WO2018024102A1 - 一种改进的褶皱型的穿刺器密封膜 - Google Patents

一种改进的褶皱型的穿刺器密封膜 Download PDF

Info

Publication number
WO2018024102A1
WO2018024102A1 PCT/CN2017/093601 CN2017093601W WO2018024102A1 WO 2018024102 A1 WO2018024102 A1 WO 2018024102A1 CN 2017093601 W CN2017093601 W CN 2017093601W WO 2018024102 A1 WO2018024102 A1 WO 2018024102A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing
pleat
wall
sealing film
pleats
Prior art date
Application number
PCT/CN2017/093601
Other languages
English (en)
French (fr)
Inventor
朱莫恕
Original Assignee
成都五义医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都五义医疗科技有限公司 filed Critical 成都五义医疗科技有限公司
Publication of WO2018024102A1 publication Critical patent/WO2018024102A1/zh
Priority to US16/249,898 priority Critical patent/US20190142460A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3417Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
    • A61B17/3421Cannulas
    • A61B17/3439Cannulas with means for changing the inner diameter of the cannula, e.g. expandable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3417Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3462Trocars; Puncturing needles with means for changing the diameter or the orientation of the entrance port of the cannula, e.g. for use with different-sized instruments, reduction ports, adapter seals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3498Valves therefor, e.g. flapper valves, slide valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3417Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
    • A61B2017/3419Sealing means between cannula and body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3417Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
    • A61B17/3421Cannulas
    • A61B2017/3445Cannulas used as instrument channel for multiple instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3462Trocars; Puncturing needles with means for changing the diameter or the orientation of the entrance port of the cannula, e.g. for use with different-sized instruments, reduction ports, adapter seals
    • A61B2017/3464Trocars; Puncturing needles with means for changing the diameter or the orientation of the entrance port of the cannula, e.g. for use with different-sized instruments, reduction ports, adapter seals with means acting on inner surface of valve or seal for expanding or protecting, e.g. inner pivoting fingers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B2017/347Locking means, e.g. for locking instrument in cannula

Definitions

  • the present invention relates to a minimally invasive surgical instrument, and more particularly to a puncturing device sealing structure.
  • a trocar is a surgical instrument used to create an artificial passage into a body cavity during minimally invasive surgery (especially for hard laparoscopic surgery). It usually consists of a cannula assembly and a puncture needle.
  • the general clinical use is as follows: firstly, a small opening is cut in the skin of the patient, and then the puncture needle is inserted through the cannula assembly, but penetrates the abdominal wall through the skin opening to enter the body cavity. Once the body cavity is inserted, the needle is removed, leaving the cannula assembly as a passage for the instrument to enter and exit the body cavity.
  • the cannula assembly typically consists of a cannula, a housing, a sealing membrane (also known as an instrument seal), and a zero seal (also known as an automatic seal).
  • the cannula penetrates from outside the body cavity into the body cavity as a passage for the instrument to enter and exit the body cavity.
  • the outer casing joins the casing, zero seal and sealing membrane into a sealed system.
  • the zero seal typically does not provide a seal for the insertion instrument and automatically closes and forms a seal when the instrument is removed.
  • the sealing film tightens the instrument and forms a seal when the instrument is inserted.
  • four puncture channels are typically established in the abdominal wall of the patient, namely two small inner diameter cannula assemblies (typically 5 mm) and two large inner diameter cannula assemblies (typically 10 to 12 mm).
  • the instrument that typically enters the patient via the small-diameter cannula assembly performs only ancillary procedures; one of the large-diameter cannula assemblies acts as an endoscope channel; and the other large-diameter cannula assembly serves as the primary access for the surgeon to perform the procedure.
  • this main channel about 5% of the time applies 5mm instruments; about 20% of the time applies other large diameter instruments; and 5mm instruments and large diameter instruments need to be switched frequently during surgery.
  • FIGS 1 and 2 depict a typical 12 mm gauge cannula assembly 100.
  • the sleeve assembly 100 includes a lower case 110, an upper case 120, and a sealing film 130 sandwiched between the upper case 120 and the lower case 110, a duckbill seal 150.
  • the lower casing 110 includes a central through hole 113 defined by the elongated tube 111.
  • the upper housing 120 includes a proximal aperture 123 defined by the inner wall 121.
  • the sealing film 130 includes a proximal opening 132, a distal end aperture 133, a sealing lip 134, a frustoconical sealing wall 135, a flange 136 and an outer floating portion 137.
  • the distal opening 133 is formed by a sealing lip 134.
  • the axis defining the sealing lip is 141 defining a transverse plane 142 that is generally perpendicular to the axis 141; the angle between the rotating busbar defining the frustoconical sealing wall 135 and the transverse plane 142 is the guiding angle ANG1.
  • a cylinder having a diameter D i (D i > 5 mm) intersects the sealing wall 135 to form an intersection 138 having a diameter D i .
  • D i diameter of the sealing wall 135
  • the strain (stress) of the sealing wall 135 from the sealing lip 134 to the intersection 138 is large, and the region is referred to as the vicinity of the sealing lip ( Or a region of stress concentration; and the sealing wall 135 has a small strain (stress) from the intersection 138 to the region of the flange 136.
  • the diameter D i of the insertion instrument is different, and the boundary range of the adjacent region (stress concentration region) of the sealing lip is different. To facilitate quantification, it is defined that when D i is the maximum diameter of the surgical instrument designed to pass through the sealing membrane, the area from the sealing lip 134 to the line of intersection 138 is the adjacent region of the sealing lip.
  • the sealing lip 134 when a large diameter instrument (e.g., 12.8 mm) is inserted, the sealing lip 134 will be inflated to a suitable size to accommodate the inserted instrument; the sealing wall 135 is divided into two portions, a conical wall 135c and a cylindrical wall 135d; The cylindrical wall 135d is wrapped around the outer surface of the instrument to form a wrapped area where the stress is highly concentrated.
  • Conical wall define cylindrical wall 135c and 135d to 138a intersecting line; when the instrument is removed, restoring the natural state under the sealing wall 135, defining the intersection line 138a having a radius D x resilient ring 138b ( The line 138b is a curved boundary line when a large diameter instrument is inserted.
  • the angle between the rotating bus bar defining the conical wall 135c and the transverse plane 142 is ANG2, and ANG2>ANG1; that is, the sealing wall 135 is fulcrum with the intersection of the flange 136 and the sealing wall 135 when the large diameter instrument is inserted.
  • Rotational relaxation Defining the height of the cylindrical wall 135d is H a.
  • the H a is not a fixed value, the distal hole size is different, the sealing lip is different in size, the sealing wall wall thickness is different, and the guiding angle is different or the insertion instrument diameter is different, and the like, the H a is different.
  • the inverted sealing wall 135 is divided into a cylindrical wall 135e, a conical wall 135f, and a conical wall 135g; the cylindrical wall 135e is wrapped around the outer surface of the instrument to form a wrapped area where the stress is highly concentrated. Defining the height of the cylindrical wall 135e is H b, H b is typically greater than H a; i.e.
  • the sealing film is usually made of a rubber material such as silicone rubber or isoprene rubber, and the rubber material has superelasticity and viscoelasticity.
  • the mechanical model of the rubber deformation process is very complicated, it can be approximated by the generalized Hooke's law to describe its elastic behavior; the Newtonian internal friction law is used to describe its viscous behavior.
  • the main factors affecting the friction between the rubber and the device include: the smaller the friction coefficient of the two contact faces, the smaller the friction; the better the lubrication condition between the two contact faces, the smaller the friction; the two contact faces The smaller the true contact area is, the smaller the friction is; the smaller the normal pressure between the two contact faces, the smaller the friction.
  • the present invention comprehensively considers the above factors and proposes a more perfect solution for reducing the frictional resistance between the sealing film and the insertion instrument.
  • the sealing film stick slip is another important factor affecting the performance of the piercer.
  • the stick-slip that is, when the instrument moves axially in the sleeve, the sealing lip of the sealing film and its adjacent area are relatively statically adhered to the instrument (the friction between the instrument and the sealing film is mainly static friction). Force); and sometimes the phenomenon of relative sliding with the instrument (when the friction between the instrument and the sealing film is mainly dynamic friction); and the static friction is much greater than the dynamic friction.
  • the static friction and dynamic friction alternately occur, which causes the resistance of the movement of the instrument in the sealing film to be unstable and the moving speed to be unstable.
  • the physician can only use the instrument to access the patient's internal organs and monitor the local extent of the instrument's working head with the aid of an endoscopic imaging system.
  • the surgeon usually uses the resistance feedback when moving the instrument as one of the information to determine whether the surgical operation is normal.
  • the stickiness of the sealing film affects the comfort of operation, positioning accuracy, and even induces doctors to make false judgments.
  • the stick-slip is difficult to avoid completely during use of the cannula assembly, but can be reduced.
  • increasing the axial tensile stiffness of the sealing film also helps to reduce the stick-slip phenomenon.
  • a pleated sealing film 80 is disclosed in U.S. Patent No. 7,788,861 (Chinese Patent No. CN101478924B). As shown in Figure 5-10.
  • the sealing film 80 has an opening 81 defined by a lip 82.
  • a plurality of pleats 89 are circumscribed with the opening 81 and extend laterally from the opening 81.
  • the pleats 89 are arranged in a conical shape.
  • the wall portion 85 is circumscribed with and connected to the pleats 89.
  • Each pleat 89 includes a pleat wall that extends between the pleat peak 84 and the pleat valley 83. The height of the pleat wall can be measured along the surface between the pleat peak 84 and the pleat valley 83.
  • the lip 82 has a cylindrical portion, the cylindrical portion
  • the intersection with the pleats 89 forms an intersection line 87 that defines a triangular region 89a having a proximally directed tip that corresponds to each of the pleat peaks 84.
  • the wall portion 85 intersects the pleats 89 to form an intersection line 88; the line of intersection 88 defines a triangular region 85a having a distally directed tip that corresponds to each of the pleat valleys 83.
  • the geometry of the pleats 89 can be designed to minimize or eliminate hoop stresses in the pleated portions of the instrument and sealing film 80 when the surgical instrument is inserted. Its geometric relationship conforms to the following formula:
  • h pleat wall height as a function of radius
  • r i the maximum radius of the surgical instrument designed to be inserted through the sealing membrane
  • r id radius of the inner diameter of the wrinkle of the sealing film
  • the inner diameter of the opening 81 in the relaxed state is between 3.8 and 4.0 mm.
  • the elasticity of the sealing film 80 is sufficient to ensure that the opening 81 can be expanded to sealingly engage a surgical instrument having a diameter of 12.9 mm.
  • the sealing film 80 contains eight linear pleats 89. Therefore, the h of this example should conform to the following formula:
  • the wrinkle-free sealing film has a design wall thickness of usually 0.5 to 0.7 mm. If a pleated sealing film is used to reduce the hoop tightening force, it is advantageous to use a thick wrinkle wall, that is, a sealing film wall thickness. If it is more than 0.5, the number of pleats is usually not more than 8, otherwise it cannot be manufactured.
  • the manufacturing seal film conforming to this formula has h ⁇ 2.4 mm.
  • the schematic of the sealing film in the US7789861 patent does not conform to the above formula.
  • the schematic view of the pleats 80 depicted in Figures 5-9 conforms to the above formula, where h at the opening 81 is equal to 2.4 mm (i.e., the length of the line of intersection 87 is equal to 2.4 mm).
  • the lip 82a is opposite to the lip 82, and a plurality of triangular regions 89a are added.
  • the sealing force is primarily ensured by the hoop tightening force produced by the circumferential deformation of the lip 82, which is typically not sealed against the inserted 5 mm instrument.
  • the triangular region 89a produces a large tensile deformation and is partially wrapped around the outer surface of the instrument, increasing the true contact area between the instrument and the sealing membrane.
  • the pleated wall When the large diameter instrument is inserted to relax the pleated wall, the pleated wall will flex and rotate about the intersection of the pleats 89 and the wall portion 85, the trapezoidal pleat wall causing bending and rotation of the sealing lip and the adjacent region of the sealing lip relative to the lip
  • the bending arm or the rotating arm is inconsistent; thereby increasing the additional deformation force and simultaneously causing the axial elongation of the lip and its adjacent region to be unstable (the instrument insertion angle is different from the axial elongation), resulting in the aforementioned stick-slip phenomenon. More remarkable.
  • Figure 10 depicts a pleated sealing film 80b that does not conform to the aforementioned formula.
  • the sealing film 80b has pleats which gradually increase in the axial direction from the lip; however, the pleats of the sealing film 80b have a small geometrical shape which does not conform to the aforementioned formula.
  • the sealing film 80b and the sealing film 80 have similar geometries, differing only in geometric dimensions. It will be readily understood by those skilled in the art that if the geometrical dimensions are not limited, smaller pleats that extend laterally from the lip and gradually increase will not significantly reduce the tightening force of the loop.
  • the pleated sealing film disclosed in the US Pat. No. 7,788,861 patent is imperfect.
  • the invention further analyzes the complexity of the clinical application of the puncture device, and considers the comprehensive effect of various influencing factors, and proposes an improved pleated puncture seal film.
  • a trocar sealing membrane comprising a proximal opening and a distal opening and a sealing wall extending from the distal opening to the proximal opening.
  • the distal aperture is formed by a sealing lip for receiving an inserted instrument and forming a seal.
  • the sealing wall has a proximal end surface and a distal end surface. The sealing film can reduce frictional resistance and improve stick-slip when applying large-diameter instruments while ensuring a reliable seal for the inserted 5 mm instrument.
  • the sealing lip and its adjacent area are the source of the frictional resistance caused by the insertion of the large diameter instrument.
  • it is necessary to comprehensively consider reducing the radial stress between the instrument and the sealing film, reducing the wrapping area between the instrument and the sealing film, and reducing the true contact area between the device and the sealing film.
  • increasing the circumferential circumference can reduce the circumferential strain (stress), thereby reducing the radial strain (stress).
  • the strain (stress) of the sealing lip cannot be reduced by increasing the circumferential circumference, which results in a decrease in sealing reliability when a 5 mm instrument is applied. Since the stress in the vicinity of the sealing lip is highly concentrated when applying a large-diameter instrument, the circumferential circumference of the vicinity of the sealing lip should be rapidly increased; for the region outside the vicinity of the sealing lip, the strain (stress) is small. It is not necessary to adopt measures to increase the circumferential circumference.
  • increasing the circumferential circumference of the ring should also increase the axial tensile stiffness of the adjacent area of the sealing lip and maintain good lubrication (reducing the difference between the maximum static friction and dynamic friction), thereby improving the stick slip of the adjacent area of the sealing lip. .
  • the sealing membrane includes a proximal opening and a distal opening and a sealing wall extending from the distal opening to the proximal opening.
  • the distal aperture is formed by a sealing lip for receiving an inserted instrument and forming a hermetic seal.
  • the sealing lip has a central axis and a transverse plane that is substantially perpendicular to the central axis.
  • the sealing wall includes a plurality of pleats extending laterally outward from the sealing lip. Each of the pleats has a pleat peak and a pleat valley and a pleat wall extending therebetween. And in the vicinity of the sealing lip, the depth of the pleat wall gradually increases along the axial direction; and outside the sealing lip adjacent region, the depth of the sealing wall gradually decreases along the axial direction.
  • the angle between the pleat peak and the pleat valley relative to the transverse plane conforms to the following relationship:
  • R i the maximum radius of the surgical instrument designed to be inserted through the sealing membrane
  • angle between the wrinkle peak and the transverse plane
  • the angle of the valley of the fold relative to the transverse plane.
  • reducing the guiding angle of the pleated wall in the vicinity of the sealing lip is advantageous for reducing the length of the cylindrical wrapping area.
  • 8 pleats are used; the angle of the pleat valley relative to the transverse plane is greater than or equal to 0° and less than or equal to 25°.
  • a thickened pleat peak is employed.
  • the thickened wrinkle peak that is, the wall thickness at the wrinkle peak is larger than the thickness of the wrinkle wall.
  • the thickened pleat peak acts as a reinforcing rib, and the plurality of thickened pleat peaks together strengthen the axial tensile stiffness of the sealing wall.
  • the thickened pleat peaks enhance the axial tensile stiffness without significantly increasing the hoop tensile stiffness; that is, increasing the axial stiffness.
  • the hoop tightening force is not significantly increased, so that the stick slip can be effectively reduced in the background.
  • the sealing membrane includes a proximal opening and a distal opening and a sealing wall extending from the distal opening to the proximal opening; the distal opening being formed by a sealing lip for receiving the inserted instrument and A hermetic seal is formed; the sealing lip is cylindrical.
  • the sealing lip has a central axis and a transverse plane that is substantially perpendicular to the central axis.
  • the sealing wall includes a plurality of laterally outwardly extending pleats from the sealing lip; each of the pleats having a pleat peak and a pleat valley and a pleat wall extending therebetween.
  • the sealing film further includes a flange and a conical sidewall extending from the flange; the conical sidewall intersecting the pleat.
  • the sealing film also includes an outer floating portion that extends from the flange to the proximal opening.
  • the thickness of the conical sidewall is less than the thickness of the pleat wall.
  • the sealing assembly comprises a lower fixing ring, a sealing film, a protective sheet, an upper fixing ring, an upper casing and an upper cover.
  • the sealing film and the protective sheet are sandwiched between the lower fixing rings for protecting the sealing film from sharp edges of the insertion device.
  • the proximal end of the sealing film is sandwiched between the upper casing and the upper cover, and the outer floating portion of the sealing film can make the sealing film and the protective sheet laterally in the sealed casing formed by the upper casing and the upper cover mobile.
  • Figure 1 is a simulated deformation view of a prior art cannula assembly inserted into a 5 mm instrument
  • FIG. 2 is a detailed view of a prior art sealing film 730
  • Figure 3 is a simulated deformation view of a prior art cannula assembly inserted into a 12.8 mm instrument
  • FIG. 4 is a simulated deformation diagram of a prior art cannula assembly with a 12.8 mm instrument removed;
  • Figure 5 is a perspective view of another prior art sealing film 80
  • Figure 6 is a cross-sectional view taken along line 6-6 of the sealing film of Figure 5 of the prior art
  • Figure 7 is a 7-7 cross-sectional view of the sealing film of Figure 5 of the prior art
  • FIG. 8-9 are diagrams of the sealing film of the prior art shown in FIG. 5 after circumferential cutting and separation;
  • Figure 10 is a perspective view of another prior art sealing film 80a
  • Figure 11 is a perspective, partial, cross-sectional view of the cannula assembly of the present invention.
  • Figure 12 is an exploded view of the sealing membrane assembly of the cannula assembly of Figure 11;
  • Figure 13 is a perspective partial cross-sectional view of the sealing film assembly of Figure 12;
  • Figure 14 is an inside perspective view of the sealing film 330 of Figure 12 after the proximal end and the floating portion have been omitted;
  • Figure 15 is an outside perspective view of the sealing film 330 of Figure 12 after the proximal end and the floating portion are omitted;
  • Figure 16 is a cross-sectional view taken along line 16-16 of the sealing film of Figure 14;
  • Figure 17 is a cross-sectional view taken along line 17-17 of the sealing film of Figure 14;
  • FIG. 18-19 is a figure after the sealing film of FIG. 15 is circumferentially cut and separated;
  • Figure 20 is a simulated deformation view of the sealing film of Figure 14 inserted into a 12.8 mm instrument
  • Figure 21 is a view of Figure 20 after the inserted 12.8 mm instrument is hidden;
  • Figure 22 is an inside perspective view of the sealing film 430 of the second example of the present invention after the proximal end and the floating portion are omitted;
  • Figure 23 is a perspective view of the outer side of the sealing film 430 of the second embodiment of the present invention after the proximal end and the floating portion are omitted;
  • Figure 24 is a cross-sectional view taken along line 24-24 of the sealing film shown in Figure 22;
  • Figure 25 is a cross-sectional view taken along line 25-25 of the sealing film shown in Figure 22.
  • FIG 11 depicts the overall structure of the trocar.
  • a typical trocar includes a puncture needle 10 (not shown) and a cannula assembly 20.
  • the cannula assembly 20 has an open proximal end 392 and an open distal end 231.
  • puncture needle 10 is inserted through the cannula assembly 20 and then penetrates the entire abdominal wall through the skin opening into the body cavity. Once in the body cavity, the puncture needle 10 is removed and the cannula assembly 20 is left as a passage for the instrument to enter and exit the body cavity.
  • the proximal end 392 is external to the patient and the distal end 231 is in the patient.
  • a preferred bushing assembly 20 can be divided into a first seal assembly 200 and a second seal assembly 400.
  • the card slot 239 of the assembly 200 and the hook 312 of the assembly 300 are fastened.
  • the cooperation of the hook 312 and the card slot 239 is a quick lock structure that can be quickly split by one hand. This is mainly for the purpose of taking out tissues or foreign bodies in the patient during surgery.
  • the quick lock connection between the assembly 200 and the assembly 300 There are a number of implementations of the quick lock connection between the assembly 200 and the assembly 300.
  • a threaded connection a rotary snap or other quick lock structure may be employed.
  • the assembly 200 and assembly 300 can be designed as structures that are not quick to split.
  • FIG. 11 depicts the composition and assembly relationship of the first seal assembly 200.
  • the lower housing 230 includes an elongated tube 232 that defines a sleeve 233 that extends through the distal end 231 and that is coupled to the outer casing 234.
  • the lower housing 230 has an inner wall 236 that supports a duckbill seal and a valve mounting hole 237 that communicates with the inner wall.
  • the spool 282 is mounted in the valve body 280 and mounted together in the mounting hole 237.
  • a flange 256 of the duckbill seal 250 is sandwiched between the inner wall 236 and the lower cover 260.
  • the interference fit there are various ways of fixing between the lower cover 260 and the lower casing 230, and the interference fit, ultrasonic welding, glue bonding, snap fastening, and the like can be adopted.
  • the four mounting posts 268 of the lower cover 260 are in interference fit with the four mounting holes 238 of the lower housing 230.
  • This interference fit causes the duckbill seal 250 to be in a compressed state.
  • the sleeve 232, the inner wall 236, the duckbill seal 250, the valve body 280 and the spool 282 together form a first chamber.
  • the duckbill seal 250 is a single slit, but other types of closure valves may be used, including a tongue valve, a multi-slot duckbill valve.
  • the duckbill 253 can be opened, but it typically does not provide a complete seal with respect to the instrument.
  • the duckbill 253 automatically closes, thereby preventing fluid within the first chamber from leaking out of the body.
  • FIG. 11 depicts the composition and assembly relationship of the second seal assembly 300.
  • the sealing film assembly 380 is sandwiched between the upper cover 310 and the upper housing 390.
  • the proximal end 332 of the sealing membrane assembly 380 is secured between the inner ring 316 of the upper cap 310 and the inner ring 396 of the upper housing 390.
  • There are a plurality of fixing manners between the upper casing 390 and the upper cover 310 and an interference fit, ultrasonic welding, glue bonding, snap fastening, and the like can be adopted.
  • This embodiment shows that the outer casing 391 of the upper casing 390 and the outer casing 311 of the upper cover 310 are fixed by ultrasonic welding. This fixation causes the proximal end 332 of the sealing membrane assembly 380 to be in a compressed state.
  • the central aperture 313 of the upper cover 310, the inner ring 316 and the sealing membrane assembly 380 together form a second chamber.
  • the sealing membrane assembly 380 includes a lower retaining ring 320, a sealing membrane 330, a guard 360 and an upper retaining ring 370.
  • the sealing film 330 and the protection device 360 are sandwiched between the lower fixing ring 320 and the upper fixing ring 370.
  • the post 321 of the lower retaining ring 320 is aligned with the corresponding aperture in the other components of the assembly 380.
  • the post 321 is interference fit with the hole 371 of the upper fixing ring 370, thereby The entire sealing membrane assembly 380 is brought into a compressed state.
  • the protective device 360 includes four sequentially overlapping protective sheets 363 for protecting the central sealing body of the sealing film 330 from perforations or tears caused by the sharp edges of the inserted surgical instrument.
  • the sealing membrane 330 includes a proximal opening 332, a distal opening 333, and a sealing wall extending proximally from the distal end, the sealing wall having a proximal end surface and a distal end surface.
  • the distal aperture 333 is formed by a sealing lip 334 for receiving an inserted instrument and forming a hermetic seal.
  • the sealing lip 334 may be non-circular, as described in the background of the invention, the circumference of the sealing lip should be short and strong enough to ensure sealing reliability when applying a 5 mm instrument.
  • the diameter of the circular cross section of the sealing lip is usually 0.7 to 1.0 mm.
  • the sealing film 330 further includes a flange 336; the sealing wall 335 has one end connected to the sealing lip 334 and the other end connected to the flange 336; the floating portion 337 has one end connected to the flange 336 and the other end connected to the proximal end 332.
  • the flange 336 is used to mount the guard 360.
  • the floating portion 337 includes one or more radial (lateral) pleats to enable the entire seal assembly 380 to float within the assembly 300.
  • the sealing film 130 further includes a flange 136; the sealing wall 135 has one end connected to the sealing lip 134 and the other end connected to the flange 136; the floating portion 137 has one end connected to the flange 136 and the other end connected to the proximal end 132.
  • the flange 136 is used to mount a protective device.
  • the floating portion 137 includes one or more radial (lateral) pleats such that the entire sealing membrane assembly 180 can float within the assembly 200.
  • the assembly 380 can be made from a number of materials having different characteristics.
  • the sealing film 330 is made of a superelastic material such as silica gel or isoprene rubber;
  • the protective device 360 is made of a semi-rigid thermoplastic elastomer;
  • the lower fixing ring 320 and the upper fixing ring 370 are made of a relatively hard plastic material such as polycarbonate.
  • Figures 14-17 depict the sealing film 330 of the first embodiment of the present invention in more detail.
  • the sealing film 330 is preferably designed as a single unit, but can also be designed as an inner seal body and an outer floating portion that are separated from the flange 336.
  • the present invention is primarily directed to improvements in the interior seals. To simplify the description, the outer floating portion and the proximal end are not shown in the subsequent description of the sealing film.
  • the axis of the sealing lip 334 is defined as 358.
  • a transverse plane 359 is defined that is generally perpendicular to axis 358.
  • the sealing wall 335 includes a plurality of pleats 340.
  • the pleats 340 and the sealing lip 334 are circumscribed and extend laterally away from the axis 358.
  • the pleats 340 include pleat valleys 342a, 342b; pleat peaks 343a, 343b; and pleat walls 341.
  • the sealing wall 335 in this example comprises eight linear pleats 340, although more or fewer or non-linear pleats may be employed.
  • the pleats 340 are conically arranged around the sealing lip 334.
  • the pleats 340 intersect the flange 336 and its extension wall 338 to form lines of intersection 345a, 345b.
  • Partially frustoconical wall 339 intersects pleated wall 341
  • An intersection line 344a, 344b is formed; the frustoconical wall 339 intersects the extension wall 338 to form an intersection line 346a, 346b.
  • the angle between the pleat valley 342a (342b) and the transverse plane 359 is defined as a guiding angle ⁇ ; the angle between the pleated peak 343a (343b) and the transverse plane 359 is defined as a guiding angle ⁇ ; the pleat valley 342a (342b) and the pleating peak are defined
  • the angle of 343a (343b) is the wrinkle angle ⁇ ; and ⁇ , ⁇ , and ⁇ range from 0° to 90°.
  • the height of the pleat wall 341 gradually increases along the axial direction in the vicinity of the sealing lip; and the height of the pleated wall 341 is outside the vicinity of the sealing lip.
  • the direction of the axis decreases rapidly.
  • the height of the pleat wall can be measured along the wall surface between the pleat valley 342a (342b) to the pleat peak 343a (343b).
  • a cylindrical surface (not shown) having a radius R 1 divides the sealing film 330 into an inner portion 356 (Fig. 18) and an outer portion 357 (Fig. 19).
  • the cylindrical surface intersects the pleated wall 341 to form a plurality of intersection lines 351a and 351b; the plurality of segments 351a form an annular line 155a; the plurality of segments 351b form an annular line 155b; the annular intersection lines 355a and 355b define a cross section 355.
  • the circumference L 1 of the intersection line 355a (355b) is much larger than 2* ⁇ *R 1 , that is, the pleats serve to increase the circumferential circumference.
  • a certain R 1 value necessarily exists such that the outer portion 357 starts from the section 355, and the shape change mainly manifests as a partial bending deformation and a macroscopic displacement of the sealing film, rather than an overall microscopic molecule. Chain elongation and overall tensile deformation. While the inner portion 356, from the sealing lip 334 to the section 355, the change in shape represents a combination of local bending deformation and overall tensile deformation of the sealing film. It can be seen that the pleats increase the circumferential circumference, reducing the hoop strain (stress) when a large diameter instrument is applied, thereby reducing the hoop tightening force and the frictional resistance.
  • the pleat wall 341 is divided into two parts, a pleat wall 341c and a cylinder 341d.
  • the cylinder 341d is a wrapping area wrapped around the outer surface of the insertion instrument. Studies have shown that the grooved sealing body has a smaller wrapping area than a grooveless design. Reducing the wrapping area can reduce the frictional resistance.
  • An optional embodiment employs a thick pleated peak.
  • the thickened pleat peak that is, the wall thickness at the pleat peak is much larger than the thickness of the pleated wall.
  • the thickened pleat peak acts as a reinforcing rib.
  • a total of eight thickened pleat peaks correspond to eight reinforcing ribs, which together strengthen the axial tensile stiffness of the sealing wall 335.
  • the thickened pleat peaks enhance the axial tensile stiffness without significantly increasing the hoop tensile stiffness; that is, increasing the axial stiffness At the same time, the hoop tightening force is not significantly increased, so that the stickiness of the background can be effectively reduced.
  • eight thickened pleat peaks are included, however, more or less thickened pleat peaks may also serve to increase the axial tensile stiffness.
  • the pleats can increase the circumferential circumference, reduce the wrapping area, reduce the real contact area between the instrument and the sealing film, and increase the axial tensile rigidity, thereby greatly reducing
  • the frictional resistance is small and the stick-slip is reduced, and the probability of occurrence of sealing film inversion is also reduced.
  • the application of 5mm instruments usually relies only on the hoop tightening force of the sealing lip to ensure the sealing reliability, so it is impossible to reduce the circumferential strain (stress) when applying the large-diameter instrument by increasing the sealing lip ring circumference.
  • the method of increasing the circumferential circumference can be used to reduce the circumferential strain (stress) in the vicinity of the sealing lip.
  • the strain in the vicinity of the sealing lip is large (concentration of stress), and the strain (stress) is closer to the area of the sealing lip. Therefore, it is necessary to rapidly increase the circumferential circumference of the vicinity of the sealing lip.
  • the pleat angle ⁇ is a function of the guide angle ⁇ , the guide angle ⁇ , and the number of pleats P, and conforms to the following formula:
  • the angle of the valley of the fold relative to the transverse plane
  • angle between the wrinkle peak and the transverse plane
  • angle between the wrinkle peak and the valley of the fold
  • the larger the ⁇ the better, the rapid increase in the circumferential circumference of the vicinity of the sealing lip, so that the hoop tightening force in the pleats is quickly minimized; however, the hoop tightening force does not cause the frictional resistance of the background.
  • the value of the guiding angle should be determined to take a small value as far as possible while satisfying the guiding property.
  • the equation on the right side of the equal sign takes the maximum value, that is, ⁇ takes the minimum value.
  • a smaller steering angle helps to reduce the wrapping area. It is necessary to satisfy a large angle of ⁇ while satisfying a small guide angle, so that the smaller the angle ⁇ , the better.
  • the value of the alpha angle is determined, the value of ⁇ is selected according to the rate of increase of the circumferential circumference required for the design, that is, ⁇ is determined by the rate at which the height of the pleat wall increases.
  • the geometric relationship of the pleats conforms to the following formula:
  • R i the maximum radius of the surgical instrument designed to be inserted through the sealing membrane
  • angle between the wrinkle peak and the transverse plane
  • the angle of the valley of the fold relative to the transverse plane.
  • the reasonable combination of R, ⁇ , ⁇ , and P can make the shape of the region from the measurement point to the lateral direction outward, and the shape change mainly represents the local macroscopic displacement of the material, and the strain (stress) produced is mainly It behaves as a local curvature of the material, rather than the elongation of the microscopic molecular chain of the material.
  • the hoop tightening force can be reduced to a large extent.
  • the larger the number of pleats P the smaller the value of ⁇ and ⁇ angles can be selected.
  • an infinite number of pleats can be designed, but in actual manufacturing, usually no more than 8 pleats, and more pleats will result. Manufacturing is very difficult or impossible to manufacture. Usually 2.5mm ⁇ R ⁇ (R i +R 0 )/2; usually 2.0mm ⁇ R 0 ⁇ 2.2mm; R value less than 2.5mm leads to too large transition zone at the sealing lip; R value is greater than (R i +R 0 )/2 results in an increase in the effect of reducing the tightening force of the ring around the circumference of the sealing lip.
  • should be less than or equal to 50°, and a larger ⁇ causes the wrapping area to increase.
  • the above theoretical calculations show that the radius of R (3 ⁇ R ⁇ 4) is the intersection of the cylindrical surface and the pleats.
  • the shape is a combination of overall tensile deformation and local bending deformation; while the pleated material in the outer region of the cylinder mainly represents the local bending deformation and overall displacement of the material.
  • ⁇ >25° ⁇ should be greater than 50° to achieve the aforementioned effect, which will result in a large wrapping area. Therefore, it is preferable to take 0 ⁇ ⁇ ⁇ 25 °.
  • the sealing membrane 430 includes a proximal opening 432 (not shown), a distal opening 433, and a sealing wall extending proximally from the distal end, the sealing wall having a proximal end surface and a distal end surface.
  • the distal aperture 433 is formed by a sealing lip 434 for receiving an inserted instrument and forming a hermetic seal.
  • the sealing film 330 further includes a flange 336; one end of the sealing wall 335 is coupled to the sealing lip 334 and the other end is coupled to the flange 336; a floating portion 337 (not shown) is coupled to the flange 336 at one end and to the proximal end 332 at the other end.
  • the axis of the sealing lip 434 is defined as 458.
  • a transverse plane 459 is defined that is generally perpendicular to the axis 458.
  • the sealing wall 435 includes a plurality of pleats 440.
  • the pleats 440 and the sealing lip 434 are circumscribed and extend laterally away from the axis 458.
  • the pleats 440 include pleat valleys 442a, 442b; pleat peaks 443a, 443b; and pleat walls 441.
  • the sealing wall 435 in this example comprises eight linear pleats 440, although more or fewer or non-linear pleats may be employed.
  • the pleats 340 extend to intersect the frustoconical wall 439 to form an intersection line 444a, 444b; the frustoconical wall 339 extends intersecting the flange 436.
  • the height of the pleat wall 441 first increases along the axial direction (the height of the sealing wall in the vicinity of the sealing lip gradually increases), and then gradually decreases along the axial direction (in the The height of the sealing wall outside the vicinity of the sealing lip is gradually reduced).
  • the height of the pleat wall can be measured along the wall surface between the pleat valley 442a (442b) and the pleat peak 443a (443b).
  • the sealing lip 434 has a cylindrical portion that intersects the pleat 440 to form a line of intersection 445a, 445b; the line of intersection 445a (445b) defines a portion that corresponds to each of the pleat peaks 443a (443b) The proximal side points to the triangular region 338 of the tip.
  • An optional embodiment employs a thick pleated peak.
  • the thickened pleat peak that is, the wall thickness at the pleat peak is much larger than the thickness of the pleated wall.
  • the thickened pleat peak acts as a reinforcing rib.
  • a total of eight thickened pleat peaks correspond to eight reinforcing ribs, which together strengthen the axial tensile stiffness of the sealing wall 435.
  • the thickened pleat peaks enhance the axial tensile stiffness without significantly increasing the hoop tensile stiffness; that is, increasing the axial stiffness At the same time, the hoop tightening force is not significantly increased, so that the stickiness of the background can be effectively reduced.
  • eight thickened pleat peaks are included, however, more or less thickened pleat peaks may also serve to increase the axial tensile stiffness.
  • the wall thickness of the frustoconical wall 439 is much smaller than the thickness of the pleat wall 441, primarily to reduce the deformation force of the area outside the vicinity of the sealing lip.
  • the sealing film 440 When the sealing film 440 is used in conjunction with the aforementioned protection device 160, the instrument is unlikely to contact the frustoconical wall 439, so a thinner wall thickness can be used. There is no need to worry about the sealing film being damaged; and since the thickened pleat peak acts to increase the axial tensile stiffness of the sealing wall 435, a thinner frustoconical wall 439 can be used to reduce the sealing lip and its adjacent area. At the time, the frustoconical wall 439 is subjected to stresses generated by rotational and bending deformation of the flange.
  • the pleats can increase the circumferential circumference, reduce the wrapping area, reduce the true contact area between the instrument and the sealing film, increase the axial tensile rigidity, and the like, thereby greatly reducing the Frictional resistance and reduced stick-slip, while also reducing the probability of occurrence of sealing film inversion or improving the operational comfort of the sealing film after inversion.
  • It can be a curve such as a spiral line, a broken line segment, or a multi-section arc line.
  • a curve such as a spiral line, a broken line segment, or a multi-section arc line.
  • the positional relationship of the intersecting faces constituting the groove and the intersection line thereof are described in detail, and the addition of the curved surface to form a multi-faceted splicing or the use of a high-order curved surface to view the intersection line and the groove shape may be described in detail.
  • the scope of the present invention is not deviated from the scope of the present invention as long as it conforms to the general idea of the present invention.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Surgical Instruments (AREA)
  • Diaphragms And Bellows (AREA)

Abstract

一种改进的褶皱型穿刺器密封膜(330,430),该密封膜(330,430)具有近端开口(332,432)和远端孔(333,433)以及从远端孔(333,433)延伸至近端开口(332,432)的密封壁(335,435)。该远端孔(333,433)由密封唇(334,434)形成,用于容纳插入的器械并形成气密封。该密封唇(334,434)具有中心轴线(358,458)和与中心轴线(358,458)大致垂直的横平面(359,459)。该密封壁(335,435)包含多个从密封唇(334,434)开始的横向向外延伸的褶皱(340,440)。每个褶皱(340,440)具有褶皱峰(343a,343b ,443a,443b)和褶皱谷(342a,342b ,442a,442b)以及在其之间延伸的褶皱壁(341,441)。且在密封唇(334,434)临近区域内,该褶皱壁(341,441)的深度沿着轴线(358,458)方向逐渐增大;而在密封唇(334,434)临近区域之外,该密封壁(335,435)的深度沿着轴线(358,458)方向逐渐减小。该褶皱(340,440)增大了环向周长,减小了应用大直径器械时的环向应变(应力),从而减小了环箍紧力和摩擦阻力。

Description

一种改进的褶皱型的穿刺器密封膜 技术领域
本发明涉及微创手术器械,尤其涉及一种穿刺器密封结构。
背景技术
穿刺器是一种微创手术中(尤其是硬管腔镜手术),用于建立进入体腔的人工通道的手术器械。通常由套管组件和穿刺针组成。其临床的一般使用方式为:先在患者皮肤上切开小口,再将穿刺针贯穿套管组件,然而一起经皮肤开口处穿透腹壁进入体腔。一旦进入体腔后穿刺针被取走,留下套管组件作为器械进出体腔的通道。
硬管腔镜手术中,通常需建立并维持稳定的气腹,以获得足够的手术操作空间。套管组件通常由套管,外壳,密封膜(亦称器械密封)和零密封(亦称自动密封)组成。所述套管从体腔外穿透至体腔内,作为器械进出体腔的通道。所述外壳将套管、零密封和密封膜连接成一个密封系统。所述零密封通常不提供对于插入器械的密封,而在器械移走时自动关闭并形成密封。所述密封膜在器械插入时箍紧器械并形成密封。
一种典型的内窥镜手术中,通常在患者腹壁建立4个穿刺通道,即2个小内径套管组件(通常5mm)和2个大内径套管组件(通常10~12mm)。通常经由小内径套管组件进入患者体内的器械仅完成辅助操作;其中一个大内径套管组件作为内窥镜通道;而另一个大内径套管组件作为医生进行手术的主要通道。在此所述主要通道,约80%的时间应用5mm器械;约20%的时间应用其他大直径器械;且手术中5mm器械与大直径器械需频繁切换。应用小直径器械时间最长,其密封可靠性较重要;应用大直径器械时往往为手术中的关键阶段(例如血管闭合和组织缝合),其切换便捷性和操作舒适性较重要。
图1和图2描绘了现有一种典型的12mm规格的套管组件100。所述套管组件100包含下壳110,上壳120和夹在所述上壳120和下壳110之间密封膜130,鸭嘴密封150。所述下壳110包含细长管111限定的中心通孔113。所述上壳120包含内壁121限定的近端孔123。所述密封膜130包含近端开口132,远端孔133,密封唇134,截圆锥密封壁135,凸缘136和外部浮动部分137。所述远端开口133由密封唇134形成。定义密封唇的轴线为141,定义大体垂直于轴线141的横平面142;定义截圆锥密封壁135的回转母线与所述横平面142的夹角为导向角ANG1。
如图1,插入5mm器械时,近似认为仅密封唇134变形产生的环箍紧力保证对于器械的可靠密封。而进行手术时,常需从各个极限的角度操作器械。5mm器械在12mm 套管中有很大径向活动空间,这使得密封唇134径向受力较大。因此密封唇134对于插入的5mm器械应有足够的环箍紧力才能保证其密封可靠性。
如图2,作一个直径为Di(Di>5mm)的圆柱与所述密封壁135相交,形成直径为Di的交线138。本领域技术人员一定可以理解,若插入直径为Di的器械,则所述密封壁135从密封唇134到交线138的区域的应变(应力)较大,称此区域为密封唇临近区域(或应力集中区域);而所述密封壁135从交线138到凸缘136的区域其应变(应力)较小。插入器械的直径Di不同,所述密封唇临近区域(应力集中区域)的边界范围大小不同。为方便量化,定义当Di为设计通过密封膜的手术器械的最大直径时,从密封唇134到所述交线138的区域为密封唇临近区域。
如图3,插入大直径器械时(例如12.8mm),所述密封唇134将胀大到合适的尺寸以容纳插入的器械;所述密封壁135被分成圆锥壁135c和圆柱壁135d两部分;所述圆柱壁135d包裹在器械外表面上,形成应力高度集中的包裹区域。定义圆锥壁135c和圆柱壁135d的交线为138a;当移除器械后,恢复为自然状态下的所述密封壁135,定义所述交线138a回弹为半径为Dx的圆环138b(图中未示出);所述交线138b即插入大直径器械时的弯曲分界线。定义所述圆锥壁135c的回转母线与所述横平面142的夹角为ANG2,且ANG2>ANG1;即插入大直径器械时所述密封壁135以凸缘136和密封壁135的交线为支点旋转舒张。定义所述圆柱壁135d的高度为Ha。所述Ha不是定值,所述远端孔大小不同,所述密封唇尺寸不同,所述密封壁壁厚不同,所述导向角不同或插入器械直径不同等因素都将导致Ha不同。
当手术中操作插入密封膜中的器械移动时,所述包裹区域与插入器械之间存在较大摩擦阻力。所述较大摩擦阻力通常容易造成密封膜内翻,操作舒适性差,操作疲劳,甚至导致套管组件在患者腹壁上固定不牢靠等缺陷,影响套管组件的使用性能。
所述摩擦阻力较大导致的缺陷中,密封膜内翻是影响套管组件使用性能最严重的问题之一。如图4,当向外拔出大直径器械时,容易发生密封膜内翻。内翻后的所述密封壁135被分成圆柱壁135e,圆锥壁135f,圆锥壁135g;所述圆柱壁135e包裹在器械外表面,形成应力高度集中的包裹区域。定义所述圆柱壁135e的高度为Hb,通常Hb大于Ha;即拔出器械时的摩擦阻力大于插入器械时的摩擦阻力;这种差异影响手术医生操作体验甚至导致手术医生产生错觉。更严重的,内翻后的密封膜可能进入近端孔123,即密封膜堆积在器械与所述内壁121之间导致卡死。美国专利US7112185,US7591802中分别披露了防止密封膜内翻的措施;这些措施可有效的降低内翻概率但不能彻底解决内翻问题。
影响所述摩擦阻力的因素很多,必须从力学和摩擦学的角度考量各个因素的综合作用。密封膜通常由硅橡胶、异戊橡胶等橡胶材料制成,橡胶材料具有超弹性和粘弹性。虽然橡胶变形过程的力学模型很复杂,但仍然可近似的用广义胡克定律描述其弹性行为;用牛顿内摩擦定律描述其粘性行为。研究表明,影响橡胶与器械接触产生的摩擦力的主要因素包括:两接触面的摩擦系数越小则摩擦力越小;两接触面间的润滑条件越好则摩擦力越小;两接触面间的真实接触面积越小则摩擦力越小;两接触面间的法向压力越小则摩擦力越小。本发明综合考虑上述因素,提出更完善的减小密封膜与插入器械之间摩擦阻力的解决方案。
除了前述摩擦阻力较大影响套管组件使用性能之外,密封膜粘滑也是影响穿刺器使用性能的另一重要因素。所述粘滑,即器械在套管中轴向移动时,密封膜的密封唇及其临近区域时而相对静止地粘附于器械之上(此时器械与密封膜之间的摩擦力主要是静摩擦力);时而又与器械产生相对滑动的现象(此时器械与密封膜之间的摩擦力主要是动摩擦力);且所述静摩擦力远大于所述动摩擦力。所述静摩擦和动摩擦交替出现,这导致器械在密封膜中移动的阻力不稳定和移动速度不平稳。本领域技术人员可以理解,微创手术中,医生只能使用器械触及患者内脏器官,并借助内窥镜影像系统监视器械工作头部的局部范围。在这种视野受限,触觉阻断的情况下,手术医生通常把移动器械时的阻力反馈作为判定手术操作是否正常的信息之一。密封膜粘滑影响了操作的舒适性、定位准确性,甚至诱发医生错误的判断。
在套管组件的使用过程中,所述粘滑很难完全避免,但可以被减小。研究表明,所述粘滑受两个主要因素影响:其一是最大静摩擦力和动摩擦力差值越小则粘滑越微弱;其二是密封膜的轴向抗拉刚度越大则粘滑越微弱。避免密封膜与器械之间的环箍紧力过大,减小密封膜和器械间的真实接触面积,保持密封膜与器械之间的良好润滑,均可以减小最大静摩擦力与动摩擦力的差值,从而减小粘滑。同时增加密封膜的轴向抗拉刚度,也有助于减轻粘滑现象。
美国专利US7789861(中国同族专利CN101478924B)中披露了一种褶皱型密封膜80。如图5-10所示。所述密封膜80具有唇缘82限定的开口81。多个褶皱89与所述开口81外切并从所述开口81横向延伸。所述褶皱89呈圆锥形排列。壁部分85与所述褶皱89外切并与之连接。每个褶皱89均包括在褶皱峰84和褶皱谷83之间延伸的褶皱壁。所述褶皱壁的高度可以沿着所述褶皱峰84到褶皱谷83之间的表面测量得到。所述褶皱从所述开口81横向延伸时,所述褶皱壁的高度上增加。所述唇缘82具有圆柱部分,该圆柱部 分与所述褶皱89相交形成交线87,所述交线87限定出一个具有与每个褶皱峰84都对应着的近侧指向尖端的三角区域89a。所述壁部分85与所述褶皱89相交形成交线88;所述交线88限定出一个具有与每个褶皱谷83都对应着的远侧指向尖端的三角区域85a。其优势在于,在手术器械定位与所述开口81中时,所述褶皱有助于减小环箍应力,由此减少所述手术器械和所述密封膜之间的摩擦力。相对于无褶皱的设计方案,减小环箍紧力有利于采用较厚的褶皱壁,同时提供相同或者更小的拉力。
所述褶皱89的几何形状可以设计成,使在手术器械插入时在所述器械与密封膜80的褶皱部分中的环箍应力最小化或者不存在。其几何关系符合下面的公式:
Figure PCTCN2017093601-appb-000001
其中:
h=作为半径的函数的褶皱壁高度
r=半径
ri=设计插入穿过密封膜的手术器械的最大半径
rid=密封膜的褶皱比方的内径的半径
P=褶皱的数目
在US7789861描述的实例中,所述开口81在松弛状态下的内径在3.8~4.0mm之间。所述密封膜80的弹性足以确保所述开口81可扩展成密封地结合直径达到12.9mm的手术器械。密封膜80含有8个线性的褶皱89。因此,该实例的h应符合下述公式:
Figure PCTCN2017093601-appb-000002
即h≥2.4mm。理论上增加褶皱89的数目越多则可以减小所述h。前述现有技术中,不含褶皱的密封膜其设计壁厚通常为0.5~0.7mm,若采用褶皱型密封膜来减小环箍紧力有利于采用较厚的褶皱壁,即密封膜壁厚大于0.5,则褶皱数目通常不可超过8个,否则无法制造。因为所述开口81的周长通常11.9~12.5mm,而每个褶皱壁的厚度通常不小于0.5mm,8个褶皱共16个褶皱壁,更多的褶皱将导致制造非常困难或无法制造。因此符合此公式的可制造的密封膜的h≥2.4mm。
US7789861专利中密封膜的示意图不符合上述公式。图5-9描绘的所述褶皱80的示意图符合上述公式,其所述开口81处的h等于2.4mm(即所述交线87的长度等于2.4mm)。
参照图8和图9,沿着所述唇缘82的外环壁作圆柱形分割面S1(未示出)将所述 密封膜80分割成唇缘部分82a和密封膜80a两部分。所述分割面S1切割所述褶皱89形成交线87a,87b;所述交线87a的长度近似等于所述交线87的长度h(h=2.4mm)。参照图8和前文公式不难理解,当所述h≥2.4mm时,若插入12.9mm器械,所述密封膜80a的褶皱89形状的改变主要表现为密封膜局部弯曲变形和宏观位移,而非总体的微观分子链伸长和整体拉伸变形。
参照图9,当所述h≥2.4mm时,所述唇缘82a相对与唇缘82,增加了多个三角形区域89a。插入5mm器械时,主要依靠所述唇缘82环向变形产生的环箍紧力保证密封可靠性,所述三角形区域89a通常不对插入的5mm器械密封。但插入12.9mm器械时,所述三角形区域89a产生了较大拉伸变形并局部包裹在器械的外表面上,增大器械与密封膜间的真实接触面积。本领域的技术人员应该可以理解,虽然将所述唇缘部分82a和密封膜80a分割开分析证明h越大则所述褶皱89中的环箍应力越小,但是作为一个整体考虑时并非如此。不恰当的高度反而会增加密封膜与器械之间的真实接触面积,从而使得所述摩擦阻力增加。
参照图6-8,本领域的技术人员应该可以理解,若褶皱几何尺寸满足前述公式(h≥2.4mm)时,即从唇缘附近开始,所述褶皱的环向周长已经大于插入的器械的外周周长,因此没有必要采用逐渐增大的褶皱。而且此种情况下仍然采用逐渐增大的褶皱,即每个褶皱壁的形状为近似梯形(参照图6-7)。当插入大直径器械使褶皱壁舒张开时,所述褶皱壁将围绕褶皱89与壁部分85相交处弯曲和旋转,梯形褶皱壁导致所述密封唇及密封唇临近区域的弯曲和旋转相对于唇缘的弯曲力臂或旋转臂不一致;从而增加了额外的变形力,并同时导致唇缘及其临近区域轴向伸长不稳定(器械插入角度不同轴向伸长量不同),导致前述粘滑现象更显著。
图10描述了一种不符合前述公式的褶皱型密封膜80b。所述密封膜80b具有从唇缘开始的,轴向方向逐渐增大的褶皱;但所述密封膜80b的褶皱的几何尺寸很小,不符合前述公式。所述密封膜80b和所述密封膜80具有相似的几何结构,区别仅在于几何尺寸。本领域的技术人员应该容易理解,若不限定几何尺寸,尺寸较小的从唇缘开始横向延伸并逐渐增大的褶皱并不能起到显著的减小所述环箍紧力的作用。
综上所述,US7789861专利披露的褶皱型密封膜是不完善的。本发明更深入的剖析穿刺器临床应用的复杂性,并考虑各影响因素的综合作用,提出改进的褶皱型的穿刺器密封膜。
发明内容
因此,本发明的一个目的是提供一种穿刺器密封膜,所述密封膜包含近端开口和远端孔以及从远端孔延伸至近端开口的密封壁。所述远端孔由密封唇形成,用于容纳插入的器械并形成密封。所述密封壁具有近端面和远端面。该密封膜能在确保对于插入的5mm器械可靠密封的前提下,降低应用大直径器械时的摩擦阻力和改善粘滑。
如背景所述,密封唇及其临近区域在插入大直径器械时形成的包裹区域是造成摩擦阻力较大的根源。要降低所述摩擦阻力,应综合考虑减小器械与密封膜之间的径向应力,减小器械与密封膜之间的包裹区域,减小器械与密封膜的真实接触面积。本领域技术人员可以理解,根据广义胡克定律和泊松效应可知,增加环向周长可以降低环向应变(应力),从而降低径向应变(应力)。但应注意到不可通过增加环向周长的方法来降低密封唇的应变(应力),这将导致应用5mm器械时的密封可靠性降低。而由于密封唇临近区域在应用大直径器械时的应力高度集中,因此应该快速的增大密封唇临近区域的环向周长;对于密封唇临近区域之外的区域,由于应变(应力)较小,可以不必采用增大环向周长的措施。另外,增大环向周长的同时还应增加密封唇临近区域的轴向抗拉刚度和保持良好润滑(减小最大静摩擦力和动摩擦力的差值),从而改善密封唇临近区域的粘滑。
在本发明的一个方面,所述密封膜包含近端开口和远端孔以及从远端孔延伸至近端开口的密封壁。所述远端孔由密封唇形成,用于容纳插入的器械并形成气密封。所述密封唇具有中心轴线和与中心轴线大致垂直的横平面。所述密封壁包含多个从密封唇开始的横向向外延伸的褶皱。每个所述褶皱具有褶皱峰和褶皱谷以及在其之间延伸的褶皱壁。且在密封唇临近区域内,所述褶皱壁的深度沿着轴线方向逐渐增大;而在密封唇临近区域之外,所述密封壁的深度沿着轴线方向逐渐减小。
一种可选的方案中,所述褶皱峰和褶皱谷相对于所述横平面的夹角符合下述关系:
Figure PCTCN2017093601-appb-000003
其中:
tan=正切函数
cos=余弦函数
P=褶皱的数目
R=褶皱测量起点相对于密封唇中心轴的距离
Ri=设计插入穿过密封膜的手术器械的最大半径
β=褶皱峰相对于横平面的夹角
α=褶皱谷相对于横平面的夹角。
通过理论分析和相关研究表明,减小密封唇临近区域的褶皱壁的导向角,有利于减小所述圆柱包裹区的长度。一种可选的方案中,采用8个褶皱;所述褶皱谷相对于所述横平面的夹角大于等于0°而小于等于25°。又一种可选的实施方案中采用加厚型褶皱峰。所述加厚型褶皱峰即褶皱峰处的壁厚大于所述褶皱壁的厚度。所述加厚型褶皱峰起到加强筋的作用,多个加厚型褶皱峰共同加强所述密封壁的轴向抗拉刚度。由于所述褶皱增加了密封唇临近区域的环向周长,因此所述加厚型褶皱峰加强轴向抗拉刚度的同时并不会显著的增加环向抗拉刚度;即增加轴向刚度的同时并没有显著增加环箍紧力,因此可有效的减小背景所述粘滑。
本发明的另一个方面,所述密封膜包含近端开口和远端孔以及从远端孔延伸至近端开口的密封壁;所述远端孔由密封唇形成,用于容纳插入的器械并形成气密封;所述密封唇是圆柱形的。所述密封唇具有中心轴线和与中心轴线大致垂直的横平面。所述密封壁包含多个从密封唇开始的横向向外延伸的褶皱;每个所述褶皱具有褶皱峰和褶皱谷以及在其之间延伸的褶皱壁。所述的密封膜还包括凸缘及从凸缘延伸的圆锥侧壁;所述圆锥侧壁与所述褶皱相交。所述褶皱横向向外延伸时,在密封唇临近区域内的所述褶皱壁深度沿着轴线逐渐增大;而密封唇临近区域之外的褶皱深度沿着轴线方向逐渐减小。所述密封膜还包括从凸缘延伸至近端开口的外部浮动部分。一种可选的方案中所述圆锥侧壁的厚度小于所述褶皱壁的厚度。
本发明的另一个目的是提供一种穿刺器密封组件。所述密封组件包含下固定环,密封膜,保护片,上固定环,上壳体和上盖组成。所述密封膜和保护片被夹在下固定环之间,所述四个相互搭接的保护片用于保护所述密封膜免受插入器械的锋利边损害。所述密封膜的近端被夹在上壳体和上盖之间,所述密封膜的外部浮动部分可使得所述密封膜及保护片可以在上壳体和上盖形成的密封仓内横向移动。
当参考附图及详细说明时,本发明的上述的或其他的目的,特征和优点将变得更加清楚。
附图说明
为了更充分的了解本发明的实质,下面将结合附图进行详细的描述,其中:
图1是现有技术的套管组件插入5mm器械时的模拟变形图;
图2是现有技术的密封膜730的详图;
图3是现有技术的套管组件插入12.8mm器械时的模拟变形图;
图4是现有技术的套管组件拔出12.8mm器械时的模拟变形图;
图5是另一现有技术密封膜80的立体图;
图6是现有技术图5所示密封膜的6-6剖视图;
图7是现有技术图5所示密封膜的7-7剖视图;
图8-9是现有技术图5所述密封膜环向切割分离后的图形;
图10是另一现有技术密封膜80a的立体图;
图11是本发明套管组件的立体的局部的剖视图;
图12是图11所述套管组件中的密封膜组件的分解图;
图13是图12所示密封膜组件的立体局部剖视图;
图14是图12所示密封膜330略去近端和浮动部分之后的内侧立体图;
图15是图12所示密封膜330略去近端和浮动部分之后的外侧立体图;
图16是图14所示密封膜的16-16剖视图;
图17是图14所示密封膜的17-17剖视图;
图18-19是图15所示密封膜环向切割分离之后的图形;
图20是图14所示密封膜插入12.8mm器械时的模拟变形图;
图21是图20中隐藏了所插入的12.8mm器械之后的图形;
图22是本发明第二实例密封膜430略去近端和浮动部分之后的内侧立体图;
图23是本发明第二实例密封膜430略去近端和浮动部分之后的外侧立体图;
图24是图22所示密封膜的24-24剖视图;
图25是图22所示密封膜的25-25剖视图。
在所有的视图中,相同的标号表示等同的零件或部件。
具体实施方式
这里公开了本发明的实施方案,但是,应该理解所公开的实施方案仅是本发明的示例,本发明可以通过不同的方式实现。因此,这里公开的内容不是被解释为限制性的,而是仅作为权利要求的基础,以及作为教导本领域技术人员如何使用本发明的基础。
图11描绘了穿刺器的整体结构。一种典型穿刺器包含穿刺针10(未展示)和套管组件20。套管组件20具有开放的近端392和开放的远端231。一种典型的应用中,穿刺针 10贯穿套管组件20,然后一起经皮肤开口处穿透整个腹壁进入体腔。一旦进入体腔,穿刺针10被取走并留下套管组件20作为器械进出体腔的通道。所述近端392处于患者体外而所述远端231处于患者体内。一种优选的套管组件20,可划分成第一密封组件200和第二密封组件400。所述组件200的卡槽239和所述组件300的卡勾312配合扣紧。所述卡勾312和卡槽239的配合是可单手快速拆分的快锁结构。这主要是为了手术时方便取出患者体内的组织或异物。所述组件200和组件300之间的快锁连接有多种实现方式。除本实施例展示的结构外,还可采用螺纹连接,旋转卡扣或者其他快锁结构。可选择的,所述组件200和组件300可以设计成不可快速拆分的结构。
图11描绘了第一密封组件200的组成和装配关系。下壳体230包括一细长管232,该细长管限定出贯穿远端231的套管233并与外壳234相连。所述下壳体230具有支撑鸭嘴密封的内壁236和与内壁联通的气阀安装孔237。阀芯282安装在阀体280中并一起安装在所述安装孔237中。鸭嘴密封250的凸缘256被夹在所述内壁236和下盖260之间。所述下盖260与下壳体230之间的固定方式有多种,可采用过盈配合,超声波焊接,胶接,卡扣固定等方式。本实施例中所述下盖260的4个安装柱268与所述下壳体230的4个安装孔238过盈配合,这种过盈配合使鸭嘴密封250处于压缩状态。所述套管232,内壁236,鸭嘴密封250,阀体280和阀芯282共同组成了第一腔室。本实施例中,所述鸭嘴密封250是单缝,但也可以使用其他类型的闭合阀,包括舌型阀,多缝鸭嘴阀。当外部器械贯穿所述鸭嘴密封250时,其鸭嘴253能张开,但是其通常不提供相对于所述器械的完全密封。当所述器械移走时,所述鸭嘴253自动闭合,从而防止第一腔室内的流体向体外泄露。
图11描绘了第二密封组件300的组成和装配关系。密封膜组件380夹在上盖310和上壳体390之间。所述密封膜组件380的近端332被固定在所述上盖310的内环316和所述上壳体390的内环396之间。所述上壳体390和上盖310之间的固定方式有多种,可采用过盈配合,超声焊接,胶接,卡扣固定等方式。本实施例展示连接方式为的所述上壳体390的外壳391与所述上盖310的外壳311之间通过超声波焊接固定。这种固定使得所述密封膜组件380的近端332处于压缩状态。所述上盖310的中心孔313,内环316和密封膜组件380一起组成了第二腔室。
图12-13描绘了密封膜组件380的组成和装配关系。所述密封膜组件380包含下固定环320,密封膜330,保护装置360和上固定环370。所述密封膜330和保护装置360被夹在下固定环320和上固定环370之间。而且所述下固定环320的柱子321与所述组件380中其他部件上相应的孔对准。所述柱子321与上固定环370的孔371过盈配合,从而 使得整个密封膜组件380处于压缩状态。所述保护装置360包含4个顺序搭接的保护片363,用于保护密封膜330的中心密封体,使其免受插入的手术器械的锋利边造成的穿孔或撕裂。
所述密封膜330包括近端开口332,远端开孔333以及从远端向近端延伸的密封壁,所述密封壁具有近端面和远端面。所述远端孔333由密封唇334形成,用于容纳插入的器械并形成气密封。所述密封唇334可以是非圆形的,如发明背景所述,密封唇周长应足够短且粗壮以确保应用5mm器械时的密封可靠性。本实例中密封唇334为圆环形,定义圆环半径为R0,则密封唇周长近似等于2*R0*π(π=3.14159),通常密封唇周长为11.8~13.8mm。密封唇圆形截面的直径通常为0.7~1.0mm。
所述密封膜330还包括凸缘336;密封壁335一端连接密封唇334而另一端连接凸缘336;浮动部分337一端连接凸缘336而另一端连接所述近端332。所述凸缘336用于安装保护装置360。所述浮动部分337包含一个或多个径向(横向)褶皱,从而使得整个密封组件380能够在所述组件300中浮动。
所述密封膜130还包括凸缘136;密封壁135一端连接密封唇134而另一端连接凸缘136;浮动部分137一端连接凸缘136而另一端连接所述近端132。所述凸缘136用于安装保护装置。所述浮动部分137包含一个或多个径向(横向)褶皱,从而使得整个密封膜组件180能够在所述组件200中浮动。
所述组件380可以由很多具有不同特性的材料制成。例如密封膜330采用硅胶,异戊橡胶等超弹性材料;保护装置360采用半刚性的热塑性弹性体;而下固定环320和上固定环370采用聚碳酸酯等相对较硬的塑胶材料制成。
图14-17更细致的描绘了本发明的第一个实施例密封膜330。为降低生产成本,密封膜330最好设计成一个整体,但也可以设计成从凸缘336处分开的内部密封体和外部浮动部分两个零件。本发明主要针对所述内部密封体进行改进。为简化表述,后续描述密封膜时均不展示外部浮动部分和近端。
定义所述密封唇334的轴线为358。定义大体垂直于轴线358的横平面359。所述密封壁335包含多个褶皱340。所述褶皱340与密封唇334外切并向背离轴线358的方向横向延伸。所述褶皱340包括褶皱谷342a,342b;褶皱峰343a,343b;以及褶皱壁341。本实例中密封壁335包含8个线性的褶皱340,然而也可以采用更多数目或更少或者非线性的褶皱。在本实例中,所述褶皱340围绕密封唇334呈圆锥形排列。所述褶皱340与凸缘336及其延伸壁338相交形成交线345a,345b。部分截圆锥壁339与褶皱壁341相交 形成交线344a,344b;截圆锥壁339与延伸壁338相交形成交线346a,346b。定义褶皱谷342a(342b)与横平面359的夹角为导向角α;定义褶皱峰343a(343b)与横平面359的夹角为导向角β;定义所述褶皱谷342a(342b)和褶皱峰343a(343b)的夹角为褶皱角θ;且α,β,和θ的取值范围均为0°到90°。
在褶皱340横向向外延伸的过程中,在密封唇临近区域内,所述褶皱壁341的高度,沿着轴线方向逐渐增加;而在密封唇临近区域之外,所述褶皱壁341的高度沿着轴线方向快速减小。所述褶皱壁的高度可以沿着所述褶皱谷342a(342b)到褶皱峰343a(343b)之间的壁表面测量得到。
以轴线358为旋转轴,作一个半径为R1的圆柱面(未示出)将所述密封膜330分割成内侧部分356(如图18)和外侧部分357(图19)。所述圆柱面与所述褶皱壁341相交形成多段交线351a和351b;所述多段线351a形成环形线155a;所述多段线351b形成环形线155b;所述环形交线355a和355b限定了截面355。
如图18-19,显然所述交线355a(355b)的周长L1远大于2*π*R1,即褶皱起到了增加环向周长的作用。本领域技术人员可以理解,必然存在某个R1值,使得所述外侧部分357从所述截面355开始,其形状的改变主要表现为密封膜局部弯曲变形和宏观位移,而非总体的微观分子链伸长和整体拉伸变形。而所述内侧部分356,从密封唇334到所述截面355,其形状的改变表现密封膜的局部弯曲变形和整体拉伸变形的综合作用。可见,所述褶皱增大了环向周长,减小了应用大直径器械时的环向应变(应力),从而减小了环箍紧力和所述摩擦阻力。
图20-21描绘了插入大直径器械时密封膜330的模拟变形图。插入大直径器械时,所述褶皱壁341被分为褶皱壁341c和圆柱341d两部分。其中所述圆柱341d即为包裹在所述插入器械外表面的包裹区域。研究表明,相对于无凹槽的设计,含凹槽的密封体的包裹区域较小。减小所述包裹区域可以减小所述摩擦阻力。
一种可选的实施方案中采用加厚褶皱峰。所述加厚型褶皱峰即褶皱峰处的壁厚远大于所述褶皱壁的厚度。所述加厚型褶皱峰起到加强筋的作用。本实例中共8个加厚型褶皱峰相当于8个加强筋,共同加强所述密封壁335的轴向抗拉刚度。由于所述褶皱340增加了密封唇临近区域的环向周长,因此所述加厚型褶皱峰加强轴向抗拉刚度的同时并不会显著的增加环向抗拉刚度;即增加轴向刚度的同时并没有显著增加环箍紧力,因此可有效的减小背景所述粘滑。本实例中包含8个加厚型褶皱峰,然而更多或较少的加厚型褶皱峰也可以起到增加轴向抗拉刚度的作用。
综上所述,所述褶皱可起到增加环向周长,减小包裹区域,减小器械与密封膜之间的真实接触面积,增加轴向抗拉刚度等功能,从而可较大的减小所述摩擦阻力和减小粘滑,同时也减小发生密封膜内翻的概率。
如背景所述,应用5mm器械时通常仅依靠密封唇的环箍紧力确保密封可靠性,因此无法采用增大密封唇环向周长的方法来降低应用大直径器械时环向应变(应力),但可以采用增加环向周长的方法来降低密封唇临近区域的环向应变(应力)。密封唇临近区域的应变较大(应力高度集中),且越接近密封唇的区域应变(应力)越大。因此需快速的增加密封唇临近区域的环向周长。而本实例中,褶皱夹角θ越大,密封唇临近区域的环向周长增加速率越快。褶皱角θ是导向角α,导向角β和褶皱数目P的函数,并符合下述公式:
cosθ=cosαcosβcos(180/P)+sinαsinβ
其中:
cos=余弦函数
sin=正弦函数
P=褶皱的数目
α=褶皱谷相对于横平面的夹角
β=褶皱峰相对于横平面的夹角
θ=褶皱峰和褶皱谷之间的夹角
理论上,θ越大越好,即可快速的增加密封唇临近区域的环向周长从而使得褶皱中的环箍紧力快速的最小化;然而所述环箍紧力不是导致背景所述摩擦阻力较大的唯一因素,快速降低褶皱中的环箍紧力的同时,还需综合考虑减小所述包裹区域和减小器械与密封膜间的真实接触面积。通过理论分析和相关研究表明,减小密封唇临近区域的褶皱壁的导向角(本实例中以褶皱谷导向角α和褶皱峰导向角β共同限定褶皱壁的导向角),有利于减小所述包裹区域的面积,但太小的导向角将牺牲密封膜的导向性能,因此确定导向角取值时应在满足导向性的前提下尽量取较小的值。
根据上述公式可知,当α和β的差值最小时,等号右边的算式取极大值,即θ取最小值。α和β的差值越大,则θ越大。较小的导向角有助于减小所述包裹区域。既要满足较大的θ角,同时要满足较小的导向角,因此α角越小越好。当确定α角取值后,根据设计所需的增加环向周长的速率来选取β取值,即通过褶皱壁高度增加的速率来确定β。一种可选的实施方案中,所述褶皱的几何关系符合下述公式:
Figure PCTCN2017093601-appb-000004
其中:
tan=正切函数
cos=余弦函数
P=褶皱的数目
R=褶皱测量起点相对于密封唇中心轴的距离
Ri=设计插入穿过密封膜的手术器械的最大半径
β=褶皱峰相对于横平面的夹角
α=褶皱谷相对于横平面的夹角。
根据上述公式可以理解,R,α,β,P合理的组合,可使得从测量点开始横向向外的区域,其形状的改变主要表现为材料局部的宏观位移,所产的应变(应力)主要表现为材料的局部弯曲,而非微观的材料分子链的伸长。可以较大程度的减小环箍紧力。根据上述公式可以理解,褶皱数目P越大则可选取更小α,β角数值,理论上可以设计无限多个褶皱,但在实际制造中,通常不可超过8个褶皱,更多的褶皱将导致制造非常困难或无法制造。通常2.5mm≤R≤(Ri+R0)/2;通常2.0mm≤R0≤2.2mm;R取值小于2.5mm则导致密封唇处的过渡区域太大;R取值大于(Ri+R0)/2则导致增加密封唇临近区域环向周长降低环箍紧力的效果不明显。一种可选的方案中,设计褶皱数目P=8;设计插入穿过密封膜的手术器械的最大半径Ri=6.45;取3≤R≤4。
当R=3,α=0°时,则β≥36.8°;
当R=3,α=20°时,则β≥48.6°;
当R=3,α=25°时,则β≥50.6°;
当R=3,α=30°时,则β≥53°;
当R=4,α=0°时,则β>31.5°;
当R=4,α=20°时,则β≥44.4°;
当R=4,α=25°时,则β≥47.2°;
当R=4,α=30°时,则β≥50°。
通常β应小于等于50°,较大的β导致所述包裹区域增大。上述理论计算表明,以R(3≤R≤4)为半径做圆柱面与褶皱相交,应用最大直径器械时,圆柱内侧的褶皱变 形表现为整体拉伸变形和局部弯曲变形的综合作用;而圆柱外侧区域的褶皱材料主要表现为材料的局部弯曲变形和整体位移。当α>25°时,要达到在前述效果则β应大于50°,这将导致包裹区域太大。因此取0≤α≤25°为宜。
图23-25描绘了本发明的第二个实施例密封膜430。所述密封膜430包括近端开口432(未示出),远端开孔433以及从远端向近端延伸的密封壁,所述密封壁具有近端面和远端面。所述远端孔433由密封唇434形成,用于容纳插入的器械并形成气密封。所述密封膜330还包括凸缘336;密封壁335一端连接密封唇334而另一端连接凸缘336;浮动部分337(未示出)一端连接凸缘336而另一端连接所述近端332。
定义所述密封唇434的轴线为458。定义大体垂直于轴线458的横平面459。所述密封壁435包含多个褶皱440。所述褶皱440与密封唇434外切并向背离轴线458的方向横向延伸。所述褶皱440包括褶皱谷442a,442b;褶皱峰443a,443b;以及褶皱壁441。本实例中密封壁435包含8个线性的褶皱440,然而也可以采用更多数目或更少或者非线性的褶皱。所述褶皱340延与截圆锥壁439延伸相交形成交线444a,444b;截圆锥壁339与所述凸缘436延伸相交。
在褶皱340横向向外延伸的过程中,所述褶皱壁441的高度,先沿着轴线方向逐渐增加(在密封唇临近区域的密封壁高度逐渐增加),再沿着轴线方向逐渐减小(在密封唇临近区域之外的密封壁高度逐渐减小)。所述褶皱壁的高度可以沿着所述褶皱谷442a(442b)到褶皱峰443a(443b)之间的壁表面测量得到。
所述密封唇434具有圆柱部分,该圆柱部分与所述褶皱440相交形成交线445a,445b;所述交线445a(445b)限定出一个具有与每个褶皱峰443a(443b)都对应着的近侧指向尖端的三角区域338。
一种可选的实施方案中采用加厚褶皱峰。所述加厚型褶皱峰即褶皱峰处的壁厚远大于所述褶皱壁的厚度。所述加厚型褶皱峰起到加强筋的作用。本实例中共8个加厚型褶皱峰相当于8个加强筋,共同加强所述密封壁435的轴向抗拉刚度。由于所述褶皱440增加了密封唇临近区域的环向周长,因此所述加厚型褶皱峰加强轴向抗拉刚度的同时并不会显著的增加环向抗拉刚度;即增加轴向刚度的同时并没有显著增加环箍紧力,因此可有效的减小背景所述粘滑。本实例中包含8个加厚型褶皱峰,然而更多或较少的加厚型褶皱峰也可以起到增加轴向抗拉刚度的作用。而所述截圆锥壁439的壁厚远小于褶皱壁441的厚度,这主要是为了减小密封唇临近区域之外的区域的变形力。当所述密封膜440与前述保护装置160配合使用时,器械不可能接触截圆锥壁439,因此可以采用较薄的壁厚而 不用担心密封膜被损坏;而由于所述加厚型褶皱峰起到增加密封壁435轴向抗拉刚度的作用,因此可以采用更薄的截圆锥壁439,减小密封唇及其临近区域舒张时,所述截圆锥壁439相对于凸缘旋转和弯曲变形产生的应力。
同样,所述褶皱可起到增加环向周长,减小包裹区域,减小器械与密封膜之间的真实接触面积,增加轴向抗拉刚度等功能,从而可较大的减小所述摩擦阻力和减小粘滑,同时也减小发生密封膜内翻的概率或改善密封膜内翻后的操作舒适性。
本领域技术人员很容易想到,合理的圆角过渡可以避免应力集中或使得某些区域变形更容易。由于密封膜的尺寸较小,尤其是密封唇附近区域的尺寸更小,如此微小的尺寸,倒角不同,则密封膜的外形看起来差异较大。为了清晰的展示个元素之间的几何关系,本发明描述之实例,通常为去掉圆角之后的图形。
已经展示和描述了本发明的很多不同的实施方案和实例。本领域的一个普通技术人员,在不脱离本发明范围的前提下,通过适当修改能对所述方法和器械做出适应性改进。例如本发明中的实例中使用了美国专利US7789861中披露的保护片结构及其固定方式,然而也可以采用美国专利US7988671披露的保护片结构及其固定方式,某些应用情形下也可以不包含保护片结构。例如本发明中多次提到所述凹槽从密封唇处开始横向向外延伸,所谓“横向向外延伸”不应被限制为其延伸轨迹为直线,所述横向向外延伸时的轨迹也可以是螺旋线,折线段,多段圆弧线等曲线。例如本发明的实例中详细描述了组成所述凹槽的各相交面的位置关系及其交线,也可以采用增加曲面形成多面拼接或者采用高次曲面的方式使其交线和凹槽外形看起来与实例有较大差异,但只要总体符合本发明的思想,仍然认为没有脱离本发明的范围。好几种修正方案已经被提到,对于本领域的技术人员来说,其他修正方案也是可以想到的。因此本发明的范围应该依照附加权利要求,同时不应被理解为由说明书及附图显示和记载的结构,材料或行为的具体内容所限定。

Claims (7)

  1. 一种用于微创手术的穿刺器密封膜,所述密封膜包含近端开口和远端孔以及从远端孔延伸至近端开口的密封壁;所述远端孔由密封唇形成,用于容纳插入的器械并形成气密封,所述密封唇具有中心轴线和与中心轴线大致垂直的横平面;所述密封壁包含多个从密封唇开始的横向向外延伸的褶皱;其特征在于每个所述褶皱具有褶皱峰和褶皱谷以及在其之间延伸的褶皱壁,且在密封唇临近区域内,所述褶皱峰和褶皱谷相对于所述横平面的夹角符合下述关系:
    Figure PCTCN2017093601-appb-100001
    其中:
    tan=正切函数
    cos=余弦函数
    P=褶皱的数目
    R=褶皱测量起点相对于密封唇中心轴的距离
    Ri=设计插入穿过密封膜的手术器械的最大半径
    β=褶皱峰相对于横平面的夹角
    α=褶皱谷相对于横平面的夹角。
  2. 如权利要求1所述的密封膜,其特征在于所述褶皱谷相对于所述横平面的夹角大于等于0°而小于等于25°。
  3. 如权利要求2所述的密封膜,其特征在于所述褶皱横向向外延伸时,在密封唇临近区域的所述褶皱壁深度沿着轴线方向逐渐增大,而密封唇临近区域之外的区域,其褶皱壁深度沿着轴线方向逐渐减小。
  4. 如权利要求2所述的密封膜,其特征在于含有8个褶皱。
  5. 如权利要求1所述的密封膜,其特征在于,所述褶皱峰的壁厚大于所述褶皱壁的厚度。
  6. 如权利要求1所述的密封膜,其特征在于,所述密封膜还包括凸缘,以及从凸缘延伸至近端开口的外部浮动部分。
  7. 一种穿刺器密封组件,其特征在于包括如权利要求1-5中任一项所述的密封膜,所述密封组件还包含下固定环,上固定环,保护装置,上壳体和上盖;所述密封膜和保护装置被夹在上固定环和下固定环之间;所述密封膜还包括凸缘以及从凸缘延伸至近端开口的外部浮动部分,所述密封膜的近端被夹在上壳体和上盖之间。
PCT/CN2017/093601 2016-08-02 2017-07-20 一种改进的褶皱型的穿刺器密封膜 WO2018024102A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/249,898 US20190142460A1 (en) 2016-08-02 2019-01-17 Pleated trocar seal membrane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610622195.2A CN106137339B (zh) 2016-08-02 2016-08-02 一种改进的褶皱型的穿刺器密封膜
CN201610622195.2 2016-08-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/249,898 Continuation US20190142460A1 (en) 2016-08-02 2019-01-17 Pleated trocar seal membrane

Publications (1)

Publication Number Publication Date
WO2018024102A1 true WO2018024102A1 (zh) 2018-02-08

Family

ID=57328520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/093601 WO2018024102A1 (zh) 2016-08-02 2017-07-20 一种改进的褶皱型的穿刺器密封膜

Country Status (3)

Country Link
US (1) US20190142460A1 (zh)
CN (1) CN106137339B (zh)
WO (1) WO2018024102A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106137339B (zh) * 2016-08-02 2018-06-29 成都五义医疗科技有限公司 一种改进的褶皱型的穿刺器密封膜
CN108652713A (zh) * 2017-04-01 2018-10-16 江苏风和医疗器材股份有限公司 密封膜、应用该密封膜的密封组件及应用该密封组件的穿刺器
CN107049441B (zh) * 2017-06-03 2023-05-26 成都五义医疗科技有限公司 一种包含自动复位锁扣的穿刺器
US11413065B2 (en) * 2019-06-28 2022-08-16 Covidien Lp Seal assemblies for surgical access assemblies
USD963851S1 (en) 2020-07-10 2022-09-13 Covidien Lp Port apparatus
USD956219S1 (en) 2020-07-10 2022-06-28 Covidien Lp Port apparatus
CN115031153B (zh) * 2022-06-23 2024-05-07 西安热工研究院有限公司 蓄热式重力压缩空气储能系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101474089A (zh) * 2009-01-23 2009-07-08 周星 高可靠性穿刺器
CN101478924A (zh) * 2006-04-18 2009-07-08 伊西康内外科公司 褶皱型套管针密封器
US20120316501A1 (en) * 2009-01-09 2012-12-13 Applied Medical Resources Corporation, Inc. Pleated trocar shield
CN103169528A (zh) * 2013-04-03 2013-06-26 浙江格宜医疗器械有限公司 一种多级密封的医用穿刺器
CN103263288A (zh) * 2013-05-29 2013-08-28 杭州康基医疗器械有限公司 专用于医疗手术穿刺器的多功能外密封装置
US20130310773A1 (en) * 2012-05-15 2013-11-21 Covidien Lp Surgical access device including gimbal mount cooperating with bellows
CN106137339A (zh) * 2016-08-02 2016-11-23 成都五义医疗科技有限公司 一种改进的褶皱型的穿刺器密封膜

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008033374A1 (de) * 2008-07-09 2010-01-14 Aesculap Ag Chirurgisches Schutzvorrichtung für ein chirurgisches Dichtelement und chirurgisches Abdichtungssystem
CN206453831U (zh) * 2016-08-02 2017-09-01 成都五义医疗科技有限公司 一种改进的褶皱型的穿刺器密封膜及穿刺器密封组件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101478924A (zh) * 2006-04-18 2009-07-08 伊西康内外科公司 褶皱型套管针密封器
US20120316501A1 (en) * 2009-01-09 2012-12-13 Applied Medical Resources Corporation, Inc. Pleated trocar shield
CN101474089A (zh) * 2009-01-23 2009-07-08 周星 高可靠性穿刺器
US20130310773A1 (en) * 2012-05-15 2013-11-21 Covidien Lp Surgical access device including gimbal mount cooperating with bellows
CN103169528A (zh) * 2013-04-03 2013-06-26 浙江格宜医疗器械有限公司 一种多级密封的医用穿刺器
CN103263288A (zh) * 2013-05-29 2013-08-28 杭州康基医疗器械有限公司 专用于医疗手术穿刺器的多功能外密封装置
CN106137339A (zh) * 2016-08-02 2016-11-23 成都五义医疗科技有限公司 一种改进的褶皱型的穿刺器密封膜

Also Published As

Publication number Publication date
CN106137339A (zh) 2016-11-23
US20190142460A1 (en) 2019-05-16
CN106137339B (zh) 2018-06-29

Similar Documents

Publication Publication Date Title
WO2018024102A1 (zh) 一种改进的褶皱型的穿刺器密封膜
WO2018024104A1 (zh) 一种含多维褶皱的穿刺器密封膜
WO2018024109A1 (zh) 一种包含正反凹槽的穿刺器密封膜及组件
WO2018024107A1 (zh) 一种可整体内翻的穿刺器密封系统
WO2018024105A1 (zh) 一种含凹槽的多角的穿刺器密封膜
WO2018024103A1 (zh) 一种含有凹槽结构的穿刺器密封膜
WO2018024100A1 (zh) 一种褶皱型的穿刺器密封系统
US7473220B2 (en) Surgical port device
US8475486B2 (en) Optical penetrating adapter for surgical portal
US7153319B1 (en) Trocar system having shielded trocar
EP2465450A1 (en) Self Deploying Bodily Opening Protector
US20050131349A1 (en) Shielded septum trocar seal
CN109394313B (zh) 一种沙漏型密封膜及组件
US20090234293A1 (en) Instrument seal
WO2018024079A1 (zh) 一种含多维浮动褶皱的穿刺器密封膜
JP6129876B2 (ja) 種々のサイズのトロカール用の適応型閉塞子
WO2018024108A1 (zh) 一种包含凹槽的密封膜及组件
US20170303960A1 (en) Highly responsive instrument seal
WO2018024106A1 (zh) 一种包含反向凹槽的穿刺器密封膜
EP2238929B1 (en) Surgical portal apparatus with expandable cannula
CN106214229B (zh) 一种含凹槽的穿刺器密封膜
CN206453831U (zh) 一种改进的褶皱型的穿刺器密封膜及穿刺器密封组件
US11413068B2 (en) Seal assemblies for surgical access assemblies
EP2266481B1 (en) Access assembly with flexible housing
CN206434390U (zh) 一种含凹槽的穿刺器密封膜及穿刺器密封组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17836284

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17836284

Country of ref document: EP

Kind code of ref document: A1