電解質層14の破損や剥がれ、クラック発生等による電気的なショートや抵抗増加を防止することができ、サイクル特性の向上につながる。
(I) Reduction of short-circuit by an alignment positive electrode plate having an average alignment angle of more than 0 ° and less than 30 ° In the all solid lithium battery 10 of the present invention, a plurality of primary particles are more than 0 ° and 30 ° with respect to the plate surface of the alignment positive electrode plate 12. By employing the oriented positive electrode plate 12 oriented at the following average orientation angle, the stress that can be generated at the interface with the fixed electrolyte layer can be reduced, and short circuit defects can be eliminated. Specifically, it is considered as follows. The layered rock salt structure lithium composite oxide constituting the primary particles has the property that the interlayer distance increases as lithium ions are released. That is, as conceptually shown in FIG. 5, the primary particles 11 of the lithium composite oxide have a lithium ion movement direction LiD parallel to the (003) plane and an expansion / contraction direction ECD perpendicular to the (003) plane. is doing. Therefore, as shown in FIG. 6, in the conventional oriented positive electrode plate 12 ′ in which the primary particles are oriented so that the (003) plane is inclined by 45 to 75 ° with respect to the plate surface, a plurality of primary particles 11 are formed. The expansion / contraction causes expansion / contraction in the direction parallel to the plate surface of the oriented positive electrode plate 12 ′ as a whole, that is, the expansion / contraction direction ECD is parallel to the plate surface. In contrast, the oriented positive electrode plate 12 employed in the present invention has an average orientation angle of primary particles, that is, an average orientation angle of the (003) plane of more than 0 ° and 30 °, as conceptually depicted in FIG. By becoming below, the expansion | swelling of the surface direction of the orientation positive electrode plate 12 accompanying lithium ion detachment | miniaturization becomes small. For this reason, the tensile stress to the solid electrolyte layer 14 due to the expansion and contraction of the oriented positive electrode plate 12 at the time of charging / discharging is reduced, and an electrical short circuit or an increase in resistance due to the breakage or peeling of the solid electrolyte layer 14 or the occurrence of cracks is prevented. Can lead to improved cycle characteristics.
(ii)中間層による抵抗均質化によるサイクル性能の改善
 しかしながら、平均配向角度0°超30°以下の配向正極板を採用した場合、面内位置による抵抗値のバラつきが生じやすいとの別の問題が起こりうる。そして、この抵抗値のバラつきは、特に高速で充放電した際に固体電解質層14の配向正極板12と反対側の面(すなわち負極側の面)においてリチウムが析出しやすい箇所とリチウムが析出しにくい箇所とが生じさせ、(特に高レートで)充放電を繰り返した際のサイクル性能を低下させうる。これは、平均配向角度0°超30°以下の配向正極板は、図7からも理解されるように、リチウムイオンの出入り面(例えば(101)面や(104)面)のみならず、リチウムイオンが出入りしない(003)面が固体電解質層14の負極側表面に顕著に露出するためである。すなわち、リチウムイオンの出入り面(例えば(101)面や(104)面)の露出表面ではリチウムが析出しやすい一方、リチウムイオンが出入りしない(003)面の露出箇所ではリチウムが析出しにくい。特に、本発明のように厚さ30μm以上の配向正極板を採用してエネルギー密度を高めた全固体リチウム電池においては、リチウムの絶対量が多いため、上記問題がより顕著となる。この点、本発明の全固体リチウム電池10では、固体電解質層14上に、リチウムと合金化可能な金属を含む、厚さ0.001~1μmの中間層15を設けることで、上記問題を解消して、(特に高レートで)充放電を繰り返した際のサイクル性能が大幅に改善することができる。これは、中間層15がリチウム析出に影響を与える固体電解質層14の抵抗を面内方向に均質化することによるものと考えられる。
(Ii) Improving cycle performance by homogenizing resistance with intermediate layer However, when an oriented positive electrode plate with an average orientation angle of more than 0 ° and less than 30 ° is adopted, another problem is that the resistance value tends to vary depending on the in-plane position. Can happen. This variation in resistance value is caused when lithium is easily deposited on the surface opposite to the orientation positive electrode plate 12 of the solid electrolyte layer 14 (that is, the surface on the negative electrode side), particularly when charging / discharging at high speed. It is possible to cause a difficult portion, and the cycle performance when charging / discharging is repeated (especially at a high rate) can be reduced. This is because the orientation positive electrode plate having an average orientation angle of more than 0 ° and not more than 30 ° is not only a lithium ion entrance / exit surface (for example, (101) surface or (104) surface) but also lithium ion as understood from FIG. This is because the (003) surface where ions do not enter and exit is significantly exposed on the negative electrode side surface of the solid electrolyte layer 14. That is, lithium is likely to precipitate on the exposed surface of the entry / exit surface of lithium ions (for example, (101) surface or (104) surface), while lithium is difficult to precipitate on the exposed portion of the (003) surface where lithium ions do not enter or exit. In particular, in the all solid lithium battery in which the energy density is increased by employing an oriented positive plate having a thickness of 30 μm or more as in the present invention, the above problem becomes more conspicuous because the absolute amount of lithium is large. In this regard, in the all-solid-state lithium battery 10 of the present invention, the above problem is solved by providing an intermediate layer 15 having a thickness of 0.001 to 1 μm containing a metal that can be alloyed with lithium on the solid electrolyte layer 14. Thus, the cycle performance when charging / discharging is repeated (especially at a high rate) can be greatly improved. This is considered due to the fact that the intermediate layer 15 homogenizes the resistance of the solid electrolyte layer 14 that affects lithium deposition in the in-plane direction.
 配向正極板
 配向正極板12は、配向焼結体で構成される厚さ30μm以上の板である。配向焼結体は、層状岩塩構造を有するリチウム複合酸化物で構成される複数の一次粒子を含み、複数の一次粒子が配向正極板の板面に対して0°超30°以下の平均配向角度で配向している。図8に配向正極板12の板面に垂直な断面SEM像の一例を示す一方、図9に配向正極板12の板面に垂直な断面における電子線後方散乱回折(EBSD:Electron Backscatter Diffraction)像を示す。また、図10に、図9のEBSD像における一次粒子11の配向角度の分布を面積基準で示すヒストグラムを示す。図9に示されるEBSD像では、結晶方位の不連続性を観測することができる。図9では、各一次粒子11の配向角度が色の濃淡で示されており、色が濃いほど配向角度が小さいことを示している。配向角度とは、各一次粒子11の(003)面が板面方向に対して成す傾斜角度である。なお、図8及び9において、配向正極板12の内部で黒表示されている箇所は気孔である。
Oriented positive electrode plate The oriented positive electrode plate 12 is a plate having a thickness of 30 μm or more formed of an oriented sintered body. The oriented sintered body includes a plurality of primary particles composed of a lithium composite oxide having a layered rock salt structure, and the plurality of primary particles has an average orientation angle of more than 0 ° and not more than 30 ° with respect to the plate surface of the oriented positive electrode plate. Is oriented. FIG. 8 shows an example of a cross-sectional SEM image perpendicular to the plate surface of the alignment positive electrode plate 12, while FIG. 9 shows an electron backscatter diffraction (EBSD) image in a cross section perpendicular to the plate surface of the alignment positive electrode plate 12. Indicates. FIG. 10 is a histogram showing the orientation angle distribution of the primary particles 11 in the EBSD image of FIG. In the EBSD image shown in FIG. 9, discontinuity of crystal orientation can be observed. In FIG. 9, the orientation angle of each primary particle 11 is shown in shades of color, and the darker the color, the smaller the orientation angle. The orientation angle is an inclination angle formed by the (003) plane of each primary particle 11 with respect to the plate surface direction. In FIGS. 8 and 9, the portions displayed in black inside the aligned positive electrode plate 12 are pores.
 配向正極板12は、互いに結合された複数の一次粒子11で構成された配向焼結体である。各一次粒子11は、主に板状であるが、直方体状、立方体状及び球状などに形成されたものが含まれていてもよい。各一次粒子11の断面形状は特に制限されるものではなく、矩形、矩形以外の多角形、円形、楕円形、或いはこれら以外の複雑形状であってもよい。 The oriented positive electrode plate 12 is an oriented sintered body composed of a plurality of primary particles 11 bonded to each other. Each primary particle 11 is mainly plate-shaped, but may include particles formed in a rectangular parallelepiped shape, a cubic shape, a spherical shape, or the like. The cross-sectional shape of each primary particle 11 is not particularly limited, and may be a rectangle, a polygon other than a rectangle, a circle, an ellipse, or a complex shape other than these.
 各一次粒子11はリチウム複合酸化物で構成される。リチウム複合酸化物とは、LiMO(0.05<x<1.10であり、Mは少なくとも1種類の遷移金属であり、Mは典型的にはCo、Ni及びMnの1種以上を含む)で表される酸化物である。リチウム複合酸化物は層状岩塩構造を有する。層状岩塩構造とは、リチウム層とリチウム以外の遷移金属層とが酸素の層を挟んで交互に積層された結晶構造、すなわち酸化物イオンを介して遷移金属イオン層とリチウム単独層とが交互に積層した結晶構造(典型的にはα-NaFeO型構造、すなわち立方晶岩塩型構造の[111]軸方向に遷移金属とリチウムとが規則配列した構造)をいう。リチウム複合酸化物の例としては、LiCoO(コバルト酸リチウム)、LiNiO(ニッケル酸リチウム)、LiMnO(マンガン酸リチウム)、LiNiMnO(ニッケル・マンガン酸リチウム)、LiNiCoO(ニッケル・コバルト酸リチウム)、LiCoNiMnO(コバルト・ニッケル・マンガン酸リチウム)、LiCoMnO(コバルト・マンガン酸リチウム)等が挙げられ、特に好ましくはLiCoO(コバルト酸リチウム、典型的にはLiCoO)である。リチウム複合酸化物には、Mg、Al、Si、Ca、Ti、V、Cr、Fe、Cu、Zn、Ga、Ge、Sr、Y,Zr、Nb、Mo、Ag、Sn、Sb、Te、Ba、Bi、及びWから選択される1種以上の元素が含まれていてもよい。 Each primary particle 11 is composed of a lithium composite oxide. The lithium composite oxide is Li x MO 2 (0.05 <x <1.10, M is at least one transition metal, and M is typically one or more of Co, Ni, and Mn. It is an oxide represented by. The lithium composite oxide has a layered rock salt structure. The layered rock salt structure is a crystal structure in which lithium layers and transition metal layers other than lithium are alternately stacked with oxygen layers in between, that is, the transition metal ion layer and the lithium single layer are alternately arranged via oxide ions. It refers to a laminated crystal structure (typically an α-NaFeO 2 type structure, ie, a structure in which transition metals and lithium are regularly arranged in the [111] axis direction of a cubic rock salt type structure). Examples of the lithium composite oxide include Li x CoO 2 (lithium cobaltate), Li x NiO 2 (lithium nickelate), Li x MnO 2 (lithium manganate), Li x NiMnO 2 (nickel / lithium manganate) , Li x NiCoO 2 (nickel / lithium cobaltate), Li x CoNiMnO 2 (cobalt / nickel / lithium manganate), Li x CoMnO 2 (cobalt / lithium manganate), and the like, particularly preferably Li x CoO 2. (Lithium cobaltate, typically LiCoO 2 ). The lithium composite oxide includes Mg, Al, Si, Ca, Ti, V, Cr, Fe, Cu, Zn, Ga, Ge, Sr, Y, Zr, Nb, Mo, Ag, Sn, Sb, Te, Ba One or more elements selected from Bi, Bi, and W may be included.
 図9及び10に示されるように、各一次粒子11の配向角度の平均値、すなわち平均配向角度は0°超30°以下である。これにより、以下の様々な利点がもたらされる。第一に、各一次粒子11が厚み方向に対して傾斜した向きに寝た状態になるため、各一次粒子同士の密着性を向上させることができる。その結果、ある一次粒子11と当該一次粒子11の長手方向両側に隣接する他の一次粒子11との間におけるリチウムイオン伝導性を向上させることができるため、レート特性を向上させることができる。第二に、図4及び5を参照しつつ前述したとおり、サイクル特性を向上させることができる。すなわち、リチウムイオンの出入りに応じて(003)面と垂直な方向に各一次粒子11が伸縮するところ、板面方向に対する(003)面の傾斜角度を小さくすることによって、板面方向における配向正極板12の膨張収縮量が低減されて、配向正極板12と固体電解質層14との間に応力が生じることを抑制できる。第三に、レート特性をより向上させることができる。これは、上述のとおり、リチウムイオンの出入りに際して、配向正極板12では、板面方向よりも厚み方向における膨張収縮が優勢となるため、配向正極板12の膨張収縮がスムーズになるところ、それに伴ってリチウムイオンの出入りもスムーズになるからである。 9 and 10, the average value of the orientation angles of the primary particles 11, that is, the average orientation angle is more than 0 ° and not more than 30 °. This provides the following various advantages. First, since each primary particle 11 is in a state of lying in a direction inclined with respect to the thickness direction, the adhesion between the primary particles can be improved. As a result, since the lithium ion conductivity between a certain primary particle 11 and other primary particles 11 adjacent to both sides in the longitudinal direction of the primary particle 11 can be improved, rate characteristics can be improved. Secondly, as described above with reference to FIGS. 4 and 5, the cycle characteristics can be improved. That is, when each primary particle 11 expands and contracts in the direction perpendicular to the (003) plane in accordance with the entry and exit of lithium ions, the orientation positive electrode in the plate plane direction is reduced by reducing the inclination angle of the (003) plane with respect to the plate plane direction. The expansion / contraction amount of the plate 12 is reduced, and it is possible to suppress the occurrence of stress between the oriented positive electrode plate 12 and the solid electrolyte layer 14. Third, rate characteristics can be further improved. As described above, when the lithium ion enters and exits, in the alignment positive electrode plate 12, the expansion / contraction in the thickness direction is more dominant than the plate surface direction, so that the expansion / contraction of the alignment positive electrode plate 12 becomes smooth. This is because lithium ions can go in and out smoothly.
 一次粒子11の平均配向角度は、以下の手法によって得られる。まず、図9に示されるような、95μm×125μmの矩形領域を1000倍の倍率で観察したEBSD像において、配向正極板12を厚み方向に四等分する3本の横線と、配向正極板12を板面方向に四等分する3本の縦線とを引く。次に、3本の横線と3本の縦線のうち少なくとも1本の線と交差する一次粒子11すべての配向角度を算術平均することによって、一次粒子11の平均配向角度を得る。一次粒子11の平均配向角度は、レート特性の更なる向上の観点から、30°以下が好ましく、より好ましくは25°以下である。一次粒子11の平均配向角度は、レート特性の更なる向上の観点から、2°以上が好ましく、より好ましくは5°以上である。 The average orientation angle of the primary particles 11 can be obtained by the following method. First, in an EBSD image obtained by observing a 95 μm × 125 μm rectangular region as shown in FIG. 9 at a magnification of 1000 times, three horizontal lines that equally divide the alignment positive electrode plate 12 in the thickness direction, and the alignment positive electrode plate 12 Draw three vertical lines that equally divide the Next, the average orientation angle of the primary particles 11 is obtained by arithmetically averaging the orientation angles of all the primary particles 11 intersecting at least one of the three horizontal lines and the three vertical lines. The average orientation angle of the primary particles 11 is preferably 30 ° or less, more preferably 25 ° or less, from the viewpoint of further improving the rate characteristics. The average orientation angle of the primary particles 11 is preferably 2 ° or more, more preferably 5 ° or more, from the viewpoint of further improving the rate characteristics.
 図10に示されるように、各一次粒子11の配向角度は、0°から90°まで広く分布していてもよいが、その大部分は0°超30°以下の領域に分布していることが好ましい。すなわち、配向正極板12を構成する配向焼結体は、その断面をEBSDにより解析した場合に、解析された断面に含まれる一次粒子11のうち配向正極板12の板面に対する配向角度が0°超30°以下である一次粒子11(以下、低角一次粒子という)の合計面積が、断面に含まれる一次粒子11(具体的には平均配向角度の算出に用いた30個の一次粒子11)の総面積に対して70%以上であるのが好ましく、より好ましくは80%以上である。これにより、相互密着性の高い一次粒子11の割合を増加させることができるため、レート特性をより向上させることができる。また、低角一次粒子のうち配向角度が20°以下であるものの合計面積は、平均配向角度の算出に用いた30個の一次粒子11の総面積に対して50%以上であることがより好ましい。さらに、低角一次粒子のうち配向角度が10°以下であるものの合計面積は、平均配向角度の算出に用いた30個の一次粒子11の総面積に対して15%以上であることがより好ましい。 As shown in FIG. 10, the orientation angle of each primary particle 11 may be widely distributed from 0 ° to 90 °, but most of it is distributed in a region of more than 0 ° and not more than 30 °. Is preferred. That is, the oriented sintered body constituting the oriented positive electrode plate 12 has an orientation angle with respect to the plate surface of the oriented positive electrode plate 12 of the primary particles 11 included in the analyzed cross section when the cross section is analyzed by EBSD. The total area of primary particles 11 (hereinafter referred to as low-angle primary particles) having an angle of 30 ° or less is included in the cross section of primary particles 11 (specifically, 30 primary particles 11 used for calculating the average orientation angle). The total area is preferably 70% or more, more preferably 80% or more. Thereby, since the ratio of the primary particle 11 with high mutual adhesiveness can be increased, rate characteristics can be further improved. The total area of the low-angle primary particles having an orientation angle of 20 ° or less is more preferably 50% or more with respect to the total area of the 30 primary particles 11 used for calculating the average orientation angle. . Furthermore, the total area of the low-angle primary particles having an orientation angle of 10 ° or less is more preferably 15% or more with respect to the total area of the 30 primary particles 11 used for calculating the average orientation angle. .
 各一次粒子11は、主に板状であるため、図8及び9に示されるように、各一次粒子11の断面はそれぞれ所定方向に延びており、典型的には略矩形状となる。すなわち、配向焼結体は、その断面をEBSDにより解析した場合に、解析された断面に含まれる一次粒子11のうちアスペクト比が4以上である一次粒子11の合計面積が、断面に含まれる一次粒子11(具体的には平均配向角度の算出に用いた30個の一次粒子11)の総面積に対して70%以上であるのが好ましく、より好ましくは80%以上である。具体的には、図9に示されるようなEBSD像において、これにより、一次粒子11同士の相互密着性をより向上することができ、その結果、レート特性をより向上させることができる。一次粒子11のアスペクト比は、一次粒子11の最大フェレー径を最小フェレー径で除した値である。最大フェレー径は、断面観察した際のEBSD像上において、一次粒子11を平行な2本の直線で挟んだ場合における当該直線間の最大距離である。最小フェレー径は、EBSD像上において、一次粒子11を平行な2本の直線で挟んだ場合における当該直線間の最小距離である。 Since each primary particle 11 is mainly plate-shaped, the cross-section of each primary particle 11 extends in a predetermined direction as shown in FIGS. 8 and 9, and typically has a substantially rectangular shape. That is, when the cross section of the oriented sintered body is analyzed by EBSD, the total area of the primary particles 11 having an aspect ratio of 4 or more among the primary particles 11 included in the analyzed cross section is included in the cross section. The total area of the particles 11 (specifically, 30 primary particles 11 used for calculating the average orientation angle) is preferably 70% or more, more preferably 80% or more. Specifically, in the EBSD image as shown in FIG. 9, the mutual adhesion between the primary particles 11 can be further improved, and as a result, the rate characteristics can be further improved. The aspect ratio of the primary particles 11 is a value obtained by dividing the maximum ferret diameter of the primary particles 11 by the minimum ferret diameter. The maximum ferret diameter is the maximum distance between the straight lines when the primary particle 11 is sandwiched between two parallel straight lines on the EBSD image when the cross section is observed. The minimum ferret diameter is the minimum distance between the straight lines when the primary particle 11 is sandwiched between two parallel lines on the EBSD image.
 配向焼結体を構成する複数の一次粒子の平均粒径が5μm以上であるのが好ましい。具体的には、平均配向角度の算出に用いた30個の一次粒子11の平均粒径が、5μm以上であることが好ましく、より好ましくは7μm以上、さらに好ましくは12μm以上である。これにより、リチウムイオンが伝導する方向における一次粒子11同士の粒界数が少なくなって全体としてのリチウムイオン伝導性が向上するため、レート特性をより向上させることができる。一次粒子11の平均粒径は、各一次粒子11の円相当径を算術平均した値である。円相当径とは、EBSD像上において、各一次粒子11と同じ面積を有する円の直径のことである。 The average particle size of the plurality of primary particles constituting the oriented sintered body is preferably 5 μm or more. Specifically, the average particle diameter of the 30 primary particles 11 used for calculating the average orientation angle is preferably 5 μm or more, more preferably 7 μm or more, and further preferably 12 μm or more. Thereby, since the number of grain boundaries between the primary particles 11 in the direction in which lithium ions are conducted is reduced and the lithium ion conductivity as a whole is improved, the rate characteristics can be further improved. The average particle diameter of the primary particles 11 is a value obtained by arithmetically averaging the equivalent circle diameters of the primary particles 11. The equivalent circle diameter is the diameter of a circle having the same area as each primary particle 11 on the EBSD image.
 配向正極板12を構成する配向焼結体の緻密度は70%以上であることが好ましく、より好ましくは80%以上、さらに好ましくは90%以上である。これにより、一次粒子11同士の相互密着性をより向上できるため、レート特性をより向上させることができる。配向焼結体の緻密度は、正極板の断面をCP(クロスセクションポリッシャ)研磨にて研磨した後に1000倍率でSEM観察して、得られたSEM画像を2値化することで算出される。配向焼結体の内部に形成される各気孔の平均円相当径は特に制限されないが、好ましくは8μm以下である。各気孔の平均円相当径が小さいほど、一次粒子11同士の相互密着性をさらに向上することができ、その結果、レート特性をさらに向上させることができる。気孔の平均円相当径は、EBSD像上の10個の気孔の円相当径を算術平均した値である。円相当径とは、EBSD像上において、各気孔と同じ面積を有する円の直径のことである。配向焼結体の内部に形成される各気孔は、配向正極板12の外部につながる開気孔であってもよいが、配向正極板12を貫通していないことが好ましい。なお、各気孔は閉気孔であってもよい。 The density of the oriented sintered body constituting the oriented positive electrode plate 12 is preferably 70% or more, more preferably 80% or more, and further preferably 90% or more. Thereby, since the mutual adhesiveness of primary particles 11 can be improved more, a rate characteristic can be improved more. The denseness of the oriented sintered body is calculated by binarizing the obtained SEM image by observing the cross section of the positive electrode plate by CP (cross section polisher) polishing and then SEM observation at 1000 magnifications. The average equivalent circle diameter of each pore formed inside the oriented sintered body is not particularly limited, but is preferably 8 μm or less. As the average equivalent circle diameter of each pore is smaller, the mutual adhesion between the primary particles 11 can be further improved, and as a result, the rate characteristics can be further improved. The average equivalent circle diameter of the pores is a value obtained by arithmetically averaging the equivalent circle diameters of the ten pores on the EBSD image. The equivalent circle diameter is the diameter of a circle having the same area as each pore on the EBSD image. Each pore formed inside the oriented sintered body may be an open pore connected to the outside of the oriented positive plate 12, but preferably does not penetrate the oriented positive plate 12. Each pore may be a closed pore.
 配向正極板12の厚さは、単位面積当りの活物質容量を高めて全固体リチウム電池10のエネルギー密度を向上する観点から、30μm以上であり、好ましくは40μm以上、特に好ましくは50μm以上、最も好ましくは55μm以上である。厚さの上限値は特に限定されないが、充放電の繰り返しに伴う電池特性の劣化(特に抵抗値の上昇)を抑制する観点から、配向正極板12の厚さは200μm未満が好ましく、より好ましくは150μm以下、さらに好ましくは120μm以下、特に好ましくは100μm以下、最も好ましくは90μm以下、80μm以下又は70μm以下である。また、配向正極板のサイズは、好ましくは5mm×5mm平方以上、より好ましくは10mm×10mm~200mm×200mm平方であり、さらに好ましくは10mm×10mm~100mm×100mm平方であり、別の表現をすれば、好ましくは25mm以上、より好ましくは100~40000mmであり、さらに好ましくは100~10000mmである。 The thickness of the alignment positive electrode plate 12 is 30 μm or more, preferably 40 μm or more, particularly preferably 50 μm or more, from the viewpoint of improving the energy density of the all-solid lithium battery 10 by increasing the active material capacity per unit area. Preferably it is 55 micrometers or more. Although the upper limit value of the thickness is not particularly limited, the thickness of the alignment positive electrode plate 12 is preferably less than 200 μm, more preferably from the viewpoint of suppressing deterioration of battery characteristics (particularly increase in resistance value) due to repeated charge and discharge. It is 150 μm or less, more preferably 120 μm or less, particularly preferably 100 μm or less, most preferably 90 μm or less, 80 μm or less, or 70 μm or less. Further, the size of the oriented positive electrode plate is preferably 5 mm × 5 mm square or more, more preferably 10 mm × 10 mm to 200 mm × 200 mm square, and further preferably 10 mm × 10 mm to 100 mm × 100 mm square. if, preferably 25 mm 2 or more, more preferably 100 ~ 40000 mm 2, more preferably from 100 ~ 10000 mm 2.
 配向正極板12は、固体電解質層14と反対側の面(すなわち正極集電体20側の面)に、厚さ0.01μm以上5μm未満の導電膜12aを備えていてもよい。こうすることで、正極集電体20と配向正極板12との電子伝導性を高め、界面における接触抵抗をより一層低減することができる。導電膜12aは金属及び/又はカーボンで構成されるのが好ましい。導電膜12aは、金属で構成される場合、正極集電体20及び配向正極板12との電子伝導抵抗が低く、しかも配向正極板12の特性への悪影響の無い金属からなる層であれば特に限定されないが、好ましい例としてはAuスパッタ層及びSiスパッタ層が挙げられる。また、Auスパッタ層等の金属製導電膜の代わりにカーボン層を用いてもよい。導電膜12aの厚さは0.01μm以上5μm未満であり、好ましくは0.02μm以上2μm以下、より好ましくは0.02μm以上1μm以下、さらに好ましくは0.04μm以上1μm以下である。 The oriented positive electrode plate 12 may include a conductive film 12a having a thickness of 0.01 μm or more and less than 5 μm on the surface opposite to the solid electrolyte layer 14 (that is, the surface on the positive electrode current collector 20 side). By carrying out like this, the electronic conductivity of the positive electrode electrical power collector 20 and the orientation positive electrode plate 12 can be improved, and the contact resistance in an interface can be reduced further. The conductive film 12a is preferably made of metal and / or carbon. When the conductive film 12a is made of a metal, the conductive film 12a has a low electron conduction resistance with the positive electrode current collector 20 and the alignment positive electrode plate 12 and is a layer made of a metal that does not adversely affect the characteristics of the alignment positive electrode plate 12, in particular. Although not limited, preferred examples include an Au sputtered layer and a Si sputtered layer. A carbon layer may be used instead of a metal conductive film such as an Au sputter layer. The thickness of the conductive film 12a is 0.01 μm or more and less than 5 μm, preferably 0.02 μm or more and 2 μm or less, more preferably 0.02 μm or more and 1 μm or less, and further preferably 0.04 μm or more and 1 μm or less.
 固体電解質層
 固体電解質層14を構成するリチウムイオン伝導材料は、ガーネット系セラミックス材料、窒化物系セラミックス材料、ペロブスカイト系セラミックス材料、リン酸系セラミックス材料、硫化物系セラミックス材料、リチウム-塩化物系材料、又は高分子系材料で構成されるのが好ましく、より好ましくは、ガーネット系セラミックス材料、窒化物系セラミックス材料、ペロブスカイト系セラミックス材料、及びリン酸系セラミックス材料からなる群から選択される少なくとも一種である。ガーネット系セラミックス材料の例としては、Li-La-Zr-O系材料(具体的には、LiLaZr12など)、Li-La-Ta-O系材料(具体的には、LiLaTa12など)が挙げられる。窒化物系セラミックス材料の例としては、LiN。ペロブスカイト系セラミックス材料の例としては、Li-La-Zr-O系材料(具体的には、LiLa1-xTi(0.04≦x≦0.14)など)が挙げられる。リン酸系セラミックス材料の例としては、リン酸リチウム、窒素置換リン酸リチウム(LiPON)、Li-Al-Ti-P-O、Li-Al-Ge-P-O、及びLi-Al-Ti-Si-P-O(具体的には、Li1+x+yAlTi2-xSi3-y12(0≦x≦0.4、0<y≦0.6)など)が挙げられる。
Solid electrolyte layer The lithium ion conductive material constituting the solid electrolyte layer 14 is a garnet-based ceramic material, a nitride-based ceramic material, a perovskite-based ceramic material, a phosphate-based ceramic material, a sulfide-based ceramic material, or a lithium-chloride-based material. Or at least one selected from the group consisting of garnet-based ceramic materials, nitride-based ceramic materials, perovskite-based ceramic materials, and phosphate-based ceramic materials. is there. Examples of garnet based ceramic materials include Li—La—Zr—O based materials (specifically, Li 7 La 3 Zr 2 O 12 etc.), Li—La—Ta—O based materials (specifically, Li 7 La 3 Ta 2 O 12 etc.). An example of a nitride ceramic material is Li 3 N. Examples of perovskite ceramic materials include Li—La—Zr—O based materials (specifically, LiLa 1-x Ti x O 3 (0.04 ≦ x ≦ 0.14), etc.). Examples of phosphate ceramic materials include lithium phosphate, nitrogen-substituted lithium phosphate (LiPON), Li—Al—Ti—PO, Li—Al—Ge—PO, and Li—Al—Ti—. Si—P—O (specifically, Li 1 + x + y Al x Ti 2−x Si y P 3−y O 12 (0 ≦ x ≦ 0.4, 0 <y ≦ 0.6), etc.) may be mentioned.
 固体電解質層14を構成するリチウムイオン伝導材料が、Li-La-Zr-O系セラミックス材料及び/又はリン酸リチウムオキシナイトライド(LiPON)系セラミックス材料で構成されるのが特に好ましい。Li-La-Zr-O系材料は、Li、La、Zr及びOを含んで構成されるガーネット型又はガーネット型類似の結晶構造を有する酸化物焼結体であり、具体的には、LiLaZr12などのガーネット系セラミックス材料であり、その詳細は例えば特許文献1に開示されている。また、リン酸リチウムオキシナイトライド(LiPON)系セラミックス材料も好ましい。LiPONは、Li2.9PO3.30.46の組成によって代表されるような化合物群であり、例えばLiPO(式中、aは2~4、bは3~5、cは0.1~0.9である)で表される化合物群である。 It is particularly preferable that the lithium ion conductive material constituting the solid electrolyte layer 14 is composed of a Li—La—Zr—O based ceramic material and / or a lithium phosphate oxynitride (LiPON) based ceramic material. The Li—La—Zr—O-based material is an oxide sintered body having a garnet-type or garnet-type similar crystal structure including Li, La, Zr, and O. Specifically, Li 7 It is a garnet-based ceramic material such as La 3 Zr 2 O 12 , and details thereof are disclosed in Patent Document 1, for example. A lithium phosphate oxynitride (LiPON) ceramic material is also preferable. LiPON is a group of compounds represented by the composition of Li 2.9 PO 3.3 N 0.46 . For example, Li a PO b N c (wherein a is 2 to 4 and b is 3 to 5 , C is 0.1 to 0.9).
 固体電解質層14の寸法は特に限定されないが、厚さは充放電レート特性と機械的強度の観点から、0.0005mm~0.1mmが好ましく、より好ましくは0.001mm~0.05mm、さらに好ましくは0.002~0.02mm、特に好ましくは0.003~0.01mmである。 The dimensions of the solid electrolyte layer 14 are not particularly limited, but the thickness is preferably 0.0005 mm to 0.1 mm, more preferably 0.001 mm to 0.05 mm, and still more preferably, from the viewpoint of charge / discharge rate characteristics and mechanical strength. Is 0.002 to 0.02 mm, particularly preferably 0.003 to 0.01 mm.
 固体電解質層14の形成方法としては、各種パーティクルジェットコーティング法、固相法、溶液法、気相法を用いることができる。パーティクルジェットコーティング法の例としては、エアロゾルデポジション(AD)法、ガスデポジション(GD)法、パウダージェットデポジション(PJD)法、コールドスプレー(CS)法、溶射法等がある。中でも、エアロゾルデポジション(AD)法は、常温成膜が可能であることから、プロセス中の組成ズレや、配向正極板との反応による高抵抗層の形成がなく特に好ましい。固相法の例としては、テープ積層法、印刷法等がある。中でも、テープ積層法は固体電解質層14を薄く形成することが可能であり、また、厚さの制御が容易であることから好ましい。溶液法の例としては、ソルボサーマル法、水熱合成法、ゾルゲル法、沈殿法、マイクロエマルション法、溶媒蒸発法等がある。これらの方法の中でも、水熱合成法は、低温で結晶性の高い結晶粒を得やすい点で特に好ましい。また、これらの方法を用いて合成した微結晶を、正極上に堆積させてもよいし、正極上に直接析出させてもよい。気相法の例としては、レーザー堆積(PLD)法、スパッタリング法、蒸発凝縮(PVD)法、気相反応法(CVD)法、真空蒸着法、分子線エピタキシ(MBE)法等がある。この中でも、スパッタリング法は組成ズレが少なく、比較的密着性の高い膜を得られやすく特に好ましい。 As a method for forming the solid electrolyte layer 14, various particle jet coating methods, solid phase methods, solution methods, and gas phase methods can be used. Examples of the particle jet coating method include an aerosol deposition (AD) method, a gas deposition (GD) method, a powder jet deposition (PJD) method, a cold spray (CS) method, and a thermal spraying method. Among these, the aerosol deposition (AD) method is particularly preferable because it can form a film at room temperature, and does not cause a composition shift in the process or formation of a high resistance layer by reaction with an oriented positive electrode plate. Examples of the solid phase method include a tape lamination method and a printing method. Among these, the tape lamination method is preferable because the solid electrolyte layer 14 can be formed thin and the thickness can be easily controlled. Examples of the solution method include a solvothermal method, a hydrothermal synthesis method, a sol-gel method, a precipitation method, a microemulsion method, and a solvent evaporation method. Among these methods, the hydrothermal synthesis method is particularly preferable in that it is easy to obtain crystal grains having high crystallinity at a low temperature. In addition, microcrystals synthesized using these methods may be deposited on the positive electrode or may be directly deposited on the positive electrode. Examples of the gas phase method include laser deposition (PLD) method, sputtering method, evaporation condensation (PVD) method, gas phase reaction method (CVD) method, vacuum deposition method, molecular beam epitaxy (MBE) method and the like. Among these, the sputtering method is particularly preferable because there is little composition deviation and a film with relatively high adhesion can be easily obtained.
 配向正極板12と固体電解質層14の間の界面には界面抵抗を下げるための処理が施されていてもよい。例えば、そのような処理は、ニオブ酸化物、チタン酸化物、タングステン酸化物、タンタル酸化物、リチウム・ニッケル複合酸化物、リチウム・チタン複合酸化物、リチウム・ニオブ化合物、リチウム・タンタル化合物、リチウム・タングステン化合物、リチウム・チタン化合物、及びこれらの任意の組み合わせ若しくは複合酸化物で配向正極板12の表面及び/又は固体電解質層14の表面を被覆することにより行うことができる。このような処理によって配向正極板12と固体電解質層14の間の界面には被膜が存在しうることになるが、その被膜の厚さは例えば20nm以下といったような極めて薄いものである。 The interface between the oriented positive electrode plate 12 and the solid electrolyte layer 14 may be subjected to a treatment for reducing the interface resistance. For example, such treatment includes niobium oxide, titanium oxide, tungsten oxide, tantalum oxide, lithium-nickel composite oxide, lithium-titanium composite oxide, lithium-niobium compound, lithium-tantalum compound, lithium- This can be done by coating the surface of the oriented positive electrode plate 12 and / or the surface of the solid electrolyte layer 14 with a tungsten compound, a lithium / titanium compound, and any combination or composite oxide thereof. By such treatment, a coating film can exist at the interface between the oriented positive electrode plate 12 and the solid electrolyte layer 14, but the thickness of the coating film is extremely thin, for example, 20 nm or less.
 中間層
 中間層15は、リチウムと合金化可能な金属を含む厚さ0.001~1μmの層であり固体電解質層14の配向正極板12と反対側の面(すなわち負極側の面)に設けられる。リチウムと合金化可能な金属は、Al(アルミニウム)、Si(シリコン)、Zn(亜鉛)、Ga(ガリウム)、Ge(ゲルマニウム)、Ag(銀)、Au(金)、Pt(白金)、Cd(カドミウム)、In(インジウム)、Sn(スズ)、Sb(アンチモン)、Pb(鉛)、及びBi(ビスマス)からなる群から選択される少なくとも1種を含むのが好ましく、より好ましくはAu(金)、Si(シリコン)、Sn(スズ)、Al(アルミニウム)、及びBi(ビスマス)からなる群から選択される少なくとも1種を含む。中間層の形成は、エアロゾルデポジション(AD)法、パルスレーザー堆積(PLD)法、スパッタリング法、蒸着法等の公知の方法により行えばよい。中間層の寸法は特に限定されないが、厚さは抵抗の均質化の観点から、0.001~1μmであり、好ましくは0.001~0.5μm、さらに好ましくは0.001~0.1μm、特に好ましくは0.003~0.03μmである。
The intermediate layer 15 is a layer having a thickness of 0.001 to 1 μm containing a metal that can be alloyed with lithium, and is provided on the surface of the solid electrolyte layer 14 opposite to the oriented positive electrode plate 12 (that is, the surface on the negative electrode side). It is done. Metals that can be alloyed with lithium are Al (aluminum), Si (silicon), Zn (zinc), Ga (gallium), Ge (germanium), Ag (silver), Au (gold), Pt (platinum), Cd. It is preferable to include at least one selected from the group consisting of (cadmium), In (indium), Sn (tin), Sb (antimony), Pb (lead), and Bi (bismuth), and more preferably Au ( It contains at least one selected from the group consisting of gold), Si (silicon), Sn (tin), Al (aluminum), and Bi (bismuth). The intermediate layer may be formed by a known method such as an aerosol deposition (AD) method, a pulse laser deposition (PLD) method, a sputtering method, or an evaporation method. The dimension of the intermediate layer is not particularly limited, but the thickness is 0.001 to 1 μm, preferably 0.001 to 0.5 μm, more preferably 0.001 to 0.1 μm, from the viewpoint of homogenizing resistance. Particularly preferred is 0.003 to 0.03 μm.
 負極層
 全固体リチウム電池10は中間層15上に負極層16をさらに備えるのが典型的である。もっとも、本発明の全固体リチウム電池10は負極層16を有しなくても作動可能である。これは、充電時に中間層15上に析出するリチウム金属も負極活物質として利用できるためである。負極層16はリチウムを含む層であり、典型的にはリチウム金属により構成される。負極層16は、中間層15又は負極集電体24上に箔形態のリチウム金属を載置することにより作製してもよいし、あるいは中間層15又は負極集電体24上にリチウム金属の薄膜を真空蒸着法、スパッタリング法、CVD法等で形成してリチウム金属の層を形成することにより作製してもよい。負極層16の寸法は特に限定されないが、厚さは、厚い配向正極板12の採用に伴い全固体リチウム電池10におけるリチウム総量を多く確保する観点から、10μm以上が好ましく、より好ましくは50~10μm、さらに好ましくは40~10μm、特に好ましくは20~10μmである。
The negative electrode layer all solid lithium battery 10 typically further includes a negative electrode layer 16 on the intermediate layer 15. However, the all solid lithium battery 10 of the present invention can operate without the negative electrode layer 16. This is because the lithium metal deposited on the intermediate layer 15 during charging can also be used as the negative electrode active material. The negative electrode layer 16 is a layer containing lithium and is typically made of lithium metal. The negative electrode layer 16 may be produced by placing a lithium metal in the form of a foil on the intermediate layer 15 or the negative electrode current collector 24, or a thin film of lithium metal on the intermediate layer 15 or the negative electrode current collector 24. May be formed by forming a lithium metal layer by vacuum deposition, sputtering, CVD, or the like. The dimensions of the negative electrode layer 16 are not particularly limited, but the thickness is preferably 10 μm or more, more preferably 50 to 10 μm, from the viewpoint of securing a large amount of lithium in the all-solid lithium battery 10 with the adoption of the thick oriented positive electrode plate 12. More preferably, it is 40 to 10 μm, particularly preferably 20 to 10 μm.
 端部絶縁部
 所望により、端部絶縁部18が固体電解質層14の端部を絶縁被覆するように設けられてもよい。端部絶縁部18は、固体電解質層14と接着又は密着可能な有機高分子材料を含むのが好ましい。端部絶縁部18がそのような有機高分子材料を含むことで、配向正極板12と負極層16との短絡防止をより効果的に実現することができる。有機高分子材料は、バインダー、熱溶融樹脂及び接着剤からなる群から選択される少なくとも1種であるのが好ましい。バインダーの好ましい例としては、セルロース系樹脂、アクリル系樹脂、及びその組合せが挙げられる。熱融着樹脂の好ましい例としては、フッ素系樹脂、ポリオレフィン系樹脂、及びそれらの任意の組合せが挙げられる。熱溶融樹脂は後述するように熱融着フィルムの形態で供されるのが好ましい。接着剤の好ましい例としてはエポキシ系樹脂等の熱硬化性樹脂を用いた熱硬化型接着剤が挙げられる。したがって、有機高分子材料は、特許文献1に開示されるように、セルロース系樹脂、アクリル系樹脂、フッ素系樹脂、ポリオレフィン系樹脂及びエポキシ系樹脂からなる群から選択される少なくとも1種が好ましいといえる。
If desired, the end insulating portion 18 may be provided so as to insulate the end portion of the solid electrolyte layer 14. The end insulating portion 18 preferably includes an organic polymer material that can be adhered or adhered to the solid electrolyte layer 14. By including the organic polymer material in the end insulating portion 18, it is possible to more effectively realize prevention of short circuit between the oriented positive electrode plate 12 and the negative electrode layer 16. The organic polymer material is preferably at least one selected from the group consisting of a binder, a hot melt resin, and an adhesive. Preferable examples of the binder include a cellulose resin, an acrylic resin, and a combination thereof. Preferable examples of the heat fusion resin include a fluorine resin, a polyolefin resin, and any combination thereof. The hot-melt resin is preferably provided in the form of a heat-sealing film as will be described later. A preferable example of the adhesive is a thermosetting adhesive using a thermosetting resin such as an epoxy resin. Therefore, as disclosed in Patent Document 1, the organic polymer material is preferably at least one selected from the group consisting of a cellulose resin, an acrylic resin, a fluorine resin, a polyolefin resin, and an epoxy resin. I can say that.
 端部絶縁部18の形成は、有機高分子材料(好ましくはバインダー)及び所望によりフィラー等を含む液体又はスラリーの塗布により行うのが好ましい。液体又はスラリーの塗布方法の好ましい例としては、ディスペンス法、スクリーン印刷法、スプレー法、スタンピング法等が挙げられる。 The end insulating portion 18 is preferably formed by applying a liquid or slurry containing an organic polymer material (preferably a binder) and optionally a filler or the like. Preferable examples of the liquid or slurry application method include a dispensing method, a screen printing method, a spray method, a stamping method, and the like.
 正極集電体
 全固体リチウム電池10は配向正極板12の固体電解質層14と反対側の面に正極集電体20をさらに備えるのが好ましい。正極集電体20は金属箔である。金属箔の厚さは5~30μmであり、好ましくは5~25μm、より好ましくは10~25μm、さらに好ましくは10~20μmである。このように厚くすることで十分な集電機能を確保することができる。また、上記のように極めて薄い金属箔であると柔軟性に富むため、配向正極板12の表面に全面的に均一に密着させやすくなる。正極集電体20を構成する金属は、配向正極板12と反応しないものであれば特に限定されず、合金であってもよい。そのような金属の好ましい例としては、ステンレス、アルミニウム、銅、白金、ニッケルが挙げられ、より好ましくはステンレス及びニッケルが挙げられる。
The positive electrode current collector all solid lithium battery 10 preferably further includes a positive electrode current collector 20 on the surface of the oriented positive electrode plate 12 opposite to the solid electrolyte layer 14. The positive electrode current collector 20 is a metal foil. The thickness of the metal foil is 5 to 30 μm, preferably 5 to 25 μm, more preferably 10 to 25 μm, and still more preferably 10 to 20 μm. By increasing the thickness as described above, a sufficient current collecting function can be ensured. Moreover, since it is rich in flexibility when it is a very thin metal foil as described above, it becomes easy to adhere to the entire surface of the oriented positive electrode plate 12 uniformly. The metal constituting the positive electrode current collector 20 is not particularly limited as long as it does not react with the aligned positive electrode plate 12, and may be an alloy. Preferred examples of such metals include stainless steel, aluminum, copper, platinum, and nickel, and more preferably stainless steel and nickel.
 正極集電体20は、配向正極板12の固体電解質層14と反対側の面に、接着剤を含まない非接着状態で全面的に接触されるのが好ましい。こうすることで、配向正極板12と正極集電体20の間での界面応力が発生せず、それ故界面剥離等の劣化要因を排除することができ、長期的な信頼性を改善することができる。すなわち、配向正極板12が充放電で膨張収縮することに起因する界面剥離及びそれによる接触抵抗の増大を有意に抑制することができ、長期的な信頼性を改善することができる。 The positive electrode current collector 20 is preferably brought into full contact with the surface of the oriented positive electrode plate 12 opposite to the solid electrolyte layer 14 in a non-adhesive state containing no adhesive. By doing so, no interfacial stress is generated between the aligned positive electrode plate 12 and the positive electrode current collector 20, and therefore, deterioration factors such as interfacial delamination can be eliminated, and long-term reliability is improved. Can do. That is, interfacial peeling caused by expansion and contraction of the alignment positive electrode plate 12 due to charge and discharge and an increase in contact resistance caused thereby can be significantly suppressed, and long-term reliability can be improved.
 正極集電体20は、配向正極板12の外側を被覆する正極外装材を兼ねているのが好ましい。例えば、図1に示されるように2個の単位電池を1枚の負極集電体24を介して上下対称に並列積層して正極集電体20を全固体リチウム電池10の外側に露出させた構成としてもよい。このような並列積層型電池に構成される場合、負極集電体24を隣り合う2個の単位電池に共通の集電体として機能させることができる。 It is preferable that the positive electrode current collector 20 also serves as a positive electrode exterior material that covers the outer side of the aligned positive electrode plate 12. For example, as shown in FIG. 1, two unit cells are stacked in parallel symmetrically via a single negative electrode current collector 24 to expose the positive electrode current collector 20 to the outside of the all-solid-state lithium battery 10. It is good also as a structure. When configured in such a parallel stacked battery, the negative electrode current collector 24 can function as a current collector common to two adjacent unit batteries.
 正極集電体20は、配向正極板12に対して押圧されているのが好ましい。正極集電体20である金属箔は柔軟性のある薄い導電性材料であるため、押圧により正極集電体20と配向正極板12との接触点を多く確保することができ、配向正極板12の表面に全面的により均一に密着させることができる。それによって、接着剤フリーの非接着状態の場合であっても望ましい集電効果を得ることができる。押圧する手法は特に限定されず、例えば、正極集電体20を損傷しないような柔軟な押圧部材(例えば発泡金属)を用いて正極集電体20の外側から配向正極板12に向かって押し当てる手法、正極集電体20の内外気圧差を用いる手法等が採用可能である。特に、正極集電体20の配向正極板12に対する押圧が、正極集電体20の内外気圧差によってもたらされているのが好ましい。すなわち、正極集電体20の配向正極板12側が減圧されているか、又は正極集電体20の配向正極板12と反対側が加圧されていればよい。いずれにしても、正極集電体20の内外気圧差を用いた押圧によれば、正極集電体20である金属箔は柔軟性のある薄い導電性材料であるため、配向正極板12の表面により一層多くの接触点で密着させることができ、集電効果を更に高めることができる。正極集電体20と配向正極板12が非接着状態ということは、正極集電体20と配向正極板12が部分的に(例えば配向正極板12の外周部の一部)、粘着性の樹脂等で固定されていることを排除するものではない。このような樹脂は、電池を組み立てる際、配向正極板の位置ズレを防止する仮接着の目的で使用される。 The positive electrode current collector 20 is preferably pressed against the aligned positive electrode plate 12. Since the metal foil which is the positive electrode current collector 20 is a flexible thin conductive material, a large number of contact points between the positive electrode current collector 20 and the alignment positive electrode plate 12 can be secured by pressing, and the alignment positive electrode plate 12 can be secured. Can be more uniformly adhered to the entire surface. Thereby, even in the case of an adhesive-free non-adhesive state, a desirable current collecting effect can be obtained. The method of pressing is not particularly limited. For example, the pressing is performed from the outside of the positive electrode current collector 20 toward the alignment positive electrode plate 12 using a flexible pressing member (for example, foam metal) that does not damage the positive electrode current collector 20. A method, a method using a pressure difference between the inside and outside of the positive electrode current collector 20, or the like can be employed. In particular, it is preferable that the positive current collector 20 is pressed against the oriented positive electrode plate 12 due to a difference in internal and external pressures of the positive current collector 20. That is, it is only necessary that the orientation positive electrode plate 12 side of the positive electrode current collector 20 is depressurized or the side opposite to the orientation positive electrode plate 12 of the positive electrode current collector 20 is pressurized. In any case, since the metal foil as the positive electrode current collector 20 is a flexible thin conductive material according to the pressing using the internal and external pressure difference of the positive electrode current collector 20, the surface of the oriented positive electrode plate 12 Thus, the contact can be made at more contact points, and the current collecting effect can be further enhanced. The positive electrode current collector 20 and the aligned positive electrode plate 12 are in a non-adhered state. This means that the positive electrode current collector 20 and the aligned positive electrode plate 12 are partially (for example, part of the outer peripheral portion of the aligned positive electrode plate 12) and are adhesive resins. It is not excluded that it is fixed by, for example. Such a resin is used for the purpose of temporary adhesion to prevent misalignment of the oriented positive electrode plate when assembling the battery.
 本発明の特に好ましい態様によれば、配向正極板12、固体電解質層14、中間層15、及び(存在する場合には)負極層16を含む積層体が外装材で包装又は封止される。この態様において、正極集電体20が外装材の一部を構成し、かかる外装材で包装又は封止される積層体の収容空間が減圧されているのが好ましい。収容空間の減圧は、例えば、減圧下にて外装材での包装又は封止を行う、又は外装材の包装又は封止を行った後に収容空間を脱気することにより行うことができる。上述のとおり、正極集電体20である金属箔は柔軟性のある薄い導電性材料であるため、収容空間の減圧により、正極集電体20を配向正極板12の表面により一層多くの接触点で密着させることができる。しかも、外装材で気密に包装又は封止していれば、積層体の収容空間の減圧を長期間にわたって維持することができるので、高度な密着性及びそれによるい良好な集電効果を長期間にわたって発揮させることができる。減圧度は、金属の柔軟性と、積層体の強度等から適宜設定すればよい。 According to a particularly preferred embodiment of the present invention, the laminate including the oriented positive electrode plate 12, the solid electrolyte layer 14, the intermediate layer 15, and the negative electrode layer 16 (if present) is packaged or sealed with an exterior material. In this aspect, it is preferable that the positive electrode current collector 20 constitutes a part of the exterior material, and the accommodation space of the laminate that is packaged or sealed with the exterior material is decompressed. The storage space can be depressurized, for example, by packaging or sealing with an exterior material under reduced pressure, or by degassing the storage space after packaging or sealing the exterior material. As described above, since the metal foil that is the positive electrode current collector 20 is a flexible thin conductive material, the contact point of the positive electrode current collector 20 with the surface of the aligned positive electrode plate 12 is increased by reducing the storage space. Can be brought into close contact with. Moreover, if the packaging material is packaged or sealed in an airtight manner, it is possible to maintain a reduced pressure in the accommodation space of the laminate over a long period of time. Can be exerted over. The degree of vacuum may be set as appropriate based on the flexibility of the metal and the strength of the laminate.
 負極集電体
 負極層16の外側(負極層16が無い場合には中間層15の外側)には負極集電体24が設けられるのが好ましい。負極集電体24は負極の外側を被覆する負極外装材を兼ねていてもよい。例えば、図4に示されるように、図1に示される構成とは逆に、2個の単位電池を1枚の正極集電体20を介して上下対称に並列積層して負極集電体24を全固体リチウム電池の外側に露出させた構成としてもよい。このような並列積層型電池に構成される場合、正極集電体20を隣り合う2個の単位電池に共通の集電体として機能させることができる。
A negative electrode current collector 24 is preferably provided outside the negative electrode current collector negative electrode layer 16 (outside of the intermediate layer 15 when there is no negative electrode layer 16). The negative electrode current collector 24 may also serve as a negative electrode exterior material that covers the outside of the negative electrode. For example, as shown in FIG. 4, contrary to the configuration shown in FIG. 1, two unit cells are stacked vertically and symmetrically via one positive current collector 20 to form a negative current collector 24. May be exposed to the outside of the all-solid-state lithium battery. When configured in such a parallel stacked battery, the positive electrode current collector 20 can function as a current collector common to two adjacent unit batteries.
 負極集電体24は正極集電体20と同種又は異種の材料で構成されてよいが、好ましくは同種の材料で構成される。負極集電体24を構成する金属は、負極層16と反応しないものであれば特に限定されず、合金であってもよい。そのような金属の好ましい例としては、ステンレス、アルミニウム、銅、白金、ニッケルが挙げられ、より好ましくはステンレス、及びニッケルである。負極集電体24は金属板又は金属箔であるのが好ましく、より好ましくは金属箔である。したがって、最も好ましい集電体はステンレス箔又はニッケル箔であるといえる。金属箔の好ましい厚さは1~30μmであり、より好ましくは5~25μm、さらに好ましくは10~20μmである。 The negative electrode current collector 24 may be made of the same or different material as the positive electrode current collector 20, but is preferably made of the same kind of material. The metal constituting the negative electrode current collector 24 is not particularly limited as long as it does not react with the negative electrode layer 16 and may be an alloy. Preferred examples of such a metal include stainless steel, aluminum, copper, platinum and nickel, and more preferred are stainless steel and nickel. The negative electrode current collector 24 is preferably a metal plate or a metal foil, and more preferably a metal foil. Therefore, it can be said that the most preferred current collector is a stainless steel foil or a nickel foil. The preferred thickness of the metal foil is 1 to 30 μm, more preferably 5 to 25 μm, and still more preferably 10 to 20 μm.
 端部封止部
 全固体リチウム電池10には、正極集電体20及び負極集電体24で被覆されていない、配向正極板12、固体電解質層14、中間層15、負極層16及び(存在する場合には)端部絶縁部18の露出部分を封止する、封着材で構成される端部封止部26がさらに設けられるのが好ましい。端部封止部26を設けて、正極集電体20及び負極集電体24で被覆されていない、配向正極板12、固体電解質層14、中間層15、負極層16及び端部絶縁部18の露出部分を封止することで、優れた耐湿性(望ましくは高温における耐湿性)を確保することができる。端部封止部26は封着材で構成される。封着材は、正極集電体20、負極集電体24及び端部絶縁部18で被覆されていない上記露出部分を封止して優れた耐湿性(望ましくは高温における耐湿性)を確保可能なものであれば特に限定されない。もっとも、封着材は正極集電体20と負極集電体24の間の電気的絶縁性を確保することが望まれるのはいうまでもない。その意味で、封着材は1×10Ωcm以上の抵抗率を有するのが好ましく、より好ましくは1×10Ωcm以上であり、さらに好ましくは1×10Ωcm以上である。封着材は、樹脂を含む樹脂系封着材であるのが好ましく、樹脂系封着材は樹脂(好ましくは絶縁性樹脂)と無機材料の混合物からなるものであってもよい。あるいは、封着材は、ガラスを含むガラス系封着材であってもよい。これらの封着剤は特許文献1に開示されるような公知のものが利用可能である。
The all-solid-state lithium battery 10 in the end sealing portion includes an oriented positive electrode plate 12, a solid electrolyte layer 14, an intermediate layer 15, a negative electrode layer 16, and (not present) that are not covered with the positive electrode current collector 20 and the negative electrode current collector 24. In this case, it is preferable that an end sealing portion 26 made of a sealing material for sealing the exposed portion of the end insulating portion 18 is further provided. The end sealing part 26 is provided, and the orientation positive electrode plate 12, the solid electrolyte layer 14, the intermediate layer 15, the negative electrode layer 16, and the end insulating part 18 are not covered with the positive electrode current collector 20 and the negative electrode current collector 24. By sealing the exposed portion, it is possible to ensure excellent moisture resistance (desirably moisture resistance at high temperature). The end sealing portion 26 is made of a sealing material. The sealing material can seal the exposed portion not covered with the positive electrode current collector 20, the negative electrode current collector 24, and the end insulating portion 18 to ensure excellent moisture resistance (preferably moisture resistance at high temperature). If it is a thing, it will not specifically limit. However, it goes without saying that it is desirable that the sealing material ensure electrical insulation between the positive electrode current collector 20 and the negative electrode current collector 24. In that sense, the sealing material preferably has a 1 × 10 6 Ωcm or more resistivity, more preferably 1 × 10 7 Ωcm or more, still more preferably 1 × 10 8 Ωcm or more. The sealing material is preferably a resin-based sealing material containing a resin, and the resin-based sealing material may be made of a mixture of a resin (preferably an insulating resin) and an inorganic material. Alternatively, the sealing material may be a glass-based sealing material containing glass. As these sealing agents, known ones as disclosed in Patent Document 1 can be used.
 電池厚さ
 全固体リチウム電池は、単位電池1個を備えた構成の場合、60~5000μmの厚さを有するのが好ましく、より好ましくは、70~4000μm、さらに好ましくは、80~3000μm、特に好ましくは、90~2000μm、最も好ましくは、100~1000μmである。本発明によれば、配向正極板を比較的厚くできる一方、集電体で外装材を兼用するため電池全体の厚さを比較的薄く構成することができる。
Battery thickness In the case of a configuration including one unit battery, the all-solid lithium battery preferably has a thickness of 60 to 5000 μm, more preferably 70 to 4000 μm, still more preferably 80 to 3000 μm, and particularly preferably. Is from 90 to 2000 μm, most preferably from 100 to 1000 μm. According to the present invention, the oriented positive electrode plate can be made relatively thick, while the current collector also serves as an exterior material, so that the thickness of the entire battery can be made relatively thin.
 コバルト酸リチウム配向焼結板の製造方法
 本発明の全固体リチウム電池に用いられる配向正極板ないし配向焼結板は、いかなる製法によって製造されてもよいが、好ましくは、以下に例示されるように、(1)LiCoOテンプレート粒子の作製、(2)マトリックス粒子の作製、(3)グリーンシートの作製、及び(4)配向焼結板の作製を経て製造される。
Method for Producing Lithium Cobalt Oxide Oriented Sintered Plate The oriented positive electrode plate or oriented sintered plate used in the all solid lithium battery of the present invention may be produced by any method, but preferably, as exemplified below (1) Production of LiCoO 2 template particles, (2) Production of matrix particles, (3) Production of green sheets, and (4) Production of oriented sintered plates.
(1)LiCoOテンプレート粒子の作製
 Co原料粉末とLiCO原料粉末とを混合する。得られた混合粉末を500~900℃で1~20時間焼成して、LiCoO粉末を合成する。得られたLiCoO粉末をポットミルにて体積基準D50粒径0.1~10μmに粉砕して、板面と平行にリチウムイオンを伝導可能な板状のLiCoO粒子を得る。得られたLiCoO粒子は、劈開面に沿って劈開しやすい状態となっている。LiCoO粒子を解砕によって劈開させることで、LiCoOテンプレート粒子を作製する。このようなLiCoO粒子は、LiCoO粉末スラリーを用いたグリーンシートを粒成長させた後に解砕する手法や、フラックス法や水熱合成、融液を用いた単結晶育成、ゾルゲル法など板状結晶を合成する手法によっても得ることができる。
(1) Preparation of LiCoO 2 template particles Co 3 O 4 raw material powder and Li 2 CO 3 raw material powder are mixed. The obtained mixed powder is fired at 500 to 900 ° C. for 1 to 20 hours to synthesize LiCoO 2 powder. The obtained LiCoO 2 powder is pulverized to a volume-based D50 particle size of 0.1 to 10 μm by a pot mill to obtain plate-like LiCoO 2 particles capable of conducting lithium ions parallel to the plate surface. The obtained LiCoO 2 particles are easily cleaved along the cleavage plane. It is to cleave by crushing the LiCoO 2 particles to prepare a LiCoO 2 template particles. Such LiCoO 2 particles can be obtained by a method of crushing after growing a green sheet using LiCoO 2 powder slurry, a plate method such as a flux method, hydrothermal synthesis, single crystal growth using a melt, or a sol-gel method. It can also be obtained by a method of synthesizing crystals.
 本工程では、以下のとおり、配向正極板12を構成する一次粒子11のプロファイルを制御することができる。
‐ LiCoOテンプレート粒子のアスペクト比及び粒径の少なくとも一方を調整することによって、配向角度が0°超30°以下である低角一次粒子の合計面積割合を制御することができる。具体的には、LiCoOテンプレート粒子のアスペクト比を大きくするほど、また、LiCoOテンプレート粒子の粒径を大きくするほど、低角一次粒子の合計面積割合を高めることができる。LiCoOテンプレート粒子のアスペクト比と粒径は、それぞれ、Co原料粉末及びLiCO原料粉末の粒径、粉砕時の粉砕条件(粉砕時間、粉砕エネルギー、粉砕手法等)、並びに粉砕後の分級のうち少なくとも1つを調整することによって制御することができる。
‐ LiCoOテンプレート粒子のアスペクト比を調整することによって、アスペクト比が4以上である一次粒子11の合計面積割合を制御することができる。具体的には、LiCoOテンプレート粒子のアスペクト比を大きくするほど、アスペクト比が4以上である一次粒子11の合計面積割合を高めることができる。LiCoOテンプレート粒子のアスペクト比の調整手法は上述のとおりである。
‐ LiCoOテンプレート粒子の粒径を調整することによって、一次粒子11の平均粒径を制御することができる。
‐ LiCoOテンプレート粒子の粒径を調整することによって、配向正極板12の緻密度を制御することができる。具体的には、LiCoOテンプレート粒子の粒径を小さくするほど、配向正極板12の緻密度を高めることができる。
In this step, the profile of the primary particles 11 constituting the oriented positive electrode plate 12 can be controlled as follows.
-By adjusting at least one of the aspect ratio and the particle size of the LiCoO 2 template particles, the total area ratio of the low-angle primary particles having an orientation angle of more than 0 ° and not more than 30 ° can be controlled. Specifically, the larger the aspect ratio of LiCoO 2 template particles, also, the larger the particle size of the LiCoO 2 template particles, it is possible to increase the total area ratio of the low-angle primary particles. The aspect ratio and particle size of the LiCoO 2 template particles are the particle size of the Co 3 O 4 raw material powder and the Li 2 CO 3 raw material powder, the pulverization conditions (pulverization time, pulverization energy, pulverization method, etc.), and pulverization, respectively. It can be controlled by adjusting at least one of the subsequent classifications.
-By adjusting the aspect ratio of the LiCoO 2 template particles, the total area ratio of the primary particles 11 having an aspect ratio of 4 or more can be controlled. Specifically, the total area ratio of the primary particles 11 having an aspect ratio of 4 or more can be increased as the aspect ratio of the LiCoO 2 template particles is increased. The method for adjusting the aspect ratio of the LiCoO 2 template particles is as described above.
-The average particle size of the primary particles 11 can be controlled by adjusting the particle size of the LiCoO 2 template particles.
-The density of the aligned positive electrode plate 12 can be controlled by adjusting the particle size of the LiCoO 2 template particles. Specifically, the density of the aligned positive electrode plate 12 can be increased as the particle size of the LiCoO 2 template particles is reduced.
(2)マトリックス粒子の作製
 Co原料粉末をマトリックス粒子として用いる。Co原料粉末の体積基準D50粒径は特に制限されず、例えば0.1~1.0μmとすることができるが、LiCoOテンプレート粒子の体積基準D50粒径より小さいことが好ましい。このマトリックス粒子は、Co(OH)原料を500~800℃で1~10時間熱処理を行なうことによっても得ることができる。また、マトリックス粒子には、Coの他、Co(OH)粒子を用いてもよいし、LiCoO粒子を用いてもよい。
(2) Production of matrix particles Co 3 O 4 raw material powder is used as matrix particles. The volume-based D50 particle size of the Co 3 O 4 raw material powder is not particularly limited and can be, for example, 0.1 to 1.0 μm, but is preferably smaller than the volume-based D50 particle size of LiCoO 2 template particles. The matrix particles can also be obtained by subjecting a Co (OH) 2 raw material to heat treatment at 500 to 800 ° C. for 1 to 10 hours. Further, the matrix particles, other Co 3 O 4, may be used Co (OH) 2 particles, may be used LiCoO 2 particles.
 本工程では、以下のとおり、配向正極板12を構成する一次粒子11のプロファイルを制御することができる。
‐ LiCoOテンプレート粒子の粒径に対するマトリックス粒子の粒径の比(以下、「マトリックス/テンプレート粒径比」という。)を調整することによって、配向角度が0°超30°以下である低角一次粒子の合計面積割合を制御することができる。具体的には、マトリックス/テンプレート粒径比を小さくするほど、すなわちマトリックス粒子の粒径が小さいほど、後述する焼成工程においてマトリックス粒子がLiCoOテンプレート粒子に取り込まれやすくなるため、低角一次粒子の合計面積割合を高めることができる。
‐ マトリックス/テンプレート粒径比を調整することによって、アスペクト比が4以上である一次粒子11の合計面積割合を制御することができる。具体的には、マトリックス/テンプレート粒径比を小さくするほど、すなわちマトリックス粒子の粒径が小さいほど、アスペクト比が4以上である一次粒子11の合計面積割合を高めることができる。
‐ マトリックス/テンプレート粒径比を調整することによって、配向正極板12の緻密度を制御することができる。具体的には、マトリックス/テンプレート粒径比を小さくするほど、すなわち、マトリックス粒子の粒径が小さいほど、配向正極板12の緻密度を高めることができる。
In this step, the profile of the primary particles 11 constituting the oriented positive electrode plate 12 can be controlled as follows.
-Low angle primary whose orientation angle is greater than 0 ° and less than 30 ° by adjusting the ratio of the particle size of matrix particles to the particle size of LiCoO 2 template particles (hereinafter referred to as “matrix / template particle size ratio”) The total area ratio of the particles can be controlled. Specifically, the smaller the matrix / template particle size ratio, that is, the smaller the particle size of the matrix particles, the easier it is for the matrix particles to be incorporated into the LiCoO 2 template particles in the firing step described later. The total area ratio can be increased.
-The total area ratio of the primary particles 11 having an aspect ratio of 4 or more can be controlled by adjusting the matrix / template particle size ratio. Specifically, the smaller the matrix / template particle size ratio, that is, the smaller the particle size of the matrix particles, the higher the total area ratio of the primary particles 11 having an aspect ratio of 4 or more.
-The density of the aligned positive electrode plate 12 can be controlled by adjusting the matrix / template particle size ratio. Specifically, the smaller the matrix / template particle size ratio, that is, the smaller the particle size of the matrix particles, the higher the density of the aligned positive electrode plate 12 can be.
(3)グリーンシートの作製
 LiCoOテンプレート粒子とマトリックス粒子を100:3~3:97に混合して混合粉末を得る。この混合粉末、分散媒、バインダー、可塑剤及び分散剤を混合しながら、減圧下で撹拌して脱泡し且つ所望の粘度に調整してスラリーとする。次に、LiCoOテンプレート粒子にせん断力を印加可能な成形手法を用いて、調製したスラリーを成形することによって成形体を形成する。こうして、各一次粒子11の平均配向角度を0°超30°以下とすることができる。LiCoOテンプレート粒子にせん断力を印加可能な成形手法としては、ドクターブレード法が好適である。ドクターブレード法を用いる場合には、調製したスラリーをPETフィルムの上に成形することによって、成形体としてのグリーンシートが形成される。
(3) Production of Green Sheet LiCoO 2 template particles and matrix particles are mixed at 100: 3 to 3:97 to obtain a mixed powder. While mixing this mixed powder, dispersion medium, binder, plasticizer, and dispersant, the mixture is stirred under reduced pressure to defoam and adjusted to a desired viscosity to form a slurry. Next, a molded body is formed by molding the prepared slurry using a molding technique capable of applying a shearing force to LiCoO 2 template particles. In this way, the average orientation angle of each primary particle 11 can be more than 0 ° and not more than 30 °. A doctor blade method is suitable as a forming technique capable of applying a shearing force to LiCoO 2 template particles. When the doctor blade method is used, a green sheet as a molded body is formed by molding the prepared slurry on a PET film.
 本工程では、以下のとおり、配向正極板12を構成する一次粒子11のプロファイルを制御することができる。
‐ 成形速度を調整することによって、配向角度が0°超30°以下である低角一次粒子の合計面積割合を制御することができる。具体的には、成形速度が速いほど、低角一次粒子の合計面積割合を高めることができる。
‐ 成形体の密度を調整することによって、一次粒子11の平均粒径を制御することができる。具体的には、成形体の密度を大きくするほど、一次粒子11の平均粒径を大きくすることができる。
‐ LiCoOテンプレート粒子とマトリックス粒子との混合比を調整することによっても、配向正極板12の緻密度を制御することができる。具体的には、LiCoOテンプレート粒子を多くするほど、配向正極板12の緻密度を下げることができる。
In this step, the profile of the primary particles 11 constituting the oriented positive electrode plate 12 can be controlled as follows.
-By adjusting the molding speed, the total area ratio of the low-angle primary particles whose orientation angle is more than 0 ° and not more than 30 ° can be controlled. Specifically, the higher the molding speed, the higher the total area ratio of the low-angle primary particles.
-The average particle diameter of the primary particles 11 can be controlled by adjusting the density of the compact. Specifically, the average particle diameter of the primary particles 11 can be increased as the density of the molded body is increased.
-The density of the aligned positive electrode plate 12 can also be controlled by adjusting the mixing ratio between the LiCoO 2 template particles and the matrix particles. Specifically, the density of the aligned positive electrode plate 12 can be lowered as the number of LiCoO 2 template particles is increased.
(4)配向焼結板の作製
 スラリーの成形体をジルコニア製セッターに載置し、500~900℃で1~10時間て加熱処理(一次焼成)して、中間体としての焼結板を得る。この焼結板をリチウムシート(例えばLiCO含有シート)で上下挟み込んだ状態でジルコニアセッター上に載置して二次焼成することで、LiCoO焼結板を得る。具体的には、リチウムシートで挟み込まれた焼結板が載置されたセッターをアルミナ鞘に入れ、大気中にて700~850℃で1~20時間焼成した後、この焼結板をさらにリチウムシートで上下挟み込んで750~900℃で1~40時間焼成して、LiCoO焼結板を得る。この焼成工程は、2度に分けて行ってもよいし、1度に行なってもよい。2度に分けて焼成する場合には、1度目の焼成温度が2度目の焼成温度より低いことが好ましい。なお、二次焼成におけるリチウムシートの総使用量はグリーンシート中のCo量に対する、グリーンシート及びリチウムシート中のLi量のモル比であるLi/Co比が1.0になるようにすればよい。
(4) Preparation of Oriented Sintered Plate A slurry compact is placed on a zirconia setter and heat-treated (primary firing) at 500 to 900 ° C. for 1 to 10 hours to obtain a sintered plate as an intermediate . This sintered plate is placed on a zirconia setter while being sandwiched between lithium sheets (for example, Li 2 CO 3 -containing sheets) and subjected to secondary firing to obtain a LiCoO 2 sintered plate. Specifically, a setter on which a sintered plate sandwiched between lithium sheets is placed is placed in an alumina sheath and baked at 700 to 850 ° C. for 1 to 20 hours in the atmosphere. It is sandwiched between sheets and fired at 750 to 900 ° C. for 1 to 40 hours to obtain a LiCoO 2 sintered plate. This firing step may be performed in two steps or may be performed once. When firing twice, it is preferable that the first firing temperature is lower than the second firing temperature. The total amount of lithium sheet used in the secondary firing may be such that the Li / Co ratio, which is the molar ratio of the amount of Li in the green sheet and the lithium sheet, to 1.0 with respect to the amount of Co in the green sheet. .
 本工程では、以下のとおり、配向正極板12を構成する一次粒子11のプロファイルを制御することができる。
‐ 焼成時の昇温速度を調整することによって、配向角度が0°超30°以下である低角一次粒子の合計面積割合を制御することができる。具体的には、昇温速度を速くするほど、マトリックス粒子同士の焼結が抑えられて、低角一次粒子の合計面積割合を高めることができる。
‐ 中間体の加熱処理温度を調整することによっても、配向角度が0°超30°以下である低角一次粒子の合計面積割合を制御することができる。具体的には、中間体の加熱処理温度を低くするほど、マトリックス粒子同士の焼結が抑えられて、低角一次粒子の合計面積割合を高めることができる。
‐ 焼成時の昇温速度及び中間体の加熱処理温度の少なくとも一方を調整することによって、一次粒子11の平均粒径を制御することができる。具体的には、昇温速度を速くするほど、また、中間体の加熱処理温度を低くするほど、一次粒子11の平均粒径を大きくすることができる。
‐ 焼成時のLi(例えば、LiCO)量及び焼結助剤(例えば、ホウ酸や酸化ビスマス)量の少なくとも一方を調整することによっても、一次粒子11の平均粒径を制御することができる。具体的には、Li量多くするほど、また、焼結助剤量を多くするほど、一次粒子11の平均粒径を大きくすることができる。
‐ 焼成時のプロファイルを調整することによって、配向正極板12の緻密度を制御することができる。具体的には、焼成温度を遅くするほど、また、焼成時間を長くするほど、配向正極板12の緻密度を高めることができる。
In this step, the profile of the primary particles 11 constituting the oriented positive electrode plate 12 can be controlled as follows.
-The total area ratio of the low-angle primary particles whose orientation angle is more than 0 ° and not more than 30 ° can be controlled by adjusting the heating rate during firing. Specifically, the higher the rate of temperature rise, the more the sintering of the matrix particles is suppressed, and the total area ratio of the low-angle primary particles can be increased.
-The total area ratio of low-angle primary particles whose orientation angle is more than 0 ° and not more than 30 ° can also be controlled by adjusting the heat treatment temperature of the intermediate. Specifically, the lower the heat treatment temperature of the intermediate, the more the sintering of the matrix particles is suppressed, and the total area ratio of the low-angle primary particles can be increased.
-The average particle diameter of the primary particles 11 can be controlled by adjusting at least one of the heating rate during firing and the heat treatment temperature of the intermediate. Specifically, the average particle diameter of the primary particles 11 can be increased as the rate of temperature increase is increased and the heat treatment temperature of the intermediate is decreased.
-Controlling the average particle diameter of the primary particles 11 also by adjusting at least one of the amount of Li (for example, Li 2 CO 3 ) and the amount of sintering aid (for example, boric acid or bismuth oxide) during firing. Can do. Specifically, the average particle diameter of the primary particles 11 can be increased as the amount of Li is increased and as the amount of the sintering aid is increased.
-The density of the alignment positive electrode plate 12 can be controlled by adjusting the profile during firing. Specifically, the density of the aligned positive electrode plate 12 can be increased as the firing temperature is lowered and the firing time is lengthened.
 本発明を以下の例によってさらに具体的に説明する。 The present invention will be described more specifically with reference to the following examples.
 例A1~A8
(1)配向正極板の作製
(1a)LCOテンプレート粒子の作製
 Co原料粉末(体積基準D50粒径0.8μm、正同化学工業株式会社製)とLiCO原料粉末(体積基準D50粒径2.5μm、本荘ケミカル株式会社製)を混合し、800℃~900℃で5時間焼成することでLiCoO原料粉末を合成した。得られたLiCoO粉末を粉砕することによって板状LiCoO粒子(以下、LCOテンプレート粒子という)を得た。LCOテンプレート粒子の体積基準D50粒径を0.5μmに調整した。
Examples A1 to A8
(1) Preparation of oriented positive electrode plate (1a) Preparation of LCO template particles Co 3 O 4 raw material powder (volume basis D50 particle size 0.8 μm, manufactured by Shodo Chemical Co., Ltd.) and Li 2 CO 3 raw material powder (volume basis) D50 particle size 2.5 μm, manufactured by Honjo Chemical Co., Ltd.) was mixed and fired at 800 ° C. to 900 ° C. for 5 hours to synthesize LiCoO 2 raw material powder. The obtained LiCoO 2 powder was pulverized to obtain plate-like LiCoO 2 particles (hereinafter referred to as LCO template particles). The volume-based D50 particle size of the LCO template particles was adjusted to 0.5 μm.
(1b)Coマトリックス粒子の作製
 Co原料粉末(正同化学工業株式会社製)をマトリックス粒子として用意した。マトリックス粒子の体積基準D50粒径は0.3μmとした。
(1b) Production of Co 3 O 4 matrix particles Co 3 O 4 raw material powder (manufactured by Shodo Chemical Industry Co., Ltd.) was prepared as matrix particles. The volume-based D50 particle size of the matrix particles was 0.3 μm.
(1c)LCO/Coグリーンシートの作製
 LCOテンプレート粒子とCoマトリックス粒子を混合した。LCOテンプレート粒子とCoマトリックス粒子の重量比は、50:50とした。この混合粉末100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー(ポリビニルブチラール:品番BM-2、積水化学工業株式会社製)10重量部と、可塑剤(DOP:Di(2-ethylhexyl)phthalate、黒金化成株式会社製)4重量部と、分散剤(製品名レオドールSP-O30、花王株式会社製)2重量部とを混合した。この混合物を、減圧下で撹拌することで脱泡するとともに粘度を4000cPに調整することによってスラリーを調製した。なお、粘度は、ブルックフィールド社製LVT型粘度計で測定した。調製されたスラリーを、ドクターブレード法によって、PETフィルムの上に、乾燥後の厚さが48μmとなるように、成形速度100m/hでシート状に成形してLCO/Coグリーンシートを得た。
(1c) was mixed with LCO / Co 3 O 4 produced LCO template particles of the green sheets and Co 3 O 4 matrix grains. The weight ratio of LCO template particles to Co 3 O 4 matrix particles was 50:50. 100 parts by weight of the mixed powder, 100 parts by weight of a dispersion medium (toluene: isopropanol = 1: 1), 10 parts by weight of a binder (polyvinyl butyral: product number BM-2, manufactured by Sekisui Chemical Co., Ltd.), and a plasticizer (DOP : 4 parts by weight of Di (2-ethylhexyl) phthalate (manufactured by Kurokin Kasei Co., Ltd.) and 2 parts by weight of a dispersant (product name: Leodol SP-O30, manufactured by Kao Corporation) were mixed. The mixture was degassed by stirring under reduced pressure, and a slurry was prepared by adjusting the viscosity to 4000 cP. The viscosity was measured with an LVT viscometer manufactured by Brookfield. The prepared slurry was formed into a sheet shape on a PET film by a doctor blade method so that the thickness after drying was 48 μm at a forming speed of 100 m / h, and an LCO / Co 3 O 4 green sheet was formed. Obtained.
(1d)リチウムシートの作製
 LiCO原料粉末(体積基準D50粒径2.5μm、本荘ケミカル株式会社製)100重量部と、バインダー(ポリビニルブチラール:品番BM-2、積水化学工業株式会社製)5重量部と、可塑剤(DOP:フタル酸ジ(2-エチルヘキシル)、黒金化成株式会社製)2重量部と、分散剤(製品名レオドールSP-O30、花王株式会社製)2重量部とを混合した。得られた混合物を減圧下で撹拌して脱泡するとともに、粘度を4000cPに調整することによって、LiCOスラリーを調製した。粘度は、ブルックフィールド社製LVT型粘度計で測定した。調製されたLiCOスラリーを、ドクターブレード法によって、PETフィルム上にシート状に成形することによって、LiCOグリーンシート(以下、リチウムシートという)を形成した。
(1d) Preparation Li 2 CO 3 raw material powder of lithium sheet and (volume basis D50 particle size 2.5 [mu] m, Honjo Chemical Co., Ltd.) 100 parts by weight, a binder (polyvinyl butyral: No. BM-2, manufactured by Sekisui Chemical Co., Ltd. ) 5 parts by weight, 2 parts by weight of a plasticizer (DOP: di (2-ethylhexyl) phthalate, manufactured by Kurokin Kasei Co., Ltd.) and 2 parts by weight of a dispersant (product name: Leodol SP-O30, manufactured by Kao Corporation) And mixed. The resulting mixture was stirred and degassed under reduced pressure, and the viscosity was adjusted to 4000 cP to prepare a Li 2 CO 3 slurry. The viscosity was measured with an LVT viscometer manufactured by Brookfield. The prepared Li 2 CO 3 slurry was formed into a sheet on a PET film by a doctor blade method to form a Li 2 CO 3 green sheet (hereinafter referred to as a lithium sheet).
(1e)配向焼結板の作製
 PETフィルムから剥がしたLCO/Coグリーンシートをジルコニア製セッターに載置して900℃で5時間一次焼成することで、中間体としての焼結板を得た。この焼結板をリチウムシートで上下挟み込んだ状態でジルコニアセッター上に載置して二次焼成することで、LiCoO焼結板を得た。具体的には、リチウムシートで挟み込まれた焼結板が載置されたジルコニアセッターを90mm角のアルミナ鞘に入れて大気中にて800℃で5時間保持した後、この焼結板をさらにリチウムシートで上下挟み込んで900℃で20時間焼成した。こうして厚さ40μmのLiCoO焼結板を配向正極板として得た。なお、二次焼成におけるリチウムシートの総使用量は、LCO/Coグリーンシート中のCo量に対する、LCO/Coグリーンシート及びリチウムシート中のLi量のモル比であるLi/Co比が1.05になるような量とした。
(1e) Preparation of oriented sintered plate The LCO / Co 3 O 4 green sheet peeled off from the PET film was placed on a zirconia setter and subjected to primary firing at 900 ° C. for 5 hours to obtain a sintered plate as an intermediate. Obtained. The sintered plate was placed on a zirconia setter with the lithium sheet sandwiched between the upper and lower sides, and subjected to secondary firing to obtain a LiCoO 2 sintered plate. Specifically, a zirconia setter on which a sintered plate sandwiched between lithium sheets is placed is placed in a 90 mm square alumina sheath and held at 800 ° C. for 5 hours in the atmosphere. The sheet was sandwiched between upper and lower sheets and fired at 900 ° C. for 20 hours. Thus, a LiCoO 2 sintered plate having a thickness of 40 μm was obtained as an oriented positive plate. The total amount of the lithium sheet in the secondary firing, to Co amount of LCO / Co 3 O 4 in the green sheet, the molar ratio of LCO / Co 3 O 4 green sheet and Li of the lithium in the sheet Li / The amount was set such that the Co ratio was 1.05.
(2)固体電解質層の作製
 縦5インチ(約12.7cm)×横15インチ(約38.1cm)のリン酸リチウム焼結体ターゲットを準備し、スパッタリング装置(キャノンアネルバ株式会社製、ILC-702)を用いてRFマグネトロン方式にてガス種Nを0.4Pa、出力1.2kWにて膜厚3μmとなるようにスパッタリングを行った。こうして、厚さ3μmのLiPON系固体電解質層を配向正極板上に形成した。
(2) Production of Solid Electrolyte Layer A lithium phosphate sintered body target having a length of 5 inches (about 12.7 cm) × width of 15 inches (about 38.1 cm) was prepared, and a sputtering apparatus (ILC- manufactured by Canon Anelva Co., Ltd.) was prepared. 702), an RF magnetron method was used to perform sputtering so that the gas type N 2 was 0.4 Pa, the output was 1.2 kW, and the film thickness was 3 μm. Thus, a LiPON-based solid electrolyte layer having a thickness of 3 μm was formed on the oriented positive electrode plate.
(3)電池端部の絶縁処理
 電池端部の絶縁性を確保すべく、LiPON系固体電解質層の外周に沿った幅250±100μmの領域をポリイミド樹脂で覆った。
(3) Insulation treatment of battery edge part In order to ensure the insulation of the battery edge part, the area | region of the width | variety 250 +/- 100micrometer along the outer periphery of the LiPON type solid electrolyte layer was covered with the polyimide resin.
(4)中間層の作製
 LiPON系固体電解質層上に表1に示される組成及び厚さの中間層を以下のとおり形成した。
(4) Production of Intermediate Layer An intermediate layer having the composition and thickness shown in Table 1 was formed on the LiPON solid electrolyte layer as follows.
 Au中間層(例A1)の場合は、イオンスパッタリング装置(日本電子株式会社製、JFC-1500)を用いたスパッタリングにより、固体電解質層上に厚さ20nmのAu膜を形成した。このとき、マスクを用いて中間層のサイズを10mm角として、中間層が10.5mm角の正極領域内に収まるようにした。 In the case of the Au intermediate layer (Example A1), an Au film having a thickness of 20 nm was formed on the solid electrolyte layer by sputtering using an ion sputtering apparatus (manufactured by JEOL Ltd., JFC-1500). At this time, the size of the intermediate layer was set to 10 mm square using a mask so that the intermediate layer could be accommodated in the positive electrode region of 10.5 mm square.
 Sn中間層(例A2~A4)、Si中間層(例A5)、Bi中間層(例A6)及びAl中間層(例A7及びA8)の場合は、直径4インチ(約10cm)のSnターゲット、Siターゲット、Biターゲット又はAlターゲットを準備し、スパッタリング装置(キャノンアネルバ株式会社製、SPF-210HS)を用いてRFマグネトロン方式にてガス種Arを1Pa、出力0.1kWにて表1に示される膜厚となるようにスパッタリングを行った。こうして、固体電解質層上に表1に示される組成及び厚さの中間層を形成した。このとき、マスクを用いて中間層のサイズを10mm角として、中間層が10.5mm角の正極領域内に収まるようにした。 In the case of Sn intermediate layers (examples A2 to A4), Si intermediate layers (example A5), Bi intermediate layers (example A6) and Al intermediate layers (examples A7 and A8), a Sn target having a diameter of 4 inches (about 10 cm), A Si target, Bi target, or Al target is prepared, and is shown in Table 1 with a sputtering apparatus (SPF-210HS, manufactured by Canon Anelva Co., Ltd.) using an RF magnetron method with an Ar gas of 1 Pa and an output of 0.1 kW. Sputtering was performed to obtain a film thickness. Thus, an intermediate layer having the composition and thickness shown in Table 1 was formed on the solid electrolyte layer. At this time, the size of the intermediate layer was set to 10 mm square using a mask so that the intermediate layer could be accommodated in the positive electrode region of 10.5 mm square.
(5)負極層の作製
 例A1~A7においては、以下のようにして中間層上に負極層を形成した。まず、リチウム金属を載せたタングステンボートを準備した。真空蒸着装置(サンユー電子株式会社製、カーボンコーターSVC-700)を用いて、抵抗加熱によりLiを蒸発させながら蒸着により中間層の表面にLi薄膜を形成した。このとき、マスクを用いて負極層のサイズを10mm角として、負極層が10.5mm角の正極領域内に収まるようにした。こうして、固体電解質層上に膜厚10μmのLi蒸着膜を負極層として形成した単電池を作製した。
(5) Production of negative electrode layer In Examples A1 to A7, a negative electrode layer was formed on the intermediate layer as follows. First, a tungsten boat carrying lithium metal was prepared. A Li thin film was formed on the surface of the intermediate layer by vapor deposition using a vacuum vapor deposition apparatus (Sanyu Electronics Co., Ltd., carbon coater SVC-700) while vaporizing Li by resistance heating. At this time, using a mask, the size of the negative electrode layer was set to 10 mm square so that the negative electrode layer was within the 10.5 mm square positive electrode region. In this way, a unit cell was produced in which a Li-deposited film having a thickness of 10 μm was formed as a negative electrode layer on the solid electrolyte layer.
 例A8においては、充電時に析出するLiを負極活物質として利用すべく、負極層の形成は行わなかった。こうして、固体電解質層上に負極層を有しない単電池を作製した。 In Example A8, the negative electrode layer was not formed in order to use Li precipitated during charging as the negative electrode active material. Thus, a unit cell having no negative electrode layer on the solid electrolyte layer was produced.
(6)電池の組立
 厚さ20μmのNi箔と厚さ15μmのナイロン樹脂を貼り合せた積層シートを13mm角に切り出して集電板とした。外縁形状が12.8mm角でその内側に11mm角の孔が打ち抜かれた、0.9mm幅の枠状のポリクロロトリフルオロエチレン樹脂(厚さ50μm)を集電板のNi箔側に貼り付けて端部封止部を形成した。こうして得られた複合部材を集電板のNi箔側を上にして置き、端部封止部で囲まれた領域内に上記(5)で得られた単電池を負極が下になるように載置した。載置した単電池の正極上には集電板をNi箔側が下になるように載置し、パルスヒート式加熱装置(日本アビオニクス株式会社製、HT-13X13(40)NTN)を用いて、減圧下、端部封止部に対して荷重3kgを加えながら420℃で加熱した。こうして単電池の外周全体を覆うように端部封止部と上下2枚の集電板とを貼り合せて封止することで、封止形態の全固体リチウム電池を得た。
(6) Battery assembly A laminated sheet obtained by laminating a 20 μm thick Ni foil and a 15 μm thick nylon resin was cut into a 13 mm square to form a current collector plate. Adhere 0.9mm wide frame-shaped polychlorotrifluoroethylene resin (thickness 50μm) with 12.8mm square outer edge shape and 11mm square hole punched inside it to the Ni foil side of the current collector plate Thus, an end sealing portion was formed. The composite member thus obtained was placed with the Ni foil side of the current collector plate facing up, and the unit cell obtained in (5) above was placed in the region surrounded by the end sealing portion with the negative electrode facing down. Placed. On the positive electrode of the placed unit cell, the current collector was placed with the Ni foil side down, and using a pulse heat type heating device (manufactured by Nippon Avionics Co., Ltd., HT-13X13 (40) NTN), Under reduced pressure, the end sealing part was heated at 420 ° C. while applying a load of 3 kg. In this way, the end sealing portion and the two upper and lower current collecting plates were bonded and sealed so as to cover the entire outer periphery of the unit cell, thereby obtaining an all solid lithium battery in a sealed form.
(7)各種評価
 得られた全固体リチウム電池について以下の評価を行った。結果は表1に示されるとおりであった。
(7) Various evaluation The following evaluation was performed about the obtained all-solid-state lithium battery. The results were as shown in Table 1.
(平均配向角度)
 後方散乱電子回折像システム付の走査型電子顕微鏡(日本電子社製、型式JSM-7800M)を用いて、正極の板面に垂直な断面におけるEBSD像を取得した。一次粒子の平均配向角度を以下の手順で測定した。まず、95μm×125μmの矩形領域を1000倍の倍率で観察したEBSD像において、正極を厚み方向に四等分する3本の横線と、正極を板面方向に四等分する3本の縦線とを引いた。次に、3本の横線と3本の縦線のうち少なくとも1本の線と交差する一次粒子すべての配向角度を算術平均することによって、一次粒子の平均配向角度を得た。
(Average orientation angle)
An EBSD image in a cross section perpendicular to the plate surface of the positive electrode was obtained using a scanning electron microscope (manufactured by JEOL Ltd., model JSM-7800M) with a backscattered electron diffraction image system. The average orientation angle of primary particles was measured by the following procedure. First, in an EBSD image obtained by observing a rectangular area of 95 μm × 125 μm at a magnification of 1000 times, three horizontal lines that divide the positive electrode into four equal parts in the thickness direction and three vertical lines that divide the positive electrode into four equal parts in the plate surface direction And subtracted. Next, the average orientation angle of the primary particles was obtained by arithmetically averaging the orientation angles of all the primary particles intersecting at least one of the three horizontal lines and the three vertical lines.
(サイクル容量維持率)
 リチウムイオン電池を0.2mAの定電流で充電電圧値4.0Vまで充電した後、4.0Vの定電圧で電流が0.04mAになるまで充電した。そして、0.2mAの定電流でカットオフ電圧値3.0Vまで放電し、放電容量Wを測定した。この測定を50回繰り返し、50回目の放電容量W50を測定した。W50をWで除して100を乗じた値をサイクル容量維持率(%)として評価した。
(Cycle capacity maintenance rate)
The lithium ion battery was charged with a constant current of 0.2 mA to a charging voltage value of 4.0 V, and then charged with a constant voltage of 4.0 V until the current reached 0.04 mA. Then, discharged at a constant current of 0.2mA up to the cut-off voltage value 3.0 V, the discharge capacity was measured W 0. This measurement was repeated 50 times, and the 50th discharge capacity W 50 was measured. The W 50 and the value obtained by multiplying 100 by dividing by W 0 and evaluated as the cycle capacity retention rate (%).
 例A9(比較)
 中間層を形成しなかったこと以外は例A1と同様にして、電池の作製及び評価を行った。結果は表1に示されるとおりであった。
Example A9 (comparison)
A battery was fabricated and evaluated in the same manner as in Example A1 except that no intermediate layer was formed. The results were as shown in Table 1.
 例A10(比較)
 Au中間層の代わりに厚さ20nmのCu中間層を形成したこと以外は、例A1と同様にして、電池の作製及び評価を行った。Cu中間層の形成は、直径4インチ(約10cm)のCuターゲットを準備し、スパッタリング装置(キャノンアネルバ株式会社製、SPF-430H)を用いてDCマグネトロン方式にてガス種Arを0.3Pa、電流0.5Aにて膜厚20nmとなるようにスパッタリングを実施することにより行った。結果は表1に示されるとおりであった。
Example A10 (comparison)
A battery was fabricated and evaluated in the same manner as in Example A1, except that a Cu intermediate layer having a thickness of 20 nm was formed instead of the Au intermediate layer. The Cu intermediate layer is formed by preparing a Cu target having a diameter of 4 inches (about 10 cm), and using a sputtering apparatus (SPF-430H, manufactured by Canon Anelva Co., Ltd.) with a DC magnetron method, the gas species Ar is 0.3 Pa, The sputtering was performed at a current of 0.5 A so that the film thickness was 20 nm. The results were as shown in Table 1.
 例A11(比較)
 配向正極板の作製を以下のとおり行ったこと以外は、例A2と同様にして、電池の作製及び評価を行った。結果は表1に示されるとおりであった。
Example A11 (comparison)
A battery was produced and evaluated in the same manner as in Example A2, except that the oriented positive electrode plate was produced as follows. The results were as shown in Table 1.
(配向正極板の作製)
 Co原料粉末(体積基準D50粒径0.3μm、正同化学工業株式会社製)に5wt%の割合でBi(体積基準D50粒径0.3μm、太陽鉱工株式会社製)を添加して混合粉末を得た。この混合粉末100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー(ポリビニルブチラール:品番BM-2、積水化学工業株式会社製)10重量部と、可塑剤(DOP:ジ(2-エチルヘキシル)フタレート、黒金化成株式会社製)4重量部と、分散剤(製品名レオドールSP-O30、花王株式会社製)2重量部とを混合した。この混合物を、減圧下で撹拌することで脱泡するとともに、4000cPの粘度に調整した。なお、粘度は、ブルックフィールド社製LVT型粘度計で測定した。上記のようにして調製されたスラリーを、ドクターブレード法によって、PET(ポリエチレンテレフタレート)フィルムの上に、乾燥後の厚さが45μmとなるように、シート状に成形してグリーンシートを作製した。PETフィルムから剥がしたグリーンシートを、切り出し、突起の高さが300μmのエンボス加工が施されたジルコニア製セッター(寸法90mm角、高さ1mm)の中央に載置し、1300℃で5時間焼成後、降温速度50℃/hにて降温した。セッターに溶着していない部分をCo配向焼成板として取り出した。Co配向焼成板にLi/Co=1.3になるようにLiCOシートを載置し、大気中にて840℃で10時間加熱処理してCo配向焼成板にリチウムを導入した。こうして、厚さ40μmのLiCoO配向焼結板を配向正極板として得た。
(Preparation of oriented positive electrode plate)
Co 3 O 4 raw material powder (volume basis D50 particle size 0.3 [mu] m, Seido Chemical Industry Co., Ltd.) Bi 2 O 3 at a ratio of 5 wt% (the volume basis D50 particle size 0.3 [mu] m, the solar mineral Engineering Co., Ltd. ) Was added to obtain a mixed powder. 100 parts by weight of the mixed powder, 100 parts by weight of a dispersion medium (toluene: isopropanol = 1: 1), 10 parts by weight of a binder (polyvinyl butyral: product number BM-2, manufactured by Sekisui Chemical Co., Ltd.), and a plasticizer (DOP : 4 parts by weight of di (2-ethylhexyl) phthalate (manufactured by Kurokin Kasei Co., Ltd.) and 2 parts by weight of a dispersant (product name: Leodol SP-O30, Kao Corporation) were mixed. The mixture was defoamed by stirring under reduced pressure and adjusted to a viscosity of 4000 cP. The viscosity was measured with an LVT viscometer manufactured by Brookfield. The slurry prepared as described above was formed into a sheet shape on a PET (polyethylene terephthalate) film so that the thickness after drying was 45 μm by a doctor blade method to produce a green sheet. The green sheet peeled off from the PET film was cut out, placed on the center of a zirconia setter (dimension 90 mm square, height 1 mm) with a protrusion height of 300 μm, and fired at 1300 ° C. for 5 hours The temperature was lowered at a temperature drop rate of 50 ° C./h. The portion not welded to the setter was taken out as a Co 3 O 4 oriented fired plate. Co 3 O 4 placing the Li 2 CO 3 sheets so that Li / Co = 1.3 to orientation firing plate, a Co 3 O 4 oriented sintered plate by 10 hours of heat treatment at 840 ° C. in air Lithium was introduced. Thus, a LiCoO 2 oriented sintered plate having a thickness of 40 μm was obtained as an oriented positive plate.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 例B1~B8
(1)配向正極板の作製
(1a)LCOテンプレート粒子の作製
 Co原料粉末(体積基準D50粒径0.8μm、正同化学工業株式会社製)とLiCO原料粉末(体積基準D50粒径2.5μm、本荘ケミカル製)を混合し、800℃で5時間焼成することでLiCoO原料粉末を合成した。この際、焼成温度や焼成時間を調整することによって、LiCoO原料粉末の体積基準D50粒径を表2に示される値に調整した。得られたLiCoO粉末を粉砕することによって板状LiCoO粒子(LCOテンプレート粒子)を得た。例B1、B2及びB4~B8ではポットミルを用い、例B3では湿式ジェットミルを用いた。この際、粉砕時間を調整することによって、LCOテンプレート粒子の体積基準D50粒径を表2に示される値に調整した。また、LiCoOテンプレート粒子のアスペクト比は表2に示されるとおりであった。LiCoOテンプレート粒子のアスペクト比は得られたテンプレート粒子をSEM観察することで測定した。
Examples B1 to B8
(1) orientation positive electrode plate prepared in (1a) Preparation of LCO template grains Co 3 O 4 raw material powder (volume basis D50 particle size 0.8 [mu] m, Seido Chemical Industry Co., Ltd.) and Li 2 CO 3 raw material powder (by volume D50 particle size 2.5 μm, manufactured by Honjo Chemical Co., Ltd.) was mixed and baked at 800 ° C. for 5 hours to synthesize LiCoO 2 raw material powder. At this time, by adjusting the firing temperature and firing time, the volume was adjusted reference D50 particle size of the LiCoO 2 material powder to values shown in Table 2. The obtained LiCoO 2 powder was pulverized to obtain plate-like LiCoO 2 particles (LCO template particles). In Examples B1, B2 and B4 to B8, a pot mill was used, and in Example B3, a wet jet mill was used. At this time, the volume-based D50 particle size of the LCO template particles was adjusted to the value shown in Table 2 by adjusting the pulverization time. Further, the aspect ratio of the LiCoO 2 template particles was as shown in Table 2. The aspect ratio of LiCoO 2 template particles was measured by SEM observation of the obtained template particles.
(1b)Coマトリックス粒子の作製
 Co原料粉末(正同化学工業株式会社製)をマトリックス粒子として用意した。マトリックス粒子の体積基準D50粒径は表2に示されるとおりとした。ただし、例B4ではマトリックス粒子を用いなかった。
(1b) Production of Co 3 O 4 matrix particles Co 3 O 4 raw material powder (manufactured by Shodo Chemical Industry Co., Ltd.) was prepared as matrix particles. The volume-based D50 particle size of the matrix particles was as shown in Table 2. However, Example B4 did not use matrix particles.
(1c)LCO/Coグリーンシートの作製
 LCOテンプレート粒子とCoマトリックス粒子を混合した。LCOテンプレート粒子とCoマトリックス粒子の重量比は、表2に示されるとおりとした。ただし、例B4ではマトリックス粒子を用いなかったため、重量比は100:0である。この混合粉末100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー(ポリビニルブチラール:品番BM-2、積水化学工業株式会社製)10重量部と、可塑剤(DOP:Di(2-ethylhexyl)phthalate、黒金化成株式会社製)4重量部と、分散剤(製品名レオドールSP-O30、花王株式会社製)2重量部とを混合した。この混合物を、減圧下で撹拌することで脱泡するとともに粘度を4000cPに調整することによってスラリーを調製した。なお、粘度は、ブルックフィールド社製LVT型粘度計で測定した。調製されたスラリーを、ドクターブレード法によって、PETフィルムの上に、乾燥後の厚さが40μmとなるように、成形速度100m/hでシート状に成形してグリーンシートを得た。
(1c) Production of LCO / Co 3 O 4 Green Sheet LCO template particles and Co 3 O 4 matrix particles were mixed. The weight ratio of LCO template grains and Co 3 O 4 matrix particles were as shown in Table 2. However, in Example B4, since the matrix particles were not used, the weight ratio was 100: 0. 100 parts by weight of the mixed powder, 100 parts by weight of a dispersion medium (toluene: isopropanol = 1: 1), 10 parts by weight of a binder (polyvinyl butyral: product number BM-2, manufactured by Sekisui Chemical Co., Ltd.), and a plasticizer (DOP : 4 parts by weight of Di (2-ethylhexyl) phthalate (manufactured by Kurokin Kasei Co., Ltd.) and 2 parts by weight of a dispersant (product name: Leodol SP-O30, manufactured by Kao Corporation) were mixed. The mixture was degassed by stirring under reduced pressure, and a slurry was prepared by adjusting the viscosity to 4000 cP. The viscosity was measured with an LVT viscometer manufactured by Brookfield. The prepared slurry was formed into a sheet on a PET film by a doctor blade method so that the thickness after drying was 40 μm at a forming speed of 100 m / h to obtain a green sheet.
(1d)配向焼結板の作製
 PETフィルムから剥がしたグリーンシートをジルコニア製セッターに載置して900℃で5時間(例B1~B6及びB8)又は800℃で5時間(例B7)一次焼成することによって中間体としての焼結板を得た。この焼結板をリチウムシートで上下挟み込んだ状態でジルコニアセッター上に載せて二次焼成することで、LiCoO焼結板を得た。具体的には、リチウムシートで挟み込まれた焼結板が載置されたジルコニアセッターを90mm角のアルミナ鞘に入れ、大気中にて800℃で5時間保持した後、この焼結板をさらにリチウムシートで上下挟み込んで900℃で20時間焼成した。なお、二次焼成におけるリチウムシートの総使用量は、LCO/Coグリーンシート中のCo量に対する、LCO/Coグリーンシート及びリチウムシート中のLi量のモル比であるLi/Co比が表2に示される値になるような量とした。
(1d) Preparation of oriented sintered plate The green sheet peeled off from the PET film was placed on a zirconia setter and subjected to primary firing at 900 ° C. for 5 hours (Examples B1 to B6 and B8) or 800 ° C. for 5 hours (Example B7). As a result, a sintered plate as an intermediate was obtained. The sintered plate was placed on a zirconia setter while being sandwiched between lithium sheets, and then subjected to secondary firing to obtain a LiCoO 2 sintered plate. Specifically, a zirconia setter on which a sintered plate sandwiched between lithium sheets is placed is placed in a 90 mm square alumina sheath and held at 800 ° C. for 5 hours in the atmosphere. The sheet was sandwiched between upper and lower sheets and fired at 900 ° C. for 20 hours. The total amount of the lithium sheet in the secondary firing, to Co amount of LCO / Co 3 O 4 in the green sheet, the molar ratio of LCO / Co 3 O 4 green sheet and Li of the lithium in the sheet Li / The amount was set so that the Co ratio would be the value shown in Table 2.
(2)固体電解質層の作製
 直径4インチ(約10cm)のリン酸リチウム焼結体ターゲットを準備し、スパッタリング装置(キャノンアネルバ株式会社製、SPF-430H)を用いてRFマグネトロン方式にてガス種Nを0.2Pa、出力0.2kWにて膜厚2μmとなるようにスパッタリングを行なった。こうして、厚さ2μmのLiPON系固体電解質スパッタ膜をLiCoO焼結板上に形成した。
(2) Preparation of solid electrolyte layer A lithium phosphate sintered compact target having a diameter of 4 inches (about 10 cm) is prepared, and a gas type is generated by a RF magnetron method using a sputtering apparatus (SPF-430H, manufactured by Canon Anelva Co., Ltd.). Sputtering was performed so that the film thickness was 2 μm with N 2 of 0.2 Pa and an output of 0.2 kW. Thus, a LiPON solid electrolyte sputtered film having a thickness of 2 μm was formed on the LiCoO 2 sintered plate.
(3)中間層の作製
 イオンスパッタリング装置(日本電子株式会社製、JFC-1500)を用いたスパッタリングにより、固体電解質層上に厚さ500ÅのAu膜を中間層として形成した。
(3) Production of Intermediate Layer An Au film having a thickness of 500 mm was formed as an intermediate layer on the solid electrolyte layer by sputtering using an ion sputtering apparatus (JFC-1500, manufactured by JEOL Ltd.).
(4)負極層の作製
 リチウム金属を載せたタングステンボートを準備した。真空蒸着装置(サンユー電子株式会社製、カーボンコーターSVC-700)を用いて、抵抗加熱によりLiを蒸発させて上記中間層の表面に薄膜を設ける蒸着を行った。このとき、マスクを用いて負極層のサイズを9.5mm角として、負極層が10mm角の正極領域内に収まるようにした。こうして、固体電解質層上に膜厚10μmのLi蒸着膜を負極層として形成した単電池を作製した。
(4) Production of negative electrode layer A tungsten boat on which lithium metal was placed was prepared. Using a vacuum deposition apparatus (carbon coater SVC-700, manufactured by Sanyu Denshi Co., Ltd.), vapor deposition was performed by evaporating Li by resistance heating to form a thin film on the surface of the intermediate layer. At this time, using a mask, the size of the negative electrode layer was set to 9.5 mm square so that the negative electrode layer was within the 10 mm square positive electrode region. In this way, a unit cell was produced in which a Li-deposited film having a thickness of 10 μm was formed as a negative electrode layer on the solid electrolyte layer.
(5)電池の組立
 厚さ20μmのステンレス箔を13mm角に切り出して正極集電板とした。また、外縁形状が13mm角で、その内側に11mm角の孔が打ち抜かれた、1mm幅の枠状の変性ポリプロピレン樹脂フィルム(厚さ100μm)を用意した。この枠状の樹脂フィルムを正極集電板上の外周部に積層し、加熱圧着して端部封止部を形成した。正極集電板上の端部封止部で囲まれた領域内に上記単電池を載置した。載置した単電池の負極側にも上記同様に厚さ20μmのステンレス箔を載置し、端部封止部に対して荷重を加えながら、減圧下、200℃で加熱した。こうして外周全体にわたって端部封止部と上下2枚のステンレス箔とを貼り合せて単電池を封止した。こうして、封止形態の全固体リチウム電池を得た。
(5) Battery assembly A stainless foil with a thickness of 20 μm was cut into a 13 mm square to form a positive electrode current collector plate. Also, a 1 mm wide frame-shaped modified polypropylene resin film (thickness: 100 μm) having an outer edge shape of 13 mm square and an 11 mm square hole punched inside thereof was prepared. This frame-shaped resin film was laminated on the outer peripheral portion on the positive electrode current collector plate, and heat-pressed to form an end sealing portion. The unit cell was placed in a region surrounded by the end sealing portion on the positive electrode current collector plate. Similarly to the above, a stainless steel foil having a thickness of 20 μm was placed on the negative electrode side of the placed unit cell, and heated at 200 ° C. under reduced pressure while applying a load to the end sealing portion. Thus, the end sealing part and the upper and lower two stainless steel foils were bonded together over the entire outer periphery to seal the unit cell. Thus, an all solid lithium battery in a sealed form was obtained.
(6)各種評価
 得られた全固体リチウム電池について以下の評価を行った。結果は表3に示されるとおりであった。
(正極を構成する一次粒子の観察)
 後方散乱電子回折像システム付の走査型電子顕微鏡(日本電子社製、型式JSM-7800M)を用いて、正極の板面に垂直な断面におけるEBSD像を取得し、以下のとおり各種パラメータの算出を行った。
‐ EBSD像上において任意に選択した30個の一次粒子の配向角度を算術平均することによって、一次粒子の平均配向角度を算出した。
‐ EBSD像において、平均配向角度の算出に用いた30個の一次粒子の総面積に対する、配向角度が0°超30°以下である一次粒子の合計面積の割合(%)を算出した。
‐ EBSD像において、平均配向角度の算出に用いた30個の一次粒子の平均粒径を算出した。具体的には、30個の一次粒子それぞれの円相当径の算術平均値を一次粒子の平均粒径とした。
‐ EBSD像において、平均配向角度の算出に用いた30個の一次粒子の平均アスペクト比を算出した。具体的には、30個の一次粒子それぞれの最大フェレー径を最小フェレー径で除した値の算術平均値を一次粒子の平均アスペクト比とした。
‐ EBSD像において、平均配向角度の算出に用いた30個の一次粒子のうちアスペクト比が4以上である一次粒子の面積割合を算出した。
(6) Various evaluations The following evaluation was performed about the obtained all-solid-state lithium battery. The results were as shown in Table 3.
(Observation of primary particles constituting the positive electrode)
Using a scanning electron microscope with a backscattered electron diffraction image system (manufactured by JEOL Ltd., model JSM-7800M), obtain an EBSD image in a cross section perpendicular to the plate surface of the positive electrode, and calculate various parameters as follows. went.
-The average orientation angle of primary particles was calculated by arithmetically averaging the orientation angles of 30 primary particles arbitrarily selected on the EBSD image.
-In the EBSD image, the ratio (%) of the total area of primary particles having an orientation angle of more than 0 ° and 30 ° or less to the total area of 30 primary particles used for calculating the average orientation angle was calculated.
-In the EBSD image, the average particle diameter of 30 primary particles used for calculating the average orientation angle was calculated. Specifically, the arithmetic average value of the equivalent circle diameter of each of the 30 primary particles was defined as the average particle size of the primary particles.
-In the EBSD image, the average aspect ratio of 30 primary particles used to calculate the average orientation angle was calculated. Specifically, the arithmetic average value of the value obtained by dividing the maximum ferret diameter of each of the 30 primary particles by the minimum ferret diameter was taken as the average aspect ratio of the primary particles.
-In the EBSD image, the area ratio of primary particles having an aspect ratio of 4 or more was calculated among the 30 primary particles used for calculating the average orientation angle.
(配向正極板の緻密度)
 CP(クロスセクションポリッシャ)研磨した配向正極板の断面における1000倍率のSEM画像を2値化した。そして、2値化画像上において、固相と気相の合計面積に対する固相の面積割合を緻密度として算出した。
(Density of oriented positive electrode plate)
A 1000-magnification SEM image in the cross section of the orientation positive electrode plate polished by CP (cross section polisher) was binarized. Then, on the binarized image, the area ratio of the solid phase to the total area of the solid phase and the gas phase was calculated as the density.
(レート性能)
 リチウムイオン電池を0.1mAの定電流で4.2Vまで充電した後、定電圧で電流が0.05mAになるまで充電した。そして、0.2mAの定電流で3.0Vまで放電し、放電容量Wを測定した。また、0.1mAの定電流で4.2Vまで充電した後、定電圧で電流が0.05mAになるまで充電し、そして、2.0mA定電流で3.0Vまで放電し、放電容量Wを測定した。WをWで除して100を乗じることでレート性能を評価した。
(Rate performance)
The lithium ion battery was charged to 4.2 V with a constant current of 0.1 mA, and then charged with a constant voltage until the current reached 0.05 mA. Then, discharged at a constant current of 0.2mA up to 3.0 V, the discharge capacity was measured W 0. In addition, after charging to 4.2 V with a constant current of 0.1 mA, charging is performed with a constant voltage until the current becomes 0.05 mA, and then discharging to 3.0 V with a constant current of 2.0 mA, and the discharge capacity W 1 Was measured. The W 1 was to evaluate the rate performance by multiplying by 100 divided by W 0.
(サイクル容量維持率)
 リチウムイオン電池を0.1mAの定電流で4.2Vまで充電した後、定電圧で電流が0.05mAになるまで充電した。そして、0.2mA定電流で3.0Vまで放電し、放電容量Wを測定した。この測定を30回繰り返し、30回目の放電容量W30を測定した。W30をWで除して100を乗じることでサイクル容量維持率を評価した。
(Cycle capacity maintenance rate)
The lithium ion battery was charged to 4.2 V with a constant current of 0.1 mA, and then charged with a constant voltage until the current reached 0.05 mA. Then, discharge at 0.2mA constant current to 3.0 V, the discharge capacity was measured W 0. This measurement was repeated 30 times, and the 30th discharge capacity W30 was measured. The W 30 was to evaluate the cycle capacity retention rate by multiplying by 100 divided by W 0.
 例B9(比較)
 LiCoO粉末を粉砕せずに、そのままLCOテンプレート粒子として用いたこと以外は、例B1~B8と同様にして、電池の作製及び評価を行った。結果は表3に示されるとおりであった。
Example B9 (comparison)
Batteries were prepared and evaluated in the same manner as in Examples B1 to B8, except that the LiCoO 2 powder was used as it was as the LCO template particles without being pulverized. The results were as shown in Table 3.
 例B10(比較)
 Coマトリックス粒子の体積基準D50粒径を例B1~B8よりも大きくしたこと以外は、例B1~B8と同様にして、電池の作製及び評価を行った。本例のマトリックス粒子の体積基準D50粒径は3.0μmであり、Coマトリックス粒子に対するLCOテンプレート粒子の粒径比は0.2であった。結果は表3に示されるとおりであった。
Example B10 (comparison)
Batteries were prepared and evaluated in the same manner as in Examples B1 to B8, except that the volume-based D50 particle size of the Co 3 O 4 matrix particles was larger than those in Examples B1 to B8. The volume-based D50 particle size of the matrix particles of this example was 3.0 μm, and the particle size ratio of the LCO template particles to the Co 3 O 4 matrix particles was 0.2. The results were as shown in Table 3.
 例B11(比較)
 LCOテンプレート粒子を用いず、Coマトリックス粒子のみを用いたスラリーでグリーンシートを作製したこと以外は、例B1~B8と同様にして、電池の作製及び評価を行った。結果は表3に示されるとおりであった。
Example B11 (comparison)
Batteries were produced and evaluated in the same manner as in Examples B1 to B8, except that the green sheets were produced with a slurry using only Co 3 O 4 matrix particles without using LCO template particles. The results were as shown in Table 3.
 例B12(比較)
 一次焼成の焼成温度を1200℃としたこと以外は、例B1~B8と同様にして、電池の作製及び評価を行った。結果は表3に示されるとおりであった。
Example B12 (comparison)
Batteries were produced and evaluated in the same manner as in Examples B1 to B8 except that the firing temperature for primary firing was 1200 ° C. The results were as shown in Table 3.
 例B13(比較)
 正極板の作製を以下のように行ったこと以外は、例B1と同様にして、電池の作製及び評価を行った。結果は表3に示されるとおりであった。
Example B13 (comparison)
A battery was produced and evaluated in the same manner as in Example B1, except that the positive electrode plate was produced as follows. The results were as shown in Table 3.
(正極板の作製)
 例B1で準備したスラリーをシート状に成形せずに、そのまま乾燥させた。乾燥物を例B1と同様に焼成した後に、#1200のSiC製研磨紙を用いて厚み40μmまで研磨して正極板を得た。
(Preparation of positive electrode plate)
The slurry prepared in Example B1 was dried as it was without being formed into a sheet. The dried product was fired in the same manner as in Example B1, and then polished to a thickness of 40 μm using a # 1200 SiC abrasive paper to obtain a positive electrode plate.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 

Claims (14)

  1.  配向焼結体で構成される厚さ30μm以上の配向正極板であって、前記配向焼結体が層状岩塩構造を有するリチウム複合酸化物で構成される複数の一次粒子を含み、前記複数の一次粒子が前記配向正極板の板面に対して0°超30°以下の平均配向角度で配向している、配向正極板と、
     前記配向正極板上に設けられ、リチウムイオン伝導材料で構成される固体電解質層と、
     前記固体電解質層上に設けられ、リチウムと合金化可能な金属を含む、厚さ0.001~1μmの中間層と、
    を備えた、全固体リチウム電池。
    An alignment positive electrode plate having a thickness of 30 μm or more formed of an oriented sintered body, wherein the oriented sintered body includes a plurality of primary particles formed of a lithium composite oxide having a layered rock salt structure, An oriented positive electrode plate in which the particles are oriented at an average orientation angle of more than 0 ° and not more than 30 ° with respect to the plate surface of the oriented positive electrode plate;
    A solid electrolyte layer provided on the oriented positive electrode plate and made of a lithium ion conductive material;
    An intermediate layer provided on the solid electrolyte layer and containing a metal that can be alloyed with lithium and having a thickness of 0.001 to 1 μm;
    An all-solid-state lithium battery.
  2.  前記中間層上に、リチウムを含む負極層をさらに備えた、請求項1に記載の全固体リチウム電池。 The all-solid-state lithium battery according to claim 1, further comprising a negative electrode layer containing lithium on the intermediate layer.
  3.  前記リチウムと合金化可能な金属が、Al(アルミニウム)、Si(シリコン)、Zn(亜鉛)、Ga(ガリウム)、Ge(ゲルマニウム)、Ag(銀)、Au(金)、Pt(白金)、Cd(カドミウム)、In(インジウム)、Sn(スズ)、Sb(アンチモン)、Pb(鉛)、及びBi(ビスマス)からなる群から選択される少なくとも1種を含む、請求項1又は2に記載の全固体リチウム電池。 The metal that can be alloyed with lithium is Al (aluminum), Si (silicon), Zn (zinc), Ga (gallium), Ge (germanium), Ag (silver), Au (gold), Pt (platinum), 3. The method according to claim 1, comprising at least one selected from the group consisting of Cd (cadmium), In (indium), Sn (tin), Sb (antimony), Pb (lead), and Bi (bismuth). All solid lithium battery.
  4.  前記リチウムと合金化可能な金属が、Au(金)、Si(シリコン)、Sn(スズ)、Al(アルミニウム)、及びBi(ビスマス)からなる群から選択される少なくとも1種を含む、請求項1~3のいずれか一項に記載の全固体リチウム電池。 The metal that can be alloyed with lithium includes at least one selected from the group consisting of Au (gold), Si (silicon), Sn (tin), Al (aluminum), and Bi (bismuth). 4. The all solid lithium battery according to any one of 1 to 3.
  5.  前記配向正極板の厚さが30~100μmである、請求項1~4のいずれか一項に記載の全固体リチウム電池。 The all-solid-state lithium battery according to any one of claims 1 to 4, wherein the orientation positive electrode plate has a thickness of 30 to 100 µm.
  6.  前記リチウム複合酸化物がコバルト酸リチウムである、請求項1~5のいずれか一項に記載の全固体リチウム電池。 The all-solid-state lithium battery according to any one of claims 1 to 5, wherein the lithium composite oxide is lithium cobalt oxide.
  7.  前記配向焼結体は、その断面を電子線後方散乱回折法(EBSD)により解析した場合に、解析された前記断面に含まれる一次粒子のうち前記配向正極板の板面に対する配向角度が0°超30°以下である一次粒子の合計面積が、前記断面に含まれる一次粒子の総面積に対して70%以上である、請求項1~6のいずれか一項に記載の全固体リチウム電池。 When the cross section of the oriented sintered body is analyzed by electron beam backscatter diffraction (EBSD), the orientation angle with respect to the plate surface of the oriented positive electrode plate of the primary particles included in the analyzed cross section is 0 °. The all-solid-state lithium battery according to any one of claims 1 to 6, wherein a total area of primary particles that are super 30 ° or less is 70% or more with respect to a total area of primary particles included in the cross section.
  8.  前記配向焼結体は、その断面を電子線後方散乱回折法(EBSD)により解析した場合に、解析された前記断面に含まれる一次粒子のうちアスペクト比が4以上である一次粒子の合計面積が、前記断面に含まれる一次粒子の総面積に対して70%以上である、請求項1~7のいずれか一項に記載の全固体リチウム電池。 When the cross section of the oriented sintered body is analyzed by electron beam backscatter diffraction (EBSD), the total area of primary particles having an aspect ratio of 4 or more among the primary particles included in the analyzed cross section is obtained. The all-solid-state lithium battery according to any one of claims 1 to 7, which is 70% or more based on a total area of primary particles included in the cross section.
  9.  前記複数の一次粒子の平均粒径が5μm以上である、請求項1~8のいずれか一項に記載の全固体リチウム電池。 The all-solid-state lithium battery according to any one of claims 1 to 8, wherein an average particle diameter of the plurality of primary particles is 5 μm or more.
  10.  前記配向焼結体の緻密度が90%以上である、請求項1~9のいずれか一項に記載の全固体リチウム電池。 The all-solid-state lithium battery according to any one of claims 1 to 9, wherein a density of the oriented sintered body is 90% or more.
  11.  前記配向正極板の前記固体電解質層と反対側の面に、厚さ5μm以上30μm以下の金属箔である正極集電体をさらに備えた、請求項1~10のいずれか一項に記載の全固体リチウム電池。 The all electrode according to any one of claims 1 to 10, further comprising a positive electrode current collector that is a metal foil having a thickness of 5 袖 m or more and 30 袖 m or less on a surface opposite to the solid electrolyte layer of the oriented positive electrode plate. Solid lithium battery.
  12.  前記配向正極板、前記固体電解質層及び存在する場合には前記負極層を含む積層体が外装材で包装又は封止されており、前記正極集電体が前記外装材の一部を構成し、前記外装材で包装又は封止される前記積層体の収容空間が減圧されている、請求項11に記載の全固体リチウム電池。 The oriented positive electrode plate, the solid electrolyte layer and, if present, the laminate including the negative electrode layer is packaged or sealed with an exterior material, and the positive current collector constitutes a part of the exterior material, The all-solid-state lithium battery of Claim 11 with which the accommodation space of the said laminated body packaged or sealed with the said exterior material is pressure-reduced.
  13.  前記固体電解質層を構成する前記リチウムイオン伝導材料が、ガーネット系セラミックス材料、窒化物系セラミックス材料、ペロブスカイト系セラミックス材料、リン酸系セラミックス材料、硫化物系セラミックス材料、リチウム-塩化物系材料、又は高分子系材料で構成されている、請求項1~12のいずれか一項に記載の全固体リチウム電池。 The lithium ion conductive material constituting the solid electrolyte layer is a garnet-based ceramic material, a nitride-based ceramic material, a perovskite-based ceramic material, a phosphate-based ceramic material, a sulfide-based ceramic material, a lithium-chloride-based material, or The all-solid-state lithium battery according to any one of claims 1 to 12, which is made of a polymer material.
  14.  前記固体電解質層を構成する前記リチウムイオン伝導材料が、Li-La-Zr-O系セラミックス材料及び/又はリン酸リチウムオキシナイトライド(LiPON)系セラミックス材料で構成される、請求項1~13のいずれか一項に記載の全固体リチウム電池。

     
    The lithium ion conductive material constituting the solid electrolyte layer is composed of a Li-La-Zr-O based ceramic material and / or a lithium phosphate oxynitride (LiPON) based ceramic material. The all-solid-state lithium battery as described in any one.

PCT/JP2017/025258 2016-08-02 2017-07-11 All-solid-state lithium battery WO2018025594A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018531804A JP6906522B2 (en) 2016-08-02 2017-07-11 All-solid-state lithium battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016152278 2016-08-02
JP2016-152278 2016-08-02
JP2017100866 2017-05-22
JP2017-100866 2017-05-22

Publications (1)

Publication Number Publication Date
WO2018025594A1 true WO2018025594A1 (en) 2018-02-08

Family

ID=61074091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025258 WO2018025594A1 (en) 2016-08-02 2017-07-11 All-solid-state lithium battery

Country Status (2)

Country Link
JP (1) JP6906522B2 (en)
WO (1) WO2018025594A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102100445B1 (en) * 2018-10-18 2020-04-13 한국생산기술연구원 Bipolar laminated structure using interfacial adhesive between current collectors, all solid lithium secondary battery comprising the same, and method for preparing the same
WO2020090470A1 (en) * 2018-11-01 2020-05-07 日本碍子株式会社 Lithium secondary battery
CN112074987A (en) * 2018-05-17 2020-12-11 日本碍子株式会社 Lithium secondary battery
WO2021009959A1 (en) * 2019-07-12 2021-01-21 パナソニックIpマネジメント株式会社 Battery
CN113454806A (en) * 2019-02-19 2021-09-28 康宁股份有限公司 Sintered electrode for battery and method for manufacturing same
US11271201B2 (en) 2019-07-15 2022-03-08 Corning Incorporated Energy device with lithium
DE112020005602T5 (en) 2019-11-12 2022-08-25 TDK Corporation SOLID ELECTROLYTE LAYER AND SOLID STATE ACCUMULATOR WITH THIS SOLID ELECTROLYTE LAYER
WO2022190378A1 (en) * 2021-03-12 2022-09-15 日産自動車株式会社 All-solid-state battery
WO2023224442A1 (en) * 2022-05-20 2023-11-23 주식회사 엘지화학 Cathode active material, method for manufacturing same, and cathode comprising same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003132887A (en) * 2001-10-29 2003-05-09 Matsushita Electric Ind Co Ltd Solid lithium secondary battery and its manufacturing method
JP2005243371A (en) * 2004-02-26 2005-09-08 Matsushita Electric Ind Co Ltd Positive electrode and rolling-type electrochemistry element using it
JP2009181871A (en) * 2008-01-31 2009-08-13 Toyota Motor Corp All-solid lithium secondary battery
JP2011009103A (en) * 2009-06-26 2011-01-13 Toyota Motor Corp All-solid lithium secondary battery
WO2013175993A1 (en) * 2012-05-24 2013-11-28 株式会社 村田製作所 All-solid-state cell
WO2015029289A1 (en) * 2013-08-29 2015-03-05 パナソニックIpマネジメント株式会社 All-solid-state lithium secondary battery
JP2016033880A (en) * 2014-07-31 2016-03-10 日本碍子株式会社 All-solid lithium battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003132887A (en) * 2001-10-29 2003-05-09 Matsushita Electric Ind Co Ltd Solid lithium secondary battery and its manufacturing method
JP2005243371A (en) * 2004-02-26 2005-09-08 Matsushita Electric Ind Co Ltd Positive electrode and rolling-type electrochemistry element using it
JP2009181871A (en) * 2008-01-31 2009-08-13 Toyota Motor Corp All-solid lithium secondary battery
JP2011009103A (en) * 2009-06-26 2011-01-13 Toyota Motor Corp All-solid lithium secondary battery
WO2013175993A1 (en) * 2012-05-24 2013-11-28 株式会社 村田製作所 All-solid-state cell
WO2015029289A1 (en) * 2013-08-29 2015-03-05 パナソニックIpマネジメント株式会社 All-solid-state lithium secondary battery
JP2016033880A (en) * 2014-07-31 2016-03-10 日本碍子株式会社 All-solid lithium battery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112074987A (en) * 2018-05-17 2020-12-11 日本碍子株式会社 Lithium secondary battery
CN112074987B (en) * 2018-05-17 2024-01-26 日本碍子株式会社 Lithium secondary battery
KR102100445B1 (en) * 2018-10-18 2020-04-13 한국생산기술연구원 Bipolar laminated structure using interfacial adhesive between current collectors, all solid lithium secondary battery comprising the same, and method for preparing the same
WO2020090470A1 (en) * 2018-11-01 2020-05-07 日本碍子株式会社 Lithium secondary battery
JPWO2020090470A1 (en) * 2018-11-01 2021-09-30 日本碍子株式会社 Lithium secondary battery
JP7061688B2 (en) 2018-11-01 2022-04-28 日本碍子株式会社 Lithium secondary battery
US11791465B2 (en) 2019-02-19 2023-10-17 Corning Incorporated Sintered electrodes for batteries and method of preparing same
CN113454806A (en) * 2019-02-19 2021-09-28 康宁股份有限公司 Sintered electrode for battery and method for manufacturing same
WO2021009959A1 (en) * 2019-07-12 2021-01-21 パナソニックIpマネジメント株式会社 Battery
JP7437786B2 (en) 2019-07-12 2024-02-26 パナソニックIpマネジメント株式会社 battery
US11271201B2 (en) 2019-07-15 2022-03-08 Corning Incorporated Energy device with lithium
DE112020005602T5 (en) 2019-11-12 2022-08-25 TDK Corporation SOLID ELECTROLYTE LAYER AND SOLID STATE ACCUMULATOR WITH THIS SOLID ELECTROLYTE LAYER
WO2022190378A1 (en) * 2021-03-12 2022-09-15 日産自動車株式会社 All-solid-state battery
WO2023224442A1 (en) * 2022-05-20 2023-11-23 주식회사 엘지화학 Cathode active material, method for manufacturing same, and cathode comprising same

Also Published As

Publication number Publication date
JP6906522B2 (en) 2021-07-21
JPWO2018025594A1 (en) 2019-05-30

Similar Documents

Publication Publication Date Title
WO2018025594A1 (en) All-solid-state lithium battery
KR102643570B1 (en) Plate-shaped lithium complex oxide
JP6646666B2 (en) All-solid lithium battery
WO2017065035A1 (en) All-solid-state lithium battery
JP6914285B2 (en) Lithium ion battery
JP6906524B2 (en) All-solid-state lithium battery
WO2016152565A1 (en) All solid state lithium battery
WO2018088522A1 (en) Secondary battery
JP6820960B2 (en) Lithium ion battery
WO2018025595A1 (en) Method for using all-solid-state lithium battery
JP2017054792A (en) Lithium battery
JP6430065B2 (en) Method for producing positive electrode
WO2017065034A1 (en) Production method for all-solid-state lithium battery
JP2017054761A (en) Method for inspecting all-solid lithium battery, and method for manufacturing all-solid lithium battery
JP2017135100A (en) Lithium ion battery
WO2022044409A1 (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018531804

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17836701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17836701

Country of ref document: EP

Kind code of ref document: A1