WO2018023732A1 - 基于速率分割非正交多址接入技术的数据传输方法及装置 - Google Patents

基于速率分割非正交多址接入技术的数据传输方法及装置 Download PDF

Info

Publication number
WO2018023732A1
WO2018023732A1 PCT/CN2016/093623 CN2016093623W WO2018023732A1 WO 2018023732 A1 WO2018023732 A1 WO 2018023732A1 CN 2016093623 W CN2016093623 W CN 2016093623W WO 2018023732 A1 WO2018023732 A1 WO 2018023732A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
user terminal
data
transmission power
data stream
Prior art date
Application number
PCT/CN2016/093623
Other languages
English (en)
French (fr)
Inventor
牛凯
黄欣睿
司中威
董超
贺志强
Original Assignee
北京邮电大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京邮电大学 filed Critical 北京邮电大学
Publication of WO2018023732A1 publication Critical patent/WO2018023732A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1221Wireless traffic scheduling based on age of data to be sent
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a data transmission method and apparatus based on rate division non-orthogonal multiple access technology.
  • the 5G mobile communication system is a next-generation mobile communication system, and the 5G mobile communication system is currently a hot field of focus and research in the industry.
  • eMBB enhanced Mobile Broadband
  • mMTC massive Machine Type Communications
  • URLLC Ultra-Reliable and Low Latency Communications
  • NOMA Non-Orthogonal Multiple Access
  • SIC Successessive Interference Cancellation
  • the power domain implementation solution of the existing NOMA technology cannot flexibly adjust the transmission rate of the terminal; and the existing implementation solution cannot achieve a good matching between the actual QoS requirement of the user and the channel condition; and the existing implementation solution may cause wireless Unreasonable use of channel resources, which limits system performance.
  • the application provides a data transmission method and device based on rate division non-orthogonal multiple access technology To achieve flexible adjustment of the transmission efficiency between the terminal and the base station, the user's actual QoS requirements and channel conditions, and the reasonable utilization of the wireless channel resources, so that the system performance is more fully utilized.
  • an embodiment of the present application discloses a data transmission method based on a rate division non-orthogonal multiple access technology, including:
  • At least one transmission power of the strong user terminal is a first transmission power and a second transmission power, where the first transmission power and the optimal segmentation factor are The second transmission power is the remaining transmission power of the strong user terminal transmission power except the first transmission power;
  • the transmission data of the strong user terminal wherein the overload data is transmission data of the transmission data of the weak user terminal other than the supportable data;
  • the weak user data stream is formed after the modulation encoded encoded support data is loaded with the transmission power of the weak user terminal Data stream
  • the first data stream is a data stream formed by loading the first channel transmission power after the modulation and encoding overload data
  • the second data stream is the modulation and coded The data stream formed by the transmission data of the strong user terminal after loading the second transmission power.
  • the transmission parameter at least includes: transmission data of the terminal, a transmission rate of the terminal, a transmission power of the terminal, the terminal One or more of a channel response coefficient with the base station and an actual service quality requirement of the terminal.
  • the dividing the signal to noise ratio interval includes:
  • the determining the optimal segmentation factor includes:
  • the first value range, the second value range, and the third value range are intersected to obtain a final segmentation factor value range;
  • the acquiring the first transmission power, loading the The first transmission power is transmitted to the modulated and encoded overload data, and the second transmission power is obtained, and the second transmission power is loaded to the modulated data of the strong user terminal including:
  • any one of the first to fifth aspects of the first aspect in the sixth possible implementation, the plurality of the terminals communicate by D2D.
  • the present application provides a data transmission apparatus based on a rate division non-orthogonal multiple access technology, including:
  • a terminal acquiring module configured to acquire transmission parameters of multiple terminals and multiple terminals
  • a signal-to-noise ratio interval dividing module configured to divide the plurality of the terminals into a strong user terminal and a weak user terminal according to the transmission parameter, and divide a signal to noise ratio interval, wherein the actual service quality of the strong user terminal is The required transmission rate is smaller than the transmission rate supported by the channel condition between the strong user terminal and the base station, and the transmission rate required for the actual service quality of the weak user terminal is greater than the weak user terminal and the base station.
  • An optimal segmentation factor determining module configured to determine an optimal segmentation factor within the signal to noise ratio interval according to the transmission parameter, where the optimal segmentation factor is to be segmented by the strong user terminal Power
  • a transmission power splitting module configured to split at least one transmission power of the strong user terminal into a first transmission power and a second transmission power according to the optimal segmentation factor, where the first transmission power and The value of the optimal segmentation factor is the same, and the second channel transmission power is the remaining transmission power of the strong user terminal transmission power except the first channel transmission power;
  • a first loading module configured to acquire transmission power of the weak user terminal, and load the transmission power of the weak user terminal to the modulated and encoded supportable data, where the supportable data is the weak user terminal
  • the transmission power can support the transmission data of the weak user terminal that is carried;
  • a second loading module configured to acquire the first transmission power, load the first transmission power to the modulated and encoded overload data, acquire the second transmission power, and load the second transmission power Up to the transmission data of the strong user terminal after modulation and coding, wherein the overload data is transmission data of the transmission data of the weak user terminal except the supportable data;
  • a subsequent transmission module configured to transmit the weak user data stream, the first data stream, and the second data stream in a non-orthogonal manner, wherein the weak user data stream loads the weak user terminal for the modulated encoded support data a data stream formed after the transmission of the power, the first data stream is a data stream formed by loading the modulation-encoded overload data with the first transmission power, and the second data stream is the modulation The encoded data of the strong user terminal after the encoding is loaded with the data stream formed by the second transmission power.
  • the SNR interval dividing module includes:
  • a terminal sub-module configured to divide the plurality of the terminals into a strong user terminal and a weak user terminal according to the transmission parameter, where a transmission rate required by the actual service quality of the strong user terminal is less than the strong a transmission rate supported by a channel condition between the user terminal and the base station, a transmission rate required for the actual quality of service of the weak user terminal, and a transmission rate supported by a channel condition between the weak user terminal and the base station ;
  • a section dividing sub-module configured to divide a signal to noise ratio interval according to a transmission rate of the terminal in the transmission parameter, when a transmission rate of the strong user terminal is greater than a transmission rate of the weak user terminal.
  • the optimal segmentation factor determining module includes:
  • a first value range determining submodule configured to be between a demodulation order of the weak user data stream, a demodulation order of the first data stream, and a demodulation order of the second data stream, Determining a first value range of the optimal segmentation factor, wherein the demodulation order is a sort order of a signal to interference and noise ratio value from a large to a small when receiving the data stream of the terminal;
  • a second value range determining submodule configured to select, in the weak user data stream, the first data stream, and the second data stream, a data stream with a minimum signal to interference and noise ratio as a minimum signal to interference and noise ratio data stream And determining, when the energy signal to noise ratio of the minimum signal to interference and noise ratio data stream is within the preset communication area, determining a second value range of the optimal segmentation factor;
  • a third value range determining submodule configured to determine a third value range of the optimal segmentation factor when a modulation order of the weak user data stream meets a preset condition
  • a final value range determining submodule configured to intersect the first value range, the second value range, and the third value range in the signal to noise ratio interval to obtain a final segmentation factor Ranges
  • the optimal segmentation factor finding sub-module is configured to obtain a current communication condition, and find an optimal segmentation factor corresponding to the current communication condition within the final segmentation factor value range.
  • the method in the embodiment of the present application can split the transmission power of the strong user terminal in a suitable signal to noise ratio interval if the transmission power of the terminal has been allocated or restricted.
  • the weak user terminal transmits data, thereby achieving a good match between the actual service quality requirement of the user and the channel condition, fully utilizing the wireless channel resource, and significantly improving the terminal and the base station in the case that the system spectrum efficiency has almost no performance loss.
  • the transmission efficiency effectively improves the performance of the system.
  • the embodiment of the present application provides a division basis of the strong user terminal and the weak user terminal, and the division is based on effectively dividing the strong user terminal and the weak user terminal, and is also splitting the strong user.
  • the transmission power of the terminal provides technical support; according to the transmission parameter, determining an optimal segmentation factor within the SNR interval, improving flexibility of the present application in an actual mobile communication scenario, and improving transmission data While transmitting efficiency, it can also effectively adapt to various transmission needs.
  • implementing any of the products or methods of the present application necessarily does not necessarily require all of the advantages described above to be achieved at the same time.
  • FIG. 1 is a schematic flowchart of a data transmission method based on a rate division non-orthogonal multiple access technology according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of an actual communication scenario according to an embodiment of the present application.
  • FIG. 3 is a simplified schematic diagram of a system for transmitting data by multiple terminals according to an embodiment of the present application
  • FIG. 4 is a schematic flowchart of an optimal segmentation factor selection method according to an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of an adaptive selection strategy of an MCS (Modulation and Coding Scheme) according to an embodiment of the present application
  • FIG. 6 is another schematic flowchart of a data transmission method based on a rate division non-orthogonal multiple access technology according to an embodiment of the present application
  • FIG. 7 is a schematic structural diagram of a data transmission apparatus based on rate division non-orthogonal multiple access technology according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a performance simulation comparison result according to an embodiment of the present application.
  • FIG. 1 is a schematic flowchart of a data transmission method based on a rate division non-orthogonal multiple access technology according to an embodiment of the present application, including the following steps:
  • Step 101 Acquire transmission parameters of multiple terminals and multiple terminals.
  • multiple terminals communicate through D2D.
  • Step 102 Divide a plurality of terminals into strong user terminals and weak user terminals according to transmission parameters, and divide a signal to noise ratio interval, wherein a transmission rate required for actual service quality of the strong user terminal is less than that of the strong user terminal and the base station.
  • Step 103 Determine an optimal segmentation factor in a signal to noise ratio interval according to the transmission parameter, where the optimal segmentation factor is a power to be segmented that divides the transmission power of the strong user terminal.
  • the key to the implementation of the embodiment of the present invention is to effectively split the transmission power of the strong user terminal. Therefore, the selection of the optimal segmentation factor is particularly important, and the optimal segmentation factor can be accurately determined to achieve optimal allocation of terminal power.
  • Step 104 According to the optimal segmentation factor, at least split the transmission power of one strong user terminal into the first transmission power and the second transmission power, where the first transmission power is the same as the optimal segmentation factor, and the second The road transmission power is the remaining transmission power of the strong user terminal transmission power except the first transmission power.
  • Step 105 Acquire transmission power of the weak user terminal, and load the transmission power of the weak user terminal to the modulated data after the modulation and coding.
  • the data that can support the transmission power of the weak user terminal can support the transmission data of the weak user terminal that is carried. .
  • Step 106 Acquire the first transmission power, load the first transmission power to the modulated and encoded overload data, obtain the second transmission power, and load the second transmission power to the transmission data of the modulated and encoded strong user terminal.
  • the overload data is transmission data other than the supportable data in the transmission data of the weak user terminal.
  • Step 107 The weak user data stream, the first data stream, and the second data stream are transmitted in a non-orthogonal manner, where the weak user data stream is formed by the modulation and encoding support data loading the transmission power of the weak user terminal.
  • the first data stream is a data stream formed by loading the first transmission power after the modulation and encoding of the overload data
  • the second data stream is after the transmission data of the modulated and encoded strong user terminal is loaded with the second transmission power. The resulting data stream.
  • the method provided in this embodiment of the present application is to split the transmission power of the strong user terminal. Assisting the weak user terminal to transmit data, thereby achieving a good match between the actual service quality requirement of the user and the channel condition, fully utilizing the wireless channel resources, and significantly improving the relationship between the terminal and the base station in the case where the spectrum efficiency of the system has almost no performance loss. Transmission efficiency effectively improves system performance.
  • the transmission parameter includes at least: transmission data of the terminal, transmission rate of the terminal, transmission power of the terminal, and the terminal and the base station.
  • the transmission parameter includes at least: transmission data of the terminal, transmission rate of the terminal, transmission power of the terminal, and the terminal and the base station.
  • the division of the signal to noise ratio interval is specifically: the transmission rate of the strong user terminal according to the transmission rate of the terminal in the transmission parameter.
  • the signal to noise ratio interval is divided.
  • the core idea of the RS-NOMA (Rate-Splitting Non-Orthogonal Multiple Access) technology solution is to assist the weak user terminal to transmit part of the data by splitting the transmission power of the strong user terminal. Therefore, Before splitting the transmission power of a strong user terminal, it is necessary to distinguish between a strong user terminal and a weak user terminal. According to the transmission parameters of the terminal, the transmission rate required for the actual service quality and the terminal that is smaller than the transmission rate supported by the channel condition between the terminal itself and the base station are classified as strong user terminals, and the transmission rate required for the actual service quality is greater than The terminal of the transmission rate supported by the channel condition between the terminal itself and the base station is divided into a weak user terminal.
  • the division of the signal to noise ratio interval can be performed.
  • the transmission rate of the strong user terminal
  • ⁇ opt the transmission power of the strong user terminal
  • FIG. 2 is a schematic diagram of an actual communication scenario according to an embodiment of the present application.
  • the strong user terminal 201 and the weak user terminal 202 respectively transmit data to the base station 203, and a D2D (Device-to-Device) communication link 204 exists between the strong user terminal 201 and the weak user terminal 202.
  • P 1 is the transmission power of the strong user terminal 201
  • P 2 is the transmission power of the weak user terminal 202
  • P 11 is the second transmission power
  • P 21 is the first transmission power
  • R 1 is the strong user terminal 201.
  • the transmission rate of the strong user terminal 201 is R 1
  • the transmission rate of the weak user terminal 202 is R 2
  • the signal to noise ratio interval satisfying R 1 >R 2 is suitable for the RS-NOMA scheme to split the power of the strong user terminal.
  • Signal to noise ratio interval The specific formula of R 1 and R 2 is substituted into R 1 >R 2 , and the calculated signal-to-noise ratio interval is given by:
  • the SNR is the signal-to-noise ratio
  • h 1 is the channel response coefficient between the strong user terminal 201 and the base station
  • h 2 is the channel response coefficient between the weak user terminal 202 and the base station
  • P 1 is the actual power of the strong user terminal 201
  • P 2 is the actual power of the weak user terminal 202.
  • the division of the SNR interval will also change and need to be recalculated.
  • the division of the signal to noise ratio interval is effectively realized, which provides technical support for selecting the optimal segmentation factor in the signal to noise ratio interval.
  • determining an optimal segmentation factor in the signal to noise ratio interval according to the transmission parameter including:
  • the demodulation order is the data stream of the receiving terminal, the signal to interference and noise ratio values are in a sort order from large to small.
  • the second step selecting the data stream with the smallest signal to interference and noise ratio as the minimum signal to interference and noise ratio data stream in the weak user data stream, the first data stream and the second data stream, and the energy signal in the minimum signal to interference and noise ratio data stream
  • the second value range of the optimal segmentation factor is determined.
  • the third value range of the optimal segmentation factor is determined.
  • the first value range, the second value range, and the third value range are intersected to obtain a final segmentation factor value range.
  • the current communication condition is obtained, and an optimal segmentation factor corresponding to the current communication condition is found within the range of the final segmentation factor.
  • each of the data streams can be treated as a separate user and SIC detected for each data stream.
  • the demodulation order of each data stream is sorted according to the size of the received signal to interference and noise ratio.
  • the data stream formed by the modulation encoded encoded data after loading the transmission power of the weak user terminal is a weak user data stream, and the data stream formed by the modulated encoded overload data after loading the first transmission power is the first data stream.
  • the data stream formed by the transmission data of the modulated and encoded strong user terminal after loading the second transmission power is the second data stream, wherein the demodulation sequence of the weak user data stream is located in the first data stream and the second data stream. Between the demodulation sequences.
  • the signal to interference and noise ratio of the VDS 22 is SINR 22
  • the signal to interference and noise ratio of the VDS 11 is divided into SINR 11
  • the signal to interference and noise ratio of the VDS 21 is divided into SINR 21
  • the VDS 22 is a weak user data stream
  • the VDS 11 is a weak user data stream.
  • the second data stream, VDS 21 is the first data stream. According to the size of ⁇ , it is divided into two cases for calculation.
  • SINR 21 ⁇ SINR 11 can be directly determined, and the signal to interference and noise ratio of the weak user data stream and the signal to interference and noise ratio of the first data stream are
  • the signal to interference and noise ratio of the second data stream should satisfy the following relationship:
  • h 1 is a channel response coefficient between the strong user terminal 201 and the base station
  • h 2 is a channel response coefficient between the weak user terminal 202 and the base station
  • P 1 is the actual power of the strong user terminal 201
  • P 2 is a weak user.
  • SINR 11 ⁇ SINR 21 can be directly determined, and the signal to interference and noise ratio of the weak user data stream and the signal of the first data stream are directly determined.
  • the noise ratio and the signal to interference and noise ratio of the second data stream are to satisfy the following relationship:
  • h 1 is the channel response coefficient between the strong user terminal 201 and the base station
  • h 2 is the channel response coefficient between the weak user terminal 202 and the base station
  • P 1 is the actual power of the strong user terminal 201
  • P 2 is the weak user.
  • the first range of values of the optimal segmentation factor can be determined.
  • the data stream with the lowest demodulation order is considered, and the energy signal-to-noise ratio is ensured as much as possible. Try to fall within the preset communication area, where E b is the signal energy per bit, and the default communication area is given by:
  • the demodulation order of VDS 11 , VDS 21 and VDS 22 is affected by the value of ⁇ , and therefore, the calculation is also divided into two cases according to the size of ⁇ .
  • E b is the signal energy per bit
  • R AMC is the information rate corresponding to the MCS (Modulation and Coding Scheme) level of the adaptive selection of the transmission data
  • W is the system bandwidth. Is the noise variance.
  • E b is the signal energy per bit
  • R AMC is the information rate corresponding to the MCS (Modulation and Coding Scheme) level of the adaptive selection of the transmission data
  • W is the system bandwidth. Is the noise variance.
  • the second range of values of the optimal segmentation factor can be determined.
  • the transmission rate of the weak user data stream will be smaller than the transmission rate of the weak user terminal when the RS-NOMA scheme is not adopted, and the weak user data stream adaptively selects the MCS level. reduce.
  • the preset condition is the weak user terminal before adopting the RS-NOMA scheme.
  • the absolute value of the difference between the modulation order of the data stream and the modulation order of the weak user data stream after the RS-NOMA scheme is less than or equal to two.
  • the modulation order of the data flow of the weak user terminal 202 is m 2 ; after adopting the RS-NOMA scheme, the modulation order of the VDS 22 is To ensure that the throughput of the weak user terminal 202 is not excessively lost after adopting the RS-NOMA scheme, the modulation order of the VDS 22 is not exceeded by the preset condition after adopting the RS-NOMA scheme, and the third value range of ⁇ is determined by The following formula gives:
  • the third range of values of the optimal segmentation factor can be determined.
  • the first value range, the second value range, and the third value range are intersected to obtain a final segmentation factor value range, and the final segmentation factor value range is set.
  • k is a positive integer.
  • the optimal segmentation factor ⁇ opt is determined according to the current communication conditions in the actual communication. For example, referring to FIG. 2, when the current communication condition is that the first transmission power split by the strong user terminal 201 is required to assist the weak user terminal 202 to transmit data, it should be in the set. The maximum value is selected as the optimal segmentation factor.
  • the reliability of transmitting data by using the RS-NOMA technology is increased; by determining the value range of the final segmentation factor, the influence of noise on the transmitted data is reduced;
  • the range of the segmentation factor is used to prevent the throughput of the weak user data stream from being excessively reduced after adopting the RS-NOMA scheme.
  • the transmission power of the weak user terminal is acquired, and the transmission power of the weak user terminal is loaded to the modulated data after the modulation and coding.
  • the transmission power of the weak user terminal is obtained, and according to the transmission power of the weak user terminal, the supportable data is modulated and encoded to obtain the modulated data after the modulation and coding.
  • the transmission power of the weak user terminal is loaded to the modulated data after the modulation and coding.
  • modulation and coding of the supportable data is implemented, and the modulation is modulated.
  • the post-code support data loads the transmission power of the weak user terminal, and provides technical support for transmitting the weak user data stream in a non-orthogonal manner.
  • the first transmission power is acquired, and the first transmission power is loaded to the modulated and encoded overload data to obtain the first
  • the second transmission power is loaded with the second transmission power to the transmission data of the modulated and encoded strong user terminal, including:
  • the first transmission power and the second transmission power are obtained.
  • the overload data is modulated and encoded, and the first transmission power is loaded onto the modulated and encoded overload data.
  • the transmission data of the strong user terminal is modulated and encoded, and the second transmission power is loaded to the transmission data of the modulated and encoded strong user terminal.
  • the overload data and the transmission data of the strong user terminal are modulated and encoded, and the first transmission power and the second transmission are respectively loaded for the modulated and encoded overload data and the transmission data of the strong user terminal.
  • Power provides technical support for transmitting the first data stream and the second data stream in a non-orthogonal manner.
  • communication between multiple terminals is performed through D2D.
  • a D2D communication link is added between the plurality of terminals, and the D2D communication link is used to satisfy the mutual transfer of information between the plurality of terminals.
  • FIG. 3 is a simplified schematic diagram of a system for transmitting data by multiple terminals according to an embodiment of the present application.
  • L is an integer greater than 1
  • RSMA Raster-Splitting Multiple Access
  • the transmission powers of the L terminals are effectively allocated, and the application of the RS-NOMA scheme when there are L terminals is implemented.
  • FIG. 4 is a schematic flowchart of an optimal segmentation factor selection method according to an embodiment of the present application, including:
  • step 401 the initial setting of the parameter is performed, so that ⁇ is zero, wherein ⁇ is a segmentation factor.
  • step 402 the value interval of ⁇ is traversed, and an appropriate step size ⁇ is added to the value of ⁇ at this time.
  • step 403 it is determined whether the value of ⁇ is within the value interval of the appropriate mediation order constraint. If yes, step 404 is performed, otherwise step 407 is implemented.
  • step 404 it is determined whether the value of ⁇ is within the value interval of the transmission reliability constraint. If yes, step 405 is performed, otherwise step 407 is implemented.
  • step 405 it is determined whether the value of ⁇ is within the value interval of the reasonable MCS level constraint. If yes, step 406 is performed, otherwise step 407 is implemented.
  • Step 406 judging the range of values of ⁇ , including the ⁇ that meets the condition, and recording the set of optional ⁇
  • step 407 it is determined whether the value of ⁇ is greater than the maximum value that the segmentation factor can take. Otherwise, step 402 is performed, and if yes, step 408 is implemented.
  • Step 408 from the collection according to the actual demand of the current communication condition Select ⁇ opt , where ⁇ opt is the optimal segmentation factor.
  • setting h 1 is the channel response coefficient between the strong user terminal 201 and the base station, and h 2 is the channel response coefficient between the weak user terminal 202 and the base station;
  • P 1 is The actual power of the strong user terminal 201,
  • P 2 is the actual power of the weak user terminal 202;
  • the noise variance is The segmentation factor for segmenting the transmission power of the strong user terminal is ⁇ , and the initial value range should satisfy 0 ⁇ ⁇ ⁇ P 1 .
  • the reliability of transmitting data by using the RS-NOMA technology is increased, the influence of noise on the transmission data is reduced, and the throughput of the weak user data stream is prevented from being excessively reduced after adopting the RS-NOMA scheme, and the effective determination is effectively determined.
  • the optimal segmentation factor can also adapt to various transmission requirements while improving transmission efficiency.
  • FIG. 5 is a schematic flowchart of an MCS adaptive selection policy according to an embodiment of the present application, including:
  • Step 501 Calculate SI (Symbol Mutual Information) of the transmission data.
  • Step 502 Obtain RBIR (Received Bit Mutual Information Rate) of the transmitted data according to the SI of the transmitted data.
  • Step 503 Find an equivalent signal to interference and noise ratio SINR eff corresponding to the received bit mutual information RBIR of the transmission data according to a table prepared by the symbol mutual information curve of each modulation order that has been simulated.
  • Step 504 Refer to the performance curve of the additive white Gaussian channel link level under all MCS levels obtained by the simulation, and find the current SINR eff according to the mapping relationship between SINR eff and BLER (Block Error Ratio).
  • the BLER is the MCS level at 0.1.
  • Step 505 Determine an MCS level when the BLER corresponding to the current SINR eff is 0.1 as an adaptively selected MCS level, thereby determining a modulation mode of the transmission data and a transmission data block length.
  • the transmission data can be modulated and encoded effectively by using the embodiment of the present application.
  • FIG. 6 is another schematic flowchart of a data transmission method based on a rate division non-orthogonal multiple access technology according to an embodiment of the present application, where the steps include:
  • Step 601 Acquire a transmission parameter of the terminal, and perform an applicability technical evaluation on the current implementation scenario.
  • Step 602 Initialize and set parameters of the current implementation scenario based on the transmission parameters of the terminal.
  • Step 603 Divide a signal to noise ratio interval of the RS-NOMA scheme based on the transmission parameters of the terminal.
  • step 604 it is determined whether the transmission power and the channel response coefficient have changed. If the change has occurred, step 603 is performed. If no change occurs, step 605 is performed.
  • Step 605 traverse the value interval of ⁇ based on the transmission parameter of the terminal, and select an optimal segmentation factor.
  • Step 606 Split the transmission power of the terminal into multiple transmission sub-powers based on the optimal segmentation factor.
  • Step 607 Split the actual data stream of the terminal into multiple virtual data streams based on the optimal segmentation factor.
  • Step 608 adaptively selecting a modulation and coding mode for the virtual data stream, and loading the transmission sub-power and performing subsequent transmission.
  • the applicability evaluation of the implementation scenario is required, which is specifically performed to evaluate the initial transmission state of the terminal.
  • RS-NOMA technology has certain requirements for the initial transmission state of the terminal.
  • the initial transmission rate difference between terminals is too large, direct power redistribution is more reasonable and effective than RS-NOMA technology; when the initial transmission rate difference between terminals is too small, it is not necessary to adopt RS-NOMA technology.
  • using RS-NOMA technology will even reduce transmission efficiency and increase complexity. Therefore, only when the initial transmission difference between terminals is moderate, RS-NOMA technology can effectively and reasonably utilize channel resources and improve system performance.
  • the parameter initialization can be set.
  • the signal-to-noise ratio interval of the RS-NOMA scheme needs to be divided according to the transmission parameters of the terminal. It should be noted that in different scenarios, the division of the SNR interval will be different, and the SNR interval needs to be recalculated; when the user's transmit power and channel response coefficient change, the SNR interval will be different. The noise ratio interval needs to be recalculated. Then, based on the transmission parameters of the terminal, the value interval of ⁇ is traversed, and the optimal segmentation factor is selected.
  • the transmission power of the terminal is split into multiplexed sub-powers.
  • the actual data stream of the terminal is split into multiple virtual data streams.
  • the splitting of the actual data stream here is achieved by splitting the transmission power of the terminal.
  • the transmission data of the terminal is modulated and encoded.
  • the transmission data of the terminal is modulated and encoded, and the transmission sub-power is loaded to generate a virtual data stream. Since the transmission sub-power is split based on the optimal segmentation factor, the virtual data stream is equivalent to being split based on the optimal segmentation factor.
  • the process of performing adaptive modulation coding includes a process of determining the length of a data block.
  • the transmission of only 2 x supportable data i.e., the vertical line drawing data block.
  • the data block length of the supportable data in x 2 is determined according to the adaptive modulation coding, and the block data of the vertical line drawn in x 2 is cut out from the entire x 2 transmission data, and the transmission power of the weak user terminal 202 is loaded.
  • the supported data can be supported for subsequent transmission after the transmission power is loaded.
  • the remaining overload data that is, the data of the square drawn by the horizontal line, is loaded and transmitted by the transmission sub-power split by the transmission power of the strong user terminal 201.
  • the transmission power of the strong user terminal may be split in the appropriate signal to noise ratio interval to assist the weak user terminal to transmit data in the case that the transmission power of the terminal has been allocated or restricted;
  • the embodiment achieves a good match between the actual service quality requirement of the user and the channel condition, fully utilizes the wireless channel resource, and significantly improves the transmission efficiency between the user and the base station in the case of almost no performance loss of the system spectrum efficiency, and effectively improves the transmission efficiency. System performance.
  • FIG. 7 is a schematic structural diagram of a data transmission apparatus based on a rate division non-orthogonal multiple access technology according to an embodiment of the present application, including:
  • the terminal obtaining module 701 is configured to acquire transmission parameters of multiple terminals and multiple terminals.
  • the SNR interval dividing module 702 is configured to divide the plurality of terminals into a strong user terminal and a weak user terminal according to the transmission parameter, and divide the SNR interval, wherein the transmission rate required for the actual service quality of the strong user terminal, The transmission rate supported by the channel condition between the strong user terminal and the base station, the transmission rate required for the actual service quality of the weak user terminal, and the transmission rate supported by the channel condition between the weak user terminal and the base station.
  • the optimal segmentation factor determining module 703 is configured to determine an optimal segmentation factor in the signal to noise ratio interval according to the transmission parameter, wherein the optimal segmentation factor is a power to be segmented that divides the transmission power of the strong user terminal.
  • the transmission power segmentation module 704 is configured to split at least one transmission power of the strong user terminal into the first transmission power and the second transmission power according to the optimal segmentation factor, where the first transmission power and the optimal segmentation factor are The values are the same, and the second transmission power is the remaining transmission power of the transmission power of the strong user terminal except the first transmission power.
  • the first loading module 705 is configured to obtain the transmission power of the weak user terminal, and load the transmission power of the weak user terminal to the modulated data after the modulation and coding, wherein the data that can support the weak user terminal can support the weak transmission.
  • the data transmitted by the user terminal is configured to obtain the transmission power of the weak user terminal, and load the transmission power of the weak user terminal to the modulated data after the modulation and coding, wherein the data that can support the weak user terminal can support the weak transmission. The data transmitted by the user terminal.
  • the second loading module 706 is configured to acquire the first transmission power, load the first transmission power to the modulated and encoded overload data, obtain the second transmission power, and load the second transmission power to the modulated and encoded strong user.
  • the transmission data of the terminal, wherein the overload data is transmission data other than the supportable data in the transmission data of the weak user terminal.
  • the subsequent transmission module 707 is configured to transmit the weak user data stream, the first data stream, and the second data stream in a non-orthogonal manner, wherein the weak user data stream is a transmission power of the weak user terminal loaded by the modulated encoded data.
  • the first data stream is a data stream formed by loading the first transmission power after the modulation and encoding of the overload data
  • the second data stream is loaded with the second channel for the transmission data of the modulated and encoded strong user terminal. The data stream formed after the power is transmitted.
  • the transmission power of the split strong user terminal can be used to assist the weak user terminal to transmit data in a suitable signal to noise ratio interval if the transmission power of the user terminal has been allocated or restricted. Therefore, the user's actual service quality requirement and the channel condition are well matched, the wireless channel resource is fully utilized, and the transmission efficiency between the user and the base station is significantly improved under the condition that the system spectrum efficiency has almost no performance loss, and the efficiency is effectively improved. System performance. Especially for the typical scene of mMTC of 5G mobile communication system, it has a good application prospect.
  • the apparatus in the embodiment of the present application is a device applying the foregoing multiple access access method, and all the embodiments of the foregoing multiple access access method are applicable to the device, and all of the same or similar beneficial effects can be achieved. .
  • the SNR interval segmentation module 702 includes:
  • the terminal dividing sub-module is configured to divide the multiple terminals into a strong user terminal and a weak user terminal according to the transmission parameter, wherein a transmission rate required for the actual service quality of the strong user terminal is smaller than a channel between the strong user terminal and the base station.
  • the interval division sub-module is used for the strong user terminal according to the transmission rate of the terminal in the transmission parameter
  • the signal-to-noise ratio interval is divided when the transmission rate is greater than the transmission rate of the weak user terminal.
  • the embodiments of the present application effectively divide the strong user terminal and the weak user terminal, and provide technical support for splitting the transmission power of the strong user terminal.
  • the embodiment of the present application effectively implements the division of the SNR interval. Subsequent determination of the optimal segmentation factor has been technically paved.
  • the optimal segmentation factor determining module 703 includes:
  • a first value range determining submodule for determining an optimal segmentation factor between a demodulation sequence of the weak user data stream, a demodulation sequence of the first data stream, and a demodulation sequence of the second data stream The first value range, wherein the demodulation order is a data sequence of the receiving terminal, and the signal to interference and noise ratio values are in a sort order from large to small.
  • a second value range determining submodule configured to select, in the weak user data stream, the first data stream, and the second data stream, the data stream with the smallest signal to interference and noise ratio as the minimum signal to interference and noise ratio data stream, and the minimum signal
  • the second value range of the optimal segmentation factor is determined.
  • the third value range determining submodule is configured to determine a third value range of the optimal segmentation factor when the modulation order of the weak user data stream does not exceed the preset condition.
  • the final value range determining sub-module is configured to cross the first value range, the second value range, and the third value range in the signal-to-noise ratio interval to obtain a final segmentation factor value range.
  • the optimal segmentation factor finding sub-module is configured to obtain the current communication condition, and find an optimal segmentation factor corresponding to the current communication condition within the final segmentation factor value range.
  • the reliability of transmitting data by using the RS-NOMA technology is increased; by determining the value range of the final segmentation factor, the influence of noise on the transmitted data is reduced;
  • the range of the segmentation factor is used to prevent the throughput of the weak user data stream from being excessively reduced after adopting the RS-NOMA scheme.
  • the first loading module 705 includes:
  • the transmission power of the terminal can support the data to be modulated and encoded, and the modulated data can be supported.
  • the weak user terminal transmits a power loading sub-module for loading the transmission power of the weak user terminal to the modulated data after the modulation and encoding.
  • the modulation data of the supportable data is modulated, and the transmission power of the weak user terminal is loaded for the modulated and encoded support data, and the technical support for transmitting the weak user data stream by using the non-orthogonal manner is provided. .
  • the second loading module 706 includes:
  • the transmission power acquisition submodule is configured to acquire the first transmission power and the second transmission power.
  • the first transmission power loading sub-module is configured to modulate and encode the overload data according to the first transmission power, and load the first transmission power to the modulated and encoded overload data.
  • the second transmission power loading sub-module is configured to modulate and encode the transmission data of the strong user terminal according to the second transmission power, and load the second transmission power to the transmission data of the modulated and encoded strong user terminal.
  • the overload data and the transmission data of the strong user terminal are modulated and encoded, and the first transmission power and the second transmission are respectively loaded for the modulated and encoded overload data and the transmission data of the strong user terminal.
  • Power provides technical support for transmitting the first data stream and the second data stream in a non-orthogonal manner.
  • FIG. 8 is a schematic diagram of performance comparison results of an embodiment of the present application.
  • two terminals are configured, and the transmission power of each terminal is normalized to 1, after additive white Gaussian noise.
  • Channel AWGN Channel
  • the terminal adopts an adaptive MCS selection mode, and its selection strategy refers to LTE (Long Term Evolution Long Term Evolution) 36.213.
  • the optimal segmentation factor can be selected to achieve the maximum system throughput.
  • the RS-NOMA scheme proposed by the present application significantly improves the transmission flexibility of the user and improves the system performance in the case that the spectrum efficiency of the system has almost no performance loss.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了基于速率分割非正交多址接入技术的数据传输方法及装置,应用于通信技术领域,该数据传输方法包括:获取多个终端及多个终端的传输参数;根据传输参数,将多个终端划分为强用户终端和弱用户终端,划分信噪比区间;根据传输参数,在信噪比区间内,确定最优分割因子;根据最优分割因子,拆分终端的传输功率为多路传输子功率;根据传输子功率,将终端的传输数据进行拆分;将拆分后的传输数据各自进行调制编码并加载传输子功率,其中,至少一路强用户终端的传输子功率被加载到弱用户终端的传输数据上;获取加载传输子功率后的传输数据,并采用非正交的方式进行后续传输。本申请提高了终端与基站间的传输效率,信道资源利用更加充分。

Description

基于速率分割非正交多址接入技术的数据传输方法及装置
本申请要求于2016年8月2日提交中国专利局、申请号为201610627117.1申请名称为“基于速率分割非正交多址接入技术的数据传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别涉及基于速率分割非正交多址接入技术的数据传输方法及装置。
背景技术
5G移动通信系统是下一代移动通信系统,5G移动通信系统是目前行业内重点关注和研究的热门领域。eMBB(enhanced Mobile Broadband,增强移动宽带)、mMTC(massive Machine Type Communications,海量低功耗连接)和URLLC(Ultra-Reliable and Low Latency Communications,低时延高可靠连接)作为5G移动通信系统中的三类典型场景被提出。由于各个场景面临的挑战存在差异,所以多址接入方案的选择也应根据各个场景的核心需求而不同。
NOMA(Non-Orthogonal Multiple Access,非正交多址接入)技术是未来无线通信系统的关键候选技术之一。在应用NOMA方案进行终端的数据传输时,首先在发送端将终端的传输数据进行调制编码,然后给调制编码后的传输数据分配发送功率,再然后采用非正交传输发送功率后的传输数据,最后在接收端通过SIC(Successive Interference Cancellation,串行干扰消除)接收机实现正确解调。但在实际数字通信系统中,NOMA技术会存在用户实际QoS(Quality-of-Service,业务质量)需求与信道条件之间不匹配的矛盾。现有的NOMA技术的功率域实现方案无法灵活地调整终端的传输速率;并且,现有的实现方案无法实现用户实际QoS需求与信道条件的良好匹配;还有,现有的实现方案会导致无线信道资源的不合理利用,从而使得会限制系统性能。
申请内容
本申请提供了基于速率分割非正交多址接入技术的数据传输方法及装 置,以实现灵活地调整终端与基站间的传输效率、用户实际QoS需求与信道条件的良好匹配,无线信道资源的合理利用,从而使得系统性能利用更加充分。
为达到上述目的,第一方面,本申请实施例公开了基于速率分割非正交多址接入技术的数据传输方法,包括:
获取多个终端及多个所述终端的传输参数;
根据所述传输参数,将多个所述终端划分为强用户终端和弱用户终端,并划分信噪比区间,其中,所述强用户终端的实际业务质量所需的传输速率、小于所述强用户终端与基站之间的信道条件所支持的传输速率,所述弱用户终端的实际业务质量所需的传输速率、大于所述弱用户终端与所述基站之间的信道条件所支持的传输速率;
根据所述传输参数,在所述信噪比区间内,确定最优分割因子,其中,所述最优分割因子为分割所述强用户终端传输功率的待分割功率;
根据所述最优分割因子,至少拆分一个所述强用户终端的传输功率为第一路传输功率及第二路传输功率,其中,所述第一路传输功率与所述最优分割因子的数值相同,所述第二路传输功率为所述强用户终端传输功率中除所述第一路传输功率以外的剩余的传输功率;
获取所述弱用户终端的传输功率,加载所述弱用户终端的传输功率至调制编码后的可支持数据上,其中,所述可支持数据为所述弱用户终端的传输功率可支持携带的所述弱用户终端的传输数据;
获取所述第一路传输功率,加载所述第一路传输功率至调制编码后的过载数据上,获取所述第二路传输功率,加载所述第二路传输功率至调制编码后的所述强用户终端的传输数据上,其中,所述过载数据为所述弱用户终端的传输数据中除所述可支持数据之外的传输数据;
采用非正交的方式传输弱用户数据流、第一数据流及第二数据流,其中,所述弱用户数据流为调制编码后的可支持数据加载所述弱用户终端的传输功率后所形成的数据流,所述第一数据流为所述调制编码后的过载数据加载所述第一路传输功率后所形成的数据流,所述第二数据流为所述调制编码后的 所述强用户终端的传输数据加载所述第二路传输功率后所形成的数据流。
结合第一方面,在第一方面的第一种可能的实施方式中,所述传输参数至少包括:所述终端的传输数据,所述终端的传输速率,所述终端的传输功率,所述终端与所述基站之间的信道响应系数及所述终端的实际业务质量需求中的一种或多种。
结合第一方面、第一方面的第一种可能的实施方式,在第二种可能的实施方式中,所述划分信噪比区间,包括:
根据所述传输参数中所述终端的传输速率,在所述强用户终端的传输速率大于所述弱用户终端的传输速率时,划分信噪比区间。
结合第一方面、第一方面的第一种或第二种可能的实施方式,在第三种可能的实施方式中,所述确定最优分割因子,包括:
在所述弱用户数据流的解调顺序、位于所述第一数据流的解调顺序、和所述第二数据流的解调顺序之间时,确定所述最优分割因子的第一取值范围,其中,所述解调顺序为接收所述终端的数据流时,信干噪比值由大到小的排序顺序;
选择所述弱用户数据流、所述第一数据流和所述第二数据流中,信干噪比值最小的数据流作为最小信干噪比数据流,并在所述最小信干噪比数据流的能量信噪比处于预设通信区域内时,确定所述最优分割因子的第二取值范围;
在所述弱用户数据流的调制阶数符合预设条件时,确定所述最优分割因子的第三取值范围;
在所述信噪比区间内,将所述第一取值范围、所述第二取值范围和所述第三取值范围取交集,得到最终分割因子取值范围;
获取当前通信条件,在所述最终分割因子取值范围内查找到与所述当前通信条件对应的最优分割因子。
结合第一方面、第一方面的第一种至第三种中的任一种可能的实施方式,在第四种可能的实施方式中,所述获取所述弱用户终端的传输功率,加 载所述弱用户终端的传输功率至调制编码后的可支持数据上,包括:
获取所述弱用户终端的传输功率,根据所述弱用户终端的传输功率,将所述可支持数据进行调制编码,得到所述调制编码后的可支持数据;
加载所述弱用户终端的传输功率至所述调制编码后的可支持数据上。
结合第一方面、第一方面的第一种至第四种中的任一种可能的实施方式,在第五种可能的实施方式中,所述获取所述第一路传输功率,加载所述第一路传输功率至调制编码后的过载数据上,获取所述第二路传输功率,加载所述第二路传输功率至调制编码后的所述强用户终端的传输数据上,包括:
获取所述第一路传输功率及所述第二路传输功率;
根据所述第一路传输功率,将所述过载数据进行调制编码,加载所述第一路传输功率至所述调制编码后的过载数据上;
根据所述第二路传输功率,将所述强用户终端的传输数据进行调制编码,加载所述第二路传输功率至所述调制编码后的所述强用户终端的传输数据上。
结合第一方面、第一方面的第一种至第五种中的任一种可能的实施方式,在第六种可能的实施方式中,多个所述终端之间通过D2D进行通信。
第二方面,本申请提供了基于速率分割非正交多址接入技术的数据传输装置,包括:
终端获取模块,用于获取多个终端及多个所述终端的传输参数;
信噪比区间划分模块,用于根据所述传输参数,将多个所述终端划分为强用户终端和弱用户终端,并划分信噪比区间,其中,所述强用户终端的实际业务质量所需的传输速率、小于所述强用户终端与基站之间的信道条件所支持的传输速率,所述弱用户终端的实际业务质量所需的传输速率、大于所述弱用户终端与所述基站之间的信道条件所支持的传输速率;
最优分割因子确定模块,用于根据所述传输参数,在所述信噪比区间内,确定最优分割因子,其中,所述最优分割因子为分割所述强用户终端传输功率的待分割功率;
传输功率分割模块,用于根据所述最优分割因子,至少拆分一个所述强用户终端的传输功率为第一路传输功率及第二路传输功率,其中,所述第一路传输功率与所述最优分割因子的数值相同,所述第二路传输功率为所述强用户终端传输功率中除所述第一路传输功率以外的剩余的传输功率;
第一加载模块,用于获取所述弱用户终端的传输功率,加载所述弱用户终端的传输功率至调制编码后的可支持数据上,其中,所述可支持数据为所述弱用户终端的传输功率可支持携带的所述弱用户终端的传输数据;
第二加载模块,用于获取所述第一路传输功率,加载所述第一路传输功率至调制编码后的过载数据上,获取所述第二路传输功率,加载所述第二路传输功率至调制编码后的所述强用户终端的传输数据上,其中,所述过载数据为所述弱用户终端的传输数据中除所述可支持数据之外的传输数据;
后续传输模块,用于采用非正交的方式传输弱用户数据流、第一数据流及第二数据流,其中,所述弱用户数据流为调制编码后的可支持数据加载所述弱用户终端的传输功率后所形成的数据流,所述第一数据流为所述调制编码后的过载数据加载所述第一路传输功率后所形成的数据流,所述第二数据流为所述调制编码后的所述强用户终端的传输数据加载所述第二路传输功率后所形成的数据流。
结合第二方面,在等二方面的第一种可能的实施方式中,所述信噪比区间划分模块,包括:
终端划分子模块,用于根据所述传输参数,将多个所述终端划分为强用户终端和弱用户终端,其中,所述强用户终端的实际业务质量所需的传输速率、小于所述强用户终端与基站之间的信道条件所支持的传输速率,所述弱用户终端的实际业务质量所需的传输速率、大于所述弱用户终端与所述基站之间的信道条件所支持的传输速率;
区间划分子模块,用于根据所述传输参数中所述终端的传输速率,在所述强用户终端的传输速率大于所述弱用户终端的传输速率时,划分信噪比区间。
结合第二方面、第二方面的第一种可能的实施方式,在第二种可能的 实施方式中,所述最优分割因子确定模块,包括:
第一取值范围确定子模块,用于在所述弱用户数据流的解调顺序、位于所述第一数据流的解调顺序、和所述第二数据流的解调顺序之间时,确定所述最优分割因子的第一取值范围,其中,所述解调顺序为接收所述终端的数据流时,信干噪比值由大到小的排序顺序;
第二取值范围确定子模块,用于选择所述弱用户数据流、所述第一数据流和所述第二数据流中,信干噪比值最小的数据流作为最小信干噪比数据流,并在所述最小信干噪比数据流的能量信噪比处于预设通信区域内时,确定所述最优分割因子的第二取值范围;
第三取值范围确定子模块,用于在所述弱用户数据流的调制阶数符合预设条件时,确定所述最优分割因子的第三取值范围;
最终取值范围确定子模块,用于在所述信噪比区间内,将所述第一取值范围、所述第二取值范围和所述第三取值范围取交集,得到最终分割因子取值范围;
最优分割因子查找子模块,用于获取当前通信条件,在所述最终分割因子取值范围内查找到与所述当前通信条件对应的最优分割因子。
由上述技术方案可见,本申请实施例的方法能够在终端的传输功率已经分配或受制约束的情况下,在适合的信噪比区间内,将所述强用户终端的传输功率进行拆分来协助所述弱用户终端传输数据,从而实现了用户实际业务质量需求与信道条件之间的良好匹配,充分利用了无线信道资源,在系统频谱效率几乎没有性能损失的情况下显著提升了终端与基站间的传输效率,有效改善了系统的性能。另外,本申请实施例提出了所述强用户终端和所述弱用户终端的划分依据,该划分依据有效地划分了所述强用户终端和所述弱用户终端,也为拆分所述强用户终端的传输功率提供了技术上的支持;根据所述传输参数,在所述信噪比区间内,确定最优分割因子,提高了本申请在实际移动通信场景中的灵活性,在提升传输数据传输效率的同时,还能够有效的适应各种传输需求。当然,实施本申请的任一产品或方法必不一定需要同时达到以上所述的所有优点。
附图说明
为了更清楚地说明本申请实施例和现有技术的技术方案,下面对实施例和现有技术中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例的基于速率分割非正交多址接入技术的数据传输方法的一种流程示意图;
图2为本申请实施例的实际通信场景的示意图;
图3为本申请实施例的多终端传输数据的系统简化示意图;
图4为本申请实施例的最优分割因子选择方法的流程示意图;
图5为本申请实施例的MCS(Modulation and Coding Scheme,调制与编码策略)自适应选择策略的流程示意图;
图6为本申请实施例的基于速率分割非正交多址接入技术的数据传输方法的另一种流程示意图;
图7为本申请实施例的基于速率分割非正交多址接入技术的数据传输装置的结构示意图;
图8为本申请实施例的性能仿真对比结果的示意图。
具体实施方式
为使本申请的目的、技术方案、及优点更加清楚明白,以下参照附图并举实施例,对本申请进一步详细说明。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
参见图1,图1为本申请实施例的基于速率分割非正交多址接入技术的数据传输方法的一种流程示意图,包括如下步骤:
步骤101,获取多个终端及多个终端的传输参数。
其中,多个终端之间通过D2D进行通信。
步骤102,根据传输参数,将多个终端划分为强用户终端和弱用户终端,并划分信噪比区间,其中,强用户终端的实际业务质量所需的传输速率、小于强用户终端与基站之间的信道条件所支持的传输速率,弱用户终端的实际业务质量所需的传输速率、大于弱用户终端与基站之间的信道条件所支持的传输速率。
步骤103,根据传输参数,在信噪比区间内,确定最优分割因子,其中,最优分割因子为分割强用户终端传输功率的待分割功率。
本申请实施例实现的关键在于有效拆分强用户终端的传输功率,因此最优分割因子的选择尤为重要,准确的确定最优分割因子才能实现终端功率的最佳分配。
步骤104,根据最优分割因子,至少拆分一个强用户终端的传输功率为第一路传输功率及第二路传输功率,其中,第一路传输功率与最优分割因子的数值相同,第二路传输功率为强用户终端传输功率中除第一路传输功率以外的剩余的传输功率。
步骤105,获取弱用户终端的传输功率,加载弱用户终端的传输功率至调制编码后的可支持数据上,其中,可支持数据为弱用户终端的传输功率可支持携带的弱用户终端的传输数据。
步骤106,获取第一路传输功率,加载第一路传输功率至调制编码后的过载数据上,获取第二路传输功率,加载第二路传输功率至调制编码后的强用户终端的传输数据上,其中,过载数据为弱用户终端的传输数据中除可支持数据之外的传输数据。
步骤107,采用非正交的方式传输弱用户数据流、第一数据流及第二数据流,其中,弱用户数据流为调制编码后的可支持数据加载弱用户终端的传输功率后所形成的数据流,第一数据流为调制编码后的过载数据加载第一路传输功率后所形成的数据流,第二数据流为调制编码后的强用户终端的传输数据加载第二路传输功率后所形成的数据流。
可见本申请实施例提供的方法,将强用户终端的传输功率进行拆分来 协助弱用户终端传输数据,从而实现了用户实际业务质量需求与信道条件之间的良好匹配,充分利用了无线信道资源,在系统频谱效率几乎没有性能损失的情况下显著提升了终端与基站间的传输效率,有效改善了系统的性能。
优选的,在本申请实施例的基于速率分割非正交多址接入技术的数据传输方法中,传输参数至少包括:终端的传输数据,终端的传输速率,终端的传输功率,终端与基站之间的信道响应系数及终端的实际业务质量需求中的一种或多种。
优选的,在本申请实施例的基于速率分割非正交多址接入技术的数据传输方法中,划分信噪比区间具体为:根据传输参数中终端的传输速率,在强用户终端的传输速率大于弱用户终端的传输速率时,划分信噪比区间。
RS-NOMA(Rate-Splitting Non-Orthogonal Multiple Access,速率分割非正交多址接入)技术方案的核心思想是通过拆分强用户终端的传输功率来协助弱用户终端传输部分数据,因此,在拆分强用户终端的传输功率之前,要区分强用户终端和弱用户终端。根据终端的传输参数,将实际业务质量所需的传输速率、小于终端自身与基站之间的信道条件所支持的传输速率的终端划分为强用户终端,将实际业务质量所需的传输速率、大于终端自身与基站之间的信道条件所支持的传输速率的终端划分为弱用户终端。
根据终端的传输速率,可以进行信噪比区间的划分。在强用户终端的传输速率低于或等于弱用户终端的传输速率时,使δ为零,其中δ为分割因子,此时的RS-NOMA方案等效于传统的NOMA技术在功率域的实现方案;在强用户终端的传输速率高于弱用户终端的传输速率时,划分信噪比区间,该信噪比区间内可以选择δopt对强用户终端的传输功率进行拆分,其中,δopt为最优分割因子。
参见图2,图2为本申请实施例的实际通信场景的示意图。强用户终端201和弱用户终端202分别向基站203传输数据,强用户终端201和弱用户终端202之间存在D2D(Device-to-Device,设备到设备)通信链 路204。其中,P1为该强用户终端201的传输功率,P2为弱用户终端202的传输功率,P11为第二路传输功率,P21为第一路传输功率,R1为强用户终端201的传输速率,R2为弱用户终端202的传输速率;x1为强用户终端201的传输数据,x2为弱用户终端202的传输数据,其中,画竖线的部分表示弱用户终端202的可支持数据;x21为弱用户终端202的过载数据,x22为弱用户终端202的可支持数据。
强用户终端201的传输速率为R1,弱用户终端202的传输速率为R2,满足R1>R2的信噪比区间即为适合RS-NOMA方案对强用户终端的功率进行拆分的信噪比区间。将R1和R2的具体公式代入R1>R2中,计算得到的信噪比区间由下式给出:
Figure PCTCN2016093623-appb-000001
其中,SNR为信噪比,h1为强用户终端201与基站之间的信道响应系数,h2为弱用户终端202与基站之间的信道响应系数;P1为强用户终端201的实际功率,P2为弱用户终端202的实际功率。
在不同的场景中信道响应系数和实际功率发生变化时,信噪比区间的划分也会变化,需要重新计算。
通过本申请实施例提出的信噪比区间划分方法,有效的实现了信噪比区间的划分,为后续在该信噪比区间内选择最优分割因子提供了技术上的支持。
优选的,在本申请实施例的基于速率分割非正交多址接入技术的数据传输方法中,根据传输参数,在信噪比区间内,确定最优分割因子,包括:
第一步,在弱用户数据流的解调顺序、位于第一数据流的解调顺序、和第二数据流的解调顺序之间时,确定最优分割因子的第一取值范围,其中,解调顺序为接收终端的数据流时,信干噪比值由大到小的排序顺序。
第二步,选择弱用户数据流、第一数据流和第二数据流中,信干噪比值最小的数据流作为最小信干噪比数据流,并在最小信干噪比数据流的能量信 噪比处于预设通信区域内时,确定最优分割因子的第二取值范围。
第三步,在弱用户数据流的调制阶数符合预设条件时,确定最优分割因子的第三取值范围。
第四步,在信噪比区间内,将第一取值范围、第二取值范围和第三取值范围取交集,得到最终分割因子取值范围。
第五步,获取当前通信条件,在最终分割因子取值范围内查找到与当前通信条件对应的最优分割因子。
在接收端,所有的数据流中的每个数据流可以被视作单独的用户,并对每个数据流进行SIC检测。每个数据流解调顺序依据接收信干噪比的大小进行排序。令调制编码后的可支持数据加载弱用户终端的传输功率后所形成的数据流为弱用户数据流,调制编码后的过载数据加载第一路传输功率后所形成的数据流为第一数据流,调制编码后的强用户终端的传输数据加载第二路传输功率后所形成的数据流为第二数据流,其中,弱用户数据流的解调顺序要位于第一数据流和第二数据流的解调顺序之间。
参见图2,VDS22的信干噪比为SINR22,VDS11的信干噪比分为SINR11,VDS21的信干噪比分为SINR21,其中,VDS22为弱用户数据流,VDS11为第二数据流,VDS21为第一数据流。根据δ的大小分为两种情况进行计算。
当δ<P1/2时,根据SINR11和SINR21的具体公式可以直接判断出SINR21<SINR11,此时弱用户数据流的信干噪比、第一数据流的信干噪比和第二数据流的信干噪比要满足关系如下:
SINR21<SINR22<SINR11
将具体公式代入上式,计算出δ的第一取值范围由下式给出:
Figure PCTCN2016093623-appb-000002
其中,h1为强用户终端201与基站之间的信道响应系数,h2为弱用户终端 202与基站之间的信道响应系数;P1为强用户终端201的实际功率,P2为弱用户终端202的实际功率;
Figure PCTCN2016093623-appb-000003
为噪声方差。
当δ>P1/2时,同理,根据SINR11和SINR21的具体公式可以直接判断出SINR11<SINR21,此时弱用户数据流的信干噪比、第一数据流的信干噪比和第二数据流的信干噪比要满足关系如下:
SINR11<SINR22<SINR21
将具体公式代入上式,计算出δ的第一取值范围由下式给出:
Figure PCTCN2016093623-appb-000004
其中,h1为强用户终端201与基站之间的信道响应系数,h2为弱用户终端202与基站之间的信道响应系数;P1为强用户终端201的实际功率,P2为弱用户终端202的实际功率;
Figure PCTCN2016093623-appb-000005
为噪声方差。
通过上述方法,可以确定最优分割因子的第一取值范围。
根据通信系统的传输可靠性,对解调顺序处于最末位的数据流进行考虑,尽可能保证其能量信噪比
Figure PCTCN2016093623-appb-000006
要尽量落在预设通信区域内,其中,Eb为每比特的信号能量,预设通信区域由下式给出:
Figure PCTCN2016093623-appb-000007
参见图2,VDS11,VDS21和VDS22的解调顺序受到δ取值的影响,因此,同样根据δ的大小分为两种情况进行计算。
当δ<P1/2时,解调顺序处于最末位的数据流为VDS21,为保证其可靠通信,对δ的第二取值范围的进一步计算由下式给出:
Figure PCTCN2016093623-appb-000008
其中,Eb为每比特的信号能量,RAMC为传输数据自适应选择的MCS(Modulation and Coding Scheme,调制与编码策略)等级所对应的信息速率,W为系统带宽.
Figure PCTCN2016093623-appb-000009
为噪声方差。
当δ>P1/2时,解调顺序处于最末位的数据流为VDS11,同理,为保证其可靠通信,对δ的第二取值范围的进一步计算由下式给出:
Figure PCTCN2016093623-appb-000010
其中,Eb为每比特的信号能量,RAMC为传输数据自适应选择的MCS(Modulation and Coding Scheme,调制与编码策略)等级所对应的信息速率,W为系统带宽.
Figure PCTCN2016093623-appb-000011
为噪声方差。
通过上述方法,可以确定最优分割因子的第二取值范围。
当采用RS-NOMA方案后,根据理论分析,弱用户数据流的传输速率会小于、未采用RS-NOMA方案时弱用户终端的数据流的传输速率,并导致弱用户数据流自适应选择MCS等级降低。为避免弱用户数据流的吞吐量降低过度,要保证弱用户数据流的调制阶数在采用RS-NOMA方案后符合预设条件,其中,预设条件为采用RS-NOMA方案前的弱用户终端的数据流的调制阶数、与采用RS-NOMA方案后的弱用户数据流的调制阶数、的差值的绝对值小于或等 于2。数据流的调制阶数表示为m=log2M,M为调制符号的进制数。
参见图2所示的实际场景,采用RS-NOMA方案前,弱用户终端202的数据流的调制阶数为m2;采用RS-NOMA方案后,VDS22的调制阶数为
Figure PCTCN2016093623-appb-000012
为保证弱用户终端202的吞吐量在采用RS-NOMA方案后不过度损失,规定VDS22的调制阶数在采用RS-NOMA方案后不会超过预设条件,对δ的第三取值范围由下式给出:
Figure PCTCN2016093623-appb-000013
通过上述方法,可以确定最优分割因子的第三取值范围。
综合上述方法,将第一取值范围、第二取值范围和第三取值范围取交集得到最终分割因子取值范围,最终分割因子取值范围的集合为
Figure PCTCN2016093623-appb-000014
其中,k为正整数。根据实际通信中的当前通信条件确定最优分割因子δopt。例如,参见图2,在当前通信条件为需要强用户终端201拆分出的第一传输功率尽可能多的协助弱用户终端202传输数据时,则应在集合
Figure PCTCN2016093623-appb-000015
中选择最大值作为最优分割因子。
在本申请实施例中,通过确定最终分割因子取值范围,增加了应用RS-NOMA技术传输数据的可靠性;通过确定最终分割因子取值范围,减少了噪声对传输数据的影响;通过确定最终分割因子取值范围,防止采用RS-NOMA方案后弱用户数据流的吞吐量降低过度;通过对当前通信条件的判定,有效的确定了最优分割因子,在提升传输效率的同时,还能够适应各种传输需求。
优选的,在本申请实施例的基于速率分割非正交多址接入技术的数据传输方法中,获取弱用户终端的传输功率,加载弱用户终端的传输功率至调制编码后的可支持数据上,包括:
第一步,获取弱用户终端的传输功率,根据弱用户终端的传输功率,将可支持数据进行调制编码,得到调制编码后的可支持数据。
第二步,加载弱用户终端的传输功率至调制编码后的可支持数据上。
通过本申请实施例,实现了将可支持数据进行调制编码,并为调制编 码后的可支持数据加载了弱用户终端的传输功率,为采用非正交的方式传输弱用户数据流提供了技术支持。
优选的,在本申请实施例的基于速率分割非正交多址接入技术的数据传输方法中,获取第一路传输功率,加载第一路传输功率至调制编码后的过载数据上,获取第二路传输功率,加载第二路传输功率至调制编码后的强用户终端的传输数据上,包括:
第一步,获取第一路传输功率及第二路传输功率。
第二步,根据第一路传输功率,将过载数据进行调制编码,加载第一路传输功率至调制编码后的过载数据上。
第三步,根据第二路传输功率,将强用户终端的传输数据进行调制编码,加载第二路传输功率至调制编码后的强用户终端的传输数据上。
通过本申请实施例,实现了将过载数据和强用户终端的传输数据进行调制编码,并为调制编码后的过载数据和强用户终端的传输数据各自加载了第一路传输功率和第二路传输功率,为采用非正交的方式传输第一数据流和第二数据流提供了技术支持。
优选的,在本申请实施例的基于速率分割非正交多址接入技术的数据传输方法中,多个终端之间通过D2D进行通信。
采用RS-NOMA方案时需要确保多个终端之间已知对方的传输参数,这样才能让强用户终端划分传输功率来协助弱用户终端传输数据。在多个终端之间添加D2D通信链路,通过D2D通信链路满足多个终端之间互相传递信息。
通过本申请实施例,实现了多个终端之间信息的传递。
参见图3,图3为本申请实施例的多终端传输数据的系统简化示意图。其中ri为自适应选择的MCS等级对应的传输码率,i=1,2…,L-1。Pi为经过拆分的分配给各路数据流的功率,i=1,2…,L-1。当终端数量为L(L为大于1的整数)时,根据RSMA(Rate-Splitting Multiple Access,速率分割多址接入)技术的基础理论,将L个终端的实际数据流拆分为2L-1路虚拟数据流,每路拆分后的数据流分别自适应地选择MCS等级并进行后续传输。
通过本申请实施例,将L个终端的传输功率进行有效分配,实现了RS-NOMA方案在存在L个终端时的应用。
参见图4,图4为本申请实施例的最优分割因子选择方法的流程示意图,包括:
步骤401,进行参数的初始化设定,令δ为零,其中,δ为分割因子。
步骤402,遍历δ的取值区间,在此时δ的取值上增加一个适宜的步长Δδ。
步骤403,判断此时δ的取值是否在合适调解顺序约束的取值区间内,若是则实施步骤404,若否则实施步骤407。
步骤404,判断此时δ的取值是否在传输可靠性约束的取值区间内,若是则实施步骤405,若否则实施步骤407。
步骤405,判断此时δ的取值是否在合理MCS等级约束的取值区间内,若是则实施步骤406,若否则实施步骤407。
步骤406,判断δ的取值范围,收录符合条件的δ,记录可选则的δ的集合
Figure PCTCN2016093623-appb-000016
步骤407,判断此时δ的取值是否大于分割因子可取的最大值,若否则实施步骤402,若是则实施步骤408。
步骤408,根据当前通信条件的实际需求从集合
Figure PCTCN2016093623-appb-000017
中选择δopt,其中,δopt为最优分割因子。
在进行参数的初始化设定时,参见图2,设定h1为强用户终端201与基站之间的信道响应系数,h2为弱用户终端202与基站之间的信道响应系数;P1为强用户终端201的实际功率,P2为弱用户终端202的实际功率;噪声方差为
Figure PCTCN2016093623-appb-000018
对强用户终端的传输功率进行分割的分割因子为δ,其初始取值范围应满足0≤δ<P1。在最优分割因子的选择算法中,需遍历δ的取值区间进行搜索,令δ的初始值为零,设定搜索步长为Δδ,对δ的取值范围逐步进行确定,最 终获得集合
Figure PCTCN2016093623-appb-000019
和δopt
可见通过本申请实施例,增加了应用RS-NOMA技术传输数据的可靠性,减少了噪声对传输数据的影响,防止采用RS-NOMA方案后弱用户数据流的吞吐量降低过度,有效的确定了最优分割因子,在提升传输效率的同时,还能够适应各种传输需求。
在将传输数据加载传输功率前,还需要将传输数据进行调制编码,具体表现为传输数据自适应的选择MCS等级。
参见图5,图5为本申请实施例的MCS自适应选择策略的流程示意图包括:
步骤501,计算传输数据的SI(Symbol Mutual Information,符号互信息)。
步骤502,根据传输数据的SI得到传输数据的RBIR(Received Bit Mutual Information Rate,接收比特互信息)。
步骤503,根据已经仿真得到的各调制阶数的符号互信息曲线制成的表格,查找该传输数据的接收比特互信息RBIR所对应的等效信干噪比SINReff
步骤504,参照仿真得到的所有MCS等级下的加性白高斯信道链路级的性能曲线,根据SINReff和BLER(Block Error Ratio,误块率)之间的映射关系,找到当前SINReff所对应的BLER为0.1时的MCS等级。
步骤505,将当前SINReff所对应的BLER为0.1时的MCS等级确定为自适应选择的MCS等级,从而确定传输数据的调制方式与传输数据块长度。
可见通过本申请实施例,可以有效的将传输数据进行调制编码。
参见图6,图6为本申请实施例的基于速率分割非正交多址接入技术的数据传输方法的另一种流程示意图,其步骤包括:
步骤601,获取终端的传输参数,对当前的实施场景进行适用性技术评估。
步骤602,基于终端的传输参数,对当前实施场景的参数进行初始化设定。
步骤603,基于终端的传输参数,划分RS-NOMA方案的信噪比区间。
步骤604,判断传输功率及信道响应系数是否发生了变化,若发生了变化,执行步骤603,若未发生变化,执行步骤605。
步骤605,基于终端的传输参数,遍历δ的取值区间,选择最优分割因子。
步骤606,基于最优分割因子,将终端的传输功率拆分为多路传输子功率。
步骤607,基于最优分割因子,将终端的实际数据流拆分为多路虚拟数据流。
步骤608,使虚拟数据流自适应的选择调制编码方式,并加载传输子功率和进行后续传输。
当终端与基站之间进行数据传输时,首先,需要对实施场景进行适用性评估,具体表现为对终端的初始传输状态的评估。作为一种新型NOMA技术,RS-NOMA技术对于终端的初始传输状态存在一定要求。在终端之间的初始传输速率差异过大时,直接进行功率的重新分配比RS-NOMA技术更为合理和有效;在终端之间的初始传输速率差异过小时,采用RS-NOMA技术并无必要,此时采用RS-NOMA技术甚至会降低传输效率与增加复杂度。因此,只有在终端之间初始的传输差异适中时,采用RS-NOMA技术才能有效且合理地利用信道资源,并改善系统性能。经过评估,若认定为适用场景,则可以进行参数的初始化设定。
其次,需要根据终端的传输参数,划分RS-NOMA方案的信噪比区间。需要说明的是,在不同的场景中,信噪比区间的划分会不同,信噪比区间需要重新计算;用户的发送功率及信道响应系数改变时,信噪比区间的划分也会不同,信噪比区间需要重新计算。然后,基于终端的传输参数,遍历δ的取值区间,选择最优分割因子。
再然后,基于最优分割因子,将终端的传输功率拆分为多路传输子功率。基于最优分割因子,将终端的实际数据流拆分为多路虚拟数据流,此处所说的对实际数据流进行拆分,是通过拆分终端的传输功率实现的。将终端的传输功率拆分为多路传输子功率后,会对终端的传输数据进行调制编码。根据传输子功率,将终端的传输数据进行调制编码并加载该传输子 功率,生成虚拟数据流。因为传输子功率是基于最优分割因子拆分成的,所以虚拟数据流也就等效于基于最优分割因子拆分成的。参见图2,进行自适应调制编码的过程包含确定数据块长度的过程。在采用RS-NOMA方案后,对于弱用户终端202,只传输x2中的可支持数据,即画竖线的方块数据。x2中的可支持数据的数据块长是根据自适应调制编码确定的,从整个x2的传输数据中切割出x2中画竖线的方块数据,加载弱用户终端202的传输功率,将加载传输功率后的可支持数据进行后续传输。剩余的过载数据,即画横线的方块的数据,则由强用户终端201的传输功率拆分出的传输子功率进行加载和传输。
通过本申请实施例,可以在终端的传输功率已经分配或受制约束的情况下,在适合的信噪比区间内,将强用户终端的传输功率进行拆分来协助弱用户终端传输数据;本申请实施例实现了用户实际业务质量需求与信道条件之间的良好匹配,充分利用了无线信道资源,在系统频谱效率几乎没有性能损失的情况下显著提升了用户与基站间的传输效率,有效改善了系统的性能。
参见图7,图7为本申请实施例的基于速率分割非正交多址接入技术的数据传输装置的结构示意图,包括:
终端获取模块701,用于获取多个终端及多个终端的传输参数。
信噪比区间划分模块702,用于根据传输参数,将多个终端划分为强用户终端和弱用户终端,并划分信噪比区间,其中,强用户终端的实际业务质量所需的传输速率、小于强用户终端与基站之间的信道条件所支持的传输速率,弱用户终端的实际业务质量所需的传输速率、大于弱用户终端与基站之间的信道条件所支持的传输速率。
最优分割因子确定模块703,用于根据传输参数,在信噪比区间内,确定最优分割因子,其中,最优分割因子为分割强用户终端传输功率的待分割功率。
传输功率分割模块704,用于根据最优分割因子,至少拆分一个强用户终端的传输功率为第一路传输功率及第二路传输功率,其中,第一路传输功率与最优分割因子的数值相同,第二路传输功率为强用户终端传输功率中除第一路传输功率以外的剩余的传输功率。
第一加载模块705,用于获取弱用户终端的传输功率,加载弱用户终端的传输功率至调制编码后的可支持数据上,其中,可支持数据为弱用户终端的传输功率可支持携带的弱用户终端的传输数据。
第二加载模块706,用于获取第一路传输功率,加载第一路传输功率至调制编码后的过载数据上,获取第二路传输功率,加载第二路传输功率至调制编码后的强用户终端的传输数据上,其中,过载数据为弱用户终端的传输数据中除可支持数据之外的传输数据。
后续传输模块707,用于采用非正交的方式传输弱用户数据流、第一数据流及第二数据流,其中,弱用户数据流为调制编码后的可支持数据加载弱用户终端的传输功率后所形成的数据流,第一数据流为调制编码后的过载数据加载第一路传输功率后所形成的数据流,第二数据流为调制编码后的强用户终端的传输数据加载第二路传输功率后所形成的数据流。
通过本申请实施例的装置,可以在用户终端的传输功率已经分配或受制约束的情况下,在适合的信噪比区间内,将拆分的强用户终端的传输功率来协助弱用户终端传输数据,从而实现了用户实际业务质量需求与信道条件之间的良好匹配,充分利用了无线信道资源,在系统频谱效率几乎没有性能损失的情况下显著提升了用户与基站间的传输效率,有效改善了系统的性能。特别是对于5G移动通信系统的mMTC典型场景具有很好的推广应用前景。
需要说明的是,本申请实施例的装置是应用上述多址接入技术方法的装置,则上述多址接入技术方法的所有实施例均适用于装置,且均能达到相同或相似的有益效果。
优选的,在本分明实施例的基于速率分割非正交多址接入技术的数据传输装置中,信噪比区间划分模块702,包括:
终端划分子模块,用于根据传输参数,将多个终端划分为强用户终端和弱用户终端,其中,强用户终端的实际业务质量所需的传输速率、小于强用户终端与基站之间的信道条件所支持的传输速率,弱用户终端的实际业务质量所需的传输速率、大于弱用户终端与基站之间的信道条件所支持的传输速率。
区间划分子模块,用于根据传输参数中终端的传输速率,在强用户终端 的传输速率大于弱用户终端的传输速率时,划分信噪比区间。
通过本申请实施例,有效的划分了强用户终端和弱用户终端,为拆分强用户终端的传输功率提供了技术上的支持;本申请实施例有效的实现了信噪比区间的划分,为后续确定最优分割因子做了技术上的铺垫。
优选的,在本分明实施例的基于速率分割非正交多址接入技术的数据传输装置中,最优分割因子确定模块703,包括:
第一取值范围确定子模块,用于在弱用户数据流的解调顺序、位于第一数据流的解调顺序、和第二数据流的解调顺序之间时,确定最优分割因子的第一取值范围,其中,解调顺序为接收终端的数据流时,信干噪比值由大到小的排序顺序。
第二取值范围确定子模块,用于选择弱用户数据流、第一数据流和第二数据流中,信干噪比值最小的数据流作为最小信干噪比数据流,并在最小信干噪比数据流的能量信噪比处于预设通信区域内时,确定最优分割因子的第二取值范围。
第三取值范围确定子模块,用于在弱用户数据流的调制阶数不超出预设条件时,确定最优分割因子的第三取值范围。
最终取值范围确定子模块,用于在信噪比区间内,将第一取值范围、第二取值范围和第三取值范围取交集,得到最终分割因子取值范围。
最优分割因子查找子模块,用于获取当前通信条件,在最终分割因子取值范围内查找到与当前通信条件对应的最优分割因子。
在本申请实施例中,通过确定最终分割因子取值范围,增加了应用RS-NOMA技术传输数据的可靠性;通过确定最终分割因子取值范围,减少了噪声对传输数据的影响;通过确定最终分割因子取值范围,防止采用RS-NOMA方案后弱用户数据流的吞吐量降低过度;通过对当前通信条件的判定,有效的确定了最优分割因子,在提升传输效率的同时,还能够适应各种传输需求。
优选的,在本分明实施例的基于速率分割非正交多址接入技术的数据传输装置中,第一加载模块705,包括:
支持数据调制编码子模块,用于获取弱用户终端的传输功率,根据弱用 户终端的传输功率,将可支持数据进行调制编码,得到调制编码后的可支持数据。
弱用户终端传输功率加载子模块,用于加载弱用户终端的传输功率至调制编码后的可支持数据上。
通过本申请实施例,实现了将可支持数据进行调制编码,并为调制编码后的可支持数据加载了弱用户终端的传输功率,为采用非正交的方式传输弱用户数据流提供了技术支持。
优选的,在本分明实施例的基于速率分割非正交多址接入技术的数据传输装置中,第二加载模块706,包括:
传输功率获取子模块,用于获取第一路传输功率及第二路传输功率。
第一路传输功率加载子模块,用于根据第一路传输功率,将过载数据进行调制编码,加载第一路传输功率至调制编码后的过载数据上。
第二路传输功率加载子模块,用于根据第二路传输功率,将强用户终端的传输数据进行调制编码,加载第二路传输功率至调制编码后的强用户终端的传输数据上。
通过本申请实施例,实现了将过载数据和强用户终端的传输数据进行调制编码,并为调制编码后的过载数据和强用户终端的传输数据各自加载了第一路传输功率和第二路传输功率,为采用非正交的方式传输第一数据流和第二数据流提供了技术支持。
参见图8,图8为本申请实施例的性能仿真对比结果的示意图,在RS-NOMA技术中,配置2个终端,每个终端的发送功率均归一化为1,经过加性高斯白噪声信道AWGN。终端采用自适应的MCS选择方式,其选择策略参照LTE(长期演进Long Term Evolution,长期演进协议)36.213。曲线801为δ=0即现有NOMA技术的系统频谱效率,曲线802为δ=0.05即分割因子为0.05时RS-NOMA技术的系统频谱效率,曲线803为δ=0.15即分割因子为0.15时RS-NOMA技术的系统频谱效率,曲线804为δ=0.85即分割因子为0.85时RS-NOMA技术的系统频谱效率,曲线805为δ=0.95即分割因子为0.95时RS-NOMA技术的系统频谱效率,曲线806为δ=δopt即分割因子为最优分 割因子时RS-NOMA技术的系统频谱效率。
从本申请实施例可以得出,当RS-NOMA方案面临不同分割因子时,选择最优分割因子可以达到最大的系统吞吐量。同时,与传统NOMA在功率域的实现方案相比,本申请提出的RS-NOMA方案在系统频谱效率几乎没有性能损失的情况下显著提升了用户的传输灵活性,改善了系统性能。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本说明书中的各个实施例均采用相关的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。

Claims (10)

  1. 一种基于速率分割非正交多址接入技术的数据传输方法,其特征在于,包括:
    获取多个终端及多个所述终端的传输参数;
    根据所述传输参数,将多个所述终端划分为强用户终端和弱用户终端,并划分信噪比区间,其中,所述强用户终端的实际业务质量所需的传输速率、小于所述强用户终端与基站之间的信道条件所支持的传输速率,所述弱用户终端的实际业务质量所需的传输速率、大于所述弱用户终端与所述基站之间的信道条件所支持的传输速率;
    根据所述传输参数,在所述信噪比区间内,确定最优分割因子,其中,所述最优分割因子为分割所述强用户终端传输功率的待分割功率;
    根据所述最优分割因子,至少拆分一个所述强用户终端的传输功率为第一路传输功率及第二路传输功率,其中,所述第一路传输功率与所述最优分割因子的数值相同,所述第二路传输功率为所述强用户终端传输功率中除所述第一路传输功率以外的剩余的传输功率;
    获取所述弱用户终端的传输功率,加载所述弱用户终端的传输功率至调制编码后的可支持数据上,其中,所述可支持数据为所述弱用户终端的传输功率可支持携带的所述弱用户终端的传输数据;
    获取所述第一路传输功率,加载所述第一路传输功率至调制编码后的过载数据上,获取所述第二路传输功率,加载所述第二路传输功率至调制编码后的所述强用户终端的传输数据上,其中,所述过载数据为所述弱用户终端的传输数据中除所述可支持数据之外的传输数据;
    采用非正交的方式传输弱用户数据流、第一数据流及第二数据流,其中,所述弱用户数据流为调制编码后的可支持数据加载所述弱用户终端的传输功率后所形成的数据流,所述第一数据流为所述调制编码后的过载数据加载所述第一路传输功率后所形成的数据流,所述第二数据流为所述调制编码后的所述强用户终端的传输数据加载所述第二路传输功率后所形成的数据流。
  2. 根据权利要求1所述的方法,其特征在于,所述传输参数至少包括: 所述终端的传输数据,所述终端的传输速率,所述终端的传输功率,所述终端与所述基站之间的信道响应系数及所述终端的实际业务质量需求中的一种或多种。
  3. 根据权利要求1所述的方法,其特征在于,所述划分信噪比区间,包括:
    根据所述传输参数中所述终端的传输速率,在所述强用户终端的传输速率大于所述弱用户终端的传输速率时,划分信噪比区间。
  4. 根据权利要求1所述的方法,其特征在于,所述根据所述传输参数,在所述信噪比区间内,确定最优分割因子,包括:
    在所述弱用户数据流的解调顺序、位于所述第一数据流的解调顺序、和所述第二数据流的解调顺序之间时,确定所述最优分割因子的第一取值范围,其中,所述解调顺序为接收所述终端的数据流时,信干噪比值由大到小的排序顺序;
    选择所述弱用户数据流、所述第一数据流和所述第二数据流中,信干噪比值最小的数据流作为最小信干噪比数据流,并在所述最小信干噪比数据流的能量信噪比处于预设通信区域内时,确定所述最优分割因子的第二取值范围;
    在所述弱用户数据流的调制阶数符合预设条件时,确定所述最优分割因子的第三取值范围;
    在所述信噪比区间内,将所述第一取值范围、所述第二取值范围和所述第三取值范围取交集,得到最终分割因子取值范围;
    获取当前通信条件,在所述最终分割因子取值范围内查找到与所述当前通信条件对应的最优分割因子。
  5. 根据权利要求1所述的方法,其特征在于,所述获取所述弱用户终端的传输功率,加载所述弱用户终端的传输功率至调制编码后的可支持数据上,包括:
    获取所述弱用户终端的传输功率,根据所述弱用户终端的传输功率,将 所述可支持数据进行调制编码,得到所述调制编码后的可支持数据;
    加载所述弱用户终端的传输功率至所述调制编码后的可支持数据上。
  6. 根据权利要求1所述的方法,其特征在于,所述获取所述第一路传输功率,加载所述第一路传输功率至调制编码后的过载数据上,获取所述第二路传输功率,加载所述第二路传输功率至调制编码后的所述强用户终端的传输数据上,包括:
    获取所述第一路传输功率及所述第二路传输功率;
    根据所述第一路传输功率,将所述过载数据进行调制编码,加载所述第一路传输功率至所述调制编码后的过载数据上;
    根据所述第二路传输功率,将所述强用户终端的传输数据进行调制编码,加载所述第二路传输功率至所述调制编码后的所述强用户终端的传输数据上。
  7. 根据权利要求1所述的方法,其特征在于,多个所述终端之间通过D2D进行通信。
  8. 一种基于速率分割非正交多址接入技术的数据传输装置,其特征在于,包括:
    终端获取模块,用于获取多个终端及多个所述终端的传输参数;
    信噪比区间划分模块,用于根据所述传输参数,将多个所述终端划分为强用户终端和弱用户终端,并划分信噪比区间,其中,所述强用户终端的实际业务质量所需的传输速率、小于所述强用户终端与基站之间的信道条件所支持的传输速率,所述弱用户终端的实际业务质量所需的传输速率、大于所述弱用户终端与所述基站之间的信道条件所支持的传输速率;
    最优分割因子确定模块,用于根据所述传输参数,在所述信噪比区间内,确定最优分割因子,其中,所述最优分割因子为分割所述强用户终端传输功率的待分割功率;
    传输功率分割模块,用于根据所述最优分割因子,至少拆分一个所述强用户终端的传输功率为第一路传输功率及第二路传输功率,其中,所述第一 路传输功率与所述最优分割因子的数值相同,所述第二路传输功率为所述强用户终端传输功率中除所述第一路传输功率以外的剩余的传输功率;
    第一加载模块,用于获取所述弱用户终端的传输功率,加载所述弱用户终端的传输功率至调制编码后的可支持数据上,其中,所述可支持数据为所述弱用户终端的传输功率可支持携带的所述弱用户终端的传输数据;
    第二加载模块,用于获取所述第一路传输功率,加载所述第一路传输功率至调制编码后的过载数据上,获取所述第二路传输功率,加载所述第二路传输功率至调制编码后的所述强用户终端的传输数据上,其中,所述过载数据为所述弱用户终端的传输数据中除所述可支持数据之外的传输数据;
    后续传输模块,用于采用非正交的方式传输弱用户数据流、第一数据流及第二数据流,其中,所述弱用户数据流为调制编码后的可支持数据加载所述弱用户终端的传输功率后所形成的数据流,所述第一数据流为所述调制编码后的过载数据加载所述第一路传输功率后所形成的数据流,所述第二数据流为所述调制编码后的所述强用户终端的传输数据加载所述第二路传输功率后所形成的数据流。
  9. 根据权利要求8所述的装置,其特征在于,所述信噪比区间划分模块,包括:
    终端划分子模块,用于根据所述传输参数,将多个所述终端划分为强用户终端和弱用户终端,其中,所述强用户终端的实际业务质量所需的传输速率、小于所述强用户终端与基站之间的信道条件所支持的传输速率,所述弱用户终端的实际业务质量所需的传输速率、大于所述弱用户终端与所述基站之间的信道条件所支持的传输速率;
    区间划分子模块,用于根据所述传输参数中所述终端的传输速率,在所述强用户终端的传输速率大于所述弱用户终端的传输速率时,划分信噪比区间。
  10. 根据权利要求8所述的装置,其特征在于,所述最优分割因子确定模块,包括:
    第一取值范围确定子模块,用于在所述弱用户数据流的解调顺序、位于 所述第一数据流的解调顺序、和所述第二数据流的解调顺序之间时,确定所述最优分割因子的第一取值范围,其中,所述解调顺序为接收所述终端的数据流时,信干噪比值由大到小的排序顺序;
    第二取值范围确定子模块,用于选择所述弱用户数据流、所述第一数据流和所述第二数据流中,信干噪比值最小的数据流作为最小信干噪比数据流,并在所述最小信干噪比数据流的能量信噪比处于预设通信区域内时,确定所述最优分割因子的第二取值范围;
    第三取值范围确定子模块,用于在所述弱用户数据流的调制阶数符合预设条件时,确定所述最优分割因子的第三取值范围;
    最终取值范围确定子模块,用于在所述信噪比区间内,将所述第一取值范围、所述第二取值范围和所述第三取值范围取交集,得到最终分割因子取值范围;
    最优分割因子查找子模块,用于获取当前通信条件,在所述最终分割因子取值范围内查找到与所述当前通信条件对应的最优分割因子。
PCT/CN2016/093623 2016-08-02 2016-08-05 基于速率分割非正交多址接入技术的数据传输方法及装置 WO2018023732A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610627117.1 2016-08-02
CN201610627117.1A CN106230557B (zh) 2016-08-02 2016-08-02 基于速率分割非正交多址接入技术的数据传输方法及装置

Publications (1)

Publication Number Publication Date
WO2018023732A1 true WO2018023732A1 (zh) 2018-02-08

Family

ID=57535947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/093623 WO2018023732A1 (zh) 2016-08-02 2016-08-05 基于速率分割非正交多址接入技术的数据传输方法及装置

Country Status (2)

Country Link
CN (1) CN106230557B (zh)
WO (1) WO2018023732A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110311770A (zh) * 2019-07-05 2019-10-08 北京神经元网络技术有限公司 基于ofdm通信体制的高速工业通信系统的时频复用方法
CN111246559A (zh) * 2020-01-10 2020-06-05 九江学院 一种非正交多址接入系统中的最优功率分配方法
CN113543067A (zh) * 2021-06-07 2021-10-22 北京邮电大学 一种基于车载网络的数据下发方法及装置
WO2022262730A1 (zh) * 2021-06-16 2022-12-22 华为技术有限公司 一种通信方法及装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108631909B (zh) * 2017-03-22 2021-01-05 北京紫光展锐通信技术有限公司 增强移动宽带信号传输方法及装置
CN107087274B (zh) * 2017-05-15 2017-12-29 华中科技大学 一种基于d2d和上行noma的两用户通信方法
CN109391457A (zh) * 2017-08-04 2019-02-26 财团法人工业技术研究院 适用于非正交多址通信系统的传输器及传输方法
EP3735755B1 (en) 2018-02-15 2023-08-09 Telefonaktiebolaget LM Ericsson (publ) An adaptive multiple access scheme in integrated access and backhaul networks
CN108271266B (zh) * 2018-02-28 2020-01-10 华中科技大学 一种用于noma-d2d混合系统的下行用户资源分配方法
CN108777857B (zh) * 2018-08-01 2020-06-09 北京邮电大学 一种URLLC和mMTC共存场景下的接入控制方法及系统
CN109152058B (zh) * 2018-09-13 2020-05-29 北京理工大学 一种noma系统中基于功率分割的小区间干扰消除方法
CN110366234A (zh) * 2019-07-05 2019-10-22 山东交通学院 一种适用于非正交多址上行链路的速率分拆方法
CN111314932B (zh) * 2020-01-17 2022-05-27 山东师范大学 一种用于多小区系统的广义速率分割多址接入方法
CN113518430B (zh) * 2020-04-09 2022-07-05 王晋良 支持基于点阵划分的非正交多重接取的基站及调制方法
CN114629757B (zh) * 2020-12-14 2023-03-21 中国科学院上海高等研究院 用于非正交传输的调制策略选择方法、系统、存储介质及终端
CN118176789A (zh) * 2021-10-29 2024-06-11 株式会社Ntt都科摩 无线通信网络中的网络侧设备及用户设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140269381A1 (en) * 2013-03-18 2014-09-18 Samsung Electronics Co., Ltd. Methods and devices for allocating resources for communications with base stations
CN104640220A (zh) * 2015-03-12 2015-05-20 重庆邮电大学 一种基于noma系统的频率和功率分配方法
US20150156786A1 (en) * 2013-12-04 2015-06-04 Samsung Electronics Co., Ltd. Method and apparatus for performing uplink scheduling in a multiple-input multiple-output system
US20150358971A1 (en) * 2014-06-10 2015-12-10 Qualcomm Incorporated Devices and methods for facilitating non-orthogonal wireless communications

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102209364B (zh) * 2011-05-20 2014-03-12 北京邮电大学 认知无线电通信系统中的多用户接纳控制方法及系统
CN105337651B (zh) * 2015-09-28 2019-03-01 西安交通大学 一种有限反馈下非正交多址接入系统下行链路的用户选择方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140269381A1 (en) * 2013-03-18 2014-09-18 Samsung Electronics Co., Ltd. Methods and devices for allocating resources for communications with base stations
US20150156786A1 (en) * 2013-12-04 2015-06-04 Samsung Electronics Co., Ltd. Method and apparatus for performing uplink scheduling in a multiple-input multiple-output system
US20150358971A1 (en) * 2014-06-10 2015-12-10 Qualcomm Incorporated Devices and methods for facilitating non-orthogonal wireless communications
CN104640220A (zh) * 2015-03-12 2015-05-20 重庆邮电大学 一种基于noma系统的频率和功率分配方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110311770A (zh) * 2019-07-05 2019-10-08 北京神经元网络技术有限公司 基于ofdm通信体制的高速工业通信系统的时频复用方法
CN110311770B (zh) * 2019-07-05 2022-08-23 北京神经元网络技术有限公司 基于ofdm通信体制的高速工业通信系统的时频复用方法
CN111246559A (zh) * 2020-01-10 2020-06-05 九江学院 一种非正交多址接入系统中的最优功率分配方法
CN111246559B (zh) * 2020-01-10 2023-01-20 九江学院 一种非正交多址接入系统中的最优功率分配方法
CN113543067A (zh) * 2021-06-07 2021-10-22 北京邮电大学 一种基于车载网络的数据下发方法及装置
CN113543067B (zh) * 2021-06-07 2023-10-20 北京邮电大学 一种基于车载网络的数据下发方法及装置
WO2022262730A1 (zh) * 2021-06-16 2022-12-22 华为技术有限公司 一种通信方法及装置

Also Published As

Publication number Publication date
CN106230557B (zh) 2019-06-18
CN106230557A (zh) 2016-12-14

Similar Documents

Publication Publication Date Title
WO2018023732A1 (zh) 基于速率分割非正交多址接入技术的数据传输方法及装置
EP2449707B1 (en) Enhanced physical downlink shared channel coverage
WO2005046152A1 (ja) 無線通信装置及びmcs決定方法
CN106160987A (zh) 控制信息的发送方法及装置
EP4290917A3 (en) Multi-access traffic management in open ran, o-ran
WO2004071045A1 (ja) 無線送信装置および伝送レート決定方法
CN101399630A (zh) 一种自适应调制编码方法及装置
CN110912619B (zh) 一种ZigBee到WiFi的跨协议通信方法
US10673558B2 (en) Configuring transmission parameters in a cellular system
CN111031547A (zh) 基于频谱分配与功率控制的多用户d2d通信资源分配方法
US20100158146A1 (en) Communication scheme determining apparatus, transmission apparatus, reception apparatus, ofdm adaptive modulation system and communication scheme determining method
KR20140037313A (ko) 무압축 동영상 신호의 전송 방법 및 장치
WO2019061514A1 (zh) 安全的无线通信物理层斜率认证方法和装置
US20130010858A1 (en) Wireless communication device and wireless communication method
CN110418297B (zh) 一种基于误码率公平的功率域noma协作传输方法及其装置
CN104284375A (zh) 一种无线网络速率自适应调节的方法
WO2024021652A1 (zh) 一种无线通信方法及设备、存储介质
CN110337116B (zh) MAC层融合通信的QoS指标的判断方法
KR101553882B1 (ko) 적응적 변조 기법 제어 장치
CN107370564A (zh) 极化码处理方法及装置、节点
JPWO2017175754A1 (ja) 無線通信システム及び通信方法
US10979123B2 (en) Apparatus and method for generating and transmitting CQI in a wireless network
Ye et al. Multimedia transmission over cognitive radio channels under sensing uncertainty
CN104468026B (zh) 调制编码方案的选择方法和装置
CN109600742B (zh) 隐蔽的无线通信物理层斜率认证方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16911327

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 22/05/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16911327

Country of ref document: EP

Kind code of ref document: A1