WO2018024018A1 - 风力发电机组变桨控制方法及装置 - Google Patents

风力发电机组变桨控制方法及装置 Download PDF

Info

Publication number
WO2018024018A1
WO2018024018A1 PCT/CN2017/084910 CN2017084910W WO2018024018A1 WO 2018024018 A1 WO2018024018 A1 WO 2018024018A1 CN 2017084910 W CN2017084910 W CN 2017084910W WO 2018024018 A1 WO2018024018 A1 WO 2018024018A1
Authority
WO
WIPO (PCT)
Prior art keywords
minimum pitch
pitch angle
unit
minimum
switching
Prior art date
Application number
PCT/CN2017/084910
Other languages
English (en)
French (fr)
Inventor
周杰
唐浩
王青天
Original Assignee
北京金风科创风电设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京金风科创风电设备有限公司 filed Critical 北京金风科创风电设备有限公司
Priority to US15/773,060 priority Critical patent/US10823145B2/en
Priority to AU2017307103A priority patent/AU2017307103B2/en
Priority to EP17836202.6A priority patent/EP3376025B1/en
Publication of WO2018024018A1 publication Critical patent/WO2018024018A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/028Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power
    • F03D7/0292Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power to reduce fatigue
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/74Adjusting of angle of incidence or attack of rotating blades by turning around an axis perpendicular the rotor centre line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/109Purpose of the control system to prolong engine life
    • F05B2270/1095Purpose of the control system to prolong engine life by limiting mechanical stresses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/32Wind speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/327Rotor or generator speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/328Blade pitch angle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present application relates to the field of wind power generation technology, and more particularly to a wind turbine generator pitch control method and apparatus.
  • Wind turbines (referred to as crews) use blades to convert wind energy into electrical energy for power generation.
  • the pitch angle is an important parameter for the operation of the unit and refers to the wind angle of the unit blades.
  • the pitch angle of the unit will remain at the minimum pitch angle position for a long time.
  • the pitch transmission mechanism of the unit (such as the toothed belt, the pitch bearing, the hydraulic pitching cylinder, etc.) is maintained in a state for a long time, and a certain point of the pitch transmission mechanism is subjected to the changed wind load for a long time and Gravity load, which causes the point position to become a weak point of fatigue for the entire pitch transmission.
  • the overall failure of the pitch transmission mechanism will be caused, thereby shortening the service life of the pitch transmission mechanism.
  • the life of the pitch transmission mechanism is very serious.
  • the first aspect of the present application provides a wind turbine generator pitch control method, including:
  • Switching between the plurality of minimum pitch angles is periodically performed according to a first preset duration.
  • a second aspect of the present application provides a wind turbine pitch control device comprising:
  • a minimum pitch angle setting module for setting a plurality of minimum pitch angles
  • the minimum pitch angle switching module is configured to periodically switch between the plurality of minimum pitch angles according to the first preset duration.
  • a third aspect of the present application provides a wind turbine pitch control device, including:
  • a memory for storing an instruction to perform any of the above methods
  • a processor for reading the instructions in the memory and executing.
  • Embodiment 1 is a flow chart of Embodiment 1 of a wind turbine pitch control method provided by the present application;
  • Embodiment 2 is a flowchart of Embodiment 2 of a wind turbine pitch control method provided by the present application;
  • Embodiment 3 is a flowchart of Embodiment 3 of a wind turbine pitch control method provided by the present application;
  • Embodiment 4 is a flowchart of Embodiment 4 of a wind turbine pitch control method provided by the present application;
  • Figure 5 is a graph showing the relationship between the tip speed ratio and the power factor at three different minimum pitch angles provided by the present application
  • Embodiment 1 of a wind turbine pitch control device according to the present application.
  • FIG. 7 is a schematic structural diagram of Embodiment 2 of a wind turbine pitch control device according to the present application.
  • the wind turbine (hereinafter referred to as the unit) includes a pitch transmission mechanism, and the pitch transmission mechanism is used to change and maintain the pitch angle.
  • the pitch transmission mechanism maintains the pitch angle at a fixed angle value for a long period of time, and the pitch angle is called the minimum pitch angle (or the default minimum pitch angle). .
  • the minimum pitch angle or the default minimum pitch angle.
  • Embodiments of the present application providing a plurality of minimum pitch angles (which may be two or more), periodically switching between a plurality of minimum pitch angles to distribute the fatigue experienced by a single weak point In a strip area, the life of the pitch drive mechanism is increased.
  • the preset duration can be used as a precondition, that is, before switching. Determining whether the current minimum pitch angle maintenance duration reaches a preset duration, and if so, switching the current minimum pitch angle to another minimum pitch angle of the plurality of minimum pitch angles, otherwise maintaining the current minimum Pitch angle.
  • the duration of each current minimum pitch angle may be the same preset duration or different preset durations. For details, refer to the specific embodiment. This approach is the simplest way to achieve a single weak point in the pitch drive, which does not take into account the unit's power generation and other relevant factors.
  • the preset duration here may be referred to as a first preset duration in order to facilitate the separation of the preset duration of the preset parameters and the preset duration used in the delay section.
  • the present application further provides the following preferred embodiments based on the above simple manner.
  • FIG. 1 there is shown a flow chart of Embodiment 1 of a wind turbine pitch control method.
  • This flow is a cyclical execution (as indicated by the line returning to step S101 in the drawing), and in each cycle, the following steps S101 to S105 are performed.
  • Step S101 It is judged whether the rotation speed of the generator in the unit is less than the intermediate rotation speed, and if so, step S102 is performed.
  • the intermediate speed is preset, and the intermediate speed may be the average value of the maximum speed and the minimum speed of the generator in the unit, and the maximum speed and the minimum speed are the factory parameter values of the generator.
  • the current speed of the generator in the unit is detected, and the current speed is compared with the intermediate speed. If the current speed is lower than the intermediate speed, the current wind speed is in a small wind speed state, and then step S102 is performed.
  • Step S102 The timer is incremented once.
  • the timer is incremented by a preset time period, and the time duration can be equal to the cycle time. For example, if the cycle time is 20 milliseconds, the timer is increased by 20 milliseconds. Different timings can be set according to actual needs.
  • the timer duration recorded by the timer can be used to indicate the current minimum pitch angle maintenance time. long.
  • Step S103 It is judged whether the timer reaches the preset duration, if yes, step S104 is performed, otherwise, the next loop is entered to re-execute the determining step of step S101.
  • the preset duration here may be referred to as a first preset duration in order to facilitate differentiation from the preset duration.
  • the preset duration can be set to a fixed duration value, and the duration of each current minimum pitch angle recorded by the timer is compared with the same preset duration, for example, the preset duration is set. For 0.5 hours, the timer is compared to 0.5 hours each time. If the timer does not reach the preset duration, the current minimum pitch angle is maintained, otherwise, the switching operation of step S104 is performed.
  • each minimum pitch angle is maintained for the same length of time, and the implementation of the scheme is relatively simple.
  • step S103 the specific determining step of step S103 is to determine the current minimum pitch angle, and determine the preset duration corresponding to the current minimum pitch angle according to the correspondence between the minimum pitch angle and the preset duration. And then comparing the timer with the determined preset duration.
  • two minimum pitch angles ( ⁇ 1 and ⁇ 2) are set in advance, and the duration in which ⁇ 1 is maintained is 0.4 hours, and the duration in which ⁇ 2 is maintained is 0.6 hours.
  • the current minimum pitch angle is first determined. Assuming that the current minimum pitch angle is ⁇ 1, 0.4 hours is taken as the preset duration corresponding to ⁇ 1, and the timer needs to be compared with 0.4 hours.
  • the different pitch angles are maintained for different lengths of time.
  • the pitching performance of the pitching system at different minimum pitch angles may be different. Therefore, different maintenance durations can be set for different minimum pitch angles based on empirical data of fatigue level and minimum pitch angle. A relatively short maintenance period is set for the minimum pitch angle which has a large influence on the degree of fatigue, thereby achieving a better fatigue sharing effect.
  • the two methods provided above can select different control methods according to different needs in specific applications.
  • Step S104 Switch the current minimum pitch angle of the unit to another minimum pitch angle.
  • a plurality of minimum pitch angles may be preset, and if the timer reaches a preset duration, a minimum pitch angle different from the current minimum pitch angle is selected from the plurality of minimum pitch angles, and further The current pitch angle is switched to the selected minimum pitch angle, and step S105 is performed.
  • One option may be to randomly select among a plurality of minimum pitch angles as long as the selected one is different from the current pitch angle. This implementation is relatively simple, but it may occur that the number of times the plurality of minimum pitch angles are selected is severely uneven, resulting in switching only within a certain number of identical minimum pitch angles, and the fatigue sharing effect is not optimal.
  • the plurality of minimum pitch angles may be ordered in a size relationship, and the plurality of minimum pitch angles may be sequentially switched in order from high to low or low to high.
  • the minimum pitch angle of the boundary is selected as the current minimum pitch angle
  • the previous minimum pitch angle may be selected in reverse order, such as the effect of 3.5->5->3.5->5..., of course, You can also choose from the original sort, such as 3.5->5, 3.5->5,...
  • the minimum pitch angle may not be set in advance, but the angle of change (or decrease) of each switching is set to 0.5 deg. In this case, after the current minimum pitch angle is added (or subtracted) from the angle of change, the minimum pitch angle after switching is obtained. If the minimum pitch angle obtained reaches the boundary angle, the angle of change is gradually reduced (or increased).
  • the boundary angles are 3.5 deg and 5 deg, respectively.
  • 5 deg is taken as the minimum pitch angle to be switched, and the boundary is reached at this time.
  • Angle the next time you can gradually reduce 0.5deg, up to 3.5deg, and then repeat the operation of increasing 0.5deg to achieve the gradual switching of the minimum pitch angle.
  • Step S105 Clear the timer and enter the next cycle to re-execute step S101.
  • the timer is cleared so that the duration of the minimum pitch angle after switching can be re-stated.
  • the cycle period is a preset duration value such as 20 ms, and after each elapse of the duration value, the next cycle is entered, and step S101 is re-executed.
  • the cycle period may be referred to as a second preset duration.
  • the above loop execution steps S101 to S105 are implemented, if the current wind speed continues Maintaining at a small wind speed state, periodically detecting whether the current duration of the current pitch angle of the unit reaches a preset duration, and switching the current minimum pitch angle to another minimum pitch angle whenever the preset duration is reached. .
  • this scheme by setting the operation parameter judgment link, it is ensured that the minimum pitch angle is not switched after the current running state of the unit reaches or exceeds the preset condition, so as to avoid changing the minimum pitch angle under the non-small wind speed state. Excessive loss of power generation by the unit.
  • the pitch drive can continuously switch the minimum pitch angle so that the fatigue of a single weak point can be spread over a strip to increase pitch The life of the transmission. Further, it is possible to prevent the deformation of the pitch bearing ball from being stuck, and to prevent the grease of the pitch bearing from being condensed.
  • the step S101 determines whether the rotational speed of the generator in the unit is less than the intermediate rotational speed, and determines whether the current wind speed is in a small wind speed state.
  • FIG. 2 is a flow chart showing Embodiment 2 of the pitch control method of the unit provided by the present application.
  • the timer uses a timer that is automatically cleared, specifically, a one-hour timer (automatically cleared when the timer reaches one hour), and two minimum pitch angles are preset ( ⁇ 1 and ⁇ 2), each minimum pitch angle is maintained for 0.5 hours.
  • This embodiment is also cyclically executed, and each of the loop processes performs the following steps S201 to S205.
  • Step S201 It is judged whether the rotation speed of the generator in the unit is less than the intermediate rotation speed, and if so, step S202 is performed.
  • step S101 For the description of this step, refer to the description of step S101 in the above embodiment 1, and details are not described herein again.
  • Step S202 The one-hour timer is incremented once.
  • the increased timing is a preset duration value, which may be the same as the cycle period.
  • Step S203 Whether the timer is less than 0.5 hours, if yes, step S204 is performed, otherwise, step S205 is performed.
  • Step S204 Set the current minimum pitch angle to the minimum pitch angle ⁇ 1.
  • the pitch transmission will not perform the pitching operation until the timer is greater than or equal to 0.5 hours in a subsequent cycle. At this time, the current minimum pitch angle is adjusted from ⁇ 1 to ⁇ 2.
  • Step S205 Set the current minimum pitch angle to the minimum pitch angle ⁇ 2.
  • the pitch transmission will not perform the pitching operation until the timer is cleared and changed in a subsequent cycle. For less than 0.5 hours, the current minimum pitch angle is adjusted from ⁇ 2 to ⁇ 1.
  • the minimum pitch angle can be continuously switched between two different pitch angles in a small wind speed state, thereby improving the single point fatigue condition of the pitch transmission mechanism, thereby prolonging the service life of the pitch transmission mechanism.
  • the timer is not limited to a one-hour timer, but may be a timer that can be automatically cleared for any other length of time.
  • the duration in which ⁇ 1 and ⁇ 2 are maintained is not limited to 0.5 hours, and may be a different duration.
  • the duration of ⁇ 1 is 0.4 hours
  • the duration of ⁇ 2 is 0.6 hours.
  • the number of minimum pitch angles is not limited to two, and may be any other value that one skilled in the art can envision.
  • the minimum pitch angle is plural, the maintenance duration and the switching mode of each minimum pitch angle can be referred to the related description in Embodiment 1 above, and details are not described herein again.
  • FIG. 3 there is shown a flow chart of Embodiment 3 of the control system of the pitch drive mechanism of the unit.
  • This embodiment is further provided with the step S106 on the basis of the embodiment 1.
  • step S106 on the basis of the embodiment 1. The following is only the description of the steps. For the description of the other steps, reference may be made to the above embodiment 1, and details are not described herein again.
  • Step S101 It is determined whether the rotational speed of the generator in the unit is less than the intermediate rotational speed. If yes, step S102 is performed, and if no, step S106 is performed.
  • the speed of the generator in the unit is greater than or equal to the intermediate speed, the current wind speed is changed to a large wind speed state.
  • This step can also be replaced by determining whether the current wind speed is less than a preset small wind speed value. If not, it can also indicate that the current wind speed is changed to a large wind speed state.
  • step S106 If the wind speed is changed to a large wind speed state, the minimum pitch angle switching operation of step S106 is performed.
  • Step S102 The timer is incremented once.
  • Step S103 determining whether the timer reaches the preset duration, if yes, executing step S104, otherwise, proceeding to the next cycle to re-execute step S101.
  • Step S104 Switch the current minimum pitch angle of the unit to another minimum pitch angle.
  • Step S105 Clear the timer and enter the next cycle to re-execute the judgment step of step S101.
  • Step S106 Set the current minimum pitch angle of the unit to the default minimum pitch angle.
  • the current minimum pitch angle of the unit can be directly set as the default minimum pitch angle.
  • the default minimum pitch angle is 0 deg, and of course, other values are also possible. At a large wind speed, switching the minimum pitch angle to the default minimum pitch angle enables maximum wind energy capture for better power generation.
  • the present embodiment can not only switch the minimum pitch angle in a small wind speed state, but also share the single point fatigue of the pitch transmission mechanism, and can also adjust the minimum pitch angle under a large wind speed state.
  • the default minimum pitch angle is used to capture the maximum wind energy. This embodiment takes into account the needs of both fatigue sharing and wind energy capture, and has wider applicability.
  • step S106 includes two cases, that is, the determination result of step S101 is negative for the first time and not for the first time.
  • the pitch transmission mechanism performs the pitch operation to switch the minimum pitch angle. Is the default minimum pitch angle.
  • the pitch transmission mechanism will not perform the pitch operation, the minimum pitch The horn is maintained at the default minimum pitch angle.
  • step S101 the result of the determination in step S101 is YES, and the two cases are also included, that is, the first time is yes and the non-first time is yes.
  • the minimum pitch angle is switched from the default minimum pitch angle to a certain minimum pitch angle, which is a minimum pitch angle set for the small wind speed state, such as preset in the description of step S104 above.
  • a certain minimum pitch angle which is a minimum pitch angle set for the small wind speed state, such as preset in the description of step S104 above.
  • One of a plurality of minimum pitch angles are started.
  • step S101 in the case where the wind speed is unstable and fluctuates up and down in the small wind speed value, once the judgment result of step S101 is negative, the minimum pitch angle is switched, and the minimum pitch angle is frequently switched in a short time, thereby generating power. Loss.
  • the delay link of step S107 may be set before step S106.
  • step S101 if it is determined in step S101 that the current rotational speed of the unit generator is greater than or equal to the intermediate rotational speed, the delay link is entered.
  • step S101 the current minimum pitch angle of the unit is not changed, but the large wind speed state is started, and the process returns to step S101. If the result of step S101 is still no, the wind speed continues to maintain a large wind speed state, and further It is determined whether the duration of the duration reaches a preset duration (the preset duration here may be referred to as a third preset duration), and if so, step S107 is performed. Otherwise, it returns to step S101.
  • a preset duration the preset duration here may be referred to as a third preset duration
  • the delay link can avoid frequent switching of the minimum pitch angle, thereby avoiding the loss of power generation and achieving better power generation effects.
  • the optimal gain corresponding to the minimum pitch angle after switching is determined. This optimal gain is involved in the torque control of the unit to achieve optimal wind energy capture.
  • FIG. 4 shows the flow of Embodiment 4 of the wind turbine pitch transmission control method.
  • This embodiment adds steps S108 and S109 to the embodiment shown in FIG.
  • steps S101 to S105 refer to the above-described first embodiment, and the details are not described below. Only step S108 and step S109 will be described.
  • Step S108 Determine an optimal gain corresponding to another minimum pitch angle.
  • the minimum pitch angle has a corresponding curve relationship diagram, and the curve relationship diagram shows the relationship between the power coefficient of the generator and the tip speed ratio at a certain minimum pitch angle.
  • FIG. 5 shows the blade tip speed ratio versus power factor for three different minimum pitch angles.
  • the first curve is the relationship between the tip speed ratio and the power factor when the minimum pitch angle is 2 deg;
  • the second curve is the relationship between the tip speed ratio and the power coefficient when the minimum pitch angle is 0 deg;
  • the bar curve is the relationship between the tip speed ratio and the power factor in the case where the minimum pitch angle is -2 deg.
  • step S104 switches the current minimum pitch angle to another minimum pitch angle
  • the optimal gain can be determined according to the curve relationship diagram of the other minimum pitch angle.
  • the highest power coefficient is searched, wherein the highest power coefficient is the power coefficient corresponding to the highest point in the curve relationship diagram. Further, in the graph of the curve, the tip speed ratio corresponding to the highest power coefficient is found.
  • the power coefficient and the tip speed ratio are calculated to obtain the optimal gain.
  • the gain calculation formula can be Wherein, ⁇ is the air density, Cp max is the highest power factor, and ⁇ opt is the tip power ratio corresponding to the highest power coefficient.
  • Step S109 Adjust the torque of the unit to the torque corresponding to the optimal gain.
  • T is the torque
  • Kopt is the optimal gain
  • n is the speed of the generator.
  • the above technical solution can not only set different minimum pitch angles, but also can determine the optimal gain of the follower according to the minimum pitch angle to ensure the capture of the maximum wind energy.
  • the embodiment of the present application further provides a wind turbine pitch control device.
  • the wind turbine pitch control device provided by the present application is introduced below.
  • FIG. 6 there is shown a schematic structural view of Embodiment 1 of the pitch control device of the unit.
  • the control device provided in this embodiment may include a small wind speed state determining unit 601, a periodic detecting time length unit 602, a minimum pitch angle maintaining unit 603, and a minimum pitch angle adjusting unit 604.
  • the small wind speed state determining unit 601 is configured to periodically determine, according to the second preset duration, whether the current wind speed is a preset small wind speed;
  • the periodic detection duration unit 602 is configured to detect whether the current duration of the minimum pitch angle of the wind turbine generator reaches the first preset duration when the current wind speed is determined to be the preset small wind speed;
  • the minimum pitch angle maintaining unit 603 is configured to continue to maintain the current minimum pitch angle if the first preset duration is not reached;
  • the minimum pitch angle adjustment unit 604 is configured to adjust the current minimum pitch angle to another minimum pitch angle whenever the preset duration is reached.
  • the periodic detection duration unit may specifically include:
  • the periodic detection time subunit is configured to detect whether the current duration of the minimum pitch angle of the wind turbine reaches the first preset duration corresponding to the current minimum pitch angle.
  • the small wind speed state determining unit may specifically include:
  • the speed determining subunit is configured to periodically determine whether the current speed of the generator is lower than a preset speed threshold; wherein the preset speed threshold is an average value of the maximum speed and the minimum speed of the generator of the wind power generator.
  • control device may further include: a delay unit 605, a minimum pitch angle reduction unit 606, an optimal gain determination unit 607, and a torque adjustment unit 608. .
  • the delay unit 605 is configured to determine that the current duration of the wind speed is greater than or equal to the preset duration of the small wind speed reaches a third preset duration.
  • the minimum pitch angle reduction unit 606 is configured to switch the current minimum pitch angle to a default minimum pitch angle.
  • the optimal gain determining unit 607 is configured to determine an optimal gain corresponding to the minimum pitch angle after the switching.
  • the torque adjustment unit 608 is configured to adjust the torque of the wind power generator to the torque corresponding to the optimal gain.
  • the optimal gain determining unit may specifically include: a power coefficient and a tip rate determining subunit And an optimal gain determination subunit.
  • a power coefficient and a tip speed ratio determining subunit configured to find a highest power coefficient and a tip speed ratio corresponding to the highest power coefficient in a curve relationship diagram of the minimum pitch angle after the switching;
  • the curve relationship diagram shows the relationship between the power factor of the generator and the tip speed ratio at the minimum pitch angle after the switching;
  • an optimal gain determining subunit configured to calculate the power coefficient and an optimal gain corresponding to the tip speed according to a gain calculation formula.
  • another embodiment of the present invention provides a wind turbine pitch control device.
  • the wind turbine pitch control device provided in this embodiment includes a memory and a processor. among them,
  • a memory for storing programs and data generated during program execution
  • a processor configured to implement any of the above-described wind turbine pitch control methods by running instructions in the memory.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)

Abstract

一种风力发电机组变桨控制方法及装置,该方法中,若当前风速持续维持在小风速状态下,则周期性地检测机组当前的桨距角的维持时长是否达到预设时长,每当达到预设时长,便将当前的最小桨距角切换为另一最小桨距角。

Description

风力发电机组变桨控制方法及装置
本申请要求于2016年08月02日提交中国专利局、申请号为201610625804.X、发明名称为“风力发电机组变桨控制方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及风力发电技术领域,更具体地,是风力发电机组变桨控制方法及装置。
背景技术
风力发电机组(简称为机组),使用叶片将风能转化为电能,以实现发电。桨距角,是机组运行的一个重要参数,指的是机组叶片的对风角度。
通常地,当风况处于额定风速以下的不理想状态时,机组的桨距角会长期保持在最小桨距角位置。这样,机组的变桨传动机构(如齿形带、变桨轴承、液压变桨的缸体等)长时间维持在一个状态,变桨传动机构的某一个点长时间地承受变化的风载以及重力载荷,从而导致该点状位置成为整个变桨传动机构的疲劳薄弱点。
若该疲劳薄弱点出现失效情况,则会导致变桨传动机构的整体失效,进而缩短变桨传动机构的使用寿命。特别地,在某些风资源不理想的风电场,机组长期运行在额定风速情况下,变桨传动机构的寿命消耗非常严重。
发明内容
本申请提供的技术方案如下:
本申请第一方面提供了一种风力发电机组变桨控制方法,包括:
设置多个最小桨距角;
根据第一预设时长周期性地在所述多个最小桨距角之间进行切换。
本申请的第二方面提供了一种风力发电机组变桨控制装置,包括:
最小桨距角设置模块,用于设置多个最小桨距角;
最小桨距角切换模块,用于根据第一预设时长周期性地在所述多个最小桨距角之间进行切换。
本申请的第三方面提供了一种风力发电机组变桨控制装置,包括:
存储器,用于存储执行上述任意一项方法的指令;
处理器,用于读取存储器中的所述指令,并执行。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本申请提供的风力发电机组变桨控制方法实施例1的流程图;
图2为本申请提供的风力发电机组变桨控制方法实施例2的流程图;
图3为本申请提供的风力发电机组变桨控制方法实施例3的流程图;
图4为本申请提供的风力发电机组变桨控制方法实施例4的流程图;
图5为本申请提供的在三个不同最小桨距角下叶尖速比与功率系数的曲线关系图;
图6为本申请提供的风力发电机组变桨控制装置实施例1的结构示意图;
图7为本申请提供的风力发电机组变桨控制装置实施例2的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
风力发电机组(以下可简称机组),包括变桨传动机构,变桨传动机构用来改变及维持桨距角。目前,风速小于额定风速时,变桨传动机构在较长的时间内,将桨距角维持在某个固定的角度值,该桨距角称为最小桨距角(或默认最小桨距角)。这样,虽然可以实现最大风能的捕获,但会导致变桨传动机构的某个点状位置长期受到风载及重力载荷,从而成为疲劳薄弱点。
本申请的实施例,设置多个最小桨距角(可以是两个或两个以上),周期性地在多个最小桨距角之间进行切换,以将单个薄弱点所受的疲劳分摊在一个带状区域里,进而提高变桨传动机构的寿命。
在周期性切换最小桨距角时,可以将预设时长作为前提条件,即切换前, 判断当前的最小桨距角的维持时长是否达到预设时长,若达到,则将当前的最小桨距角切换为多个最小桨距角中的另一最小桨距角,否则,维持当前的最小桨距角。其中,在判断时,每个当前的最小桨距角所维持的时长可以是相同的预设时长,也可以是不同的预设时长,详细说明可以参见具体实施例。该方式是一种最简单的实现分摊变桨传动机构的单个薄弱点的方式,该方式并没有考虑机组发电功率以及其他相关因素。
多个最小桨距角可以有多种设置方式。例如,可以设置每次切换时桨距角需要改变的角度,如每次切换时桨距角增加0.5度;又如,可以设置多个固定的最小桨距角档位,如设置4个档位,分别为3.5deg(角度)、4deg、4.5deg、5deg。以上仅是示例说明,设置方式还可以是本领域技术人员可以预期得到的其他方式。为了便于与下文周期性获取预设参数的预设时长及延迟环节中使用的预设时长区分,可以将此处的预设时长称为第一预设时长。
为更好地实现以上根据预设时长周期性地在所述多个最小桨距角之间进行切换的目的,在上述简单方式的基础上本申请还提供了以下几种优选的具体实施方式。
见图1,其示出了风力发电机组变桨控制方法实施例1的流程图。
该流程是周期性循环执行(如图示中返回步骤S101的线条所示),在每个循环周期内,执行以下步骤S101~步骤S105。
步骤S101:判断机组中发电机的转速是否小于中间转速,若是,执行步骤S102。
在实施前,预先设置中间转速,中间转速可以是机组中发电机的最大转速与最小转速的平均值,最大转速与最小转速是发电机的出厂参数值。检测机组中发电机当前的转速,并将当前的转速与中间转速进行比较,若当前的转速小于中间转速,则表示当前的风速处于小风速状态,进而执行步骤S102。
步骤S102:计时器增加一次计时。
其中,为计时器增加一次预设的计时时长,计时时长可以与循环周期相等,如循环周期为20毫秒,则计时器增加20毫秒。可以根据实际需求,设置不同的计时时长。计时器记录的计时时长可以用来表示当前的最小桨距角的维持时 长。
步骤S103:判断计时器是否达到预设时长,若是,则执行步骤S104,否则,进入下个循环周期,以重新执行步骤S101的判断步骤。
其中,为了便于与下文的预设时长区分,可以将此处的预设时长称为第一预设时长。
在一个示例中,可以将预设时长设置为一个固定的时长值,计时器记录的每个当前的最小桨距角的维持时长均与该同一预设时长进行比较,例如,将预设时长设置为0.5小时,计时器每次均与0.5小时进行比较。若计时器未达到预设时长,则维持该当前的最小桨距角,否则,执行步骤S104的切换动作。
此示例中,每个最小桨距角维持的时长均相同,方案的实现方式比较简单。
在另一示例中,可以为不同的最小桨距角设置不同的预设时长,并建立预设时长与最小桨距角的对应关系。此种情况下,步骤S103的具体判断步骤是,确定当前的最小桨距角,并根据最小桨距角与预设时长的对应关系,确定出该当前的最小桨距角所对应的预设时长,进而将计时器与确定出的该预设时长进行比较。
例如,预先设置2个最小桨距角(θ1及θ2),并设置θ1维持的时长为0.4小时,θ2维持的时长为0.6小时。此种情况下,本步骤执行时,首先确定当前的最小桨距角,假设当前的最小桨距角为θ1,则将0.4小时作为θ1对应的预设时长,计时器需要与0.4小时进行比较。
此示例中,不同的桨距角维持的时长不同,相比上一示例,虽然实现方式稍微复杂,但是疲劳分摊效果更佳。变桨执行系统在不同的最小桨距角下,所受的疲劳程度可能是不同的,因此,可以根据疲劳程度与最小桨距角的经验数据,为不同的最小桨距角设置不同的维持时长,为对疲劳程度有较大影响的最小桨距角设置相对较短的维持时长,从而达到更好的疲劳分摊效果。
以上提供的两种方式,在具体应用中,可以根据不同的需求,选择不同的控制方式。
步骤S104:将机组当前的最小桨距角切换为另一最小桨距角。
在实施中,可以预先设置多个最小桨距角,若计时器达到预设时长,便从该多个最小桨距角中,选择与当前的最小桨距角不同的一个最小桨距角,进而 将当前的桨距角切换为所选择的最小桨距角,并执行步骤S105。
选择最小桨距角,可以有以下多种实现方式。
一种选择方式可以是,随机在多个最小桨距角中选择,只要选择的与当前桨距角不同即可。此实现方式较为简单,但可能出现该多个最小桨距角被选择的次数严重不均,导致仅在某几个相同的最小桨距角内切换,疲劳分摊效果并非最佳。
另一选择方式可以是,将该多个最小桨距角按照大小关系排序,按照从高到低或从低到高的顺序,依次在该多个最小桨距角之间切换。
例如,在[3.5,5]deg(角度)的范围之内选择4个角度作为最小桨距角,假设4个最小桨距角分别为3.5deg、4deg、4.5deg、5deg,则由高到低或者由低到高依次选择各个最小桨距角,如当前的最小桨距角为3.5deg,则选择4deg作为切换到的最小桨距角。
若按照某种排序,选择边界的最小桨距角作为当前的最小桨距角后,后续可以逆序选择前一最小桨距角,如3.5->5->3.5->5…的效果,当然,也可以仍按原来排序进行选择,如3.5->5,3.5->5,…的效果。
另外,除了在多个最小桨距角中选择最小桨距角的实现方式之外,还可以并不预先设置最小桨距角,而是设置每次切换增加(或减少)的变化角度如0.5deg,此种情况下,将当前的最小桨距角加上(或减去)该变化角度后,获得切换后的最小桨距角。若获得的最小桨距角达到边界角度后,则逐渐减少(或增加)该变化角度。
例如,预先设置每次增加的角度为0.5deg,且边界角度分别为3.5deg及5deg,假设当前的最小桨距角为4.5deg,则将5deg作为切换到的最小桨距角,此时达到边界角度,则下一次可以逐渐减少0.5deg,直至3.5deg,再重复增加0.5deg的操作,以实现最小桨距角的逐渐切换。
步骤S105:将计时器清零,并进入下个循环周期,以重新执行步骤S101。
其中,计时器清零,以为了可以重新统计切换后的最小桨距角的维持时长。另外,循环周期是预先设置的时长值如20ms,每经过该时长值后,便进入下一循环周期,重新执行步骤S101。其中,循环周期可以称为第二预设时长。
综上所述,以上循环执行步骤S101~步骤S105实现的是,若当前风速持续 维持在小风速状态下,则周期性地检测机组当前的桨距角的维持时长是否达到预设时长,每当达到预设时长,便将当前的最小桨距角切换为另一最小桨距角。此方案中,通过设置运行参数判断的环节,以便确保机组当前运行状态达到或超过预设条件后不再执行最小桨距角的切换,以避在非小风速状态下改变最小桨距角而导致机组发电功率的过大损失。在预设条件允许范围内(小风速状态下),变桨传动机构可以不断地切换最小桨距角,这样便可以将单个薄弱点所受的疲劳分摊在一个带状区域里,从而提高变桨传动机构的寿命。进一步的效果是,可以防止变桨轴承滚珠变形卡滞、防止变桨轴承油脂凝结等。
以上实施例中,步骤S101判断机组中发电机的转速是否小于中间转速的目的是,判断当前风速是否处于小风速状态。
当然,在具体应用中,判断当前风速是否处于小风速状态的方式还有其他方式。例如,直接测试风速,将风速与预设的小风速值进行比较,又如,通过风速值、功率或湍流强度等机组的运行参数进行判断,此些运行参数可以直接或间接地反映风速情况,或者,使用本领域技术人员可以预想得到的其他方式。
见图2,其示出了本申请提供的机组变桨控制方法实施例2的流程图。本实施例中,计时器使用自动清零的计时器,具体地,使用的是1小时计时器(当计时器达到1小时后,便自动清零),并且预先设置两个最小桨距角(θ1及θ2),每个最小桨距角维持0.5小时。
本实施例也是循环执行,每次循环过程执行以下步骤S201~步骤S205。
步骤S201:判断机组中发电机的转速是否小于中间转速,若是,执行步骤S202。
有关本步骤的说明可以参见上述实施例1中的步骤S101的说明,此处不再赘述。
步骤S202:1小时计时器增加一次计时。
其中,增加的计时是预先设置的时长值,该时长值可以与循环周期相同。
步骤S203:计时器是否小于0.5小时,若是,执行步骤S204,否则,执行步骤S205。
步骤S204:将当前的最小桨距角设置为最小桨距角θ1。
当然,若当前循环中,计时器小于0.5小时且当前的最小桨距角为θ1,则变桨传动机构并不会执行变桨动作,直至后续某次循环中,计时器大于等于0.5小时,此时,当前的最小桨距角便由θ1调整为θ2。
步骤S205:将当前的最小桨距角设置为最小桨距角θ2。
同理,若当前循环中,计时器大于等于0.5小时且当前的最小桨距角为θ2,则变桨传动机构并不会执行变桨动作,直至后续某次循环中,计时器清零并变为小于0.5小时,此时,当前的最小桨距角便由θ2调整为θ1。
以上实施例可以实现小风速状态下,最小桨距角在两个不同的桨距角之间进行不断地切换,从而改善变桨传动机构单点疲劳的状况,以延长变桨传动机构的使用寿命。
在实际应用中,以上实施例中具有其他类似的替代方案。
例如,计时器并非局限于1小时计时器,可以是其他任意时长的可以自动清零的计时器。另外,在计时器为1小时计时器的情况下,θ1及θ2维持的时长并不局限于0.5小时,还可以是不相同的时长,例如,θ1维持的时长为0.4小时,θ2维持的时长为0.6小时。
再者,最小桨距角的个数并非局限于两个,可以是本领域技术人员可以预想得到的其他任意数值。在最小桨距角为多个的情况下,每个最小桨距角的维持时长及切换方式可以参见以上实施例1中的相关说明,此处不再赘述。
见图3,其示出了机组变桨传动机构控制方法实施例3的流程图。
本实施例在实施例1的基础上,还包括步骤S106,以下仅对该步骤进行说明,有关其他步骤的说明可以参见以上实施例1,此处不再赘述。
步骤S101:判断机组中发电机的转速是否小于中间转速,若是,执行步骤S102,若否,执行步骤S106。
其中,若机组中发电机的转速大于等于中间转速,表示当前风速改变为较大风速状态。本步骤还可以替换为判断当前风速是否小于预设的小风速值,若否,则也可以表示当前风速改变为较大风速状态。
若风速改变为较大风速状态,则执行步骤S106的最小桨距角切换动作。
步骤S102:计时器增加一次计时。
步骤S103:判断计时器是否达到预设时长,若是,则执行步骤S104,否则,进入下个循环周期,以重新执行步骤S101。
步骤S104:将机组当前的最小桨距角切换为另一最小桨距角。
步骤S105:将计时器清零,并进入下个循环周期,以重新执行步骤S101的判断步骤。
步骤S106:将机组当前的最小桨距角设置为默认最小桨距角。
其中,若步骤S101判断机组发电机当前的转速大于等于中间转速,表示当前风速处于较大风速状态,则可以直接将机组当前的最小桨距角设置为默认最小桨距角。
一般地,默认最小桨距角为0deg,当然,也可以是其他数值。在较大风速状态下,将最小桨距角切换为默认最小桨距角可以实现最大风能的捕获,达到更好的发电效果。
综上所述,本实施例不仅可以在小风速状态下,对最小桨距角进行切换,以分摊变桨传动机构的单点疲劳,还可以在较大风速状态下,将最小桨距角调整为默认最小桨距角,来捕获最大风能。本实施例考虑到疲劳分摊与风能捕获两方面的需求,具有更广的应用性。
需要说明的是,以上实施例是循环执行的,因此,步骤S106的执行包括两种情况,即步骤S101的判断结果首次为否以及非首次为否。
首次为否,表示风速由小风速状态进入较大风速状态,此时,机组的最小桨距角非默认最小桨距角,则变桨传动机构会执行变桨操作,以将最小桨距角切换为默认最小桨距角。
非首次为否,表示风速进入较大风速状态后并维持在该状态,则机组的最小桨距角已经切换为默认最小桨距角,则变桨传动机构不会执行变桨操作,最小桨距角便维持在该默认最小桨距角。
同样,步骤S101的判断结果为是,也包括该两种情况,即首次为是以及非首次为是。
首次为是,表示风速由较大风速状态进入小风速状态。此时,需要将机组 的最小桨距角由默认最小桨距角切换为某个最小桨距角,该某个最小桨距角是针对小风速状态设置的一个最小桨距角,例如上述步骤S104的说明中预先设置的多个最小桨距角中的某一个。并且,将计时器清零后开始执行步骤S102及后续步骤。
非首次为是,表示风速维持在小风速状态。此时,便可以按照上述实施例1的流程执行,实现风速维持在小风速状态的情况下,对最小桨距角进行切换的目的。
可见,在风速不稳定且在小风速值上下波动的情况下,一旦步骤S101的判断结果为否,便切换最小桨距角,会在较短时间内频繁切换最小桨距角,从而造成发电功率的损失。
为解决上述问题,如图3所示,可以在步骤S106之前设置步骤S107的延迟环节。
具体地,若步骤S101判断机组发电机当前的转速大于等于中间转速,则进入延迟环节。
延迟环节中并未改变机组当前的最小桨距角,而是开始对较大风速状态进行计时,并返回步骤S101,若步骤S101判断结果仍为否,则表示风速持续维持较大风速状态,进而判断持续时长是否达到预设时长(此处的预设时长可以称为第三预设时长),若是,才执行步骤S107。否则,仍返回步骤S101。
可见,延迟环节可以避免频繁切换最小桨距角的情况,从而避免发电功率的损失,达到更好的发电效果。
为了保证机组工作在最大功率系数点,在切换最小桨距角后,确定切换后的最小桨距角所对应的最优增益。将该最优增益参与机组的扭矩控制,以实现最优的风能捕获。
具体地,见图4,其示出了风力发电机组变桨传动机构控制方法实施例4的流程。该实施例在图1所示的实施例的基础上,增加步骤S108及步骤S109。有关步骤S101~步骤S105的说明可以参见上述实施例1,以下并不赘述,仅对步骤S108及步骤S109进行说明。
步骤S108:确定另一最小桨距角对应的最优增益。
可以知道的是,最小桨距角具有对应的曲线关系图,曲线关系图表示的是在某个最小桨距角下,发电机的功率系数与叶尖速比的关系。
例如,见图5,其示出了三个不同的最小桨距角下,叶尖速比与功率系数的关系曲线。第一条曲线为最小桨距角为2deg情况下,叶尖速比与功率系数的关系;第二条曲线为最小桨距角为0deg情况下,叶尖速比与功率系数的关系;第三条曲线为最小桨距角为-2deg情况下,叶尖速比与功率系数的关系。
可见,不同的最小桨距角对应不同的叶尖速比与功率系数的曲线关系。
步骤S104将当前的最小桨距角切换为另一最小桨距角后,则可以根据该另一最小桨距角的曲线关系图,来确定最优增益。
具体地,在该另一最小桨距角的曲线关系图中,查找最高的功率系数,其中,最高的功率系数即曲线关系图中最高点对应的功率系数。进而,在该曲线关系图中,查找该最高的功率系数对应的叶尖速比。
使用增益计算公式,对功率系数及叶尖速比进行计算后,获得最优增益。
其中,增益计算公式可以是
Figure PCTCN2017084910-appb-000001
其中,ρ为空气密度,Cpmax为最高的功率系数,λopt为最高的功率系数对应的叶尖速比。
步骤S109:将机组的扭矩调整为最优增益对应的扭矩。
具体地,扭矩与最优增益之间的对应关系,可以使用公式T=Kopt*n^2获得。其中,T为扭矩,Kopt为最优增益,n为发电机的转速。可见,使用该公式可以计算出最优增益对应的扭矩。将机组中变流器的扭矩调整为计算出的该扭矩,可以捕获最大风能。
以上技术方案,不仅可以设置不同的最小桨距角,而且可以根据最小桨距角确定随动的最优增益,以保证最大风能的捕获。
基于以上实施例提供的风力发电机组变桨控制方法,本申请实施例还提供一种风力发电机组变桨控制装置,以下对本申请提供的风力发电机组变桨控制装置进行介绍。
见图6,其示出了机组变桨控制装置实施例1的结构示意图。
本实施例提供的控制装置可以包括:小风速状态确定单元601、周期性检测时长单元602、最小桨距角维持单元603及最小桨距角调整单元604。
小风速状态确定单元601,用于根据第二预设时长周期性判断当前风速是否为预设小风速;
周期性检测时长单元602,用于每当判断当前风速为预设小风速时,检测风力发电机组当前的最小桨距角的维持时长是否达到第一预设时长;
最小桨距角维持单元603,用于若未达到所述第一预设时长,则继续维持当前的最小桨距角;
最小桨距角调整单元604,用于每当达到预设时长,则将当前的最小桨距角调整为另一最小桨距角。
其中,周期性检测时长单元具体可以包括:
周期性检测时长子单元,用于检测风力发电机组当前的最小桨距角的维持时长是否达到当前的最小桨距角对应的第一预设时长。
其中,小风速状态确定单元具体可以包括:
转速确定子单元,用于周期性判断发电机当前的转速是否低于预设转速阈值;其中,所述预设转速阈值为所述风力发电机组的发电机的最大转速与最小转速的平均值。
见图7,本实施例提供的控制装置在上述控制装置实施例1的基础上,还可以包括:延迟单元605、最小桨距角还原单元606、最优增益确定单元607、及扭矩调整单元608。
延迟单元605,用于确定所述当前风速大于或等于所述预设小风速的维持时长达到第三预设时长。
最小桨距角还原单元606,用于将当前的最小桨距角切换为默认最小桨距角。
最优增益确定单元607,用于确定切换后的最小桨距角对应的最优增益。
扭矩调整单元608,用于将所述风力发电机组的扭矩调整为所述最优增益对应的扭矩。
其中,最优增益确定单元具体可以包括:功率系数及叶尖速比确定子单元 及最优增益确定子单元。
功率系数及叶尖速比确定子单元,用于在所述切换后的最小桨距角的曲线关系图中,查找最高的功率系数、以及所述最高的功率系数对应的叶尖速比;其中,所述曲线关系图表示的是在所述切换后的最小桨距角下,发电机的功率系数与叶尖速比的关系;
最优增益确定子单元,用于依据增益计算公式,计算所述功率系数及所述叶尖速对应的最优增益。
基于以上实施例提供的风力发电机组变桨控制方法和装置,本申请实施例还提供了另一种风力发电机组变桨控制装置。
本实施例提供的风力发电机组变桨控制装置包括存储器及处理器。其中,
存储器,用于存储程序以及程序运行中产生的数据;
处理器,用于通过运行所述存储器中的指令,实现上述任意一种风力发电机变桨控制方法。
需要说明的是,本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括上述要素的过程、方法、物品或者设备中还存在另外的相同要素。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在 其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (11)

  1. 一种风力发电机组变桨控制方法,其特征在于,包括:
    设置多个最小桨距角;
    根据第一预设时长周期性地在所述多个最小桨距角之间进行切换。
  2. 根据权利要求1所述的控制方法,其特征在于,在所述根据第一预设时长周期性地在所述多个最小桨距角之间进行切换之前,还包括:
    根据第二预设时长周期性获取机组的运行参数,并判断所述机组的运行参数是否小于预设阈值;
    若所述机组的运行参数小于所述预设阈值,则执行根据第一预设时长周期性地在所述多个最小桨距角之间进行切换。
  3. 根据权利要求2所述的控制方法,其特征在于,还包括:
    若所述机组的运行参数大于或等于所述预设阈值,则在第三预设时长后将当前的最小桨距角切换为默认最小桨距角;其中,所述默认最小桨距角小于所述多个最小桨距角中的最小值。
  4. 根据权利要求1-3任意一项所述的控制方法,其特征在于,所述运行参数包括:
    风速、湍流强度、转速或功率。
  5. 根据权利要求1或3所述的控制方法,其特征在于,还包括:
    确定切换后的最小桨距角对应的最优增益;
    将所述机组的扭矩调整为所述最优增益对应的扭矩。
  6. 一种风力发电机组变桨控制装置,其特征在于,包括:
    最小桨距角设置模块,用于设置多个最小桨距角;
    最小桨距角切换模块,用于根据第一预设时长周期性地在所述多个最小桨距角之间进行切换。
  7. 根据权利要求6所述的控制装置,其特征在于,还包括:
    机组运行参数判断模块,用于根据第二预设时长周期性获取机组的运行参数,并判断所述机组的运行参数是否小于预设阈值;若所述机组的运行参数小于所述预设阈值,则触发所述最小桨距角切换模块。
  8. 根据权利要求7所述的控制装置,其特征在于,还包括:
    最小桨距角还原模块,用于若所述机组的运行参数大于或等于所述预设阈值,则在第三预设时长后将当前的最小桨距角切换为默认最小桨距角,其中,所述默认最小桨距角小于所述多个最小桨距角中的最小值。
  9. 根据权利要求6-8所述的控制装置,其特征在于,所述机组运行参数判断模块获取到的运行参数包括:
    风速、湍流强度、转速或功率。
  10. 根据权利要求6或8所述的控制装置,其特征在于,还包括:
    最优增益确定模块,用于确定切换后的最小桨距角对应的最优增益;
    扭矩调整模块,用于将所述机组的扭矩调整为所述最优增益对应的扭矩。
  11. 一种风力发电机组变桨控制装置,其特征在于,包括:
    存储器,用于存储执行权利要求1-5任意一项所述方法的指令;
    处理器,用于读取存储器中的所述指令,并执行。
PCT/CN2017/084910 2016-08-02 2017-05-18 风力发电机组变桨控制方法及装置 WO2018024018A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/773,060 US10823145B2 (en) 2016-08-02 2017-05-18 Wind turbine variable-pitch control method and device
AU2017307103A AU2017307103B2 (en) 2016-08-02 2017-05-18 Wind turbine variable-pitch control method and device
EP17836202.6A EP3376025B1 (en) 2016-08-02 2017-05-18 Wind turbine variable-pitch control method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610625804.XA CN107676223B (zh) 2016-08-02 2016-08-02 风力发电机组变桨控制方法及装置
CN201610625804.X 2016-08-02

Publications (1)

Publication Number Publication Date
WO2018024018A1 true WO2018024018A1 (zh) 2018-02-08

Family

ID=61074096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/084910 WO2018024018A1 (zh) 2016-08-02 2017-05-18 风力发电机组变桨控制方法及装置

Country Status (5)

Country Link
US (1) US10823145B2 (zh)
EP (1) EP3376025B1 (zh)
CN (1) CN107676223B (zh)
AU (1) AU2017307103B2 (zh)
WO (1) WO2018024018A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3482068B1 (en) * 2016-07-06 2020-09-02 Vestas Wind Systems A/S A wind power plant having a plurality of wind turbine generators and a power plant controller
DE102018100727A1 (de) * 2018-01-15 2019-07-18 Wobben Properties Gmbh Verfahren zum Steuern einer Windenergieanlage und Windenergieanlage
CN108708823B (zh) * 2018-04-28 2022-05-06 山东中车风电有限公司 风力发电机组的最优增益参数在线优化方法与系统
CN111946546B (zh) * 2019-05-17 2022-06-21 北京金风科创风电设备有限公司 风力发电机组及其参数联合寻优方法、装置、存储介质
CN112012883B (zh) * 2019-05-30 2022-06-07 北京金风科创风电设备有限公司 风力发电机组运行控制方法和装置、存储介质
CN112308275A (zh) * 2019-07-31 2021-02-02 北京金风科创风电设备有限公司 风力发电机组的最优桨距角辨识方法和设备
CN111425350B (zh) * 2020-03-13 2021-04-09 许昌许继风电科技有限公司 一种风电机组变桨系统控制方法、装置及变桨系统
CN112145376B (zh) * 2020-09-29 2021-06-22 沈阳航空航天大学 一种风力机全时效率测定方法
CN114673630A (zh) * 2020-12-24 2022-06-28 新疆金风科技股份有限公司 风电机组叶尖速比的确定方法、装置、主控制器
CN113898528B (zh) * 2021-09-30 2023-07-28 江苏金风软件技术有限公司 风机变桨轴承的异常检测方法、模型训练方法及相关装置
CN114542378B (zh) * 2022-04-26 2022-07-12 东方电气风电股份有限公司 一种动态计算风力发电机组最优最小桨角的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070057517A1 (en) * 2005-09-09 2007-03-15 Mcnerney Gerald Wind turbine load control method
CN101400892A (zh) * 2006-03-16 2009-04-01 维斯塔斯风力系统有限公司 用于减小受到风轮面不对称加载的风力涡轮机的部件的疲劳负载的方法与控制系统
CN104428531A (zh) * 2012-06-08 2015-03-18 维斯塔斯风力系统集团公司 操作风力涡轮机的方法以及适合于所述方法的系统
EP2886853A1 (en) * 2013-12-20 2015-06-24 Mitsubishi Heavy Industries, Ltd. A monitoring system and a monitoring method for a wind turbine generator
CN105351144A (zh) * 2015-05-21 2016-02-24 同济大学 一种减小风机疲劳载荷的桨叶振动反馈方法
CN105649875A (zh) * 2015-12-31 2016-06-08 北京金风科创风电设备有限公司 风力发电机组的变桨控制方法及装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4656362A (en) * 1982-11-08 1987-04-07 United Technologies Corporation Blade pitch angle control for large wind turbines
US8174136B2 (en) * 2006-04-26 2012-05-08 Alliance For Sustainable Energy, Llc Adaptive pitch control for variable speed wind turbines
CN101235794B (zh) * 2007-12-17 2011-07-06 黄金伦 高低速风轮共塔架
EP2196666B1 (en) * 2008-12-08 2012-02-22 Siemens Aktiengesellschaft Control of the rotational speed of a wind turbine which is impeded to export electrical power to an electricity network
CN101672254B (zh) * 2009-09-25 2012-03-21 泰豪科技(深圳)电力技术有限公司 风电场及其控制方法
DK177434B1 (en) * 2010-06-18 2013-05-21 Vestas Wind Sys As Method for controlling a wind turbine
EP2444659B1 (en) 2010-10-19 2016-07-06 Siemens Aktiengesellschaft Method and system for adjusting a power parameter of a wind turbine
DE102010053523B4 (de) 2010-12-04 2015-09-10 Nordex Energy Gmbh Verfahren zur Überwachung einer statischen und/oder dynamischen Stabilität einer Windenergieanlage
US9644610B2 (en) * 2011-12-06 2017-05-09 Vestas Wind Systems A/S Warning a wind turbine generator in a wind park of an extreme wind event
EP2848805B1 (en) * 2013-09-17 2019-01-02 Alstom Renovables España, S.L. Method of operating a wind turbine
EP3080445A1 (en) 2013-12-09 2016-10-19 Vestas Wind Systems A/S Counteracting tower oscillations of an idling wind turbine
KR101551219B1 (ko) 2014-04-14 2015-09-09 두산중공업 주식회사 풍력 발전 장치 및 그 제어 방법
CN104632524B (zh) * 2015-02-03 2017-07-21 北京金风科创风电设备有限公司 风力发电机组的控制装置及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070057517A1 (en) * 2005-09-09 2007-03-15 Mcnerney Gerald Wind turbine load control method
CN101400892A (zh) * 2006-03-16 2009-04-01 维斯塔斯风力系统有限公司 用于减小受到风轮面不对称加载的风力涡轮机的部件的疲劳负载的方法与控制系统
CN104428531A (zh) * 2012-06-08 2015-03-18 维斯塔斯风力系统集团公司 操作风力涡轮机的方法以及适合于所述方法的系统
EP2886853A1 (en) * 2013-12-20 2015-06-24 Mitsubishi Heavy Industries, Ltd. A monitoring system and a monitoring method for a wind turbine generator
CN105351144A (zh) * 2015-05-21 2016-02-24 同济大学 一种减小风机疲劳载荷的桨叶振动反馈方法
CN105649875A (zh) * 2015-12-31 2016-06-08 北京金风科创风电设备有限公司 风力发电机组的变桨控制方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3376025A4 *

Also Published As

Publication number Publication date
CN107676223A (zh) 2018-02-09
CN107676223B (zh) 2018-12-21
US10823145B2 (en) 2020-11-03
EP3376025A4 (en) 2019-09-04
US20180320664A1 (en) 2018-11-08
AU2017307103A1 (en) 2018-05-10
AU2017307103B2 (en) 2020-01-02
EP3376025B1 (en) 2022-08-24
EP3376025A1 (en) 2018-09-19

Similar Documents

Publication Publication Date Title
WO2018024018A1 (zh) 风力发电机组变桨控制方法及装置
CN105649876B (zh) 风力发电机组的控制方法和装置
WO2015123976A1 (zh) 电子设备中风扇转速的控制方法及装置
US8232662B2 (en) Wind turbine generator and start-up method of the same
EP3059830B1 (en) Reactive power compensation based on reactive power capability of a renewable energy system
RU2016134598A (ru) Способ и устройство для адаптивного регулирования четкости видео, терминальное устройство и носитель хранения данных
CN104632524B (zh) 风力发电机组的控制装置及方法
US8972069B1 (en) Selective multi-phase maximum power point tracking
WO2018014670A1 (zh) 风力发电机组齿形带疲劳状态的检测方法、装置及系统
DK2647838T3 (en) Method of operating a wind turbine with a rotor hub supporting at least one rotor blade
US10345887B2 (en) Adaptive optimization of low power strategies
RU2013108278A (ru) Способ управления для устройства управления двигателем
CN105546754B (zh) 变频器的温度控制方法、装置及空调
US9762059B2 (en) Fan system and voltage stabilizing module for multi power source input
EP2527647A1 (en) Control device for wind power generation device, wind farm, and control method for wind power generation device
CN107346894B (zh) 一种风电场发电量控制方法及风电场能量控制平台
WO2012046317A1 (ja) 太陽電池の出力制御装置
CN104090501B (zh) 光伏逆变器的待机控制方法、装置和控制器
JP5501987B2 (ja) 空気調和機
WO2016015635A1 (zh) 一种防止mppt误判的控制方法及装置
CN113014180A (zh) 一种电机转速控制方法、装置及计算机可读存储介质
US20150185802A1 (en) Efficiency adjustments in power supply system
JP2005220753A (ja) 水平軸風車及びその制御方法
JP5378176B2 (ja) 力率制御装置
JP2016089732A (ja) 風力発電装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15773060

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017307103

Country of ref document: AU

Date of ref document: 20170518

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE