WO2018025420A1 - Wind power generation device - Google Patents
Wind power generation device Download PDFInfo
- Publication number
- WO2018025420A1 WO2018025420A1 PCT/JP2016/073200 JP2016073200W WO2018025420A1 WO 2018025420 A1 WO2018025420 A1 WO 2018025420A1 JP 2016073200 W JP2016073200 W JP 2016073200W WO 2018025420 A1 WO2018025420 A1 WO 2018025420A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- coil
- nacelle
- tower
- rotation axis
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D80/00—Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
- F03D80/80—Arrangement of components within nacelles or towers
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
- H02J50/12—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Definitions
- the present invention relates to a wind power generator.
- the power generation device using wind power includes a windmill that rotates by receiving wind and a generator that converts the rotational force of the windmill into electricity.
- a windmill is attached to the nacelle provided on the tower, and a generator is arrange
- the nacelle has a structure that can rotate in a horizontal plane according to the direction of the wind.
- the generator rotates together with the nacelle, and the electric power generated by the generator is transmitted to the outside via a cable in the tower that is fixed and does not move (see, for example, Patent Document 1).
- a ring and a brush are slidably provided on the rotating shaft of the nacelle, and the electric power of the generator is transmitted to the outside when the ring and the brush come into contact with each other.
- An object of the present invention is to solve the above-described problems and provide a wind turbine generator that can efficiently transmit power.
- a wind turbine generator is provided with a tower, a nacelle that is provided at an upper portion of the tower, and that rotates about an axial direction of the tower, that is, a direction along a vertical axis, as a rotation axis.
- a generator for generating electric power by the rotational force of the wind turbine a first board fixed to the nacelle, a first coil provided on the first board and supplied with electric power from the generator, and the tower
- a power transmission unit including: a fixed second substrate; and a second coil provided on the second substrate and opposed to the first coil with the first substrate and the second substrate interposed therebetween. The power transmission unit transmits the power supplied to the first coil to the second coil by causing the first coil to magnetically resonate with the second coil.
- the first coil and the second coil are spaced apart from each other with the first substrate and the second substrate interposed therebetween, and power is transmitted from the first coil to the second coil by the magnetic field resonance method. Therefore, even when the first coil rotates together with the rotation of the nacelle, it is possible to efficiently transmit power while suppressing wear due to friction of the first coil and the second coil.
- the first coil includes a metal wire wound around the rotation axis in a plane intersecting the rotation axis, and the second coil in a direction along the rotation axis. It is provided so as to be rotatable with respect to the second coil around the rotation axis. According to this, since the first coil is provided so as to intersect the rotation axis, even if the first coil rotates with the rotation of the nacelle, a change in the relative position of the first coil with respect to the second coil is suppressed. In addition, a decrease in power transmission efficiency can be suppressed.
- the distance between the first coil and the second coil is selected such that the power transmission efficiency is highest as in the design of the magnetic resonance circuit.
- the first substrate faces the second substrate in a direction along the rotation axis, and is provided to be rotatable about the rotation axis with respect to the second substrate. According to this, since the first coil rotates together with the rotation of the first substrate, it is possible to suppress wear due to friction between the first coil and another member.
- a surface of the first substrate that faces the second substrate is in contact with a surface of the second substrate that faces the first substrate. According to this, since the space
- the first substrate and the second substrate are disposed between a surface of the first substrate facing the second substrate and a surface of the second substrate facing the first substrate.
- a lubricating layer that suppresses the friction is provided. According to this, since the friction between the first substrate and the second substrate is suppressed by the lubricating layer, wear of the first substrate and the second substrate can be suppressed.
- the lubricating layer is a lubricating oil. According to this, it is possible to reliably suppress friction between the first substrate and the second substrate.
- the lubricating layer is a sheet of a self-lubricating material. According to this, it is possible to reliably suppress friction between the first substrate and the second substrate.
- the first substrate and the second substrate are resin substrates. According to this, since the first substrate and the second substrate do not shield the magnetic field, the first coil and the second coil are magnetically coupled to transmit power efficiently.
- the power transmission unit is disposed at a connection portion between the nacelle and the tower.
- the first substrate can be fixed to the nacelle
- the second substrate can be fixed to the tower, and the distance between the first coil and the second coil can be reduced, so that the power transmission efficiency can be improved. Can be increased.
- the connecting portion includes a bearing that rotatably supports the nacelle with respect to the tower. According to this, the change of the position of the axial direction with respect to the tower of a nacelle is suppressed by a bearing. Therefore, a change in the distance between the first coil and the second coil is suppressed, and a decrease in power transmission efficiency can be suppressed.
- the wind power generator of the present invention it is possible to transmit power efficiently.
- FIG. 1 is a side view showing a wind turbine generator according to an embodiment.
- FIG. 2 is a block diagram illustrating an example of the configuration of the wind turbine generator according to the embodiment.
- FIG. 3 is a cross-sectional view illustrating a connection portion between the nacelle and the tower according to the embodiment.
- FIG. 4 is a plan view showing a first substrate and a primary coil of the non-contact power transmission unit according to the embodiment.
- FIG. 5 is a plan view showing a second substrate and a secondary coil of the non-contact power transmission unit according to the embodiment.
- FIG. 6 is a cross-sectional view taken along the line VI-VI ′ of FIGS. 4 and 5.
- FIG. 7 is an explanatory diagram for explaining magnetic field resonance type power transmission of the contactless power transmission unit according to the embodiment.
- FIG. 8 is a circuit diagram illustrating an equivalent circuit of the contactless power transmission unit according to the embodiment.
- FIG. 9 is a cross-sectional view of a wind turbine generator according to a first modification.
- FIG. 10 is a cross-sectional view showing a non-contact power transmission unit of a wind turbine generator according to a second modification.
- FIG. 1 is a side view showing a wind turbine generator according to an embodiment.
- FIG. 2 is a block diagram illustrating an example of the configuration of the wind turbine generator according to the embodiment.
- the wind turbine generator 1 is a horizontal axis type propeller windmill, and includes a tower 2, a nacelle 4, a windmill 5, and a hub 6.
- Tower 2 is a pillar that rises upward from the ground.
- the tower 2 is a cylindrical column having a space inside, and is fixed to, for example, a foundation embedded in the ground.
- the cable 8, the power converter 18, the control unit 100, and the like are arranged in the internal space of the tower 2, the cable 8, the power converter 18, the control unit 100, and the like.
- the nacelle 4 is a box-shaped housing having a space inside, and is provided on the top of the tower 2.
- the nacelle 4 is rotatably provided with a rotation axis C (yaw axis) along the axial direction of the tower 2 as a central axis.
- a yaw driving device 15, a measuring device 16, a speed increaser 19, and a generator 20 are arranged inside the nacelle 4.
- a non-contact power transmission unit 10 is disposed at a connection portion between the nacelle 4 and the tower 2.
- a windmill 5 is provided on a side surface of the nacelle 4 via a hub 6.
- the wind turbine 5 includes a plurality of blades 7. In FIG. 1, two blades 7 are shown, but three or four or more blades 7 are provided, and are provided radially about the rotation axis Z along the horizontal direction.
- the blade 7 rotates about the rotation axis Z by generating lift.
- the height of the tower 2 is higher than the radial dimension of the wind turbine 5, that is, the radial dimension of one blade 7, and is sufficiently high from the ground installation surface so that the wind turbine 5 can receive a stable wind. Is set to
- the rotor 13 that is the rotation shaft of the windmill 5 rotates together with the windmill 5.
- the rotation of the windmill 5 is transmitted to the speed increaser 19 via the rotor 13.
- the speed increaser 19 is, for example, a gear box, and is a mechanism that increases the rotation from the windmill 5 to a rotational speed necessary for the generator 20.
- the rotation of the speed increaser 19 is transmitted to the generator 20 via the main shaft 14. Note that the speed increaser 19 is not provided, and the rotor 13 may be directly connected to the generator 20.
- the generator 20 generates electric power by the rotational force input from the main shaft 14.
- the power output from the generator 20 is supplied to the contactless power transmission unit 10.
- the non-contact power transmission unit 10 transmits power between a pair of coils arranged in a non-contact manner using magnetic field resonance.
- the non-contact power transmission unit 10 transmits the power from the generator 20 to the power conversion device 18 via the cable 8 disposed in the tower 2 (see FIG. 1).
- the power conversion device 18 is a device that converts supplied power into a frequency and voltage suitable for a power system such as an external substation and outputs the converted power to the external power system.
- the measuring device 16 includes, for example, an anemometer that measures the direction of the wind and an anemometer that measures the wind speed.
- the yaw drive device 15 rotates the nacelle 4 around the rotation axis C (see FIG. 1) so that the windmill 5 can receive wind efficiently based on the information of the measurement device 16.
- the control unit 100 is a circuit that receives information on the rotational speed of the rotor 13, information on the wind direction of the measuring device 16, and information on the power of the generator 20, and outputs control signals to various devices inside the nacelle 4. is there.
- the control unit 100 includes a CPU (Central Processing Unit), a memory such as a ROM (Read Only Memory) and a RAM (Random Access Memory), and a storage unit such as a flash memory and a hard disk drive. Control of the control unit 100 with respect to the generator 20 and the like is realized by the CPU reading an arithmetic program into a RAM or the like and performing arithmetic processing on information.
- the wind turbine generator 1 can convert the rotational force of the wind turbine 5 that rotates by receiving wind into electric power.
- the wind power generator 1 shown in FIG.1 and FIG.2 is an example to the last, and can be changed suitably.
- the nacelle 4 may be provided with a pitch driving device that changes the pitch angle of the windmill 5, a brake device that stops the rotation of the main shaft 14 when the wind power generator 1 is stopped, and the like.
- FIG. 3 is a cross-sectional view showing a connecting portion between the nacelle and the tower according to the embodiment.
- a bearing 3 is provided between the nacelle 4 and the tower 2.
- the bearing 3 is a rolling bearing having an outer ring 3 a, a rolling element 3 b, and an inner ring 3 c, and supports the nacelle 4 to be rotatable with respect to the tower 2.
- a non-contact power transmission unit 10 is disposed at a connection portion between the nacelle 4 and the tower 2.
- the tower 2 includes a column part 2a, a flange part 2b, a support part 2c, and an upper end part 2d.
- the column part 2a is a cylindrical member extending in a direction along the rotation axis C.
- the flange portion 2b is a plate-like member that extends inward in the radial direction from the inner peripheral surface of the column portion 2a and is annular when viewed from the direction along the rotation axis C.
- the support portion 2c is an annular member provided on the upper portion of the flange portion 2b, and supports the outer ring 3a of the bearing 3 in the axial direction.
- the upper end 2d is an annular member that is provided on the support 2c and is thinner in the radial direction than the support 2c.
- the outer ring 3a of the bearing 3 is fixed to the inner peripheral surface of the upper end 2d.
- the nacelle 4 includes a bottom plate 4a, a support portion 4b, and a wall portion 4c.
- the bottom plate 4 a is provided with an opening 4 d that communicates with the internal space of the tower 2.
- the support portion 4b protrudes toward the tower 2 side on the inner side in the radial direction of the bottom plate 4a, and supports the inner ring 3c of the bearing 3 in the axial direction.
- the wall 4c is an annular member that protrudes into the internal space of the tower 2 on the inner side in the radial direction of the support 4b.
- the inner ring 3c of the bearing 3 is fixed to the outer peripheral surface of the wall 4c.
- the nacelle 4 is connected to the tower 2 via the wall 4c and the bearing 3, and the radial position with respect to the tower 2 is fixed.
- the bearing 3 supports the nacelle 4 to be rotatable with respect to the tower 2.
- the connection structure of the nacelle 4 and the tower 2 shown in FIG. 3 is an example to the last, and can be changed suitably.
- a plurality of bearings 3 may be provided adjacent to each other in the axial direction.
- the bearing 3 may be a thrust bearing.
- the non-contact power transmission unit 10 includes a first substrate 31, a primary coil 35 provided on the upper surface of the first substrate 31, a second substrate 32, and a lower surface of the second substrate 32. And a secondary coil 36 provided in the.
- a lubricating layer 41 is provided between the lower surface of the first substrate 31 and the upper surface of the second substrate 32.
- the first substrate 31 is fixed to the lower end portion of the wall portion 4c of the nacelle 4 on the outer side in the radial direction.
- the second substrate 32 is fixed to the radially inner end of the flange portion 2 b of the tower 2. That is, the non-contact power transmission unit 10 is disposed at the connection portion between the nacelle 4 and the tower 2 in the internal space of the tower 2.
- the first substrate 31 is fixed to the nacelle 4 and rotates around the rotation axis C as the nacelle 4 rotates. Further, the position of the first substrate 31 in the direction along the rotation axis C is fixed by the bearing 3 and the wall 4c.
- the second substrate 32 is fixed to the tower 2 and does not rotate with the rotation of the nacelle 4. That is, the position of the second substrate 32 in the rotation direction around the rotation axis C and the position in the direction along the rotation axis C are fixed by the flange portion 2b.
- the first substrate 31 is rotatable relative to the fixed second substrate 32.
- the terminal portion 35 a of the primary coil 35 is connected to the generator 20 via the connection wiring 45. Further, the terminal portion 36 a of the secondary coil 36 is connected to the cable 8 fixed in the internal space of the tower 2 through the connection wiring 46.
- the non-contact type power transmission unit 10 uses the magnetic field resonance between the primary coil 35 and the secondary coil 36 that are arranged apart from each other to generate power from the generator 20 that is supplied to the primary coil 35. Transmit to the secondary coil 36.
- the wear due to friction of the primary coil 35 and the secondary coil 36 is suppressed, and the power is efficiently supplied. Can be transmitted. Since the primary coil 35 and the secondary coil 36 are prevented from being worn due to friction, for example, the life can be extended as compared with a configuration in which a ring and a brush are slid and contacted.
- the nacelle 4 is provided on the upper portion of the tower 2 so as to be able to receive wind efficiently, the burden on the operator in exchanging the equipment included in the nacelle 4 increases. In the present embodiment, the lifetime of the primary coil 35 and the secondary coil 36 can be extended, the frequency of replacement and inspection can be reduced, and the burden on the operator can be reduced.
- the first substrate 31 is rotatable relative to the second substrate 32 with the rotation axis C as the central axis, and the second substrate 32 is fixed to the tower 2 in a power state. Can be transmitted. Therefore, since the positions of the second substrate 32 and the secondary coil 36 do not change with respect to the cable 8 fixed in the internal space of the tower 2, the twist of the cable 8 is suppressed even when the nacelle 4 rotates. Is done. Therefore, the non-contact power transmission unit 10 of the present embodiment can efficiently transmit power while suppressing an increase in resistance or disconnection in the cable 8 or the connection wiring 46.
- the rotational driving of the nacelle 4 is not restricted by the twisting of the cable 8, and the nacelle 4 can be rotated in an appropriate direction corresponding to the wind direction and the wind speed. Can be suppressed.
- FIG. 4 is a plan view showing a first substrate and a primary coil of the non-contact power transmission unit according to the embodiment.
- FIG. 5 is a plan view showing a second substrate and a secondary coil of the non-contact power transmission unit according to the embodiment.
- FIG. 6 is a cross-sectional view taken along the line VI-VI ′ of FIGS. 4 and 5.
- 4 is a plan view when the first substrate 31 is viewed from the upper surface 31a side
- FIG. 5 is a plan view when the second substrate 32 is viewed from the lower surface 32b side.
- the first substrate 31 has a circular shape in plan view.
- a primary coil 35 is provided on the upper surface 31 a of the first substrate 31.
- the primary coil 35 is a planar coil composed of a metal wire 55 wound around the rotation axis C.
- the metal wiring 55 is provided in a spiral shape around the rotation axis C in the upper surface 31 a of the first substrate 31, that is, in a plane intersecting with the rotation axis C.
- a terminal portion 35 a of the primary coil 35 is connected to the generator 20.
- the first substrate 31 and the primary coil 35 are rotatable in the direction indicated by the arrow D around the rotation axis C as the nacelle 4 rotates.
- the second substrate 32 has a circular shape in plan view.
- a secondary coil 36 is provided on the lower surface 32 b of the second substrate 32.
- the secondary coil 36 is a planar coil constituted by a metal wiring 56 wound around the rotation axis C.
- the metal wiring 56 is provided in a spiral shape around the rotation axis C in the lower surface 32 b of the second substrate 32, that is, in a plane intersecting with the rotation axis C.
- the terminal part 36a of the secondary coil 36 is connected to the power converter 18 via the cable 8 (see FIG. 3). As described above, the second substrate 32 and the secondary coil 36 are fixed to the tower 2.
- the first substrate 31 and the second substrate 32 have substantially the same diameter.
- the primary coil 35 and the secondary coil 36 have substantially the same diameter and the same number of turns.
- the primary coil 35 and the secondary coil 36 have three windings, but are not limited thereto and can be changed as appropriate.
- the primary coil 35 and the secondary coil 36 are not limited to circular shape, For example, other shapes, such as square shape, polygonal shape, and ellipse shape, may be sufficient.
- the lower surface 31b of the first substrate 31 and the upper surface 32a of the second substrate 32 are arranged to face each other.
- a lubricating layer 41 is provided between the lower surface 31 b of the first substrate 31 and the upper surface 32 a of the second substrate 32.
- lubricating oil such as turbine oil, gear oil, and grease is used.
- a self-lubricating sheet such as a fluororesin sheet such as polytetrafluoroethylene (PTFE), a nylon sheet such as polyamide (PA), or a polyacetal (POM) resin sheet is used. be able to.
- the first substrate 31 is rotatable relative to the second substrate 32 around the rotation axis C in a state of facing the second substrate 32 with the lubricating layer 41 interposed therebetween. Since the lubrication layer 41 is provided, friction between the first substrate 31 and the second substrate 32 is reduced, and wear due to friction between the first substrate 31 and the second substrate 32 can be suppressed.
- the first substrate 31 and the second substrate 32 are resin substrates such as polycarbonate (PC), ABS resin (copolymer synthetic resin of acrylonitrile, butadiene, styrene), and phenol resin. is there.
- the primary coil 35 and the secondary coil 36 are arranged to face each other in the direction along the rotation axis C with the first substrate 31 and the second substrate 32 interposed therebetween.
- a protective layer 37 that covers the primary coil 35 is provided.
- a protective layer 38 that covers the secondary coil 36 is provided. Note that the protective layer 37 and the protective layer 38 are omitted in FIGS. 3 to 5. Since the protective layer 37 and the protective layer 38 are provided, corrosion of the primary coil 35 and the secondary coil 36 and damage when contacting with other members are suppressed.
- FIG. 7 is an explanatory diagram for explaining magnetic field resonance type power transmission of the contactless power transmission unit according to the embodiment.
- FIG. 8 is a circuit diagram illustrating an equivalent circuit of the contactless power transmission unit according to the embodiment.
- the primary coil 35 equivalently forms a transmission-side resonance circuit Tx by a resonance coil L1, a capacitor C1, and a resistor R1.
- the secondary coil 36 equivalently forms a reception-side resonance circuit Rx with the resonance coil L2, the capacitor C2, and the resistor R2.
- the capacitor C1 and the resistor R1 may each be configured by the capacitance and resistance of the primary coil 35, or other elements may be used. Further, the capacitor C2 and the resistor R2 may each be configured by the capacitance and resistance of the secondary coil 36, or other elements may be used.
- the electric power from the generator 20 is supplied to the reception-side resonance circuit Rx in a non-contact manner by the resonance of the primary coil 35 and the secondary coil 36, and is transmitted to the power converter 18 which is an addition of the reception-side resonance circuit Rx. Is done.
- the magnetic field resonance method is capable of long-distance transmission as compared with the electromagnetic induction method, and can suppress a decrease in transmission efficiency even when a positional deviation between the primary coil 35 and the secondary coil 36 occurs.
- the closer the distance between the primary coil 35 and the secondary coil 36 the larger the energy that can be transmitted.
- the non-contact power transmission unit 10 is disposed at the connection portion between the nacelle 4 and the tower 2, so that the first substrate 31 is fixed to the nacelle 4 and the second substrate 32 is connected to the tower 2.
- the first substrate 31 and the second substrate 32 can be arranged to face each other.
- the primary coil 35 and the secondary coil 36 are disposed close to each other in the direction along the rotation axis C with the first substrate 31 and the second substrate 32 interposed therebetween.
- the magnetic field coupling is favorably performed between the primary coil 35 and the secondary coil 36, and the transmission efficiency can be increased. Further, as shown in FIGS.
- the primary coil 35 and the secondary coil 36 have the same diameter and are arranged substantially coaxially with the rotation axis C as the center. For this reason, even when the primary coil 35 rotates around the rotation axis C, a change in the relative position of the primary coil 35 with respect to the secondary coil 36 is suppressed in a plane intersecting the rotation axis C. A reduction in power transmission efficiency can be suppressed.
- the position of the nacelle 4 in the direction along the rotation axis C is fixed to the tower 2 by the bearing 3. For this reason, the change of the position of the direction along the rotating shaft C of the 1st board
- the primary coil 35 and the secondary coil 36 have the same diameter, it is not restricted to this.
- the primary coil 35 and the secondary coil 36 may have different diameters or may have different shapes. Further, the center position of the primary coil 35 and the center position of the secondary coil 36 may be shifted. Even in such a configuration, the non-contact power transmission unit 10 transmits power by the magnetic field resonance method, so that relatively high transmission efficiency can be obtained.
- FIG. 9 is a cross-sectional view of a wind turbine generator according to a first modification.
- the non-contact power transmission unit 10 is disposed in the internal space of the tower 2, but is not limited thereto.
- the first substrate 31A covers the opening 4d of the nacelle 4 and is a wall provided at the radially inner end of the bottom plate 4a. 4e.
- the wall portion 4 e is an annular member, and extends in the direction along the rotation axis C from the bottom plate 4 a toward the inside of the nacelle 4.
- the first substrate 31 ⁇ / b> A is fixed to the upper portion of the wall portion 4 e of the nacelle 4 and is disposed in the inner space of the nacelle 4, and is provided so as to be rotatable about the rotation axis C as the nacelle 4 rotates.
- the second substrate 32A is disposed to face the tower 2A side with respect to the first substrate 31A.
- the tower 2A is provided with a wall portion 2e extending in the direction along the rotation axis C on the inner side in the radial direction of the flange portion 2b.
- the wall portion 2e is an annular member, extends from the flange portion 2b to the nacelle 4 side, and an outer peripheral surface thereof faces the wall portion 4c of the nacelle 4 and an inner peripheral surface of the wall portion 4e.
- the second substrate 32A is fixed to the upper part of the wall 2e. Thus, the second substrate 32A is fixed to the tower 2A via the wall 2e.
- the position of the second substrate 32A in the rotation direction around the rotation axis C and the position in the direction along the rotation axis C are fixed by the wall 2e and do not rotate with the rotation of the nacelle 4.
- the first substrate 31A is rotatable relative to the fixed second substrate 32A.
- the wall 4e is provided with an opening 4f that penetrates in the radial direction
- the wall 2e is provided with an opening 2f that penetrates in the radial direction. The operator can move between the tower 2A and the nacelle 4 through the opening 4f and the opening 2f.
- the first substrate 31A is disposed in the internal space of the nacelle 4, and the second substrate 32A is disposed above the upper end 2d of the tower 2A.
- the diameter of the first substrate 31A is larger than that of the second substrate 32A.
- the primary coil 35 and the secondary coil 36 shown in FIG. 9 are the same planar coils as the structure shown in FIG.4 and FIG.5, respectively.
- the primary coil 35 and the secondary coil 36 have the same diameter and are arranged substantially coaxially with the rotation axis C as the center.
- the primary coil 35 and the secondary coil 36 are arranged close to each other in the direction along the rotation axis C with the first substrate 31A and the second substrate 32A interposed therebetween.
- the magnetic field coupling is favorably performed between the primary coil 35 and the secondary coil 36, and the transmission efficiency can be increased.
- FIG. 10 is a cross-sectional view showing a non-contact power transmission unit of a wind turbine generator according to a second modification.
- the lubricating layer 41 is not provided between the first substrate 31 and the second substrate 32. That is, the first substrate 31 and the second substrate 32 are disposed so that the lower surface 31b of the first substrate 31 and the upper surface 32a of the second substrate 32 are in contact with each other.
- the first substrate 31 rotates with the rotation of the nacelle 4 and can rotate relative to the fixed second substrate 32.
- the lower surface 31 b of the first substrate 31 slides and rotates with respect to the upper surface 32 a of the second substrate 32.
- the friction generated between the first substrate 31 and the second substrate 32 can be reduced.
- a resin material such as polycarbonate (PC) as the first substrate 31 and the second substrate 32, wear due to friction of the first substrate 31 and the second substrate 32 can be suppressed.
- the wind turbine generator 1 of the present embodiment is provided with the tower 2, the nacelle 4 that is provided on the top of the tower 2, and rotates with the direction along the axial direction of the tower 2 as the rotation axis C, and the nacelle 4.
- the generator 20 generates electric power by the rotational force of the wind turbine supported rotatably, the first board 31 fixed to the nacelle 4, the first board 31, and the electric power is supplied from the generator 20.
- a primary coil 35 first coil
- a second substrate 32 fixed to the tower 2 a second substrate 32, and opposed to the primary coil 35 across the first substrate 31 and the second substrate 32.
- a non-contact power transmission unit 10 power transmission unit including a secondary coil 36 (second coil).
- the non-contact power transmission unit 10 includes a primary coil 35 and a secondary coil 36. The power supplied to the primary coil 35 is subjected to secondary by magnetic field resonance. Transmitting Il 36.
- the primary coil 35 and the secondary coil 36 are spaced apart from each other with the first substrate 31 and the second substrate 32 interposed therebetween, and the primary coil 35 is changed to the secondary coil 36 by a magnetic field resonance method. Power is transmitted. Therefore, even when the primary coil 35 rotates relative to the secondary coil 36 along with the rotation of the nacelle 4, power consumption is suppressed by suppressing wear due to friction of the primary coil 35 and the secondary coil 36. It can be transmitted well.
- the primary coil 35 includes a metal wire 55 wound around the rotation axis C in a plane that intersects the rotation axis C, and in a direction along the rotation axis C. It is opposed to the secondary coil 36 and is provided so as to be rotatable with respect to the secondary coil 36 around the rotation axis C. According to this, since the primary coil 35 is provided so as to intersect with the rotation axis C, even if the primary coil 35 rotates with the rotation of the nacelle 4, the primary coil 35 relative to the secondary coil 36. A change in position is suppressed, and a decrease in power transmission efficiency can be suppressed.
- the primary coil 35 and the secondary coil 36 are close to each other, it is possible to prevent the transmission distance from changing, the mutual inductance from changing, and the resonance frequency from changing. Further, since the frequency can be lowered by shortening the transmission distance, there is an advantage that an increase in loss due to the skin effect and the proximity effect that occurs in the case of a high frequency can be suppressed, and that an inverter can be easily manufactured. It should be noted that the distance between the primary coil 35 and the secondary coil 36 is selected so that the power transmission efficiency is highest as in the design of the magnetic resonance circuit.
- the first substrate 31 is opposed to the second substrate 32 in the direction along the rotation axis C, and is provided to be rotatable about the rotation axis C with respect to the second substrate 32. ing. According to this, since the primary coil 35 rotates with the rotation of the first substrate 31, the friction between the primary coil 35 and the secondary coil 36 and the friction between the primary coil 35 and the second substrate 32. Therefore, the wear of the primary coil 35 can be suppressed.
- the lower surface 31b of the first substrate 31 (the surface facing the second substrate 32) and the upper surface 32a of the second substrate 32 (the surface facing the first substrate 31) are in contact with each other. Yes. According to this, since the space
- a lubrication layer 41 that suppresses friction between the first substrate 31 and the second substrate 32 is provided between the lower surface 31b of the first substrate 31 (the surface facing the second substrate 32) and the upper surface 32a of the second substrate 32 (the surface facing the first substrate 31). According to this, since the lubrication layer 41 suppresses the generation of friction between the first substrate 31 and the second substrate 32, wear of the first substrate 31 and the second substrate 32 can be suppressed.
- the lubricating layer 41 is lubricating oil.
- the lubricating layer 41 is a self-lubricating material sheet. According to this, the generation of friction between the first substrate 31 and the second substrate 32 can be reliably suppressed.
- the first substrate 31 and the second substrate 32 are resin substrates. According to this, since the first substrate 31 and the second substrate 32 do not shield the magnetic field, the primary coil 35 and the secondary coil 36 are magnetically coupled to transmit power efficiently.
- the non-contact power transmission unit 10 is disposed at a connection portion between the nacelle 4 and the tower 2.
- the first substrate 31 can be fixed to the nacelle 4
- the second substrate 32 can be fixed to the tower 2
- the distance between the primary coil 35 and the secondary coil 36 can be reduced.
- Power transmission efficiency can be increased.
- the connecting portion includes a bearing 3 that supports the nacelle 4 so as to be rotatable with respect to the tower 2.
- the bearing 3 suppresses changes in the axial position of the nacelle 4 with respect to the tower 2. Therefore, in the direction along the rotation axis C, a change in the distance between the primary coil 35 and the secondary coil 36 is suppressed, and a decrease in power transmission efficiency can be suppressed.
- this invention is not limited by the content of this embodiment, It can change suitably.
- the structure for fixing the first substrate 31 to the nacelle 4 and the structure for fixing the second substrate 32 to the tower 2 can be appropriately changed.
- the shapes of the first substrate 31 and the second substrate 32 can also be appropriately changed to shapes suitable for fixing.
- a simple type windmill that does not have the yaw driving device 15 and has a stabilizer tail at the rear end and changes the direction of the windmill 5 by wind force may be used.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Power Engineering (AREA)
- Wind Motors (AREA)
Abstract
The present invention has: a tower; a nacelle that is provided in the upper portion of the tower and that rotates about a rotation axis which is in a direction along the axial direction of the tower; a power generator which generates power by using the rotational force of a windmill rotatably supported by the nacelle; and a power transmission unit including a first substrate fixed to the nacelle, a first coil which is provided to the first substrate and to which power is supplied from the power generator, a second substrate fixed to the tower, and a second coil which is provided to the second substrate and which faces the first coil across the first substrate and the second substrate. In the power transmission unit, the power supplied to the first coil is transmitted to the second coil by a magnetic field resonance of the first coil with the second coil.
Description
本発明は、風力発電装置に関する。
The present invention relates to a wind power generator.
風力を利用する発電装置は、風を受けて回転する風車と、風車の回転力を電気に変換する発電機とを含む。風車は、タワーの上に設けられたナセルに取り付けられ、発電機はナセル内に配置される。風車が効率良く風を受けるために、ナセルは風の向きに応じて水平面内で回転可能な構造になっている。発電機はナセルとともに回転し、発電機で発生した電力は固定されて動かないタワー内のケーブルを介して外部に送電される(例えば、特許文献1参照)。発電機からの電力を伝送するために、ナセルの回転軸にリングとブラシとが摺動可能に設けられ、リングとブラシとが接触することで発電機の電力が外部に伝送される。
The power generation device using wind power includes a windmill that rotates by receiving wind and a generator that converts the rotational force of the windmill into electricity. A windmill is attached to the nacelle provided on the tower, and a generator is arrange | positioned in a nacelle. In order for the windmill to receive wind efficiently, the nacelle has a structure that can rotate in a horizontal plane according to the direction of the wind. The generator rotates together with the nacelle, and the electric power generated by the generator is transmitted to the outside via a cable in the tower that is fixed and does not move (see, for example, Patent Document 1). In order to transmit electric power from the generator, a ring and a brush are slidably provided on the rotating shaft of the nacelle, and the electric power of the generator is transmitted to the outside when the ring and the brush come into contact with each other.
リングとブラシとの接触により電力を伝送する方法では、接触抵抗により電力が熱に変わるため損失が生じる可能性がある。また、ブラシはリングとの摩擦により損耗するため、接触抵抗が増大する場合がある。リングとブラシとを用いずにナセルから電力ケーブルをタワー内に引き出す方法では、ナセルの回転に伴って電力ケーブルのねじれが生じる。電力ケーブルは、繰り返しねじれが発生することで断線が生じる可能性がある。また、一定以上のねじれが生じないように、ナセルが回転した角度の合計を認識して制御する機構が必要となり、機器が複雑になる場合もある。
In the method of transmitting power by contact between the ring and the brush, there is a possibility that loss occurs because the power is changed to heat by the contact resistance. Further, since the brush is worn by friction with the ring, the contact resistance may increase. In the method of drawing the power cable from the nacelle into the tower without using the ring and the brush, the power cable is twisted as the nacelle rotates. The power cable may be disconnected by repeated twisting. In addition, a mechanism for recognizing and controlling the total angle of rotation of the nacelle is necessary so that twisting beyond a certain level does not occur, and the device may be complicated.
本発明は、上記課題を解決して、電力を効率良く伝送することが可能な風力発電装置を提供することを目的とする。
An object of the present invention is to solve the above-described problems and provide a wind turbine generator that can efficiently transmit power.
本発明の一態様による風力発電装置は、タワーと、前記タワーの上部に設けられ、前記タワーの軸方向つまり鉛直に沿った方向を回転軸として回転するナセルと、前記ナセルに回転可能に支持された風車の回転力により電力を発生する発電機と、前記ナセルに固定された第1基板と、前記第1基板に設けられ、前記発電機から電力が供給される第1コイルと、前記タワーに固定された第2基板と、前記第2基板に設けられ、前記第1基板及び前記第2基板を挟んで前記第1コイルと対向する第2コイルと、を含む電力伝送部と、を有し、前記電力伝送部は、前記第1コイルが前記第2コイルと磁界共鳴して、前記第1コイルに供給された前記電力を前記第2コイルに伝送する。
A wind turbine generator according to an aspect of the present invention is provided with a tower, a nacelle that is provided at an upper portion of the tower, and that rotates about an axial direction of the tower, that is, a direction along a vertical axis, as a rotation axis. A generator for generating electric power by the rotational force of the wind turbine, a first board fixed to the nacelle, a first coil provided on the first board and supplied with electric power from the generator, and the tower A power transmission unit including: a fixed second substrate; and a second coil provided on the second substrate and opposed to the first coil with the first substrate and the second substrate interposed therebetween. The power transmission unit transmits the power supplied to the first coil to the second coil by causing the first coil to magnetically resonate with the second coil.
これによれば、第1コイルと第2コイルとが、第1基板及び第2基板を挟んで離隔して配置されて、磁界共鳴方式により第1コイルから第2コイルに電力が伝送される。したがって、ナセルの回転とともに第1コイルが回転した場合であっても、第1コイル及び第2コイルの摩擦による損耗を抑制して電力を効率良く伝送することができる。
According to this, the first coil and the second coil are spaced apart from each other with the first substrate and the second substrate interposed therebetween, and power is transmitted from the first coil to the second coil by the magnetic field resonance method. Therefore, even when the first coil rotates together with the rotation of the nacelle, it is possible to efficiently transmit power while suppressing wear due to friction of the first coil and the second coil.
本発明の望ましい態様として、前記第1コイルは、前記回転軸に交差する面内において、前記回転軸の周囲に巻回された金属配線を含み、前記回転軸に沿った方向において前記第2コイルと対向し、前記回転軸を中心として前記第2コイルに対して回転可能に設けられている。これによれば、回転軸と交差して第1コイルが設けられるので、ナセルの回転とともに第1コイルが回転した場合であっても、第2コイルに対する第1コイルの相対位置の変化が抑制され、電力の伝送効率の低下を抑制できる。また、第1コイルと第2コイルとが近接することで、伝送距離が変化して相互インダクタンスが変化し共振周波数が変化することを抑制できる。また、伝送距離の短縮により周波数の低下を図ることができるため、高周波の場合に起こる表皮効果及び近接効果による損失増大を抑制できるうえ、インバータの製作が容易という利点もある。なお、第1コイルと第2コイルの距離は、磁気共鳴回路の設計と同様にもっとも電力の伝送効率が高くなる条件を選択するものとする。
As a preferred aspect of the present invention, the first coil includes a metal wire wound around the rotation axis in a plane intersecting the rotation axis, and the second coil in a direction along the rotation axis. It is provided so as to be rotatable with respect to the second coil around the rotation axis. According to this, since the first coil is provided so as to intersect the rotation axis, even if the first coil rotates with the rotation of the nacelle, a change in the relative position of the first coil with respect to the second coil is suppressed. In addition, a decrease in power transmission efficiency can be suppressed. Moreover, it can suppress that a transmission distance changes, a mutual inductance changes, and a resonant frequency changes because a 1st coil and a 2nd coil adjoin. Further, since the frequency can be lowered by shortening the transmission distance, there is an advantage that an increase in loss due to the skin effect and the proximity effect that occurs in the case of a high frequency can be suppressed, and that an inverter can be easily manufactured. It should be noted that the distance between the first coil and the second coil is selected such that the power transmission efficiency is highest as in the design of the magnetic resonance circuit.
本発明の望ましい態様として、前記第1基板は、前記回転軸に沿った方向において前記第2基板と対向し、前記第2基板に対して前記回転軸を中心として回転可能に設けられている。これによれば、第1基板の回転とともに第1コイルが回転するため、第1コイルと他の部材との間の摩擦による損耗を抑制することができる。
As a desirable aspect of the present invention, the first substrate faces the second substrate in a direction along the rotation axis, and is provided to be rotatable about the rotation axis with respect to the second substrate. According to this, since the first coil rotates together with the rotation of the first substrate, it is possible to suppress wear due to friction between the first coil and another member.
本発明の望ましい態様として、前記第1基板の前記第2基板に対向する面と、前記第2基板の前記第1基板に対向する面とが接している。これによれば、第1基板と第2基板との間の間隔が小さくなり、第1コイルと第2コイルとの距離を小さくすることができるので、電力の伝送効率を高めることができる。
As a desirable aspect of the present invention, a surface of the first substrate that faces the second substrate is in contact with a surface of the second substrate that faces the first substrate. According to this, since the space | interval between a 1st board | substrate and a 2nd board | substrate becomes small and the distance of a 1st coil and a 2nd coil can be made small, the transmission efficiency of electric power can be improved.
本発明の望ましい態様として、前記第1基板の前記第2基板に対向する面と、前記第2基板の前記第1基板に対向する面との間に、前記第1基板と前記第2基板との摩擦を抑制する潤滑層が設けられている。これによれば、潤滑層により、第1基板と第2基板との間の摩擦が抑制されるので、第1基板及び第2基板の損耗を抑制できる。
As a desirable aspect of the present invention, the first substrate and the second substrate are disposed between a surface of the first substrate facing the second substrate and a surface of the second substrate facing the first substrate. A lubricating layer that suppresses the friction is provided. According to this, since the friction between the first substrate and the second substrate is suppressed by the lubricating layer, wear of the first substrate and the second substrate can be suppressed.
本発明の望ましい態様として、前記潤滑層は、潤滑油である。これによれば、確実に第1基板と第2基板との間の摩擦を抑制することができる。
As a desirable aspect of the present invention, the lubricating layer is a lubricating oil. According to this, it is possible to reliably suppress friction between the first substrate and the second substrate.
本発明の望ましい態様として、前記潤滑層は、自己潤滑性素材のシートである。これによれば、確実に第1基板と第2基板との間の摩擦を抑制することができる。
As a desirable mode of the present invention, the lubricating layer is a sheet of a self-lubricating material. According to this, it is possible to reliably suppress friction between the first substrate and the second substrate.
本発明の望ましい態様として、前記第1基板及び前記第2基板は、樹脂基板である。これによれば、第1基板及び第2基板は、磁界を遮蔽しないので、第1コイルと第2コイルとが磁界結合して、電力を効率良く伝送することができる。
As a desirable aspect of the present invention, the first substrate and the second substrate are resin substrates. According to this, since the first substrate and the second substrate do not shield the magnetic field, the first coil and the second coil are magnetically coupled to transmit power efficiently.
本発明の望ましい態様として、前記電力伝送部は、前記ナセルと前記タワーとの接続部に配置される。これによれば、第1基板をナセルに固定し、第2基板をタワーに固定するとともに、第1コイルと第2コイルとの距離を小さくして配置することができるので、電力の伝送効率を高めることができる。
As a desirable mode of the present invention, the power transmission unit is disposed at a connection portion between the nacelle and the tower. According to this, the first substrate can be fixed to the nacelle, the second substrate can be fixed to the tower, and the distance between the first coil and the second coil can be reduced, so that the power transmission efficiency can be improved. Can be increased.
本発明の望ましい態様として、前記接続部は、前記ナセルを前記タワーに対して回転可能に支持する軸受を含む。これによれば、軸受により、ナセルのタワーに対する軸方向の位置の変化が抑制される。したがって、第1コイルと第2コイルとの距離の変化が抑制され、電力の伝送効率の低下を抑制できる。
As a desirable mode of the present invention, the connecting portion includes a bearing that rotatably supports the nacelle with respect to the tower. According to this, the change of the position of the axial direction with respect to the tower of a nacelle is suppressed by a bearing. Therefore, a change in the distance between the first coil and the second coil is suppressed, and a decrease in power transmission efficiency can be suppressed.
本発明の風力発電装置によれば、電力を効率良く伝送することが可能である。
According to the wind power generator of the present invention, it is possible to transmit power efficiently.
以下、本発明に係る風力発電装置の実施形態について、図面を参照して詳細に説明する。なお、以下の実施形態によりこの発明が限定されるものではない。また、実施形態の構成要素には、発明の同一性を維持しつつ置換可能かつ置換自明なものが含まれる。また、実施形態に記載された方法、装置及び変形例は、当業者自明の範囲内にて任意に組み合わせが可能である。
Hereinafter, embodiments of a wind turbine generator according to the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by the following embodiment. In addition, the constituent elements of the embodiment include those that can be replaced while maintaining the identity of the invention and that are obvious for replacement. In addition, the methods, apparatuses, and modifications described in the embodiments can be arbitrarily combined within the scope obvious to those skilled in the art.
(実施形態)
図1は、実施形態に係る風力発電装置を示す側面図である。図2は、実施形態に係る風力発電装置の構成の一例を示すブロック図である。図1に示すように、風力発電装置1は、水平軸型のプロペラ風車であって、タワー2と、ナセル4と、風車5と、ハブ6とを有する。 (Embodiment)
FIG. 1 is a side view showing a wind turbine generator according to an embodiment. FIG. 2 is a block diagram illustrating an example of the configuration of the wind turbine generator according to the embodiment. As shown in FIG. 1, thewind turbine generator 1 is a horizontal axis type propeller windmill, and includes a tower 2, a nacelle 4, a windmill 5, and a hub 6.
図1は、実施形態に係る風力発電装置を示す側面図である。図2は、実施形態に係る風力発電装置の構成の一例を示すブロック図である。図1に示すように、風力発電装置1は、水平軸型のプロペラ風車であって、タワー2と、ナセル4と、風車5と、ハブ6とを有する。 (Embodiment)
FIG. 1 is a side view showing a wind turbine generator according to an embodiment. FIG. 2 is a block diagram illustrating an example of the configuration of the wind turbine generator according to the embodiment. As shown in FIG. 1, the
タワー2は、地面から上方に立ち上がる柱である。タワー2は、内部に空間を有する筒状の柱であり、例えば地中に埋め込まれた基礎に固定されている。タワー2の内部空間に、ケーブル8、電力変換装置18、制御部100等が配置されている。
Tower 2 is a pillar that rises upward from the ground. The tower 2 is a cylindrical column having a space inside, and is fixed to, for example, a foundation embedded in the ground. In the internal space of the tower 2, the cable 8, the power converter 18, the control unit 100, and the like are arranged.
ナセル4は、内部に空間を有する箱状の筐体であり、タワー2の上部に設けられている。ナセル4は、タワー2の軸方向に沿った回転軸C(ヨー軸)を中心軸として回転可能に設けられている。図2に示すように、ナセル4の内部に、ヨー駆動装置15、計測装置16、増速機19、発電機20が配置されている。また、ナセル4とタワー2との接続部分に非接触式電力伝送部10が配置されている。
The nacelle 4 is a box-shaped housing having a space inside, and is provided on the top of the tower 2. The nacelle 4 is rotatably provided with a rotation axis C (yaw axis) along the axial direction of the tower 2 as a central axis. As shown in FIG. 2, a yaw driving device 15, a measuring device 16, a speed increaser 19, and a generator 20 are arranged inside the nacelle 4. Further, a non-contact power transmission unit 10 is disposed at a connection portion between the nacelle 4 and the tower 2.
図1に示すように、ナセル4の側面に、ハブ6を介して風車5が設けられている。風車5は複数のブレード7を有して構成される。図1では、2つのブレード7を示しているが、ブレード7は3つ、或いは4つ以上設けられ、水平方向に沿った回転軸Zを中心に放射状に設けられる。風車5は、回転軸Zに沿った方向の風を受けると、ブレード7に揚力が生じることにより回転軸Zを中心に回転する。
As shown in FIG. 1, a windmill 5 is provided on a side surface of the nacelle 4 via a hub 6. The wind turbine 5 includes a plurality of blades 7. In FIG. 1, two blades 7 are shown, but three or four or more blades 7 are provided, and are provided radially about the rotation axis Z along the horizontal direction. When the wind turbine 5 receives wind in the direction along the rotation axis Z, the blade 7 rotates about the rotation axis Z by generating lift.
タワー2の高さは、風車5の半径の寸法、すなわち1つのブレード7の径方向の寸法よりも高くなっており、風車5が安定した風を受けられるように地上設置面から十分な高さに設定されている。
The height of the tower 2 is higher than the radial dimension of the wind turbine 5, that is, the radial dimension of one blade 7, and is sufficiently high from the ground installation surface so that the wind turbine 5 can receive a stable wind. Is set to
図2に示すように、風車5が回転すると、風車5の回転軸であるロータ13が風車5とともに回転する。風車5の回転は、ロータ13を介して増速機19に伝達される。増速機19は、例えばギアボックスであり、風車5からの回転を発電機20に必要な回転数に増速させる機構である。増速機19の回転は、主軸14を介して発電機20に伝達される。なお、増速機19が設けられておらず、ロータ13が発電機20に直結された構成であってもよい。
As shown in FIG. 2, when the windmill 5 rotates, the rotor 13 that is the rotation shaft of the windmill 5 rotates together with the windmill 5. The rotation of the windmill 5 is transmitted to the speed increaser 19 via the rotor 13. The speed increaser 19 is, for example, a gear box, and is a mechanism that increases the rotation from the windmill 5 to a rotational speed necessary for the generator 20. The rotation of the speed increaser 19 is transmitted to the generator 20 via the main shaft 14. Note that the speed increaser 19 is not provided, and the rotor 13 may be directly connected to the generator 20.
発電機20は、主軸14から入力された回転力により、電力を発生する。発電機20から出力された電力は、非接触式電力伝送部10に供給される。非接触式電力伝送部10は、後述するように、磁界共鳴を利用して、非接触で配置された1対のコイル同士の間で電力を伝送する。非接触式電力伝送部10は、発電機20からの電力をタワー2(図1参照)内に配置されたケーブル8を介して電力変換装置18に伝送する。電力変換装置18は、供給された電力を、外部の変電所等の電力系統に適した周波数や電圧に変換して、外部の電力系統に出力する装置である。
The generator 20 generates electric power by the rotational force input from the main shaft 14. The power output from the generator 20 is supplied to the contactless power transmission unit 10. As will be described later, the non-contact power transmission unit 10 transmits power between a pair of coils arranged in a non-contact manner using magnetic field resonance. The non-contact power transmission unit 10 transmits the power from the generator 20 to the power conversion device 18 via the cable 8 disposed in the tower 2 (see FIG. 1). The power conversion device 18 is a device that converts supplied power into a frequency and voltage suitable for a power system such as an external substation and outputs the converted power to the external power system.
また、計測装置16は、例えば風の方向を計測する風向計や、風速を計測する風速計を含む。ヨー駆動装置15は、計測装置16の情報に基づいて、風車5が効率良く風を受けることができるように、回転軸C(図1参照)を中心にナセル4を回転駆動させる。
The measuring device 16 includes, for example, an anemometer that measures the direction of the wind and an anemometer that measures the wind speed. The yaw drive device 15 rotates the nacelle 4 around the rotation axis C (see FIG. 1) so that the windmill 5 can receive wind efficiently based on the information of the measurement device 16.
制御部100は、ロータ13の回転速度の情報や、計測装置16の風向等の情報や、発電機20の電力の情報を受け取って、ナセル4の内部の各種機器に制御信号を出力する回路である。制御部100は、CPU(Central Processing Unit)と、ROM(Read Only Memory)、RAM(Random Access Memory)等のメモリと、フラッシュメモリ、ハードディスクドライブ等の記憶部とを備える。制御部100の発電機20等に対する制御は、CPUが演算プログラムをRAM等に読み出して情報を演算処理することにより実現される。
The control unit 100 is a circuit that receives information on the rotational speed of the rotor 13, information on the wind direction of the measuring device 16, and information on the power of the generator 20, and outputs control signals to various devices inside the nacelle 4. is there. The control unit 100 includes a CPU (Central Processing Unit), a memory such as a ROM (Read Only Memory) and a RAM (Random Access Memory), and a storage unit such as a flash memory and a hard disk drive. Control of the control unit 100 with respect to the generator 20 and the like is realized by the CPU reading an arithmetic program into a RAM or the like and performing arithmetic processing on information.
以上のような構成により、風力発電装置1は、風を受けて回転する風車5の回転力を電力に変換することができる。なお、図1及び図2に示す風力発電装置1は、あくまで一例であり、適宜変更することができる。例えば、ナセル4の内部には、風車5のピッチ角を変化させるピッチ駆動装置や、風力発電装置1の停止時に主軸14の回転を停止させるブレーキ装置等が設けられていてもよい。
With the configuration as described above, the wind turbine generator 1 can convert the rotational force of the wind turbine 5 that rotates by receiving wind into electric power. In addition, the wind power generator 1 shown in FIG.1 and FIG.2 is an example to the last, and can be changed suitably. For example, the nacelle 4 may be provided with a pitch driving device that changes the pitch angle of the windmill 5, a brake device that stops the rotation of the main shaft 14 when the wind power generator 1 is stopped, and the like.
図3は、実施形態に係るナセルとタワーとの接続部を示す断面図である。図3に示すように、ナセル4とタワー2との間に軸受3が設けられている。軸受3は、外輪3aと、転動体3bと、内輪3cとを有する転がり軸受であり、ナセル4をタワー2に対して回転可能に支持する。また、ナセル4とタワー2との接続部に非接触式電力伝送部10が配置されている。
FIG. 3 is a cross-sectional view showing a connecting portion between the nacelle and the tower according to the embodiment. As shown in FIG. 3, a bearing 3 is provided between the nacelle 4 and the tower 2. The bearing 3 is a rolling bearing having an outer ring 3 a, a rolling element 3 b, and an inner ring 3 c, and supports the nacelle 4 to be rotatable with respect to the tower 2. Further, a non-contact power transmission unit 10 is disposed at a connection portion between the nacelle 4 and the tower 2.
具体的には、タワー2は、柱部2aと、フランジ部2bと、支持部2cと、上端部2dとを含む。柱部2aは、回転軸Cに沿った方向に延びる筒状の部材である。フランジ部2bは、柱部2aの内周面から径方向の内側に延び、回転軸Cに沿った方向から見たときに環状となる板状の部材である。支持部2cは、フランジ部2bの上部に設けられた環状の部材であり、軸受3の外輪3aを軸方向に支持する。上端部2dは、支持部2cの上に設けられ、径方向の厚さが支持部2cよりも薄い環状の部材である。軸受3の外輪3aは、上端部2dの内周面に固定される。
Specifically, the tower 2 includes a column part 2a, a flange part 2b, a support part 2c, and an upper end part 2d. The column part 2a is a cylindrical member extending in a direction along the rotation axis C. The flange portion 2b is a plate-like member that extends inward in the radial direction from the inner peripheral surface of the column portion 2a and is annular when viewed from the direction along the rotation axis C. The support portion 2c is an annular member provided on the upper portion of the flange portion 2b, and supports the outer ring 3a of the bearing 3 in the axial direction. The upper end 2d is an annular member that is provided on the support 2c and is thinner in the radial direction than the support 2c. The outer ring 3a of the bearing 3 is fixed to the inner peripheral surface of the upper end 2d.
ナセル4は、底板4aと、支持部4bと、壁部4cとを含む。底板4aは、タワー2の内部空間に連通する開口4dが設けられている。支持部4bは、底板4aの径方向の内側において、タワー2側に向かって突出し、軸受3の内輪3cを軸方向に支持する。壁部4cは、支持部4bの径方向の内側において、タワー2の内部空間に突出する環状の部材である。軸受3の内輪3cは、壁部4cの外周面に固定される。ナセル4は、壁部4c及び軸受3を介してタワー2と接続され、タワー2に対する径方向の位置が固定される。
The nacelle 4 includes a bottom plate 4a, a support portion 4b, and a wall portion 4c. The bottom plate 4 a is provided with an opening 4 d that communicates with the internal space of the tower 2. The support portion 4b protrudes toward the tower 2 side on the inner side in the radial direction of the bottom plate 4a, and supports the inner ring 3c of the bearing 3 in the axial direction. The wall 4c is an annular member that protrudes into the internal space of the tower 2 on the inner side in the radial direction of the support 4b. The inner ring 3c of the bearing 3 is fixed to the outer peripheral surface of the wall 4c. The nacelle 4 is connected to the tower 2 via the wall 4c and the bearing 3, and the radial position with respect to the tower 2 is fixed.
このような構成により、軸受3は、ナセル4をタワー2に対して回転可能に支持する。なお、図3に示す、ナセル4とタワー2との接続構造はあくまで一例であり、適宜変更することができる。例えば、複数の軸受3を軸方向に隣り合って設けてもよい。また、軸受3は、スラスト軸受を用いてもよい。
With such a configuration, the bearing 3 supports the nacelle 4 to be rotatable with respect to the tower 2. In addition, the connection structure of the nacelle 4 and the tower 2 shown in FIG. 3 is an example to the last, and can be changed suitably. For example, a plurality of bearings 3 may be provided adjacent to each other in the axial direction. The bearing 3 may be a thrust bearing.
図3に示すように、非接触式電力伝送部10は、第1基板31と、第1基板31の上面に設けられた1次コイル35と、第2基板32と、第2基板32の下面に設けられた2次コイル36とを有する。第1基板31の下面と第2基板32の上面との間には、潤滑層41が設けられている。第1基板31は、径方向の外側においてナセル4の壁部4cの下端部に固定されている。また、第2基板32は、タワー2のフランジ部2bの径方向内側の端部に固定されている。すなわち、非接触式電力伝送部10は、タワー2の内部空間において、ナセル4とタワー2との接続部に配置される。
As shown in FIG. 3, the non-contact power transmission unit 10 includes a first substrate 31, a primary coil 35 provided on the upper surface of the first substrate 31, a second substrate 32, and a lower surface of the second substrate 32. And a secondary coil 36 provided in the. A lubricating layer 41 is provided between the lower surface of the first substrate 31 and the upper surface of the second substrate 32. The first substrate 31 is fixed to the lower end portion of the wall portion 4c of the nacelle 4 on the outer side in the radial direction. The second substrate 32 is fixed to the radially inner end of the flange portion 2 b of the tower 2. That is, the non-contact power transmission unit 10 is disposed at the connection portion between the nacelle 4 and the tower 2 in the internal space of the tower 2.
このような構成により、第1基板31はナセル4に固定され、ナセル4の回転とともに回転軸Cを中心に回転する。また、第1基板31の回転軸Cに沿った方向の位置は、軸受3及び壁部4cにより固定される。一方、第2基板32はタワー2に固定されており、ナセル4の回転とともに回転しない。すなわち、第2基板32の回転軸Cを中心とする回転方向の位置、及び回転軸Cに沿った方向の位置は、フランジ部2bにより固定される。第1基板31は、固定された第2基板32に対して相対的に回転可能になっている。
With such a configuration, the first substrate 31 is fixed to the nacelle 4 and rotates around the rotation axis C as the nacelle 4 rotates. Further, the position of the first substrate 31 in the direction along the rotation axis C is fixed by the bearing 3 and the wall 4c. On the other hand, the second substrate 32 is fixed to the tower 2 and does not rotate with the rotation of the nacelle 4. That is, the position of the second substrate 32 in the rotation direction around the rotation axis C and the position in the direction along the rotation axis C are fixed by the flange portion 2b. The first substrate 31 is rotatable relative to the fixed second substrate 32.
1次コイル35の端子部35aは、接続配線45を介して発電機20と接続される。また、2次コイル36の端子部36aは、接続配線46を介して、タワー2の内部空間に固定されたケーブル8と接続される。非接触式電力伝送部10は、離隔して配置された1次コイル35と2次コイル36との間の磁界共鳴を利用して、1次コイル35に供給された発電機20からの電力を2次コイル36に伝送する。
The terminal portion 35 a of the primary coil 35 is connected to the generator 20 via the connection wiring 45. Further, the terminal portion 36 a of the secondary coil 36 is connected to the cable 8 fixed in the internal space of the tower 2 through the connection wiring 46. The non-contact type power transmission unit 10 uses the magnetic field resonance between the primary coil 35 and the secondary coil 36 that are arranged apart from each other to generate power from the generator 20 that is supplied to the primary coil 35. Transmit to the secondary coil 36.
このような構成により、ナセル4の回転とともに第1基板31及び1次コイル35が回転した場合であっても、1次コイル35及び2次コイル36の摩擦による損耗を抑制して電力を効率良く伝送することができる。1次コイル35及び2次コイル36は、摩擦による損耗が抑制されるので、例えば、リングとブラシとを摺動させて接触する構成に比べて、長寿命化が可能である。上述のようにナセル4は、風を効率良く受けることができるように高いタワー2の上部に設けられているので、ナセル4に含まれる機器の交換作業における作業者の負担が大きくなる。本実施形態においては、1次コイル35及び2次コイル36の長寿命化が可能であり、交換の頻度、及び点検の頻度を少なくすることができ、作業者の負担を低減することができる。
With such a configuration, even when the first substrate 31 and the primary coil 35 rotate together with the rotation of the nacelle 4, the wear due to friction of the primary coil 35 and the secondary coil 36 is suppressed, and the power is efficiently supplied. Can be transmitted. Since the primary coil 35 and the secondary coil 36 are prevented from being worn due to friction, for example, the life can be extended as compared with a configuration in which a ring and a brush are slid and contacted. As described above, since the nacelle 4 is provided on the upper portion of the tower 2 so as to be able to receive wind efficiently, the burden on the operator in exchanging the equipment included in the nacelle 4 increases. In the present embodiment, the lifetime of the primary coil 35 and the secondary coil 36 can be extended, the frequency of replacement and inspection can be reduced, and the burden on the operator can be reduced.
また、第1基板31は、回転軸Cを中心軸として、第2基板32に対して相対的に回転可能になっており、第2基板32はタワー2に対して固定された状態で、電力の伝送が可能である。したがって、タワー2の内部空間に固定されたケーブル8に対して、第2基板32及び2次コイル36の位置は変化しないので、ナセル4が回転した場合であっても、ケーブル8のねじれが抑制される。したがって、本実施形態の非接触式電力伝送部10は、ケーブル8や接続配線46における抵抗の増大や断線等を抑制して、電力を効率良く伝送することができる。また、ケーブル8のねじれが抑制されるので、ナセル4の回転駆動がケーブル8のねじれによって規制されず、ナセル4を風向きや風速に対応した適切な方向に回転させることができ、ブレード7の破損を抑制することが可能である。
Further, the first substrate 31 is rotatable relative to the second substrate 32 with the rotation axis C as the central axis, and the second substrate 32 is fixed to the tower 2 in a power state. Can be transmitted. Therefore, since the positions of the second substrate 32 and the secondary coil 36 do not change with respect to the cable 8 fixed in the internal space of the tower 2, the twist of the cable 8 is suppressed even when the nacelle 4 rotates. Is done. Therefore, the non-contact power transmission unit 10 of the present embodiment can efficiently transmit power while suppressing an increase in resistance or disconnection in the cable 8 or the connection wiring 46. Further, since the twisting of the cable 8 is suppressed, the rotational driving of the nacelle 4 is not restricted by the twisting of the cable 8, and the nacelle 4 can be rotated in an appropriate direction corresponding to the wind direction and the wind speed. Can be suppressed.
次に、非接触式電力伝送部10の構成について説明する。図4は、実施形態に係る非接触式電力伝送部の第1基板及び1次コイルを示す平面図である。図5は、実施形態に係る非接触式電力伝送部の第2基板及び2次コイルを示す平面図である。図6は、図4及び図5のVI-VI’線に沿う断面図である。なお、図4は、第1基板31を上面31a側から見たときの平面図であり、図5は、第2基板32を下面32b側から見たときの平面図である。
Next, the configuration of the non-contact power transmission unit 10 will be described. FIG. 4 is a plan view showing a first substrate and a primary coil of the non-contact power transmission unit according to the embodiment. FIG. 5 is a plan view showing a second substrate and a secondary coil of the non-contact power transmission unit according to the embodiment. FIG. 6 is a cross-sectional view taken along the line VI-VI ′ of FIGS. 4 and 5. 4 is a plan view when the first substrate 31 is viewed from the upper surface 31a side, and FIG. 5 is a plan view when the second substrate 32 is viewed from the lower surface 32b side.
図4に示すように、第1基板31は、平面視で円形状である。第1基板31の上面31aに1次コイル35が設けられる。1次コイル35は、回転軸Cの周囲に巻回された金属配線55により構成される平面コイルである。金属配線55は、第1基板31の上面31a、すなわち回転軸Cと交差する平面内において、回転軸Cを中心にらせん状に設けられる。1次コイル35の端子部35aが発電機20に接続される。上述のように、第1基板31及び1次コイル35は、ナセル4の回転とともに、回転軸Cを中心に矢印Dに示す方向に回転可能になっている。
As shown in FIG. 4, the first substrate 31 has a circular shape in plan view. A primary coil 35 is provided on the upper surface 31 a of the first substrate 31. The primary coil 35 is a planar coil composed of a metal wire 55 wound around the rotation axis C. The metal wiring 55 is provided in a spiral shape around the rotation axis C in the upper surface 31 a of the first substrate 31, that is, in a plane intersecting with the rotation axis C. A terminal portion 35 a of the primary coil 35 is connected to the generator 20. As described above, the first substrate 31 and the primary coil 35 are rotatable in the direction indicated by the arrow D around the rotation axis C as the nacelle 4 rotates.
図5に示すように、第2基板32は、平面視で円形状である。第2基板32の下面32bに2次コイル36が設けられる。2次コイル36は、回転軸Cの周囲に巻回された金属配線56により構成される平面コイルである。金属配線56は、第2基板32の下面32b、すなわち回転軸Cと交差する平面内において、回転軸Cを中心にらせん状に設けられる。2次コイル36の端子部36aがケーブル8(図3参照)を介して電力変換装置18に接続される。上述のように、第2基板32及び2次コイル36は、タワー2に対して固定されている。
As shown in FIG. 5, the second substrate 32 has a circular shape in plan view. A secondary coil 36 is provided on the lower surface 32 b of the second substrate 32. The secondary coil 36 is a planar coil constituted by a metal wiring 56 wound around the rotation axis C. The metal wiring 56 is provided in a spiral shape around the rotation axis C in the lower surface 32 b of the second substrate 32, that is, in a plane intersecting with the rotation axis C. The terminal part 36a of the secondary coil 36 is connected to the power converter 18 via the cable 8 (see FIG. 3). As described above, the second substrate 32 and the secondary coil 36 are fixed to the tower 2.
本実施形態において、第1基板31と第2基板32とは、実質的に等しい直径を有している。また、1次コイル35と2次コイル36とは、実質的に等しい直径を有し、同じ巻き数を有している。なお、図4及び図5では、1次コイル35及び2次コイル36は、3回の巻き数を有しているが、これに限定されず、適宜変更することができる。また、1次コイル35及び2次コイル36は、円形状に限定されず、例えば、四角形状、多角形状、長円形状等の他の形状であってもよい。
In the present embodiment, the first substrate 31 and the second substrate 32 have substantially the same diameter. Further, the primary coil 35 and the secondary coil 36 have substantially the same diameter and the same number of turns. In FIGS. 4 and 5, the primary coil 35 and the secondary coil 36 have three windings, but are not limited thereto and can be changed as appropriate. Moreover, the primary coil 35 and the secondary coil 36 are not limited to circular shape, For example, other shapes, such as square shape, polygonal shape, and ellipse shape, may be sufficient.
図6に示すように、第1基板31の下面31bと第2基板32の上面32aとが互いに対向して配置される。第1基板31の下面31bと第2基板32の上面32aとの間には、潤滑層41が設けられている。潤滑層41として、例えばタービン油、ギア油、グリース等の潤滑油が用いられる。或いは、潤滑層41として、ポリテトラフルオロエチレン(PTFE:polytetrafluoroethylene)等のフッ素樹脂シートや、ポリアミド(PA)等のナイロン系シートや、ポリアセタール(POM)樹脂シートなどの自己潤滑性を持つシートを用いることができる。
As shown in FIG. 6, the lower surface 31b of the first substrate 31 and the upper surface 32a of the second substrate 32 are arranged to face each other. A lubricating layer 41 is provided between the lower surface 31 b of the first substrate 31 and the upper surface 32 a of the second substrate 32. As the lubricating layer 41, for example, lubricating oil such as turbine oil, gear oil, and grease is used. Alternatively, as the lubricating layer 41, a self-lubricating sheet such as a fluororesin sheet such as polytetrafluoroethylene (PTFE), a nylon sheet such as polyamide (PA), or a polyacetal (POM) resin sheet is used. be able to.
第1基板31は、潤滑層41を挟んで第2基板32と対向した状態で、回転軸Cを中心として、第2基板32に対して相対的に回転可能になっている。潤滑層41を設けているので、第1基板31と第2基板32との摩擦が低減され、第1基板31と第2基板32との摩擦による損耗を抑制できる。また、第1基板31及び第2基板32は、例えばポリカーボネート(PC)、ABS樹脂(アクリロニトリル(Acrylonitrile)、ブタジエン(Butadiene)、スチレン(Styrene)の共重合合成樹脂)、フェノール樹脂等の樹脂基板である。
The first substrate 31 is rotatable relative to the second substrate 32 around the rotation axis C in a state of facing the second substrate 32 with the lubricating layer 41 interposed therebetween. Since the lubrication layer 41 is provided, friction between the first substrate 31 and the second substrate 32 is reduced, and wear due to friction between the first substrate 31 and the second substrate 32 can be suppressed. The first substrate 31 and the second substrate 32 are resin substrates such as polycarbonate (PC), ABS resin (copolymer synthetic resin of acrylonitrile, butadiene, styrene), and phenol resin. is there.
1次コイル35と2次コイル36は、第1基板31及び第2基板32を挟んで回転軸Cに沿った方向において対向して配置される。図6に示すように、1次コイル35を覆う保護層37が設けられている。また、2次コイル36を覆う保護層38が設けられている。なお、保護層37及び保護層38は、図3から図5では、省略して示している。保護層37及び保護層38が設けられているので、1次コイル35及び2次コイル36の腐食や、他の部材と接触したときの損傷が抑制される。
The primary coil 35 and the secondary coil 36 are arranged to face each other in the direction along the rotation axis C with the first substrate 31 and the second substrate 32 interposed therebetween. As shown in FIG. 6, a protective layer 37 that covers the primary coil 35 is provided. A protective layer 38 that covers the secondary coil 36 is provided. Note that the protective layer 37 and the protective layer 38 are omitted in FIGS. 3 to 5. Since the protective layer 37 and the protective layer 38 are provided, corrosion of the primary coil 35 and the secondary coil 36 and damage when contacting with other members are suppressed.
上述したように、本実施形態の非接触式電力伝送部10において、離隔して配置された1次コイル35と2次コイル36との間の磁界共鳴を利用して電力の伝送が行われる。図7は、実施形態に係る非接触式電力伝送部の磁界共鳴方式の電力伝送を説明するための説明図である。図8は、実施形態に係る非接触式電力伝送部の等価回路を示す回路図である。図8に示すように、本実施形態において、1次コイル35は、等価的に共振コイルL1とキャパシタC1と抵抗R1とにより送信側共振回路Txを構成する。2次コイル36は、等価的に共振コイルL2とキャパシタC2と抵抗R2とにより受信側共振回路Rxを構成する。キャパシタC1と抵抗R1は、それぞれ1次コイル35が有する容量及び抵抗により構成されていてもよく、別の素子を用いてもよい。また、キャパシタC2と抵抗R2は、それぞれ2次コイル36が有する容量及び抵抗により構成されていてもよく、別の素子を用いてもよい。
As described above, in the non-contact power transmission unit 10 of the present embodiment, power transmission is performed using magnetic field resonance between the primary coil 35 and the secondary coil 36 that are spaced apart from each other. FIG. 7 is an explanatory diagram for explaining magnetic field resonance type power transmission of the contactless power transmission unit according to the embodiment. FIG. 8 is a circuit diagram illustrating an equivalent circuit of the contactless power transmission unit according to the embodiment. As shown in FIG. 8, in this embodiment, the primary coil 35 equivalently forms a transmission-side resonance circuit Tx by a resonance coil L1, a capacitor C1, and a resistor R1. The secondary coil 36 equivalently forms a reception-side resonance circuit Rx with the resonance coil L2, the capacitor C2, and the resistor R2. The capacitor C1 and the resistor R1 may each be configured by the capacitance and resistance of the primary coil 35, or other elements may be used. Further, the capacitor C2 and the resistor R2 may each be configured by the capacitance and resistance of the secondary coil 36, or other elements may be used.
本実施形態において、1次コイル35の共振周波数f1は、f1=1/(2×π×(L1×C1)1/2)によって定められる。また、2次コイル36の共振周波数f2は、f2=1/(2×π×(L2×C2)1/2)によって定められる。
In the present embodiment, the resonance frequency f1 of the primary coil 35 is determined by f1 = 1 / (2 × π × (L1 × C1) 1/2 ). The resonance frequency f2 of the secondary coil 36 is determined by f2 = 1 / (2 × π × (L2 × C2) 1/2 ).
図7に示すように、1次コイル35に発電機20からの電力が供給されて送信側共振回路Txが励起される。これにより送信側共振回路Txにはコイルが形成する誘導磁界Mが発生する。1次コイル35の共振周波数f1と、2次コイル36の共振周波数f2とが一致した場合、又は、十分に近い場合に磁界共鳴が発生する。受信側共振回路Rxにおいて、2次コイル36が磁界共鳴によって共振すると、誘導磁界Mを介して、磁界エネルギーが伝送される。これにより、発電機20からの電力が、1次コイル35と2次コイル36の共振によって非接触で受信側共振回路Rxに供給され、受信側共振回路Rxの付加である電力変換装置18に伝達される。
As shown in FIG. 7, power from the generator 20 is supplied to the primary coil 35 to excite the transmission-side resonance circuit Tx. As a result, an induction magnetic field M formed by the coil is generated in the transmission-side resonance circuit Tx. Magnetic field resonance occurs when the resonance frequency f1 of the primary coil 35 matches the resonance frequency f2 of the secondary coil 36, or when the resonance frequency f2 is sufficiently close. In the reception-side resonance circuit Rx, when the secondary coil 36 resonates due to magnetic field resonance, magnetic field energy is transmitted via the induced magnetic field M. Thereby, the electric power from the generator 20 is supplied to the reception-side resonance circuit Rx in a non-contact manner by the resonance of the primary coil 35 and the secondary coil 36, and is transmitted to the power converter 18 which is an addition of the reception-side resonance circuit Rx. Is done.
磁界共鳴方式は、電磁誘導方式に比べて、遠距離伝送が可能であり、1次コイル35と2次コイル36との位置ずれが生じた場合でも伝送効率の低下を抑制できる。ただし、1次コイル35と2次コイル36との距離が近いほど、伝送できるエネルギーを大きくすることができる。
The magnetic field resonance method is capable of long-distance transmission as compared with the electromagnetic induction method, and can suppress a decrease in transmission efficiency even when a positional deviation between the primary coil 35 and the secondary coil 36 occurs. However, the closer the distance between the primary coil 35 and the secondary coil 36, the larger the energy that can be transmitted.
図3に示すように、非接触式電力伝送部10はナセル4とタワー2との接続部に配置されているので、第1基板31をナセル4に固定し、第2基板32をタワー2に固定した状態で、第1基板31と第2基板32とを対向させて配置することができる。そして、1次コイル35と2次コイル36とは、第1基板31及び第2基板32を挟んで、回転軸Cに沿った方向において近接して配置される。これによって、1次コイル35と2次コイル36との間で良好に磁界結合が行われ、伝送効率を高めることができる。また、図4から図6に示すように、1次コイル35と2次コイル36とは、同じ直径を有し、回転軸Cを中心に実質的に同軸に配置される。このため、1次コイル35が回転軸Cを中心に回転した場合であっても、回転軸Cと交差する平面内において、2次コイル36に対する1次コイル35の相対位置の変化が抑制され、電力の伝送効率の低下を抑制できる。
As shown in FIG. 3, the non-contact power transmission unit 10 is disposed at the connection portion between the nacelle 4 and the tower 2, so that the first substrate 31 is fixed to the nacelle 4 and the second substrate 32 is connected to the tower 2. In a fixed state, the first substrate 31 and the second substrate 32 can be arranged to face each other. The primary coil 35 and the secondary coil 36 are disposed close to each other in the direction along the rotation axis C with the first substrate 31 and the second substrate 32 interposed therebetween. As a result, the magnetic field coupling is favorably performed between the primary coil 35 and the secondary coil 36, and the transmission efficiency can be increased. Further, as shown in FIGS. 4 to 6, the primary coil 35 and the secondary coil 36 have the same diameter and are arranged substantially coaxially with the rotation axis C as the center. For this reason, even when the primary coil 35 rotates around the rotation axis C, a change in the relative position of the primary coil 35 with respect to the secondary coil 36 is suppressed in a plane intersecting the rotation axis C. A reduction in power transmission efficiency can be suppressed.
また、ナセル4の回転軸Cに沿った方向の位置は、軸受3によってタワー2に対して固定されている。このため、ナセル4に固定された第1基板31と、タワー2に固定された第2基板32との回転軸Cに沿った方向の位置の変化が抑制される。すなわち、回転軸Cに沿った方向において、1次コイル35と2次コイル36との距離の変化が抑制されるので、相互インダクタンスが変化し共振周波数が変化することを抑制できる。したがって、電力の伝送効率の低下を抑制できる。
Further, the position of the nacelle 4 in the direction along the rotation axis C is fixed to the tower 2 by the bearing 3. For this reason, the change of the position of the direction along the rotating shaft C of the 1st board | substrate 31 fixed to the nacelle 4 and the 2nd board | substrate 32 fixed to the tower 2 is suppressed. That is, since the change in the distance between the primary coil 35 and the secondary coil 36 is suppressed in the direction along the rotation axis C, it is possible to suppress the mutual inductance from changing and the resonance frequency from changing. Therefore, a reduction in power transmission efficiency can be suppressed.
なお、1次コイル35と2次コイル36とは同じ直径を有しているが、これに限られない。1次コイル35と2次コイル36とは異なる直径を有していてもよく、或いは異なる形状であってもよい。また、1次コイル35の中心位置と2次コイル36の中心位置とがずれていてもよい。このような構成であっても、非接触式電力伝送部10は磁界共鳴方式により電力を伝送するので、比較的高い伝送効率が得られる。
In addition, although the primary coil 35 and the secondary coil 36 have the same diameter, it is not restricted to this. The primary coil 35 and the secondary coil 36 may have different diameters or may have different shapes. Further, the center position of the primary coil 35 and the center position of the secondary coil 36 may be shifted. Even in such a configuration, the non-contact power transmission unit 10 transmits power by the magnetic field resonance method, so that relatively high transmission efficiency can be obtained.
(第1変形例)
図9は、第1変形例に係る風力発電装置の断面図である。図3に示す例では、非接触式電力伝送部10はタワー2の内部空間に配置されているが、これに限定されない。図9に示すように、本実施形態の非接触式電力伝送部10Aにおいて、第1基板31Aはナセル4の開口4dを覆って、底板4aの径方向の内側の端部に設けられた壁部4eに設けられている。壁部4eは、環状の部材であり、底板4aからナセル4の内部に向かって回転軸Cに沿った方向に延びる。第1基板31Aは、ナセル4の壁部4eの上部に固定されてナセル4の内部空間に配置され、ナセル4の回転とともに回転軸Cを中心に回転可能に設けられている。 (First modification)
FIG. 9 is a cross-sectional view of a wind turbine generator according to a first modification. In the example illustrated in FIG. 3, the non-contactpower transmission unit 10 is disposed in the internal space of the tower 2, but is not limited thereto. As shown in FIG. 9, in the non-contact power transmission unit 10A of the present embodiment, the first substrate 31A covers the opening 4d of the nacelle 4 and is a wall provided at the radially inner end of the bottom plate 4a. 4e. The wall portion 4 e is an annular member, and extends in the direction along the rotation axis C from the bottom plate 4 a toward the inside of the nacelle 4. The first substrate 31 </ b> A is fixed to the upper portion of the wall portion 4 e of the nacelle 4 and is disposed in the inner space of the nacelle 4, and is provided so as to be rotatable about the rotation axis C as the nacelle 4 rotates.
図9は、第1変形例に係る風力発電装置の断面図である。図3に示す例では、非接触式電力伝送部10はタワー2の内部空間に配置されているが、これに限定されない。図9に示すように、本実施形態の非接触式電力伝送部10Aにおいて、第1基板31Aはナセル4の開口4dを覆って、底板4aの径方向の内側の端部に設けられた壁部4eに設けられている。壁部4eは、環状の部材であり、底板4aからナセル4の内部に向かって回転軸Cに沿った方向に延びる。第1基板31Aは、ナセル4の壁部4eの上部に固定されてナセル4の内部空間に配置され、ナセル4の回転とともに回転軸Cを中心に回転可能に設けられている。 (First modification)
FIG. 9 is a cross-sectional view of a wind turbine generator according to a first modification. In the example illustrated in FIG. 3, the non-contact
第2基板32Aは、第1基板31Aに対してタワー2A側に対向して配置される。タワー2Aは、フランジ部2bの径方向の内側において、回転軸Cに沿った方向に延びる壁部2eが設けられている。壁部2eは、環状の部材であり、フランジ部2bからナセル4側に延び、外周面がナセル4の壁部4c及び壁部4eの内周面と対向する。第2基板32Aは、壁部2eの上部に固定される。このように、第2基板32Aは、壁部2eを介してタワー2Aに固定される。これにより、第2基板32Aの回転軸Cを中心とする回転方向の位置、及び回転軸Cに沿った方向の位置は、壁部2eにより固定され、ナセル4の回転とともに回転しない。本実施形態においても、第1基板31Aは、固定された第2基板32Aに対して相対的に回転可能になっている。なお、本変形例において、壁部4eには、径方向に貫通する開口4fが設けられており、壁部2eには、径方向に貫通する開口2fが設けられている。作業者は、開口4f及び開口2fを通ってタワー2Aとナセル4との間の移動を行うことができる。
The second substrate 32A is disposed to face the tower 2A side with respect to the first substrate 31A. The tower 2A is provided with a wall portion 2e extending in the direction along the rotation axis C on the inner side in the radial direction of the flange portion 2b. The wall portion 2e is an annular member, extends from the flange portion 2b to the nacelle 4 side, and an outer peripheral surface thereof faces the wall portion 4c of the nacelle 4 and an inner peripheral surface of the wall portion 4e. The second substrate 32A is fixed to the upper part of the wall 2e. Thus, the second substrate 32A is fixed to the tower 2A via the wall 2e. As a result, the position of the second substrate 32A in the rotation direction around the rotation axis C and the position in the direction along the rotation axis C are fixed by the wall 2e and do not rotate with the rotation of the nacelle 4. Also in this embodiment, the first substrate 31A is rotatable relative to the fixed second substrate 32A. In this modification, the wall 4e is provided with an opening 4f that penetrates in the radial direction, and the wall 2e is provided with an opening 2f that penetrates in the radial direction. The operator can move between the tower 2A and the nacelle 4 through the opening 4f and the opening 2f.
本実施形態において、第1基板31Aは、ナセル4の内部空間に配置され、第2基板32Aはタワー2Aの上端部2dよりも上側に配置される。また、第1基板31Aの直径は第2基板32Aよりも大きい。このような構成であっても、第1基板31Aに設けられた1次コイル35と第2基板32Aに設けられた2次コイル36との間の磁界共鳴を利用して発電機20からの電力を効率良く伝送することができる。
In the present embodiment, the first substrate 31A is disposed in the internal space of the nacelle 4, and the second substrate 32A is disposed above the upper end 2d of the tower 2A. The diameter of the first substrate 31A is larger than that of the second substrate 32A. Even in such a configuration, the electric power from the generator 20 is utilized by utilizing the magnetic field resonance between the primary coil 35 provided on the first substrate 31A and the secondary coil 36 provided on the second substrate 32A. Can be transmitted efficiently.
なお、図9に示す1次コイル35及び2次コイル36は、それぞれ、図4及び図5に示した構成と同様の平面コイルである。そして、1次コイル35と2次コイル36とは、同じ直径を有し、回転軸Cを中心に実質的に同軸に配置される。1次コイル35と2次コイル36とは、第1基板31A及び第2基板32Aを挟んで、回転軸Cに沿った方向において近接して配置される。これによって、1次コイル35と2次コイル36との間で良好に磁界結合が行われ、伝送効率を高めることができる。
In addition, the primary coil 35 and the secondary coil 36 shown in FIG. 9 are the same planar coils as the structure shown in FIG.4 and FIG.5, respectively. The primary coil 35 and the secondary coil 36 have the same diameter and are arranged substantially coaxially with the rotation axis C as the center. The primary coil 35 and the secondary coil 36 are arranged close to each other in the direction along the rotation axis C with the first substrate 31A and the second substrate 32A interposed therebetween. As a result, the magnetic field coupling is favorably performed between the primary coil 35 and the secondary coil 36, and the transmission efficiency can be increased.
(第2変形例)
図10は、第2変形例に係る風力発電装置の非接触式電力伝送部を示す断面図である。本実施形態の非接触式電力伝送部10Bにおいて、第1基板31と第2基板32との間に潤滑層41が設けられていない。すなわち、第1基板31の下面31bと第2基板32の上面32aとが接して、第1基板31と第2基板32とが配置される。 (Second modification)
FIG. 10 is a cross-sectional view showing a non-contact power transmission unit of a wind turbine generator according to a second modification. In the contactlesspower transmission unit 10 </ b> B of the present embodiment, the lubricating layer 41 is not provided between the first substrate 31 and the second substrate 32. That is, the first substrate 31 and the second substrate 32 are disposed so that the lower surface 31b of the first substrate 31 and the upper surface 32a of the second substrate 32 are in contact with each other.
図10は、第2変形例に係る風力発電装置の非接触式電力伝送部を示す断面図である。本実施形態の非接触式電力伝送部10Bにおいて、第1基板31と第2基板32との間に潤滑層41が設けられていない。すなわち、第1基板31の下面31bと第2基板32の上面32aとが接して、第1基板31と第2基板32とが配置される。 (Second modification)
FIG. 10 is a cross-sectional view showing a non-contact power transmission unit of a wind turbine generator according to a second modification. In the contactless
上述のように、第1基板31はナセル4の回転とともに回転し、固定された第2基板32に対して相対的に回転可能となっている。第1基板31の下面31bが第2基板32の上面32aに対して摺動して回転する。ここで、ナセル4の回転の速度は十分小さいので、第1基板31と第2基板32との間に発生する摩擦を小さくできる。例えば、第1基板31及び第2基板32としてポリカーボネート(PC)等の樹脂材料を用いることで、第1基板31及び第2基板32の摩擦による損耗を抑制できる。
As described above, the first substrate 31 rotates with the rotation of the nacelle 4 and can rotate relative to the fixed second substrate 32. The lower surface 31 b of the first substrate 31 slides and rotates with respect to the upper surface 32 a of the second substrate 32. Here, since the rotation speed of the nacelle 4 is sufficiently low, the friction generated between the first substrate 31 and the second substrate 32 can be reduced. For example, by using a resin material such as polycarbonate (PC) as the first substrate 31 and the second substrate 32, wear due to friction of the first substrate 31 and the second substrate 32 can be suppressed.
本変形例において、ナセル4の回転とともに第1基板31及び1次コイル35が回転した場合であっても、1次コイル35及び2次コイル36の摩擦による損耗を抑制して電力を効率良く伝送することができる。また、潤滑層41が設けられていないので、第1基板31と第2基板32との間隔が小さくなり、1次コイル35と2次コイル36との距離を近づけることが可能になるため、電力の伝送効率を高められる。
In this modification, even when the first substrate 31 and the primary coil 35 are rotated together with the rotation of the nacelle 4, wear due to friction of the primary coil 35 and the secondary coil 36 is suppressed and electric power is efficiently transmitted. can do. In addition, since the lubricating layer 41 is not provided, the distance between the first substrate 31 and the second substrate 32 is reduced, and the distance between the primary coil 35 and the secondary coil 36 can be reduced. Can improve the transmission efficiency.
以上説明したように、本実施形態の風力発電装置1は、タワー2と、タワー2の上部に設けられ、タワー2の軸方向に沿った方向を回転軸Cとして回転するナセル4と、ナセル4に回転可能に支持された風車の回転力により電力を発生する発電機20と、ナセル4に固定された第1基板31と、第1基板31に設けられ、発電機20から電力が供給される1次コイル35(第1コイル)と、タワー2に固定された第2基板32と、第2基板32に設けられ、第1基板31及び第2基板32を挟んで1次コイル35と対向する2次コイル36(第2コイル)と、を含む非接触式電力伝送部10(電力伝送部)と、を有し、非接触式電力伝送部10は、1次コイル35が2次コイル36と磁界共鳴して、1次コイル35に供給された電力を2次コイル36に伝送する。
As described above, the wind turbine generator 1 of the present embodiment is provided with the tower 2, the nacelle 4 that is provided on the top of the tower 2, and rotates with the direction along the axial direction of the tower 2 as the rotation axis C, and the nacelle 4. The generator 20 generates electric power by the rotational force of the wind turbine supported rotatably, the first board 31 fixed to the nacelle 4, the first board 31, and the electric power is supplied from the generator 20. A primary coil 35 (first coil), a second substrate 32 fixed to the tower 2, a second substrate 32, and opposed to the primary coil 35 across the first substrate 31 and the second substrate 32. A non-contact power transmission unit 10 (power transmission unit) including a secondary coil 36 (second coil). The non-contact power transmission unit 10 includes a primary coil 35 and a secondary coil 36. The power supplied to the primary coil 35 is subjected to secondary by magnetic field resonance. Transmitting Il 36.
これによれば、1次コイル35と2次コイル36とが、第1基板31及び第2基板32を挟んで離隔して配置されて、磁界共鳴方式により1次コイル35から2次コイル36に電力が伝送される。したがって、ナセル4の回転とともに1次コイル35が2次コイル36に対して相対的に回転した場合であっても、1次コイル35及び2次コイル36の摩擦による損耗を抑制して電力を効率良く伝送することができる。
According to this, the primary coil 35 and the secondary coil 36 are spaced apart from each other with the first substrate 31 and the second substrate 32 interposed therebetween, and the primary coil 35 is changed to the secondary coil 36 by a magnetic field resonance method. Power is transmitted. Therefore, even when the primary coil 35 rotates relative to the secondary coil 36 along with the rotation of the nacelle 4, power consumption is suppressed by suppressing wear due to friction of the primary coil 35 and the secondary coil 36. It can be transmitted well.
本実施形態の風力発電装置1において、1次コイル35は、回転軸Cに交差する面内において、回転軸Cの周囲に巻回された金属配線55を含み、回転軸Cに沿った方向において2次コイル36と対向し、回転軸Cを中心として2次コイル36に対して回転可能に設けられている。これによれば、回転軸Cと交差して1次コイル35が設けられるので、ナセル4の回転とともに1次コイル35が回転した場合であっても、2次コイル36に対する1次コイル35の相対位置の変化が抑制され、電力の伝送効率の低下を抑制できる。また、1次コイル35と2次コイル36とが近接することで、伝送距離が変化して相互インダクタンスが変化し共振周波数が変化することを抑制できる。また、伝送距離の短縮により周波数の低下を図ることができるため、高周波の場合に起こる表皮効果及び近接効果による損失増大を抑制できるうえ、インバータの製作が容易という利点もある。なお、1次コイル35と2次コイル36の距離は、磁気共鳴回路の設計と同様にもっとも電力の伝送効率が高くなる条件を選択するものとする。
In the wind turbine generator 1 of the present embodiment, the primary coil 35 includes a metal wire 55 wound around the rotation axis C in a plane that intersects the rotation axis C, and in a direction along the rotation axis C. It is opposed to the secondary coil 36 and is provided so as to be rotatable with respect to the secondary coil 36 around the rotation axis C. According to this, since the primary coil 35 is provided so as to intersect with the rotation axis C, even if the primary coil 35 rotates with the rotation of the nacelle 4, the primary coil 35 relative to the secondary coil 36. A change in position is suppressed, and a decrease in power transmission efficiency can be suppressed. Further, since the primary coil 35 and the secondary coil 36 are close to each other, it is possible to prevent the transmission distance from changing, the mutual inductance from changing, and the resonance frequency from changing. Further, since the frequency can be lowered by shortening the transmission distance, there is an advantage that an increase in loss due to the skin effect and the proximity effect that occurs in the case of a high frequency can be suppressed, and that an inverter can be easily manufactured. It should be noted that the distance between the primary coil 35 and the secondary coil 36 is selected so that the power transmission efficiency is highest as in the design of the magnetic resonance circuit.
本実施形態の風力発電装置1において、第1基板31は、回転軸Cに沿った方向において第2基板32と対向し、第2基板32に対して回転軸Cを中心として回転可能に設けられている。これによれば、第1基板31の回転とともに1次コイル35が回転するため、1次コイル35と2次コイル36との間の摩擦及び1次コイル35と第2基板32との間の摩擦が生じないため、1次コイル35の損耗を抑制することができる。
In the wind turbine generator 1 of the present embodiment, the first substrate 31 is opposed to the second substrate 32 in the direction along the rotation axis C, and is provided to be rotatable about the rotation axis C with respect to the second substrate 32. ing. According to this, since the primary coil 35 rotates with the rotation of the first substrate 31, the friction between the primary coil 35 and the secondary coil 36 and the friction between the primary coil 35 and the second substrate 32. Therefore, the wear of the primary coil 35 can be suppressed.
本実施形態の風力発電装置1において、第1基板31の下面31b(第2基板32に対向する面)と、第2基板32の上面32a(第1基板31に対向する面)とが接している。これによれば、第1基板31と第2基板32との間の間隔が小さくなり、1次コイル35と2次コイル36との距離を小さくすることができるので、電力の伝送効率を高めることができる。
In the wind turbine generator 1 of the present embodiment, the lower surface 31b of the first substrate 31 (the surface facing the second substrate 32) and the upper surface 32a of the second substrate 32 (the surface facing the first substrate 31) are in contact with each other. Yes. According to this, since the space | interval between the 1st board | substrate 31 and the 2nd board | substrate 32 becomes small and the distance of the primary coil 35 and the secondary coil 36 can be made small, electric power transmission efficiency is improved. Can do.
本実施形態の風力発電装置1において、第1基板31の下面31b(第2基板32に対向する面)と、第2基板32の上面32a(第1基板31に対向する面)との間に、第1基板31と第2基板32との摩擦を抑制する潤滑層41が設けられている。これによれば、潤滑層41により、第1基板31と第2基板32との間の摩擦の発生が抑制されるので、第1基板31及び第2基板32の損耗を抑制できる。
In the wind turbine generator 1 of the present embodiment, between the lower surface 31b of the first substrate 31 (the surface facing the second substrate 32) and the upper surface 32a of the second substrate 32 (the surface facing the first substrate 31). A lubrication layer 41 that suppresses friction between the first substrate 31 and the second substrate 32 is provided. According to this, since the lubrication layer 41 suppresses the generation of friction between the first substrate 31 and the second substrate 32, wear of the first substrate 31 and the second substrate 32 can be suppressed.
本実施形態の風力発電装置1において、潤滑層41は、潤滑油である。或いは、潤滑層41は、自己潤滑性素材のシートである。これによれば、確実に第1基板31と第2基板32との間の摩擦の発生を抑制することができる。
In the wind power generator 1 of the present embodiment, the lubricating layer 41 is lubricating oil. Alternatively, the lubricating layer 41 is a self-lubricating material sheet. According to this, the generation of friction between the first substrate 31 and the second substrate 32 can be reliably suppressed.
本実施形態の風力発電装置1において、第1基板31及び第2基板32は、樹脂基板である。これによれば、第1基板31及び第2基板32は、磁界を遮蔽しないので、1次コイル35と2次コイル36とが磁界結合して、電力を効率良く伝送することができる。
In the wind power generator 1 of the present embodiment, the first substrate 31 and the second substrate 32 are resin substrates. According to this, since the first substrate 31 and the second substrate 32 do not shield the magnetic field, the primary coil 35 and the secondary coil 36 are magnetically coupled to transmit power efficiently.
本実施形態の風力発電装置1において、非接触式電力伝送部10は、ナセル4とタワー2との接続部に配置される。これによれば、第1基板31をナセル4に固定し、第2基板32をタワー2に固定するとともに、1次コイル35と2次コイル36との距離を小さくして配置することができるので、電力の伝送効率を高めることができる。
In the wind power generator 1 of the present embodiment, the non-contact power transmission unit 10 is disposed at a connection portion between the nacelle 4 and the tower 2. According to this, the first substrate 31 can be fixed to the nacelle 4, the second substrate 32 can be fixed to the tower 2, and the distance between the primary coil 35 and the secondary coil 36 can be reduced. , Power transmission efficiency can be increased.
本実施形態の風力発電装置1において、接続部は、ナセル4をタワー2に対して回転可能に支持する軸受3を含む。これによれば、軸受3により、ナセル4のタワー2に対する軸方向の位置の変化が抑制される。したがって、回転軸Cに沿った方向において、1次コイル35と2次コイル36との距離の変化が抑制され、電力の伝送効率の低下を抑制できる。
In the wind power generator 1 of the present embodiment, the connecting portion includes a bearing 3 that supports the nacelle 4 so as to be rotatable with respect to the tower 2. According to this, the bearing 3 suppresses changes in the axial position of the nacelle 4 with respect to the tower 2. Therefore, in the direction along the rotation axis C, a change in the distance between the primary coil 35 and the secondary coil 36 is suppressed, and a decrease in power transmission efficiency can be suppressed.
以上、本発明の実施形態について説明したが、この実施形態の内容によりこの発明が限定されるものではなく、適宜変更することができる。例えば、第1基板31をナセル4に固定するための構造や、第2基板32をタワー2に固定するための構造は適宜変更することができる。第1基板31及び第2基板32の形状も、固定するために適した形状に適宜変更することができる。また、ヨー駆動装置15が無く、後端に安定用尾翼を持ち、風力によって風車5の向きを変える簡便な形式の風車でも良い。
As mentioned above, although embodiment of this invention was described, this invention is not limited by the content of this embodiment, It can change suitably. For example, the structure for fixing the first substrate 31 to the nacelle 4 and the structure for fixing the second substrate 32 to the tower 2 can be appropriately changed. The shapes of the first substrate 31 and the second substrate 32 can also be appropriately changed to shapes suitable for fixing. Further, a simple type windmill that does not have the yaw driving device 15 and has a stabilizer tail at the rear end and changes the direction of the windmill 5 by wind force may be used.
1 風力発電装置
2、2A タワー
3 軸受
3a 外輪
3b 転動体
3c 内輪
4 ナセル
5 風車
8 ケーブル
10、10A、10B 非接触式電力伝送部
20 発電機
31、31A 第1基板
32、32A 第2基板
35 1次コイル
36 2次コイル
41 潤滑層
Rx 受信側共振回路
Tx 送信側共振回路 DESCRIPTION OFSYMBOLS 1 Wind power generator 2, 2A tower 3 Bearing 3a Outer ring 3b Rolling element 3c Inner ring 4 Nacelle 5 Windmill 8 Cable 10, 10A, 10B Non-contact-type electric power transmission part 20 Generator 31, 31A 1st board 32, 32A 2nd board 35 Primary coil 36 Secondary coil 41 Lubricating layer Rx Reception side resonance circuit Tx Transmission side resonance circuit
2、2A タワー
3 軸受
3a 外輪
3b 転動体
3c 内輪
4 ナセル
5 風車
8 ケーブル
10、10A、10B 非接触式電力伝送部
20 発電機
31、31A 第1基板
32、32A 第2基板
35 1次コイル
36 2次コイル
41 潤滑層
Rx 受信側共振回路
Tx 送信側共振回路 DESCRIPTION OF
Claims (10)
- タワーと、
前記タワーの上部に設けられ、前記タワーの軸方向に沿った方向を回転軸として回転するナセルと、
前記ナセルに回転可能に支持された風車の回転力により電力を発生する発電機と、
前記ナセルに固定された第1基板と、前記第1基板に設けられ、前記発電機から電力が供給される第1コイルと、前記タワーに固定された第2基板と、前記第2基板に設けられ、前記第1基板及び前記第2基板を挟んで前記第1コイルと対向する第2コイルと、を含む電力伝送部と、を有し、
前記電力伝送部は、前記第1コイルが前記第2コイルと磁界共鳴して、前記第1コイルに供給された前記電力を前記第2コイルに伝送する風力発電装置。 Tower and
A nacelle provided at an upper portion of the tower and rotating around a direction along the axial direction of the tower as a rotation axis;
A generator that generates electric power by the rotational force of a windmill rotatably supported by the nacelle;
A first substrate fixed to the nacelle, a first coil provided on the first substrate and supplied with power from the generator, a second substrate fixed to the tower, and provided on the second substrate A power transmission unit including a second coil facing the first coil across the first substrate and the second substrate,
The power transmission unit is a wind power generator that transmits the power supplied to the first coil to the second coil by causing the first coil to magnetically resonate with the second coil. - 前記第1コイルは、前記回転軸に交差する面内において、前記回転軸の周囲に巻回された金属配線を含み、前記回転軸に沿った方向において前記第2コイルと対向し、前記回転軸を中心として前記第2コイルに対して回転可能に設けられている請求項1に記載の風力発電装置。 The first coil includes a metal wire wound around the rotation axis in a plane intersecting the rotation axis, and is opposed to the second coil in a direction along the rotation axis. The wind turbine generator according to claim 1, wherein the wind turbine generator is rotatably provided with respect to the second coil.
- 前記第1基板は、前記回転軸に沿った方向において前記第2基板と対向し、前記第2基板に対して前記回転軸を中心として回転可能に設けられている請求項1又は請求項2に記載の風力発電装置。 3. The first substrate according to claim 1, wherein the first substrate faces the second substrate in a direction along the rotation axis, and is provided to be rotatable about the rotation axis with respect to the second substrate. The wind power generator described.
- 前記第1基板の前記第2基板に対向する面と、前記第2基板の前記第1基板に対向する面とが接している請求項1から請求項3のいずれか1項に記載の風力発電装置。 The wind power generation according to any one of claims 1 to 3, wherein a surface of the first substrate facing the second substrate is in contact with a surface of the second substrate facing the first substrate. apparatus.
- 前記第1基板の前記第2基板に対向する面と、前記第2基板の前記第1基板に対向する面との間に、前記第1基板と前記第2基板との摩擦を抑制する潤滑層が設けられている請求項1から請求項4のいずれか1項に記載の風力発電装置。 A lubricating layer that suppresses friction between the first substrate and the second substrate between a surface of the first substrate facing the second substrate and a surface of the second substrate facing the first substrate. The wind power generator according to any one of claims 1 to 4, wherein a wind turbine generator is provided.
- 前記潤滑層は、潤滑油である請求項5に記載の風力発電装置。 The wind turbine generator according to claim 5, wherein the lubricating layer is lubricating oil.
- 前記潤滑層は、自己潤滑性素材のシートである請求項5に記載の風力発電装置。 The wind turbine generator according to claim 5, wherein the lubricating layer is a sheet of a self-lubricating material.
- 前記第1基板及び前記第2基板は、樹脂基板である請求項1から請求項7のいずれか1項に記載の風力発電装置。 The wind power generator according to any one of claims 1 to 7, wherein the first substrate and the second substrate are resin substrates.
- 前記電力伝送部は、前記ナセルと前記タワーとの接続部に配置される請求項1から請求項8のいずれか1項に記載の風力発電装置。 The wind power generator according to any one of claims 1 to 8, wherein the power transmission unit is disposed at a connection portion between the nacelle and the tower.
- 前記接続部は、前記ナセルを前記タワーに対して回転可能に支持する軸受を含む請求項9に記載の風力発電装置。 The wind turbine generator according to claim 9, wherein the connecting portion includes a bearing that rotatably supports the nacelle with respect to the tower.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/073200 WO2018025420A1 (en) | 2016-08-05 | 2016-08-05 | Wind power generation device |
JP2017504438A JP6187721B1 (en) | 2016-08-05 | 2016-08-05 | Wind power generator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/073200 WO2018025420A1 (en) | 2016-08-05 | 2016-08-05 | Wind power generation device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018025420A1 true WO2018025420A1 (en) | 2018-02-08 |
Family
ID=59720315
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/073200 WO2018025420A1 (en) | 2016-08-05 | 2016-08-05 | Wind power generation device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6187721B1 (en) |
WO (1) | WO2018025420A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3909846A1 (en) * | 2020-05-11 | 2021-11-17 | Hamilton Sundstrand Corporation | Wireless power transformation for rotating propellers |
KR20220117657A (en) * | 2021-02-17 | 2022-08-24 | 한국철도기술연구원 | Wireless Power Transmitting And Receiving Apparatus for Wind Generator |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004140971A (en) * | 2002-10-21 | 2004-05-13 | Mitsubishi Heavy Ind Ltd | Windmill plant |
US20100270809A1 (en) * | 2007-11-13 | 2010-10-28 | Chapdrive As | Wind turbine with rotating hydrostatic transmission system |
JP2014148928A (en) * | 2013-01-31 | 2014-08-21 | Furukawa Electric Co Ltd:The | Wind-force power generator |
JP2015216796A (en) * | 2014-05-13 | 2015-12-03 | 日本電産サンキョー株式会社 | Non-contact power transmission device |
-
2016
- 2016-08-05 WO PCT/JP2016/073200 patent/WO2018025420A1/en active Application Filing
- 2016-08-05 JP JP2017504438A patent/JP6187721B1/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004140971A (en) * | 2002-10-21 | 2004-05-13 | Mitsubishi Heavy Ind Ltd | Windmill plant |
US20100270809A1 (en) * | 2007-11-13 | 2010-10-28 | Chapdrive As | Wind turbine with rotating hydrostatic transmission system |
JP2014148928A (en) * | 2013-01-31 | 2014-08-21 | Furukawa Electric Co Ltd:The | Wind-force power generator |
JP2015216796A (en) * | 2014-05-13 | 2015-12-03 | 日本電産サンキョー株式会社 | Non-contact power transmission device |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3909846A1 (en) * | 2020-05-11 | 2021-11-17 | Hamilton Sundstrand Corporation | Wireless power transformation for rotating propellers |
KR20220117657A (en) * | 2021-02-17 | 2022-08-24 | 한국철도기술연구원 | Wireless Power Transmitting And Receiving Apparatus for Wind Generator |
KR102534301B1 (en) * | 2021-02-17 | 2023-05-19 | 한국철도기술연구원 | Wireless Power Transmitting And Receiving Apparatus for Wind Generator |
Also Published As
Publication number | Publication date |
---|---|
JP6187721B1 (en) | 2017-08-30 |
JPWO2018025420A1 (en) | 2018-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7679249B2 (en) | Contra rotating generator | |
CN101092935B (en) | Method and apparatus for controlling a rotating machine | |
US20130224013A1 (en) | System for contactless power transfer between nacelle and tower of a windturbine | |
US8729722B2 (en) | Wind turbine and method for monitoring the gap length between a rotor and a stator of the wind turbine generator | |
KR101205674B1 (en) | Low speed generator | |
JP6187721B1 (en) | Wind power generator | |
WO2013080998A1 (en) | Bearing for vertical axis wind turbine and vertical axis wind power generation device | |
AU2013349341B2 (en) | Machine with two co-axial rotors | |
WO2013109611A1 (en) | Generator with stator supported on rotor | |
US20070164570A1 (en) | Assembly comprising a water turbine and a generator, the rotor of which is direct-connected to each one of the blades of the turbine | |
CN102782458A (en) | Bearing current sensor device having an energy converter | |
EP3700063A1 (en) | Rotary electric machine, generator, and wind turbine power generation facility | |
JP6241581B1 (en) | Wind power generator | |
CN108649711B (en) | Bipolar coupling device for wireless power transmission of rotating equipment | |
CN106640531A (en) | Megawatt-grade draught fan with direct drive structure | |
CN103795192B (en) | Motor | |
KR20150032790A (en) | Permanent magnet rotary electrical machine and wind-power generation system | |
KR102067906B1 (en) | Wind Power Generation System of Floating-Type | |
CN101988476B (en) | Wind-driven generator | |
US20170117769A1 (en) | Rotating Electric Machine or Wind Power Generation System | |
KR200481468Y1 (en) | Wind power generator | |
JP5955687B2 (en) | Rotating electric machine and wind power generation system | |
GB2540624A (en) | System and methods for transferring electrical signal or power to a rotatable component | |
JP5719416B2 (en) | Design method for vertical axis wind turbine bearings | |
CN109155190A (en) | Rotary transformer and inductive coupling |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2017504438 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16911679 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16911679 Country of ref document: EP Kind code of ref document: A1 |