WO2018024219A1 - 模拟灯丝阻抗电路、led灯管及led照明系统 - Google Patents

模拟灯丝阻抗电路、led灯管及led照明系统 Download PDF

Info

Publication number
WO2018024219A1
WO2018024219A1 PCT/CN2017/095672 CN2017095672W WO2018024219A1 WO 2018024219 A1 WO2018024219 A1 WO 2018024219A1 CN 2017095672 W CN2017095672 W CN 2017095672W WO 2018024219 A1 WO2018024219 A1 WO 2018024219A1
Authority
WO
WIPO (PCT)
Prior art keywords
impedance circuit
analog filament
filament impedance
analog
led
Prior art date
Application number
PCT/CN2017/095672
Other languages
English (en)
French (fr)
Inventor
文威
Original Assignee
欧普照明股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201620835534.0U external-priority patent/CN205987460U/zh
Priority claimed from CN201610630221.6A external-priority patent/CN106102255B/zh
Application filed by 欧普照明股份有限公司 filed Critical 欧普照明股份有限公司
Priority to EP17836401.4A priority Critical patent/EP3481152B1/en
Publication of WO2018024219A1 publication Critical patent/WO2018024219A1/zh
Priority to US16/266,013 priority patent/US10863595B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/357Driver circuits specially adapted for retrofit LED light sources
    • H05B45/3578Emulating the electrical or functional characteristics of discharge lamps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/27Retrofit light sources for lighting devices with two fittings for each light source, e.g. for substitution of fluorescent tubes
    • F21K9/278Arrangement or mounting of circuit elements integrated in the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/003Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the invention relates to the field of illumination, in particular to an analog filament impedance circuit, an LED lamp tube and an LED illumination system.
  • LED Light Emitting Diode
  • the ballast mainly includes two types: the magnetic ballast and the electronic ballast.
  • the magnetic ballast outputs low frequency voltage and low frequency current, generally at 50/60Hz, and the electronic ballast output is high. Frequency voltage and high frequency current, generally above 20kHz.
  • the way of replacing the traditional fluorescent lamp with the LED tube is mainly to directly replace the original traditional fluorescent lamp, and it is not necessary to change the internal wiring of the lamp, but the LED lamp required to be installed needs to be compatible with the original ballast.
  • FIG. 1 is a schematic view showing the structure of an LED lamp tube in the prior art.
  • the LED tube includes an analog filament impedance circuit 11, a drive module 12, and an illumination source 13.
  • the analog filament impedance circuit 11 is composed of four impedance modules (i.e., Z1, Z2, Z3, and Z4), Z1 and Z2 are connected in series, and Z3 and Z4 are connected in series.
  • One end of the driving module 12 is connected to Z1 and Z2, and the other end of the driving module 12 is connected to the illuminating light source 13.
  • One end of the illuminating light source 13 is connected to Z3 and Z4.
  • the existence of the analog filament impedance circuit in the LED tube is necessary.
  • the circuit cannot be opened.
  • the ballast external to the LED tube detects the impedance of the analog filament impedance circuit to determine whether the tube is connected, and determines according to the detection result. Whether the ballast works, the circuit can not be short-circuited or use too small impedance, otherwise it will cause overload of some of the ballast filament heating windings, which may cause the ballast to fail.
  • the International Electrotechnical Commission (IEC) standard has a minimum requirement for the analog filament impedance circuit.
  • the test method is to add a 50/60 Hz low-voltage signal across the filament to detect the impedance circuit flowing through the analog filament.
  • Current which must be less than the value specified in the IEC standard. Specifically, a voltage of 3.6 V is applied across Z1 and Z2, or both Z3 and Z4, through Z1 and Z2, or the currents of Z3 and Z4 cannot exceed 0.51A.
  • the impedance value of the analog filament impedance circuit should not be too large, and the current flowing into the LED tube must flow through the analog filament impedance circuit.
  • the excessive impedance of the analog filament impedance circuit increases the power consumption of the lamp and affects the photoelectricity of the lamp. Conversion efficiency.
  • the impedance unit of the analog filament impedance circuit can be simulated in two ways:
  • the filament resistance of the conventional fluorescent lamp is simulated by the inductance element, and the impedance of the conventional fluorescent lamp filament is equivalent to the inductance of the inductance element at a high frequency.
  • the analog filament impedance circuit formed by the first method has no pole frequency and zero frequency, that is, the impedance value of the analog filament impedance circuit does not change with frequency; the analog filament impedance circuit formed by the second method has only one zero frequency.
  • the impedance value of the analog filament impedance circuit increases as the frequency increases, and the analog filament impedance circuit is approximately shorted at a low frequency of 50/60 Hz.
  • the present invention has been made in order to provide an analog filament impedance circuit, LED tube and LED illumination system that overcomes the above problems or at least partially solves the above problems.
  • an analog filament impedance circuit having a pole frequency and a zero point frequency, wherein the pole frequency is less than the zero point frequency, when the input frequency is less than the pole frequency
  • the equivalent impedance value of the analog filament impedance circuit remains unchanged, and is a first equivalent impedance value.
  • the equivalent impedance value of the analog filament impedance circuit follows Decreasing the input frequency, the equivalent impedance value of the analog filament impedance circuit remains unchanged when the input frequency is greater than the zero frequency, and is a second equivalent impedance value, and the first equivalent impedance value Greater than the second equivalent impedance value.
  • the circuit is composed of a first resistor, a second resistor, and a first capacitor.
  • the first resistor and the first capacitor are connected in parallel, and then connected in series with the second resistor.
  • the first resistor and the first capacitor are connected in series, and then connected in parallel with the second resistor.
  • an LED lamp comprising: at least one of the analog filament impedance circuits, the LED driving module and the at least one LED lighting element as described above, wherein the LED driving module Coupled with the analog filament impedance circuit, the at least one LED of the LED is coupled to the LED driver module.
  • the LED tube comprises four analog filament impedance circuits, wherein the four analog filament impedance circuits are a first analog filament impedance circuit, a second analog filament impedance circuit, a third analog filament impedance circuit, and a fourth simulation. a filament impedance circuit, the first analog filament impedance circuit and the second analog filament impedance circuit string Connected, the third analog filament impedance circuit and the fourth analog filament impedance circuit are connected in series.
  • an LED lighting system comprising: an inductive ballast, the LED lamp coupled to the inductive ballast, and a starter coupled to the LED tube .
  • the LED tube comprises four analog filament impedance circuits, wherein the four analog filament impedance circuits are a first analog filament impedance circuit, a second analog filament impedance circuit, a third analog filament impedance circuit, and a fourth simulation. a filament impedance circuit, the first analog filament impedance circuit and the second analog filament impedance circuit are connected in series, and the third analog filament impedance circuit and the fourth analog filament impedance circuit are connected in series.
  • one end of the LED driving module is connected to one end of the first analog filament impedance circuit and one end of the second analog filament impedance circuit, and the other end of the LED driving module and the at least one LED are illuminated.
  • the other end of the at least one LED lighting element is connected to one end of the third analog filament impedance circuit and one end of the fourth analog filament impedance circuit, and the first analog filament impedance circuit is not connected to the One end of the LED driving module is connected to the magnetic ballast, and the second analog filament impedance circuit is not connected to one end of the LED driving module and is connected to one end of the starter externally connected to the LED lamp.
  • One end of the three analog filament impedance circuit not connected to the at least one LED light emitting element is connected to a neutral line connected to the mains, and the fourth analog filament impedance circuit is connected to the end of the at least one LED light emitting element Said the other end of the starter.
  • an LED illumination system comprising: an electronic ballast and the LED tube described above coupled to the electronic ballast.
  • the LED tube comprises four analog filament impedance circuits, wherein the four analog filament impedance circuits are a first analog filament impedance circuit, a second analog filament impedance circuit, a third analog filament impedance circuit, and a fourth simulation. a filament impedance circuit, the first analog filament impedance circuit and the second analog filament impedance circuit are connected in series, and the third analog filament impedance circuit and the fourth analog filament impedance circuit are connected in series.
  • one end of the LED driving module is connected to one end of the first analog filament impedance circuit and one end of the second analog filament impedance circuit, and the other end of the LED driving module and the at least one LED are illuminated.
  • the other end of the at least one LED lighting element is connected to one end of the third analog filament impedance circuit and one end of the fourth analog filament impedance circuit, and the first analog filament impedance circuit is not connected to the One end of the LED driving module is connected to an electronic ballast external to the LED tube, and the second analog filament impedance circuit is not connected with an electronic ballast connected to the LED lamp tube at one end of the LED driving module.
  • One end of the third analog filament impedance circuit to which the at least one LED light emitting element is not connected is connected to the electronic ballast, and the fourth analog filament impedance circuit is not connected to one end of the at least one LED light emitting element Connected to the electronic ballast.
  • the analog filament impedance circuit provided by the invention has both a pole frequency and a zero point frequency, and the pole frequency is less than the zero frequency.
  • the equivalent impedance value of the analog filament impedance circuit exhibits a corresponding change with the input frequency. Potential, that is, the first equivalent impedance value of the analog filament impedance circuit when the input frequency is less than the pole frequency is greater than the second equivalent impedance value of the analog filament impedance circuit when the input frequency is greater than the zero frequency, and is greater than the pole frequency and less than the input frequency At zero frequency, the equivalent impedance value of the analog filament impedance circuit decreases as the input frequency increases.
  • the equivalent impedance value of the analog filament impedance circuit is higher when the input frequency is less than the pole frequency, and the equivalent impedance value of the analog filament impedance circuit is lower when the input frequency is greater than the zero frequency.
  • the frequency of the test is generally 50/60 Hz.
  • the frequency of the IEC standard test is less than the pole frequency of the analog filament impedance circuit, and the input frequency is the frequency tested by the IEC standard.
  • the equivalent impedance value of the analog filament impedance circuit is large, so that the equivalent impedance value of the analog filament impedance circuit can meet the minimum requirement of the IEC standard test.
  • the external ballast of the analog filament impedance circuit provided by the present invention is an inductive ballast
  • the voltage and current input to the analog filament impedance circuit of the magnetic ballast are low frequency voltage and low frequency current, and are high voltage and small current states.
  • the equivalent impedance value of the larger analog filament impedance circuit does not have much influence on the conversion efficiency of the LED tube.
  • the external ballast of the analog filament impedance circuit provided by the invention is an electronic ballast, the output frequency of the electronic ballast is higher, the output frequency is greater than the pole frequency of the analog filament impedance circuit, and even greater than the zero point of the analog filament impedance circuit. frequency.
  • the analog filament impedance circuit reduces the equivalent impedance value as the input frequency increases as the input frequency is greater than the pole frequency, the analog filament impedance circuit at this time has a smaller equivalent impedance value and the electronic ballast input
  • the analog filament impedance circuit is low voltage and large current.
  • the equivalent impedance value of the smaller analog filament impedance circuit can greatly reduce its own power consumption, thereby reducing the influence on the conversion efficiency of the lamp.
  • FIG. 1 is a schematic structural view of a prior art LED lamp tube
  • 2a is a schematic structural view of an analog filament impedance circuit in the prior art
  • 2b is a schematic view showing another structure of an analog filament impedance circuit in the prior art
  • FIG. 3 shows an application schematic of an analog filament impedance circuit in accordance with one embodiment of the present invention
  • FIG. 4 is a block diagram showing the structure of an analog filament impedance circuit in accordance with one embodiment of the present invention.
  • FIG. 5 is a block diagram showing another structure of an analog filament impedance circuit according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural view of an LED lamp tube according to an embodiment of the present invention.
  • Figure 7 is a circuit diagram showing an LED lamp according to an embodiment of the present invention.
  • FIG. 8 is a block diagram showing the structure of an LED illumination system according to an embodiment of the present invention.
  • FIG. 9 shows another schematic structural view of an LED illumination system in accordance with one embodiment of the present invention.
  • the present invention provides an analog filament impedance circuit.
  • the analog filament impedance circuit has a pole frequency and a zero frequency, wherein the pole frequency is less than the zero frequency, and the equivalent impedance value of the analog filament impedance circuit remains unchanged when the input frequency is less than the pole frequency, which is the first equivalent impedance value.
  • the equivalent impedance value of the analog filament impedance circuit decreases as the input frequency increases.
  • the equivalent impedance value of the analog filament impedance circuit remains unchanged. It is a second equivalent impedance value, and the first equivalent impedance value is greater than the second equivalent impedance value.
  • FIG. 3 shows an application schematic of an analog filament impedance circuit in accordance with one embodiment of the present invention.
  • an analog filament impedance circuit provided by an embodiment of the present invention is disposed on an LED lamp tube.
  • One end of the analog filament impedance circuit is connected to an external ballast of the LED lamp tube, and the other end is connected to an LED driving module in the LED lamp tube.
  • the analog filament impedance circuit provided by the invention has both a pole frequency and a zero point frequency, and the pole frequency is less than the zero frequency.
  • the equivalent impedance value of the analog filament impedance circuit exhibits a corresponding change trend with the input frequency, that is, the first equivalent impedance value of the analog filament impedance circuit when the input frequency is less than the pole frequency is greater than the analog filament impedance when the input frequency is greater than the zero frequency.
  • the second equivalent impedance value of the circuit and when the input frequency is greater than the pole frequency and less than the zero frequency, the equivalent impedance value of the analog filament impedance circuit decreases as the input frequency increases.
  • the equivalent impedance value of the analog filament impedance circuit is higher when the input frequency is less than the pole frequency, and the equivalent impedance value of the analog filament impedance circuit is lower when the input frequency is greater than the zero frequency.
  • the frequency of the test is generally 50/60 Hz.
  • the frequency of the IEC standard test is less than the pole frequency of the analog filament impedance circuit, and the input frequency is the frequency tested by the IEC standard.
  • the equivalent impedance value of the analog filament impedance circuit is large, so that the equivalent impedance value of the analog filament impedance circuit can meet the minimum requirement of the IEC standard test.
  • the external ballast of the analog filament impedance circuit provided by the present invention is an inductive ballast
  • the voltage and current input to the analog filament impedance circuit of the magnetic ballast are low frequency voltage and The low frequency current is a high voltage and small current state. At this time, the equivalent impedance value of the larger analog filament impedance circuit does not have much influence on the LED lamp conversion efficiency.
  • the external ballast of the analog filament impedance circuit provided by the invention is an electronic ballast, the output frequency of the electronic ballast is higher, the output frequency is greater than the pole frequency of the analog filament impedance circuit, and even greater than the zero point of the analog filament impedance circuit. frequency.
  • the analog filament impedance circuit reduces the equivalent impedance value as the input frequency increases as the input frequency is greater than the pole frequency, the analog filament impedance circuit at this time has a smaller equivalent impedance value and the electronic ballast input
  • the analog filament impedance circuit is low voltage and large current.
  • the equivalent impedance value of the smaller analog filament impedance circuit can greatly reduce its own power consumption, thereby reducing the influence on the conversion efficiency of the lamp.
  • the analog filament impedance circuit is comprised of at least a first resistor, a second resistor, and a first capacitor.
  • the analog filament impedance circuit includes a first resistor 41, a second resistor 42, and a first capacitor 43.
  • the first resistor 41 and the first capacitor 43 are connected in parallel, and then connected in series with the second resistor 42.
  • R1 is the resistance of the first resistor 41
  • R2 is the resistance of the second resistor 42
  • C is the capacitance of the first capacitor 43
  • w is the angular frequency
  • the pole frequency f p of the circuit is:
  • the zero point frequency f z of the analog filament impedance circuit is:
  • the input frequency is less than the pole frequency f p
  • the input frequency is a low frequency state.
  • the first capacitor 43 is equivalent to an open circuit.
  • the analog filament impedance circuit is equivalent to the first resistor 41 and the second resistor 42 connected in series.
  • the equivalent resistance of the filament impedance circuit analog value is larger, to meet the minimum requirements of the IEC standard tests;
  • the output frequency of the electronic ballast is much higher than the pole frequency f p , which is close to or even exceeds the zero frequency f z .
  • the impedance value is small, and the equivalent impedance value of the smaller analog filament impedance circuit can greatly reduce its own power consumption, thereby reducing the influence on the conversion efficiency of the lamp.
  • FIG. 5 is a block diagram showing the structure of an analog filament impedance circuit in accordance with one embodiment of the present invention.
  • the analog filament impedance circuit includes a first resistor 51, a second resistor 52, and a first capacitor 53, wherein the first resistor 51 and the first capacitor 53 are connected in series, and then connected in parallel with the second resistor 52.
  • R1 is the resistance of the first resistor 51
  • R2 is the resistance of the second resistor 52
  • C is the capacitance of the first capacitor 53
  • w is the angular frequency
  • the pole frequency f p is:
  • the zero frequency fz of the analog filament impedance circuit is:
  • the input frequency is less than the pole frequency f p
  • the input frequency is a low frequency state at this time.
  • the first capacitor 53 is equivalent to an open circuit.
  • the analog filament impedance circuit is equivalent to only the second resistor 52, and the analog filament
  • the analog filament impedance circuit is equivalent to the first resistor 51 and the second resistor 52 being connected in parallel.
  • the equivalent resistance of the filament impedance circuit analog value is larger, to meet the minimum requirements of the IEC standard tests;
  • the output frequency of the electronic ballast is much higher than the pole frequency f p , which is close to or even exceeds the zero frequency f z .
  • the impedance value is small, and the equivalent impedance value of the smaller analog filament impedance circuit can greatly reduce its own power consumption, thereby reducing the influence on the conversion efficiency of the lamp.
  • FIG. 6 shows a schematic structural view of an LED lamp tube according to an embodiment of the present invention.
  • the LED lamp tube includes: an analog filament impedance circuit 61, an LED driving module 62 and at least one LED lighting component 63 shown in any one of Embodiment 1 and Embodiment 2, wherein the LED driving module 62 and The analog filament impedance circuit 61 is coupled, and at least one of the light emitting elements 63 is coupled to the LED drive module 62.
  • Figure 7 shows a circuit schematic of an LED tube in accordance with one embodiment of the present invention.
  • the LED lamp tube includes four analog filament impedance circuits 71 shown in any one of the first embodiment and the second embodiment.
  • the four analog filament impedance circuits 71 are respectively a first analog filament impedance circuit 711 and a second simulation.
  • the first analog filament impedance circuit 711 and the second analog filament impedance circuit 712 are connected in series, and the third analog filament impedance circuit 713 and the fourth analog filament impedance circuit 714 are connected in series.
  • One end of the LED driving module 72 is connected to one end of the first analog filament impedance circuit 711 and one end of the second analog filament impedance circuit 712, and the other end of the LED driving module 72 is connected to at least one LED lighting element 73, and at least one LED lighting element 73 is connected. The other end is connected to the third One end of the analog filament impedance circuit 713 and one end of the fourth analog filament impedance circuit 714 are simulated.
  • the first analog filament impedance circuit 711 is not connected with an inductor ballast connected to the LED lamp tube at one end of the LED driving module 72.
  • the second analog filament impedance circuit 712 is not connected to one end of the LED driving module 72 and is connected to one end of the starter externally connected to the LED tube.
  • the third analog filament impedance circuit 713 is connected to one end of the at least one LED light-emitting element 73.
  • the zero line of the incoming power, the fourth analog filament impedance circuit 714 is not connected to one end of the at least one LED lighting element 73 and is connected to the other end of the starter.
  • the ballast external to the LED tube provided by the embodiment of the present invention is an electronic ballast
  • the first analog filament impedance circuit 711 is not connected to one end of the LED driving module 72
  • the second analog filament impedance circuit 712 is not connected to the LED.
  • One end of the driving module 72, the third analog filament impedance circuit 713 is not connected to one end of the at least one LED lighting element 73, and the fourth analog filament impedance circuit 714 is connected to the electronic ballast with one end of the at least one LED lighting element 73 not connected. .
  • the present invention also provides an LED illumination system.
  • 8 is a block diagram showing the structure of an LED illumination system according to an embodiment of the present invention.
  • the LED illumination system includes an inductive ballast 81, an LED lamp 82 coupled to the inductive ballast 81, and A starter 83 coupled to the LED tube 82.
  • the LED lamp tube 82 includes four analog filament impedance circuits (ie, the first analog filament impedance circuit 821, the second analog filament impedance circuit 822, and the third analog filament impedance circuit) shown in any one of the first embodiment and the second embodiment. 823 and a fourth analog filament impedance circuit 824), an LED drive module 825, and at least one light emitting element 826.
  • the LED tube 82 is provided with four terminals (ie, terminal 1, terminal 2, terminal 3, and terminal 4), wherein terminal 1 and terminal 2 are disposed on one side of the LED tube 82, and terminal 3 and terminal 4 are disposed on the LED lamp.
  • the live line of the input commercial power is connected to one end of the magnetic ballast 81, and the other end of the magnetic ballast 81 is connected to the first analog filament impedance circuit 821 of the LED lamp 82 through the terminal 1, and is connected to the neutral line of the mains. 3 is connected to the third analog filament impedance circuit 823 of the LED tube 82.
  • the starter 83 is connected to the second analog filament impedance circuit 822 and the fourth analog filament impedance circuit 824 of the LED tube 82 through the terminal 2 and the terminal 4, respectively.
  • the voltage and current input to the LED tube 82 flow through the first analog filament impedance circuit 821 to the LED driver module 825, then to the at least one light-emitting element 826, and finally back through the third analog filament impedance circuit 823.
  • the LED illumination system includes an electronic ballast 91, and the LED lamp coupled with the electronic ballast 91.
  • the LED lamp tube 92 includes four analog filament impedance circuits (ie, the first analog filament impedance circuit 921, the second analog filament impedance circuit 922, and the third analog filament impedance circuit) shown in any one of the first embodiment and the second embodiment. 923 and fourth analog filament impedance circuit 924), LED drive module 925 and at least one illuminant Item 926.
  • the LED lamp tube 92 is provided with four terminals (ie, terminal 1, terminal 2, terminal 3, and terminal 4), wherein terminal 1 and terminal 2 are disposed on one side of the LED lamp tube 92, and terminal 3 and terminal 4 are disposed on the LED lamp. The other side of the tube 92.
  • the mains input is directly connected to the electronic ballast 91, and the electronic ballast 91 passes through the first analog filament impedance circuit 921 and the second analog filament impedance circuit of the LED lamp 92 through the terminal 1, the terminal 2, the terminal 3 and the terminal 4, respectively. 922.
  • the third analog filament impedance circuit 923 is connected to the fourth analog filament impedance circuit 924.
  • the voltage and current input to the LED lamp 92 flow through the first analog filament impedance circuit 921 to the LED drive module 925, then to the at least one light-emitting element 926, and finally back through the third analog filament impedance circuit 923.
  • analog filament impedance circuit the LED lamp tube and the LED illumination system provided by the embodiments of the present invention can achieve the following beneficial effects:
  • the analog filament impedance circuit provided by the invention has both a pole frequency and a zero point frequency, and the pole frequency is less than the zero frequency.
  • the equivalent impedance value of the analog filament impedance circuit exhibits a corresponding change trend with the input frequency, that is, the first equivalent impedance value of the analog filament impedance circuit when the input frequency is less than the pole frequency is greater than the analog filament impedance when the input frequency is greater than the zero frequency.
  • the second equivalent impedance value of the circuit and when the input frequency is greater than the pole frequency and less than the zero frequency, the equivalent impedance value of the analog filament impedance circuit decreases as the input frequency increases.
  • the equivalent impedance value of the analog filament impedance circuit is higher when the input frequency is less than the pole frequency, and the equivalent impedance value of the analog filament impedance circuit is lower when the input frequency is greater than the zero frequency.
  • the frequency of the test is generally 50/60 Hz.
  • the frequency of the IEC standard test is less than the pole frequency of the analog filament impedance circuit, and the input frequency is the frequency tested by the IEC standard.
  • the equivalent impedance value of the analog filament impedance circuit is large, so that the equivalent impedance value of the analog filament impedance circuit can meet the minimum requirement of the IEC standard test.
  • the external ballast of the analog filament impedance circuit provided by the present invention is an inductive ballast
  • the voltage and current input to the analog filament impedance circuit of the magnetic ballast are low frequency voltage and low frequency current, and are high voltage and small current states.
  • the equivalent impedance value of the larger analog filament impedance circuit does not have much influence on the conversion efficiency of the LED tube.
  • the external ballast of the analog filament impedance circuit provided by the invention is an electronic ballast, the output frequency of the electronic ballast is higher, the output frequency is greater than the pole frequency of the analog filament impedance circuit, and even greater than the zero point of the analog filament impedance circuit. frequency.
  • the analog filament impedance circuit reduces the equivalent impedance value as the input frequency increases as the input frequency is greater than the pole frequency, the analog filament impedance circuit at this time has a smaller equivalent impedance value and the electronic ballast input
  • the analog filament impedance circuit is low voltage and large current.
  • the equivalent impedance value of the smaller analog filament impedance circuit can greatly reduce its own power consumption, thereby reducing the influence on the conversion efficiency of the lamp.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

模拟灯丝阻抗电路、LED灯管及LED照明系统,其中,该模拟灯丝阻抗电路具有极点频率和零点频率,其中,所述极点频率小于所述零点频率,在输入频率小于所述极点频率时所述模拟灯丝阻抗电路的等效阻抗值保持不变,为第一等效阻抗值。在输入频率大于所述极点频率且小于所述零点频率时所述模拟灯丝阻抗电路的等效阻抗值随着所述输入频率的升高而降低,在输入频率大于所述零点频率时所述模拟灯丝阻抗电路的等效阻抗值保持不变,为第二等效阻抗值,且所述第一等效阻抗值大于所述第二等效阻抗值。该模拟灯丝阻抗电路,既能满足IEC标准测试的要求,又不会影响灯管的转换效率。

Description

模拟灯丝阻抗电路、LED灯管及LED照明系统 技术领域
本发明涉及照明领域,特别是涉及一种模拟灯丝阻抗电路、LED灯管及LED照明系统。
背景技术
发光二极管(Light Emitting Diode,简称LED)光源由于具有体积小、高亮度、耗电量低以及使用寿命长等优点,得到了广泛关注及应用,使得采用LED灯管替代传统荧光灯灯管逐渐成为一种趋势。
传统荧光灯无法直接接入市电进行工作,需要在市电和传统荧光灯之间加入镇流器。根据工作频率的不同,镇流器主要包括电感镇流器和电子镇流器这两种类型,其中,电感镇流器输出低频电压和低频电流,一般在50/60Hz,电子镇流器输出高频电压和高频电流,一般在20kHz以上。现有技术中,LED灯管替代传统荧光灯的方式主要是直接替换原有的传统荧光灯,无需更改灯具内部线路,但是要求安装的LED灯管需要兼容原有的镇流器工作。
图1示出了现有技术中的一种LED灯管的结构示意图。参见图1,LED灯管包括模拟灯丝阻抗电路11、驱动模块12和发光光源13。模拟灯丝阻抗电路11由4个阻抗模块(即Z1、Z2、Z3和Z4)构成,Z1和Z2串联连接,Z3和Z4串联连接。驱动模块12的一端与Z1、Z2相连接,驱动模块12的另一端与发光光源13连接,发光光源13的一端与Z3、Z4相连接。
LED灯管中的模拟灯丝阻抗电路的存在是必要的,该电路不能开路,LED灯管外接的镇流器通过检测该模拟灯丝阻抗电路的阻抗以判断灯管是否连接,并根据检测结果来决定镇流器是否工作,该电路也不能短路或者采用过小的阻抗,否则会引起部分镇流器灯丝加热绕组过载,进而可能导致镇流器失效。
另外,国际电工委员会(International Electro technical Commission,简称IEC)标准对模拟灯丝阻抗电路有一个最小值的要求,测试的方法是在灯丝两端加入50/60Hz低压信号,检测流过该模拟灯丝阻抗电路的电流,该电流值必须小于IEC标准的规定值。具体地,在Z1和Z2,或者Z3和Z4的两端施加3.6V电压,通过Z1和Z2,或者Z3和Z4电流不能超过0.51A。同时,模拟灯丝阻抗电路的阻抗值也不能过大,流入LED灯管的电流必定会流经模拟灯丝阻抗电路,模拟灯丝阻抗电路过大的阻抗会增加灯管的功耗,影响灯管的光电转换效率。
现有技术中,模拟灯丝阻抗电路的阻抗单元可通过如下两种方式来模拟:
第一种方式:参见图2a,直接用电阻元件模拟传统荧光灯的灯丝电阻,通过测量传统荧光灯灯丝冷态和热态的阻值来计算所需电阻阻值;
第二种方式:参见图2b,通过电感元件模拟传统荧光灯的灯丝电阻,利用电感元件在高频时的感抗来等效传统荧光灯灯丝阻抗。
采用第一种方式形成的模拟灯丝阻抗电路没有极点频率和零点频率,即该模拟灯丝阻抗电路的阻抗值不随频率变化而变化;采用第二种方式形成的模拟灯丝阻抗电路,只有一个零点频率,该模拟灯丝阻抗电路的阻抗值随着频率的升高而升高,并且在低频50/60Hz时该模拟灯丝阻抗电路近似短路。
因此,目前尚未提出一种模拟灯丝阻抗电路既能满足IEC标准的测试,同时又不影响灯管的转换效率。
发明内容
鉴于上述问题,提出了本发明以便提供一种克服上述问题或者至少部分地解决上述问题的模拟灯丝阻抗电路、LED灯管及LED照明系统。
基于本发明的一个方面,提供了一种模拟灯丝阻抗电路,模拟灯丝阻抗电路具有极点频率和零点频率,其中,所述极点频率小于所述零点频率,在输入频率小于所述极点频率时所述模拟灯丝阻抗电路的等效阻抗值保持不变,为第一等效阻抗值,在输入频率大于所述极点频率且小于所述零点频率时所述模拟灯丝阻抗电路的等效阻抗值随着所述输入频率的升高而降低,在输入频率大于所述零点频率时所述模拟灯丝阻抗电路的等效阻抗值保持不变,为第二等效阻抗值,且所述第一等效阻抗值大于所述第二等效阻抗值。
可选地,所述电路由第一电阻、第二电阻和第一电容组成。
可选地,所述第一电阻和所述第一电容并联连接后,再与所述第二电阻串联连接。
可选地,所述第一电阻和所述第一电容串联连接后,再与所述第二电阻并联连接。
基于本发明的另一个方面,还提供了一种LED灯管,包括:至少一个如上所述的任一种模拟灯丝阻抗电路、LED驱动模块和至少一个LED发光元件,其中,所述LED驱动模块与所述模拟灯丝阻抗电路耦合,所述至少LED一个发光元件与所述LED驱动模块耦合。
可选地,所述LED灯管包括四个模拟灯丝阻抗电路,所述四个模拟灯丝阻抗电路为第一模拟灯丝阻抗电路、第二模拟灯丝阻抗电路、第三模拟灯丝阻抗电路和第四模拟灯丝阻抗电路,所述第一模拟灯丝阻抗电路和所述第二模拟灯丝阻抗电路串 联连接,所述第三模拟灯丝阻抗电路和所述第四模拟灯丝阻抗电路串联连接。
基于本发明的另一个方面,还提供了一种LED照明系统,包括:电感镇流器、与所述电感镇流器耦合的、上述LED灯管和与所述LED灯管耦合的启辉器。
可选地,所述LED灯管包括四个模拟灯丝阻抗电路,所述四个模拟灯丝阻抗电路为第一模拟灯丝阻抗电路、第二模拟灯丝阻抗电路、第三模拟灯丝阻抗电路和第四模拟灯丝阻抗电路,所述第一模拟灯丝阻抗电路和所述第二模拟灯丝阻抗电路串联连接,所述第三模拟灯丝阻抗电路和所述第四模拟灯丝阻抗电路串联连接。
可选地,所述LED驱动模块的一端连接于所述第一模拟灯丝阻抗电路的一端和所述第二模拟灯丝阻抗电路的一端,所述LED驱动模块的另一端与所述至少一个LED发光元件连接,所述至少一个LED发光元件的另一端连接于所述第三模拟灯丝阻抗电路的一端和所述第四模拟灯丝阻抗电路的一端,所述第一模拟灯丝阻抗电路未连接有所述LED驱动模块的一端连接于所述电感镇流器,所述第二模拟灯丝阻抗电路未连接有所述LED驱动模块的一端连接于所述LED灯管外接的启辉器的一端,所述第三模拟灯丝阻抗电路未连接有所述至少一个LED发光元件的一端连接于接入市电的零线,所述第四模拟灯丝阻抗电路未连接有所述至少一个LED发光元件的一端连接于所述启辉器的另一端。
基于本发明的另一个方面,还提供了一种LED照明系统,包括:电子镇流器和与所述电子镇流器耦合的、上述LED灯管。
可选地,所述LED灯管包括四个模拟灯丝阻抗电路,所述四个模拟灯丝阻抗电路为第一模拟灯丝阻抗电路、第二模拟灯丝阻抗电路、第三模拟灯丝阻抗电路和第四模拟灯丝阻抗电路,所述第一模拟灯丝阻抗电路和所述第二模拟灯丝阻抗电路串联连接,所述第三模拟灯丝阻抗电路和所述第四模拟灯丝阻抗电路串联连接。
可选地,所述LED驱动模块的一端连接于所述第一模拟灯丝阻抗电路的一端和所述第二模拟灯丝阻抗电路的一端,所述LED驱动模块的另一端与所述至少一个LED发光元件连接,所述至少一个LED发光元件的另一端连接于所述第三模拟灯丝阻抗电路的一端和所述第四模拟灯丝阻抗电路的一端,所述第一模拟灯丝阻抗电路未连接有所述LED驱动模块的一端连接于所述LED灯管外接的电子镇流器,所述第二模拟灯丝阻抗电路未连接有所述LED驱动模块的一端连接于所述LED灯管外接的电子镇流器,所述第三模拟灯丝阻抗电路未连接有所述至少一个LED发光元件的一端连接于所述电子镇流器,所述第四模拟灯丝阻抗电路未连接有所述至少一个LED发光元件的一端连接于所述电子镇流器。
本发明提供的模拟灯丝阻抗电路同时具有极点频率和零点频率,并且极点频率小于零点频率。该模拟灯丝阻抗电路的等效阻抗值随着输入频率呈现相应的变化趋 势,即在输入频率小于极点频率时模拟灯丝阻抗电路的第一等效阻抗值大于在输入频率大于零点频率时模拟灯丝阻抗电路的第二等效阻抗值,并且在输入频率大于极点频率且小于零点频率时,模拟灯丝阻抗电路的等效阻抗值随着输入频率的升高而降低。由此得出,在输入频率小于极点频率时模拟灯丝阻抗电路的等效阻抗值较高,在输入频率大于零点频率时模拟灯丝阻抗电路的等效阻抗值较低。该模拟灯丝阻抗电路在进行IEC标准测试时,由于该测试的频率较低,一般为50/60Hz,IEC标准测试的频率小于模拟灯丝阻抗电路的极点频率,并且在输入频率为IEC标准测试的频率时模拟灯丝阻抗电路的等效阻抗值较大,使得模拟灯丝阻抗电路的等效阻抗值能够满足IEC标准测试的最小值要求。若本发明提供的模拟灯丝阻抗电路的外接镇流器为电感镇流器,电感镇流器输入至模拟灯丝阻抗电路的电压和电流为低频电压和低频电流,并且为高电压小电流状态,此时,较大的模拟灯丝阻抗电路的等效阻抗值不会对LED灯管转换效率有太大的影响。若本发明提供的模拟灯丝阻抗电路的外接镇流器为电子镇流器,电子镇流器的输出频率较高,该输出频率大于模拟灯丝阻抗电路的极点频率,甚至大于模拟灯丝阻抗电路的零点频率。由于模拟灯丝阻抗电路在输入频率大于极点频率时其等效阻抗值随着输入频率的升高而降低,使得此时的模拟灯丝阻抗电路具有较小的等效阻抗值,并且电子镇流器输入至模拟灯丝阻抗电路为低电压大电流,此时,较小的模拟灯丝阻抗电路的等效阻抗值可以大幅降低自身的功耗,进而可以降低对灯管转换效率的影响。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其它目的、特征和优点能够更明显易懂,以下特举本发明的具体实施方式。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1示出了现有技术中LED灯管的结构示意图;
图2a示出了现有技术中模拟灯丝阻抗电路的结构示意图;
图2b示出了现有技术中模拟灯丝阻抗电路的另一种结构示意图;
图3示出了根据本发明一个实施例的模拟灯丝阻抗电路的应用示意图;
图4示出了根据本发明一个实施例的模拟灯丝阻抗电路的结构示意图;
图5示出了根据本发明一个实施例的模拟灯丝阻抗电路的另一种结构示意图;
图6示出了根据本发明一个实施例的LED灯管的结构示意图;
图7示出了根据本发明一个实施例的LED灯管的电路示意图;
图8示出了根据本发明一个实施例的LED照明系统的结构示意图;
图9示出了根据本发明一个实施例的LED照明系统的另一种结构示意图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
为解决上述技术问题,本发明提供了一种模拟灯丝阻抗电路。该模拟灯丝阻抗电路具有极点频率和零点频率,其中,极点频率小于零点频率,在输入频率小于极点频率时模拟灯丝阻抗电路的等效阻抗值保持不变,为第一等效阻抗值。在输入频率大于极点频率且小于零点频率时模拟灯丝阻抗电路的等效阻抗值随着输入频率的升高而降低,在输入频率大于零点频率时模拟灯丝阻抗电路的等效阻抗值保持不变,为第二等效阻抗值,且第一等效阻抗值大于第二等效阻抗值。
图3示出了根据本发明一个实施例的模拟灯丝阻抗电路的应用示意图。参见图3,本发明实施例提供的模拟灯丝阻抗电路设置于LED灯管,模拟灯丝阻抗电路的一端与LED灯管外接的镇流器连接,另一端与LED灯管内的LED驱动模块连接。
本发明提供的模拟灯丝阻抗电路同时具有极点频率和零点频率,并且极点频率小于零点频率。该模拟灯丝阻抗电路的等效阻抗值随着输入频率呈现相应的变化趋势,即在输入频率小于极点频率时模拟灯丝阻抗电路的第一等效阻抗值大于在输入频率大于零点频率时模拟灯丝阻抗电路的第二等效阻抗值,并且在输入频率大于极点频率且小于零点频率时,模拟灯丝阻抗电路的等效阻抗值随着输入频率的升高而降低。由此得出,在输入频率小于极点频率时模拟灯丝阻抗电路的等效阻抗值较高,在输入频率大于零点频率时模拟灯丝阻抗电路的等效阻抗值较低。该模拟灯丝阻抗电路在进行IEC标准测试时,由于该测试的频率较低,一般为50/60Hz,IEC标准测试的频率小于模拟灯丝阻抗电路的极点频率,并且在输入频率为IEC标准测试的频率时模拟灯丝阻抗电路的等效阻抗值较大,使得模拟灯丝阻抗电路的等效阻抗值能够满足IEC标准测试的最小值要求。若本发明提供的模拟灯丝阻抗电路的外接镇流器为电感镇流器,电感镇流器输入至模拟灯丝阻抗电路的电压和电流为低频电压和 低频电流,并且为高电压小电流状态,此时,较大的模拟灯丝阻抗电路的等效阻抗值不会对LED灯管转换效率有太大的影响。若本发明提供的模拟灯丝阻抗电路的外接镇流器为电子镇流器,电子镇流器的输出频率较高,该输出频率大于模拟灯丝阻抗电路的极点频率,甚至大于模拟灯丝阻抗电路的零点频率。由于模拟灯丝阻抗电路在输入频率大于极点频率时其等效阻抗值随着输入频率的升高而降低,使得此时的模拟灯丝阻抗电路具有较小的等效阻抗值,并且电子镇流器输入至模拟灯丝阻抗电路为低电压大电流。此时,较小的模拟灯丝阻抗电路的等效阻抗值可以大幅降低自身的功耗,进而可以降低对灯管转换效率的影响。
在本发明的一个优选实施例中,模拟灯丝阻抗电路至少由第一电阻、第二电阻和第一电容组成。
实施例一
图4示出了根据本发明一个实施例的模拟灯丝阻抗电路的结构示意图。参见图4,该模拟灯丝阻抗电路包括第一电阻41、第二电阻42和第一电容43,其中,第一电阻41和第一电容43并联连接后,再与第二电阻42串联连接。
图4示出的模拟灯丝阻抗电路的等效阻抗值Z的表达式为:
Figure PCTCN2017095672-appb-000001
其中,R1为第一电阻41的阻值,R2为第二电阻42的阻值,C为第一电容43的容值,w为角频率。
由于角频率w=2πf,其中,f为频率,因此,等效阻抗值Z的表达式为:
Figure PCTCN2017095672-appb-000002
由该模拟灯丝阻抗电路的等效阻抗值Z的表达式可知,该模拟灯丝阻抗电路具有极点频率和零点频率。即1+j2πfR1C=0,模拟灯丝阻抗电路的等效阻抗值Z最大,1+j2πfR1R2/(R1+R2)*C=0,模拟灯丝阻抗电路的等效阻抗值最小,因此,该模拟灯丝阻抗电路的极点频率fp为:
Figure PCTCN2017095672-appb-000003
该模拟灯丝阻抗电路的零点频率fz为:
Figure PCTCN2017095672-appb-000004
由于
Figure PCTCN2017095672-appb-000005
因此,极点频率fp<零点频率fz
当输入频率小于极点频率fp时,此时输入频率为低频状态,从电路原理可知,第一电容43相当于开路,此时,模拟灯丝阻抗电路相当于第一电阻41和第二电阻42串联,该模拟灯丝阻抗电路的等效阻抗值Z=R1+R2。当输入频率大于零点频率fz时,从电路原理可知,第一电阻41被第一电容43短路,此时,模拟灯丝阻抗电路的等效阻抗值Z=R2。由此得出,输入频率小于极点频率时的等效阻抗值大于输入频率大于零点频率时的等效阻抗值。
当该模拟灯丝阻抗电路工作在50/60Hz低频时,由于该频率比极点频率fp小,此时模拟灯丝阻抗电路的等效阻抗值较大,能够满足IEC标准测试的最小值要求;当该模拟灯丝阻抗电路外接镇流器为电子镇流器时,由于电子镇流器的输出频率较高,远大于极点频率fp,接近甚至超过零点频率fz,此时模拟灯丝阻抗电路的等效阻抗值较小,较小的模拟灯丝阻抗电路的等效阻抗值可以大幅降低自身的功耗,进而可以降低对灯管转换效率的影响。
实施例二
图5示出了根据本发明一个实施例的模拟灯丝阻抗电路的结构示意图。参见图5,该模拟灯丝阻抗电路包括第一电阻51、第二电阻52和第一电容53,其中,第一电阻51和第一电容53串联连接后,再与第二电阻52并联连接。
图5示出的模拟灯丝阻抗电路的等效阻抗值Z的表达式为:
Figure PCTCN2017095672-appb-000006
其中,R1为第一电阻51的阻值,R2为第二电阻52的阻值,C为第一电容53的容值,w为角频率。
由于角频率w=2πf,其中,f为频率,因此,等效阻抗值Z的表达式为:
Figure PCTCN2017095672-appb-000007
由该模拟灯丝阻抗电路的等效阻抗值Z的表达式可知,该模拟灯丝阻抗电路具有极点频率和零点频率。即1+j2πf(R1+R2)C=0,模拟灯丝阻抗电路的等效阻抗值 Z最大,1+j2πfR1C=0,模拟灯丝阻抗电路的等效阻抗值最小,因此,该模拟灯丝阻抗电路的极点频率fp为:
Figure PCTCN2017095672-appb-000008
该模拟灯丝阻抗电路的零点频率fz为:
Figure PCTCN2017095672-appb-000009
由于(R1+R2)>R1,因此,极点频率fp<零点频率fz
当输入频率小于极点频率fp时,此时输入频率为低频状态,从电路原理可知,第一电容53相当于开路,此时,模拟灯丝阻抗电路相当于只有第二电阻52工作,该模拟灯丝阻抗电路的等效阻抗值Z=R2。当输入频率大于零点频率fz时,从电路原理可知,模拟灯丝阻抗电路相当于第一电阻51和第二电阻52并联,此时,模拟灯丝阻抗电路的等效阻抗值Z=R1R2/(R1+R2)。由此得出,输入频率小于极点频率时的等效阻抗值大于输入频率大于零点频率时的等效阻抗值。
当该模拟灯丝阻抗电路工作在50/60Hz低频时,由于该频率比极点频率fp小,此时模拟灯丝阻抗电路的等效阻抗值较大,能够满足IEC标准测试的最小值要求;当该模拟灯丝阻抗电路外接镇流器为电子镇流器时,由于电子镇流器的输出频率较高,远大于极点频率fp,接近甚至超过零点频率fz,此时模拟灯丝阻抗电路的等效阻抗值较小,较小的模拟灯丝阻抗电路的等效阻抗值可以大幅降低自身的功耗,进而可以降低对灯管转换效率的影响。
基于同一发明构思,本发明还提供了一种LED灯管。图6示出了根据本发明一个实施例的LED灯管的结构示意图。参见图6,该LED灯管包括:至少一个实施例一和实施例二中任一示出的模拟灯丝阻抗电路61、LED驱动模块62和至少一个LED发光元件63,其中,LED驱动模块62与模拟灯丝阻抗电路61耦合,至少一个发光元件63与LED驱动模块62耦合。
具体地,图7示出了根据本发一个实施例的LED灯管的电路示意图。参见图7,该LED灯管包括四个实施例一和实施例二中任一示出的模拟灯丝阻抗电路71,四个模拟灯丝阻抗电路71分别为第一模拟灯丝阻抗电路711、第二模拟灯丝阻抗电路712、第三模拟灯丝阻抗电路713和第四模拟灯丝阻抗电路714。第一模拟灯丝阻抗电路711和第二模拟灯丝阻抗电路712串联连接,第三模拟灯丝阻抗电路713和第四模拟灯丝阻抗电路714串联连接。LED驱动模块72的一端连接于第一模拟灯丝阻抗电路711的一端和第二模拟灯丝阻抗电路712的一端,LED驱动模块72的另一端与至少一个LED发光元件73连接,至少一个LED发光元件73的另一端连接于第三 模拟灯丝阻抗电路713的一端和第四模拟灯丝阻抗电路714的一端。
若本发明实施例提供的LED灯管外接的镇流器为电感镇流器,则第一模拟灯丝阻抗电路711未连接有LED驱动模块72的一端连接于LED灯管外接的电感镇流器,第二模拟灯丝阻抗电路712未连接有LED驱动模块72的一端连接于LED灯管外接的启辉器的一端,第三模拟灯丝阻抗电路713未连接有至少一个LED发光元件73的一端连接于接入市电的零线,第四模拟灯丝阻抗电路714未连接有至少一个LED发光元件73的一端连接于启辉器的另一端。
若本发明实施例提供的LED灯管外接的镇流器为电子镇流器,则第一模拟灯丝阻抗电路711未连接有LED驱动模块72的一端、第二模拟灯丝阻抗电路712未连接有LED驱动模块72的一端、第三模拟灯丝阻抗电路713未连接有至少一个LED发光元件73的一端、第四模拟灯丝阻抗电路714未连接有至少一个LED发光元件73的一端均连接于电子镇流器。
基于同一发明构思,本发明还提供了一种LED照明系统。图8示出了根据本发明一个实施例的LED照明系统的结构示意图,参见图8,该LED照明系统包括:电感镇流器81、与电感镇流器81耦合的、上述LED灯管82和与LED灯管82耦合的启辉器83。其中,LED灯管82包括四个实施例一和实施例二中任一示出的模拟灯丝阻抗电路(即第一模拟灯丝阻抗电路821、第二模拟灯丝阻抗电路822、第三模拟灯丝阻抗电路823和第四模拟灯丝阻抗电路824)、LED驱动模块825和至少一个发光元件826。
LED灯管82设置有4个端子(即端子1、端子2、端子3和端子4),其中,端子1和端子2设置在LED灯管82的一侧,端子3和端子4设置在LED灯管82的另一侧。输入市电的火线与电感镇流器81的一端连接,电感镇流器81的另一端通过端子1与LED灯管82的第一模拟灯丝阻抗电路821连接,接入市电的零线通过端子3与LED灯管82的第三模拟灯丝阻抗电路823连接,启辉器83通过端子2、端子4分别与LED灯管82的第二模拟灯丝阻抗电路822、第四模拟灯丝阻抗电路824连接。输入至LED灯管82的电压和电流通过第一模拟灯丝阻抗电路821流入至LED驱动模块825,然后再进入至少一个发光元件826,最后经第三模拟灯丝阻抗电路823流回。
图9示出了根据本发明一个实施例的LED照明系统的另一种结构示意图,参见图9,该LED照明系统包括:电子镇流器91、与电子镇流器91耦合的、上述LED灯管92。其中,LED灯管92包括四个实施例一和实施例二中任一示出的模拟灯丝阻抗电路(即第一模拟灯丝阻抗电路921、第二模拟灯丝阻抗电路922、第三模拟灯丝阻抗电路923和第四模拟灯丝阻抗电路924)、LED驱动模块925和至少一个发光元 件926。
LED灯管92设置有4个端子(即端子1、端子2、端子3和端子4),其中,端子1和端子2设置在LED灯管92的一侧,端子3和端子4设置在LED灯管92的另一侧。市电输入直接连接到电子镇流器91,电子镇流器91通过端子1、端子2、端子3和端子4分别与LED灯管92的第一模拟灯丝阻抗电路921、第二模拟灯丝阻抗电路922、第三模拟灯丝阻抗电路923和第四模拟灯丝阻抗电路924连接。输入至LED灯管92的电压和电流通过第一模拟灯丝阻抗电路921流入至LED驱动模块925,然后再进入至少一个发光元件926,最后经第三模拟灯丝阻抗电路923流回。
综上,采用本发明实施例提供的模拟灯丝阻抗电路、LED灯管及LED照明系统可以达到如下有益效果:
本发明提供的模拟灯丝阻抗电路同时具有极点频率和零点频率,并且极点频率小于零点频率。该模拟灯丝阻抗电路的等效阻抗值随着输入频率呈现相应的变化趋势,即在输入频率小于极点频率时模拟灯丝阻抗电路的第一等效阻抗值大于在输入频率大于零点频率时模拟灯丝阻抗电路的第二等效阻抗值,并且在输入频率大于极点频率且小于零点频率时,模拟灯丝阻抗电路的等效阻抗值随着输入频率的升高而降低。由此得出,在输入频率小于极点频率时模拟灯丝阻抗电路的等效阻抗值较高,在输入频率大于零点频率时模拟灯丝阻抗电路的等效阻抗值较低。该模拟灯丝阻抗电路在进行IEC标准测试时,由于该测试的频率较低,一般为50/60Hz,IEC标准测试的频率小于模拟灯丝阻抗电路的极点频率,并且在输入频率为IEC标准测试的频率时模拟灯丝阻抗电路的等效阻抗值较大,使得模拟灯丝阻抗电路的等效阻抗值能够满足IEC标准测试的最小值要求。若本发明提供的模拟灯丝阻抗电路的外接镇流器为电感镇流器,电感镇流器输入至模拟灯丝阻抗电路的电压和电流为低频电压和低频电流,并且为高电压小电流状态,此时,较大的模拟灯丝阻抗电路的等效阻抗值不会对LED灯管转换效率有太大的影响。若本发明提供的模拟灯丝阻抗电路的外接镇流器为电子镇流器,电子镇流器的输出频率较高,该输出频率大于模拟灯丝阻抗电路的极点频率,甚至大于模拟灯丝阻抗电路的零点频率。由于模拟灯丝阻抗电路在输入频率大于极点频率时其等效阻抗值随着输入频率的升高而降低,使得此时的模拟灯丝阻抗电路具有较小的等效阻抗值,并且电子镇流器输入至模拟灯丝阻抗电路为低电压大电流,此时,较小的模拟灯丝阻抗电路的等效阻抗值可以大幅降低自身的功耗,进而可以降低对灯管转换效率的影响。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本发明的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
类似地,应当理解,为了精简本公开并帮助理解各个发明方面中的一个或多个,在上面对本发明的示例性实施例的描述中,本发明的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该公开的方法解释成反映如下意图:即所要求保护的本发明要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如下面的权利要求书所反映的那样,发明方面在于少于前面公开的单个实施例的所有特征。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本发明的单独实施例。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (12)

  1. 一种模拟灯丝阻抗电路,所述模拟灯丝阻抗电路具有极点频率和零点频率,其中,所述极点频率小于所述零点频率,在输入频率小于所述极点频率时所述模拟灯丝阻抗电路的等效阻抗值保持不变,为第一等效阻抗值,在输入频率大于所述极点频率且小于所述零点频率时所述模拟灯丝阻抗电路的等效阻抗值随着输入频率的升高而降低,在输入频率大于所述零点频率时所述模拟灯丝阻抗电路的等效阻抗值保持不变,为第二等效阻抗值,且所述第一等效阻抗值大于所述第二等效阻抗值。
  2. 根据权利要求1所述的模拟灯丝阻抗电路,其中,所述电路由第一电阻、第二电阻和第一电容组成。
  3. 根据权利要求2所述的模拟灯丝阻抗电路,其中,所述第一电阻和所述第一电容并联连接后,再与所述第二电阻串联连接。
  4. 根据权利要求2所述的模拟灯丝阻抗电路,其中,所述第一电阻和所述第一电容串联连接后,再与所述第二电阻并联连接。
  5. 一种LED灯管,包括:至少一个如权利要求1-4任一所述的模拟灯丝阻抗电路、LED驱动模块和至少一个LED发光元件,其中,所述LED驱动模块与所述模拟灯丝阻抗电路耦合,所述至少一个LED发光元件与所述LED驱动模块耦合。
  6. 根据权利要求5所述的LED灯管,其中,所述LED灯管包括四个模拟灯丝阻抗电路,所述四个模拟灯丝阻抗电路为第一模拟灯丝阻抗电路、第二模拟灯丝阻抗电路、第三模拟灯丝阻抗电路和第四模拟灯丝阻抗电路,所述第一模拟灯丝阻抗电路和所述第二模拟灯丝阻抗电路串联连接,所述第三模拟灯丝阻抗电路和所述第四模拟灯丝阻抗电路串联连接。
  7. 一种LED照明系统,包括:电感镇流器、与所述电感镇流器耦合的、如权利要求5所述的LED灯管和与所述LED灯管耦合的启辉器。
  8. 根据权利要求7所述的LED照明系统,其中,所述LED灯管包括四个模拟灯丝阻抗电路,所述四个模拟灯丝阻抗电路为第一模拟灯丝阻抗电路、第二模拟灯丝阻抗电路、第三模拟灯丝阻抗电路和第四模拟灯丝阻抗电路,所述第一模拟灯丝阻抗电路和所述第二模拟灯丝阻抗电路串联连接,所述第三模拟灯丝阻抗电路和所述第四模拟灯丝阻抗电路串联连接。
  9. 根据权利要求8所述的LED照明系统,其中,所述LED驱动模块的一端连接于所述第一模拟灯丝阻抗电路的一端和所述第二模拟灯丝阻抗电路的一端,所述LED驱动模块的另一端与所述至少一个LED发光元件连接,所述至少一个LED发 光元件的另一端连接于所述第三模拟灯丝阻抗电路的一端和所述第四模拟灯丝阻抗电路的一端,所述第一模拟灯丝阻抗电路未连接有所述LED驱动模块的一端连接于所述电感镇流器,所述第二模拟灯丝阻抗电路未连接有所述LED驱动模块的一端连接于所述LED灯管外接的启辉器的一端,所述第三模拟灯丝阻抗电路未连接有所述至少一个LED发光元件的一端连接于接入市电的零线,所述第四模拟灯丝阻抗电路未连接有所述至少一个LED发光元件的一端连接于所述启辉器的另一端。
  10. 一种LED照明系统,包括:电子镇流器和与所述电子镇流器耦合的、如权利要求5所述的LED灯管。
  11. 根据权利要求10所述的LED照明系统,其中,所述LED灯管包括四个模拟灯丝阻抗电路,所述四个模拟灯丝阻抗电路为第一模拟灯丝阻抗电路、第二模拟灯丝阻抗电路、第三模拟灯丝阻抗电路和第四模拟灯丝阻抗电路,所述第一模拟灯丝阻抗电路和所述第二模拟灯丝阻抗电路串联连接,所述第三模拟灯丝阻抗电路和所述第四模拟灯丝阻抗电路串联连接。
  12. 根据权利要求11所述的LED照明系统,其中,所述LED驱动模块的一端连接于所述第一模拟灯丝阻抗电路的一端和所述第二模拟灯丝阻抗电路的一端,所述LED驱动模块的另一端与所述至少一个LED发光元件连接,所述至少一个LED发光元件的另一端连接于所述第三模拟灯丝阻抗电路的一端和所述第四模拟灯丝阻抗电路的一端,所述第一模拟灯丝阻抗电路未连接有所述LED驱动模块的一端连接于所述LED灯管外接的电子镇流器,所述第二模拟灯丝阻抗电路未连接有所述LED驱动模块的一端连接于所述LED灯管外接的电子镇流器,所述第三模拟灯丝阻抗电路未连接有所述至少一个LED发光元件的一端连接于所述电子镇流器,所述第四模拟灯丝阻抗电路未连接有所述至少一个LED发光元件的一端连接于所述电子镇流器。
PCT/CN2017/095672 2016-08-03 2017-08-02 模拟灯丝阻抗电路、led灯管及led照明系统 WO2018024219A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17836401.4A EP3481152B1 (en) 2016-08-03 2017-08-02 Led lamp and led illuminating system
US16/266,013 US10863595B2 (en) 2016-08-03 2019-02-02 Analog filament impedance circuit, LED lamp tube and LED lighting system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201620835534.0U CN205987460U (zh) 2016-08-03 2016-08-03 模拟灯丝阻抗电路、led灯管及led照明系统
CN201610630221.6 2016-08-03
CN201620835534.0 2016-08-03
CN201610630221.6A CN106102255B (zh) 2016-08-03 2016-08-03 模拟灯丝阻抗电路、led灯管及led照明系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/266,013 Continuation US10863595B2 (en) 2016-08-03 2019-02-02 Analog filament impedance circuit, LED lamp tube and LED lighting system

Publications (1)

Publication Number Publication Date
WO2018024219A1 true WO2018024219A1 (zh) 2018-02-08

Family

ID=61073208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/095672 WO2018024219A1 (zh) 2016-08-03 2017-08-02 模拟灯丝阻抗电路、led灯管及led照明系统

Country Status (3)

Country Link
US (1) US10863595B2 (zh)
EP (1) EP3481152B1 (zh)
WO (1) WO2018024219A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009245790A (ja) * 2008-03-31 2009-10-22 Nippon Telegr & Teleph Corp <Ntt> 照明装置
CN102155631A (zh) * 2010-02-11 2011-08-17 哈尔滨开恩科技开发有限公司 日光灯和led发光管组合灯
CN104595762A (zh) * 2015-01-08 2015-05-06 浙江晨辉光宝科技有限公司 一种可替换电子式荧光灯管的led灯管
CN104696732A (zh) * 2013-12-04 2015-06-10 偕兴企业股份有限公司 发光二极管灯管
CN104956767A (zh) * 2013-01-24 2015-09-30 克里公司 具有灯丝模仿的固态照明装置
CN106102255A (zh) * 2016-08-03 2016-11-09 欧普照明股份有限公司 模拟灯丝阻抗电路、led灯管及led照明系统
CN205987460U (zh) * 2016-08-03 2017-02-22 欧普照明股份有限公司 模拟灯丝阻抗电路、led灯管及led照明系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8314564B2 (en) * 2008-11-04 2012-11-20 1 Energy Solutions, Inc. Capacitive full-wave circuit for LED light strings
US9137866B2 (en) 2011-12-12 2015-09-15 Cree, Inc. Emergency lighting conversion for LED strings
US10117295B2 (en) 2013-01-24 2018-10-30 Cree, Inc. LED lighting apparatus for use with AC-output lighting ballasts
WO2014115010A1 (en) * 2013-01-23 2014-07-31 Koninklijke Philips N.V. Led tube for retrofitting in a fluorescent tube lighting fixture
US10045406B2 (en) 2013-01-24 2018-08-07 Cree, Inc. Solid-state lighting apparatus for use with fluorescent ballasts
US9439249B2 (en) 2013-01-24 2016-09-06 Cree, Inc. LED lighting apparatus for use with AC-output lighting ballasts
TW201626856A (zh) * 2015-01-08 2016-07-16 亞樹科技股份有限公司 搭配電子式安定器或市電之發光二極體燈管及其控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009245790A (ja) * 2008-03-31 2009-10-22 Nippon Telegr & Teleph Corp <Ntt> 照明装置
CN102155631A (zh) * 2010-02-11 2011-08-17 哈尔滨开恩科技开发有限公司 日光灯和led发光管组合灯
CN104956767A (zh) * 2013-01-24 2015-09-30 克里公司 具有灯丝模仿的固态照明装置
CN104696732A (zh) * 2013-12-04 2015-06-10 偕兴企业股份有限公司 发光二极管灯管
CN104595762A (zh) * 2015-01-08 2015-05-06 浙江晨辉光宝科技有限公司 一种可替换电子式荧光灯管的led灯管
CN106102255A (zh) * 2016-08-03 2016-11-09 欧普照明股份有限公司 模拟灯丝阻抗电路、led灯管及led照明系统
CN205987460U (zh) * 2016-08-03 2017-02-22 欧普照明股份有限公司 模拟灯丝阻抗电路、led灯管及led照明系统

Also Published As

Publication number Publication date
EP3481152A1 (en) 2019-05-08
US10863595B2 (en) 2020-12-08
EP3481152A4 (en) 2019-05-08
EP3481152B1 (en) 2021-04-28
US20190174588A1 (en) 2019-06-06

Similar Documents

Publication Publication Date Title
TWM455820U (zh) 發光二極體燈管
US20140159592A1 (en) Led light tube compatible with light fixture having electronic ballast or magnetic ballast
US11051378B2 (en) Eliminating flicker and open load protection for driver compatible with NAFTA dim ECG
CA2788390C (en) Low current solution for illuminated switches using dc operated leds
CN107770901A (zh) 发光二极管驱动装置及驱动装置的短路保护方法
TWI477188B (zh) LED tube
CN106102255B (zh) 模拟灯丝阻抗电路、led灯管及led照明系统
WO2018024219A1 (zh) 模拟灯丝阻抗电路、led灯管及led照明系统
CN205987460U (zh) 模拟灯丝阻抗电路、led灯管及led照明系统
CN101980584A (zh) 双向定电流装置以及使用该双向定电流装置的led灯
TWI442822B (zh) 多重調光輸入電路
CN201944632U (zh) 一种led日光灯
CN101060738A (zh) 灯串
CN105939550B (zh) 电源转换装置及使用该电源转换装置的照明装置与灯管
TWI665936B (zh) 調光控制電路
CN101815384A (zh) 恒流型led照明灯
CN202040637U (zh) Led灯
CN100533978C (zh) 大功率电容性和电阻性两用声光控制器
CN103742884B (zh) 一种电源一体化led日光灯
CN104703342A (zh) 人体热释电感应灯电路
CN203718699U (zh) 一种电源一体化led日光灯
CN201246707Y (zh) Led照明灯
CN104185346A (zh) 板载恒流贴片式led日光灯
CN218830732U (zh) 一种dmx512控制的led筒灯驱动电路
CN201074741Y (zh) 一种led照明电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17836401

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017836401

Country of ref document: EP

Effective date: 20190201