WO2018025360A1 - Catheter for endoscope - Google Patents

Catheter for endoscope Download PDF

Info

Publication number
WO2018025360A1
WO2018025360A1 PCT/JP2016/072869 JP2016072869W WO2018025360A1 WO 2018025360 A1 WO2018025360 A1 WO 2018025360A1 JP 2016072869 W JP2016072869 W JP 2016072869W WO 2018025360 A1 WO2018025360 A1 WO 2018025360A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube portion
energy
catheter
endoscope
hole
Prior art date
Application number
PCT/JP2016/072869
Other languages
French (fr)
Japanese (ja)
Inventor
清一 中島
誠 保坂
Original Assignee
山科精器株式会社
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山科精器株式会社, 国立大学法人大阪大学 filed Critical 山科精器株式会社
Priority to PCT/JP2016/072869 priority Critical patent/WO2018025360A1/en
Publication of WO2018025360A1 publication Critical patent/WO2018025360A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current

Definitions

  • the present invention relates to an endoscopic catheter having multiple functions such as washing, suction, incision, cauterization, coagulation, hemostasis, and smoke exhaustion.
  • an endoscope catheter having functions such as washing, suction, incision, cauterization, coagulation, hemostasis, and smoke exhaustion in a body cavity of a patient has been put to practical use (for example, Patent Document 1).
  • a hole is provided near the distal end of the distal end of the endoscope catheter, and there are a plurality of holes having a diameter smaller than the inner diameter of the catheter.
  • an energy element is further provided in the vicinity of the distal end of the catheter.
  • the electrode as the energy element is exposed from the tip. For this reason, for example, when a living tissue is coagulated and hemostatically generated by generating a high-frequency current from the electrode of the catheter, the high-frequency current diffuses in the living body from the tip electrode, and the living tissue in a range not intended by the operator There was a possibility of coagulation. In addition, in order to control the range of thermal damage, it may be required to coagulate by slightly pulling up the living tissue. However, in the above catheter, a portion where the tissue is thin is suitable for coagulation while being pressed. In some cases, it was difficult to solidify by pulling up.
  • the technology of the present disclosure has been made in view of the above circumstances, and the purpose thereof is a simple structure, such as cleaning, aspiration, incision, cauterization, coagulation, hemostasis, and smoke exhaustion in a patient's body cavity. It is providing the endoscope catheter which can exhibit these functions more efficiently while having many functions of these.
  • a hole is provided in the vicinity of the distal end of the tube portion, and an energy element is disposed on the proximal end side of the hole inside the tube portion.
  • this energy element has an energy generating part capable of generating predetermined energy in a cavity inside the pipe part.
  • the region on the hole side of the energy generating portion and the proximal end side of the energy generating portion in the pipe portion are communicated with each other by the communication path formed by including the surface of the energy generating portion in part.
  • the most characteristic feature is that cleaning, suction, smoke emission, and the like can be performed through this communication portion.
  • the endoscope catheter includes a hole provided near the distal end of the tube part, and an energy element provided on the proximal end side of the hole inside the tube part.
  • An endoscopic catheter wherein the energy element is disposed in a cavity inside the tube portion and is capable of generating a predetermined energy, and includes a surface of the energy generation portion and a hole and a tube. And a communication passage that allows the region on the proximal end side of the energy generating portion in the portion to communicate.
  • the energy generating part of the energy element after arranging the energy generating part of the energy element in the cavity inside the tube part of the catheter, it becomes possible to perform functions such as cleaning, suction, and smoke exhausting well through the communication path. . Then, it is possible to perform an efficient treatment such as sucking the living tissue from the hole and selectively cutting, cauterizing, coagulating, and hemostasing the sucked living tissue by the energy generated from the energy generating unit.
  • the communication path may be formed by the outer shape of the energy generating part and the inner wall of the pipe part.
  • the energy generating part has a cylindrical shape that is substantially the same diameter as the inner diameter of the tube part, and the communication path is formed by a groove provided on a side surface of the cylindrical energy generating part and an inner wall of the pipe part. May be.
  • the energy generated by the energy generating unit may include any of heat, a current having a predetermined frequency, an electromagnetic wave, a laser beam, and a sound wave.
  • the various electric currents, electromagnetic waves, and sound waves generated from the energy element can be used for treatment of living tissue.
  • the hole may be an opening at the distal end of the tube portion of the cavity inside the tube portion. According to this, it is possible to satisfactorily perform functions such as suction and traction by bringing the distal end of the catheter into contact with the living tissue as it is. Further, since the tube portion of the catheter generally has a cylindrical shape, the opening of the distal end is used as a hole rather than providing a hole on the side surface, thereby improving the adhesion with the living tissue at the time of suction. It becomes possible. As a result, the biological tissue can be sucked and pulled more efficiently.
  • the distal end of the energy generation unit is disposed at a proximal end side by a predetermined distance from the hole, and by sucking the gas or liquid in the tube unit from the region of the tube unit on the proximal end side of the energy generation unit, It is possible to suck the living tissue from the hole, and when sucking the living tissue from the hole, the sucked tissue can enter the inside of the tube part from the hole and come into contact with the distal end of the energy generating part. Good. According to this, it becomes possible to selectively and more reliably treat the living tissue that has been sucked and entered the inside of the tube portion by the energy generating portion.
  • the tube portion may be formed so as to be able to be inserted into a treatment instrument channel provided in a flexible endoscope or an endoscope overtube into which a flexible endoscope is inserted. Then, cooperation between the endoscopic catheter described above and the flexible endoscope or the endoscope overtube can be realized, and more efficient endoscopic treatment can be realized. Is possible.
  • the technology disclosed herein has a simple structure and has multiple functions such as cleaning, suction, incision, cauterization, coagulation, hemostasis, and smoke exhaustion in the body cavity of a patient, and more effectively exerts these functions.
  • An endoscopic catheter capable of this can be provided.
  • Open abdominal surgery is an operation performed by opening a patient's living body.
  • Fine (micro) surgery is an operation that requires a fine operation as performed under a microscope. Small tissues such as cranial nerves and microvessels are targeted for surgery.
  • Standard under the microscope is an operation using an endoscope.
  • the “endoscope” is a medical instrument that observes the inside of a living body with an optical system.
  • a “rigid endoscope” is an endoscope having a rigid structure in which lenses are attached to both ends of a cylinder. Examples of rigid scopes include cystoscopes, thoracoscopes, and laparoscopes.
  • the “soft mirror” is an endoscope having flexibility using a soft material. There are two types of flexible mirrors, one using an optical fiber as an optical system and the other using a CCD (Charged-Coupled Device). Examples of the flexible endoscope include a bronchoscope, an upper digestive tract endoscope, a small intestine endoscope, and a large intestine endoscope.
  • forceps that can coagulate or stop hemostasis of a living tissue using a high-frequency current may be used.
  • the forceps include “a type in which an electrode is pressed against a living tissue (knife electrode)” and “a type in which a living tissue is picked and gripped like tweezers (hemostatic forceps)”. Many of these have a monopolar structure, and forceps serve as one electrode, and an electric current flows between electrodes called a counter electrode that is in separate contact with the living body.
  • Examples of the endoscope catheter using the knife electrode described above include a treatment instrument that can discharge the cleaning liquid from the tip thereof.
  • the distal end of the tube portion is on the proximal end side of the electrode portion, and the knife portion protrudes from the opening at the distal end of the tube portion.
  • the opening and the living tissue are brought into contact with each other, it is difficult to improve the adhesion, and the living tissue cannot be suitably sucked or pulled.
  • the pressing force of the knife electrode against the living tissue is strong or the output of the high-frequency current is too high, the coagulation of the living tissue has progressed too much, and tissue perforation may occur after the treatment.
  • the high-frequency current diffuses into the living tissue, there is a possibility that the coagulation range is widened and thermal damage is caused even to a normal tissue.
  • the hemostatic forceps do not have a washing / suction function, and if the amount of bleeding is large, blood cannot be removed, so that it is difficult to identify the bleeding point and the hemostatic treatment cannot be performed. In this case, it is necessary to perform treatment while using both the jet function (discharging of the cleaning liquid) and the suction function of the endoscope, so that the operation of the hemostatic forceps becomes complicated.
  • a hemostatic forceps when a hemostatic forceps is used, high-frequency current is diffused in the living body, so that the coagulation range is widened, and there is a risk of heat damage even to normal tissue.
  • FIG. 1 shows a schematic configuration diagram of an endoscope catheter 1 according to an embodiment of the present invention as viewed from the side.
  • FIG. 2 shows a front view of the catheter 1.
  • FIG. 3 shows a perspective view of the catheter 1.
  • the end surface 10a side of the tube portion 10 of the catheter 1 is referred to as the distal end side of the catheter 1
  • the other end side (not shown) of the catheter 1 is referred to as the proximal end side of the catheter 1.
  • the catheter 1 has a small-diameter tube portion 10.
  • the tube part 10 is a hollow cylindrical member formed of a soft resin having flexibility, strength, low friction, insulation, and the like.
  • the material for forming the tube portion 10 include polyvinyl chloride, polyethylene, polyester, polyurethane, polyamide, silicone resin, PTFE, PFA, polypropylene, nylon, polyetheretherketone (PEEK), and POM. These materials may be used alone or in combination with other materials.
  • the length of the tube part 10 is 2000 to 2500 mm as an example.
  • the outer diameter of the pipe part 10 is 2.6 mm as an example.
  • the outer diameter of the tube portion 10 is not limited to this, and can be configured to be about 1 to 5 mm.
  • the catheter 1 can be inserted into a treatment instrument channel of a general endoscope or an endoscope overtube, and the distal end side of the catheter 1 can be inserted from the treatment instrument port at the distal end of the endoscope overtube.
  • the end face 10a can be protruded and used as an endoscopic treatment tool.
  • the end face 10a on the distal end side of the tube part 10 is open. Further, the electrode 20 is disposed in the cavity inside the tube portion 10 so as to be in contact with the inner wall 10b of the tube portion 10.
  • the electrode 20 corresponds to an example of the energy generation unit in the present embodiment.
  • the inner wall 10b of the pipe part 10 is shown with a dashed-two dotted line.
  • the electrode 20 has a columnar shape that is substantially the same diameter as the inner diameter of the tube portion 10, and is fitted to the tube portion 10 in a so-called simmering state.
  • the distance from the end surface 10a on the distal end side of the tube portion 10 to the surface 20b on the distal end side of the electrode 20 is 1.5 mm.
  • the electrode 20 is connected to the lead wire 40 on the proximal end side of the catheter 1.
  • the lead wire 40 extends to the proximal end of the catheter 1 (not shown) and is connected to an electrosurgical device (high frequency generator) (not shown).
  • the electrode 20 generates a high-frequency current by electric power supplied from the electrosurgical device via the lead wire 40.
  • a counter electrode plate (not shown) may be attached to the patient's body side. Thereby, various treatments for the patient's living tissue can be performed using the high-frequency current generated from the electrode 20.
  • the energy device in the present embodiment includes the electrode 20 and the lead wire 40.
  • a recess 30 extending from the distal end side to the proximal end side of the tube portion 10 is formed on the outer peripheral surface of the electrode 20.
  • the recessed part 30 is shown with a dotted line.
  • three recesses 30 are provided on the outer peripheral surface of the electrode 20 at intervals of about 120 degrees.
  • the number of the recessed parts 30 is not restricted to this. In this configuration, a space is formed between the recess 30 and the inner wall 10 b of the tube portion 10.
  • gas or fluid can be supplied from the proximal end side, pass through the flow channel 50, and discharged from the opening of the end surface 10 a on the distal end side of the tube part 10.
  • the opening of the end face 10a on the distal end side of the tube portion 10 corresponds to an example of a hole provided in the vicinity of the distal end of the tube portion in this embodiment.
  • the flow path 50 formed by the concave portion 30 of the electrode 20 and the inner wall 10b of the tube portion 10 corresponds to a communication path in this embodiment.
  • the recess 30 is provided so as to extend in parallel to the longitudinal direction of the tube portion 10, that is, the direction of the axis AX (indicated by the alternate long and short dash line in FIG. 1). It can also be provided so as to extend in a shape.
  • the posture of the tube unit 10 is controlled so that the end surface 10 a on the distal end side of the tube unit 10 faces the biological tissue in the body cavity of the patient, and the tube unit 10 is connected via the flow path 50.
  • sucking air from the distal end side to the proximal end side it is possible to adsorb biological tissue to the opening of the end face 10a.
  • the living tissue can be pulled by the tube portion 10 by using this adsorption force.
  • FIG. 4 shows an example of a state in which the biological tissue 100 is drawn into the tube portion 10 from the opening of the end surface 10a of the tube portion 10.
  • the living tissue 100 drawn into the tube portion 10 from the electrode 20 in the tube portion 10 is supplied.
  • a high-frequency current can be selectively supplied. Thereby, the biological tissue 100 is heated and solidified by the high frequency current.
  • the living tissue 100 drawn into the tube portion 10 is brought into contact with the electrode 20.
  • the high frequency current can be more intensively supplied to the part of the living tissue 100 that is in contact with the electrode 20, and the part can be solidified more reliably.
  • the biological tissue 100 is adsorbed in the tube unit 10 so that the electrode 20 and the bleeding point come into contact with each other.
  • the hemostasis of the living tissue 100 can be pinpointed by the flowing high-frequency current.
  • the living tissue 100 can be drawn into the space between the end surface 10a on the distal end side of the tube portion 10 and the electrode 20, and the coagulation and hemostasis can be selectively performed depending on the target location. Treatment can be performed. Further, unlike the conventional forceps, the electrode 20 is not exposed from the end face 10a on the distal end side of the tube portion 10, but is disposed in the tube portion 10, and the tube portion 10 is electrically insulated. Yes.
  • the range in which the high-frequency current flows from the electrode 20 to the living tissue 100 can be limited to the inside of the tube portion 10, and a stronger high-frequency current is supplied to the living tissue 100 drawn into the tube portion 10. can do.
  • the opening of the end face 10a on the distal end side of the tube portion 10 may stick to the living tissue 100 by inserting the catheter 1 in this embodiment into the body cavity of the patient and sucking it with a negative pressure of ⁇ 10 kPa or more. all right.
  • the suction negative pressure is further increased, the living tissue 100 attached to the opening of the end face 10 a on the distal end side of the tube portion 10 is drawn into the tube portion 10. It has been found that the amount of the living tissue 100 drawn into the tube portion 10 increases as the negative pressure increases. Further, it was found that the biological tissue 100 was in contact with the surface 20b on the distal end side of the electrode 20 in the tube portion 10 by suction with a negative pressure of ⁇ 30 kPa or more.
  • the living tissue 100 can be sufficiently pulled by the tube portion 10.
  • the biological tissue 100 can be coagulated by supplying power of 30 to 120 W to the electrode 20 and flowing high-frequency current from the electrode 20 to the biological tissue 100. It was.
  • the relationship between the negative pressure of the suction and the amount of drawing of the living tissue 100 into the tube portion 10 is merely an example, and the negative pressure depends on the thickness of the inner wall 10b of the tube portion 10 and the type and state of the living tissue 100. The pressure can be changed as appropriate.
  • the configuration of the endoscope catheter according to the present invention is not limited to that shown in the above embodiment, and is identical to the technical idea of the present invention.
  • the electrode 20 is fitted in the tube portion 10 in a squeeze state, but a gap is provided between the side surface of the electrode 20 and the inner wall 10b of the tube portion 10 to prevent gaps between the gaps and intermediate gaps.
  • the electrode 20 may be slidably disposed in the tube portion 10 in a state.
  • the electrode 20 and the flow path 50 can have various shapes.
  • FIG. 5 shows a front view of the catheter 1 as a modification of the above. In FIG. 5, the same components as those in the above embodiment are given the same reference numerals, and detailed description thereof is omitted.
  • the shape of the electrode 20 is a hexagonal column, and the cross section in a plane perpendicular to the axis AX is a hexagon.
  • the electrode 20 is disposed in the tube portion 10 so that the hexagonal apex of the cross section of the electrode 20 is substantially in contact with the inner wall 10 b of the tube portion 10 of the catheter 1. In this case, a space formed between the side surface 20 a of the electrode 20 and the inner wall 10 b becomes the flow path 50.
  • the electrode 20 is formed to have a cylindrical shape that is substantially the same diameter as the inner diameter of the tube portion 10, and the electrode 20 is further connected to the distal end of the electrode 20. It is good also as a structure which provides the flow path 60 penetrated from the side to the proximal end side.
  • the surface of the electrode includes not only the side surface of the electrode facing the inner wall of the catheter tube, but also the front surface of the electrode and the inner surface of the hole penetrating the electrode.
  • heat may be supplied to the living tissue by a heating element that generates heat when electric power is supplied instead of the electrode.
  • you may supply an ultrasonic wave and a shock wave to a biological tissue with the ultrasonic element which generate
  • electromagnetic waves may be supplied from the electrodes to the living tissue.
  • this electromagnetic wave it is possible to use electromagnetic waves of various frequencies and characteristics such as microwaves, radio waves, and laser light.
  • APC ArArgon Plasma Coagulation
  • the distance between the electrode 20 and the end face 10a on the distal end side of the tube portion 10 is adjusted by providing the electrode 20 in the tube portion 10 so as to be movable in the longitudinal direction of the tube portion 10. Then, the suction force when performing suction using the flow path 50 formed between the recess 30 of the power 20 and the inner wall 10b of the tube portion 10 and the traction force when the living tissue is adsorbed in the tube portion 10 are obtained. Can be adjusted. In addition, the contact state between the living tissue and the electrode 20 can be adjusted.
  • the opening in the end face 10a of the pipe portion 10 is used as a hole.
  • the structure of the hole is not limited to the above.
  • the end surface 10a of the tube portion 10 may be closed, and a hole may be separately provided on the side surface or end surface of the tube portion 10.
  • the diameter and number of holes can also be changed.
  • the shape of the tip of the tube portion 10 may be a tip shape different from the cylindrical shape, and a hole may be provided at any part of the tip shape.
  • the end surface 10a of the pipe part 10 does not need to be an end face perpendicular to the axis of the pipe part 10, and may be configured to have an inclination with respect to the axis of the pipe part 10.
  • the shape of the distal end of the tube portion 10 does not have to be a shape obtained by simply cutting a cylinder, and may be appropriately processed such as adding a taper or R to the tip.
  • the catheter 1 is formed using a soft resin.
  • the tube portion 10 of the catheter 1 is formed as a metallic tubular member, and an insulating member is disposed on the inner wall 10b of the tube portion 10 to form the electrode 20. It may be configured so that the high-frequency current generated from the gas does not diffuse outside the tube portion 10.
  • the catheter 1 of the present invention is useful for hemostasis treatment in the digestive tract cavity, and can be used for treatment in microsurgery and endoscopic surgery.
  • surgery in brain surgery or vascular surgery is assumed as the microsurgery.
  • the endoscopic surgery laparoscopic surgery, thoracoscopic surgery using a rigid endoscope, digestive endoscopic surgery using a flexible endoscope, bronchoscopic surgery, and the like are assumed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Otolaryngology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)

Abstract

The purpose of the present invention is to provide a catheter which has a simple structure while being multi-functional, such as being capable of adsorption, traction, coagulation, and hemostasis of a tissue of a lifeform. Provided is a catheter for an endoscope, comprising: a hole which is disposed in proximity to a distal end of a tube part; and an energy element which is disposed within the tube part to the proximal end side of the hole. The energy element further comprises: an energy emission part which is positioned in a cavity within the tube part and is capable of emitting a prescribed energy; and a communication path which is formed to include a portion of a surface of the energy emission part and which facilitates communication between the hole and a region within the tube part to the proximal end side of the energy emission part.

Description

内視鏡用カテーテルEndoscopic catheter
 本発明は、洗浄、吸引、切開、焼灼、凝固、止血、排煙などの多機能を有する内視鏡用カテーテルに関する。 The present invention relates to an endoscopic catheter having multiple functions such as washing, suction, incision, cauterization, coagulation, hemostasis, and smoke exhaustion.
 従来、患者の体腔内における洗浄、吸引、切開、焼灼、凝固、止血、排煙などの機能を有する内視鏡用カテーテルが実用に供されている(例えば、特許文献1)。この技術においては、内視鏡用カテーテルの遠位端の先端近傍に孔が設けられており、該孔が、該カテーテルの内径よりも小さい直径を有し、複数存在する。また、該カテーテルの先端近傍にエネルギー素子をさらに備えている。 Conventionally, an endoscope catheter having functions such as washing, suction, incision, cauterization, coagulation, hemostasis, and smoke exhaustion in a body cavity of a patient has been put to practical use (for example, Patent Document 1). In this technique, a hole is provided near the distal end of the distal end of the endoscope catheter, and there are a plurality of holes having a diameter smaller than the inner diameter of the catheter. Further, an energy element is further provided in the vicinity of the distal end of the catheter.
国際公開第2011/114902号パンフレットInternational Publication No. 2011/114902 Pamphlet
 しかしながら、上記のカテーテルにおいては、その先端からエネルギー素子としての電極が露出した態様となっている。このため、例えば上記のカテーテルの電極から高周波電流を発生させることで生体組織を凝固、止血を行う場合、先端の電極から高周波電流が生体内で拡散し、術者が意図しない範囲の生体組織が凝固される可能性があった。また、熱損傷の範囲の制御をするために生体組織を少し引っ張り上げて凝固をすることが求められる場合があるが、上記のカテーテルにおいては、押し付けながら凝固するために、組織が薄い部位を好適に引っ張り上げて凝固することが困難な場合があった。 However, in the above catheter, the electrode as the energy element is exposed from the tip. For this reason, for example, when a living tissue is coagulated and hemostatically generated by generating a high-frequency current from the electrode of the catheter, the high-frequency current diffuses in the living body from the tip electrode, and the living tissue in a range not intended by the operator There was a possibility of coagulation. In addition, in order to control the range of thermal damage, it may be required to coagulate by slightly pulling up the living tissue. However, in the above catheter, a portion where the tissue is thin is suitable for coagulation while being pressed. In some cases, it was difficult to solidify by pulling up.
 本件開示の技術は、上記の事情に鑑みてなされたものであり、その目的とするところは、シンプルな構造で、患者の体腔内における洗浄、吸引、切開、焼灼、凝固、止血、排煙などの多機能を有するとともに、これらの機能をより効率的に発揮することが可能な内視鏡用カテーテルを提供することである。 The technology of the present disclosure has been made in view of the above circumstances, and the purpose thereof is a simple structure, such as cleaning, aspiration, incision, cauterization, coagulation, hemostasis, and smoke exhaustion in a patient's body cavity. It is providing the endoscope catheter which can exhibit these functions more efficiently while having many functions of these.
 上記の課題を解決するための本発明においては、管部の遠位端近傍に孔が設けられ、管部の内部における前記孔の近位端側にエネルギー素子が配置されている。また、このエネルギー素子は、管部の内部の空洞において所定のエネルギーを発生可能なエネルギー発生部を有している。そして、本発明においては、このエネルギー発生部の表面を一部に含んで形成された連通路によって、管部におけるエネルギー発生部の前記孔側とエネルギー発生部の近位端側の領域が連通され、この連通部を介して洗浄、吸引、排煙などを可能としたことを最大の特徴とする。 In the present invention for solving the above-described problems, a hole is provided in the vicinity of the distal end of the tube portion, and an energy element is disposed on the proximal end side of the hole inside the tube portion. In addition, this energy element has an energy generating part capable of generating predetermined energy in a cavity inside the pipe part. In the present invention, the region on the hole side of the energy generating portion and the proximal end side of the energy generating portion in the pipe portion are communicated with each other by the communication path formed by including the surface of the energy generating portion in part. The most characteristic feature is that cleaning, suction, smoke emission, and the like can be performed through this communication portion.
 より詳しくは、本件開示の内視鏡用カテーテルは、管部の遠位端近傍に設けられた孔と、管部の内部における孔の近位端側に設けられたエネルギー素子と、を備えた内視鏡用カテーテルであって、エネルギー素子は、管部の内部の空洞に配置され所定のエネルギーを発生可能なエネルギー発生部と、エネルギー発生部の表面を一部に含んで形成され孔と管部における該エネルギー発生部の近位端側の領域を連通可能とする連通路とを有する。 More specifically, the endoscope catheter according to the present disclosure includes a hole provided near the distal end of the tube part, and an energy element provided on the proximal end side of the hole inside the tube part. An endoscopic catheter, wherein the energy element is disposed in a cavity inside the tube portion and is capable of generating a predetermined energy, and includes a surface of the energy generation portion and a hole and a tube. And a communication passage that allows the region on the proximal end side of the energy generating portion in the portion to communicate.
 これによれば、カテーテルの管部の内部の空洞にエネルギー素子のエネルギー発生部を配置した上で、連通路を介して良好に洗浄、吸引、排煙などの機能を発揮することが可能となる。そして、前記孔から生体組織を吸引し、エネルギー発生部から発生させたエネルギーによって、吸引された生体組織を選択的に切開、焼灼、凝固、止血するといった効率的な処置が可能となる。 According to this, after arranging the energy generating part of the energy element in the cavity inside the tube part of the catheter, it becomes possible to perform functions such as cleaning, suction, and smoke exhausting well through the communication path. . Then, it is possible to perform an efficient treatment such as sucking the living tissue from the hole and selectively cutting, cauterizing, coagulating, and hemostasing the sucked living tissue by the energy generated from the energy generating unit.
 また、連通路は、エネルギー発生部の外形と前記管部の内壁とによって形成されてもよい。また、エネルギー発生部は、管部の内径と略同径の円柱状の形状を有し、連通路は、円柱状のエネルギー発生部の側面に設けられた溝と、管部の内壁とによって形成されてもよい。これにより、生体組織を吸着、牽引、凝固、止血ができる多機能でありながらシンプルな構造の内視鏡用カテーテルが実現される。 Further, the communication path may be formed by the outer shape of the energy generating part and the inner wall of the pipe part. The energy generating part has a cylindrical shape that is substantially the same diameter as the inner diameter of the tube part, and the communication path is formed by a groove provided on a side surface of the cylindrical energy generating part and an inner wall of the pipe part. May be. As a result, an endoscope catheter having a simple structure but capable of adsorbing, pulling, coagulating, and hemostasis of a living tissue is realized.
 さらに、エネルギー発生部が発生するエネルギーは、熱、所定周波数の電流、電磁波、レーザー光及び音波のいずれかを含んでもよい。これにより、エネルギー素子から発生される種々の電流、電磁波、音波を生体組織に対する処置に使用することができる。 Furthermore, the energy generated by the energy generating unit may include any of heat, a current having a predetermined frequency, an electromagnetic wave, a laser beam, and a sound wave. Thereby, the various electric currents, electromagnetic waves, and sound waves generated from the energy element can be used for treatment of living tissue.
 また、孔は、管部の内部における空洞の、管部の遠位端における開口部であってもよい。これによれば、カテーテルの遠位端をそのまま生体組織に当接させることで良好に吸引、牽引などの機能を発揮することが可能である。また、カテーテルの管部は一般的に円筒状の形状を有するので、側面に孔を設けるより、遠位端の開口部を孔として用いることで、吸引時の生体組織との密着性を向上させることが可能となる。その結果、より効率的に生体組織の吸引や牽引を行うことが可能となる。 Also, the hole may be an opening at the distal end of the tube portion of the cavity inside the tube portion. According to this, it is possible to satisfactorily perform functions such as suction and traction by bringing the distal end of the catheter into contact with the living tissue as it is. Further, since the tube portion of the catheter generally has a cylindrical shape, the opening of the distal end is used as a hole rather than providing a hole on the side surface, thereby improving the adhesion with the living tissue at the time of suction. It becomes possible. As a result, the biological tissue can be sucked and pulled more efficiently.
 さらに、エネルギー発生部の遠位端は、孔より所定距離近位端側に配置され、管部における該エネルギー発生部の近位端側の領域から管部内の気体または液体を吸引することで、孔から生体組織を吸引することが可能であり、孔から生体組織を吸引した際に、吸引された組織が孔から管部の内部に侵入してエネルギー発生部の遠位端に接触可能としてもよい。これによれば、吸引されて管部の内部に侵入した生体組織を、エネルギー発生部によって選択的に、より確実に処置することが可能となる。 Furthermore, the distal end of the energy generation unit is disposed at a proximal end side by a predetermined distance from the hole, and by sucking the gas or liquid in the tube unit from the region of the tube unit on the proximal end side of the energy generation unit, It is possible to suck the living tissue from the hole, and when sucking the living tissue from the hole, the sucked tissue can enter the inside of the tube part from the hole and come into contact with the distal end of the energy generating part. Good. According to this, it becomes possible to selectively and more reliably treat the living tissue that has been sucked and entered the inside of the tube portion by the energy generating portion.
 さらに、管部は、軟性内視鏡または軟性内視鏡が挿入される内視鏡用オーバーチューブに設けられた処置具チャネルに挿通可能に形成されてもよい。そうすれば、上記で説明した内視鏡用カテーテルと、軟性内視鏡または内視鏡用オーバーチューブとの協働を実現することができ、より効率的な内視鏡治療を実現することが可能である。 Furthermore, the tube portion may be formed so as to be able to be inserted into a treatment instrument channel provided in a flexible endoscope or an endoscope overtube into which a flexible endoscope is inserted. Then, cooperation between the endoscopic catheter described above and the flexible endoscope or the endoscope overtube can be realized, and more efficient endoscopic treatment can be realized. Is possible.
 本件開示の技術によれば、シンプルな構造で、患者の体腔内における洗浄、吸引、切開、焼灼、凝固、止血、排煙などの多機能を有するとともに、これらの機能をより効率的に発揮することが可能な内視鏡用カテーテルを提供することができる。 According to the technology disclosed herein, it has a simple structure and has multiple functions such as cleaning, suction, incision, cauterization, coagulation, hemostasis, and smoke exhaustion in the body cavity of a patient, and more effectively exerts these functions. An endoscopic catheter capable of this can be provided.
一実施形態における内視鏡用カテーテルの概略構成を示す図である。It is a figure which shows schematic structure of the catheter for endoscopes in one Embodiment. 一実施形態における内視鏡用カテーテルの正面図である。It is a front view of the catheter for endoscopes in one embodiment. 一実施形態における内視鏡用カテーテルの斜視図である。It is a perspective view of the catheter for endoscopes in one embodiment. 一実施形態における内視鏡用カテーテルを用いて生体組織を吸引した場合の例を示す図である。It is a figure which shows the example at the time of attracting | sucking a biological tissue using the catheter for endoscopes in one Embodiment. 一変形例における内視鏡用カテーテルの正面図である。It is a front view of the catheter for endoscopes in one modification. 一変形例における内視鏡用カテーテルの正面図である。It is a front view of the catheter for endoscopes in one modification.
 以下に、図面を参照して本発明の実施の形態について説明する。まず、以下の説明における用語について説明する。「開腹手術」とは、患者の生体を切り開いて行う手術である。「微細(微小)手術」とは、顕微鏡下で行うような、細かな操作が求められる手術である。脳神経や微小血管などの小さな組織が手術の対象となる。「鏡視下手術」とは、内視鏡を用いた手術である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. First, terms in the following description will be described. “Open abdominal surgery” is an operation performed by opening a patient's living body. “Fine (micro) surgery” is an operation that requires a fine operation as performed under a microscope. Small tissues such as cranial nerves and microvessels are targeted for surgery. “Surgery under the microscope” is an operation using an endoscope.
 また、「内視鏡」とは、光学系で生体内部を観察する医用器具。内視鏡には、硬性鏡と軟性鏡とがある。「硬性鏡」とは、筒の両端にレンズがついたリジッドな構造の内視鏡である。硬性鏡には、膀胱鏡、胸腔鏡、腹腔鏡などがある。「軟性鏡」とは、柔軟な素材を用いて可撓性を有する内視鏡である。軟性鏡には、光学系として光ファイバーを用いたものと、CCD(Charged-Coupled Device)を用いたものとがある。軟性鏡には、気管支鏡、上部消化管内視鏡、小腸内視鏡、大腸内視鏡などがある。 Also, the “endoscope” is a medical instrument that observes the inside of a living body with an optical system. There are rigid endoscopes and flexible endoscopes as endoscopes. A “rigid endoscope” is an endoscope having a rigid structure in which lenses are attached to both ends of a cylinder. Examples of rigid scopes include cystoscopes, thoracoscopes, and laparoscopes. The “soft mirror” is an endoscope having flexibility using a soft material. There are two types of flexible mirrors, one using an optical fiber as an optical system and the other using a CCD (Charged-Coupled Device). Examples of the flexible endoscope include a bronchoscope, an upper digestive tract endoscope, a small intestine endoscope, and a large intestine endoscope.
 ここで、上記の手術では、高周波電流を用いて生体組織の凝固や止血ができる鉗子類が使用される場合がある。この鉗子類としては、「生体組織に電極を押し付けて使うタイプ(ナイフ電極)」と「ピンセットの様に生体組織を摘んで把持して使うタイプ(止血鉗子)」とが挙げられる。これらの多くはモノポーラ構造であり、鉗子が1つの電極となり、生体に別途接触している対極板と呼ばれる電極との間で電流が流れる。 Here, in the above surgery, forceps that can coagulate or stop hemostasis of a living tissue using a high-frequency current may be used. Examples of the forceps include “a type in which an electrode is pressed against a living tissue (knife electrode)” and “a type in which a living tissue is picked and gripped like tweezers (hemostatic forceps)”. Many of these have a monopolar structure, and forceps serve as one electrode, and an electric current flows between electrodes called a counter electrode that is in separate contact with the living body.
 上記のナイフ電極を用いた内視鏡用カテーテルとしては、その先端から洗浄液を吐出することを可能とした処置具等がある。しかしながら、このタイプの内視鏡用カテーテルでは、管部の先端が、電極部の近位端側にあり、ナイフ部が管部の先端の開口から突出する構造となっている。 Examples of the endoscope catheter using the knife electrode described above include a treatment instrument that can discharge the cleaning liquid from the tip thereof. However, in this type of endoscope catheter, the distal end of the tube portion is on the proximal end side of the electrode portion, and the knife portion protrudes from the opening at the distal end of the tube portion.
 よって、開口と生体組織を当接させた場合にも密着性を向上させることが困難であり、生体組織を好適に吸引または牽引することができない。また、ナイフ電極の生体組織への押し付け力が強かったり、高周波電流の出力が高すぎたりすると、生体組織の凝固が進み過ぎて、処置後に組織穿孔を起こす場合があった。また、上記の構成においては、高周波電流が生体組織に拡散するので、凝固範囲が広くなり正常な組織にまで熱損傷が加わる虞があった。 Therefore, even when the opening and the living tissue are brought into contact with each other, it is difficult to improve the adhesion, and the living tissue cannot be suitably sucked or pulled. In addition, if the pressing force of the knife electrode against the living tissue is strong or the output of the high-frequency current is too high, the coagulation of the living tissue has progressed too much, and tissue perforation may occur after the treatment. Further, in the above configuration, since the high-frequency current diffuses into the living tissue, there is a possibility that the coagulation range is widened and thermal damage is caused even to a normal tissue.
 また、止血鉗子は、洗浄吸引機能を有しておらず、出血量が多いと血液を取り除けないため出血点の特定が困難で止血処置ができない。そうすると、内視鏡のジェット機能(洗浄液の吐出)と吸引機能を併用しながら処置を行う必要があるため、止血鉗子の操作が繁雑になる。また、止血鉗子を使用した場合も生体内において高周波電流が拡散するので、凝固範囲が広くなり正常な組織にまで熱損傷が加わる虞があった。 In addition, the hemostatic forceps do not have a washing / suction function, and if the amount of bleeding is large, blood cannot be removed, so that it is difficult to identify the bleeding point and the hemostatic treatment cannot be performed. In this case, it is necessary to perform treatment while using both the jet function (discharging of the cleaning liquid) and the suction function of the endoscope, so that the operation of the hemostatic forceps becomes complicated. In addition, when a hemostatic forceps is used, high-frequency current is diffused in the living body, so that the coagulation range is widened, and there is a risk of heat damage even to normal tissue.
 図1には、本発明の一実施形態における内視鏡用のカテーテル1を側面から見た概略構成図を示す。また、図2に、カテーテル1の正面図を示す。また、図3にカテーテル1の斜視図を示す。なお、以下の説明において、カテーテル1の管部10の端面10a側をカテーテル1の遠位端側とし、カテーテル1の図示しない他端側をカテーテル1の近位端側と称する。 FIG. 1 shows a schematic configuration diagram of an endoscope catheter 1 according to an embodiment of the present invention as viewed from the side. FIG. 2 shows a front view of the catheter 1. FIG. 3 shows a perspective view of the catheter 1. In the following description, the end surface 10a side of the tube portion 10 of the catheter 1 is referred to as the distal end side of the catheter 1, and the other end side (not shown) of the catheter 1 is referred to as the proximal end side of the catheter 1.
 図1~図3に示すように、カテーテル1は、細径の管部10を有する。管部10は、可撓性、強度、低摩擦性、絶縁性などを有する軟質樹脂により形成されている中空円筒形状の部材である。管部10を形成する素材としては、例えば、ポリ塩化ビニル、ポリエチレン、ポリエステル、ポリウレタン、ポリアミド、シリコーン樹脂、PTFE、PFA、ポリプロピレン、ナイロン、ポリエーテルエーテルケトン(PEEK)、POMなどが挙げられる。これらの素材は単独で用いてもよく、他の素材と組み合わせて用いてもよい。 As shown in FIGS. 1 to 3, the catheter 1 has a small-diameter tube portion 10. The tube part 10 is a hollow cylindrical member formed of a soft resin having flexibility, strength, low friction, insulation, and the like. Examples of the material for forming the tube portion 10 include polyvinyl chloride, polyethylene, polyester, polyurethane, polyamide, silicone resin, PTFE, PFA, polypropylene, nylon, polyetheretherketone (PEEK), and POM. These materials may be used alone or in combination with other materials.
 管部10の長さは一例として2000~2500mmである。また、管部10の外径は一例として2.6mmである。なお、管部10の外径はこれに限らず1~5mm程度に構成することができる。このため、一般的な内視鏡や内視鏡用オーバーチューブの処置具チャンネルにカテーテル1を挿通させることができ、内視鏡用オーバーチューブ先端の処置具口からカテーテル1の遠位端側の端面10aを突出させ、内視鏡用処置具として使用することが可能である。 The length of the tube part 10 is 2000 to 2500 mm as an example. Moreover, the outer diameter of the pipe part 10 is 2.6 mm as an example. The outer diameter of the tube portion 10 is not limited to this, and can be configured to be about 1 to 5 mm. For this reason, the catheter 1 can be inserted into a treatment instrument channel of a general endoscope or an endoscope overtube, and the distal end side of the catheter 1 can be inserted from the treatment instrument port at the distal end of the endoscope overtube. The end face 10a can be protruded and used as an endoscopic treatment tool.
 管部10の遠位端側の端面10aは開口している。また、管部10の内部の空洞において、管部10の内壁10bに接するように、電極20が配設されている。なお、電極20が本実施例におけるエネルギー発生部の一例に相当する。図1においては管部10の内壁10bを二点鎖線にて示す。電極20は、管部10の内径と略同径の円柱状の形状を有しており、いわゆるシマリバメ状態で管部10に嵌っている。管部10の遠位端側の端面10aから電極20の遠位端側の面20bまでの距離は、一例として1.5mmである。電極20はカテーテル1の近位端側においてリード線40と接続されている。 The end face 10a on the distal end side of the tube part 10 is open. Further, the electrode 20 is disposed in the cavity inside the tube portion 10 so as to be in contact with the inner wall 10b of the tube portion 10. The electrode 20 corresponds to an example of the energy generation unit in the present embodiment. In FIG. 1, the inner wall 10b of the pipe part 10 is shown with a dashed-two dotted line. The electrode 20 has a columnar shape that is substantially the same diameter as the inner diameter of the tube portion 10, and is fitted to the tube portion 10 in a so-called simmering state. As an example, the distance from the end surface 10a on the distal end side of the tube portion 10 to the surface 20b on the distal end side of the electrode 20 is 1.5 mm. The electrode 20 is connected to the lead wire 40 on the proximal end side of the catheter 1.
 リード線40は、カテーテル1の近位端まで延伸しており(図示は省略)、図示しない電気手術器(高周波発生器)と接続されている。電気手術器からリード線40を経由して供給される電力により、電極20は高周波電流を発する。なお、カテーテル1を患者の体腔内に挿入する際に、患者の体側に対極板(図示せず)を取り付けてもよい。これにより、電極20から発生される高周波電流を使用して、患者の生体組織に対する種々の処置を行うことができる。ここで、本実施例におけるエネルギー素子は、電極20とリード線40を含んで構成される。 The lead wire 40 extends to the proximal end of the catheter 1 (not shown) and is connected to an electrosurgical device (high frequency generator) (not shown). The electrode 20 generates a high-frequency current by electric power supplied from the electrosurgical device via the lead wire 40. When the catheter 1 is inserted into the body cavity of the patient, a counter electrode plate (not shown) may be attached to the patient's body side. Thereby, various treatments for the patient's living tissue can be performed using the high-frequency current generated from the electrode 20. Here, the energy device in the present embodiment includes the electrode 20 and the lead wire 40.
 ここで、図1~図3に示すように、電極20の外周面には管部10の遠位端側から近位端側に延伸する凹部30が形成されている。図1においては凹部30を点線にて示す。また、図2に示すように、凹部30は電極20の外周面に約120度間隔で3個設けられている。なお、凹部30の数はこれに限られるものではない。この構成では凹部30と管部10の内壁10bとの間には空間ができる。この空間が流路50を形成することにより、管部10内において、遠位端側の端面10aの開口から流入する気体(空気など)や流体(体液、洗浄液など)が、流路50を通過して管部10の近位端側に移動することができる。 Here, as shown in FIG. 1 to FIG. 3, a recess 30 extending from the distal end side to the proximal end side of the tube portion 10 is formed on the outer peripheral surface of the electrode 20. In FIG. 1, the recessed part 30 is shown with a dotted line. As shown in FIG. 2, three recesses 30 are provided on the outer peripheral surface of the electrode 20 at intervals of about 120 degrees. In addition, the number of the recessed parts 30 is not restricted to this. In this configuration, a space is formed between the recess 30 and the inner wall 10 b of the tube portion 10. When this space forms the flow path 50, gas (air, etc.) and fluid (body fluid, cleaning liquid, etc.) flowing from the opening of the end face 10 a on the distal end side pass through the flow path 50 in the tube portion 10. Thus, the tube portion 10 can be moved to the proximal end side.
 また、管部10内において、気体や流体を近位端側から供給し、流路50を通過して管部10の遠位端側の端面10aの開口から吐出させることもできる。なお、管部10の遠位端側の端面10aの開口が、本実施例における管部の遠位端近傍に設けられた孔の一例に相当する。また、電極20の凹部30と管部10の内壁10bで形成される流路50は本実施例において連通路に相当する。なお、本実施例では、凹部30は管部10の長手方向、すなわち軸AX(図1において一点鎖線にて示す)方向に平行に延伸するように設けられているが、例えば螺旋状など種々の形状で延伸するように設けることもできる。 Also, in the tube part 10, gas or fluid can be supplied from the proximal end side, pass through the flow channel 50, and discharged from the opening of the end surface 10 a on the distal end side of the tube part 10. The opening of the end face 10a on the distal end side of the tube portion 10 corresponds to an example of a hole provided in the vicinity of the distal end of the tube portion in this embodiment. Further, the flow path 50 formed by the concave portion 30 of the electrode 20 and the inner wall 10b of the tube portion 10 corresponds to a communication path in this embodiment. In this embodiment, the recess 30 is provided so as to extend in parallel to the longitudinal direction of the tube portion 10, that is, the direction of the axis AX (indicated by the alternate long and short dash line in FIG. 1). It can also be provided so as to extend in a shape.
 本実施例においては、例えば、管部10の遠位端側の端面10aが患者の体腔内の生体組織と対向するように管部10の姿勢を制御し、流路50を介して管部10の遠位端側から近位端側に空気を吸引することで、生体組織を端面10aの開口に吸着させることが可能である。この吸着力を利用して管部10によって生体組織を牽引することが可能となる。また、上記の吸引力を適切に制御することで、端面10aの開口から生体組織を管部10内に引き込む(侵入させる)ことも可能である。 In the present embodiment, for example, the posture of the tube unit 10 is controlled so that the end surface 10 a on the distal end side of the tube unit 10 faces the biological tissue in the body cavity of the patient, and the tube unit 10 is connected via the flow path 50. By sucking air from the distal end side to the proximal end side, it is possible to adsorb biological tissue to the opening of the end face 10a. The living tissue can be pulled by the tube portion 10 by using this adsorption force. In addition, by appropriately controlling the above suction force, it is possible to draw (invade) the living tissue into the tube portion 10 from the opening of the end face 10a.
 図4に、生体組織100が管部10の端面10aの開口から管部10内に引き込まれた状態の一例を示す。図4に示すように生体組織100が管部10内に引き込まれた状態において電極20に電力を供給することにより、管部10内において電極20から管部10内に引き込まれた生体組織100に選択的に高周波電流を供給することが可能である。これにより、生体組織100は高周波電流により加熱されて凝固される。 FIG. 4 shows an example of a state in which the biological tissue 100 is drawn into the tube portion 10 from the opening of the end surface 10a of the tube portion 10. As shown in FIG. 4, by supplying power to the electrode 20 in a state in which the living tissue 100 is drawn into the tube portion 10, the living tissue 100 drawn into the tube portion 10 from the electrode 20 in the tube portion 10 is supplied. A high-frequency current can be selectively supplied. Thereby, the biological tissue 100 is heated and solidified by the high frequency current.
 なお、この際、管部10内に引き込まれた生体組織100を、電極20に接触させるようにすることが望ましい。これにより、生体組織100のうち、電極20に接触した箇所についてより集中的に高周波電流を供給することができ、当該箇所をより確実に凝固させることが可能である。例えば、管部10内に引き込まれた生体組織100に出血点が存在する場合は、電極20と出血点とが接触するように生体組織100を管部10内に吸着させることで、電極20から流れる高周波電流によって生体組織100の止血をピンポイント的に施すことができる。 At this time, it is desirable that the living tissue 100 drawn into the tube portion 10 is brought into contact with the electrode 20. Thereby, the high frequency current can be more intensively supplied to the part of the living tissue 100 that is in contact with the electrode 20, and the part can be solidified more reliably. For example, when there is a bleeding point in the biological tissue 100 drawn into the tube unit 10, the biological tissue 100 is adsorbed in the tube unit 10 so that the electrode 20 and the bleeding point come into contact with each other. The hemostasis of the living tissue 100 can be pinpointed by the flowing high-frequency current.
 このように本実施例においては、管部10の遠位端側の端面10aと電極20との間の空間内に生体組織100を引き込むことができ、対象箇所により選択的に凝固、止血などの処置を行うことができる。また、従来の鉗子とは異なり、電極20は管部10の遠位端側の端面10aから露出せず、管部10内に配設されており、さらに管部10は電気的に絶縁されている。 As described above, in the present embodiment, the living tissue 100 can be drawn into the space between the end surface 10a on the distal end side of the tube portion 10 and the electrode 20, and the coagulation and hemostasis can be selectively performed depending on the target location. Treatment can be performed. Further, unlike the conventional forceps, the electrode 20 is not exposed from the end face 10a on the distal end side of the tube portion 10, but is disposed in the tube portion 10, and the tube portion 10 is electrically insulated. Yes.
 このことにより、電極20から発生する高周波電流が管部10の外部の生体組織100に拡散することを抑制できる。このため、電極20から生体組織100に高周波電流が流れる範囲を管部10内に限定することができ、管部10内に引き込まれた生体組織100に、より集中的に強力な高周波電流を供給することができる。 Thereby, it is possible to suppress the high-frequency current generated from the electrode 20 from diffusing into the living tissue 100 outside the tube portion 10. For this reason, the range in which the high-frequency current flows from the electrode 20 to the living tissue 100 can be limited to the inside of the tube portion 10, and a stronger high-frequency current is supplied to the living tissue 100 drawn into the tube portion 10. can do.
 なお、本実施例におけるカテーテル1を患者の体腔内に挿入し、-10kPa以上の負圧で吸引することで、管部10の遠位端側の端面10aの開口が生体組織100に張り付くことがわかった。さらに吸引の負圧を上昇させると、管部10の遠位端側の端面10aの開口に張り付いた生体組織100が、管部10内に引き込まれる。生体組織100の管部10内への引き込み量は、負圧の上昇に応じて多くなることがわかった。また、-30kPa以上の負圧で吸引することで、生体組織100が管部10内の電極20の遠位端側の面20bと接することがわかった。このとき、生体組織100を管部10によって充分に牽引することもできる。また、管部10内に引き込まれた生体組織100に対して、電極20に30~120Wの電力を供給し、電極20から生体組織に高周波電流を流すことで生体組織100の凝固ができることがわかった。なお、上記の吸引の負圧と生体組織100の管部10内への引き込み量の関係は一例にすぎず、管部10の内壁10bの厚さや生体組織100の種類や状態に応じて負圧の圧力は適宜変更できる。 The opening of the end face 10a on the distal end side of the tube portion 10 may stick to the living tissue 100 by inserting the catheter 1 in this embodiment into the body cavity of the patient and sucking it with a negative pressure of −10 kPa or more. all right. When the suction negative pressure is further increased, the living tissue 100 attached to the opening of the end face 10 a on the distal end side of the tube portion 10 is drawn into the tube portion 10. It has been found that the amount of the living tissue 100 drawn into the tube portion 10 increases as the negative pressure increases. Further, it was found that the biological tissue 100 was in contact with the surface 20b on the distal end side of the electrode 20 in the tube portion 10 by suction with a negative pressure of −30 kPa or more. At this time, the living tissue 100 can be sufficiently pulled by the tube portion 10. In addition, it is understood that the biological tissue 100 can be coagulated by supplying power of 30 to 120 W to the electrode 20 and flowing high-frequency current from the electrode 20 to the biological tissue 100. It was. The relationship between the negative pressure of the suction and the amount of drawing of the living tissue 100 into the tube portion 10 is merely an example, and the negative pressure depends on the thickness of the inner wall 10b of the tube portion 10 and the type and state of the living tissue 100. The pressure can be changed as appropriate.
 以上が本実施例に関する説明であるが、本発明に係る内視鏡用カテーテルの構成は、上記の実施例に示したものに限定されるものではなく、本発明の技術的思想と同一性を失わない範囲内において種々の変更が可能である。例えば、上記の実施例では、電極20はシマリバメ状態で管部10に嵌まっているが、電極20の側面と管部10の内壁10bとの間に隙間を設けてスキ間バメあるいは中間バメの状態で電極20を管部10内に摺動可能に配設してもよい。例えば、電極20や流路50の形状は様々な形状が考えられる。図5に上記の一変形例としてのカテーテル1の正面図を示す。図5において、上記の実施例と同様の構成については同一の番号を付し、詳細な説明を省略する。 The above is the description of the present embodiment. However, the configuration of the endoscope catheter according to the present invention is not limited to that shown in the above embodiment, and is identical to the technical idea of the present invention. Various changes are possible within a range that is not lost. For example, in the above embodiment, the electrode 20 is fitted in the tube portion 10 in a squeeze state, but a gap is provided between the side surface of the electrode 20 and the inner wall 10b of the tube portion 10 to prevent gaps between the gaps and intermediate gaps. The electrode 20 may be slidably disposed in the tube portion 10 in a state. For example, the electrode 20 and the flow path 50 can have various shapes. FIG. 5 shows a front view of the catheter 1 as a modification of the above. In FIG. 5, the same components as those in the above embodiment are given the same reference numerals, and detailed description thereof is omitted.
 図5に示す例においては、電極20の形状を六角柱として、軸AXに垂直な平面における断面が六角形となるように形成されている。また、図5に示す正面図において、電極20の断面の六角形の頂点がそれぞれカテーテル1の管部10の内壁10bと略接するように、電極20が管部10内に配設されている。この場合には、電極20の側面20aと内壁10bとの間にできる空間が流路50となる。 In the example shown in FIG. 5, the shape of the electrode 20 is a hexagonal column, and the cross section in a plane perpendicular to the axis AX is a hexagon. In addition, in the front view shown in FIG. 5, the electrode 20 is disposed in the tube portion 10 so that the hexagonal apex of the cross section of the electrode 20 is substantially in contact with the inner wall 10 b of the tube portion 10 of the catheter 1. In this case, a space formed between the side surface 20 a of the electrode 20 and the inner wall 10 b becomes the flow path 50.
 さらに別の変形例として、図6に示すように、電極20を管部10の内径と略同径の円柱状の形状を有するように形成し、さらに電極20に、電極20内を遠位端側から近位端側に貫通する流路60を設ける構成としてもよい。このように流路が電極20の表面を一部に含んで形成されることで、生体組織の吸引、吸着、牽引などを好適に実施することができる。ここで電極の表面とは、カテーテルの管部の内壁と対向する電極の側面のみならず、電極の正面や電極を貫通する穴の内面を含むものである。 As yet another modification, as shown in FIG. 6, the electrode 20 is formed to have a cylindrical shape that is substantially the same diameter as the inner diameter of the tube portion 10, and the electrode 20 is further connected to the distal end of the electrode 20. It is good also as a structure which provides the flow path 60 penetrated from the side to the proximal end side. As described above, since the flow path is formed so as to partially include the surface of the electrode 20, suction, adsorption, traction, and the like of the living tissue can be suitably performed. Here, the surface of the electrode includes not only the side surface of the electrode facing the inner wall of the catheter tube, but also the front surface of the electrode and the inner surface of the hole penetrating the electrode.
 さらに、上記のカテーテルにおいて、電極の代わりに電力が供給されることで発熱する発熱素子によって生体組織に熱を供給してもよい。また、電極の代わりに超音波を発生する超音波素子によって生体組織に超音波や衝撃波を供給してもよい。さらに、電極から生体組織に電磁波を供給するようにしてもよい。この電磁波としては、マイクロ波、ラジオ波、レーザー光など種々の周波数及び特性の電磁波を使用することが可能である。さらに、上記電極を用いて生体組織の止血や腫瘍の焼灼などを行う際に、アルゴンガスを別途供給するAPC(Argon Plasma Coagulation)を採用することもできる。 Furthermore, in the above catheter, heat may be supplied to the living tissue by a heating element that generates heat when electric power is supplied instead of the electrode. Moreover, you may supply an ultrasonic wave and a shock wave to a biological tissue with the ultrasonic element which generate | occur | produces an ultrasonic wave instead of an electrode. Furthermore, electromagnetic waves may be supplied from the electrodes to the living tissue. As this electromagnetic wave, it is possible to use electromagnetic waves of various frequencies and characteristics such as microwaves, radio waves, and laser light. Furthermore, when performing hemostasis of a living tissue or ablation of a tumor using the electrode, APC (Argon Plasma Coagulation) that separately supplies argon gas can be employed.
 また、本発明においては、上記の電極20を管部10内において管部10の長手方向に移動可能に設けることで、電極20と管部10の遠位端側の端面10aとの距離を調整し、電力20の凹部30と管部10の内壁10bとの間に形成される流路50を用いて吸引を行う際の吸引力や生体組織を管部10内に吸着させたときの牽引力を調整することができる。また、その際の生体組織と電極20の接触状態を調整することができる。 In the present invention, the distance between the electrode 20 and the end face 10a on the distal end side of the tube portion 10 is adjusted by providing the electrode 20 in the tube portion 10 so as to be movable in the longitudinal direction of the tube portion 10. Then, the suction force when performing suction using the flow path 50 formed between the recess 30 of the power 20 and the inner wall 10b of the tube portion 10 and the traction force when the living tissue is adsorbed in the tube portion 10 are obtained. Can be adjusted. In addition, the contact state between the living tissue and the electrode 20 can be adjusted.
 また、上記の実施例においては、管部10の端面10aにおける開口を孔として利用したが、孔の構成は上記に限られない。例えば、管部10の端面10aは閉塞状態とした上で、孔を管部10の側面や端面に別途設けてもよい。孔の径や数も変更可能である。さらに、管部10の先端の形状を円筒状とは異なる先端形状とし、該先端形状のいずれかの箇所に孔を設けるようにしてもよい。さらに、管部10の端面10aを、管部10の軸に垂直な端面とする必要はなく、管部10の軸に対して傾斜を有するように構成してもよい。加えて、管部10の遠位端の形状は、単に円筒を切断した形状である必要はなく、先端にテーパやRをつけるなど、適宜加工を施しても構わない。 In the above embodiment, the opening in the end face 10a of the pipe portion 10 is used as a hole. However, the structure of the hole is not limited to the above. For example, the end surface 10a of the tube portion 10 may be closed, and a hole may be separately provided on the side surface or end surface of the tube portion 10. The diameter and number of holes can also be changed. Furthermore, the shape of the tip of the tube portion 10 may be a tip shape different from the cylindrical shape, and a hole may be provided at any part of the tip shape. Furthermore, the end surface 10a of the pipe part 10 does not need to be an end face perpendicular to the axis of the pipe part 10, and may be configured to have an inclination with respect to the axis of the pipe part 10. In addition, the shape of the distal end of the tube portion 10 does not have to be a shape obtained by simply cutting a cylinder, and may be appropriately processed such as adding a taper or R to the tip.
 さらに、上記では、カテーテル1を軟質樹脂を用いて形成しているが、カテーテル1の管部10を金属製の管状部材として形成し、管部10の内壁10bに絶縁部材を配して電極20から発生した高周波電流が管部10の外部に拡散しないように構成してもよい。また、本発明のカテーテル1は、消化管腔内の止血処置に有用であり、微細手術や鏡視下手術などにおける処置に用いることができる。ここで、微細手術としては、脳外科や血管外科における手術が想定される。また、鏡視下手術としては、硬性鏡を用いる腹腔鏡下手術や胸腔鏡化手術、軟性鏡を用いる消化器内視鏡手術や気管支鏡手術などが想定される。 Furthermore, in the above, the catheter 1 is formed using a soft resin. However, the tube portion 10 of the catheter 1 is formed as a metallic tubular member, and an insulating member is disposed on the inner wall 10b of the tube portion 10 to form the electrode 20. It may be configured so that the high-frequency current generated from the gas does not diffuse outside the tube portion 10. Moreover, the catheter 1 of the present invention is useful for hemostasis treatment in the digestive tract cavity, and can be used for treatment in microsurgery and endoscopic surgery. Here, surgery in brain surgery or vascular surgery is assumed as the microsurgery. As the endoscopic surgery, laparoscopic surgery, thoracoscopic surgery using a rigid endoscope, digestive endoscopic surgery using a flexible endoscope, bronchoscopic surgery, and the like are assumed.
1    カテーテル
10   管部
10a  端面
10b  内壁
20   電極
30   凹部
50、60   流路
DESCRIPTION OF SYMBOLS 1 Catheter 10 Tube part 10a End surface 10b Inner wall 20 Electrode 30 Recess 50, 60 Flow path

Claims (7)

  1.  管部の遠位端近傍に設けられた孔と、
     前記管部の内部における前記孔の近位端側に設けられたエネルギー素子と、を備えた内視鏡用カテーテルであって、
     前記エネルギー素子は、前記管部の内部の空洞に配置され所定のエネルギーを発生可能なエネルギー発生部と、前記エネルギー発生部の表面を一部に含んで形成され前記孔と前記管部における該エネルギー発生部の近位端側の領域を連通可能とする連通路と、を有することを特徴とする内視鏡用カテーテル。
    A hole provided near the distal end of the tube,
    An endoscopic catheter comprising: an energy element provided on a proximal end side of the hole in the tube portion;
    The energy element is disposed in a cavity inside the pipe part and is formed to include a part of the energy generation part capable of generating a predetermined energy and a surface of the energy generation part, and the energy in the hole and the pipe part. An endoscopic catheter, comprising: a communication path that allows a region on the proximal end side of the generation unit to communicate.
  2.  前記連通路は、前記エネルギー発生部の外形と前記管部の内壁とによって形成されることを特徴とする請求項1に記載の内視鏡用カテーテル。 2. The endoscope catheter according to claim 1, wherein the communication path is formed by an outer shape of the energy generating portion and an inner wall of the tube portion.
  3.  前記エネルギー発生部は、前記管部の内径と略同径の円柱状の形状を有し、
     前記連通路は、前記円柱状のエネルギー発生部の側面に設けられた溝と、前記管部の内壁とによって形成されることを特徴とする請求項2に記載の内視鏡用カテーテル。
    The energy generating part has a cylindrical shape having substantially the same diameter as the inner diameter of the pipe part,
    3. The endoscope catheter according to claim 2, wherein the communication path is formed by a groove provided on a side surface of the cylindrical energy generation unit and an inner wall of the tube unit.
  4.  前記エネルギー発生部が発生するエネルギーは、熱、所定周波数の電流、電磁波、レーザー光及び音波のいずれかを含むことを特徴とする請求項1から3のいずれか一項に記載の内視鏡用カテーテル。 4. The endoscope according to claim 1, wherein the energy generated by the energy generating unit includes any one of heat, a current having a predetermined frequency, an electromagnetic wave, a laser beam, and a sound wave. catheter.
  5.  前記孔は、前記管部の内部における空洞の、前記管部の遠位端における開口部であることを特徴とする請求項1から4のいずれか一項に記載の内視鏡用カテーテル。 The endoscopic catheter according to any one of claims 1 to 4, wherein the hole is an opening at a distal end of the tube portion of a cavity inside the tube portion.
  6.  前記エネルギー発生部の遠位端は、前記孔より所定距離近位端側に配置され、
     前記管部における該エネルギー発生部の近位端側の領域から前記管部内の気体または液体を吸引することで、前記孔から生体組織を吸引することが可能であり、
     前記孔から生体組織を吸引した際に、吸引された組織が前記孔から前記管部の内部に侵入して前記エネルギー発生部の遠位端に接触可能としたことを特徴とする請求項1から5のいずれか一項に記載の内視鏡用カテーテル。
    The distal end of the energy generating unit is disposed at a proximal end side by a predetermined distance from the hole,
    By sucking the gas or liquid in the tube portion from the proximal end side region of the energy generating portion in the tube portion, it is possible to suck a living tissue from the hole,
    2. When the biological tissue is sucked from the hole, the sucked tissue enters the inside of the tube part from the hole and can contact the distal end of the energy generating part. The endoscope catheter according to claim 5.
  7.  前記管部は、軟性内視鏡または軟性内視鏡が挿入される内視鏡用オーバーチューブに設けられた処置具チャネルに挿通可能に形成されたことを特徴とする請求項1から6のいずれか一項に記載の内視鏡用カテーテル。 7. The tube according to claim 1, wherein the tube portion is formed so as to be able to be inserted into a treatment instrument channel provided in a flexible endoscope or an endoscope overtube into which the flexible endoscope is inserted. The endoscope catheter according to claim 1.
PCT/JP2016/072869 2016-08-03 2016-08-03 Catheter for endoscope WO2018025360A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/072869 WO2018025360A1 (en) 2016-08-03 2016-08-03 Catheter for endoscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/072869 WO2018025360A1 (en) 2016-08-03 2016-08-03 Catheter for endoscope

Publications (1)

Publication Number Publication Date
WO2018025360A1 true WO2018025360A1 (en) 2018-02-08

Family

ID=61074050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072869 WO2018025360A1 (en) 2016-08-03 2016-08-03 Catheter for endoscope

Country Status (1)

Country Link
WO (1) WO2018025360A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010046200A (en) * 2008-08-20 2010-03-04 Fujinon Corp High frequency treatment tool
JP5033787B2 (en) * 2005-04-11 2012-09-26 テルモ株式会社 Method and apparatus for effecting closure of a lamellar tissue defect
JP2016150229A (en) * 2015-02-19 2016-08-22 山科精器株式会社 Catheter for endoscope

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5033787B2 (en) * 2005-04-11 2012-09-26 テルモ株式会社 Method and apparatus for effecting closure of a lamellar tissue defect
JP2010046200A (en) * 2008-08-20 2010-03-04 Fujinon Corp High frequency treatment tool
JP2016150229A (en) * 2015-02-19 2016-08-22 山科精器株式会社 Catheter for endoscope

Similar Documents

Publication Publication Date Title
US9649144B2 (en) Systems and methods for turbinate reduction
JP5870109B2 (en) System and method for enabling incision and vessel and tissue sealing to improve cautery with electrosurgical conducting gas
JP4756951B2 (en) Monopolar high frequency treatment device
US4562838A (en) Electrosurgery instrument
JP4203216B2 (en) Articulatable ionizable gas coagulator
EP2314242B1 (en) Tissue coagulation device using inert gas
EP1481642A1 (en) Forceps for endoscope
JP2008543355A (en) Endoscopic surgery device for argon plasma coagulation
US20160051313A1 (en) Attachment for Electrosurgical System
JP2002301088A (en) Endoscopic treatment device
JP2016150229A (en) Catheter for endoscope
AU2017294769A1 (en) Ultrapolar electrosurgery blade assembly and ultrapolar electrosurgery pencils with argon beam capability
US11857242B2 (en) Attachment for electrosurgical system
WO2018025360A1 (en) Catheter for endoscope
JP6087230B2 (en) MEDICAL TREATMENT TOOL AND MEDICAL TREATMENT DEVICE
JP3244648B2 (en) Endoscope cautery
JP5011527B2 (en) Microwave surgical device
CN218979179U (en) Surgical instrument, surgical robot and surgical system
JP2010273805A (en) Catheter
KR20220102512A (en) Connector for connecting surgical eletrode
WO2018100345A1 (en) Electrode shield
JP2020093021A (en) Bipolar electric tweezers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16911619

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16911619

Country of ref document: EP

Kind code of ref document: A1