WO2018021842A1 - 통신신호 크기를 제어하는 무선 전력 수신기 - Google Patents

통신신호 크기를 제어하는 무선 전력 수신기 Download PDF

Info

Publication number
WO2018021842A1
WO2018021842A1 PCT/KR2017/008085 KR2017008085W WO2018021842A1 WO 2018021842 A1 WO2018021842 A1 WO 2018021842A1 KR 2017008085 W KR2017008085 W KR 2017008085W WO 2018021842 A1 WO2018021842 A1 WO 2018021842A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
output voltage
signal
rectifier output
rectifier
Prior art date
Application number
PCT/KR2017/008085
Other languages
English (en)
French (fr)
Inventor
황종태
진기웅
박성민
강기원
신현익
이준
Original Assignee
주식회사 맵스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160163749A external-priority patent/KR101853913B1/ko
Application filed by 주식회사 맵스 filed Critical 주식회사 맵스
Priority to CN201780035973.0A priority Critical patent/CN109314408A/zh
Priority to US16/305,070 priority patent/US20200274402A1/en
Publication of WO2018021842A1 publication Critical patent/WO2018021842A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received

Definitions

  • the present invention relates to wireless power transfer technology.
  • the wireless power transmitter wirelessly transmits power to the wireless power receiver through the antenna.
  • the frequency of driving the antenna depends on the wireless power transfer (WPT, hereinafter referred to as WPT) standard.
  • WPT wireless power transfer
  • WPT standards vary. For example, there is a Qi method by the Wireless Power Consortium (WPC) and a Power Matters Alliance (PMA) method.
  • PMA Power Matters Alliance
  • A4WP Alliance for Wireless Power
  • the wireless power transmission system communicates between the transmitter and the receiver by using an amplitude modulation technique such as the Qi scheme
  • the output voltage of the rectifier of the receiver is excessive to cause a change in the receiver output voltage
  • a wireless power receiver is proposed to solve a problem in which a rectifier output voltage increases to an over-voltage protection level, which may cause communication failure.
  • a wireless power receiver includes a resonator for receiving wireless power, a rectifier for converting AC power received from the resonator into direct current power and outputting a rectifier output voltage, and receiving a communication signal to switch the rectifier output voltage. And a regulator for controlling the voltage variation of the rectifier output voltage by modulating the communication signal.
  • the regulator modulates the communication signal and regulates the magnitude of the rectifier output voltage constantly using the modulated communication signal
  • the regulator output voltage is reduced to prevent the receiver output voltage from changing and the rectifier output voltage is above the overvoltage protection level.
  • an overvoltage protection function can prevent a communication failure.
  • the regulator may control the maximum size of the rectifier output voltage so that the rectifier output voltage is not greater than the preset maximum voltage during communication, and may control the minimum size of the rectifier output voltage so as not to be smaller than the preset minimum voltage.
  • the regulator includes a rectifier output voltage sensing circuit for detecting the rectifier output voltage, a comparator for comparing the detected rectifier output voltage with a reference voltage and outputting a comparator output signal according to the comparison, and performing a logical AND operation on the comparator output signal and the communication signal to modulate the modifier output voltage.
  • the output of the communication signal may include a logical AND circuit for switching on and off by the modulated communication signal.
  • the comparator output signal is low, it means that the rectifier output voltage is higher than the preset maximum voltage or lower than the preset minimum voltage. Even if the communication signal is high by the logical AND circuit, the modulated communication signal is low.
  • the rectifier output voltage no longer becomes higher than the maximum voltage or lower than the minimum voltage, but before the communication signal is applied.
  • the comparator output signal becomes high again and the switch is turned on by an AND circuit to establish an intended communication state. If the rectifier output voltage reaches the maximum or minimum voltage during the communication period, the switch is turned on and off repeatedly. Group the output voltage can be regulated within the reference voltage range.
  • the regulator includes a rectifier output voltage sensing circuit for sensing the rectifier output voltage, a first comparator for outputting a first comparator output signal according to a comparison by comparing the sensed rectifier output voltage with a first reference voltage, and a rectifier output voltage sensing circuit.
  • a second comparator for outputting a second comparator output signal by comparing the rectifier output voltage detected through the second reference voltage (the second reference voltage is greater than the first reference voltage), and a first comparator output signal and a second comparator output.
  • a first AND circuit for performing an AND operation on the signal to output an AND output signal
  • a second AND circuit for performing an AND operation on the AND output signal and the communication signal to output a modulated communication signal. It may include.
  • the first comparator output signal when the rectifier output voltage is greater than the second reference voltage, the first comparator output signal is in a low state and the logic product output signal output by the first AND circuit is in a low state so that the communication signal is Even in the high state, the modulated communication signal output through the second AND circuit may be in a low state, and thus the rectifier output voltage may be reduced as the switch is turned off.
  • the regulator senses a communication signal to generate a sample strobe signal, and a detector detects the rectifier output voltage by the sample strobe signal, samples the sample signal, and uses the sample signal to generate a first reference voltage and a second reference voltage ( 2) a first sample comparator for generating and holding the second reference voltage), a first comparator for receiving the first reference voltage and the rectifier output voltage, and outputting a first comparator output signal according to the comparison;
  • a second comparator that receives a reference voltage and a rectifier output voltage and outputs a second comparator output signal according to a comparison, and a first logical product that outputs a clamp signal by performing an AND operation on the first comparator output signal and the second comparator output signal.
  • the first reference voltage is a preset minimum voltage
  • the second reference voltage is a preset maximum voltage
  • the regulator controls the minimum size of the rectifier output voltage so that the rectifier output voltage is not less than the first reference voltage during communication and the second reference voltage.
  • the maximum magnitude of the rectifier output voltage can be controlled so as not to be greater than.
  • the wireless power receiver may perform in-band communication based on the Qi scheme in wireless charging.
  • the WPT system modulates the communication signal to regulate the magnitude of the rectifier output voltage using the modulated communication signal
  • the rectifier output voltage is reduced to prevent the receiver output voltage from changing and the rectifier output is reduced.
  • the voltage can be increased above the overvoltage protection level to prevent the occurrence of communication failure by the overvoltage protection function.
  • the present invention may be applied when communicating between a transmitter and a receiver using an amplitude modulation technique such as a Qi scheme.
  • FIG. 1 is a block diagram of a wireless power transmission system according to an embodiment of the present invention.
  • FIG. 2 is a waveform diagram showing a voltage variation of the rectifier output voltage VRECT during communication of a receiver
  • FIG. 3 is a waveform diagram showing a situation in which the receiver output voltage Vout is changed due to excessive decrease in the voltage of the rectifier output voltage VRECT during communication of the receiver;
  • FIG. 4 is a waveform diagram illustrating a situation in which the rectifier output voltage VRECT increases during communication of the receiver to be higher than the over-voltage protection (OVP) level.
  • OVP over-voltage protection
  • FIG. 5 is a block diagram of a receiver including a regulator for controlling the magnitude of the rectifier output voltage through modulation of a communication signal according to a first embodiment of the present invention
  • FIG. 6 is a waveform diagram when the circuit of FIG. 5 operates according to an embodiment of the present disclosure
  • FIG. 7 is a block diagram of a receiver including a regulator for controlling the magnitude of the rectifier output voltage through modulation of a communication signal according to a second embodiment of the present invention
  • FIG. 8 is a waveform diagram illustrating the effect of the circuit of FIG. 7 according to an embodiment of the present disclosure
  • FIG. 9 is a block diagram of a receiver including a regulator for controlling the magnitude of the rectifier output voltage through modulation of a communication signal according to a third embodiment of the present invention.
  • FIG. 10 is an operation waveform diagram of the circuit of FIG. 9 according to an embodiment of the present disclosure.
  • 11 is an experimental waveform diagram of an operation of controlling the minimum voltage of the rectifier output voltage VRECT during communication according to an embodiment of the present invention.
  • FIG. 1 is a block diagram of a wireless power transmission system according to an embodiment of the present invention.
  • a wireless power transmission system includes a transmitter 1 for wirelessly transmitting a power signal and a receiver 2 for wirelessly receiving a power signal.
  • the Qi method is a method of communicating by changing the amplitude, and any method may be applied as long as it is a method of communicating by changing the amplitude similarly to the Qi method.
  • the wireless power transfer system may perform in-band communication based on the Qi scheme in wireless charging.
  • the transmitter 1 converts the power delivered from the power amplifier 12 into a wireless power by a resonator including an inductor L1 10 and a resonant capacitor C1 11.
  • the changed power is converted into an electric field to induce a current in the inductor L2 20 of the receiver 2 which is in magnetic coupling with the transmitter 1.
  • the receiver 2 uses the resonant capacitor C2 (21) to obtain the resonant frequency of the inductor L2 (20) and the resonant capacitor C2 (21), and the inductor L1 (10). And adjust to be similar to the resonant frequency by the resonant capacitor C1 (11).
  • a rectifier 22 is used to change it to the rectifier output voltage VRECT 2100 of DC type.
  • the rectifier 22 may be a passive rectifier using a diode, but the operation and effect are the same even if the rectifier 22 is changed to an active rectifier using a switch element.
  • the rectifier output voltage VRECT 2100 is DC but uncontrolled voltage, so the DC-DC power converter 26 is used to convert the receiver to the precise voltage desired by the load. 2200).
  • the power converter 26 may use a switching converter such as a buck converter or a linear regulator such as an LDO.
  • the transmitter 1 and the receiver 2 communicate with each other.
  • the transmitter 1 and the receiver 2 may process or transmit and receive a packet composed of a predetermined frame.
  • the receiver 2 may be, for example, a mobile communication terminal, a PDA, a PMP, a smartphone, or the like.
  • the receiver 2 may transmit a signal for requesting wireless power transmission, information necessary for receiving wireless power, receiver status information, transmitter control information, and the like to the transmitter 2.
  • the receiver 2 requests power to the transmitter 1 through communication. This is done in a similar manner to Amplitude Shift Keying (ASK). As shown in FIG. 1, when the switches M1 23-1 and M2 23-2 are turned on by the communication signal COMM_IN, the switches M1 23-1 and M2 23-2 are turned on.
  • the connected capacitor Cm 24 changes the resonant frequency to cause voltage fluctuations of the inductor L2 20. Since the inductor L2 20 and the inductor L1 10 are magnetically coupled, voltage fluctuations also appear in the inductor L1 10.
  • the signal detector 13 receives the digital signal and decodes it. (14) (decoder).
  • the decoder 14 analyzes this signal, and the power controller 15 controls the output power OUT1 and OUT2 of the power amplifier 12 according to the analysis result of the decoder 14.
  • FIG. 2 is a waveform diagram illustrating a voltage variation of the rectifier output voltage VRECT during communication of a receiver.
  • a voltage variation of the rectifier output voltage VRECT 2100 is caused.
  • 2 illustrates an example in which the rectifier output voltage VRECT 2100 is changed by the communication signal COMM_IN 2000 in a decreasing manner. In this case, the rectifier output voltage VRECT 2100 decreases only to the extent that it does not affect the operation of the power converter 26, so that the receiver output voltage Vout 2200 does not change.
  • FIG. 3 is a waveform diagram illustrating a situation in which the receiver output voltage Vout is changed due to excessive decrease in the voltage of the rectifier output voltage VRECT during communication of the receiver.
  • the rectifier output voltage VRECT 2100 may be excessively reduced as shown in FIG. 3 when the size of the capacitor Cm 24 is large or when the resonance characteristic of the communication is changed. .
  • the rectifier output voltage VRECT 2100 decreases than the receiver output voltage Vout 2200, the receiver output voltage Vout 2200 decreases in synchronization with the communication signal COMM_IN 2000.
  • the receiver output voltage Vout 2200 since the receiver output voltage Vout 2200 is not regulated, it may adversely affect the system connected to the receiver output voltage Vout 2200, and the receiver output voltage Vout ( Since the 2200 is lowered, the output power is also lowered.
  • FIG. 4 is a waveform diagram illustrating a situation in which the rectifier output voltage VRECT increases during communication of the receiver and thus becomes higher than over-voltage protection (OVP, OVP) level.
  • OVP over-voltage protection
  • the resonant frequency variation in communication affects not only the size of the capacitor Cm 24 but also the output power of the receiver, and in the case of light loads, the rectifier output voltage VRECT 2100 may increase. This is the case of FIG. 4.
  • the OVP_CTRL signal 230 of FIG. 1 becomes high and the switch M3 (by the OVP_CTRL signal 230). 23-3), M4 (23-4) is switched on (on), switch M3 (23-3), M4 (23-4) is excessively supplied to the rectifier 22, the energy of the capacitor Covp (25)
  • the rectifier output voltage VRECT (2100) is reduced by passing through.
  • the OVP_CTRL signal 230 serves as another communication signal.
  • the communication signal COMM_IN 2000 is a signal produced by a coding standard, whereas the OVP_CTRL signal 230 does not, and thus the transmitter 1 cannot recognize it. Therefore, if this phenomenon is repeated, the transmitter 1 stops power supply and stops operation. Therefore, wireless power transmission is not possible.
  • the rectifier output voltage VRECT 2100 is excessively controlled by controlling the shaking of the rectifier output voltage VRECT 2100 during the communication of a receiver in a wireless power transmission system that communicates by changing the amplitude similar to Qi or Qi.
  • the purpose is to prevent the output from being damaged due to being lowered, and to suppress the occurrence of communication failure by the OVP due to the excessively high rectifier output voltage VRECT 2100.
  • FIG. 5 is a block diagram of a receiver including a regulator for controlling the depth of the rectifier output voltage by modulating a communication signal according to the first embodiment of the present invention.
  • the regulator 27 regulates the magnitude of the rectifier output voltage VRECT 2100 to prevent the rectifier output voltage VRECT 2100 from being excessively lowered as shown in FIG. 3.
  • the regulator 27 includes a rectifier output voltage sensing circuit, a comparator 271 and an AND circuit 273.
  • the rectifier output voltage sensing circuit senses the rectifier output voltage VRECT 2100.
  • the rectifier output voltage sensing circuit may include a resistor R1 2700 and R2 2702.
  • the comparator 271 compares the rectifier output voltage VRECT 2100 and the reference voltage VREFL 2600 sensed by the resistors R1 2700 and R2 2702 and outputs a comparator output signal CLAMP1 2500 according to the comparison.
  • the regulator 27 does not control the switches M1 23-1 and M2 23-2 with the communication signal COMM_IN 2000, but with the modified modulated communication signal COMM_mod 2400.
  • the modulated communication signal COMM_mod 2400 becomes low when the rectifier output voltage VRECT 2100 is in the following condition.
  • the condition under which the comparator output signal CLAMP1 2500 becomes low is as follows.
  • the comparator output signal CLAMP1 2500 When the comparator output signal CLAMP1 2500 is low, it means that the rectifier output voltage VRECT 2100 is higher than the preset maximum voltage or lower than the preset minimum voltage. Even when the COMM_IN 2000 is in a high state, the modulated communication signal COMM_mod 2400, which is an output signal of the AND circuit 273, is in a low state. When the modulated communication signal COMM_mod 2400 is in a low state, the switches M1 23-1 and M2 23-2 are turned off. In this case, the rectifier output voltage VRECT (2100) is no longer higher than the maximum voltage or lower than the minimum voltage, and becomes a state before the communication signal COMM_IN (2000) is applied. Converge into the interval.
  • the comparator output signal CLAMP1 2500 becomes high again, and this time, the logical product circuit 273 communicates with the communication signal COMM_IN (2000). ) Is transmitted to the switches M1 (23-1) and M2 (23-2) to turn on the switches M1 (23-1) and M2 (23-2) to maintain the intended communication state. If the rectifier output voltage VRECT 2100 reaches the maximum voltage or the minimum voltage during the communication period, the rectifier output voltage VRECT 2100 is regulated to be (1 + R2 / R1) ⁇ VREFL while repeating this process. The operation waveform at this time is as shown in FIG.
  • FIG. 6 is a waveform diagram when the circuit of FIG. 5 operates according to an exemplary embodiment.
  • the rectifier output voltage VRECT 2100 is regulated by the communication depth COMM_mod 2400 modulated by the communication signal COMM_IN 2100 to maintain a constant communication size. You can check it.
  • the circuit of FIG. 5 may be expanded to suppress excessive increase in the rectifier output voltage VRECT 2100 during communication.
  • a circuit for an extended operation is introduced in FIG.
  • FIG. 7 is a block diagram of a receiver including a regulator for controlling the magnitude of the rectifier output voltage by modulating a communication signal according to a second embodiment of the present invention.
  • the regulator 27 controls the minimum and maximum voltages of the rectifier output voltage VRECT 2100 during communication of the receiver 2.
  • the regulator 27 includes a rectifier output voltage sensing circuit, a first comparator 271-1, a second comparator 271-2, a first AND circuit 273-1, and a second AND circuit 273. -2).
  • the second comparator 271-2 compares the rectifier output voltage VRECT 2100 and the second reference voltage VREFH 2602 detected through the rectifier output voltage sensing circuit and outputs a second comparator output signal.
  • the second reference voltage VREFH 2602 is higher than the first reference voltage VREFL 2600.
  • the first AND product 273-1 performs an AND operation on the first comparator output signal and the second comparator output signal, and outputs a CLAMP1 signal 2500.
  • the second AND circuit 273-2 performs an AND operation on the CLAMP1 signal 2500 and the communication signal COMM_IN 2000 to output the modulated communication signal COMM_mod 2400.
  • the switches M1 23-1 and M2 23-2 are switched on and off by the modulated communication signal COMM_mod 2400.
  • the rectifier output voltage VRECT 2100 is greater than VREFH ⁇ (1 + R2 / R1) (VRECT> VREFH ⁇ (1 + R2 / R1))
  • the first comparator output signal is low.
  • the switches M1 23-1 and M2 even when the communication signal COMM_IN 2000 is high. Since 23-2 is switched off, the communication signal COMM_IN 2000 returns to the resonance characteristic before application, and the rectifier output voltage VRECT 2100 is lowered.
  • FIG. 8 is a waveform diagram illustrating an effect of the circuit of FIG. 7 according to an exemplary embodiment.
  • the maximum size of the rectifier output voltage VRECT 2100 is controlled so that the rectifier output voltage VRECT 2100 is not greater than VREFH ⁇ (1 + R2 / R1), and VREFL ⁇ (1 + R2 / R1) to control the minimum size of the rectifier output voltage VRECT (2100).
  • the rectifier output voltage VRECT 2100 bounces upward, it is mainly a light load state, and the rectifier output voltage VRECT 2100 bounces downward may be a case where the load is large.
  • FIG. 9 is a block diagram of a receiver including a regulator for controlling the magnitude of the rectifier output voltage by modulating a communication signal according to a third embodiment of the present invention.
  • the regulator 27 dynamically adjusts a voltage variation of the rectifier output voltage VRECT 2100 during communication of a receiver. Through the adjustment, the amount of change in the rectifier output voltage VRECT 2100 can be constantly controlled during communication.
  • the regulator 27 includes a first comparator 271-1, a second comparator 271-2, a first AND circuit 273-1, a second AND circuit 273-2, and a sample hold unit. (sample & hold: S / H) 275 and a communication packet duration detector 276.
  • the communication packet detector 276 generates a sample strobe signal sample_strobe 2800 at the time point at which communication is started.
  • the sample hold unit 275 detects the rectifier output voltage VRECT 2100 by the sample strobe signal sample_strobe 2800 to generate the sample signal VRECTS, and the two reference voltages VREFH 2602 and VREFL (2600) using the sample signal VRECTS. (Hold) by generating a reference generation.
  • the second reference voltage VREFH 2602 is VRECTS + Voff2
  • the first reference voltage VREFL 2600 is VRECTS-Voff1.
  • the first comparator 271-1 receives the first reference voltage VREFL 2600 and the rectifier output voltage VRECT 2100, and outputs a first comparator output signal according to the comparison
  • the second comparator 272-2 receives a first comparator 272-2.
  • the reference voltage VREFH 2602 and the rectifier output voltage VRECT 2100 are input to output a second comparator output signal according to the comparison.
  • the first AND circuit 273-1 performs an AND operation on the first comparator output signal and the second comparator output signal to output the clamp signal CLAMP1 2500
  • the second AND circuit 273-2 performs the clamp signal.
  • the result of performing a logical AND operation on the CLAMP1 2500 and the communication signal COMM_IN 2000 is to output the modulated communication signal COMM_mod 2400. Therefore, the rectifier output voltage VRECT 2100 may not be greater than VERCTS + Voff2 and less than VRECTS-Voff1 during communication.
  • the S / H unit 275 of FIG. 9 may use a capacitor or may be implemented using an ADC (A / D converter) and a DAC (D / A converter). In other words, there are various implementation methods, so it will be understood that this concept works.
  • FIG. 10 is an operation waveform diagram of the circuit of FIG. 9 according to an embodiment of the present invention.
  • the rectifier output voltage VRECT 2100 may be controlled to be smaller than VERCTS + Voff2 and larger than VRECTS-Voff1 during communication.
  • 11 is an experimental waveform diagram of an operation of controlling the minimum voltage of the rectifier output voltage VRECT during communication according to an embodiment of the present invention.
  • the rectifier output voltage VRECT can be controlled not to be lower than the minimum voltage by controlling the minimum voltage of the rectifier output voltage VRECT during communication of the receiver.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Signal Processing (AREA)
  • Dc-Dc Converters (AREA)

Abstract

통신신호 크기를 제어하는 무선 전력 수신기가 개시된다. 일 실시 예에 따른 무선 전력 수신기는 무선 전력을 수신하는 공진기와, 공진기로부터 수신된 교류 전력을 직류 전력으로 변환하여 정류기 출력전압을 출력하는 정류기와, 통신신호를 입력받아 스위칭을 통해 정류기 출력전압을 제어하는 스위치와, 통신신호에 변조를 가하여 정류기 출력전압의 전압 변동을 조정하는 레귤레이터를 포함한다.

Description

통신신호 크기를 제어하는 무선 전력 수신기
본 발명은 무선 전력 전송 기술에 관한 것이다.
무선 전력 송신기는 안테나를 통해 무선으로 전력을 무선 전력 수신기에 전송한다. 이때 안테나를 구동하는 주파수는 무선 전력 전송(wireless power transfer: WPT, 이하 WPT라 칭함) 표준(standard)에 따라 달라진다. WPT 표준은 다양하다. 예를 들어, WPC(Wireless Power Consortium)에 의한 Qi 방식과 PMA(Power Matters Alliance) 방식이 있다. 또한, A4WP(Alliance for Wireless Power) 방식이 있다.
일 실시 예에 따라, 무선 전력 전송 시스템에서 Qi 방식과 같이 진폭 변조 기법을 이용하여 송신기와 수신기 사이에 통신을 하는 경우, 수신기의 정류기의 출력전압 변동이 과도하여 수신기 출력전압의 변동을 유발하거나, 혹은 정류기 출력전압이 과전압 보호 레벨(over-voltage protection level)까지 증가하여 통신에 장애가 발생할 수 있는 문제를 해결하기 위한 무선 전력 수신기를 제안한다.
일 실시 예에 따른 무선 전력 수신기는 무선 전력을 수신하는 공진기와, 공진기로부터 수신된 교류 전력을 직류 전력으로 변환하여 정류기 출력전압을 출력하는 정류기와, 통신신호를 입력받아 스위칭을 통해 정류기 출력전압을 제어하는 스위치와, 통신신호에 변조를 가하여 정류기 출력전압의 전압 변동을 조정하는 레귤레이터를 포함한다.
레귤레이터는 통신신호를 변조시켜 변조된 통신신호를 이용하여 정류기 출력전압의 크기를 일정하게 레귤레이션함에 따라, 정류기 출력전압이 감소하여 수신기 출력전압이 변동되는 것을 방지하고 정류기 출력전압이 과전압 보호 레벨 이상으로 증가하여 과전압 보호 기능에 의해 통신 장애가 발생하는 것을 방지할 수 있다.
레귤레이터는 통신 시 정류기 출력전압이 미리 설정된 최대전압보다 크지 않도록 정류기 출력전압의 최대 크기를 제어하고, 미리 설정된 최소전압보다 작지 않도록 정류기 출력전압의 최소크기를 제어할 수 있다.
레귤레이터는 정류기 출력전압을 감지하는 정류기 출력전압 감지회로와, 감지된 정류기 출력전압을 기준전압과 비교하여 비교에 따른 비교기 출력신호를 출력하는 비교기와, 비교기 출력신호와 통신신호를 논리곱 연산하여 변조 통신신호를 출력함에 따라 변조 통신신호에 의해 스위치를 온오프 시키는 논리곱 회로를 포함할 수 있다. 비교기 출력신호가 로우(low) 상태이면 정류기 출력전압이 미리 설정된 최대전압보다 높거나 미리 설정된 최소전압보다 낮다는 의미로서, 논리곱 회로에 의해 통신신호가 하이(high) 상태여도 변조 통신신호는 로우(low) 상태가 되어 스위치를 오프(off) 시킴에 따라 정류기 출력전압이 더 이상 최대전압보다 높아지거나 최소전압보다 낮아지지 않고 통신신호가 인가되기 이전 상태가 되어 정류기 출력전압을 최대전압과 최소전압의 구간 내로 수렴시키고, 정류기 출력전압이 최대전압과 최소전압의 구간 내로 수렴되면, 비교기 출력신호가 다시 하이(high) 상태가 되어 논리곱 회로에 의해 스위치를 온(on) 시켜 의도한 통신 상태를 유지하도록 하며 통신 기간 동안 정류기 출력전압이 최대전압 또는 최소전압에 도달하는 경우 스위치의 온오프를 반복하여 정류기 출력전압이 기준전압 범위 내에서 레귤레이션될 수 있다.
레귤레이터는 정류기 출력전압을 감지하는 정류기 출력전압 감지회로와, 감지된 정류기 출력전압을 제1 기준전압과 비교하여 비교에 따른 제1 비교기 출력신호를 출력하는 제1 비교기와, 정류기 출력전압 감지회로를 통해 감지된 정류기 출력전압과 제2 기준전압(제2 기준전압은 제1 기준전압보다 큼)을 비교하여 제2 비교기 출력신호를 출력하는 제2 비교기와, 제1 비교기 출력신호와 제2 비교기 출력신호를 논리곱 연산하여 논리곱 출력신호를 출력하는 제1 논리곱 회로와, 논리곱 출력신호와 통신신호를 논리곱 연산하여 변조 통신신호를 출력함에 따라 스위치를 온오프 시키는 제2 논리곱 회로를 포함할 수 있다. 레귤레이터는 정류기 출력전압이 제2 기준전압보다 크면, 제1 비교기 출력신호는 로우(low) 상태가 되고 제1 논리곱 회로에 의해 출력되는 논리곱 출력신호는 로우(low) 상태가 되어 통신신호가 하이(high) 상태여도 제2 논리곱 회로를 통해 출력되는 변조 통신신호는 로우(low) 상태가 되어 스위치가 오프됨에 따라 정류기 출력전압을 감소시킬 수 있다.
레귤레이터는 통신신호를 감지하여 샘플 스트로브 신호를 발생시키는 통신 패킷 감지기와, 샘플 스트로브 신호에 의해 정류기 출력전압을 감지해서 샘플신호를 샘플링하고 샘플신호를 이용하여 제1 기준전압과 제2 기준전압(제2 기준전압은 제1 기준전압보다 큼)을 발생시켜 홀딩시키는 샘플 홀드부와, 제1 기준전압과 정류기 출력전압을 입력받아 비교에 따른 제1 비교기 출력신호를 출력하는 제1 비교기와, 제2 기준전압과 정류기 출력전압을 입력받아 비교에 따른 제2 비교기 출력신호를 출력하는 제2 비교기와, 제1 비교기 출력신호와 제2 비교기 출력신호를 논리곱 연산하여 클램프 신호를 출력하는 제1 논리곱 회로와, 클램프 신호와 통신신호를 논리곱 연산하여 변조된 통신신호를 출력하는 제2 논리곱 회로를 포함할 수 있다. 제1 기준전압은 미리 설정된 최소전압이고, 제2 기준전압은 미리 설정된 최대전압이며, 레귤레이터는 통신 시 정류기 출력전압이 제1 기준전압보다 작지 않도록 정류기 출력전압의 최소크기를 제어하고 제2 기준전압보다 크지 않도록 정류기 출력전압의 최대 크기를 제어할 수 있다.
무선 전력 수신기는 무선 충전에서 Qi 방식에 기반하여 인밴드(in-band) 통신을 할 수 있다.
일 실시 예에 따르면, WPT 시스템에서 통신신호를 변조시켜 변조된 통신신호를 이용하여 정류기 출력전압의 크기를 일정하게 레귤레이션함에 따라, 정류기 출력전압이 감소하여 수신기 출력전압이 변동되는 것을 방지하고 정류기 출력전압이 과전압 보호 레벨 이상으로 증가하여 과전압 보호 기능에 의해 통신 장애가 발생하는 것을 방지할 수 있다. 특히, Qi 방식과 같이 진폭 변조 기법을 이용하여 송신기와 수신기 사이에 통신을 하는 경우 적용될 수 있다.
도 1은 본 발명의 일 실시 예에 따른 무선 전력 전송 시스템의 구성도,
도 2는 수신기의 통신 시 정류기 출력전압 VRECT의 전압 변동을 보여주는 파형도,
도 3은 수신기의 통신 시 정류기 출력전압 VRECT의 전압 감소가 과도하여 수신기 출력전압 Vout이 변화되고 있는 상황을 보여주는 파형도,
도 4는 수신기의 통신 시 정류기 출력전압 VRECT가 증가하여 과전압 보호(over-voltage protection: OVP) 레벨(level)보다 높아지는 상황을 보여주는 파형도,
도 5는 본 발명의 제1 실시 예에 따른 통신신호의 변조를 통해 정류기 출력전압의 크기(depth)를 제어하는 레귤레이터를 포함한 수신기의 구성도,
도 6은 본 발명의 일 실시 예에 따른 도 5의 회로가 동작할 때의 파형도,
도 7은 본 발명의 제2 실시 예에 따른 통신신호의 변조를 통해 정류기 출력전압의 크기를 제어하는 레귤레이터를 포함한 수신기의 구성도,
도 8은 본 발명의 일 실시 예에 따른 도 7의 회로의 효과를 설명하기 위한 파형도,
도 9는 본 발명의 제3 실시 예에 따른 통신신호의 변조를 통해 정류기 출력전압의 크기를 제어하는 레귤레이터를 포함한 수신기의 구성도,
도 10은 본 발명의 일 실시 예에 따른 도 9의 회로의 동작 파형도,
도 11은 본 발명의 일 실시 예에 따른 통신 시 정류기 출력전압 VRECT의 최소전압을 제어하는 동작에 대한 실험 파형도이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다. 이하, 첨부 도면을 참조하여 본 발명의 실시 예를 상세하게 설명한다.
도 1은 본 발명의 일 실시 예에 따른 무선 전력 전송 시스템의 구성도이다.
도 1을 참조하면, 무선 전력 전송 시스템은 무선으로 전력신호를 송신하는 송신기(transmitter)(1)와 무선으로 전력신호를 수신하는 수신기(receiver)(2)를 포함한다. 무선 전력 전송방식은 여러 가지 방식이 있지만, 본 발명에서는 특히 WPC(Wireless Power Consortium)에서 제안하고 있는 Qi 방식을 중심으로 설명한다. Qi 방식은 진폭을 변화시켜 통신을 하는 방식으로, Qi 방식과 유사하게 진폭을 변화시켜 통신하는 방식이면 어느 방식이든 적용 가능하다. 무선 전력 전송 시스템은 무선 충전에서 Qi 방식에 기반하여 인밴드(in-band) 통신을 할 수 있다.
송신기(1)는 인덕터 L1(10)과 공진 커패시터 C1(11)를 포함하는 공진기가 전력 증폭기(12)로부터 전달되는 전력을 무선 전력으로 변경한다. 변경된 전력은 전기장으로 변환되어 송신기(1)와 자기 결합(magnetic coupling) 하고 있는 수신기(2)의 인덕터 L2(20)에 전류를 유기한다. 송신기(1)로부터 효율적으로 전력을 수신하기 위해, 수신기(2)는 공진 커패시터 C2(21)를 이용하여 인덕터 L2(20)와 공진 커패시터 C2(21)에 의한 공진 주파수를, 인덕터 L1(10)과 공진 커패시터 C1(11)에 의한 공진 주파수와 유사하도록 조정한다.
인덕터 L2(20)에 의한 전류는 AC 전류이므로 이것을 DC 형태의 정류기 출력전압 VRECT(2100)로 변경하기 위해 정류기(rectifier)(22)를 사용한다. 도 1에 도시된 바와 같이, 정류기(22)는 다이오드를 이용한 수동 정류기(passive rectifier)일 수 있으나, 스위치 소자를 사용한 능동 정류기(active rectifier)로 변경하여도 동작 및 효과는 동일하다. 정류기 출력전압 VRECT(2100)는 DC 형태이지만 제어되지 않은 전압이므로, 이것을 부하(load)가 원하는 정교한 전압으로 바꾸기 위해 DC-DC 전력 변환기(power converter)(26)를 사용하여 정확한 수신기 출력전압 Vout(2200)을 발생시킨다. 전력 변환기(26)는 벅 변환기(buck converter)와 같은 스위칭 변환기나, LDO와 같은 선형 레귤레이터(linear regulator)를 사용해도 무방하다.
송신기(1)와 수신기(2)는 상호 간에 통신한다. 송신기(1)와 수신기(2)는 소정의 프레임으로 구성된 패킷을 처리하거나 송수신할 수 있다. 수신기(2)는 예를 들어, 이동통신단말기, PDA, PMP, 스마트폰 등일 수 있다. 수신기(2)는 무선 전력 전송을 요청하는 신호, 무선 전력 수신에 필요한 정보, 수신기 상태정보, 송신기 제어정보 등을 송신기(2)에 송신할 수 있다.
부하에서 요구하는 전력에 따라 송신기(1)의 전력을 제어할 필요가 있다. 따라서, 수신기(2)에서는 통신을 통해 송신기(1)에 전력을 요구하게 된다. 통신 진폭편이변조(Amplitude Shift Keying: ASK)와 유사한 방식으로 이루어지게 된다. 도 1에 도시된 바와 같이, 통신신호 COMM_IN에 의해 스위치 M1(23-1), M2(23-2)를 온(on) 시키게 되면, 스위치 M1(23-1), M2(23-2)와 연결된 커패시터 Cm(24)이 공진 주파수를 변화시켜서 인덕터 L2(20)의 전압 변동을 유발한다. 인덕터 L2(20)와 인덕터 L1(10)은 자기 결합 되어 있으므로 인덕터 L1(10)에도 전압 변동이 나타난다. 송신기(1)가 인덕터 L1(10)의 전압 변동을 다이오드, 저항, 커패시터 등을 이용하여 센싱하고 필터링하여 디지털 신호를 출력하면, 신호 검출기(signal detector)(13)가 디지털 신호를 수신하여 이를 디코더(14)(decoder)에 전달한다. 디코더(14)는 이 신호를 분석하고, 전력 제어기(power controller)(15)가 디코더(14)의 분석 결과에 따라 전력 증폭기(12)의 출력전력 OUT1, OUT2을 제어한다.
도 2는 수신기의 통신 시 정류기 출력전압 VRECT의 전압 변동을 보여주는 파형도이다.
도 1 및 도 2를 참조하면, 수신기(2)가 통신할 때 스위치 M1(23-1), M2(23-2)에 의한 전압 변동은 인덕터 L2(20)의 전압 변동을 유발하기도 하지만, 도 2에 도시된 바와 같이 정류기 출력전압 VRECT(2100)의 전압 변동을 유발한다. 도 2에서는 통신신호 COMM_IN(2000)에 의해 정류기 출력전압 VRECT(2100)이 감소하는 형태로 변동되는 예를 도시하고 있다. 이 경우는 정류기 출력전압 VRECT(2100)이 전력 변환기(26)의 동작에 영향을 안 줄 정도로만 감소하여, 수신기 출력전압 Vout(2200)은 변화가 발생하지 않는다.
도 3은 수신기의 통신 시 정류기 출력전압 VRECT의 전압 감소가 과도하여 수신기 출력전압 Vout이 변화되고 있는 상황을 보여주는 파형도이다.
도 1 및 도 3을 참조하면, 커패시터 Cm(24)의 크기가 클 경우, 혹은 통신 시 공진 특성의 변화에 따라 도 3에 도시된 바와 같이 정류기 출력전압 VRECT(2100)가 과도하게 감소할 수 있다. 정류기 출력전압 VRECT(2100)가 수신기 출력전압 Vout(2200) 보다 감소함에 따라 수신기 출력전압 Vout(2200)이 통신신호 COMM_IN(2000)에 동기되어 감소하고 있다. 이 경우는 수신기 출력전압 Vout(2200)이 레귤레이션(regulation) 되지 못하고 있는 상황으로, 수신기 출력전압 Vout(2200)에 연결되는 시스템의 잡음을 유발하는 등의 좋지 않은 영향을 끼치며, 수신기 출력전압 Vout(2200)이 낮아지기 때문에 출력전력도 낮아지게 되는 문제점이 발생한다.
도 4는 수신기의 통신 시 정류기 출력전압 VRECT가 증가하여 과전압 보호(over-voltage protection: OVP, 이하 OVP라 칭함) 레벨(level)보다 높아지는 상황을 보여주는 파형도이다.
도 1 및 도 4를 참조하면, 통신 시 공진 주파수 변동은 커패시터 Cm(24)의 크기뿐만 아니라 수신기의 출력전력에도 영향을 주고, 경부하의 경우 정류기 출력전압 VRECT(2100)가 오히려 증가하기도 한다. 도 4의 경우가 이에 해당한다. 정류기 출력전압 VRECT(2100)의 증가이 과도하여 수신기(2)를 보호하기 위한 OVP 레벨 이상이 되면, 도 1의 OVP_CTRL 신호(230)가 하이(high)가 되어 OVP_CTRL 신호(230)에 의해 스위치 M3(23-3), M4(23-4)가 스위치 온(on) 되고, 스위치 M3(23-3), M4(23-4)가 정류기(22)에 과도하게 공급되는 에너지를 커패시터 Covp(25)를 통해 빠져나가게 하여 정류기 출력전압 VRECT(2100)를 감소시킨다. 이때 정류기 입력전압이 낮아지고 이것이 인덕터 L2(20)의 전압을 변경하게 된다. 따라서, 송신기(1)에서는 OVP_CTRL 신호(230)가 또 다른 통신신호로 작용한다. 문제는 통신신호 COMM_IN(2000)은 코딩(coding) 규격에 의해 만들어진 신호인데 비해, OVP_CTRL 신호(230)는 그렇지 못하므로 송신기(1)에서 이를 인식할 수 없는 점이다. 따라서, 이러한 현상이 반복되면 송신기(1)는 전력 공급을 중단하고 동작을 정지한다. 따라서 무선 전력 전송이 되지 않는다.
본 발명은 Qi 혹은 Qi와 유사하게 진폭을 변화시켜 통신을 하는 무선 전력 전송 시스템에서 수신기의 통신 시 정류기 출력전압 VRECT(2100)의 흔들림을 적절하게 제어함에 따라 정류기 출력전압 VRECT(2100)가 과도하게 낮아져서 출력이 훼손되는 것을 방지하고, 반대로 정류기 출력전압 VRECT(2100)가 과도하게 높아져서 OVP에 의해 통신 장애가 발생하는 것을 억제하는 것에 그 목적이 있다.
도 5는 본 발명의 제1 실시 예에 따른 통신신호의 변조를 통해 정류기 출력전압의 크기(depth)를 제어하는 레귤레이터를 포함한 수신기의 구성도이다.
도 5를 참조하면, 레귤레이터(27)는 정류기 출력전압 VRECT(2100)의 크기를 레귤레이션(regulation)하여 도 3에 도시된 바와 같이 정류기 출력전압 VRECT(2100)가 과도하게 낮아지는 것을 방지한다. 이를 위해, 레귤레이터(27)는 정류기 출력전압 감지회로, 비교기(271) 및 논리곱 회로(273)를 포함한다.
정류기 출력전압 감지회로는 정류기 출력전압 VRECT(2100)를 감지하는데, 예를 들어, 도 5에 도시된 바와 같이 저항 R1(2700)과 R2(2702)로 구성될 수 있다. 비교기(271)는 저항 R1(2700), R2(2702)에 의해 감지된 정류기 출력전압 VRECT(2100)과 기준전압 VREFL(2600)을 비교하여 비교에 따른 비교기 출력신호 CLAMP1(2500)를 출력한다.
레귤레이터(27)는 스위치 M1(23-1), M2(23-2)를 통신신호 COMM_IN(2000)으로 제어하지 않고, 변형된 변조 통신신호 COMM_mod(2400)로 제어한다. 변조 통신신호 COMM_mod(2400)는 정류기 출력전압 VRECT(2100)가 다음과 같은 조건이면 로우(low) 상태가 된다. 비교기 출력신호 CLAMP1(2500)이 로우(low)가 되는 조건은 다음과 같다.
VRECT < (1+R2/R1)×VREFL
비교기 출력신호 CLAMP1(2500)이 로우(low) 상태이면, 정류기 출력전압 VRECT(2100)이 미리 설정된 최대전압보다 높거나 미리 설정된 최소전압보다 낮다는 의미로서, 논리곱 회로(273)에 의해 통신신호 COMM_IN(2000)이 하이(high) 상태여도 논리곱 회로(273)의 출력신호인 변조 통신신호 COMM_mod(2400)는 로우(low) 상태가 된다. 변조 통신신호 COMM_mod(2400)가 로우(low) 상태이면, 스위치 M1(23-1), M2(23-2)가 오프(off) 된다. 이렇게 되면 정류기 출력전압 VRECT(2100)이 더 이상 최대전압보다 높아지거나 최소전압보다 낮아지지 않고 통신신호 COMM_IN(2000)가 인가되기 이전 상태가 되므로 정류기 출력전압 VRECT(2100)이 최대전압과 최소전압의 구간 내로 수렴된다.
정류기 출력전압 VRECT(2100)이 최대전압과 최소전압의 구간 내로 수렴 되면, 비교기 출력신호 CLAMP1(2500)가 다시 하이(high) 상태가 되므로 이번에는 논리곱 회로(273)에 의해 통신신호 COMM_IN(2000)이 스위치 M1(23-1), M2(23-2)에 전달되어 스위치 M1(23-1), M2(23-2)를 온(on) 시켜 의도한 통신 상태를 유지하도록 한다. 통신 기간 동안 정류기 출력전압 VRECT(2100)이 최대전압 또는 최소전압에 도달하는 경우 이러한 과정을 반복하면서 정류기 출력전압 VRECT(2100)는 (1+R2/R1)×VREFL이 되도록 레귤레이션 된다. 이러한 동작이 될 때의 동작 파형은 도 6에 도시된 바와 같다.
도 6은 본 발명의 일 실시 예에 따른 도 5의 회로가 동작할 때의 파형도이다.
도 6에 도시된 바와 같이, 정류기 출력전압 VRECT(2100)이, 통신신호 COMM_IN(2100)를 변조한 변조 통신신호 COMM_mod(2400)에 의해 통신 크기가 레귤레이션(Communication depth regulation) 되어 일정하게 유지되는 것을 확인할 수 있다.
도 5의 회로를 확장하여 통신 시 정류기 출력전압 VRECT(2100)가 과도하게 증가하는 것을 억제할 수도 있다. 도 7에 확장된 동작을 하는 회로를 소개하고 있다.
도 7은 본 발명의 제2 실시 예에 따른 통신신호의 변조를 통해 정류기 출력전압의 크기를 제어하는 레귤레이터를 포함한 수신기의 구성도이다.
도 7을 참조하면, 레귤레이터(27)는 수신기(2)의 통신 시 정류기 출력전압 VRECT(2100)의 최소전압과 최대전압을 제어한다. 이를 위해, 레귤레이터(27)는 정류기 출력전압 감지회로, 제1 비교기(271-1), 제2 비교기(271-2), 제1 논리곱 회로(273-1) 및 제2 논리곱 회로(273-2)를 포함한다.
제2 비교기(271-2)는 정류기 출력전압 감지회로를 통해 감지된 정류기 출력전압 VRECT(2100)과 제2 기준전압 VREFH(2602)을 비교하여 제2 비교기 출력신호를 출력한다. 제2 기준전압 VREFH(2602)는 제1 기준전압 VREFL(2600)보다 높은 전압이다. 제1 논리곱 회로(273-1)는 제1 비교기 출력신호와 제2 비교기 출력신호를 논리곱 연산하여 CLAMP1 신호(2500)를 출력한다. 제2 논리곱 회로(273-2)는 CLAMP1 신호(2500)와 통신신호 COMM_IN(2000)을 논리곱 연산하여 변조 통신신호 COMM_mod(2400)를 출력한다. 변조 통신신호 COMM_mod(2400)에 의해 스위치 M1(23-1), M2(23-2)가 스위칭 온오프 된다.
만약 정류기 출력전압 VRECT(2100)가 VREFH×(1+R2/R1)보다 크면(VRECT>VREFH×(1+R2/R1))이면, 제1 비교기 출력신호는 로우(low) 상태가 된다. 그러면, 제1 논리곱 회로(273-1)에 의해 출력되는 CLAMP1 신호(2500)는 로우(low) 상태가 되므로 통신신호 COMM_IN(2000)이 하이(high) 여도 스위치 M1(23-1), M2(23-2)가 스위치 오프(off) 이므로 통신신호 COMM_IN(2000)이 인가 이전의 공진 특성으로 회귀하게 되어 정류기 출력전압 VRECT(2100)이 낮아지게 된다.
단, 만약 통신 이전의 정류기 출력전압 VRECT(2100)가 VREFL×(1+R2/R1)보다 낮고 통신신호 COMM_IN(2000)에 의해 정류기 출력전압 VRECT(2100)가 낮아진다면 아예 통신이 되지 않을 수 있다. 통신 이전 정류기 출력전압 VRECT(2100)가 VREFH×(1+R2/R1) 보다 크고 통신 시 정류기 출력전압 VRECT(2100)가 증가하는 조건에서도 마찬가지도 통신이 되지 않을 수 있다. 이러한 경우를 방지하는 보호회로가 필요한데, 이 발명에서 소개하는 내용을 넘어서는 내용이고, 보호회로의 구현에 대해서는 다양한 방식이 가능하므로 본 발명에서는 소개하지 않도록 한다.
도 8은 본 발명의 일 실시 예에 따른 도 7의 회로의 효과를 설명하기 위한 파형도이다.
도 8을 참조하면, 수신기의 통신 시 정류기 출력전압 VRECT(2100)가 VREFH×(1+R2/R1) 보다 크지 않도록 정류기 출력전압 VRECT(2100)의 최대크기를 제어하고, VREFL×(1+R2/R1) 보다 작지 않도록 정류기 출력전압 VRECT(2100)의 최소크기를 제어한다. 정류기 출력전압 VRECT(2100)이 위로 튀는 경우는 주로 경부하 상태일 때고, 정류기 출력전압 VRECT(2100)이 아래로 튀는 경우는 주로 부하가 큰 경우일 수 있다.
도 9는 본 발명의 제3 실시 예에 따른 통신신호의 변조를 통해 정류기 출력전압의 크기를 제어하는 레귤레이터를 포함한 수신기의 구성도이다.
도 9를 참조하면, 레귤레이터(27)는 수신기의 통신 시 정류기 출력전압 VRECT(2100)의 전압 변동을 동적으로 조정한다. 조정을 통해 통신 시 정류기 출력전압 VRECT(2100) 변화량을 항상 일정하게 제어할 수 있다. 이를 위해 레귤레이터(27)는 제1 비교기(271-1), 제2 비교기(271-2), 제1 논리곱 회로(273-1), 제2 논리곱 회로(273-2), 샘플 홀드부(sample & hold: S/H)(275) 및 통신 패킷 감지기(Communication packet duration detector)(276)를 포함한다.
통신 패킷 감지기(276)는 통신이 시작되는 시점에서 샘플 스트로브 신호 sample_strobe(2800)를 발생시킨다. 샘플 스트로브 신호 sample_strobe(2800)에 의해 샘플 홀드부(275)가 정류기 출력전압 VRECT(2100)을 감지해서 샘플신호 VRECTS를 발생시키고 샘플신호 VRECTS를 이용하여 2개의 기준전압 VREFH(2602), VREFL(2600)을 발생(reference generation)시켜 홀딩한다. 제2 기준전압 VREFH(2602)는 VRECTS+Voff2이고, 제1 기준전압 VREFL(2600)은 VRECTS-Voff1이다.
제1 비교기(271-1)는 제1 기준전압 VREFL(2600)과 정류기 출력전압 VRECT(2100)을 입력받아 비교에 따른 제1 비교기 출력신호를 출력하고, 제2 비교기(272-2)는 제2 기준전압 VREFH(2602)과 정류기 출력전압 VRECT(2100)을 입력받아 비교에 따른 제2 비교기 출력신호를 출력한다. 제1 논리곱 회로(273-1)는 제1 비교기 출력신호와 제2 비교기 출력신호를 논리곱 연산하여 클램프 신호 CLAMP1(2500)를 출력하고, 제2 논리곱 회로(273-2)는 클램프 신호 CLAMP1(2500)와 통신신호 COMM_IN(2000)를 논리곱 연산하여 변조된 통신신호 COMM_mod(2400)를 출력한다. 따라서, 통신 시 정류기 출력전압 VRECT(2100)는 VERCTS+Voff2 이상이 될 수 없고, VRECTS-Voff1 이하가 될 수 없다.
도 9의 S/H부(275)는 커패시터를 사용해도 되고, ADC(A/D converter)와 DAC(D/A converter)를 이용하여 구현할 수도 있다. 즉, 다양한 구현 방법이 있으므로 이러한 개념으로 동작함을 이해하면 될 것이다.
도 10은 본 발명의 일 실시 예에 따른 도 9의 회로의 동작 파형도이다.
도 10을 참조하면, 정류기 출력전압 VRECT(2100)의 크기를 제어하면, 통신 시 정류기 출력전압 VRECT(2100)는 VERCTS+Voff2 보다 작고, VRECTS-Voff1 보다 크도록 제어될 수 있다.
도 11은 본 발명의 일 실시 예에 따른 통신 시 정류기 출력전압 VRECT의 최소전압을 제어하는 동작에 대한 실험 파형도이다.
도 11을 참조하면, 수신기의 통신 시에 정류기 출력전압 VRECT의 최소전압을 제어하여, 정류기 출력전압 VRECT이 최소전압보다 낮아지지 않도록 제어할 수 있음을 확인할 수 있다.
이제까지 본 발명에 대하여 그 실시 예들을 중심으로 살펴보았다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시 예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.

Claims (10)

  1. 무선 전력을 수신하는 공진기;
    상기 공진기로부터 수신된 교류 전력을 직류 전력으로 변환하여 정류기 출력전압을 출력하는 정류기;
    통신신호를 입력받아 스위칭을 통해 정류기 출력전압을 제어하는 스위치; 및
    상기 통신신호에 변조를 가하여 정류기 출력전압의 전압 변동을 조정하는 레귤레이터;
    를 포함하는 것을 특징으로 하는 무선 전력 수신기.
  2. 제 1 항에 있어서, 상기 레귤레이터는
    통신신호를 변조시켜 변조된 통신신호를 이용하여 정류기 출력전압의 크기를 일정하게 레귤레이션함에 따라, 정류기 출력전압이 감소하여 수신기 출력전압이 변동되는 것을 방지하고 정류기 출력전압이 과전압 보호 레벨 이상으로 증가하여 과전압 보호 기능에 의해 통신 장애가 발생하는 것을 방지하는 것을 특징으로 하는 무선 전력 수신기.
  3. 제 1 항에 있어서, 상기 레귤레이터는
    통신 시 정류기 출력전압이 미리 설정된 최대전압보다 크지 않도록 정류기 출력전압의 최대 크기를 제어하고, 미리 설정된 최소전압보다 작지 않도록 정류기 출력전압의 최소크기를 제어하는 것을 특징으로 하는 무선 전력 수신기.
  4. 제 1 항에 있어서, 상기 레귤레이터는
    정류기 출력전압을 감지하는 정류기 출력전압 감지회로;
    감지된 정류기 출력전압을 기준전압과 비교하여 비교에 따른 비교기 출력신호를 출력하는 비교기; 및
    비교기 출력신호와 통신신호를 논리곱 연산하여 변조 통신신호를 출력함에 따라 변조 통신신호에 의해 상기 스위치를 온오프 시키는 논리곱 회로;
    를 포함하는 것을 특징으로 하는 무선 전력 수신기.
  5. 제 4 항에 있어서,
    비교기 출력신호가 로우(low) 상태이면, 정류기 출력전압이 미리 설정된 최대전압보다 높거나 미리 설정된 최소전압보다 낮다는 의미로서, 상기 논리곱 회로에 의해 통신신호가 하이(high) 상태여도 변조 통신신호는 로우(low) 상태가 되어 상기 스위치를 오프(off) 시킴에 따라 정류기 출력전압이 더 이상 최대전압보다 높아지거나 최소전압보다 낮아지지 않고 통신신호가 인가되기 이전 상태가 되어 정류기 출력전압을 최대전압과 최소전압의 구간 내로 수렴시키고,
    정류기 출력전압이 최대전압과 최소전압의 구간 내로 수렴되면, 비교기 출력신호가 다시 하이(high) 상태가 되어 상기 논리곱 회로에 의해 상기 스위치를 온(on) 시켜 의도한 통신 상태를 유지하도록 하며,
    통신 기간 동안 정류기 출력전압이 최대전압 또는 최소전압에 도달하는 경우 스위치의 온오프를 반복하여 정류기 출력전압이 기준전압 범위 내에서 레귤레이션되는 것을 특징으로 하는 무선 전력 수신기.
  6. 제 1 항에 있어서, 상기 레귤레이터는
    정류기 출력전압을 감지하는 정류기 출력전압 감지회로;
    감지된 정류기 출력전압을 제1 기준전압과 비교하여 비교에 따른 제1 비교기 출력신호를 출력하는 제1 비교기; 및
    정류기 출력전압 감지회로를 통해 감지된 정류기 출력전압과 제2 기준전압(제2 기준전압은 제1 기준전압보다 큼)을 비교하여 제2 비교기 출력신호를 출력하는 제2 비교기;
    제1 비교기 출력신호와 제2 비교기 출력신호를 논리곱 연산하여 논리곱 출력신호를 출력하는 제1 논리곱 회로; 및
    논리곱 출력신호와 통신신호를 논리곱 연산하여 변조 통신신호를 출력함에 따라 스위치를 온오프 시키는 제2 논리곱 회로;
    를 포함하는 것을 특징으로 하는 무선 전력 수신기.
  7. 제 6 항에 있어서, 상기 레귤레이터는
    정류기 출력전압이 제2 기준전압보다 크면, 제1 비교기 출력신호는 로우(low) 상태가 되고 제1 논리곱 회로에 의해 출력되는 논리곱 출력신호는 로우(low) 상태가 되어 통신신호가 하이(high) 상태여도 제2 논리곱 회로를 통해 출력되는 변조 통신신호는 로우(low) 상태가 되어 상기 스위치가 오프됨에 따라 정류기 출력전압을 감소시키는 것을 특징으로 하는 무선 전력 수신기.
  8. 제 1 항에 있어서, 상기 레귤레이터는
    통신신호를 감지하여 샘플 스트로브 신호를 발생시키는 통신 패킷 감지기;
    샘플 스트로브 신호에 의해 정류기 출력전압을 감지해서 샘플신호를 샘플링하고 샘플신호를 이용하여 제1 기준전압과 제2 기준전압(제2 기준전압은 제1 기준전압보다 큼)을 발생시켜 홀딩시키는 샘플 홀드부;
    제1 기준전압과 정류기 출력전압을 입력받아 비교에 따른 제1 비교기 출력신호를 출력하는 제1 비교기;
    제2 기준전압과 정류기 출력전압을 입력받아 비교에 따른 제2 비교기 출력신호를 출력하는 제2 비교기;
    제1 비교기 출력신호와 제2 비교기 출력신호를 논리곱 연산하여 클램프 신호를 출력하는 제1 논리곱 회로; 및
    클램프 신호와 통신신호를 논리곱 연산하여 변조된 통신신호를 출력하는 제2 논리곱 회로;
    를 포함하는 것을 특징으로 하는 무선 전력 수신기.
  9. 제 8 항에 있어서,
    제1 기준전압은 미리 설정된 최소전압이고, 제2 기준전압은 미리 설정된 최대전압이며,
    상기 레귤레이터는 통신 시 정류기 출력전압이 제1 기준전압보다 작지 않도록 정류기 출력전압의 최소크기를 제어하고 제2 기준전압보다 크지 않도록 정류기 출력전압의 최대 크기를 제어하는 것을 특징으로 하는 무선 전력 수신기.
  10. 제 1 항에 있어서, 상기 무선 전력 수신기는
    무선 충전에서 Qi 방식에 기반하여 인밴드(in-band) 통신을 하는 것을 특징으로 하는 무선 전력 수신기.
PCT/KR2017/008085 2016-07-27 2017-07-27 통신신호 크기를 제어하는 무선 전력 수신기 WO2018021842A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780035973.0A CN109314408A (zh) 2016-07-27 2017-07-27 控制通信信号大小的无线电力接收器
US16/305,070 US20200274402A1 (en) 2016-07-27 2017-07-27 Wireless power receiver controlling magnitude of communication signal

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0095548 2016-07-27
KR20160095548 2016-07-27
KR10-2016-0163749 2016-12-02
KR1020160163749A KR101853913B1 (ko) 2016-07-27 2016-12-02 통신신호 크기를 제어하는 무선 전력 수신기

Publications (1)

Publication Number Publication Date
WO2018021842A1 true WO2018021842A1 (ko) 2018-02-01

Family

ID=61016741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/008085 WO2018021842A1 (ko) 2016-07-27 2017-07-27 통신신호 크기를 제어하는 무선 전력 수신기

Country Status (1)

Country Link
WO (1) WO2018021842A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111277027A (zh) * 2018-12-04 2020-06-12 恩智浦有限公司 无线充电系统的动态调节

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120071626A (ko) * 2010-12-23 2012-07-03 삼성전자주식회사 인 밴드 통신을 이용한 무선 전력 송수신 시스템
KR20120127616A (ko) * 2010-01-25 2012-11-22 액세스 비지니스 그룹 인터내셔날 엘엘씨 무선 전력 링크 상에서 데이터 통신을 검출하기 위한 시스템들 및 방법들
KR20120132375A (ko) * 2011-05-27 2012-12-05 삼성전자주식회사 무선 전력을 이용한 인 밴드 데이터 통신 시스템
KR20130135285A (ko) * 2010-12-20 2013-12-10 퀄컴 인코포레이티드 무선 전력 피어 투 피어 통신
KR20150057946A (ko) * 2013-11-18 2015-05-28 리치테크 테크놀로지 코포레이션 전원관리유닛 및 이를 응용하는 무선전력시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120127616A (ko) * 2010-01-25 2012-11-22 액세스 비지니스 그룹 인터내셔날 엘엘씨 무선 전력 링크 상에서 데이터 통신을 검출하기 위한 시스템들 및 방법들
KR20130135285A (ko) * 2010-12-20 2013-12-10 퀄컴 인코포레이티드 무선 전력 피어 투 피어 통신
KR20120071626A (ko) * 2010-12-23 2012-07-03 삼성전자주식회사 인 밴드 통신을 이용한 무선 전력 송수신 시스템
KR20120132375A (ko) * 2011-05-27 2012-12-05 삼성전자주식회사 무선 전력을 이용한 인 밴드 데이터 통신 시스템
KR20150057946A (ko) * 2013-11-18 2015-05-28 리치테크 테크놀로지 코포레이션 전원관리유닛 및 이를 응용하는 무선전력시스템

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111277027A (zh) * 2018-12-04 2020-06-12 恩智浦有限公司 无线充电系统的动态调节

Similar Documents

Publication Publication Date Title
KR101853913B1 (ko) 통신신호 크기를 제어하는 무선 전력 수신기
US11056878B2 (en) Overvoltage protection circuit for wireless power receiver
US10199866B2 (en) Control circuit for wireless power receiver and control method
US9318897B2 (en) Reducing corruption of communication in a wireless power transmission system
US9627985B2 (en) Power converter output voltage clamp and supply terminal
US9973039B2 (en) Power receiver, wireless power system and related method of transmitting information with a power receiver
JP6632308B2 (ja) ワイヤレス送電装置、その制御回路および制御方法、充電器
WO2015072652A1 (ko) 다중 배터리 충전기 및 그 제어방법
US20160006267A1 (en) Wireless or wired power delivery using a controllable power adapter
WO2013055171A1 (en) Apparatus and method for modulating supply for a power amplifier
US20190296786A1 (en) Single switch modulation circuit and wireless charging receiver
KR20200024284A (ko) 무선 수신기 정류기 하부측 전류 제한형 동작
CN107925268A (zh) 感应式功率接收器
WO2018021842A1 (ko) 통신신호 크기를 제어하는 무선 전력 수신기
JP2016131436A (ja) ワイヤレス受電装置、電子機器、ワイヤレス送電装置からの最大送信電力の検出方法
WO2011136591A2 (ko) 옥내 직류전력 시스템 및 그 전력선 통신방법
CN111509821B (zh) 无线充电接收端、终端及无线充电方法
KR20180032927A (ko) 무선 전력 송신 장치
WO2017086628A1 (ko) 단일 안테나 기반 무선충전 및 근거리 통신 제어장치 및 그 사용자 단말
WO2015186950A1 (ko) 디지털-아날로그 변환방법 및 장치
CN211702034U (zh) 通过调制和解调电压和电流在电源线上双向通信的系统
WO2019013555A1 (ko) Led 램프의 과전압보호 제어 회로
WO2024096300A1 (ko) 무선 전력 수신 장치 및 그 동작 방법
WO2023204450A1 (ko) 무선 전력 수신 장치 및 이의 동작 방법
US6119090A (en) Subscriber line interface circuit which automatically adjusts the signal headroom on a telephone line and a method of doing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834783

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17834783

Country of ref document: EP

Kind code of ref document: A1