WO2018021414A1 - Eye-safe light source and electronic device - Google Patents

Eye-safe light source and electronic device Download PDF

Info

Publication number
WO2018021414A1
WO2018021414A1 PCT/JP2017/027060 JP2017027060W WO2018021414A1 WO 2018021414 A1 WO2018021414 A1 WO 2018021414A1 JP 2017027060 W JP2017027060 W JP 2017027060W WO 2018021414 A1 WO2018021414 A1 WO 2018021414A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
eye
light source
safe
laser
Prior art date
Application number
PCT/JP2017/027060
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 晋
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2018021414A1 publication Critical patent/WO2018021414A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements

Definitions

  • the present invention relates to an eye-safe light source that has been made eye-safe and an electronic device including the same.
  • Patent Document 1 discloses an optical proximity sensor (reflective optical coupling device) mounted on a mobile phone.
  • the power source is a battery, it is strongly desired to reduce the power consumption of the mounted module. Moreover, also in the wireless optical communication equipment using illumination, reduction of power consumption is desired from the viewpoint of energy efficiency. In the wireless optical communication module, the optical sensor module, and the like, since the light source that mainly emits light consumes power, it is desired to reduce the power consumption of the light source.
  • light sources for wireless optical communication and optical sensoring, etc. must ensure safety (eye-safe) for human eyes. Moreover, in order to use it for wireless optical communication, optical sensing, etc., it is necessary to arrange light distribution.
  • Patent Documents 2 to 4 disclose eye-safe light sources in which laser light emitted from a semiconductor laser is made eye-safe.
  • the laser light passes through the light scattering layer, so that the spot diameter of the laser light is widened and the laser light is made eye-safe.
  • Patent Document 5 discloses a lens shape that adjusts light from an eye-safe light source in which such laser light is made eye-safe into a light intensity distribution suitable for wireless optical communication and adjusts light distribution characteristics.
  • the conventional eye-safe light source has a problem that the alignment characteristics are lost due to the eye-safe and a problem that the light emission efficiency is low.
  • the present invention has been made in view of the above-described problems, and an object thereof is to improve luminous efficiency while adjusting alignment characteristics in an eye-safe light source.
  • an eye-safe light source includes a substrate and a semiconductor laser that emits laser light from a light emitting end surface, and the semiconductor laser uses the laser light as a reference of the substrate.
  • the substrate is bonded to the substrate so as to be emitted in a horizontal direction with respect to the surface, and the substrate has a reflection surface that reflects the laser light, and the reflection surface is provided to face the light emitting end surface.
  • it is made up of an assembly of multi-stage inclined surfaces, and the inclination angle of the inclined surfaces is different so as to be closer to the laser light emitting end.
  • the eye-safe light source has the effect of improving the light emission efficiency while adjusting the alignment characteristics.
  • the eye-safe light source can be reduced in thickness and size.
  • FIG. 1A is a top view of the resin portion seen through
  • FIG. 2B is a cross-sectional view taken along line AA in FIG.
  • C is a cross-sectional view taken along the line BB of (a)
  • d is a cross-sectional view taken along the line CC of (a)
  • e is a perspective view of the resin portion.
  • F is a cross-sectional view taken along the line AA schematically showing the light emission state of (b).
  • FIG. 6A is a graph showing the light intensity distributions of the light from the model light source having the light distribution characteristics shown in FIG. 6 and the light reflected by the reflection surface shown in FIG. 2 and the light reflected by the reflection surfaces of the two comparative examples.
  • (B) is a graph showing an enlarged main part of (a). The light intensity distribution of the reflected light from the reflection surface of the above-mentioned middle-stage inclined surface, the reflected light from the upper-stage inclined surface, the reflected light from the lower-stage inclined surface, the combined light of these reflected lights, and the reflective surface of the comparative example shown in FIG. It is a graph to show.
  • (A) is a perspective view which shows typically the radiation
  • (A) is a graph which shows the typical light distribution characteristic of the laser beam shown to (a) of FIG. 9, (b) is the typical light distribution characteristic of the reflected light shown to (b) of FIG.
  • (C) is a graph showing typical light distribution characteristics obtained when the reflected light shown in (b) of FIG.
  • FIG. 7 is a diagram showing a schematic configuration around a semiconductor laser of an eye-safe light source according to another modification of the first embodiment, (a) is a top view through which a resin portion is seen, and (b) is A1-A1 of (a). It is arrow sectional drawing, (c) is B1-B1 arrow sectional drawing of (a).
  • FIG. 5 is a diagram showing a schematic configuration around a semiconductor laser of an eye-safe light source according to Embodiment 2 of the present invention, where (a) is a top view seen through a resin portion, and (b) is a view taken along a DD arrow in (a).
  • FIG. 3C is a cross-sectional view taken along the line EE in FIG. 4A, and FIG.
  • FIG. 4D is a cross-sectional view taken along the line FF in FIG.
  • (A) is sectional drawing which shows the light emission state of the eye safe light source shown in FIG. 14,
  • (b) is a side view of the said eye safe light source,
  • (c) is a side view of the said eye safe light source in the light emission state.
  • (A) is a perspective view which shows typically the radiation
  • (b) is shown to (a) mounted in the package shown in FIG. It is a perspective view which shows typically the radiation of the reflected light of the light from a semiconductor laser
  • (c) is a schematic diagram which shows the state through which the reflected light shown to (b) passed the light-scattering layer.
  • FIG. 10 is a diagram illustrating a schematic configuration around a semiconductor laser of an eye-safe light source according to a modification of the second embodiment, where (a) is a top view seen through a resin portion, and (b) is a view taken along arrows D1-D1 in (a). It is sectional drawing, (c) is E1-E1 arrow sectional drawing of (a).
  • FIG. 10 is a diagram illustrating a schematic configuration around a semiconductor laser of an eye-safe light source according to another modification of the second embodiment, wherein (a) is a top view of the resin portion seen through, and (b) is D2-D2 of (a). It is arrow sectional drawing, (c) is E2-E2 arrow sectional drawing of (a).
  • FIG. 3 It is a figure which shows schematic structure of the semiconductor laser periphery of the eye safe light source which concerns on Embodiment 3 of this invention
  • (a) is the top view which saw through the resin part
  • (b) is GG arrow of (a).
  • (C) is a cross-sectional view taken along the line HH of (a)
  • (d) is a cross-sectional view taken along the line II of (a)
  • (e) is a cross-sectional view of (a).
  • (f) is KK arrow sectional drawing of (a).
  • (A) is sectional drawing which shows the light emission state of the eye safe light source shown in FIG.
  • (b) is a side view of the said eye safe light source
  • (c) is a side view of the said eye safe light source in a light emission state.
  • (A) is a graph showing the light distribution characteristics when the inclination angle of the central axis of the reflecting surface shown in (b) of FIG. 20 is 3 °, and (b) is shown in (b) of FIG. It is a graph which shows the light distribution characteristic in case the inclination angle of the central axis of a reflective surface is 5 degrees.
  • (A) is a figure which shows the typical mapping of the light intensity at the time of projecting the light of the light distribution characteristic shown to (a) of FIG. 21,
  • (b) is the light distribution characteristic shown to (b) of FIG.
  • FIG. 5 is a diagram showing a schematic configuration around a semiconductor laser of a light source according to a fourth embodiment of the present invention, (a) is a top view seen through a resin portion, and (b) is a cross-sectional view taken along line LL in (a).
  • FIG. 6 is a diagram illustrating a schematic configuration around a semiconductor laser of a light source according to a fifth embodiment of the present invention, wherein (a) is a top view seen through a resin portion, and (b) is a cross-sectional view taken along line OO in (a).
  • FIG. 26 is a cross-sectional view taken along the line PP of (a)
  • (d) is a cross-sectional view taken along the line QQ of (a)
  • (e) is a cross-sectional view taken along the line R-- It is R arrow sectional drawing
  • (f) is SS arrow sectional drawing of (a).
  • (A) is sectional drawing which shows the light emission state of the eye safe light source shown in FIG. 26,
  • (b) is a side view of the said eye safe light source,
  • (c) is that the central axis of a reflective surface inclines with respect to an optical axis. It is a side view of the eye safe light source in the light emission state which is not.
  • FIG. 26 is a cross-sectional view taken along the line PP of (a)
  • (d) is a cross-sectional view taken along the line QQ of (a)
  • (e) is a cross-sectional view taken along the line R-- It is R arrow
  • FIG. 9 is a diagram showing a schematic configuration around a semiconductor laser of a light source according to a sixth embodiment of the present invention, (a) is a top view seen through a resin portion, and (b) is a cross-sectional view taken along the line TT of (a). It is a figure and (c) is the U arrow directional cross-sectional view of (a).
  • FIG. 10 is a diagram showing a schematic configuration around a semiconductor laser of another light source according to Embodiment 6 of the present invention, (a) is a top view seen through a resin portion, and (b) is a VV arrow in (a). It is a sectional view taken along line (c), and is a sectional view taken along line XX in (a). It is a figure which shows schematic structure of the optical sensor which concerns on Embodiment 7 of this invention.
  • Embodiment 1 Hereinafter, Embodiment 1 of the present invention will be described in detail with reference to FIG.
  • FIG. 1 is a diagram showing a schematic configuration around a semiconductor laser 100 of an eye-safe light source 1 according to Embodiment 1 of the present invention.
  • FIG. 1A is a top view of the resin portion 106 seen through.
  • FIG. 1B is a cross-sectional view taken along the line AA in FIG.
  • FIG. 1C is a cross-sectional view taken along the line BB in FIG. 1D is a cross-sectional view taken along the line CC of FIG. 1A
  • FIG. 1E is a bottom view of the resin portion 106 not seen through.
  • FIG. 1F is a cross-sectional view taken along the line AA schematically showing the light emission state of FIG.
  • the direction in which the eye-safe light source 1 emits light will be described as above. However, the direction of the eye-safe light source 1 at the time of manufacture and use is not limited.
  • the eye-safe light source 1 includes a semiconductor laser 100 that emits laser light 114 mainly from the right light emitting end surface 100r of the left and right sides, a submount 102 on which the semiconductor laser 100 is mounted, and a metal lead frame (hereinafter referred to as “a”
  • a package (substrate) 108 having a lead frame 104 (not shown) and a resin portion 106, and a wire 110 are provided.
  • the eye safe light source 1 is a surface mount type.
  • the eye-safe light source 1 is provided with a mark 112 so that the directions of the anode and the cathode can be seen.
  • the optical axis 118 (symmetry axis) indicates the direction in which the eye-safe light is emitted from the eye-safe light source 1, and is perpendicular to the upper surface of the lead frame 104 and the upper surface of the package 108.
  • the package 108 is a member in which the periphery of the lead frame 104 is partially covered (packaged) with the resin portion 106.
  • a concave portion 120 having an opening (opening portion) 124 is formed in the resin portion 106, and a part of the upper surface (exposed portion 122) of the lead frame 104 is exposed from the concave portion 120.
  • the opening 124 serves as an emission end of the laser beam 114 and opens on the upper surface of the package 108.
  • the package 108 houses the semiconductor laser 100 inside the recess 120.
  • the lead frame 104 is obtained by punching and plating a thin metal plate such as a copper-based alloy and is excellent in thermal conductivity, heat dissipation, mechanical strength, and electrical conductivity. Since the exposed portion 122 is electrically and thermally connected to the semiconductor laser 100 on the top surface of the lead frame 104, it is not covered with the resin portion 106 as shown in FIGS. Are exposed in the recess 120. Most of the lower surface of the lead frame 104 is exposed downward from the resin portion 106 to dissipate heat, as shown in FIGS. The lead frame 104 is electrically connected to the outside through lead terminals not shown in FIG. Alternatively, the lead frame 104 may be electrically connected to the outside through the lower surface of the lead frame 104 exposed from the resin portion 106.
  • the lead frame 104 includes a cathode portion 104 c connected to the cathode of the semiconductor laser 100 and an anode portion 104 a connected to the anode of the semiconductor laser 100.
  • the cathode portion 104 c and the anode portion 104 a are joined by the resin portion 106 and insulated by the resin portion 106.
  • the submount 102 on which the semiconductor laser 100 is mounted is bonded onto the exposed portion 122 of the cathode portion 104c. It should be noted that the size of the cathode portion 104c and the anode portion 104a and the arrangement with respect to the semiconductor laser 100 may be reversed.
  • the top surface of the lead frame 104 is parallel to the bottom surface (reference surface) of the package 108.
  • the resin forming the resin portion 106 is a white thermoplastic resin including a light scatterer that scatters the laser light 114, and is a resin often used for LED (Light Emitting Diode) light sources.
  • the resin portion 106 may be formed of, for example, polycyclohexylene dimethylene terephthalate (PCT) resin or polyphthalamide (PPA) resin.
  • PCT polycyclohexylene dimethylene terephthalate
  • PPA polyphthalamide
  • white resin was used in order to improve a reflectance, you may use resin of another color, such as red, according to the wavelength of the laser beam 114 and the use of the eye safe light source 1.
  • a thermoplastic resin is used, a resin having another property such as thermosetting or photo-curing may be used depending on the manufacturing method of the package 108.
  • a control element for controlling light emission of the semiconductor laser 100 may be bonded to the lead frame 104 and sealed with the resin portion 106. Further, other semiconductor elements may be sealed inside the package 108 by the resin portion 106.
  • the mark 112 is formed as a depression of a right isosceles triangle on the resin portion 106 on the upper surface of the package 108. Thereby, since the mark 112 can be formed simultaneously with the molding of the resin portion 106, it is possible to eliminate an error in attaching the mark 112. Note that the mark 112 is not necessarily provided.
  • the lead frame 104 Since the lead frame 104 is made of metal, it has excellent thermal conductivity and heat dissipation. Therefore, by joining the submount 102 on which the semiconductor laser 100 is placed to the exposed portion 122 of the lead frame 104, the heat generated by the semiconductor laser 100 can be quickly radiated. Therefore, the eye-safe light source 1 is excellent in heat dissipation.
  • the package 108 including the metal lead frame 104 is superior in mechanical strength to a package not including the metal lead frame 104. For this reason, even if the package 108 is thinned, the mechanical strength required for the eye-safe light source 1 can be achieved, and the eye-safe light source 1 can be thinned.
  • the recess 120 includes a first recess 1201 having a substantially inverted quadrangular frustum shape and a second recess 1202 having a semicircular substantially multi-stage inverted truncated cone shape.
  • First recess 1201 is formed to expose semiconductor laser 100, submount 102, and wire 110.
  • the second recess 1202 is formed on the side surface on the side from which the laser beam 114 is emitted among the four side surfaces forming the first recess 1201.
  • the inside of the recess 120 is a cavity, and the opening 124 of the recess 120 is opened without being closed. Therefore, there is nothing in particular in the vicinity of the light emitting end face (right light emitting end face 100r) of the semiconductor laser 100, and air is present.
  • the function of the eye-safe light source 1 does not deteriorate due to the modification of the substance in the vicinity of the light emitting end face. That is, it is possible to prevent the eye-safe property and the light emission efficiency of the eye-safe light source 1 from being lowered due to continuous use and long-time use. Thereby, the service life of the eye-safe light source 1 is extended.
  • the eye-safe light source 1 there is neither a material that is thermally damaged nor a material that is optically damaged in the recess 120, so that the material in the vicinity of the light emitting end face of the semiconductor laser 100 is thermally optically optical. Will not be damaged.
  • portions other than the light emitting end face of the semiconductor laser 100 may be covered with a resin or the like.
  • the light emitting end face of the semiconductor laser 100 may be covered as long as it is a substance that does not generate heat by absorbing the laser light 114, such as a transparent resin that does not include a light scatterer.
  • the inside of the recess 120 is hollow, and the semiconductor laser 100 inside the recess 120 is exposed without being sealed with resin or gas. Furthermore, since the semiconductor laser 100 is bonded to the lead frame 104 via the submount 102, the semiconductor laser 100 can be expanded and contracted according to temperature changes. Thus, it is preferable that the semiconductor laser 100 can be expanded and contracted from the viewpoint of reducing the mechanical load.
  • the semiconductor laser 100 generates heat when it emits light. For this reason, when the semiconductor laser 100 is resin-sealed, stress is generated due to a difference in thermal expansion coefficient between the semiconductor laser 100 and the sealing resin, and a mechanical load is applied to the semiconductor laser 100 and the sealing resin. . Although the result of such a mechanical load has not been clarified, there is a concern that some defect may occur. Therefore, it is preferable not to resin-seal the semiconductor laser 100 so that stress is not generated. Further, even when the semiconductor laser 100 is sealed with an inert gas, the sealing gas expands due to the heat generated by the semiconductor laser 100, and stress is generated on the package 108. A load is added. For this reason, it is preferable not to hermetically seal the semiconductor laser 100.
  • the submount 102 is joined to the center of the bottom of the recess 120 of the package 108 and joined to the exposed portion 122 of the cathode portion 104 c of the lead frame 104.
  • the submount 102 is electrically connected to the anode of the semiconductor laser 100, and is electrically connected to the anode portion 104 a of the lead frame 104 via the wire 110.
  • the submount 102 is thermally connected to the semiconductor laser 100 and thermally connected to the cathode portion 104 c of the lead frame 104.
  • the semiconductor laser 100 is an infrared semiconductor laser that emits laser light having a wavelength longer than 700 nm.
  • the semiconductor laser 100 emits laser light 114 mainly from the right light emitting end face 100r as shown in FIG. Therefore, the left and right end faces and the vicinity of the end faces of the resonator formed in the semiconductor laser 100 are optically asymmetric.
  • An optical window structure may be formed in the vicinity of the light emitting end face.
  • the semiconductor laser 100 is mounted on the submount 102 so that the right light emitting end face 100r protrudes from the submount 102 as shown in FIGS. 1 (a), (b), and (f). Since the right light emitting end face 100r protrudes, the laser beam 114 is emitted toward the resin portion 106 without being blocked by the submount 102.
  • the semiconductor laser 100 is bonded to the lead frame 104 via the submount 102 so that the optical axes of the laser beams 114 are aligned in parallel with the upper surface of the lead frame 104 ((f) in FIG. 1). That is, the semiconductor laser 100 is mounted on the lead frame 104 so that the resonator of the semiconductor laser 100 is parallel to the upper surface of the lead frame 104 and the active layer of the semiconductor laser 100 is parallel to the upper surface of the lead frame 104. On the other hand, it is placed flat.
  • the semiconductor laser 100 is an infrared laser. Therefore, in this case, the resin portion 106 has sufficient durability and long-term reliability with respect to the laser beam 114 emitted from the semiconductor laser 100.
  • the semiconductor laser 100 may be a visible light semiconductor laser that emits laser light having a wavelength in the visible light region, or may be an ultraviolet semiconductor laser that emits laser light having a wavelength in the ultraviolet region. Good.
  • the laser light 114 emitted from the semiconductor laser 100 is emitted toward the resin portion 106 without being blocked by the submount 102. Therefore, since the shadow of the submount 102 does not occur, the light extraction efficiency of the eye-safe light source 1 with respect to the laser light 114 can be improved. Furthermore, the power consumption of the electronic device provided with the eye safe light source 1 and the eye safe light source 1 can be suppressed by improving the light extraction efficiency.
  • the semiconductor laser 100 is bonded to the upper surface of the lead frame 104 through the submount 102. For this reason, the laser beam 114 emitted from the semiconductor laser 100 can travel straight to the lower side (lead frame 104 side) while spreading similarly to the upper side (opening 124 side) without being blocked by the submount 102. Yes ((f) in FIG. 1). Since the laser beam 114 travels straight in the same manner on the upper side and the lower side, it becomes easy to predictably control the light distribution of the laser beam 114 on the reflection surface 116 made of the resin portion 106.
  • the semiconductor laser 100 is mounted flat on the lead frame 104. For this reason, the depth of the recessed part 120 (distance between the upper base and the lower bottom of the recessed part 120) can be made shallow. Therefore, the package 108, that is, the eye-safe light source 1 can be reduced in thickness and size. Further, the optical path length until the laser beam 114 reaches the reflecting surface 116 can be increased without changing the depth of the recess 120. Thus, since the optical path length can be secured not in the thickness direction of the package 108 (direction parallel to the optical axis 118) but in the surface direction of the package 108 (direction perpendicular to the optical axis 118), the eye-safe light source 1 is made thin. it can.
  • the wire 110 is a gold wire and is a power line that supplies power for driving the semiconductor laser 100.
  • a single wire 110 connects the cathode of the semiconductor laser 100 and the cathode portion 104c of the lead frame 104.
  • the single wire 110 extends from the semiconductor laser 100 to the front side (lower side in FIG. 1A), and is emitted in a horizontal direction with respect to the upper surface of the lead frame 104 when viewed from the direction of the optical axis 118.
  • the laser beam 114 is substantially orthogonal to the optical axis.
  • Another wire 110 connects the submount 102 connected to the anode of the semiconductor laser 100 and the anode portion 104 a of the lead frame 104.
  • the other single wire 110 extends from the submount 102 to the rear side (upper side in FIG. 1A), and is emitted in parallel to the upper surface of the lead frame 104 when viewed from the direction of the optical axis 118.
  • the laser beam 114 is substantially orthogonal to the optical axis.
  • each of the wires 110 is substantially orthogonal to the laser beam 114 when viewed from above. For this reason, the laser beam 114 is not blocked by the wire 110. Therefore, since the shadow of the wire 110 does not occur, the light extraction efficiency of the eye-safe light source 1 with respect to the laser beam 114 can be improved. Furthermore, the power consumption of the electronic device provided with the eye safe light source 1 and the eye safe light source 1 can be suppressed by improving the light extraction efficiency.
  • Reflective surface the reflection surface 116 that reflects the laser beam 114 will be described.
  • the reflective surface 116 is a surface on which the second recess 1202 is formed, and is one side surface facing the right light emitting end surface 100r of the semiconductor laser 100 that emits the laser light 114.
  • the reflecting surface 116 is perpendicular to the upper surface of the lead frame 104 and is plane symmetric with respect to a surface passing through the central axis of the resonator of the semiconductor laser 100.
  • the reflection surface 116 is composed of an assembly of a plurality of inclined surfaces inclined upward with respect to the upper surface of the lead frame 104. Due to the inclination of each inclined surface, the laser beam 114 emitted in the horizontal direction with respect to the upper surface of the lead frame 104 is reflected in the peripheral direction of the optical axis 118 centering on the direction of the optical axis 118. Moreover, since the reflecting surface 116 is the surface of the resin part 106 containing a light-scattering body, it reflects and reflects the laser beam 114. Due to the shape of the reflecting surface 116 and the scattering reflection on the reflecting surface 116, the spot diameter of the laser beam 114 is appropriately widened. Therefore, the light density of the laser beam 114, particularly the light density around the optical axis, is lower after reflection than before reflection. Become.
  • the inclined surfaces that reflect the laser beam 114 are divided into the second lower inclined surface 1161 from the lower side, the middle inclined surface 1162 above the lower inclined surface 1161, and the upper (upper) of the intermediate inclined surface 1162.
  • the smallest inclined angle with respect to the upper surface of the lead frame 104 is the lower inclined surface 1161, and the inclined angle with respect to the upper surface of the lead frame 104 is The largest is the upper inclined surface 1163.
  • the reflecting surface 116 has a shape obtained by dividing the locus of the outer peripheral surface of the rotating body rotated around the predetermined axis (rotating axis) by the side surface of the first recess 1201.
  • the laser beam 114 reaches the reflecting surface 116 while maintaining the alignment characteristics when emitted, and can be scattered and reflected upward while controlling the subsequent light distribution in a predictable manner.
  • the laser beam 114 When the laser beam 114 is emitted from the right light emitting end surface 100r of the semiconductor laser 100 substantially parallel to the upper surface of the lead frame 104, the laser beam 114 is emitted so as to spread at a certain angle from the spot diameter in units of micrometers. For this reason, the laser beam 114 is highly coherent, but spreads away from the right light emitting end surface 100r, so that the light density of the laser beam 114 decreases.
  • the spread angle of the laser beam 114 emitted from the semiconductor laser 100 which is an infrared semiconductor laser is about 20 ° in the direction perpendicular to the active layer and about 10 ° in the direction parallel to the active layer.
  • the laser beam 114 travels while spreading, the spot diameter of the laser beam 114 spreads on the reflecting surface 116 away from the light emitting end surface, and the light density of the laser beam 114 is reduced to some extent. Therefore, the laser beam 114 is already made eye-safe to some extent before being scattered and reflected by the reflecting surface 116.
  • the laser beam 114 that has already been made eye-safe to some extent is scattered and reflected by the reflecting surface 116, the laser beam 114 is sufficiently made eye-safe. Since the laser light 114 that is sufficiently eye-safe in this way is emitted from the opening 124 that opens on the upper surface of the package 108, the light emitted from the eye-safe light source 1 is sufficiently eye-safe.
  • the luminous efficiency of the eye-safe light source 1 which is the amount of light emitted from the eye-safe light source 1 with respect to the power consumed by the eye-safe light source 1, will be described.
  • the inside of the recess 120 is a cavity, and there is no light scatterer that scatters the laser beam 114. For this reason, the laser beam 114 reaches the reflecting surface 116 without being scattered. Therefore, the scattered light is not absorbed by the submount 102. For this reason, the eye safe light source 1 is excellent in luminous efficiency.
  • the inside of the recess 120 is a cavity, and the semiconductor laser 100 is covered with air. Since the semiconductor laser 100 is an infrared semiconductor laser, the light emitting end face is optimized and designed to maximize the efficiency of extracting light from the atmosphere (air), as is generally the case. Therefore, since the light can be extracted from the semiconductor laser 100 with maximum efficiency, the eye-safe light source 1 is excellent in luminous efficiency.
  • the eye safe light source 1 is excellent in luminous efficiency.
  • the wire 110 is substantially perpendicular to the direction in which the laser beam 114 is emitted when viewed from above (viewed from a direction perpendicular to the lead frame 104). For this reason, the wire 110 does not block the optical path of the laser beam 114, and the shadow of the wire 110 does not occur in the virtual light source in which the laser beam 114 is made eye-safe. For this reason, the eye safe light source 1 is excellent in luminous efficiency. Furthermore, since the wire 110 extends inside the recess 120 where there is no light scatterer, the wire 110 does not absorb the scattered light. For this reason, the eye safe light source 1 is excellent in luminous efficiency.
  • the semiconductor laser 100 is mounted on the submount 102 so that the right light emitting end surface 100r protrudes from the submount 102 when viewed from above. For this reason, the laser beam 114 emitted so as to spread from the right light emitting end surface 100r reaches the reflecting surface 116 without being blocked by the submount 102. Further, the semiconductor laser 100 is lifted from the upper surface of the lead frame 104 by sandwiching the submount 102 between the semiconductor laser 100 and the lead frame 104. For this reason, the laser beam 114 can reach the reflecting surface 116 directly without being reflected by the upper surface of the lead frame 104 and without being blocked by the lead frame 104. Therefore, since the shadow of the submount 102 does not occur in the virtual light source in which the laser beam 114 is made eye-safe, and no stray light is generated by reflection on the lead frame 104, the eye-safe light source 1 is excellent in luminous efficiency.
  • the resin portion 106 having the reflective surface 116 is a white resin including a light scatterer often used for LED light sources. For this reason, the light reflectivity of the reflective surface 116 is high and the light absorption rate is low. Therefore, the eye-safe light source 1 is excellent in luminous efficiency.
  • the laser beam 114 is scattered and reflected by the reflecting surface 116, but is not scattered before reaching the reflecting surface 116. For this reason, the intensity distribution of the light density of the laser beam 114 scattered and reflected by the reflecting surface 116 is determined by shaping the light distribution characteristics depending on the shape of the reflecting surface 116 and averaging by appropriate scattering on the reflecting surface 116. For this reason, the reflection surface 116 lowers the strong intensity peak on the optical axis (center of the spot) of the laser beam 114, and averages the intensity of the light density between the periphery and the center of the spot, while distributing the light distribution characteristics. Can be arranged. Further, the laser beam 114 is sufficiently eye-safe without passing through a light scattering layer including a light scatterer that scatters the laser beam. For this reason, in the eye-safe light source 1, the light distribution characteristics of the laser light 114 can be adjusted while making the laser light 114 eye-safe, and the polarization characteristics of the laser light 114 can be maintained at least partially.
  • the laser light is made eye-safe by passing through a light scattering layer including a light scatterer that scatters the laser light. For this reason, the laser light loses its light distribution characteristics and polarization characteristics due to multiple scattering while passing through the light scattering layer.
  • the polarization characteristics of the laser light 114 emitted from the eye-safe light source 1 may be adjusted so that the laser light 114 passes through the light scattering layer.
  • the opening 124 may be covered with a cover, and the type or concentration of the light scatterer included in the cover or the thickness of the cover may be adjusted.
  • the polarization ratio of the laser beam 114 transmitted through the cover and emitted from the eye-safe light source 1 can be adjusted in the range of about 2 to 100.
  • the polarization ratio is the ratio of the intensity of light having the main polarization plane of the light source to the intensity of light having a polarization plane other than the main polarization plane of the light source.
  • the light distribution characteristics can be adjusted depending on the shape of the reflecting surface 116, so that it is not necessary to provide a lens for adjusting the light distribution characteristics. For this reason, the eye-safe light source 1 is suitable for thinning.
  • the lens may be an external lens or may be integrated with a cover that covers the opening 124.
  • the eye-safe laser beam 114 at least partially maintains the polarization characteristics when emitted from the semiconductor laser 100.
  • the eye-safe light source 1 is suitable for applications that utilize polarization characteristics.
  • the eye-safe light source 1 may be provided in an electronic device for biometric authentication.
  • a light source with a high polarization ratio is particularly suitable as a light source for vein authentication.
  • FIG. 3 is a cross-sectional view showing the spread of the laser light reflected by the intermediate inclined surface 1162, the upper inclined surface 1163, and the lower inclined surface 1161.
  • FIG. 4 is a cross-sectional view showing reflection of laser light by the reflecting surface 117A of the comparative example with respect to the reflecting surface 116.
  • FIG. 5 is a cross-sectional view showing the reflection of laser light by the reflection surface 117B of another comparative example with respect to the reflection surface 116.
  • FIG. 3 is a cross-sectional view showing the spread of the laser light reflected by the intermediate inclined surface 1162, the upper inclined surface 1163, and the lower inclined surface 1161.
  • FIG. 4 is a cross-sectional view showing reflection of laser light by the reflecting surface 117A of the comparative example with respect to the reflecting surface 116.
  • FIG. 5 is a cross-sectional view showing the reflection of laser light by the reflection surface 117B of another comparative example with respect to the reflection surface 116.
  • the laser beam 114 emitted from the semiconductor laser 100 is reflected by the middle inclined surface 1162 of the reflecting surface 116 as shown in FIG. Further, the laser beam 114 emitted from the semiconductor laser 100 is reflected by the upper inclined surface 1163 of the reflecting surface 116 at a position farther from the semiconductor laser 100 than the middle inclined surface 1162, as shown in FIG. The Further, the laser beam 114 emitted from the semiconductor laser 100 is reflected by the lower inclined surface 1161 of the reflecting surface 116 at a position closer to the semiconductor laser 100 than the intermediate inclined surface 1162, as shown in FIG.
  • the laser beam 114 emitted from the semiconductor laser 100 is reflected by the middle inclined surface 1162 of the reflecting surface 116 as shown in FIG. Further, the laser beam 114 emitted from the semiconductor laser 100 is reflected by the lower inclined surface 1161 of the reflecting surface 116 at a position closer to the semiconductor laser 100 than the intermediate inclined surface 1162, as shown in FIG.
  • the laser beam 114 emitted from the semiconductor laser 100 is reflected by the lower inclined surface 1161, the intermediate inclined surface 1162, and the upper inclined surface 1163 at different angles, respectively. Therefore, the laser beam 114 can be diverged at an appropriate angle. Further, the degree of divergence of the laser beam 114 can be easily adjusted by the number of inclined surfaces of the reflecting surface 116 and the inclination angle of each inclined surface.
  • the laser beam 114 emitted from the semiconductor laser 100 is reflected by the reflecting surface 117A formed in a plane, it diverges over a wide range.
  • a scattering reflection surface such as a resin
  • light may be scattered and a sufficient light flux may not be obtained near the optical axis.
  • the eye-safe light source 1 of the present embodiment can diverge the laser beam 114 at an appropriate angle as compared with the light sources of Comparative Examples 1 and 2.
  • FIG. 6 is a graph showing the light distribution characteristics of the model light source used to explain the effect of the reflecting surface 116.
  • FIG. 7A is a graph showing the light intensity distributions of the light reflected from the reflection surface 116 of the light from the model light source and the reflection light from the reflection surfaces 117A and 117B of Comparative Examples 1 and 2, respectively.
  • 7 (b) is a graph showing an enlarged main part of FIG. 7 (a).
  • the light intensity distribution of the light emitted from the model light source used as the semiconductor laser 100 is a Gaussian light having a full width at half maximum of 24 degrees.
  • the light intensity of the light reflected by the reflecting surfaces 116, 117A, and 117B has a distribution as shown in FIGS. 7A and 7B. From this light intensity distribution, the reflected light from the reflecting surface 116 is moderately converged in the range of ⁇ 10 ° to + 10 °, whereas the reflected light from the reflecting surface 117A is dispersed in a wide range and reflected by the reflecting surface 117B. It can be seen that the light converges in a narrow range.
  • the reflected light from the reflecting surface 116 of the present embodiment differs from the reflected light from the reflecting surface 117A of Comparative Example 1 in the lower inclined surface 1161, the intermediate inclined surface 1162, and the upper It is obtained from each of the inclined surfaces 1163, and it can be seen that they are converged to an appropriate range by combining them.
  • FIG. 9A is a perspective view schematically showing the emission of light from the semiconductor laser 100 as a model light source mounted on the submount 102.
  • FIG. 9B is a perspective view schematically showing the radiation of reflected light from the semiconductor laser 100 mounted on the package 108 of the eye-safe light source 1.
  • FIG. 10A is a graph showing typical light distribution characteristics of the laser light shown in FIG.
  • FIG. 10B is a graph showing typical light distribution characteristics of the reflected light shown in FIG.
  • FIG. 10C is a graph showing typical light distribution characteristics obtained when the reflected light shown in FIG. 9B is further passed through the light scattering layer.
  • FIG. 10D is a graph showing a typical light distribution characteristic of reflected light by a reflecting surface (parabolic reflector) made of a paraboloid as a comparative example.
  • the vertical opening angle ( ⁇ ) and the horizontal opening angle ( ⁇ //) of the laser light emitted from the light emitting end face of the laser element are different, and generally ⁇ > ⁇ //
  • the laser beam 114 simply emitted from the semiconductor laser 100 has a vertical opening angle ⁇ and a horizontal opening angle ⁇ //.
  • the light distribution characteristic in this case has a certain extent as shown in FIG.
  • the laser beam 114 reflected by the reflecting surface 116 has a vertical opening angle ⁇ ′ ⁇ and a horizontal opening angle ⁇ ′ //.
  • the light distribution characteristics in this case are such that the vertical opening angle ⁇ ′ ⁇ and the horizontal opening angle ⁇ ′ // are appropriate as shown in FIG. Therefore, a moderately narrow light distribution can be obtained. Further, the light distribution characteristic of the reflected light can be adjusted by appropriately changing the number and angle of the inclined surfaces of the reflecting surface 116, the material of the reflecting surface 116, and the like.
  • a typical method of using laser light as a distributed light source is, for example, a method of using a laser light passing through a light scattering layer containing a filler.
  • the vertical opening angle ⁇ and the horizontal opening angle ⁇ // of the laser light that has passed through the light scattering layer are wider than before the passage.
  • the values of the vertical opening angle ⁇ and the horizontal opening angle ⁇ // of the laser beam shown in FIG. 10 (a) are 24 ° and 12 °, respectively.
  • the values of the vertical opening angle ⁇ ′′ ⁇ and the horizontal opening angle ⁇ ′′ // are as follows. Consider the case of both about 24 °.
  • the light having the radiation characteristic shown in FIG. 10A once emitted from the semiconductor laser is reflected by the reflecting surface 116 of the package 108 shown in FIG. It is preferable to pass light having a light distribution characteristic narrowed and narrowed as shown in FIG.
  • the light distribution characteristic of the narrowed light shown in FIG. 9B is shown in FIG. 10B as an example, and the vertical opening angle ⁇ ′ ⁇ and the horizontal opening angle ⁇ ′ // are 14 respectively. °, 9 °.
  • the once focused light is allowed to pass through the light scattering layer, and the vertical opening angle ⁇ ′′ ⁇ and the horizontal opening angle ⁇ ′′ // are targeted. It is possible to adjust the angle more accurately by adjusting to the angle (24 ° here).
  • FIG. 11 is a graph showing light distribution characteristics including spike-like protrusions obtained when the reflected light from the parabolic reflector is further passed through the light scattering layer.
  • Such light is allowed to pass through the light diffusion layer, and has a light distribution characteristic with a sufficiently wide opening angle such that ⁇ 60 °, that is, the vertical opening angle ⁇ ′′ ⁇ and the horizontal opening angle ⁇ ′′ // are both 120 °. It is relatively easy to obtain dispersed light. In order to obtain such dispersed light, it can be obtained by sufficiently increasing the filler concentration in the light diffusion layer and sufficiently scattering the laser light.
  • ⁇ 15 ° in other words, in order to obtain light in a narrow angle region where the vertical opening angle ⁇ ′′ ⁇ and the horizontal opening angle ⁇ ′′ // are both less than 30 °, It is necessary to lower the filler concentration in the light diffusion layer as compared with the case.
  • the light scattering layer when laser light is passed through the light scattering layer in order to obtain the desired vertical opening angle ⁇ and horizontal opening angle ⁇ //, spike-like strong light remains in the optical axis direction.
  • the light is not concentrated on the center of the optical axis as shown in FIG.
  • the light collected while expanding the light may be employed. This light is light whose axial luminous intensity is lowered as compared with the light distribution characteristic shown in FIG. 10D, and has, for example, the light distribution characteristic shown in FIG.
  • the spike-like protrusions seen in FIG. 11 are substantially eliminated.
  • an appropriately safe eye-safe light source having a smooth light distribution characteristic as shown in FIG.
  • the degree of light collection indicating light distribution is often indicated by a vertical opening angle ⁇ and a horizontal opening angle ⁇ //, and both are 24 ° in FIG.
  • the value of the light source used for iris authentication is approximately 20 ° to 40 °. From this, it can be said that the light condensed moderately as shown in (c) of FIG. 10 is suitable as a light source for iris authentication.
  • Modification 1 of Embodiment 1 in which a cover 128a is provided in the opening 124 in the eye-safe light source 1 according to the modification of Embodiment 1 will be described with reference to FIG.
  • FIG. 12 is a cross-sectional view for explaining eye-safety in a modification in which the cover 128a that scatters the laser beam 114 is provided in the eye-safe light source 1 shown in FIG. FIG. 12 corresponds to the right portion of FIG. 1B and shows the spread of the laser beam 114 and the optical axis 134.
  • the range of the spread of the laser beam 114 shown in FIG. 12 is a range until the intensity of the light density reaches 1 / e of the peak value (e is the base of natural logarithm).
  • the cover 128 a is a cover provided so that foreign matter does not enter the recess 120.
  • the cover 128a is formed of a resin including a light scatterer that scatters the laser light 114.
  • a breathing hole (not shown) is provided in the cover 128a, gas can enter and leave the recess 120 through the breathing hole.
  • the cover 128a is formed of a resin containing a light scatterer. For this reason, in the modified example in which the cover 128a is provided, the spot diameter of the laser beam 114 is enlarged as shown in FIG.
  • the optical axis 134 is the optical axis of the laser beam 114.
  • the spot diameter R 0 is the spot diameter of the laser beam 114 on the right light emitting end face 100r.
  • the spot diameter R 1 is the spot diameter of the laser beam 114 viewed from the direction of the optical axis 134 when the laser beam 114 hits the reflecting surface 116.
  • the spot diameter R 2 is, when the laser beam 114 is incident to the cover 128a, a spot diameter of the laser beam 114.
  • the spot diameter R 3 is after the laser beam 114 is passed through the cover 128a, a spot diameter of the laser beam 114.
  • the optical path length l 1 is the optical path length of the laser light 114 from the right light emitting end surface 100r to the reflecting surface 116 along the optical axis 134 of the laser light 114
  • the optical path length l 2 is the optical axis of the laser light 114
  • 134 is the optical path length of the laser beam 114 from the reflecting surface 116 to the cover 128 a along the line 134.
  • the laser beam 114 is emitted from the right emission end face 100r of the semiconductor laser 100 so as to spread at a certain angle from the spot diameter R0 in units of micrometers. For this reason, the spot diameter of the laser beam 114 increases while the laser beam 114 travels parallel to the upper surface of the lead frame 104. The laser beam 114 spreads to the spot diameter R 1 when it reaches the reflecting surface 116 after traveling by the optical path length l 1 . Accordingly, as in the case without the cover 128a, the longer the distance (optical path length l 1 ) between the right light emitting end surface 100r and the reflecting surface 116 of the semiconductor laser 100, the more the laser beam 114 becomes eye-safe due to the spread of the spot diameter. Is done.
  • the laser beam 114 that has reached the reflecting surface 116 is scattered and reflected by the reflecting surface 116. Due to the scattering reflection, the light density inside the spot of the laser beam 114 is averaged, and the laser beam 114 is further made eye-safe.
  • the scattered and reflected laser beam 114 travels straight from the reflecting surface 116 to the cover 128a. Then, the optical path length l 2 proceeds laser beam 114, when the laser beam 114 reaches the cover 128a, the laser beam 114 is spread to the spot diameter R 2. Therefore, as the distance (optical path length l 2 ) between the reflecting surface 116 and the cover 128a increases, the laser beam 114 is further made eye-safe due to the spread of the spot diameter.
  • the laser beam 114 incident on the cover 128a is refracted by the difference in refractive index between the resin forming the cover 128a and the gas (air) filling the inside of the recess 120.
  • the resin forming the cover 128 a includes a light scatterer that scatters the laser beam 114.
  • refraction and scattering and the spot diameter of the laser beam 114, while passing through the cover 128a extends from the spot diameter R 2 of the time of incidence to the spot diameter R 3 at exit.
  • the light density inside the spot of the laser beam 114 is further averaged by scattering.
  • the polarization characteristics of the laser beam 114 when emitted from the semiconductor laser 100 can be partially maintained by adjusting the type and concentration of the light scatterer contained in the resin, the thickness of the cover 128a, and the like. .
  • the polarization characteristic of the eye-safe light emitted from the eye-safe light source 1 can be adjusted.
  • the polarization ratio can be adjusted in the range of 2 to 100.
  • a resin typified by an epoxy resin, an acrylic resin, a silicone resin, or the like may be used, and not only the resin but also glass may be used.
  • the light scatterer included in the cover 128a silica (SiO 2 ), titanium oxide (TiO 2 ), zirconia (ZrO 2 ), and the like are common, but are not limited thereto.
  • the spot diameter of the virtual light source is a spot diameter R 1 on the reflecting surface 116.
  • the cover 128a is provided, a virtual light source for eye-safe the laser beam 114 becomes the cover 128a, the spot diameter of the virtual light source is a spot diameter R 3 of the cover 128a. Therefore, in this modification, the spot diameter of the laser beam 114 is expanded by the optical path length l 2 as compared with the case where the cover 128a is not provided.
  • the spot diameter of the laser beam 114 is enlarged by refraction at the boundary surface of the cover 128a and scattering by the cover 128a, and the light density of the laser beam 114 is averaged by scattering by the cover 128a.
  • the light emitted from the eye-safe light source 1 is further sufficiently eye-safe.
  • Modification 2 Modification 3 of Embodiment 1 in which a lens 142 is provided in the opening 124 in the eye-safe light source 1 according to Embodiment 1 will be described with reference to FIG.
  • the opening 124 may be covered with a cover with a lens as shown in FIG. 13B, or the light distribution characteristic is adjusted with an external lens. May be.
  • FIGS. 13A and 13B are a top view and a cross-sectional view showing a schematic configuration of an eye-safe light source 1A according to a modification in which the cover 142b having a lens 142 that collimates the laser light 114 is provided in the eye-safe light source 1 shown in FIG. .
  • the cover 142b is a cover provided so that foreign matter does not enter the recess 120, and is formed of a resin that does not contain a light scatterer.
  • a breathing hole (not shown) is provided in the cover 142b, gas can enter and leave the recess 120 through the breathing hole.
  • the cover 142b is integrally formed so as to include a lens 142 for the laser beam 114 emitted from the right light emitting end surface 100r.
  • the lens 142 is formed to collimate the laser beam 114 emitted from the right light emitting end surface 100r.
  • the lens 142 may be an aspheric lens or a spherical lens.
  • FIG. 14 is a diagram showing a schematic configuration around the semiconductor laser 200 of the eye-safe light source 2 according to the second embodiment of the present invention.
  • FIG. 14A is a top view of the resin portion 406 seen through.
  • FIG. 14B is a cross-sectional view taken along the DD line in FIG.
  • FIG. 14C is a cross-sectional view taken along the line EE of FIG.
  • FIG. 14D is a cross-sectional view taken along the line FF in FIG.
  • FIG. 14E schematically shows the light emission state in the cross-sectional structure shown in FIG.
  • the eye-safe light source 2 includes a semiconductor laser 200 that emits laser light 214, a submount 102 on which the semiconductor laser 200 is mounted, a package 208 having a lead frame 104 and a resin portion 206, and a wire 110. Is provided. A mark 112 is provided so that the direction of the anode and the cathode can be seen.
  • the eye-safe light source 1 according to the first embodiment and the eye-safe light source 2 according to the second embodiment are different in the following two points.
  • the semiconductor laser 100 emits the laser beam 114 only from the light emitting end surface (right light emitting end surface 100r) on the right side, whereas in the eye-safe light source 2 according to the second embodiment.
  • the laser light 214 is emitted from the left and right light emitting end faces (the left light emitting end face 200l and the right light emitting end face 200r).
  • the concave portion 220 includes a first concave portion 2201 having the same shape as the first concave portion 1201 and a second concave portion 1202, similar to the concave portion 120 configured by combining the first concave portion 1201 and the second concave portion 1202 in the first embodiment. And the second concave portion 2202 having the same shape as that of the second concave portion 2202. In addition, the recess 220 has a third recess 2203 formed on the side surface facing the side surface on which the second recess 2202 is formed among the four side surfaces of the first recess 2201.
  • the second recess 2202 and the third recess 2203 are disposed so as to face the light emitting end faces (the left light emitting end face 200l and the right light emitting end face 200r) on both the left and right sides of the semiconductor laser 200.
  • the recess 220 according to the second embodiment is a plane (symmetric plane) that passes through the center of the semiconductor laser 200 and is perpendicular to the upper surface of the lead frame 104 (reference surface of the package 208) and the direction in which the laser beam 214 is emitted from the semiconductor laser 200. ).
  • the recess 120 is a plane (not shown) passing through the center of the semiconductor laser 100 that is perpendicular to the upper surface of the lead frame 104 and the direction in which the laser beam 114 is emitted from the semiconductor laser 100. Not symmetric.
  • the eye-safe light source 2 according to the second embodiment is different from the eye-safe light source 1 according to the first embodiment in that the semiconductor laser 200 that emits the laser light 214 from both the left and right sides is used. Is different.
  • the concave portion 220 included in the resin portion 206 is formed by combining the first concave portion 2201 having a substantially inverted quadrangular frustum shape with the second concave portion 2202 and the third concave portion 2203 having a substantially multi-stage inverted truncated cone shape. 3D shape.
  • the reflection surface 216 is an inner wall of the resin portion 206 that forms the second recess 2202
  • the reflection surface 217 is an inner wall of the resin portion 206 that forms the third recess 2203.
  • the reflecting surfaces 216 and 217 are opposed to the left and right light emitting end surfaces (left light emitting end surface 200l and right light emitting end surface 200r) of the semiconductor laser 200 that emits the laser light 214, respectively.
  • the reflecting surfaces 216 and 217 pass through the center of the semiconductor laser 100 that is perpendicular to the top surface of the lead frame 104 and parallel to the direction in which the semiconductor laser 100 emits the laser beam 114, in addition to being plane-symmetric with respect to the plane described above. It is plane symmetric with respect to the plane (symmetric plane).
  • the reflecting surface 216 has a diameter that increases upward with respect to the upper surface of the lead frame 104, and has a plurality of inclined surfaces like the reflecting surface 116 of the first embodiment.
  • the reflecting surfaces 216 and 217 have a shape obtained by dividing the locus of the outer peripheral surface of the rotating body rotated around the predetermined center axis (rotating axis) by the side surface of the first recess 2201.
  • the central axis is plane symmetric with respect to the plane.
  • the wire 110 may not cast the shadow of the wire 110 on the virtual light source. For this reason, it is desirable that the wire 110 be arranged in a direction orthogonal to the direction in which the laser beam 214 is emitted from the semiconductor laser 100.
  • FIG. 15A is a cross-sectional view showing the light emission state of the eye-safe light source 2.
  • FIG. 15B is a side view of the eye-safe light source 2.
  • FIG. 15C is a side view of the eye-safe light source 2 in a light emitting state.
  • FIG. 16A is a perspective view schematically showing light emission from a semiconductor laser 200 as a model light source mounted on the submount 102.
  • FIG. 16B is a perspective view schematically showing the emission of reflected light from the semiconductor laser 200 mounted on the package 208.
  • FIG. 16C is a schematic diagram showing a state where the reflected light shown in FIG. 16B has passed through the light scattering layer.
  • the reflecting surfaces 216 and 217 are made of the laser light 214 as a semiconductor in the same manner as the reflecting surface 116 of the eye-safe light source 1 according to the first embodiment. Scattered and reflected in the direction of the optical axis 218 (symmetric axis) of the laser 200.
  • a direction perpendicular to the upper surface of the lead frame 104 is used as the optical axis 218.
  • the reflecting surface 216 is formed so that the central axis of the multi-stage inverted truncated cone is perpendicular to the bottom surface (reference surface) of the package 208.
  • the reflected light from the first recess 216 is emitted in a direction centered on the central axis.
  • the package 208 is configured to be suitable when the laser beam 214 is emitted from both end faces of the semiconductor laser 200 as shown in FIG. Yes.
  • the description will be focused on differences from the first embodiment shown in FIG. 1, FIG. 9, and FIG.
  • the laser beam 214 emitted from the semiconductor laser 200 shown in FIG. 16A has a vertical opening angle ⁇ and a horizontal opening angle ⁇ //.
  • the reflected light obtained when the semiconductor laser 200 shown in FIG. 16A is mounted on the package 208 has a vertical opening angle ⁇ ′ ⁇ and a horizontal opening angle ⁇ ′ //.
  • the structure as described above that radiates light symmetrically from the left and right end faces is particularly necessary when using high-power light.
  • the semiconductor lasers 100 and 200 each have one or two light emitting end faces, the light distribution characteristics are the same, and the shapes of the reflecting surfaces 116 and 216 are the same. The positional relationship between the surfaces 116 and 216 is the same.
  • the semiconductor lasers 100 and 200 have the same light distribution characteristics measured at a long distance as long as the configuration of the light diffusion layer is the same for both the package 108 (see FIG. 1) and the package 208 in the first embodiment.
  • a semiconductor laser that emits light asymmetrically on the left and right light emitting end faces may be used instead of the semiconductor laser 200.
  • Such a semiconductor laser can be easily obtained, for example, by changing the reflectance of the end face coat on the left and right. In this way, the left and right light emission can be changed to 40:60, 30:70, 20:80, 10:90, for example. This also applies to Embodiments 3 and 5 described later.
  • the opening 224 may be covered with a cover with a lens as shown in FIG. 17, or the light distribution characteristic may be adjusted with an external lens.
  • FIG. 17 is a top view and a cross-sectional view showing a schematic configuration of an eye-safe light source 2A according to a modification example in which the cover 232a having a lens 232 for condensing or collimating the laser beam 214 is provided in the eye-safe light source 2 shown in FIG. FIG.
  • the cover 232a is a cover provided so that foreign matter does not enter the recess 220, and is formed of a resin that does not contain a light scatterer.
  • a breathing hole (not shown) is provided in the cover 232a, gas can enter and leave the recess 220 through the breathing hole.
  • the cover 232a is integrally formed to include a lens 232 for the laser light 214 emitted from the left light emitting end surface 200l and the right light emitting end surface 200r.
  • the lens 232 is formed to condense or collimate the laser light 214 emitted from the left light emitting end surface 200l and the right light emitting end surface 200r.
  • the lens 232 may be an aspherical lens or a spherical lens.
  • Modification 2 of Embodiment 1 in which a cover 128b is provided in the opening 224 in the eye-safe light source 2 according to Embodiment 2 will be described with reference to FIG.
  • FIG. 18 is a top view and a cross-sectional view showing a schematic configuration of an eye-safe light source 1B according to a modification in which the cover 242a having a lens 242 for condensing or collimating the laser beam 214 is provided in the eye-safe light source 2 shown in FIG. FIG.
  • the cover 242a is a cover provided so that foreign matter does not enter the recess 220, and is formed of a resin that does not contain a light scatterer.
  • a breathing hole (not shown) is provided in the cover 242a, gas can enter and leave the recess 220 through the breathing hole.
  • the cover 242a is integrally formed to include a lens 242 for the laser light 214 emitted from the left light emitting end surface 100l and the right light emitting end surface 200r.
  • the lens 242 is formed to condense or collimate the laser light 214 emitted from the left light emitting end surface 100l and the right light emitting end surface 100r.
  • the lens 242 may be an aspherical lens or a spherical lens.
  • the light emitted from the eye-safe light source 2B has a more uniform light distribution characteristic than in the case where the cover 242a is not provided. For this reason, the eye-safe light source 2B according to the modified example 2 is suitable for an application that optically couples with an optical fiber.
  • the lens 242 may be an external lens that is not integral with the cover 242a.
  • the lens 242 is an external lens, it is easy to adjust the light distribution characteristics of the light emitted from the eye-safe light source 2B.
  • Embodiment 3 of the present invention will be described below with reference to FIGS.
  • members having the same functions as those described in the first and second embodiments are denoted by the same reference numerals and description thereof is omitted.
  • FIG. 19 is a diagram showing a schematic configuration around the semiconductor laser 200 of the eye-safe light source 3 according to Embodiment 3 of the present invention.
  • FIG. 19A is a top view of the resin portion 306 seen through without the cover 228.
  • FIG. 19B is a cross-sectional view taken along the line GG in FIG.
  • FIG. 19C is a cross-sectional view taken along the line HH in FIG.
  • FIG. 19D is a cross-sectional view taken along the line II of FIG.
  • FIG. 19E is a cross-sectional view taken along line JJ in FIG.
  • FIG. 19F is a cross-sectional view taken along the line KK in FIG.
  • the eye-safe light source 3 includes a semiconductor laser 200 that emits laser light 214, a submount 102 on which the semiconductor laser 200 is mounted, a package 308 having a lead frame 104 and a resin portion 306, a wire 110, and And a cover 228 having a breathing hole 230.
  • a mark 112 is provided so that the direction of the anode and the cathode can be seen.
  • the concave portion 320 has a first concave portion 3201 having the same shape as the first concave portion 2201 according to the second embodiment.
  • the recess 320 has a second recess 3202 and a third recess 3203 instead of the second recess 2202 and the third recess 2203 according to the second embodiment.
  • the second recess 3202 and the third recess 3203 are opposed to the left and right light emitting end faces (the left light emitting end face 200l and the right light emitting end face 200r) of the semiconductor laser 200.
  • the recess 320 is formed so as to be 180 ° rotationally symmetric with respect to the optical axis 218.
  • the reflective surface 316 is an inner wall of the resin portion 306 that forms the second concave portion 3202
  • the reflective surface 317 is an inner wall of the resin portion 306 that forms the third concave portion 3203.
  • the reflecting surfaces 316 and 317 respectively oppose the left and right light emitting end surfaces (the left light emitting end surface 200l and the right light emitting end surface 200r) of the semiconductor laser 200 that emits the laser light 214.
  • the reflecting surfaces 316 and 317 are 180 ° rotationally symmetric with respect to the optical axis 218.
  • the reflecting surfaces 316 and 317 have an upward diameter with respect to the upper surface of the lead frame 104, and have a plurality of inclined surfaces, like the reflecting surface 216 of the second embodiment.
  • the reflecting surfaces 316 and 317 have the shape of the locus of the outer peripheral surface of the rotating body rotated by the rotating body rotating around a predetermined center axis (rotating axis).
  • the central axis is also rotationally symmetric with respect to the optical axis 218 by 180 °. Further, the central axis is inclined in directions X1 and X2 that are opposite to each other with respect to the optical axis 218.
  • the eye-safe light source 2 according to the second embodiment is different from the eye-safe light source 3 according to the third embodiment.
  • FIG. 20 (a) is a cross-sectional view showing a light emission state of the eye-safe light source 3.
  • FIG. 20B is a side view of the eye-safe light source 3.
  • FIG. 20C is a side view of the eye-safe light source 3 in a light emitting state.
  • FIG. 21A is a graph showing light distribution characteristics when the angle of inclination of the central axis of the reflecting surface shown in FIG. 20B is 3 °.
  • FIG. 21B is a graph showing the light distribution characteristic when the inclination angle of the central axis of the reflecting surface shown in FIG. 20B is 5 °.
  • the reflecting surfaces 316 and 317 are the same as the reflecting surface 216 of the eye-safe light source 2 according to the second embodiment.
  • the light is scattered and reflected in the direction of the optical axis 218 of the laser 200.
  • central axes of the reflecting surfaces 316 and 317 are inclined in different directions as described above. The inclination of the central axis of the reflecting surfaces 316 and 317 will be described with reference to FIGS.
  • the central axes of the reflecting surfaces 316 and 317 are inclined at an inclination angle ⁇ ( ⁇ ⁇ ) in directions opposite to each other with respect to the optical axis 218.
  • the central axes of the reflecting surfaces 216 and 217 are not inclined with respect to the optical axis 218.
  • the angle formed by the central axes of the reflecting surfaces 316 and 317 is 2 ⁇
  • the light intensity measured in the direction perpendicular to the upper surface of the lead frame 104 is compared with the package 208 of the eye-safe light source 2 shown in FIG.
  • Embodiment 3 shown in FIG. For example, if the value of 2 ⁇ is set to an angle of 4 ° or more and the value of ⁇ is set to an angle of 2 ° or more, the light emitted from both ends of the semiconductor laser 200 is reflected on the reflecting surfaces 316 and 317 at the same time. In many cases, it is possible to avoid the state of being incident on the pupil.
  • the laser beam 114 emitted from the semiconductor laser 100 exhibits the light distribution characteristic of FIG.
  • the light reflected by the reflection surfaces 216 and 217 shows the light distribution characteristics shown in FIG.
  • the laser light 214 emitted from the semiconductor laser 200 can be expressed as a combination of the light distribution characteristics of the light emitted from both end faces, as in the eye-safe light source 1.
  • the light distribution characteristic of (a) is shown.
  • the light reflected by the reflecting surfaces 316 and 317 shows the light distribution characteristics of (a) and (b) of FIG.
  • the angle formed by the central axes of the reflecting surfaces 316 and 317 is 2 ⁇ . Therefore, as shown in FIGS.
  • the light distribution characteristic of the reflected light is The left light emitting end face 200l (one-dot chain line) and the right light emitting end face 200r (two-dot chain line) are different.
  • the FWHM (full width at half maximum) value indicated by the horizontal opening angle ⁇ // is expanded by tilting the central axes of the reflecting surfaces 216 and 217 in the direction of the horizontal opening angle ⁇ //.
  • the value of the horizontal opening angle ⁇ // shown in (b) of FIG. 10 is 9 °.
  • the value of the horizontal opening angle ⁇ // is 13 °. It is.
  • the value of the horizontal opening angle ⁇ // is further expanded to 19 °. It becomes. If the light intensity in the optical axis direction (0 ° direction in FIG.
  • the light intensity of the package 306 is 100 in the light distribution characteristic shown in FIG. 10B, the light intensity is 75 in the light distribution characteristic shown in FIG. In the light distribution characteristic shown in FIG. Even when compared with the peak intensity, the light distribution characteristic shown in FIG. 21B is about 50 (slightly over 50) with respect to the light distribution characteristic shown in FIG.
  • the value of the horizontal opening angle ⁇ // is increased without changing the total luminous flux, and the optical axis direction of the package 306 (the 0 ° direction in FIG. 10B) is increased.
  • the light intensity can be reduced.
  • the laser beam 214 is reflected by the reflecting surfaces 316 and 317 and then passes through the light diffusion layer.
  • the vertical opening angle ⁇ and the horizontal opening angle ⁇ // of the finally obtained light are substantially the same (see (c) of FIG. 10).
  • light used for this purpose light having a light distribution characteristic shown in FIG. This is due to the following reason.
  • the value of the horizontal opening angle ⁇ // before entering the light scattering layer approaches the value of the vertical opening angle ⁇ .
  • This facilitates making the vertical opening angle ⁇ and the horizontal opening angle ⁇ // substantially the same after passing through the light scattering layer.
  • the ability to adjust the value of the horizontal opening angle ⁇ // before passing through the light scattering layer is very useful in practice.
  • the reason why the value of ⁇ is set to 2 ° or more is because “Japan Industrial Standards JIS C6802 Condition 3” which is a safety standard regarding a dispersed light source is taken into consideration.
  • “amount of light incident on a ⁇ 7 mm aperture placed at a position 10 cm away from the light source” is used as part of the criteria for determining the safety of the dispersed light source. Therefore, when the amount of light detected by an opening of ⁇ 7 mm placed at a position 10 cm away from the light source is measured everywhere, it is safer to make the maximum value obtained as small as possible. At this time, it is desired to realize such a situation without reducing the total luminous flux.
  • the opening angle 2 ⁇ when the “opening of ⁇ 7 mm placed at a position 10 cm away” is viewed from the light source corresponds to about 4 °.
  • the opening angle 2 ⁇ between the central axes of the two reflecting surfaces 316 and 317 shown in FIGS. 20 and 21 (a) and (b) should be 2 ⁇ > 2 ⁇ . Is desirable.
  • FIG. 22A is a diagram showing a schematic mapping of light intensity when light having the light distribution characteristics shown in FIG. 21A is projected.
  • FIG. 22B is a diagram showing a schematic mapping of the light intensity when the light having the light distribution characteristic shown in FIG. 21B is projected.
  • FIG. 22C is a diagram showing a schematic mapping of light intensity when light having the light distribution characteristic shown in FIG. 10B is projected.
  • FIG. 23 shows a case where light having a light distribution characteristic shown in FIG. 10D obtained by using a parabolic reflecting surface (parabolic reflector) is projected as a comparative example for the mapping shown in FIG. It is a mapping figure of light intensity.
  • (A) to (c) of FIG. 22 schematically show the light intensity when light having the above-mentioned light distribution characteristics is projected on a 10 cm square surface 30 cm ahead from the light source.
  • the light intensity of the projection light of the light obtained on the reflecting surface of the comparative example is narrowed down, so that only the central portion is brightened.
  • the light intensity of the projection light obtained by the eye-safe light source 2 (Embodiment 2) shown in (c) of FIG. the light intensity of the projection light obtained by the eye-safe light source 2 (Embodiment 2) shown in (c) of FIG.
  • Such light that can uniformly irradiate a moderately wide range is suitable for use in iris authentication, face authentication, and the like. It is desirable that the light having the light distribution characteristics shown in FIGS. 22A and 22B is further passed through the light scattering layer and used for the authentication.
  • the passage of the light scattering layer not only improves eye-safety and widens the uniform light irradiation area, but also reduces speckle noise and interference fringes, which are characteristic of laser beams. ,It is valid.
  • the light distribution characteristics shown in FIG. The light which has is mentioned.
  • the central axes of the two reflecting surfaces 316 and 317 are inclined in directions opposite to each other with respect to the rotation around the through-axis passing through the laser resonator (not shown) of the semiconductor laser 200 in the longitudinal direction of the semiconductor laser 200. You may do it. By adopting such a configuration, it becomes possible to irradiate the laser beam 214 uniformly over a wide range with good symmetry.
  • Module 1 In the above-described third embodiment, the package 308 having a rotational symmetry of 180 ° with respect to an axis perpendicular to the surface of the lead frame 104 disposed at the center of the package 308 has been described as an example.
  • the inclination angle of the central axis of the reflecting surfaces 316 and 317 is ⁇ ⁇ .
  • the present embodiment is not limited to such a special example.
  • the inclination angle of the central axis of the reflection surface 316 is + ⁇ inclination
  • FIG. 24 is a diagram showing a schematic configuration around the semiconductor laser 100 of the eye-safe light source 4 according to Embodiment 4 of the present invention.
  • FIG. 24A is a top view of the resin portion 406 seen through, except for the cover 228.
  • FIG. 24B is a cross-sectional view taken along line LL in FIG.
  • FIG. 24C is a cross-sectional view taken along the line MM in FIG.
  • FIG. 24D is a cross-sectional view taken along the line NN in FIG.
  • the eye-safe light source 4 includes a semiconductor laser 100 that emits laser light 114, a submount 102 on which the semiconductor laser 100 is mounted, a package 408 having a lead frame 104 and a resin portion 406, a wire 110, and And a cover 228 having a breathing hole 230.
  • a mark 112 is provided so that the direction of the anode and the cathode can be seen.
  • the recess 420 has a first recess 4201 having the same shape as the first recess 1201 according to the first embodiment.
  • the recess 420 has a second recess 4202 instead of the second recess 1202 according to the first embodiment.
  • the second recess 4202 is disposed so as to face the right light emitting end surface (right light emitting end surface 200r) of the semiconductor laser 100, like the second recess 1202 according to the first embodiment.
  • the reflective surface 416 is an inner wall of the resin portion 406 that forms the second recess 4202.
  • the reflective surface 416 faces the light emitting end surface (right light emitting end surface 100r) on the right side of the semiconductor laser 100 that emits the laser light 114.
  • the reflective surface 416 is 180 ° rotationally symmetric with respect to the optical axis 118.
  • the reflecting surface 416 has an upward diameter with respect to the upper surface of the lead frame 104, and has a plurality of inclined surfaces like the reflecting surface 116 of the first embodiment.
  • the reflecting surface 416 has a shape of a locus on the outer peripheral surface of the rotating body rotated by a rotating body rotating around a predetermined center axis (rotating axis).
  • the central axis is inclined with respect to the optical axis 118.
  • the eye-safe light source 4 according to the fourth embodiment is different from the eye-safe light source 1 according to the first embodiment.
  • FIG. 25A is a cross-sectional view showing a light emission state of the eye-safe light source 4.
  • FIG. 25B is a side view of the eye-safe light source 4.
  • FIG. 25C is a side view of the eye-safe light source 1 of the first embodiment in a light emitting state.
  • the reflection surface 416 emits laser light 114 from the semiconductor laser 100 in the same manner as the reflection surface 116 of the eye-safe light source 1 according to the first embodiment. Scattered and reflected in the direction of the optical axis 118.
  • the central axis of the reflecting surface 116 is not inclined with respect to the optical axis 118.
  • the central axis of the reflecting surface 416 is inclined with respect to the optical axis 118 as described above.
  • FIG. 26 is a diagram showing a schematic configuration around the semiconductor laser 200 of the eye-safe light source 5 according to the fifth embodiment of the present invention.
  • FIG. 26A is a top view of the resin portion 506 seen through without the cover 228.
  • FIG. 26B is a cross-sectional view taken along the line OO in FIG.
  • FIG. 26 (c) is a cross-sectional view taken along the line PP in FIG. 26 (a).
  • FIG. 26D is a cross-sectional view taken along the line QQ in FIG.
  • FIG. 26E is a cross-sectional view taken along the line RR in FIG.
  • FIG. 26F is a cross-sectional view taken along the line SS of FIG.
  • the eye-safe light source 5 includes a semiconductor laser 200 that emits laser light 214, a submount 102 on which the semiconductor laser 200 is placed, a package 508 having a lead frame 104 and a resin portion 506, a wire 110, and And a cover 228 having a breathing hole 230.
  • a mark 112 is provided so that the direction of the anode and the cathode can be seen.
  • the recess 520 has a first recess 5201 having the same shape as the first recess 2201 according to the second embodiment.
  • the recess 520 includes a second recess 5202 and a third recess 5203 instead of the second recess 2202 and the third recess 2203 according to the second embodiment.
  • the second recess 5202 and the third recess 5203 are opposed to the left and right light emitting end surfaces (the left light emitting end surface 200l and the right light emitting end surface 200r) of the semiconductor laser 200.
  • the recess 520 is formed so as to be 180 ° rotationally symmetric with respect to the optical axis 218.
  • the reflective surface 516 is an inner wall of the resin portion 506 that forms the second concave portion 5202
  • the reflective surface 517 is an inner wall of the resin portion 306 that forms the third concave portion 3203.
  • the reflecting surfaces 516 and 517 are opposed to the left and right light emitting end surfaces (left light emitting end surface 200l and right light emitting end surface 200r) of the semiconductor laser 200 that emits the laser light 214, respectively.
  • the reflection surfaces 516 and 517 are 180 ° rotationally symmetric with respect to the optical axis 218. Further, the reflecting surfaces 516 and 517 are inclined surfaces whose diameter is increased upward with respect to the upper surface of the lead frame 104.
  • the reflecting surfaces 516 and 517 are formed in a parabolic shape (parabolic shape), and have a shape of a locus in which a parabola rotates around a predetermined central axis (rotating axis).
  • the eye-safe light source 5 according to the fifth embodiment is different from the eye-safe light source 3 according to the third embodiment.
  • the central axis is asymmetric with respect to the plane, and the central axis is inclined in different directions with respect to the optical axis 218 in common with the eye-safe light source 3 according to the third embodiment.
  • FIG. 27A is a cross-sectional view showing a light emission state of the eye-safe light source 5.
  • FIG. 27B is a side view of the eye-safe light source 5.
  • FIG. 27C is a side view of the eye-safe light source 5 in a light emitting state in which the central axis of the reflecting surface is not inclined with respect to the optical axis.
  • the reflecting surfaces 516 and 517 emit the laser beam 214 in the same manner as the reflecting surfaces 316 and 317 of the eye-safe light source 3 according to the third embodiment.
  • the semiconductor laser 200 is scattered and reflected substantially in the direction of the optical axis 218.
  • the central axes of the reflection surfaces 516 and 517 are inclined in different directions as described above. By tilting the central axes of the reflecting surfaces 516 and 517 with respect to each other, the entire optical axis of the eye-safe light source 5, that is, the light density in the direction perpendicular to the lead frame 104 can be reduced. As described above, the eye-safe light source 5 according to the fifth embodiment also has improved eye-safety due to the same discussion as that of the third embodiment.
  • the central axes of the two reflecting surfaces are not inclined with respect to the optical axis, so that the reflected light from the two reflecting surfaces proceeds in the same direction.
  • the central axes of the two reflecting surfaces 516 and 517 are opposite to each other with respect to the rotation around the through-axis passing through the laser resonator (not shown) of the semiconductor laser 200 in the longitudinal direction of the semiconductor laser 200. It may be inclined. By adopting such a configuration, it becomes possible to irradiate uniformly over a wide range with good symmetry.
  • Embodiment 6 The following describes Embodiment 6 of the present invention with reference to FIGS. 28 and 29.
  • FIG. For convenience of explanation, members having the same functions as those described in the first to fifth embodiments are denoted by the same reference numerals and description thereof is omitted.
  • FIG. 28 is a diagram showing a schematic configuration around the semiconductor laser 100 of the eye-safe light source 6 according to Embodiment 6 of the present invention.
  • FIG. 28A is a top view of the resin portion 606 seen through, except for the cover 628.
  • FIG. 28B is a cross-sectional view taken along the line TT in FIG.
  • FIG. 28C is a cross-sectional view taken along the line U-U in FIG.
  • the eye-safe light source 6 includes a semiconductor laser 100 that emits a laser beam 114, a submount 102 on which the semiconductor laser 100 is mounted, a lead frame 104, and a resin portion 606. And a cover 628 (light scattering layer) having a breathing hole 630. A mark 112 is provided so that the direction of the anode and the cathode can be seen.
  • the recess 620 of the resin portion 606 is formed by the first recess 6201 and the second recess 6202.
  • the reflective surface 616 that forms the second recess 6202 is formed by applying metal plating to the surface of the resin portion 606. Due to the metal plating, the reflecting surface 616 reflects the laser beam 114 without scattering. Note that the surface of the resin portion 606 other than the reflective surface 616 may or may not be subjected to metal plating.
  • the difference is the following one point.
  • the reflective surface 116 remains the surface of the resin portion 106, whereas in the eye-safe light source 6 according to the sixth embodiment, the reflective surface 616 is formed by metal plating. It has been done. That is, unlike the first embodiment, the reflecting surface 616 according to the sixth embodiment can increase the ratio of light reflected without scattering the laser light 114.
  • the laser beam 114 parallel to the upper surface of the lead frame 104 is reflected in a direction parallel to the optical axis 118 with almost no scattering. Further, since the inside of the recess 620 is hollow, air exists in the recess 620, but there is no light scatterer that scatters the laser light 114. Accordingly, the laser beam 114 travels without being scattered until it reaches the cover 628 from the light emitting end face (the right light emitting end face 100r). Since the laser beam 114 incident on the cover 628 is not scattered, the polarization characteristic when the laser beam 114 is emitted from the semiconductor laser 100 is maintained. Further, since the light distribution characteristic can be easily predicted only from the shape of the reflecting surface 616, optical design can be easily performed.
  • the reflection surface 616 is separated from the light emitting end surface (right light emitting end surface 100r) of the semiconductor laser 100, and the laser beam 114 is emitted so as to spread from the light emitting end surface (right light emitting end surface 100r) of the semiconductor laser 100. For this reason, on the reflecting surface 616, the spot diameter of the laser beam 114 is widened, and the light density of the laser beam 114 is reduced. Therefore, the laser beam 114 reflected by the reflecting surface 616 is not scattered but is made eye-safe to some extent.
  • the metal used for the reflecting surface 616 is preferably gold or an alloy containing gold as a component.
  • gold is a very stable substance in a normal environment and is not subject to corrosion, oxidation, or the like.
  • silver and the like have high initial light reflectivity, but are susceptible to corrosion or oxidation.
  • silver and the like are known to be blackened by sulfurization with respect to sulfur, and a special surface coat is required. For this reason, as a metal used for the surface of the reflective surface 616, gold or an alloy containing gold as a component is desirable.
  • the present invention is not limited thereto, and the reflective surface 616 may be formed by covering the resin portion 606 with the surface of the reflective structure formed by punching from a metal plate with a metal mold in advance. Compared to the electroless plating of the resin portion 606, the electrolytic plating of the metal structure has less problems such as peeling of the reflecting surface and it is easy to ensure long-term reliability.
  • the reflective surface 616 made of such a metal plate may be integrally formed when the resin portion 606 is formed, or may be attached after the resin portion 606 is formed.
  • a reflective surface 616 may be used that is obtained by alumite-treating the surface of a reflective structure formed of aluminum or an aluminum alloy. Since the reflectivity and corrosion resistance of the alumite-treated plate after the surface mirror treatment are equivalent to the reflectivity and corrosion resistance of gold, respectively, it is suitable for ensuring long-term reliability.
  • the reflecting surface may be formed by taking in and molding a film-like metal when the resin portion 606 is molded.
  • the film-like metal is preferably protected by a resin film.
  • cover 628 formed of a resin containing a light scatterer will be described.
  • the cover 628 Since the cover 628 is formed of a resin containing a light scatterer, the cover 628 scatters the transmitted laser beam 114. Due to the scattering, the spot diameter of the laser beam 114 is widened, and the light density of the laser beam 114 is lowered. Therefore, the laser beam 114 transmitted through the cover 628 is sufficiently eye-safe.
  • the light distribution characteristics and polarization characteristics of the laser light 114 are disturbed by scattering, but the laser light 114 transmitted through the cover 628 maintains a certain degree of light distribution characteristics and polarization characteristics. This is because the laser beam 114 is already made eye-safe to some extent when it enters the cover 628, and therefore the laser beam 114 can be made sufficiently eye-safe by scattering within a range that does not lose the light distribution characteristic and the polarization characteristic. .
  • the concentration of the light scatterer included in the resin forming the cover 628 and the thickness of the cover 628 are adjusted. Thereby, it is possible to achieve both sufficient eye-safety of the laser beam 114 and sufficient maintenance of the light distribution characteristic or polarization characteristic of the laser beam 114.
  • the use of a submount is indispensable in a structure in which the light emitting point (light emitting end face) is set apart from the lead frame and the laser beam is efficiently irradiated to the opposing reflecting surface.
  • infrared semiconductor lasers that use gallium arsenide (GaAs) -based substrates have low thermal conductivity.
  • the lead frame 104 corresponding to the semiconductor laser mounting portion may be formed in a protruding shape.
  • a metal having a small expansion coefficient such as iron or an alloy containing iron as a main raw material, so that the expansion and contraction of the metal frame does not adversely affect the reliability of the semiconductor laser.
  • the reflection surface 616 is made of metal
  • the reflection surface may be made of a resin including a light scatterer that scatters laser light.
  • Configuration 2 described below.
  • FIG. 29 is a diagram showing a schematic configuration around the semiconductor laser 200 of another eye-safe light source 7 according to Embodiment 6 of the present invention.
  • FIG. 29A is a top view of the resin portion 706 seen through with the cover 628 removed.
  • FIG. 29B is a cross-sectional view taken along arrow VV in FIG.
  • FIG. 29C is a cross-sectional view taken along the line XX of FIG.
  • the eye-safe light source 7 includes a semiconductor laser 200 that emits a laser beam 214, a submount 102 on which the semiconductor laser 200 is mounted, a lead frame 104, and a resin portion 706. And a cover 628 (light scattering layer) (not shown in FIG. 29) having a breathing hole 630.
  • a mark 112 is provided so that the direction of the anode and the cathode can be seen.
  • the concave portion 720 of the resin portion 706 is formed by a first concave portion 7201, a second concave portion 7202, and a third concave portion 7203.
  • the reflective surface 716 that forms the second recess 7202 is formed by applying metal plating to the surface of the resin portion 706.
  • the reflective surface 717 that forms the second recess 7203 is also formed in the same manner as the reflective surface 716. Due to the metal plating, the reflecting surfaces 716 and 717 reflect the laser light 214 almost without scattering.
  • metal plating may be given and it is not necessary to give.
  • the difference is the following two points.
  • the reflecting surfaces 216 and 217 remain on the surface of the resin portion 206, whereas in the eye-safe light source 7 according to the sixth embodiment, the reflecting surfaces 716 and 717 are metal. It is formed by plating. That is, unlike the second embodiment, the reflecting surface 716 according to the sixth embodiment reflects the laser light 214 almost without being scattered.
  • the cover 232a may be formed of a resin not including a light scatterer, whereas the eye-safe according to the sixth embodiment.
  • the cover 628 be formed of a resin containing a light scatterer. That is, unlike the second embodiment, it is desirable that the cover 628 scatters the transmitted laser light 214.
  • FIG. 30 is a diagram showing a schematic configuration of the optical sensor 8 according to Embodiment 7 of the present invention.
  • the optical sensor (electronic device) 8 includes an eye-safe light source 11, a light receiving unit 832 that receives reflected light from a living body, and a control unit 834 that controls the eye-safe light source 11 and the light receiving unit 832. .
  • the eye-safe light source 11 is configured by any one of the eye-safe light sources 1 to 7 according to the first to sixth embodiments.
  • the light receiving unit 832 may be provided in any one of the packages 108 to 708 similarly to the eye-safe light sources 1 to 7. Further, the light receiving unit 832 may be provided separately from the eye-safe light sources 1 to 7.
  • the control unit 834 may be a semiconductor element provided in any one of the packages 108 to 708.
  • the control unit 834 may be a semiconductor element that is bonded to the lead frame 104 and sealed with any one of the resin units 106 to 708. Further, the control unit 834 may be provided separately from the eye-safe light source 11.
  • the eye-safe light emitted from the eye-safe light source 11 is reflected by the living body, and the light receiving unit 832 receives the reflected light reflected by the living body.
  • the control part 834 calculates the information of the biological body which reflected eye safe light by comparing the eye safe light radiated
  • An image element may be used as the light receiving unit 832, and image data may be analyzed by the control unit 834 to obtain biological information.
  • the eye-safe light source 11 is a surface mount type light source suitable for thinning, the optical sensor 8 is thin.
  • the types of biological information that can be collected using the eye-safe light source 11 as a light source are diverse, such as irises, veins such as fingers and palms, fingerprints, and palm prints.
  • the eye-safe light source 11 is effectively used.
  • the present invention is not limited to these portable electronic devices, and can be used as a light source for ordinary stationary electronic devices such as a cash dispenser (ATM), an electronic lock-type safe, an electronic key for a car or a house.
  • the use of the eye-safe light source 11 is not limited to biometric authentication.
  • the eye safe light source 11 may be used for a projector, a projector, a night vision camera light source, a motion sensor light source, a small electronic device, a portable electronic device, and the like.
  • Even a communication device, for example, an electronic device that requires optical coupling with an optical fiber, can effectively use a small, surface-mount type eye-safe light source.
  • the eye-safe light source according to each of the embodiments described above is a small projector, a light source for a night vision camera, a light source for a motion sensor, a small projector, and an electronic device for biometric authentication, particularly for biometric authentication using polarization characteristics. It can be used for electronic devices. Furthermore, it can also be used as a light source for communication equipment, for example, electronic equipment that requires optical coupling with an optical fiber. Each eye-safe light source is suitable for surface mounting.
  • the eye-safe light source according to aspect 1 of the present invention includes a substrate (packages 108 to 708) and semiconductor lasers 100 and 200 that emit laser beams 114 and 214 from the light emitting end surfaces (left light emitting end surface 100l and right light emitting end surface 100r).
  • the semiconductor lasers 100 and 200 are bonded to the substrate so as to emit the laser beams 114 and 214 in parallel to the reference plane of the substrate, and the substrate reflects the laser beams 114 and 214.
  • the reflecting surface 116 is provided so as to face the light emitting end surface, and is composed of an assembly of multi-stage inclined surfaces, The inclination angle of the inclined surface is different so as to increase as it approaches the emission end of the laser beams 114 and 214.
  • the laser light is emitted in a direction parallel to the reference surface of the substrate and reflected by the reflecting surface.
  • the optical path length from the light emitting end surface to the reflecting surface can be increased without increasing the thickness of the eye-safe light source.
  • the spot diameter of the laser beam on the reflecting surface can be increased.
  • the reflecting surface is an aggregate composed of multi-step inclined surfaces, and laser light having a desired light distribution opening angle or an opening angle close thereto can be easily obtained.
  • the laser light can be made eye-safe without passing through the light scattering region including the light scatterer or through the light scattering region within a range in which the polarization characteristics can be maintained. it can.
  • the light emitted from the eye-safe light source maintains (at least partially) the polarization characteristics of the laser light.
  • this eye safe light source is suitable for the use which utilizes a polarization characteristic, for example, is suitable for the optical sensor for biometrics authentication.
  • the laser light can be made eye-safe without passing through the light scattering layer including the light scatterer or through the light scattering layer within a range in which the polarization characteristics can be maintained. it can.
  • the light distribution characteristic of the laser light can be adjusted by the multi-stage reflection surface, and the light emitted from the eye-safe light source maintains (at least partially) the light distribution characteristic adjusted by the reflection surface.
  • emitted from an eye safe light source can be adjusted with the improvement of luminous efficiency.
  • the eye-safe light source according to aspect 2 of the present invention is the above-described aspect 1, wherein the light emitting end faces are provided on both sides of the semiconductor laser 200, and the reflecting surfaces 216, 317, 317, 517, 516, 616, 716, 717 may be provided to face each of the light emitting end faces.
  • the eye-safe light source according to aspect 3 of the present invention is the above-described aspect 2, wherein the light emitting end faces are optically symmetrical with each other, and the reflecting surfaces 216, 317, 317, 517, 516, 616, 716, 717 A plane of symmetry that passes through the center of the semiconductor laser and is perpendicular to the direction in which the laser beam is emitted from the end face may be plane symmetric.
  • the eye-safe light source according to Aspect 4 of the present invention is the eye-safe light source according to any one of Aspects 1 to 3, wherein the reflecting surfaces 116, 216, 317, 317, 517, 516, 616, 716, 717 are rotating bodies around a central axis. It may be formed so as to form a shape of a part of the trajectory rotated.
  • the eye-safe light source according to aspect 5 of the present invention is the eye safe light source according to aspect 2, wherein the light emitting end faces are optically symmetrical with each other, and the reflecting surfaces 217, 317, 517, and 516 emit the laser light from the light emitting end faces.
  • the eye-safe light source according to aspect 6 of the present invention is the eye safe light source according to aspect 5 described above, wherein the reflecting surfaces 217, 317, 517, and 516 rotate around respective central axes inclined in different directions with respect to the reference surface of the substrate. You may form so that the shape of a part of locus
  • the eye-safe light source according to aspect 7 of the present invention is the eye-safe light source according to aspect 6, wherein the central axes of the two reflecting surfaces rotate about a through-axis that penetrates the laser resonator of the semiconductor laser in the longitudinal direction of the semiconductor laser. On the other hand, they may be inclined in opposite directions.
  • the eye-safe light source according to aspect 8 of the present invention is the above-described aspect 2, wherein the light emitting end faces are optically symmetrical with each other, and the reflecting surfaces 217, 317, 517, and 516 are different from the reference surface of the substrate. You may form so that the shape of a part of locus
  • the reflecting surface is an aggregate composed of multi-step inclined surfaces, the width and the inclination angle of the inclined surface of each step can be adjusted. It becomes easy to bring the orientation characteristics close to ideal.
  • by tilting the central axis of the reflecting surface with respect to the symmetry axis it is possible in many cases to avoid the state where light emitted from both ends of the semiconductor laser is reflected on the reflecting surface and simultaneously enters the human pupil.
  • the eye-safe light source includes a substrate (package 508) and a semiconductor laser 200 that emits laser light 214 from a light emitting end face (left light emitting end face 100l, right light emitting end face 100r).
  • the laser beam 214 is bonded to the substrate so as to be emitted in a horizontal direction with respect to the reference surface of the substrate, and the light emitting end surfaces are provided on both sides of the semiconductor laser 200 and are optically connected to each other.
  • the substrate has two reflecting surfaces 516 and 517 that reflect the laser beam 200, and the reflecting surfaces 516 and 517 are provided to face the light emitting end surface, respectively.
  • each of the reflecting surfaces 516 and 517 is formed so as to have a shape of a part of a parabolic surface of a locus in which a parabola rotates around the central axis. Inclined in different directions with respect to the reference plane of the substrate.
  • the laser light is emitted in a direction parallel to the reference surface of the substrate and reflected by the reflecting surface.
  • the optical path length from the light emitting end surface to the reflecting surface can be increased without increasing the thickness of the eye-safe light source.
  • the spot diameter of the laser beam on the reflecting surface can be increased.
  • the light density of the laser light can be lowered, and the laser light can be made eye-safe.
  • the reflecting surface a paraboloid, laser light having a desired light distribution opening angle or laser light having an opening angle close thereto can be easily obtained.
  • the light emitted from both ends of the semiconductor laser is reflected by the reflecting surface and then enters the human pupil at the same time. It can be avoided in many cases.
  • An eye-safe light source according to aspect 10 of the present invention is the eye safe light source according to aspect 9, wherein the central axis is asymmetric with respect to a symmetry plane that passes through the center of the semiconductor laser 200 and is perpendicular to the direction in which the laser light 200 is emitted from the light emitting end surface. And may be 180 ° rotationally symmetric with respect to an axis of symmetry that is perpendicular to the reference plane of the substrate and passes through the center of the semiconductor laser 200.
  • the eye-safe light source according to aspect 11 of the present invention is the eye safe light source according to aspect 10, in which the central axes of the two reflecting surfaces 516 and 517 penetrate the laser resonator of the semiconductor laser 200 in the longitudinal direction of the semiconductor laser 200. You may incline in a mutually reverse rotation direction with respect to the rotation around a penetration axis.
  • the eye-safe light source according to aspect 12 of the present invention is the eye safe light source according to aspect 11, wherein the substrate includes a metal lead frame 104 and a resin (resin portion 506) that at least partially covers the metal lead frame 104.
  • the semiconductor laser 200 may be bonded to the metal lead frame 104.
  • the eye-safe light source according to Aspect 13 of the present invention is the semiconductor laser according to any one of Aspects 1 to 12, wherein the light emitting end surface protrudes from the submount when viewed from the direction perpendicular to the substrate. It may be joined to the substrate via the submount.
  • the eye-safe light source according to the fourteenth aspect of the present invention is the eye-safe light source according to any one of the first to thirteenth aspects, wherein the light emitting end surface and the reflecting surfaces 216, 317, 317, 517, 516 facing the light emitting end surface
  • the light scatterer which scatters the laser beam 214 may not exist.
  • the reflection surfaces 616, 716, and 717 may be formed of a resin including a light scatterer that scatters the laser light 214. Good.
  • the reflection surfaces 616, 716, and 717 may be made of metal.
  • the eye-safe light source according to aspect 17 of the present invention is the laser light 114 reflected by the reflecting surfaces 116, 216, 317, 317, 517, 516, 616, 716, 717 in any of the above aspects 1 to 16.
  • 214 may pass through a light scattering layer including a light scatterer that scatters the laser light.
  • the semiconductor lasers 100 and 200 may not be resin-sealed.
  • the gas covering the semiconductor lasers 100 and 200 may be able to enter and exit outside.
  • the semiconductor lasers 100 and 200 may be gas-sealed with an inert gas.
  • An electronic apparatus (optical sensor 8) according to aspect 21 of the present invention includes the eye-safe light source according to any one of aspects 1 to 20.
  • an electronic device provided with the eye safe light source which concerns on this invention is realizable.
  • the electronic device (optical sensor 8) according to Aspect 22 of the present invention is the electronic device according to Aspect 21, and is preferably an electronic device for biometric authentication.
  • an electronic device for biometric authentication provided with the eye-safe light source according to the present invention can be realized.
  • the electronic apparatus (optical sensor 8) according to aspect 23 of the present invention is the electronic apparatus according to aspect 21 described above, and is preferably a small projector.
  • the electronic apparatus (optical sensor 8) according to aspect 24 of the present invention is the electronic apparatus according to aspect 21 described above, and is preferably a small projector.
  • a small projector including the eye-safe light source according to the present invention can be realized.
  • the electronic apparatus (optical sensor 8) according to aspect 25 of the present invention is the electronic apparatus according to aspect 21 described above, and is preferably coupled to an optical fiber.
  • each of Embodiments 2, 3, 5, and 6 discloses a structure that is bilaterally symmetric and a structure that is rotationally symmetric. This does not exclude the intentional use of an asymmetry.
  • the optical axis after the laser light is reflected by the reflecting surface is not necessarily in the direction perpendicular to the lead frame. It is possible to easily tilt the optical axis in the desired direction by changing the tilt angle between the left and right reflecting surfaces, or by tilting the central axis of the paraboloid with respect to the perpendicular to the lead frame. It is naturally included in the technical scope of the invention.
  • Optical sensor (electronic equipment) 100, 200 Semiconductor laser 100l Left emission end face (light emission end face) 100r Right emission end face (light emission end face) 102 Submount 104 Lead frame (metal lead frame) 104a Anode part 104c Cathode part 106, 206, 306, 406, 506, 606, 706 Resin part (resin) 108, 208, 308, 408, 508, 608, 708 Package (substrate) 110 Wire 114, 214 Laser beam 116, 216, 316, 416, 516, 616, 716, 717 Reflective surface 118, 218 Optical axis (symmetric axis) 120, 220, 320, 420, 520, 620, 720 Recessed portion 122 Exposed portion 124, 224 Openings 128a, 228b, 628 Cover (light scattering layer) 132, 142 Lens 134 Optical axis

Abstract

An eye-safe light source, wherein light emission efficiency is improved while orientation characteristics are adjusted. The eye-safe light source (1) is provided with a package (108), a semiconductor laser (100) that emits laser light (114) from a right light-emitting end surface (100r), and a wire (110) joined to the semiconductor laser (100). The semiconductor laser (100) is joined to the package (108) so that the laser light (114) is emitted parallel to a reference surface of the package (108). The package (108) has a reflective surface (116) for reflecting the laser light (114). The reflection surface (116) is provided so as to face the right light-emitting end surface (100r), and comprises an aggregate of multi-level inclined surfaces, the inclination angles of the inclined surfaces differing so as to be greater approaching the emission end part of the laser light (114).

Description

アイセーフ光源および電子機器Eye-safe light source and electronic equipment
 本発明は、アイセーフ化されたアイセーフ光源、およびそれを備える電子機器に関する。 The present invention relates to an eye-safe light source that has been made eye-safe and an electronic device including the same.
 近年、IrDA(Infrared Data Association)等に代表される無線光通信モジュール、および光学センサモジュール等が、携帯電話やノートパソコン等の電子機器に広く実装されている。例えば、特許文献1は、携帯電話に実装される光学近接センサ(反射型光結合装置)について開示している。 In recent years, wireless optical communication modules such as IrDA (Infrared Data Association), optical sensor modules, and the like have been widely installed in electronic devices such as mobile phones and laptop computers. For example, Patent Document 1 discloses an optical proximity sensor (reflective optical coupling device) mounted on a mobile phone.
 このような携帯型の電子機器において、電力源が電池であるため、実装されているモジュールの消費電力を低減することが強く望まれている。また、照明を利用した無線光通信設備においても、エネルギー効率の観点から、消費電力の低減が望まれている。そして、無線光通信モジュール、および光学センサモジュール等においては、主に発光する光源が電力を消費するため、光源の消費電力の低減が望まれている。 In such portable electronic devices, since the power source is a battery, it is strongly desired to reduce the power consumption of the mounted module. Moreover, also in the wireless optical communication equipment using illumination, reduction of power consumption is desired from the viewpoint of energy efficiency. In the wireless optical communication module, the optical sensor module, and the like, since the light source that mainly emits light consumes power, it is desired to reduce the power consumption of the light source.
 一方、無線光通信用および光学センサシング用等の光源は、人間の眼に対する安全(アイセーフ、eye-safe)性が確保されなければならない。また、無線光通信および光学センシング等に用いるためには、配光性を整えられている必要がある。 On the other hand, light sources for wireless optical communication and optical sensoring, etc. must ensure safety (eye-safe) for human eyes. Moreover, in order to use it for wireless optical communication, optical sensing, etc., it is necessary to arrange light distribution.
 例えば、特許文献2~4は、半導体レーザが出射したレーザ光をアイセーフ化したアイセーフ光源を開示している。特許文献2~4に開示のアイセーフ光源においては、レーザ光が光散乱層を透過することにより、レーザ光のスポット径が広がって、レーザ光がアイセーフ化されている。また、そのようなレーザ光がアイセーフ化されたアイセーフ光源からの光を無線光通信に適した光強度分布に整え、配光特性を整えるレンズの形状が、特許文献5に開示されている。 For example, Patent Documents 2 to 4 disclose eye-safe light sources in which laser light emitted from a semiconductor laser is made eye-safe. In the eye-safe light sources disclosed in Patent Documents 2 to 4, the laser light passes through the light scattering layer, so that the spot diameter of the laser light is widened and the laser light is made eye-safe. Further, Patent Document 5 discloses a lens shape that adjusts light from an eye-safe light source in which such laser light is made eye-safe into a light intensity distribution suitable for wireless optical communication and adjusts light distribution characteristics.
日本国公開特許公報「特開第2011-96724号(2011年05月12日公開)」Japanese Patent Publication “JP 2011-96724 (May 12, 2011)” 日本国特許公報「特許第4014425号(2007年11月28日発行)」Japanese Patent Gazette “Patent No. 4014425 (issued on November 28, 2007)” 日本国特許公報「特許第5046538号(2012年10月10日発行)」Japanese Patent Publication “Patent No. 5046538 (issued on October 10, 2012)” 日本国公開特許公報「特開第2007-266484号(2007年10月11日公開)」Japanese Patent Publication “JP 2007-266484 A (published Oct. 11, 2007)” 日本国公開特許公報「特開第2005-142447号(2005年06月02日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2005-142447 (published on June 02, 2005)”
 しかしながら、特許文献2~4のような従来技術においては、光散乱層を透過する間に、多重光散乱が起きる。多重光散乱により、光吸収が生じるため、消費電力に対して光を取り出す効率(発光効率)が低下するという問題がある。また、多重散乱によりレーザ光の配向特性および偏光特性が失われる。 However, in the conventional techniques such as Patent Documents 2 to 4, multiple light scattering occurs while passing through the light scattering layer. Since light absorption occurs due to multiple light scattering, there is a problem that the efficiency of extracting light (light emission efficiency) with respect to power consumption decreases. Further, the alignment characteristics and polarization characteristics of the laser beam are lost due to multiple scattering.
 また、半導体レーザをサブマウントなしで基板に接合すると、半導体レーザから広がるように出射されるレーザ光が基板に当たる。このため、レーザ光が広がることができず、アイセーフ化性能が低下する。また、サブマウントを用いても、半導体レーザをサブマウントの内側に接合していると、仮想光源にサブマウントの影が生じ、発光効率が低下する。 Also, when a semiconductor laser is bonded to a substrate without a submount, laser light emitted so as to spread from the semiconductor laser hits the substrate. For this reason, a laser beam cannot spread and eye safety performance falls. Even if the submount is used, if the semiconductor laser is bonded to the inside of the submount, the shadow of the submount is generated in the virtual light source, and the light emission efficiency is lowered.
 上述のように、従来技術のアイセーフ光源においては、アイセーフ化により配向特性が失われるという問題と、発光効率が低いという問題とがある。 As described above, the conventional eye-safe light source has a problem that the alignment characteristics are lost due to the eye-safe and a problem that the light emission efficiency is low.
 本発明は、前記の問題点に鑑みてなされたものであり、その目的は、アイセーフ光源において、配向特性を整えながら、発光効率を向上させることにある。 The present invention has been made in view of the above-described problems, and an object thereof is to improve luminous efficiency while adjusting alignment characteristics in an eye-safe light source.
 上記の課題を解決するために、本発明の一態様に係るアイセーフ光源は、基板と、レーザ光を発光端面から出射する半導体レーザとを備え、前記半導体レーザが、前記レーザ光を前記基板の基準面に対して水平方向に出射するように、前記基板に接合され、前記基板が、前記レーザ光を反射する反射面を有し、前記反射面は、前記発光端面に対向するように設けられており、かつ、多段の傾斜面の集合体からなり、前記傾斜面の傾斜角度が前記レーザ光の出射端部に近づくほど大きくなるように異なる。 In order to solve the above problems, an eye-safe light source according to one embodiment of the present invention includes a substrate and a semiconductor laser that emits laser light from a light emitting end surface, and the semiconductor laser uses the laser light as a reference of the substrate. The substrate is bonded to the substrate so as to be emitted in a horizontal direction with respect to the surface, and the substrate has a reflection surface that reflects the laser light, and the reflection surface is provided to face the light emitting end surface. In addition, it is made up of an assembly of multi-stage inclined surfaces, and the inclination angle of the inclined surfaces is different so as to be closer to the laser light emitting end.
 本発明の一態様によれば、アイセーフ光源において、配向特性を整えながら、発光効率を向上させることができるという効果を奏する。更には、アイセーフ光源の薄型化および小型化も実現することができるという効果を奏する。 According to one aspect of the present invention, the eye-safe light source has the effect of improving the light emission efficiency while adjusting the alignment characteristics. In addition, the eye-safe light source can be reduced in thickness and size.
本発明の実施形態1に係る光源の半導体レーザ周辺の概略構成を示す図であり、(a)は樹脂部を透視した上面図であり、(b)は(a)のA-A矢視断面図であり、(c)は(a)のB-B矢視断面図であり、(d)は(a)のC-C矢視断面図であり、(e)は樹脂部を透視していない下面図であり、(f)は(b)の発光状態を模式的に示したA-A矢視断面図である。2A and 2B are diagrams illustrating a schematic configuration of the periphery of the semiconductor laser of the light source according to the first embodiment of the present invention, in which FIG. 1A is a top view of the resin portion seen through, and FIG. 2B is a cross-sectional view taken along line AA in FIG. (C) is a cross-sectional view taken along the line BB of (a), (d) is a cross-sectional view taken along the line CC of (a), and (e) is a perspective view of the resin portion. (F) is a cross-sectional view taken along the line AA schematically showing the light emission state of (b). 図1に示した光源において、レーザ光の反射面による反射を示したものであり、(a)は中段傾斜面による反射、(b)は上段傾斜面による反射、(c)は下段傾斜面による反射をそれぞれ示す断面図である。In the light source shown in FIG. 1, the reflection of the laser beam by the reflecting surface is shown, (a) is reflected by the middle inclined surface, (b) is reflected by the upper inclined surface, and (c) is by the lower inclined surface. It is sectional drawing which shows reflection, respectively. 上記中段傾斜面、上記上段傾斜面および上記下段傾斜面によって反射されたレーザ光の広がりを合わせて示す断面図である。It is sectional drawing which shows collectively the breadth of the laser beam reflected by the said middle stage inclined surface, the said upper stage inclined surface, and the said lower stage inclined surface. 図2に示した反射面に対する比較例の反射面によるレーザ光の反射を示す断面図である。It is sectional drawing which shows reflection of the laser beam by the reflective surface of the comparative example with respect to the reflective surface shown in FIG. 図2に示した反射面に対する他の比較例の反射面によるレーザ光の反射を示す断面図である。It is sectional drawing which shows reflection of the laser beam by the reflective surface of the other comparative example with respect to the reflective surface shown in FIG. 図2に示した反射面の効果を説明するために使用するモデル光源の配光特性を示すグラフである。It is a graph which shows the light distribution characteristic of the model light source used in order to demonstrate the effect of the reflective surface shown in FIG. (a)は図6の配光特性を有するモデル光源からの光の図2に示した反射面による反射光、および上記2つの比較例の反射面による反射光のそれぞれの光強度分布を示すグラフであり、(b)は(a)の要部を拡大して示すグラフである。FIG. 6A is a graph showing the light intensity distributions of the light from the model light source having the light distribution characteristics shown in FIG. 6 and the light reflected by the reflection surface shown in FIG. 2 and the light reflected by the reflection surfaces of the two comparative examples. (B) is a graph showing an enlarged main part of (a). 上記中段傾斜面による反射光、上段傾斜面による反射光、上記下段傾斜面による反射光、これらの反射光の合成光、および図4に示した比較例の反射面による反射光の光強度分布を示すグラフである。The light intensity distribution of the reflected light from the reflection surface of the above-mentioned middle-stage inclined surface, the reflected light from the upper-stage inclined surface, the reflected light from the lower-stage inclined surface, the combined light of these reflected lights, and the reflective surface of the comparative example shown in FIG. It is a graph to show. (a)はサブマウント上に搭載したモデル光源としての半導体レーザからの光の放射を模式的に示す斜視図であり、(b)は図1に示したパッケージに搭載された(a)に示す半導体レーザからの光の反射光の放射を模式的に示す斜視図である。(A) is a perspective view which shows typically the radiation | emission of the light from the semiconductor laser as a model light source mounted on the submount, (b) is shown to (a) mounted in the package shown in FIG. It is a perspective view which shows typically radiation | emission of the reflected light of the light from a semiconductor laser. (a)は図9の(a)に示したレーザ光の典型的な配光特性を示すグラフであり、(b)は図9の(b)に示した反射光の典型的な配光特性を示すグラフであり、(c)は図9の(b)に示した反射光を更に光散乱層を通過させた場合に得られる典型的な配光特性を示すグラフであり、(d)は比較例としての放物面からなる反射面(パラボラ形状リフレクタ)による反射光の典型的な配光特性を示すグラフである。(A) is a graph which shows the typical light distribution characteristic of the laser beam shown to (a) of FIG. 9, (b) is the typical light distribution characteristic of the reflected light shown to (b) of FIG. (C) is a graph showing typical light distribution characteristics obtained when the reflected light shown in (b) of FIG. 9 is further passed through the light scattering layer, and (d) is It is a graph which shows the typical light distribution characteristic of the reflected light by the reflective surface (parabolic reflector) which consists of a paraboloid as a comparative example. 上記パラボラ形状リフレクタによる反射光を更に光散乱層を通過させた場合に得られるスパイク状の突起を含む配光特性を示すグラフである。It is a graph which shows the light distribution characteristic containing the spike-shaped processus | protrusion obtained when the reflected light by the said parabolic reflector is further passed through a light-scattering layer. 実施形態1の変形例に係るアイセーフ光源の一部を拡大して示す断面図である。It is sectional drawing which expands and shows a part of eye safe light source which concerns on the modification of Embodiment 1. FIG. 実施形態1の他の変形例に係るアイセーフ光源の半導体レーザ周辺の概略構成を示す図であり、(a)は樹脂部を透視した上面図であり、(b)は(a)のA1-A1矢視断面図であり、(c)は(a)のB1-B1矢視断面図である。FIG. 7 is a diagram showing a schematic configuration around a semiconductor laser of an eye-safe light source according to another modification of the first embodiment, (a) is a top view through which a resin portion is seen, and (b) is A1-A1 of (a). It is arrow sectional drawing, (c) is B1-B1 arrow sectional drawing of (a). 本発明の実施形態2に係るアイセーフ光源の半導体レーザ周辺の概略構成を示す図であり、(a)は樹脂部を透視した上面図であり、(b)は(a)のD-D矢視断面図であり、(c)は(a)のE-E矢視断面図であり、(d)は(a)のF-F矢視断面図である。FIG. 5 is a diagram showing a schematic configuration around a semiconductor laser of an eye-safe light source according to Embodiment 2 of the present invention, where (a) is a top view seen through a resin portion, and (b) is a view taken along a DD arrow in (a). FIG. 3C is a cross-sectional view taken along the line EE in FIG. 4A, and FIG. 4D is a cross-sectional view taken along the line FF in FIG. (a)は図14に示すアイセーフ光源の発光状態を示す断面図であり、(b)は当該アイセーフ光源の側面図であり、(c)は発光状態にある当該アイセーフ光源の側面図である。(A) is sectional drawing which shows the light emission state of the eye safe light source shown in FIG. 14, (b) is a side view of the said eye safe light source, (c) is a side view of the said eye safe light source in the light emission state. (a)はサブマウント上に搭載したモデル光源としての半導体レーザからの光の放射を模式的に示す斜視図であり、(b)は図15に示したパッケージに搭載された(a)に示す半導体レーザからの光の反射光の放射を模式的に示す斜視図であり、(c)は(b)に示す反射光が光散乱層を通過した状態を示す模式図である。(A) is a perspective view which shows typically the radiation | emission of the light from the semiconductor laser as a model light source mounted on the submount, (b) is shown to (a) mounted in the package shown in FIG. It is a perspective view which shows typically the radiation of the reflected light of the light from a semiconductor laser, (c) is a schematic diagram which shows the state through which the reflected light shown to (b) passed the light-scattering layer. 実施形態2の変形例に係るアイセーフ光源の半導体レーザ周辺の概略構成を示す図であり、(a)は樹脂部を透視した上面図であり、(b)は(a)のD1-D1矢視断面図であり、(c)は(a)のE1-E1矢視断面図である。FIG. 10 is a diagram illustrating a schematic configuration around a semiconductor laser of an eye-safe light source according to a modification of the second embodiment, where (a) is a top view seen through a resin portion, and (b) is a view taken along arrows D1-D1 in (a). It is sectional drawing, (c) is E1-E1 arrow sectional drawing of (a). 実施形態2の他の変形例に係るアイセーフ光源の半導体レーザ周辺の概略構成を示す図であり、(a)は樹脂部を透視した上面図であり、(b)は(a)のD2-D2矢視断面図であり、(c)は(a)のE2-E2矢視断面図である。FIG. 10 is a diagram illustrating a schematic configuration around a semiconductor laser of an eye-safe light source according to another modification of the second embodiment, wherein (a) is a top view of the resin portion seen through, and (b) is D2-D2 of (a). It is arrow sectional drawing, (c) is E2-E2 arrow sectional drawing of (a). 本発明の実施形態3に係るアイセーフ光源の半導体レーザ周辺の概略構成を示す図であり、(a)は、樹脂部を透視した上面図であり、(b)は(a)のG-G矢視断面図であり、(c)は(a)のH-H矢視断面図であり、(d)は(a)のI-I矢視断面図であり、(e)は(a)のJ-J矢視断面図であり、(f)は(a)のK-K矢視断面図である。It is a figure which shows schematic structure of the semiconductor laser periphery of the eye safe light source which concerns on Embodiment 3 of this invention, (a) is the top view which saw through the resin part, (b) is GG arrow of (a). (C) is a cross-sectional view taken along the line HH of (a), (d) is a cross-sectional view taken along the line II of (a), and (e) is a cross-sectional view of (a). It is a JJ arrow sectional drawing, (f) is KK arrow sectional drawing of (a). (a)は図19に示すアイセーフ光源の発光状態を示す断面図であり、(b)は当該アイセーフ光源の側面図であり、(c)は発光状態にある当該アイセーフ光源の側面図である。(A) is sectional drawing which shows the light emission state of the eye safe light source shown in FIG. 19, (b) is a side view of the said eye safe light source, (c) is a side view of the said eye safe light source in a light emission state. (a)は図20の(b)に示した反射面の中心軸の傾斜角度が3°である場合の配光特性を示すグラフであり、(b)は図20の(b)に示した反射面の中心軸の傾斜角度が5°である場合の配光特性を示すグラフである。(A) is a graph showing the light distribution characteristics when the inclination angle of the central axis of the reflecting surface shown in (b) of FIG. 20 is 3 °, and (b) is shown in (b) of FIG. It is a graph which shows the light distribution characteristic in case the inclination angle of the central axis of a reflective surface is 5 degrees. (a)は図21の(a)に示す配光特性の光を投影した場合の光強度の模式的なマッピングを示す図であり、(b)は図21の(b)に示す配光特性の光を投影した場合の光強度の模式的なマッピングを示す図であり、(c)は図10の(b)に示す配光特性の光を投影した場合の光強度の模式的なマッピングを示す図である。(A) is a figure which shows the typical mapping of the light intensity at the time of projecting the light of the light distribution characteristic shown to (a) of FIG. 21, (b) is the light distribution characteristic shown to (b) of FIG. It is a figure which shows the schematic mapping of the light intensity at the time of projecting the light of (c), (c) is a schematic mapping of the light intensity at the time of projecting the light of the light distribution characteristic shown in (b) of FIG. FIG. 図22に示すマッピングに対する比較例として、放物面からなる反射面(パラボラ形状リフレクタ)を用いて得られる図10の(d)に示す配光特性を有する光を投影した場合の光強度のマッピング図である。As a comparative example for the mapping shown in FIG. 22, mapping of light intensity when light having a light distribution characteristic shown in FIG. 10D obtained by using a reflecting surface (parabolic reflector) made of a paraboloid is projected. FIG. 本発明の実施形態4に係る光源の半導体レーザ周辺の概略構成を示す図であり、(a)は樹脂部を透視した上面図であり、(b)は(a)のL-L矢視断面図であり、(c)は(a)のM-M矢視断面図であり、(d)は(a)のN-N矢視断面図である。FIG. 5 is a diagram showing a schematic configuration around a semiconductor laser of a light source according to a fourth embodiment of the present invention, (a) is a top view seen through a resin portion, and (b) is a cross-sectional view taken along line LL in (a). (C) is a cross-sectional view taken along line MM in (a), and (d) is a cross-sectional view taken along line NN in (a). (a)は図24に示すアイセーフ光源の発光状態を示す断面図であり、(b)は当該アイセーフ光源の側面図であり、(c)は発光状態にある実施形態1のアイセーフ光源の側面図である。(A) is sectional drawing which shows the light emission state of the eye safe light source shown in FIG. 24, (b) is a side view of the said eye safe light source, (c) is a side view of the eye safe light source of Embodiment 1 in a light emission state. It is. 本発明の実施形態5に係る光源の半導体レーザ周辺の概略構成を示す図であり、(a)は樹脂部を透視した上面図であり、(b)は(a)のO-O矢視断面図であり、(c)は(a)のP-P矢視断面図であり、(d)は(a)のQ-Q矢視断面図であり、(e)は(a)のR-R矢視断面図であり、(f)は(a)のS-S矢視断面図である。FIG. 6 is a diagram illustrating a schematic configuration around a semiconductor laser of a light source according to a fifth embodiment of the present invention, wherein (a) is a top view seen through a resin portion, and (b) is a cross-sectional view taken along line OO in (a). (C) is a cross-sectional view taken along the line PP of (a), (d) is a cross-sectional view taken along the line QQ of (a), and (e) is a cross-sectional view taken along the line R-- It is R arrow sectional drawing, (f) is SS arrow sectional drawing of (a). (a)は図26に示すアイセーフ光源の発光状態を示す断面図であり、(b)は当該アイセーフ光源の側面図であり、(c)は反射面の中心軸が光軸に対して傾斜していない発光状態にあるアイセーフ光源の側面図である。(A) is sectional drawing which shows the light emission state of the eye safe light source shown in FIG. 26, (b) is a side view of the said eye safe light source, (c) is that the central axis of a reflective surface inclines with respect to an optical axis. It is a side view of the eye safe light source in the light emission state which is not. 本発明の実施形態6に係る光源の半導体レーザ周辺の概略構成を示す図であり、(a)は樹脂部を透視した上面図であり、(b)は(a)のT-T矢視断面図であり、(c)は(a)のU-U矢視断面図である。FIG. 9 is a diagram showing a schematic configuration around a semiconductor laser of a light source according to a sixth embodiment of the present invention, (a) is a top view seen through a resin portion, and (b) is a cross-sectional view taken along the line TT of (a). It is a figure and (c) is the U arrow directional cross-sectional view of (a). 本発明の実施形態6に係る他の光源の半導体レーザ周辺の概略構成を示す図であり、(a)は樹脂部を透視した上面図であり、(b)は(a)のV-V矢視断面図であり、(c)は(a)のX-X矢視断面図である。FIG. 10 is a diagram showing a schematic configuration around a semiconductor laser of another light source according to Embodiment 6 of the present invention, (a) is a top view seen through a resin portion, and (b) is a VV arrow in (a). It is a sectional view taken along line (c), and is a sectional view taken along line XX in (a). 本発明の実施形態7に係る光学センサの概略構成を示す図である。It is a figure which shows schematic structure of the optical sensor which concerns on Embodiment 7 of this invention.
 〔実施形態1〕
 以下、本発明の実施形態1について、図1に基づき、詳細に説明する。
Embodiment 1
Hereinafter, Embodiment 1 of the present invention will be described in detail with reference to FIG.
 図1は、本発明の実施形態1に係るアイセーフ光源1の半導体レーザ100周辺の概略構成を示す図である。図1の(a)は樹脂部106を透視した上面図である。図1の(b)は図1の(a)のA-A矢視断面図である。図1の(c)は図1の(a)のB-B矢視断面図である。図1の(d)は図1の(a)のC-C矢視断面図であり、図1の(e)は樹脂部106を透視していない下面図である。図1の(f)は図1の(b)の発光状態を模式的に示したA-A矢視断面図である。以下、アイセーフ光源1が発光する向きを上として説明するが、アイセーフ光源1の製造時および使用時などの向きを限定するものではない。 FIG. 1 is a diagram showing a schematic configuration around a semiconductor laser 100 of an eye-safe light source 1 according to Embodiment 1 of the present invention. FIG. 1A is a top view of the resin portion 106 seen through. FIG. 1B is a cross-sectional view taken along the line AA in FIG. FIG. 1C is a cross-sectional view taken along the line BB in FIG. 1D is a cross-sectional view taken along the line CC of FIG. 1A, and FIG. 1E is a bottom view of the resin portion 106 not seen through. FIG. 1F is a cross-sectional view taken along the line AA schematically showing the light emission state of FIG. Hereinafter, the direction in which the eye-safe light source 1 emits light will be described as above. However, the direction of the eye-safe light source 1 at the time of manufacture and use is not limited.
 図1に示すように、アイセーフ光源1は、レーザ光114を左右両側のうち主として右発光端面100rから出射する半導体レーザ100、半導体レーザ100を載置するサブマウント102、金属製リードフレーム(以下、省略してリードフレームと称する)104と樹脂部106とを有するパッケージ(基板)108、およびワイヤ110を備えている。アイセーフ光源1は、表面実装型である。また、アイセーフ光源1には、アノードおよびカソードの方向が分かるように、印112が設けられている。 As shown in FIG. 1, the eye-safe light source 1 includes a semiconductor laser 100 that emits laser light 114 mainly from the right light emitting end surface 100r of the left and right sides, a submount 102 on which the semiconductor laser 100 is mounted, and a metal lead frame (hereinafter referred to as “a” A package (substrate) 108 having a lead frame 104 (not shown) and a resin portion 106, and a wire 110 are provided. The eye safe light source 1 is a surface mount type. The eye-safe light source 1 is provided with a mark 112 so that the directions of the anode and the cathode can be seen.
 また、光軸118(対称軸)は、アイセーフ光源1から、アイセーフ化された光が出射される方向を示し、リードフレーム104の上面およびパッケージ108の上面に垂直である。 The optical axis 118 (symmetry axis) indicates the direction in which the eye-safe light is emitted from the eye-safe light source 1, and is perpendicular to the upper surface of the lead frame 104 and the upper surface of the package 108.
 (パッケージ)
 パッケージ108は、リードフレーム104の周囲を部分的に樹脂部106により覆った(パッケージした)部材である。樹脂部106には、開口(開口部)124を有する凹部120が形成されており、凹部120からリードフレーム104の上面の一部(露出部122)が露出されている。また、開口124は、レーザ光114の出射端部となり、パッケージ108の上面に開いている。また、パッケージ108は、凹部120の内部に半導体レーザ100を収納する。
(package)
The package 108 is a member in which the periphery of the lead frame 104 is partially covered (packaged) with the resin portion 106. A concave portion 120 having an opening (opening portion) 124 is formed in the resin portion 106, and a part of the upper surface (exposed portion 122) of the lead frame 104 is exposed from the concave portion 120. The opening 124 serves as an emission end of the laser beam 114 and opens on the upper surface of the package 108. The package 108 houses the semiconductor laser 100 inside the recess 120.
 リードフレーム104は、銅系合金などの金属の薄板を打ち抜き、メッキを施したものであり、熱伝導性、放熱性、機械的強度、および電気伝導性に優れている。リードフレーム104の上面において、露出部122は、半導体レーザ100と電気的および熱的に接続されるために、図1の(a)~(d)に示すように、樹脂部106に覆われずに凹部120内へ露出されている。リードフレーム104の下面の大部分は、放熱するために、図1の(b)~(e)に示すように、樹脂部106から下側へ露出されている。また、リードフレーム104は、図1に示されていないリード端子を経て、外部に電気的に接続されている。あるいは、リードフレーム104は、樹脂部106から露出しているリードフレーム104の下面を経て、外部に電気的に接続されてもよい。 The lead frame 104 is obtained by punching and plating a thin metal plate such as a copper-based alloy and is excellent in thermal conductivity, heat dissipation, mechanical strength, and electrical conductivity. Since the exposed portion 122 is electrically and thermally connected to the semiconductor laser 100 on the top surface of the lead frame 104, it is not covered with the resin portion 106 as shown in FIGS. Are exposed in the recess 120. Most of the lower surface of the lead frame 104 is exposed downward from the resin portion 106 to dissipate heat, as shown in FIGS. The lead frame 104 is electrically connected to the outside through lead terminals not shown in FIG. Alternatively, the lead frame 104 may be electrically connected to the outside through the lower surface of the lead frame 104 exposed from the resin portion 106.
 リードフレーム104は、半導体レーザ100のカソードに接続されるカソード部104cと、半導体レーザ100のアノードに接続されるアノード部104aと、を含む。カソード部104cとアノード部104aとは、樹脂部106により接合されており、かつ、樹脂部106により絶縁されている。また、カソード部104cの露出部122上に半導体レーザ100が載置されたサブマウント102が接合されている。なお、カソード部104cとアノード部104aとの大小および半導体レーザ100に対する配置は逆であってもよい。リードフレーム104の上面は、パッケージ108の底面(基準面)と平行である。 The lead frame 104 includes a cathode portion 104 c connected to the cathode of the semiconductor laser 100 and an anode portion 104 a connected to the anode of the semiconductor laser 100. The cathode portion 104 c and the anode portion 104 a are joined by the resin portion 106 and insulated by the resin portion 106. In addition, the submount 102 on which the semiconductor laser 100 is mounted is bonded onto the exposed portion 122 of the cathode portion 104c. It should be noted that the size of the cathode portion 104c and the anode portion 104a and the arrangement with respect to the semiconductor laser 100 may be reversed. The top surface of the lead frame 104 is parallel to the bottom surface (reference surface) of the package 108.
 樹脂部106を形成する樹脂は、レーザ光114を散乱する光散乱体を含む白色の熱可塑性樹脂であり、LED(Light Emitting diode)光源によく用いられる樹脂である。樹脂部106は、例えば、ポリシクロヘキシレンジメチレンテレフタラート(PCT)樹脂または、ポリフタルアミド(PPA)樹脂により形成されてもよい。なお、反射率を向上させるために白色の樹脂を用いたが、レーザ光114の波長およびアイセーフ光源1の用途に応じて、赤色などの別色の樹脂を用いてもよい。また、熱可塑性樹脂を用いたが、パッケージ108の製造方法に応じて、熱硬化性、光硬化性などの別の性質の樹脂を用いてもよい。 The resin forming the resin portion 106 is a white thermoplastic resin including a light scatterer that scatters the laser light 114, and is a resin often used for LED (Light Emitting Diode) light sources. The resin portion 106 may be formed of, for example, polycyclohexylene dimethylene terephthalate (PCT) resin or polyphthalamide (PPA) resin. In addition, although white resin was used in order to improve a reflectance, you may use resin of another color, such as red, according to the wavelength of the laser beam 114 and the use of the eye safe light source 1. Further, although a thermoplastic resin is used, a resin having another property such as thermosetting or photo-curing may be used depending on the manufacturing method of the package 108.
 図1には示されていないが、半導体レーザ100の発光を制御するための制御素子が、リードフレーム104に接合され、樹脂部106により封止されてよい。また、その他の半導体素子も、パッケージ108内部に樹脂部106により封止されていてよい。 Although not shown in FIG. 1, a control element for controlling light emission of the semiconductor laser 100 may be bonded to the lead frame 104 and sealed with the resin portion 106. Further, other semiconductor elements may be sealed inside the package 108 by the resin portion 106.
 印112は、パッケージ108の上面において、樹脂部106に直角二等辺三角形の窪みとして形成されている。これにより、印112を樹脂部106の成形と同時に形成できるため、印112の付け間違いをなくすことができる。なお、印112は設けなくてもよい。 The mark 112 is formed as a depression of a right isosceles triangle on the resin portion 106 on the upper surface of the package 108. Thereby, since the mark 112 can be formed simultaneously with the molding of the resin portion 106, it is possible to eliminate an error in attaching the mark 112. Note that the mark 112 is not necessarily provided.
 リードフレーム104は、金属製であることにより、熱伝導性および放熱性に優れている。このため、リードフレーム104の露出部122に、半導体レーザ100を載置するサブマウント102を接合することにより、半導体レーザ100の発熱を速やかに放熱することができる。したがって、アイセーフ光源1は放熱性に優れている。 Since the lead frame 104 is made of metal, it has excellent thermal conductivity and heat dissipation. Therefore, by joining the submount 102 on which the semiconductor laser 100 is placed to the exposed portion 122 of the lead frame 104, the heat generated by the semiconductor laser 100 can be quickly radiated. Therefore, the eye-safe light source 1 is excellent in heat dissipation.
 金属製のリードフレーム104が樹脂部106を補強するため、金属製のリードフレーム104を含まないパッケージに比べて、金属製のリードフレーム104を含むパッケージ108は機械的強度に優れている。このため、パッケージ108を薄くしても、アイセーフ光源1に要求される機械的強度を達成でき、アイセーフ光源1を薄型化できる。 Since the metal lead frame 104 reinforces the resin portion 106, the package 108 including the metal lead frame 104 is superior in mechanical strength to a package not including the metal lead frame 104. For this reason, even if the package 108 is thinned, the mechanical strength required for the eye-safe light source 1 can be achieved, and the eye-safe light source 1 can be thinned.
 (凹部)
 凹部120は、略逆四角錐台の形状を有する第1凹部1201と、半円状の略多段逆円錐台の形状有する第2凹部1202とを有する。第1凹部1201は、半導体レーザ100、サブマウント102およびワイヤ110を露出させるように形成されている。一方、第2凹部1202は、第1凹部1201を形成する4つの側面のうち、レーザ光114が出射される側の側面に形成されている。
(Concave)
The recess 120 includes a first recess 1201 having a substantially inverted quadrangular frustum shape and a second recess 1202 having a semicircular substantially multi-stage inverted truncated cone shape. First recess 1201 is formed to expose semiconductor laser 100, submount 102, and wire 110. On the other hand, the second recess 1202 is formed on the side surface on the side from which the laser beam 114 is emitted among the four side surfaces forming the first recess 1201.
 凹部120の内部は空洞であり、凹部120の開口124は閉塞されずに開放されている。したがって、半導体レーザ100の発光端面(右発光端面100r)の近傍には、特に何もなく、あえて言えば、空気が存在する。 The inside of the recess 120 is a cavity, and the opening 124 of the recess 120 is opened without being closed. Therefore, there is nothing in particular in the vicinity of the light emitting end face (right light emitting end face 100r) of the semiconductor laser 100, and air is present.
 このため、半導体レーザ100の発光端面の近傍には、レーザ光114を吸収して発熱する光散乱体のような物質は存在しない。このように発熱が生じないため、半導体レーザ100の発光端面の近傍の物質が熱的に損傷を受けることがない。したがって、発光端面の近傍の物質が変性することにより、アイセーフ光源1の機能が低下することがない。すなわち、連続使用および長時間使用による、アイセーフ光源1のアイセーフ性および発光効率の低下を防止することができる。これにより、アイセーフ光源1の耐用寿命が延びる。また、アイセーフ光源1においては、凹部120内部に熱的に損傷するような物質も、光学的に損傷するような物質も存在しないため、半導体レーザ100の発光端面の近傍の物質が熱的光学的に損傷を受けることはない。 Therefore, there is no substance such as a light scatterer that generates heat by absorbing the laser beam 114 in the vicinity of the light emitting end face of the semiconductor laser 100. Since no heat is generated in this way, the material in the vicinity of the light emitting end face of the semiconductor laser 100 is not thermally damaged. Therefore, the function of the eye-safe light source 1 does not deteriorate due to the modification of the substance in the vicinity of the light emitting end face. That is, it is possible to prevent the eye-safe property and the light emission efficiency of the eye-safe light source 1 from being lowered due to continuous use and long-time use. Thereby, the service life of the eye-safe light source 1 is extended. Further, in the eye-safe light source 1, there is neither a material that is thermally damaged nor a material that is optically damaged in the recess 120, so that the material in the vicinity of the light emitting end face of the semiconductor laser 100 is thermally optically optical. Will not be damaged.
 なお、半導体レーザ100の発光端面以外の部分は、樹脂等で覆われてもよい。また、半導体レーザ100の発光端面も、光散乱体を含まない透明樹脂のような、レーザ光114を吸収して発熱することがない物質であれば、覆われてもよい。 Note that portions other than the light emitting end face of the semiconductor laser 100 may be covered with a resin or the like. The light emitting end face of the semiconductor laser 100 may be covered as long as it is a substance that does not generate heat by absorbing the laser light 114, such as a transparent resin that does not include a light scatterer.
 これに対し、半導体レーザを、光散乱体を含む封止樹脂で封止する従来技術においては、封止樹脂に含まれる光散乱体がレーザ光を吸収して、発熱する。このため、特に光密度の高くなってしまう発光端面近傍においては、光散乱体および封止樹脂が変性するという問題がある。樹脂でなく、光散乱体を含む液体で封止する従来技術においても同様である。 On the other hand, in the conventional technique in which a semiconductor laser is sealed with a sealing resin including a light scatterer, the light scatterer included in the sealing resin absorbs the laser light and generates heat. For this reason, there exists a problem that a light-scattering body and sealing resin modify | denature especially in the light emission end surface vicinity where a light density becomes high. The same applies to the prior art in which sealing is performed with a liquid containing a light scatterer instead of a resin.
 また、凹部120の内部は空洞であって、凹部120の内部にある半導体レーザ100は、樹脂封止も気体封止もされずに露出されている。さらに、半導体レーザ100はサブマウント102を介してリードフレーム104に接合されているため、半導体レーザ100は温度変化に応じた伸縮が可能である。このように、半導体レーザ100が伸縮可能であることは、機械的負荷を緩和する観点から、好ましい。 Also, the inside of the recess 120 is hollow, and the semiconductor laser 100 inside the recess 120 is exposed without being sealed with resin or gas. Furthermore, since the semiconductor laser 100 is bonded to the lead frame 104 via the submount 102, the semiconductor laser 100 can be expanded and contracted according to temperature changes. Thus, it is preferable that the semiconductor laser 100 can be expanded and contracted from the viewpoint of reducing the mechanical load.
 半導体レーザ100は、発光すると発熱する。このため、半導体レーザ100が樹脂封止されている場合、半導体レーザ100と封止樹脂との熱膨張係数の差により、応力が発生して半導体レーザ100および封止樹脂等に機械的負荷がかかる。このような機械的負荷がもたらす結果は明確にされていないが、何らかの不良が発生することが懸念される。したがって、応力が発生しないように、半導体レーザ100を樹脂封止しないことは好ましい。また、半導体レーザ100が不活性気体により気体封止されている場合も、半導体レーザ100の発熱により封止気体が膨張して、パッケージ108に対して応力が発生することにより、特に樹脂部106に負荷が加わる。このため、半導体レーザ100を気密封止しないことは好ましい。 The semiconductor laser 100 generates heat when it emits light. For this reason, when the semiconductor laser 100 is resin-sealed, stress is generated due to a difference in thermal expansion coefficient between the semiconductor laser 100 and the sealing resin, and a mechanical load is applied to the semiconductor laser 100 and the sealing resin. . Although the result of such a mechanical load has not been clarified, there is a concern that some defect may occur. Therefore, it is preferable not to resin-seal the semiconductor laser 100 so that stress is not generated. Further, even when the semiconductor laser 100 is sealed with an inert gas, the sealing gas expands due to the heat generated by the semiconductor laser 100, and stress is generated on the package 108. A load is added. For this reason, it is preferable not to hermetically seal the semiconductor laser 100.
 (サブマウントと半導体レーザ)
 サブマウント102は、図1の(a)に示すように、パッケージ108の凹部120の下底の中心に接合されており、リードフレーム104のカソード部104cの露出部122に接合されている。サブマウント102は、半導体レーザ100のアノードと電気的に接続され、ワイヤ110を経てリードフレーム104のアノード部104aに電気的に接続されている。また、サブマウント102は、半導体レーザ100と熱的に接続され、リードフレーム104のカソード部104cに熱的に接続されている。
(Submount and semiconductor laser)
As shown in FIG. 1A, the submount 102 is joined to the center of the bottom of the recess 120 of the package 108 and joined to the exposed portion 122 of the cathode portion 104 c of the lead frame 104. The submount 102 is electrically connected to the anode of the semiconductor laser 100, and is electrically connected to the anode portion 104 a of the lead frame 104 via the wire 110. The submount 102 is thermally connected to the semiconductor laser 100 and thermally connected to the cathode portion 104 c of the lead frame 104.
 半導体レーザ100は、700nmよりも長波長のレーザ光を出射する赤外線半導体レーザである。また、半導体レーザ100は、図1の(f)に示すように主として右発光端面100rから、レーザ光114を出射する。したがって、半導体レーザ100に形成されている共振器の左右両端面および端面近傍は、光学的に非対称である。例えば、左発光端面と右発光端面とに、左右で5対95の非対称な発光比率をもつ半導体レーザを使用することが考えられる。また、発光端面近傍には光学窓構造が形成されていてもよい。 The semiconductor laser 100 is an infrared semiconductor laser that emits laser light having a wavelength longer than 700 nm. The semiconductor laser 100 emits laser light 114 mainly from the right light emitting end face 100r as shown in FIG. Therefore, the left and right end faces and the vicinity of the end faces of the resonator formed in the semiconductor laser 100 are optically asymmetric. For example, it is conceivable to use a semiconductor laser having an asymmetrical emission ratio of 5 to 95 on the left and right sides of the left and right light emitting end faces. An optical window structure may be formed in the vicinity of the light emitting end face.
 半導体レーザ100は、図1の(a)、(b)および(f)に示すように、右発光端面100rがサブマウント102から突出するように、サブマウント102に載置されている。右発光端面100rが突出しているため、レーザ光114はサブマウント102に遮られることなく、樹脂部106に向かって出射される。 The semiconductor laser 100 is mounted on the submount 102 so that the right light emitting end face 100r protrudes from the submount 102 as shown in FIGS. 1 (a), (b), and (f). Since the right light emitting end face 100r protrudes, the laser beam 114 is emitted toward the resin portion 106 without being blocked by the submount 102.
 半導体レーザ100は、リードフレーム104の上面に平行にレーザ光114の光軸が揃うように、サブマウント102を介してリードフレーム104に接合されている(図1の(f))。すなわち、半導体レーザ100の共振器がリードフレーム104の上面に平行になるように、かつ、半導体レーザ100の活性層がリードフレーム104の上面に平行になるように、半導体レーザ100はリードフレーム104に対して平らに載置されている。 The semiconductor laser 100 is bonded to the lead frame 104 via the submount 102 so that the optical axes of the laser beams 114 are aligned in parallel with the upper surface of the lead frame 104 ((f) in FIG. 1). That is, the semiconductor laser 100 is mounted on the lead frame 104 so that the resonator of the semiconductor laser 100 is parallel to the upper surface of the lead frame 104 and the active layer of the semiconductor laser 100 is parallel to the upper surface of the lead frame 104. On the other hand, it is placed flat.
 赤外線と可視光と紫外線とのうち、赤外線は光子あたりのエネルギーが最も低い。このため、樹脂部106が、青色LEDおよび白色LEDを樹脂パッケージするために通常用いられる樹脂(PCT樹脂またはPPA樹脂など)により形成されている場合、半導体レーザ100は赤外線レーザである。したがって、この場合、樹脂部106は半導体レーザ100から出射されるレーザ光114に対し十分な耐久性と長期にわたる信頼性とを備える。なお、これに限らず、半導体レーザ100に、可視光領域の波長のレーザ光を出射する可視光半導体レーザを用いてもよく、紫外線領域の波長のレーザ光を出射する紫外線半導体レーザを用いてもよい。 Among infrared rays, visible light, and ultraviolet rays, infrared rays have the lowest energy per photon. For this reason, when the resin portion 106 is formed of a resin (PCT resin or PPA resin or the like) that is usually used for resin packaging of blue LEDs and white LEDs, the semiconductor laser 100 is an infrared laser. Therefore, in this case, the resin portion 106 has sufficient durability and long-term reliability with respect to the laser beam 114 emitted from the semiconductor laser 100. The semiconductor laser 100 may be a visible light semiconductor laser that emits laser light having a wavelength in the visible light region, or may be an ultraviolet semiconductor laser that emits laser light having a wavelength in the ultraviolet region. Good.
 右発光端面100rがサブマウント102から突出しているため、半導体レーザ100から出射されたレーザ光114がサブマウント102に遮られることなく、樹脂部106に向かって出射される。故に、サブマウント102の影が生じないため、レーザ光114に対する、アイセーフ光源1の光の取り出し効率を向上させることができる。さらに、光の取り出し効率を向上させることにより、アイセーフ光源1およびアイセーフ光源1を備える電子機器の電力消費を抑制することができる。 Since the right light emitting end face 100r protrudes from the submount 102, the laser light 114 emitted from the semiconductor laser 100 is emitted toward the resin portion 106 without being blocked by the submount 102. Therefore, since the shadow of the submount 102 does not occur, the light extraction efficiency of the eye-safe light source 1 with respect to the laser light 114 can be improved. Furthermore, the power consumption of the electronic device provided with the eye safe light source 1 and the eye safe light source 1 can be suppressed by improving the light extraction efficiency.
 また、半導体レーザ100は、サブマウント102を介してリードフレーム104の上面に接合されている。このため、半導体レーザ100から出射されたレーザ光114は、サブマウント102に遮られることなく、下側(リードフレーム104側)にも、上側(開口124側)と同様に広がりながら直進することができる(図1の(f))。レーザ光114は、上側と下側とに同様に直進するため、樹脂部106からなる反射面116でレーザ光114の配光を予測可能に制御することが容易となる。 The semiconductor laser 100 is bonded to the upper surface of the lead frame 104 through the submount 102. For this reason, the laser beam 114 emitted from the semiconductor laser 100 can travel straight to the lower side (lead frame 104 side) while spreading similarly to the upper side (opening 124 side) without being blocked by the submount 102. Yes ((f) in FIG. 1). Since the laser beam 114 travels straight in the same manner on the upper side and the lower side, it becomes easy to predictably control the light distribution of the laser beam 114 on the reflection surface 116 made of the resin portion 106.
 半導体レーザ100はリードフレーム104に対して平らに載置されている。このため、凹部120の深さを(凹部120の上底と下底との間の距離)浅くすることができる。したがって、パッケージ108すなわちアイセーフ光源1を薄型化および小型化することができる。また、凹部120の深さを変えることなく、レーザ光114が反射面116に達するまでの光路長を長くすることができる。このように、パッケージ108の厚み方向(光軸118に平行な方向)でなく、パッケージ108の面方向(光軸118に垂直な方向)に、光路長を確保できるため、アイセーフ光源1を薄型化できる。 The semiconductor laser 100 is mounted flat on the lead frame 104. For this reason, the depth of the recessed part 120 (distance between the upper base and the lower bottom of the recessed part 120) can be made shallow. Therefore, the package 108, that is, the eye-safe light source 1 can be reduced in thickness and size. Further, the optical path length until the laser beam 114 reaches the reflecting surface 116 can be increased without changing the depth of the recess 120. Thus, since the optical path length can be secured not in the thickness direction of the package 108 (direction parallel to the optical axis 118) but in the surface direction of the package 108 (direction perpendicular to the optical axis 118), the eye-safe light source 1 is made thin. it can.
 (ワイヤ)
 ワイヤ110は、金線であり、半導体レーザ100を駆動する電力を供給する電力線である。
(Wire)
The wire 110 is a gold wire and is a power line that supplies power for driving the semiconductor laser 100.
 一本のワイヤ110は、半導体レーザ100のカソードと、リードフレーム104のカソード部104cと、を接続している。この一本のワイヤ110は、半導体レーザ100から前側(図1の(a)において下側)へ伸びており、光軸118の方向から見て、リードフレーム104の上面に対して水平方向に出射されたレーザ光114の光軸に対して略直交している。 A single wire 110 connects the cathode of the semiconductor laser 100 and the cathode portion 104c of the lead frame 104. The single wire 110 extends from the semiconductor laser 100 to the front side (lower side in FIG. 1A), and is emitted in a horizontal direction with respect to the upper surface of the lead frame 104 when viewed from the direction of the optical axis 118. The laser beam 114 is substantially orthogonal to the optical axis.
 別の一本のワイヤ110は、半導体レーザ100のアノードと接続しているサブマウント102と、リードフレーム104のアノード部104aとを接続している。この別の一本のワイヤ110は、サブマウント102から後側(図1の(a)において上側)へ伸びており、光軸118の方向から見て、リードフレーム104の上面に平行に出射されたレーザ光114の光軸に対して略直交している。 Another wire 110 connects the submount 102 connected to the anode of the semiconductor laser 100 and the anode portion 104 a of the lead frame 104. The other single wire 110 extends from the submount 102 to the rear side (upper side in FIG. 1A), and is emitted in parallel to the upper surface of the lead frame 104 when viewed from the direction of the optical axis 118. The laser beam 114 is substantially orthogonal to the optical axis.
 すなわち、ワイヤ110はそれぞれ、上面視において、レーザ光114に略直交している。このため、レーザ光114をワイヤ110が遮ることがない。故に、ワイヤ110の影が生じないため、レーザ光114に対する、アイセーフ光源1の光の取り出し効率を向上させることができる。さらに、光の取り出し効率を向上させることにより、アイセーフ光源1およびアイセーフ光源1を備える電子機器の電力消費を抑制することができる。 That is, each of the wires 110 is substantially orthogonal to the laser beam 114 when viewed from above. For this reason, the laser beam 114 is not blocked by the wire 110. Therefore, since the shadow of the wire 110 does not occur, the light extraction efficiency of the eye-safe light source 1 with respect to the laser beam 114 can be improved. Furthermore, the power consumption of the electronic device provided with the eye safe light source 1 and the eye safe light source 1 can be suppressed by improving the light extraction efficiency.
 これに対し、上面視においてワイヤがレーザ光と略平行である従来技術においては、ワイヤの影が生じるという問題があった。 On the other hand, in the conventional technique in which the wire is substantially parallel to the laser beam in a top view, there is a problem that a shadow of the wire is generated.
 (反射面)
 以下に、レーザ光114を反射する反射面116について説明する。
(Reflective surface)
Hereinafter, the reflection surface 116 that reflects the laser beam 114 will be described.
 反射面116は、第2凹部1202を形成する面であり、レーザ光114を出射する半導体レーザ100の右発光端面100rと対向する1つの側面である。反射面116は、リードフレーム104の上面と垂直であり、かつ、半導体レーザ100の共振器の中心軸を通る面に対して面対称である。 The reflective surface 116 is a surface on which the second recess 1202 is formed, and is one side surface facing the right light emitting end surface 100r of the semiconductor laser 100 that emits the laser light 114. The reflecting surface 116 is perpendicular to the upper surface of the lead frame 104 and is plane symmetric with respect to a surface passing through the central axis of the resonator of the semiconductor laser 100.
 反射面116は、リードフレーム104の上面に対して上向きに傾いた複数の傾斜面の集合体からなる。各傾斜面の傾きにより、リードフレーム104の上面に対して水平方向に出射されたレーザ光114を、光軸118の方向を中心とする光軸118の周辺方向に反射する。また、反射面116は、光散乱体を含む樹脂部106の表面であるため、レーザ光114を散乱反射する。この反射面116の形状と反射面116における散乱反射により、レーザ光114のスポット径が適度に広がるため、レーザ光114の光密度、とりわけ光軸周辺の光密度は、反射前より反射後で低くなる。 The reflection surface 116 is composed of an assembly of a plurality of inclined surfaces inclined upward with respect to the upper surface of the lead frame 104. Due to the inclination of each inclined surface, the laser beam 114 emitted in the horizontal direction with respect to the upper surface of the lead frame 104 is reflected in the peripheral direction of the optical axis 118 centering on the direction of the optical axis 118. Moreover, since the reflecting surface 116 is the surface of the resin part 106 containing a light-scattering body, it reflects and reflects the laser beam 114. Due to the shape of the reflecting surface 116 and the scattering reflection on the reflecting surface 116, the spot diameter of the laser beam 114 is appropriately widened. Therefore, the light density of the laser beam 114, particularly the light density around the optical axis, is lower after reflection than before reflection. Become.
 なお、本実施形態では、レーザ光114を反射させる傾斜面を、下側より2段目の下段傾斜面1161と、下段傾斜面1161の上側の中段傾斜面1162と、中段傾斜面1162の上側(上から2段目)の上段傾斜面1163とする。これらの3つの下段傾斜面1161、中段傾斜面1162および上段傾斜面1163のうち、リードフレーム104の上面に対する傾斜角が最も小さいのは下段傾斜面1161であり、リードフレーム104の上面に対する傾斜角が最も大きいのは上段傾斜面1163である。 In the present embodiment, the inclined surfaces that reflect the laser beam 114 are divided into the second lower inclined surface 1161 from the lower side, the middle inclined surface 1162 above the lower inclined surface 1161, and the upper (upper) of the intermediate inclined surface 1162. To the upper inclined surface 1163. Of these three lower inclined surfaces 1161, middle inclined surfaces 1162, and upper inclined surfaces 1163, the smallest inclined angle with respect to the upper surface of the lead frame 104 is the lower inclined surface 1161, and the inclined angle with respect to the upper surface of the lead frame 104 is The largest is the upper inclined surface 1163.
 また、反射面116は、所定の軸(回転軸)を中心に回転する回転体が回転した回転体の外周面の軌跡を第1凹部1201の側面で分割した形状をなしている。 Further, the reflecting surface 116 has a shape obtained by dividing the locus of the outer peripheral surface of the rotating body rotated around the predetermined axis (rotating axis) by the side surface of the first recess 1201.
 また、半導体レーザ100の発光端面(右発光端面100r)と反射面116との間の領域(凹部120)には、光散乱体が存在しない。このため、出射されたときの配向特性を維持したまま、レーザ光114は反射面116まで到達し、その後の配光を予測可能に制御した上で上向きに散乱反射することが可能である。 Also, no light scatterer exists in the region (recessed portion 120) between the light emitting end face (right light emitting end face 100r) of the semiconductor laser 100 and the reflecting surface 116. For this reason, the laser beam 114 reaches the reflecting surface 116 while maintaining the alignment characteristics when emitted, and can be scattered and reflected upward while controlling the subsequent light distribution in a predictable manner.
 (レーザ光とアイセーフ化)
 以下に、レーザ光114とレーザ光114のアイセーフ化とについて説明する。
(Laser light and eye-safe)
Hereinafter, the laser beam 114 and the eye-safeization of the laser beam 114 will be described.
 レーザ光114は、半導体レーザ100の右発光端面100rから、リードフレーム104の上面に略平行に出射されるとき、マイクロメートル単位のスポット径から一定角度で広がるように出射される。このため、レーザ光114は高コヒーレント光であるが、右発光端面100rから離れるに従って広がるので、レーザ光114の光密度は下がる。例えば、赤外線半導体レーザである半導体レーザ100から出射されるレーザ光114の広がり角は、活性層に垂直な方向において約20°であり、活性層に平行な方向において約10°である。 When the laser beam 114 is emitted from the right light emitting end surface 100r of the semiconductor laser 100 substantially parallel to the upper surface of the lead frame 104, the laser beam 114 is emitted so as to spread at a certain angle from the spot diameter in units of micrometers. For this reason, the laser beam 114 is highly coherent, but spreads away from the right light emitting end surface 100r, so that the light density of the laser beam 114 decreases. For example, the spread angle of the laser beam 114 emitted from the semiconductor laser 100 which is an infrared semiconductor laser is about 20 ° in the direction perpendicular to the active layer and about 10 ° in the direction parallel to the active layer.
 このように、レーザ光114は広がりながら進むため、発光端面から離れている反射面116において、レーザ光114のスポット径は広がり、レーザ光114の光密度はある程度低下している。したがって、レーザ光114は、反射面116により散乱反射される前に、既にある程度アイセーフ化されている。 Thus, since the laser beam 114 travels while spreading, the spot diameter of the laser beam 114 spreads on the reflecting surface 116 away from the light emitting end surface, and the light density of the laser beam 114 is reduced to some extent. Therefore, the laser beam 114 is already made eye-safe to some extent before being scattered and reflected by the reflecting surface 116.
 また、既にある程度アイセーフ化されているレーザ光114が、反射面116により散乱反射されることにより、レーザ光114は、十分にアイセーフ化される。このように十分にアイセーフ化されたレーザ光114が、パッケージ108の上面に開く開口124から放射されるので、アイセーフ光源1から放射される光は十分にアイセーフ化されている。 Further, since the laser beam 114 that has already been made eye-safe to some extent is scattered and reflected by the reflecting surface 116, the laser beam 114 is sufficiently made eye-safe. Since the laser light 114 that is sufficiently eye-safe in this way is emitted from the opening 124 that opens on the upper surface of the package 108, the light emitted from the eye-safe light source 1 is sufficiently eye-safe.
 (発光効率)
 以下に、アイセーフ光源1が消費する電力に対する、アイセーフ光源1から放射される光の量である、アイセーフ光源1の発光効率について説明する。
(Luminescence efficiency)
Below, the luminous efficiency of the eye-safe light source 1, which is the amount of light emitted from the eye-safe light source 1 with respect to the power consumed by the eye-safe light source 1, will be described.
 凹部120内部は、空洞であり、レーザ光114を散乱する光散乱体は存在しない。このため、レーザ光114は散乱されずに反射面116に到達する。したがって、散乱された光がサブマウント102に吸収されることがない。このため、アイセーフ光源1は発光効率に優れている。 The inside of the recess 120 is a cavity, and there is no light scatterer that scatters the laser beam 114. For this reason, the laser beam 114 reaches the reflecting surface 116 without being scattered. Therefore, the scattered light is not absorbed by the submount 102. For this reason, the eye safe light source 1 is excellent in luminous efficiency.
 凹部120内部は、空洞であり、半導体レーザ100は空気により覆われている。半導体レーザ100は赤外線半導体レーザであるため、一般的にそうであるように、大気(空気)に対して光を取り出す効率が最大になるように発光端面が最適化設計されている。したがって、半導体レーザ100から最大効率で光を取り出すことができるため、アイセーフ光源1は発光効率に優れている。 The inside of the recess 120 is a cavity, and the semiconductor laser 100 is covered with air. Since the semiconductor laser 100 is an infrared semiconductor laser, the light emitting end face is optimized and designed to maximize the efficiency of extracting light from the atmosphere (air), as is generally the case. Therefore, since the light can be extracted from the semiconductor laser 100 with maximum efficiency, the eye-safe light source 1 is excellent in luminous efficiency.
 また、凹部120内部に光散乱体は存在せず、レーザ光114は、光散乱体を含む光散乱層を透過しない。このため、光散乱体による光吸収が起きないので、アイセーフ光源1は発光効率に優れている。 Also, there is no light scatterer inside the recess 120, and the laser light 114 does not pass through the light scattering layer including the light scatterer. For this reason, since light absorption by a light-scattering body does not occur, the eye safe light source 1 is excellent in luminous efficiency.
 また、ワイヤ110は上面視において(リードフレーム104に垂直な方向から見て)、レーザ光114が出射される方向に略垂直である。このため、ワイヤ110はレーザ光114の光路を遮らず、レーザ光114をアイセーフ化した仮想光源には、ワイヤ110の影が生じない。このため、アイセーフ光源1は発光効率に優れている。さらに、ワイヤ110は、光散乱体が存在しない凹部120内部を伸びているため、散乱された光をワイヤ110が吸収することもない。このため、アイセーフ光源1は発光効率に優れている。 Further, the wire 110 is substantially perpendicular to the direction in which the laser beam 114 is emitted when viewed from above (viewed from a direction perpendicular to the lead frame 104). For this reason, the wire 110 does not block the optical path of the laser beam 114, and the shadow of the wire 110 does not occur in the virtual light source in which the laser beam 114 is made eye-safe. For this reason, the eye safe light source 1 is excellent in luminous efficiency. Furthermore, since the wire 110 extends inside the recess 120 where there is no light scatterer, the wire 110 does not absorb the scattered light. For this reason, the eye safe light source 1 is excellent in luminous efficiency.
 また、半導体レーザ100は、上面視においてサブマウント102から右発光端面100rが突出するように、サブマウント102に載置されている。このため、右発光端面100rから広がるように出射されたレーザ光114は、サブマウント102に遮られることなく、反射面116に到達する。さらに、半導体レーザ100とリードフレーム104との間にサブマウント102を挟み込むことにより、半導体レーザ100がリードフレーム104の上面から持ち上げられている。このため、レーザ光114は、リードフレーム104の上面で反射されることなく、リードフレーム104により遮られることなく、反射面116に直接到達することができる。したがって、レーザ光114をアイセーフ化した仮想光源には、サブマウント102の影が生じず、リードフレーム104での反射で迷光が発生することが無いため、アイセーフ光源1は発光効率に優れている。 The semiconductor laser 100 is mounted on the submount 102 so that the right light emitting end surface 100r protrudes from the submount 102 when viewed from above. For this reason, the laser beam 114 emitted so as to spread from the right light emitting end surface 100r reaches the reflecting surface 116 without being blocked by the submount 102. Further, the semiconductor laser 100 is lifted from the upper surface of the lead frame 104 by sandwiching the submount 102 between the semiconductor laser 100 and the lead frame 104. For this reason, the laser beam 114 can reach the reflecting surface 116 directly without being reflected by the upper surface of the lead frame 104 and without being blocked by the lead frame 104. Therefore, since the shadow of the submount 102 does not occur in the virtual light source in which the laser beam 114 is made eye-safe, and no stray light is generated by reflection on the lead frame 104, the eye-safe light source 1 is excellent in luminous efficiency.
 また、反射面116を有する樹脂部106は、LED光源によく用いられる光散乱体を含む白色の樹脂である。このため、反射面116の光反射率は高く、光吸収率は低い。したがって、アイセーフ光源1は発光効率に優れている。 The resin portion 106 having the reflective surface 116 is a white resin including a light scatterer often used for LED light sources. For this reason, the light reflectivity of the reflective surface 116 is high and the light absorption rate is low. Therefore, the eye-safe light source 1 is excellent in luminous efficiency.
 (配光特性と偏光特性)
 以下に、アイセーフ光源1における偏光特性と配光特性とについて説明する。
(Light distribution characteristics and polarization characteristics)
Below, the polarization characteristic and light distribution characteristic in the eye safe light source 1 are demonstrated.
 レーザ光114は、反射面116において散乱反射されるが、反射面116に到達する前には散乱されていない。このため、反射面116により散乱反射されたレーザ光114の光密度の強度分布は、反射面116の形状による配光特性の整形と、反射面116における適度な散乱による平均化により決定される。このため、反射面116により、レーザ光114の光軸(スポットの中央)にある強い強度のピークを下げて、スポットの周辺と中央との光密度の強度の平均化を図りつつ、配光特性を整えることができる。また、レーザ光114は、レーザ光を散乱する光散乱体を含む光散乱層を透過することなく、十分にアイセーフ化される。このため、アイセーフ光源1においては、レーザ光114をアイセーフ化しつつ、レーザ光114の配光特性を整えることができ、レーザ光114の偏光特性を少なくとも部分的に維持することができる。 The laser beam 114 is scattered and reflected by the reflecting surface 116, but is not scattered before reaching the reflecting surface 116. For this reason, the intensity distribution of the light density of the laser beam 114 scattered and reflected by the reflecting surface 116 is determined by shaping the light distribution characteristics depending on the shape of the reflecting surface 116 and averaging by appropriate scattering on the reflecting surface 116. For this reason, the reflection surface 116 lowers the strong intensity peak on the optical axis (center of the spot) of the laser beam 114, and averages the intensity of the light density between the periphery and the center of the spot, while distributing the light distribution characteristics. Can be arranged. Further, the laser beam 114 is sufficiently eye-safe without passing through a light scattering layer including a light scatterer that scatters the laser beam. For this reason, in the eye-safe light source 1, the light distribution characteristics of the laser light 114 can be adjusted while making the laser light 114 eye-safe, and the polarization characteristics of the laser light 114 can be maintained at least partially.
 これに対し、特許文献2~4のような従来技術においては、レーザ光は、レーザ光を散乱する光散乱体を含む光散乱層を透過することによって、アイセーフ化される。このため、光散乱層を透過する間に多重散乱により、レーザ光は配光特性および偏光特性を失う。 On the other hand, in the conventional techniques such as Patent Documents 2 to 4, the laser light is made eye-safe by passing through a light scattering layer including a light scatterer that scatters the laser light. For this reason, the laser light loses its light distribution characteristics and polarization characteristics due to multiple scattering while passing through the light scattering layer.
 なお、レーザ光114が光散乱層を透過するようにして、アイセーフ光源1から放射されるレーザ光114の偏光特性を調整してもよい。例えば、開口124をカバーで覆い、カバーに含まれる光散乱体の種類または濃度、あるいはカバーの厚みを調整してもよい。そのようにして、カバーを透過してアイセーフ光源1から放射されるレーザ光114の偏光比を2~100程度の範囲で調整することができる。ここに言う、偏光比とは、光源の主偏光面以外の偏光面を有する光の強度に対する、光源の主偏光面を有する光の強度の比である。 Note that the polarization characteristics of the laser light 114 emitted from the eye-safe light source 1 may be adjusted so that the laser light 114 passes through the light scattering layer. For example, the opening 124 may be covered with a cover, and the type or concentration of the light scatterer included in the cover or the thickness of the cover may be adjusted. In this way, the polarization ratio of the laser beam 114 transmitted through the cover and emitted from the eye-safe light source 1 can be adjusted in the range of about 2 to 100. Here, the polarization ratio is the ratio of the intensity of light having the main polarization plane of the light source to the intensity of light having a polarization plane other than the main polarization plane of the light source.
 また、アイセーフ光源1においては、反射面116の形状によっても配光特性を整えることができるため、配光特性を整えるためのレンズを設ける必要がない。このため、アイセーフ光源1は薄型化に適している。なお、必要に応じて適宜レンズを設けてもよい。例えば、当該アイセーフ光源1を光ファイバと光学的に結合して使用するには、レンズを設置することが望ましい。なお、レンズは外付けレンズであっても、開口124を覆うカバーと一体であってもよい。 Further, in the eye-safe light source 1, the light distribution characteristics can be adjusted depending on the shape of the reflecting surface 116, so that it is not necessary to provide a lens for adjusting the light distribution characteristics. For this reason, the eye-safe light source 1 is suitable for thinning. In addition, you may provide a lens suitably as needed. For example, in order to use the eye-safe light source 1 optically coupled with an optical fiber, it is desirable to install a lens. The lens may be an external lens or may be integrated with a cover that covers the opening 124.
 また、アイセーフ化されたレーザ光114は、半導体レーザ100から出射されたときの偏光特性を少なくとも部分的に維持する。このため、偏光特性を利用する用途にアイセーフ光源1は適している。例えば、アイセーフ光源1は、生体認証用の電子機器に備えられてもよい。偏光比の高い光源は、特に、静脈認証用光源として好適である。 In addition, the eye-safe laser beam 114 at least partially maintains the polarization characteristics when emitted from the semiconductor laser 100. For this reason, the eye-safe light source 1 is suitable for applications that utilize polarization characteristics. For example, the eye-safe light source 1 may be provided in an electronic device for biometric authentication. A light source with a high polarization ratio is particularly suitable as a light source for vein authentication.
 (反射面による効果)
 図2は、アイセーフ光源1において、レーザ光の反射面による反射を示したものであり、(a)は中段傾斜面1162による反射、(b)は上段傾斜面1163による反射、(c)は下段傾斜面1161による反射をそれぞれ示した断面図である。図3は、中段傾斜面1162、上段傾斜面1163および下段傾斜面1161によって反射されたレーザ光の広がりを合わせて示す断面図である。図4は、反射面116に対する比較例の反射面117Aによるレーザ光の反射を示す断面図である。図5は、反射面116に対する他の比較例の反射面117Bによるレーザ光の反射を示す断面図である。
(Effects of reflecting surface)
2A and 2B show the reflection of the laser light by the reflecting surface in the eye-safe light source 1, where FIG. 2A shows the reflection by the middle inclined surface 1162, FIG. 2B shows the reflection by the upper inclined surface 1163, and FIG. It is sectional drawing which showed each reflection by the inclined surface. FIG. 3 is a cross-sectional view showing the spread of the laser light reflected by the intermediate inclined surface 1162, the upper inclined surface 1163, and the lower inclined surface 1161. FIG. 4 is a cross-sectional view showing reflection of laser light by the reflecting surface 117A of the comparative example with respect to the reflecting surface 116. As shown in FIG. FIG. 5 is a cross-sectional view showing the reflection of laser light by the reflection surface 117B of another comparative example with respect to the reflection surface 116. As shown in FIG.
 半導体レーザ100から出射されたレーザ光114は、反射面116の中段傾斜面1162によって、図2の(a)に示すように反射される。また、半導体レーザ100から出射されたレーザ光114は、反射面116の上段傾斜面1163によって、図2の(b)に示すように、中段傾斜面1162よりも半導体レーザ100から遠い位置で反射される。さらに、半導体レーザ100から出射されたレーザ光114は、反射面116の下段傾斜面1161によって、図2の(c)に示すように、中段傾斜面1162よりも半導体レーザ100から近い位置で反射される。 The laser beam 114 emitted from the semiconductor laser 100 is reflected by the middle inclined surface 1162 of the reflecting surface 116 as shown in FIG. Further, the laser beam 114 emitted from the semiconductor laser 100 is reflected by the upper inclined surface 1163 of the reflecting surface 116 at a position farther from the semiconductor laser 100 than the middle inclined surface 1162, as shown in FIG. The Further, the laser beam 114 emitted from the semiconductor laser 100 is reflected by the lower inclined surface 1161 of the reflecting surface 116 at a position closer to the semiconductor laser 100 than the intermediate inclined surface 1162, as shown in FIG. The
 これにより、図3に示すように、半導体レーザ100から出射されたレーザ光114は、反射面116の下段傾斜面1161、中段傾斜面1162および上段傾斜面1163によって、それぞれ異なる角度で反射される。したがって、レーザ光114を適度な角度で発散させることができる。また、レーザ光114の発散度合いを反射面116の傾斜面の数や、各傾斜面の傾斜角度によって容易に調整することができる。 Thereby, as shown in FIG. 3, the laser beam 114 emitted from the semiconductor laser 100 is reflected by the lower inclined surface 1161, the intermediate inclined surface 1162, and the upper inclined surface 1163 at different angles, respectively. Therefore, the laser beam 114 can be diverged at an appropriate angle. Further, the degree of divergence of the laser beam 114 can be easily adjusted by the number of inclined surfaces of the reflecting surface 116 and the inclination angle of each inclined surface.
 これに対し、図4に示す光源(比較例1)では、半導体レーザ100から出射されたレーザ光114が、平面で形成された反射面117Aによって反射されると、広い範囲に発散する。また、反射面117Aとして、例えば、樹脂のような散乱反射面を用いた場合、光が散ってしまい光軸近傍に十分な光束が得られない場合がある。 On the other hand, in the light source (Comparative Example 1) shown in FIG. 4, when the laser beam 114 emitted from the semiconductor laser 100 is reflected by the reflecting surface 117A formed in a plane, it diverges over a wide range. In addition, for example, when a scattering reflection surface such as a resin is used as the reflection surface 117A, light may be scattered and a sufficient light flux may not be obtained near the optical axis.
 一方、図5に示す光源(比較例2)では、半導体レーザ100から出射されたレーザ光114が、放物面で形成された反射面117Bによって反射されると、光軸方向に光が集中し過ぎ、アイセーフ性に問題が発生する場合がある。 On the other hand, in the light source shown in FIG. 5 (Comparative Example 2), when the laser beam 114 emitted from the semiconductor laser 100 is reflected by the reflecting surface 117B formed by a parabolic surface, the light is concentrated in the optical axis direction. This may cause problems with eye-safety.
 このように、本実施形態のアイセーフ光源1は、比較例1,2の光源と比較して、適度な角度でレーザ光114を発散させることができる。 As described above, the eye-safe light source 1 of the present embodiment can diverge the laser beam 114 at an appropriate angle as compared with the light sources of Comparative Examples 1 and 2.
 ここで、アイセーフ光源1および比較例1,2の光源についての反射後の光強度分布について説明する。図6は、反射面116の効果を説明するために使用するモデル光源の配光特性を示すグラフである。図7の(a)はモデル光源からの光の反射面116による反射光、および比較例1,2のそれぞれの反射面117A,117Bによる反射光のそれぞれの光強度分布を示すグラフであり、図7の(b)は図7の(a)の要部を拡大して示すグラフである。図8は、中段傾斜面1162による反射光、上段傾斜面1163による反射光、下段傾斜面1161による反射光、これらの反射光の合成光、および比較例1の反射面による反射光の光強度分布を示すグラフである。 Here, the light intensity distribution after reflection for the eye-safe light source 1 and the light sources of Comparative Examples 1 and 2 will be described. FIG. 6 is a graph showing the light distribution characteristics of the model light source used to explain the effect of the reflecting surface 116. FIG. 7A is a graph showing the light intensity distributions of the light reflected from the reflection surface 116 of the light from the model light source and the reflection light from the reflection surfaces 117A and 117B of Comparative Examples 1 and 2, respectively. 7 (b) is a graph showing an enlarged main part of FIG. 7 (a). FIG. 8 shows the light intensity distribution of the reflected light from the middle inclined surface 1162, the reflected light from the upper inclined surface 1163, the reflected light from the lower inclined surface 1161, the combined light of these reflected lights, and the reflected light from the reflecting surface of Comparative Example 1. It is a graph which shows.
 図6に示すように、半導体レーザ100として使用したモデル光源から出射される光の光強度分布は、半値全角が24度であるガウス分布の光である。この光を反射面116,117A,117Bに反射させた光の光強度は、図7の(a)および(b)に示すような分布を示す。この光強度分布から、反射面116による反射光が-10°から+10°の範囲で適度に収束しているのに対し、反射面117Aによる反射光が広い範囲に分散し、反射面117Bによる反射光が狭い範囲に収束していることがわかる。 As shown in FIG. 6, the light intensity distribution of the light emitted from the model light source used as the semiconductor laser 100 is a Gaussian light having a full width at half maximum of 24 degrees. The light intensity of the light reflected by the reflecting surfaces 116, 117A, and 117B has a distribution as shown in FIGS. 7A and 7B. From this light intensity distribution, the reflected light from the reflecting surface 116 is moderately converged in the range of −10 ° to + 10 °, whereas the reflected light from the reflecting surface 117A is dispersed in a wide range and reflected by the reflecting surface 117B. It can be seen that the light converges in a narrow range.
 図8に示すように、比較例1の反射面117Aによる反射光に対して、本実施形態の反射面116による反射光は、それぞれ異なる傾斜角度を有する下段傾斜面1161、中段傾斜面1162および上段傾斜面1163のそれぞれから得られ、これらを合成することによって適度な範囲に収束していることがわかる。 As shown in FIG. 8, the reflected light from the reflecting surface 116 of the present embodiment differs from the reflected light from the reflecting surface 117A of Comparative Example 1 in the lower inclined surface 1161, the intermediate inclined surface 1162, and the upper It is obtained from each of the inclined surfaces 1163, and it can be seen that they are converged to an appropriate range by combining them.
 これまでは、議論を容易にするため、2次元の仮想的な場合を例に説明した。以下、3次元の実際の場合を例に説明する。 So far, in order to facilitate discussion, a two-dimensional virtual case has been described as an example. Hereinafter, a three-dimensional actual case will be described as an example.
 図9の(a)は、サブマウント102上に搭載したモデル光源としての半導体レーザ100からの光の放射を模式的に示す斜視図である。図9の(b)はアイセーフ光源1のパッケージ108に搭載された半導体レーザ100からの光の反射光の放射を模式的に示す斜視図である。図10の(a)は、図9の(a)に示したレーザ光の典型的な配光特性を示すグラフである。図10の(b)は図9の(b)に示した反射光の典型的な配光特性を示すグラフである。また、図10の(c)は、図9の(b)に示した反射光を更に光散乱層を通過させた場合に得られる典型的な配光特性を示すグラフである。また、図10の(d)は、比較例としての放物面からなる反射面(パラボラ形状リフレクタ)による反射光の典型的な配光特性を示すグラフである。 FIG. 9A is a perspective view schematically showing the emission of light from the semiconductor laser 100 as a model light source mounted on the submount 102. FIG. 9B is a perspective view schematically showing the radiation of reflected light from the semiconductor laser 100 mounted on the package 108 of the eye-safe light source 1. FIG. 10A is a graph showing typical light distribution characteristics of the laser light shown in FIG. FIG. 10B is a graph showing typical light distribution characteristics of the reflected light shown in FIG. FIG. 10C is a graph showing typical light distribution characteristics obtained when the reflected light shown in FIG. 9B is further passed through the light scattering layer. FIG. 10D is a graph showing a typical light distribution characteristic of reflected light by a reflecting surface (parabolic reflector) made of a paraboloid as a comparative example.
 実際のレーザ素子では、レーザ素子の発光端面から放射されるレーザ光の垂直の開き角(θ⊥)と水平の開き角(θ//)とが異なっており、一般的にはθ⊥>θ//となる。図9の(a)に示すように、単に半導体レーザ100から出射されたレーザ光114は、垂直開き角θ⊥と水平開き角θ//とを有している。この場合の配光特性は、図10の(a)に示すように、ある程度の広がりを持っている。 In an actual laser element, the vertical opening angle (θ⊥) and the horizontal opening angle (θ //) of the laser light emitted from the light emitting end face of the laser element are different, and generally θ⊥> θ // As shown in FIG. 9A, the laser beam 114 simply emitted from the semiconductor laser 100 has a vertical opening angle θ⊥ and a horizontal opening angle θ //. The light distribution characteristic in this case has a certain extent as shown in FIG.
 これに対し、図9の(b)に示すように、上述の反射面116によって反射されるレーザ光114は、垂直開き角θ’⊥と水平開き角θ’//とを有している。この場合の配光特性は、レーザ光114が反射面116によって反射されることにより、図10の(b)に示すように、垂直開き角θ’⊥と水平開き角θ’//とが適度に絞り込まれるので、適度な狭さの配光を得ることができる。また、反射面116の傾斜面の数や角度、反射面116の材質などを適宜変更することにより、反射光の配光特性を調整することができる。 On the other hand, as shown in FIG. 9B, the laser beam 114 reflected by the reflecting surface 116 has a vertical opening angle θ′⊥ and a horizontal opening angle θ ′ //. The light distribution characteristics in this case are such that the vertical opening angle θ′⊥ and the horizontal opening angle θ ′ // are appropriate as shown in FIG. Therefore, a moderately narrow light distribution can be obtained. Further, the light distribution characteristic of the reflected light can be adjusted by appropriately changing the number and angle of the inclined surfaces of the reflecting surface 116, the material of the reflecting surface 116, and the like.
 レーザ光を生活空間で使用するには、人間の網膜等に対する安全性を確保するために、レーザ光を一旦分散光源とした上で使用する必要がある。レーザ光を分散光源にする典型的手法としては、例えば、フィラーの入った光散乱層にレーザ光を通過させて使用する手法が挙げられる。 In order to use laser light in a living space, it is necessary to use the laser light once as a distributed light source in order to ensure safety for the human retina and the like. A typical method of using laser light as a distributed light source is, for example, a method of using a laser light passing through a light scattering layer containing a filler.
 光散乱層を通過したレーザ光の垂直開き角θ⊥および水平開き角θ//は通過前に比べ広がる。この変化を考慮して、最終的に必要な配光特性と比較し、これよりも絞られた配光特性のレーザ光を光散乱層に入射させる必要がある。例えば、図1に示すパッケージ108に図9の(a)に示すモデル光源を半導体レーザ100として搭載することにより、配光特性を絞ることが可能である。 The vertical opening angle θ⊥ and the horizontal opening angle θ // of the laser light that has passed through the light scattering layer are wider than before the passage. In consideration of this change, it is necessary to make the laser light having a light distribution characteristic narrower than the final light distribution characteristic incident on the light scattering layer. For example, by mounting the model light source shown in FIG. 9A as the semiconductor laser 100 on the package 108 shown in FIG. 1, it is possible to narrow the light distribution characteristics.
 続いて、最終的に必要な光の配光特性を得る手順について説明する。 Next, the procedure for obtaining the required light distribution characteristics will be described.
 図10の(a)に示すレーザ光の垂直開き角θ⊥および水平開き角θ//の値は、それぞれ24°,12°である。ここで、仮に、最終的に必要なアイセーフ化された分散光源の配光特性として、図10の(c)に示すように、垂直開き角θ”⊥および水平開き角θ”//の値が、ともに24°程度の場合を考える。 The values of the vertical opening angle θ⊥ and the horizontal opening angle θ // of the laser beam shown in FIG. 10 (a) are 24 ° and 12 °, respectively. Here, as the light distribution characteristics of the finally required eye-safe distributed light source, as shown in FIG. 10C, the values of the vertical opening angle θ ″ ⊥ and the horizontal opening angle θ ″ // are as follows. Consider the case of both about 24 °.
 図10の(a)に示すレーザ光を直接光散乱層に入射させて水平開き角θ//=12°を水平開き角θ”//=24°にするように光散乱層を調整すると、光源では垂直開き角θ⊥=24°であっても、散乱層の通過後に得られる垂直開き角θ”⊥の値は、24°よりも十分大きな値、例えば30°あるいは40°を超えてしまう。 When the laser light shown in FIG. 10A is directly incident on the light scattering layer and the light scattering layer is adjusted so that the horizontal opening angle θ // = 12 ° becomes the horizontal opening angle θ ″ // = 24 °, Even if the vertical opening angle θ⊥ = 24 ° with the light source, the value of the vertical opening angle θ ″ ⊥ obtained after passing through the scattering layer exceeds a value sufficiently larger than 24 °, for example, 30 ° or 40 °. .
 このような不都合を回避するため、一旦、半導体レーザから出射された図10の(a)に示す放射特性の光を図1に示すパッケージ108の反射面116で反射し、図10の(b)に示すように絞られて狭角化された配光特性の光を光散乱層に通過させることが好ましい。 In order to avoid such inconvenience, the light having the radiation characteristic shown in FIG. 10A once emitted from the semiconductor laser is reflected by the reflecting surface 116 of the package 108 shown in FIG. It is preferable to pass light having a light distribution characteristic narrowed and narrowed as shown in FIG.
 図9の(b)に示す狭角化された光の配光特性は、一例として図10の(b)で示され、垂直開き角θ'⊥および水平開き角θ'//は、それぞれ14°,9°となっている。このように、光散乱層での開き角の拡大を考慮した上で、一旦、絞った光を、光散乱層に通過させて、垂直開き角θ”⊥および水平開き角θ”//を目標とする角度(ここでは24°)に合せる方が、より精度よく角度を合わせることが可能である。 The light distribution characteristic of the narrowed light shown in FIG. 9B is shown in FIG. 10B as an example, and the vertical opening angle θ′⊥ and the horizontal opening angle θ ′ // are 14 respectively. °, 9 °. In this way, after taking into account the expansion of the opening angle in the light scattering layer, the once focused light is allowed to pass through the light scattering layer, and the vertical opening angle θ ″ ⊥ and the horizontal opening angle θ ″ // are targeted. It is possible to adjust the angle more accurately by adjusting to the angle (24 ° here).
 ここで、比較例として、例えばパラボラ形状の反射板を用いレーザ光の配光特性を軸上に極端に絞った光(図10の(d))を使用して図10の(c)に示す配光特性に近い配光特性を有する光を得ることについて説明する。図11は、上記パラボラ形状リフレクタによる反射光を更に光散乱層を通過させた場合に得られるスパイク状の突起を含む配光特性を示すグラフである。 Here, as a comparative example, for example, a parabola-shaped reflector is used, and the light distribution characteristic of the laser light is extremely reduced on the axis ((d) of FIG. 10) and shown in (c) of FIG. A description will be given of obtaining light having a light distribution characteristic close to the light distribution characteristic. FIG. 11 is a graph showing light distribution characteristics including spike-like protrusions obtained when the reflected light from the parabolic reflector is further passed through the light scattering layer.
 このような光を光拡散層に通過させ、例えば±60°すなわち垂直開き角θ”⊥および水平開き角θ”//がともに120°であるような、充分に広い開き角の配光特性の分散光を得るのは比較的容易である。このような分散光を得るには、光拡散層におけるフィラー濃度を十分に高くして、レーザ光を十分に散乱することで得られる。 Such light is allowed to pass through the light diffusion layer, and has a light distribution characteristic with a sufficiently wide opening angle such that ± 60 °, that is, the vertical opening angle θ ″ ⊥ and the horizontal opening angle θ ″ // are both 120 °. It is relatively easy to obtain dispersed light. In order to obtain such dispersed light, it can be obtained by sufficiently increasing the filler concentration in the light diffusion layer and sufficiently scattering the laser light.
 これに対し、例えば±15°、換言すれば、垂直開き角θ”⊥および水平開き角θ”//がともに30°を下回るような狭角領域の光を得るには、先の120°の場合に比べて光拡散層におけるフィラー濃度を低くする必要がある。 On the other hand, for example, ± 15 °, in other words, in order to obtain light in a narrow angle region where the vertical opening angle θ ″ ⊥ and the horizontal opening angle θ ″ // are both less than 30 °, It is necessary to lower the filler concentration in the light diffusion layer as compared with the case.
 このような条件下の光散乱層に、図10の(d)に示すような光軸中心に光が集中した光を通過させた場合、図11に示すように、光軸中心にスパイク状の強度の強い光が残り、周辺部を分散した光で取り囲んでいる配光の光が得られてしまう。このような配光の光では、目に対する安全性、すなわち、アイセーフ性が充分確保できているとは言えない。 When light concentrated in the center of the optical axis as shown in FIG. 10D is passed through the light scattering layer under such conditions, as shown in FIG. Light with high intensity remains, and light with a light distribution surrounding the periphery with dispersed light is obtained. With such light distribution, it cannot be said that safety for eyes, that is, eye-safety is sufficiently ensured.
 このように、所望の垂直開き角θ⊥および水平開き角θ//を得るためにレーザ光を光散乱層に通過させた場合、光軸方向にスパイク状の強い強度の光が残ってしまう。図11に見られる不具合を回避するためには、パラボラ形状リフレクタで集光した図10の(d)のように光軸中心に集中した光ではなく、反射面116が有する多段の傾斜面で適度に光を拡げつつ集光した光を採用すればよい。この光は、図10の(d)に示す配光特性と比較して軸上光度を下げた光であり、例えば図10の(b)に示す配光特性を有する。 As described above, when laser light is passed through the light scattering layer in order to obtain the desired vertical opening angle θ⊥ and horizontal opening angle θ //, spike-like strong light remains in the optical axis direction. In order to avoid the inconvenience seen in FIG. 11, the light is not concentrated on the center of the optical axis as shown in FIG. The light collected while expanding the light may be employed. This light is light whose axial luminous intensity is lowered as compared with the light distribution characteristic shown in FIG. 10D, and has, for example, the light distribution characteristic shown in FIG.
 このような光を使用することにより、図11に見られるスパイク状の突起は、実質上解消される。これにより、例えば図10の(c)に示すような滑らかな配光特性を有する適度に集光されたアイセーフ光源を実現することが可能となる。配光を示す光の集光度合いは、しばしば垂直開き角θ⊥および水平開き角θ//で示され、図10の(c)では、ともに24°となっている。虹彩認証に使用される光源は、この値が概ね20°~40°である。このことから、図10の(c)に示すように適度に集光された光は虹彩認証用光源として好適な光と言える。 By using such light, the spike-like protrusions seen in FIG. 11 are substantially eliminated. Thereby, it is possible to realize an appropriately safe eye-safe light source having a smooth light distribution characteristic as shown in FIG. The degree of light collection indicating light distribution is often indicated by a vertical opening angle θ⊥ and a horizontal opening angle θ //, and both are 24 ° in FIG. The value of the light source used for iris authentication is approximately 20 ° to 40 °. From this, it can be said that the light condensed moderately as shown in (c) of FIG. 10 is suitable as a light source for iris authentication.
 (応用例)
 本実施形態のアイセーフ光源1のように発光点が1つのアイセーフ光源を実現するために、例えば、左右で5対95の非対称な発光比率をもつ半導体レーザを使用することが考えられる。これは、後述する実施形態4のアイセーフ光源4についても適用される。
(Application examples)
In order to realize an eye-safe light source having one light emitting point like the eye-safe light source 1 of the present embodiment, for example, it is conceivable to use a semiconductor laser having an asymmetric emission ratio of 5 to 95 on the left and right. This also applies to the eye-safe light source 4 of the fourth embodiment described later.
 (変形例1)
 以下に、実施形態1の変形例に係るアイセーフ光源1において、開口124にカバー128aを設けた実施形態1の変形例1について、図12に基づいて説明する。
(Modification 1)
Hereinafter, Modification 1 of Embodiment 1 in which a cover 128a is provided in the opening 124 in the eye-safe light source 1 according to the modification of Embodiment 1 will be described with reference to FIG.
 図12は、図1に示したアイセーフ光源1において、レーザ光114を散乱するカバー128aを設けた変形例おけるアイセーフ化を説明するための断面図である。図12は、図1の(b)の右側部分に対応し、レーザ光114の広がりと光軸134とを示している。なお、図12で示すレーザ光114の広がりの範囲は、光密度の強度が、ピーク値の1/e(eは自然対数の底)になるまでの範囲である。 FIG. 12 is a cross-sectional view for explaining eye-safety in a modification in which the cover 128a that scatters the laser beam 114 is provided in the eye-safe light source 1 shown in FIG. FIG. 12 corresponds to the right portion of FIG. 1B and shows the spread of the laser beam 114 and the optical axis 134. The range of the spread of the laser beam 114 shown in FIG. 12 is a range until the intensity of the light density reaches 1 / e of the peak value (e is the base of natural logarithm).
 カバー128aは、凹部120内部に異物が侵入しないように設けられたカバーである。このカバー128aは、レーザ光114を散乱する光散乱体を含む樹脂により形成されている。また、図示しない呼吸孔がカバー128aに設けられているため、気体は、呼吸孔を通じて凹部120の内部に対して出入りできる。カバー128aは、光散乱体を含む樹脂により形成されている。このため、カバー128aが設けられた変形例においては、図12に示すように、レーザ光114のスポット径が拡大する。 The cover 128 a is a cover provided so that foreign matter does not enter the recess 120. The cover 128a is formed of a resin including a light scatterer that scatters the laser light 114. In addition, since a breathing hole (not shown) is provided in the cover 128a, gas can enter and leave the recess 120 through the breathing hole. The cover 128a is formed of a resin containing a light scatterer. For this reason, in the modified example in which the cover 128a is provided, the spot diameter of the laser beam 114 is enlarged as shown in FIG.
 図12に示すように、光軸134は、レーザ光114の光軸である。また、スポット径Rは、右発光端面100rにおけるレーザ光114のスポット径ある。また、スポット径Rは、レーザ光114が反射面116に当たったときの、光軸134方向から見たレーザ光114のスポット径である。また、スポット径Rは、レーザ光114がカバー128aに入射するときの、レーザ光114のスポット径である。また、スポット径Rは、レーザ光114がカバー128aを通り抜けた後の、レーザ光114のスポット径である。 As shown in FIG. 12, the optical axis 134 is the optical axis of the laser beam 114. The spot diameter R 0 is the spot diameter of the laser beam 114 on the right light emitting end face 100r. The spot diameter R 1 is the spot diameter of the laser beam 114 viewed from the direction of the optical axis 134 when the laser beam 114 hits the reflecting surface 116. Further, the spot diameter R 2 is, when the laser beam 114 is incident to the cover 128a, a spot diameter of the laser beam 114. Further, the spot diameter R 3 is after the laser beam 114 is passed through the cover 128a, a spot diameter of the laser beam 114.
 また、光路長lは、レーザ光114の光軸134に沿った、右発光端面100rから反射面116までのレーザ光114の光路長であり、光路長lは、レーザ光114の光軸134に沿った、反射面116からカバー128aまでのレーザ光114の光路長である。 The optical path length l 1 is the optical path length of the laser light 114 from the right light emitting end surface 100r to the reflecting surface 116 along the optical axis 134 of the laser light 114, and the optical path length l 2 is the optical axis of the laser light 114. 134 is the optical path length of the laser beam 114 from the reflecting surface 116 to the cover 128 a along the line 134.
 レーザ光114は、半導体レーザ100の右発光端面100rから、マイクロメートル単位のスポット径Rから一定角度で広がるように出射される。このため、レーザ光114がリードフレーム104の上面に平行に進む間に、レーザ光114のスポット径は広がる。そして、レーザ光114は、光路長l進んで反射面116に到達したとき、スポット径Rまで広がっている。したがって、カバー128aがない場合と同様に、半導体レーザ100の右発光端面100rと反射面116との間の距離(光路長l)が長いほど、スポット径の広がりにより、レーザ光114はアイセーフ化される。 The laser beam 114 is emitted from the right emission end face 100r of the semiconductor laser 100 so as to spread at a certain angle from the spot diameter R0 in units of micrometers. For this reason, the spot diameter of the laser beam 114 increases while the laser beam 114 travels parallel to the upper surface of the lead frame 104. The laser beam 114 spreads to the spot diameter R 1 when it reaches the reflecting surface 116 after traveling by the optical path length l 1 . Accordingly, as in the case without the cover 128a, the longer the distance (optical path length l 1 ) between the right light emitting end surface 100r and the reflecting surface 116 of the semiconductor laser 100, the more the laser beam 114 becomes eye-safe due to the spread of the spot diameter. Is done.
 反射面116に到達したレーザ光114は、反射面116により、散乱反射される。散乱反射により、レーザ光114のスポット内部での光密度が平均化され、レーザ光114がさらにアイセーフ化される。 The laser beam 114 that has reached the reflecting surface 116 is scattered and reflected by the reflecting surface 116. Due to the scattering reflection, the light density inside the spot of the laser beam 114 is averaged, and the laser beam 114 is further made eye-safe.
 散乱反射されたレーザ光114は、反射面116からカバー128aまで広がりながら直進する。そして、レーザ光114が光路長l進み、レーザ光114がカバー128aに到達したとき、レーザ光114は、スポット径Rまで広がっている。したがって、反射面116とカバー128aとの間の距離(光路長l)が大きいほど、スポット径の広がりにより、レーザ光114はさらにアイセーフ化される。 The scattered and reflected laser beam 114 travels straight from the reflecting surface 116 to the cover 128a. Then, the optical path length l 2 proceeds laser beam 114, when the laser beam 114 reaches the cover 128a, the laser beam 114 is spread to the spot diameter R 2. Therefore, as the distance (optical path length l 2 ) between the reflecting surface 116 and the cover 128a increases, the laser beam 114 is further made eye-safe due to the spread of the spot diameter.
 カバー128aに入射したレーザ光114は、カバー128aを形成する樹脂と凹部120の内部を満たす気体(空気)との屈折率の差により、屈折する。さらに、カバー128aを形成する樹脂は、レーザ光114を散乱する光散乱体を含む。したがって、屈折と散乱とにより、レーザ光114のスポット径は、カバー128aを通り抜ける間に、入射時のスポット径Rから出射時のスポット径Rまで広がる。また、散乱により、レーザ光114のスポット内部での光密度がさらに平均化される。この場合、樹脂に含まれる光散乱体の種類および濃度、カバー128aの厚み等を調整することにより、半導体レーザ100から出射されたときのレーザ光114の偏光特性を部分的に維持することができる。これにより、アイセーフ光源1が発光するアイセーフ光の偏光特性を調整することができ、例えば、偏光比を2から100までの範囲で調整できる。 The laser beam 114 incident on the cover 128a is refracted by the difference in refractive index between the resin forming the cover 128a and the gas (air) filling the inside of the recess 120. Further, the resin forming the cover 128 a includes a light scatterer that scatters the laser beam 114. Thus, refraction and scattering and the spot diameter of the laser beam 114, while passing through the cover 128a, extends from the spot diameter R 2 of the time of incidence to the spot diameter R 3 at exit. Further, the light density inside the spot of the laser beam 114 is further averaged by scattering. In this case, the polarization characteristics of the laser beam 114 when emitted from the semiconductor laser 100 can be partially maintained by adjusting the type and concentration of the light scatterer contained in the resin, the thickness of the cover 128a, and the like. . Thereby, the polarization characteristic of the eye-safe light emitted from the eye-safe light source 1 can be adjusted. For example, the polarization ratio can be adjusted in the range of 2 to 100.
 カバー128aに使用される材料としては、例えば、エポキシ系樹脂、アクリル系樹脂、シリコーン系樹脂などに代表される樹脂を用いてよいし、樹脂に限らず、ガラスを用いてもよい。カバー128aに含まれる光散乱体としては、シリカ(SiO)、酸化チタン(TiO)、ジルコニア(ZrO)などが一般的ではあるが、これらに限定されるものではない。 As a material used for the cover 128a, for example, a resin typified by an epoxy resin, an acrylic resin, a silicone resin, or the like may be used, and not only the resin but also glass may be used. As the light scatterer included in the cover 128a, silica (SiO 2 ), titanium oxide (TiO 2 ), zirconia (ZrO 2 ), and the like are common, but are not limited thereto.
 カバー128aが設けられていない場合、レーザ光114をアイセーフ化する仮想光源は、反射面116になり、仮想光源のスポット径は、反射面116におけるスポット径Rである。これに対し、カバー128aが設けられている本変形例においては、レーザ光114をアイセーフ化する仮想光源はカバー128aになり、仮想光源のスポット径は、カバー128aにおけるスポット径Rである。したがって、本変形例では、カバー128aを設けない場合と比べて、レーザ光114のスポット径が光路長lにより拡大される。また、本変形例では、カバー128aの境界面における屈折およびカバー128aによる散乱により、レーザ光114のスポット径が拡大され、かつカバー128aによる散乱により、レーザ光114の光密度が平均化される。 If the cover 128a is not provided, a virtual light source for eye-safe the laser beam 114 becomes the reflective surface 116, the spot diameter of the virtual light source is a spot diameter R 1 on the reflecting surface 116. In contrast, in this modification the cover 128a is provided, a virtual light source for eye-safe the laser beam 114 becomes the cover 128a, the spot diameter of the virtual light source is a spot diameter R 3 of the cover 128a. Therefore, in this modification, the spot diameter of the laser beam 114 is expanded by the optical path length l 2 as compared with the case where the cover 128a is not provided. Further, in this modification, the spot diameter of the laser beam 114 is enlarged by refraction at the boundary surface of the cover 128a and scattering by the cover 128a, and the light density of the laser beam 114 is averaged by scattering by the cover 128a.
 このように、実施形態1に係るアイセーフ光源1に対して、レーザ光114を散乱するカバー128aを設けた変形例においては、アイセーフ光源1から放射される光は、さらに十分にアイセーフ化されている。 Thus, in the modified example in which the cover 128a that scatters the laser light 114 is provided with respect to the eye-safe light source 1 according to the first embodiment, the light emitted from the eye-safe light source 1 is further sufficiently eye-safe. .
 (変形例2)
 以下に、実施形態1に係るアイセーフ光源1において、開口124にレンズ142を設けた実施形態1の変形例3について、図13に基づき、説明する。
(Modification 2)
Hereinafter, Modification 3 of Embodiment 1 in which a lens 142 is provided in the opening 124 in the eye-safe light source 1 according to Embodiment 1 will be described with reference to FIG.
 当該アイセーフ光源1を光ファイバと光学的に結合して使用するには、レンズを設置することが望ましい。このような用途では、配光特性を更に整える目的で、図13の(b)に示すように、開口124をレンズ付きカバーで覆ってもよく、あるいは、外付けレンズで配光特性を調整してもよい。 In order to use the eye-safe light source 1 optically coupled with an optical fiber, it is desirable to install a lens. In such an application, for the purpose of further adjusting the light distribution characteristic, the opening 124 may be covered with a cover with a lens as shown in FIG. 13B, or the light distribution characteristic is adjusted with an external lens. May be.
 図13は、図1に示したアイセーフ光源1において、レーザ光114を平行光化するレンズ142を有するカバー142bを設けた変形例に係るアイセーフ光源1Aの概略構成を示す上面図および断面図である。 FIGS. 13A and 13B are a top view and a cross-sectional view showing a schematic configuration of an eye-safe light source 1A according to a modification in which the cover 142b having a lens 142 that collimates the laser light 114 is provided in the eye-safe light source 1 shown in FIG. .
 図13に示すように、カバー142bは、凹部120内部に異物が侵入しないように設けられたカバーであり、光散乱体を含まない樹脂により形成されている。また、図示しない呼吸孔がカバー142bに設けられているため、気体は、呼吸孔を通じて凹部120の内部に対して出入りできる。カバー142bは、右発光端面100rから出射されるレーザ光114に対するレンズ142を備えるように、一体に形成されている。 As shown in FIG. 13, the cover 142b is a cover provided so that foreign matter does not enter the recess 120, and is formed of a resin that does not contain a light scatterer. In addition, since a breathing hole (not shown) is provided in the cover 142b, gas can enter and leave the recess 120 through the breathing hole. The cover 142b is integrally formed so as to include a lens 142 for the laser beam 114 emitted from the right light emitting end surface 100r.
 レンズ142は、右発光端面100rから出射されるレーザ光114を平行光化するように形成されている。レンズ142は、非球面レンズであっても、球面レンズであってもよい。 The lens 142 is formed to collimate the laser beam 114 emitted from the right light emitting end surface 100r. The lens 142 may be an aspheric lens or a spherical lens.
 〔実施形態2〕
 本発明の実施形態2について、図14~図17に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、実施形態1にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 2]
The second embodiment of the present invention will be described below with reference to FIGS. For convenience of explanation, members having the same functions as those described in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
 図14は、本発明の実施形態2に係るアイセーフ光源2の半導体レーザ200周辺の概略構成を示す図である。図14の(a)は樹脂部406を透視した上面図である。図14の(b)は図14の(a)のD-D矢視断面図である。図14の(c)は図14の(a)のE-E矢視断面図である。図14の(d)は図14の(a)のF-F矢視断面図である。図14の(e)は図14の(b)に示す断面構造における発光状態を模式的に表示したものである。 FIG. 14 is a diagram showing a schematic configuration around the semiconductor laser 200 of the eye-safe light source 2 according to the second embodiment of the present invention. FIG. 14A is a top view of the resin portion 406 seen through. FIG. 14B is a cross-sectional view taken along the DD line in FIG. FIG. 14C is a cross-sectional view taken along the line EE of FIG. FIG. 14D is a cross-sectional view taken along the line FF in FIG. FIG. 14E schematically shows the light emission state in the cross-sectional structure shown in FIG.
 図14に示すように、アイセーフ光源2は、レーザ光214を出射する半導体レーザ200、半導体レーザ200を載置するサブマウント102、リードフレーム104と樹脂部206とを有するパッケージ208、および、ワイヤ110を備える。また、アノードおよびカソードの方向が分かるように、印112が設けられている。 As shown in FIG. 14, the eye-safe light source 2 includes a semiconductor laser 200 that emits laser light 214, a submount 102 on which the semiconductor laser 200 is mounted, a package 208 having a lead frame 104 and a resin portion 206, and a wire 110. Is provided. A mark 112 is provided so that the direction of the anode and the cathode can be seen.
 実施形態1に係るアイセーフ光源1と、実施形態2に係るアイセーフ光源2とは、次の2点において相違する。 The eye-safe light source 1 according to the first embodiment and the eye-safe light source 2 according to the second embodiment are different in the following two points.
 1点は、実施形態1に係るアイセーフ光源1において、半導体レーザ100が右片側の発光端面(右発光端面100r)からのみレーザ光114を出射するのに対し、実施形態2に係るアイセーフ光源2において、左右両側の発光端面(左発光端面200lおよび右発光端面200r)からレーザ光214を出射することである。 One point is that in the eye-safe light source 1 according to the first embodiment, the semiconductor laser 100 emits the laser beam 114 only from the light emitting end surface (right light emitting end surface 100r) on the right side, whereas in the eye-safe light source 2 according to the second embodiment. The laser light 214 is emitted from the left and right light emitting end faces (the left light emitting end face 200l and the right light emitting end face 200r).
 もう1点は、実施形態1に係るアイセーフ光源1における凹部120に対して異なる凹部220が設けられていることである。 Another point is that a different recess 220 is provided with respect to the recess 120 in the eye-safe light source 1 according to the first embodiment.
 (凹部)
 以下に、樹脂部206が備える凹部220について説明する。
(Concave)
Below, the recessed part 220 with which the resin part 206 is provided is demonstrated.
 凹部220は、実施形態1において第1凹部1201と第2凹部1202とを合わせて構成されている凹部120と同じくに、第1凹部1201と同じ形状をなす第1凹部2201と、第2凹部1202と同じ形状をなす第2凹部2202とが合わせられている。また、凹部220は、第1凹部2201における4つの側面のうち、第2凹部2202が形成された側面と対向する側面に第3凹部2203が形成されている。 The concave portion 220 includes a first concave portion 2201 having the same shape as the first concave portion 1201 and a second concave portion 1202, similar to the concave portion 120 configured by combining the first concave portion 1201 and the second concave portion 1202 in the first embodiment. And the second concave portion 2202 having the same shape as that of the second concave portion 2202. In addition, the recess 220 has a third recess 2203 formed on the side surface facing the side surface on which the second recess 2202 is formed among the four side surfaces of the first recess 2201.
 第2凹部2202および第3凹部2203は、半導体レーザ200の左右両側の発光端面(左発光端面200lと右発光端面200r)に対向するように配置されている。実施形態2に係る凹部220は、リードフレーム104の上面(パッケージ208の基準面)と半導体レーザ200からレーザ光214が出射される方向とに垂直な、半導体レーザ200の中心を通る平面(対称面)について対称である。これに対し、実施形態1に係る凹部120は、リードフレーム104の上面と半導体レーザ100からレーザ光114が出射される方向とに垂直な、半導体レーザ100の中心を通る平面(図示せず)について対称でない。 The second recess 2202 and the third recess 2203 are disposed so as to face the light emitting end faces (the left light emitting end face 200l and the right light emitting end face 200r) on both the left and right sides of the semiconductor laser 200. The recess 220 according to the second embodiment is a plane (symmetric plane) that passes through the center of the semiconductor laser 200 and is perpendicular to the upper surface of the lead frame 104 (reference surface of the package 208) and the direction in which the laser beam 214 is emitted from the semiconductor laser 200. ). In contrast, the recess 120 according to the first embodiment is a plane (not shown) passing through the center of the semiconductor laser 100 that is perpendicular to the upper surface of the lead frame 104 and the direction in which the laser beam 114 is emitted from the semiconductor laser 100. Not symmetric.
 すなわち、実施形態2に係るアイセーフ光源2は、左右両側よりレーザ光214を出射する半導体レーザ200を用いる点において、実施形態1に係るアイセーフ光源1とは異なり、これに対応して凹部220の形状が異なる。 That is, the eye-safe light source 2 according to the second embodiment is different from the eye-safe light source 1 according to the first embodiment in that the semiconductor laser 200 that emits the laser light 214 from both the left and right sides is used. Is different.
 上述のように、樹脂部206が備える凹部220は、略逆四角錐台の形状をなす第1凹部2201と、略多段逆円錐台の形状をなす第2凹部2202および第3凹部2203とを合わせた立体形状をなしている。 As described above, the concave portion 220 included in the resin portion 206 is formed by combining the first concave portion 2201 having a substantially inverted quadrangular frustum shape with the second concave portion 2202 and the third concave portion 2203 having a substantially multi-stage inverted truncated cone shape. 3D shape.
 (反射面)
 反射面216は第2凹部2202を形成する樹脂部206の内壁であり、反射面217は第3凹部2203を形成する樹脂部206の内壁である。反射面216,217は、レーザ光214を出射する半導体レーザ200の左右両側の発光端面(左発光端面200lと右発光端面200r)にそれぞれ対向する。反射面216,217は、上述の平面について面対称であるのに加え、リードフレーム104の上面と垂直な、半導体レーザ100がレーザ光114を出射する方向に平行な、半導体レーザ100の中心を通る平面(対称面)に対して面対称である。また、反射面216は、リードフレーム104の上面に対して上向きに拡径し、実施形態1の反射面116と同様に、複数の傾斜面を有している。
(Reflective surface)
The reflection surface 216 is an inner wall of the resin portion 206 that forms the second recess 2202, and the reflection surface 217 is an inner wall of the resin portion 206 that forms the third recess 2203. The reflecting surfaces 216 and 217 are opposed to the left and right light emitting end surfaces (left light emitting end surface 200l and right light emitting end surface 200r) of the semiconductor laser 200 that emits the laser light 214, respectively. The reflecting surfaces 216 and 217 pass through the center of the semiconductor laser 100 that is perpendicular to the top surface of the lead frame 104 and parallel to the direction in which the semiconductor laser 100 emits the laser beam 114, in addition to being plane-symmetric with respect to the plane described above. It is plane symmetric with respect to the plane (symmetric plane). Further, the reflecting surface 216 has a diameter that increases upward with respect to the upper surface of the lead frame 104, and has a plurality of inclined surfaces like the reflecting surface 116 of the first embodiment.
 また、反射面216,217は、所定の中心軸(回転軸)を中心に回転する回転体が回転した回転体の外周面の軌跡を第1凹部2201の側面で分割した形状をなしている。その中心軸は、平面に対して面対称である。 Further, the reflecting surfaces 216 and 217 have a shape obtained by dividing the locus of the outer peripheral surface of the rotating body rotated around the predetermined center axis (rotating axis) by the side surface of the first recess 2201. The central axis is plane symmetric with respect to the plane.
 (ワイヤ)
 ワイヤ110は、仮想光源にワイヤ110の影を投げかけなければよい。このため、ワイヤ110は、半導体レーザ100からレーザ光214が出射される方向に直交する向きに配置されることが望ましい。
(Wire)
The wire 110 may not cast the shadow of the wire 110 on the virtual light source. For this reason, it is desirable that the wire 110 be arranged in a direction orthogonal to the direction in which the laser beam 214 is emitted from the semiconductor laser 100.
 (反射面による効果)
 反射面216,217による効果について説明する。
(Effects of reflecting surface)
The effect by the reflective surfaces 216 and 217 will be described.
 図15の(a)は、アイセーフ光源2の発光状態を示す断面図である。図15の(b)はアイセーフ光源2の側面図である。図15の(c)は発光状態にあるアイセーフ光源2の側面図である。図16の(a)はサブマウント102上に搭載したモデル光源としての半導体レーザ200からの光の放射を模式的に示す斜視図である。図16の(b)はパッケージ208に搭載された半導体レーザ200からの光の反射光の放射を模式的に示す斜視図である。図16の(c)は図16の(b)に示す反射光が光散乱層を通過した状態を示す模式図である。 FIG. 15A is a cross-sectional view showing the light emission state of the eye-safe light source 2. FIG. 15B is a side view of the eye-safe light source 2. FIG. 15C is a side view of the eye-safe light source 2 in a light emitting state. FIG. 16A is a perspective view schematically showing light emission from a semiconductor laser 200 as a model light source mounted on the submount 102. FIG. 16B is a perspective view schematically showing the emission of reflected light from the semiconductor laser 200 mounted on the package 208. FIG. 16C is a schematic diagram showing a state where the reflected light shown in FIG. 16B has passed through the light scattering layer.
 図15の(a)に示すように、実施形態2に係るアイセーフ光源2において、反射面216,217は、実施形態1に係るアイセーフ光源1の反射面116と同様に、レーザ光214を、半導体レーザ200の光軸218(対称軸)の方向に散乱反射する。 As shown in FIG. 15A, in the eye-safe light source 2 according to the second embodiment, the reflecting surfaces 216 and 217 are made of the laser light 214 as a semiconductor in the same manner as the reflecting surface 116 of the eye-safe light source 1 according to the first embodiment. Scattered and reflected in the direction of the optical axis 218 (symmetric axis) of the laser 200.
 なお、実施形態2においては、リードフレーム104の上面に対して垂直な方向を光軸218として採用している。これに限らず、反射面216,217の傾斜角度を変更することで、ここで示した光軸218に対して、傾斜した方向に新たにアイセーフ光源の別の光軸を採用することも可能である。 In the second embodiment, a direction perpendicular to the upper surface of the lead frame 104 is used as the optical axis 218. Not limited to this, it is also possible to newly adopt another optical axis of the eye-safe light source in the inclined direction with respect to the optical axis 218 shown here by changing the inclination angle of the reflecting surfaces 216 and 217. is there.
 また、図15の(b)に示すように、反射面216は、多段逆円錐台の中心軸がパッケージ208の底面(基準面)に対して垂直となるように形成されている。これにより、図15の(c)に示すように、第1凹部216による反射光は上記の中心軸を中心とする方向に出射される。 Further, as shown in FIG. 15B, the reflecting surface 216 is formed so that the central axis of the multi-stage inverted truncated cone is perpendicular to the bottom surface (reference surface) of the package 208. As a result, as shown in FIG. 15C, the reflected light from the first recess 216 is emitted in a direction centered on the central axis.
 実施形態1では、図9に示すように半導体レーザ100の一方の端面から光が放射される場合を例に説明した。これに対し、本実施形態では、パッケージ208は、図16の(a)に示すように、半導体レーザ200の両側の端面からレーザ光214を放射させるような場合に好適となるように構成されている。以下、図1、図9および図10に示す実施形態1との違いを中心に説明を進める。 In the first embodiment, the case where light is emitted from one end face of the semiconductor laser 100 as illustrated in FIG. 9 has been described as an example. On the other hand, in the present embodiment, the package 208 is configured to be suitable when the laser beam 214 is emitted from both end faces of the semiconductor laser 200 as shown in FIG. Yes. Hereinafter, the description will be focused on differences from the first embodiment shown in FIG. 1, FIG. 9, and FIG.
 図16の(a)に示す半導体レーザ200から出射されるレーザ光214は、垂直開き角θ⊥および水平開き角θ//を有している。一方、パッケージ208に、図16の(a)に示す半導体レーザ200を搭載した状態で得られる反射光は、垂直開き角θ’⊥および水平開き角θ’//を有している。 The laser beam 214 emitted from the semiconductor laser 200 shown in FIG. 16A has a vertical opening angle θ⊥ and a horizontal opening angle θ //. On the other hand, the reflected light obtained when the semiconductor laser 200 shown in FIG. 16A is mounted on the package 208 has a vertical opening angle θ′⊥ and a horizontal opening angle θ ′ //.
 半導体レーザ200の左右両端面での放射を合わせた全光出力が図9の(a)で示した片面放射の半導体レーザ100の全光出力と同じである場合、図16の(c)で示すように、反射光が光拡散層215を通過すると、単位面積当たりの光密度が半分になる。したがって、このような場合には、安全性、アイセーフ性が高いといえる。この理由は、仮想光源サイズが2倍になるためとも言えるし、半導体レーザの1端面あたりに振り分けられる光出力が2分の1になるためとも言える。 When the total light output of the combined radiation at the left and right end faces of the semiconductor laser 200 is the same as the total light output of the single-sided semiconductor laser 100 shown in FIG. 9A, it is shown in FIG. Thus, when the reflected light passes through the light diffusion layer 215, the light density per unit area is halved. Therefore, in such a case, it can be said that safety and eye-safety are high. This is because the virtual light source size is doubled, and it can be said that the light output distributed per one end surface of the semiconductor laser is halved.
 左右両端面から光を対称に放射する前記のような構造は、高出力の光を利用する場合には、とりわけ必要とされる構造である。半導体レーザ100,200は、それぞれ発光端面を1個有するか2個有するかという違いはあるものの、配光特性が同じであり、反射面116,216の形状が同じあり、レーザの発光点と反射面116,216の位置関係が同じである。しかも、半導体レーザ100,200は、光拡散層の構成が同じであれば充分遠方で測定した配光特性が、実施形態1におけるパッケージ108(図1参照)も、パッケージ208も同じである。 The structure as described above that radiates light symmetrically from the left and right end faces is particularly necessary when using high-power light. Although the semiconductor lasers 100 and 200 each have one or two light emitting end faces, the light distribution characteristics are the same, and the shapes of the reflecting surfaces 116 and 216 are the same. The positional relationship between the surfaces 116 and 216 is the same. In addition, the semiconductor lasers 100 and 200 have the same light distribution characteristics measured at a long distance as long as the configuration of the light diffusion layer is the same for both the package 108 (see FIG. 1) and the package 208 in the first embodiment.
 このため、パッケージ108における、図10および図11を用いた遠視野像(FFP:ファー・フィールド・パターン)に関する議論は、パッケージ208においても全く同様に成り立つ。この説明については、繰り返しを避けるために省略する。 For this reason, the discussion regarding the far-field pattern (FFP: far field pattern) in the package 108 using FIG. 10 and FIG. This description is omitted to avoid repetition.
 (応用例)
 本実施形態のアイセーフ光源2において、半導体レーザ200の代わりに、左右発光端面で発光が非対称な半導体レーザを用いてもよい。このような半導体レーザは、例えば、端面コートの反射率を左右で違えることで容易に得ることが可能である。このようにして左右での発光を、たとえば、40対60、30対70、20対80、10対90と言う具合に変更することができる。これは、後述する実施形態3および5にも適用される。
(Application examples)
In the eye-safe light source 2 of the present embodiment, a semiconductor laser that emits light asymmetrically on the left and right light emitting end faces may be used instead of the semiconductor laser 200. Such a semiconductor laser can be easily obtained, for example, by changing the reflectance of the end face coat on the left and right. In this way, the left and right light emission can be changed to 40:60, 30:70, 20:80, 10:90, for example. This also applies to Embodiments 3 and 5 described later.
 (変形例1)
 以下に、実施形態2に係るアイセーフ光源2において、開口224にレンズ232を設けた実施形態2の変形例について、図17に基づき、説明する。
(Modification 1)
Hereinafter, a modification of the second embodiment in which the lens 232 is provided in the opening 224 in the eye-safe light source 2 according to the second embodiment will be described with reference to FIG.
 当該アイセーフ光源2を光ファイバと光学的に結合して使用するには、レンズを設置することが望ましい。このような用途では、配光特性を更に整える目的で、図17のように、開口224をレンズ付きカバーで覆ってもよく、あるいは、外付けレンズで配光特性を調整してもよい。 In order to use the eye-safe light source 2 optically coupled with an optical fiber, it is desirable to install a lens. In such an application, for the purpose of further adjusting the light distribution characteristic, the opening 224 may be covered with a cover with a lens as shown in FIG. 17, or the light distribution characteristic may be adjusted with an external lens.
 図17は、図15に示したアイセーフ光源2において、レーザ光214を集光または平行光化するレンズ232を有するカバー232aを設けた変形例に係るアイセーフ光源2Aの概略構成を示す上面図および断面図である。 17 is a top view and a cross-sectional view showing a schematic configuration of an eye-safe light source 2A according to a modification example in which the cover 232a having a lens 232 for condensing or collimating the laser beam 214 is provided in the eye-safe light source 2 shown in FIG. FIG.
 図17に示すように、カバー232aは、凹部220内部に異物が侵入しないように設けられたカバーであり、光散乱体を含まない樹脂により形成されている。また、図示しない呼吸孔がカバー232aに設けられているため、気体は、呼吸孔を通じて凹部220の内部に対して出入りできる。カバー232aは、左発光端面200lおよび右発光端面200rから出射されるレーザ光214に対するレンズ232を備えるように、一体に形成されている。 As shown in FIG. 17, the cover 232a is a cover provided so that foreign matter does not enter the recess 220, and is formed of a resin that does not contain a light scatterer. In addition, since a breathing hole (not shown) is provided in the cover 232a, gas can enter and leave the recess 220 through the breathing hole. The cover 232a is integrally formed to include a lens 232 for the laser light 214 emitted from the left light emitting end surface 200l and the right light emitting end surface 200r.
 レンズ232は、左発光端面200lおよび右発光端面200rから出射されるレーザ光214を集光または平行光化するように形成されている。レンズ232は、非球面レンズであっても、球面レンズであってもよい。 The lens 232 is formed to condense or collimate the laser light 214 emitted from the left light emitting end surface 200l and the right light emitting end surface 200r. The lens 232 may be an aspherical lens or a spherical lens.
 (変形例2)
 以下に、実施形態2に係るアイセーフ光源2において、開口224にカバー128bを設けた実施形態1の変形例2について、図18に基づき、説明する。
(Modification 2)
Hereinafter, Modification 2 of Embodiment 1 in which a cover 128b is provided in the opening 224 in the eye-safe light source 2 according to Embodiment 2 will be described with reference to FIG.
 図18は、図15に示したアイセーフ光源2において、レーザ光214を集光あるいは平行光化するレンズ242を有するカバー242aを設けた変形例に係るアイセーフ光源1Bの概略構成を示す上面図および断面図である。 18 is a top view and a cross-sectional view showing a schematic configuration of an eye-safe light source 1B according to a modification in which the cover 242a having a lens 242 for condensing or collimating the laser beam 214 is provided in the eye-safe light source 2 shown in FIG. FIG.
 図18に示すように、カバー242aは、凹部220内部に異物が侵入しないように設けられたカバーであり、光散乱体を含まない樹脂により形成されている。また、図示しない呼吸孔がカバー242aに設けられているため、気体は、呼吸孔を通じて凹部220の内部に対して出入りできる。カバー242aは、左発光端面100lおよび右発光端面200rから出射されるレーザ光214に対するレンズ242を備えるように、一体に形成されている。 As shown in FIG. 18, the cover 242a is a cover provided so that foreign matter does not enter the recess 220, and is formed of a resin that does not contain a light scatterer. In addition, since a breathing hole (not shown) is provided in the cover 242a, gas can enter and leave the recess 220 through the breathing hole. The cover 242a is integrally formed to include a lens 242 for the laser light 214 emitted from the left light emitting end surface 100l and the right light emitting end surface 200r.
 レンズ242は、左発光端面100lおよび右発光端面100rから出射されるレーザ光214を集光あるいは平行光化するように形成されている。レンズ242は、非球面レンズであっても、球面レンズであってもよい。 The lens 242 is formed to condense or collimate the laser light 214 emitted from the left light emitting end surface 100l and the right light emitting end surface 100r. The lens 242 may be an aspherical lens or a spherical lens.
 レンズ242を有するカバー242aを設けた変形例2においては、設けない場合よりも、アイセーフ光源2Bから放射される光は、配光特性がさらに整っている。このため、変形例2に係るアイセーフ光源2Bは、光ファイバと光学的に結合するような用途に適している。 In the modified example 2 in which the cover 242a having the lens 242 is provided, the light emitted from the eye-safe light source 2B has a more uniform light distribution characteristic than in the case where the cover 242a is not provided. For this reason, the eye-safe light source 2B according to the modified example 2 is suitable for an application that optically couples with an optical fiber.
 なお、レンズ242は、カバー242aと一体でない外付けレンズであってもよい。レンズ242が外付けレンズの場合、アイセーフ光源2Bから放射される光の配光特性を調整しやすい。 The lens 242 may be an external lens that is not integral with the cover 242a. When the lens 242 is an external lens, it is easy to adjust the light distribution characteristics of the light emitted from the eye-safe light source 2B.
 〔実施形態3〕
 本発明の実施形態3について、図19~図24に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、実施形態1および2にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 3]
Embodiment 3 of the present invention will be described below with reference to FIGS. For convenience of explanation, members having the same functions as those described in the first and second embodiments are denoted by the same reference numerals and description thereof is omitted.
 図19は、本発明の実施形態3に係るアイセーフ光源3の半導体レーザ200周辺の概略構成を示す図である。図19の(a)は、カバー228を除いて樹脂部306を透視した上面図である。図19の(b)は、図19の(a)のG-G矢視断面図である。図19の(c)は、図19の(a)のH-H矢視断面図である。図19の(d)は、図19の(a)のI-I矢視断面図である。図19の(e)は、図19の(a)のJ-J矢視断面図である。図19の(f)は、図19の(a)のK-K矢視断面図である。 FIG. 19 is a diagram showing a schematic configuration around the semiconductor laser 200 of the eye-safe light source 3 according to Embodiment 3 of the present invention. FIG. 19A is a top view of the resin portion 306 seen through without the cover 228. FIG. 19B is a cross-sectional view taken along the line GG in FIG. FIG. 19C is a cross-sectional view taken along the line HH in FIG. FIG. 19D is a cross-sectional view taken along the line II of FIG. FIG. 19E is a cross-sectional view taken along line JJ in FIG. FIG. 19F is a cross-sectional view taken along the line KK in FIG.
 図19に示すように、アイセーフ光源3は、レーザ光214を出射する半導体レーザ200、半導体レーザ200を載置するサブマウント102、リードフレーム104と樹脂部306とを有するパッケージ308、ワイヤ110、および、呼吸孔230を有するカバー228を備える。また、アノードおよびカソードの方向が分かるように、印112が設けられている。 As shown in FIG. 19, the eye-safe light source 3 includes a semiconductor laser 200 that emits laser light 214, a submount 102 on which the semiconductor laser 200 is mounted, a package 308 having a lead frame 104 and a resin portion 306, a wire 110, and And a cover 228 having a breathing hole 230. A mark 112 is provided so that the direction of the anode and the cathode can be seen.
 (凹部)
 以下に、樹脂部306が備える凹部320について説明する。
(Concave)
Below, the recessed part 320 with which the resin part 306 is provided is demonstrated.
 凹部320は、実施形態2に係る第1凹部2201と同じ形状をなす第1凹部3201を有している。また、凹部320は、実施形態2に係る第2凹部2202および第3凹部2203に代えて、第2凹部3202および第3凹部3203を有している。 The concave portion 320 has a first concave portion 3201 having the same shape as the first concave portion 2201 according to the second embodiment. The recess 320 has a second recess 3202 and a third recess 3203 instead of the second recess 2202 and the third recess 2203 according to the second embodiment.
 第2凹部3202および第3凹部3203は、実施形態2に係る第2凹部2202および第3凹部2203と同じく、半導体レーザ200の左右両側の発光端面(左発光端面200lと右発光端面200r)に対向するように配置されている。凹部320は、光軸218に対して180°の回転対称となるように形成されている。 Similar to the second recess 2202 and the third recess 2203 according to the second embodiment, the second recess 3202 and the third recess 3203 are opposed to the left and right light emitting end faces (the left light emitting end face 200l and the right light emitting end face 200r) of the semiconductor laser 200. Are arranged to be. The recess 320 is formed so as to be 180 ° rotationally symmetric with respect to the optical axis 218.
 (反射面)
 反射面316は第2凹部3202を形成する樹脂部306の内壁であり、反射面317は第3凹部3203を形成する樹脂部306の内壁である。反射面316,317は、レーザ光214を出射する半導体レーザ200の左右両側の発光端面(左発光端面200lと右発光端面200r)にそれぞれ対向する。反射面316,317は、光軸218に対して180°の回転対称である。また、反射面316,317は、リードフレーム104の上面に対して上向きに拡径し、実施形態2の反射面216と同様に、複数の傾斜面を有している。
(Reflective surface)
The reflective surface 316 is an inner wall of the resin portion 306 that forms the second concave portion 3202, and the reflective surface 317 is an inner wall of the resin portion 306 that forms the third concave portion 3203. The reflecting surfaces 316 and 317 respectively oppose the left and right light emitting end surfaces (the left light emitting end surface 200l and the right light emitting end surface 200r) of the semiconductor laser 200 that emits the laser light 214. The reflecting surfaces 316 and 317 are 180 ° rotationally symmetric with respect to the optical axis 218. In addition, the reflecting surfaces 316 and 317 have an upward diameter with respect to the upper surface of the lead frame 104, and have a plurality of inclined surfaces, like the reflecting surface 216 of the second embodiment.
 また、反射面316,317は、所定の中心軸(回転軸)を中心に回転する回転体が回転した回転体の外周面の軌跡の形状をなしている。その中心軸も、光軸218に対して180°の回転対称である。また、上記の中心軸は、光軸218に対して互いに逆となる方向X1,X2に傾斜している。この点で、実施形態2に係るアイセーフ光源2と、実施形態3に係るアイセーフ光源3とが相違している。 Further, the reflecting surfaces 316 and 317 have the shape of the locus of the outer peripheral surface of the rotating body rotated by the rotating body rotating around a predetermined center axis (rotating axis). The central axis is also rotationally symmetric with respect to the optical axis 218 by 180 °. Further, the central axis is inclined in directions X1 and X2 that are opposite to each other with respect to the optical axis 218. In this respect, the eye-safe light source 2 according to the second embodiment is different from the eye-safe light source 3 according to the third embodiment.
 (反射面による効果)
 反射面316,317による効果について説明する。
(Effects of reflecting surface)
The effect by the reflective surfaces 316 and 317 will be described.
 図20の(a)はアイセーフ光源3の発光状態を示す断面図である。図20の(b)はアイセーフ光源3の側面図である。図20の(c)は発光状態にあるアイセーフ光源3の側面図である。図21の(a)は図20の(b)に示した反射面の中心軸の傾斜角度が3°である場合の配光特性を示すグラフである。図21の(b)は図20の(b)に示した反射面の中心軸の傾斜角度が5°である場合の配光特性を示すグラフである。 20 (a) is a cross-sectional view showing a light emission state of the eye-safe light source 3. FIG. FIG. 20B is a side view of the eye-safe light source 3. FIG. 20C is a side view of the eye-safe light source 3 in a light emitting state. FIG. 21A is a graph showing light distribution characteristics when the angle of inclination of the central axis of the reflecting surface shown in FIG. 20B is 3 °. FIG. 21B is a graph showing the light distribution characteristic when the inclination angle of the central axis of the reflecting surface shown in FIG. 20B is 5 °.
 図20の(a)に示すように、実施形態3に係るアイセーフ光源3において、反射面316,317は、実施形態2に係るアイセーフ光源2の反射面216と同様に、レーザ光214を、半導体レーザ200の光軸218の方向に散乱反射する。 As shown in FIG. 20A, in the eye-safe light source 3 according to the third embodiment, the reflecting surfaces 316 and 317 are the same as the reflecting surface 216 of the eye-safe light source 2 according to the second embodiment. The light is scattered and reflected in the direction of the optical axis 218 of the laser 200.
 また、反射面316,317の中心軸は、上記のように互いに異なる方向に傾斜している。反射面316,317の中心軸の傾きについて図20および図21を用いて説明する。 Further, the central axes of the reflecting surfaces 316 and 317 are inclined in different directions as described above. The inclination of the central axis of the reflecting surfaces 316 and 317 will be described with reference to FIGS.
 図20(b)に示すように、パッケージ306において、反射面316,317の中心軸は、光軸218に対して互いに反対方向に傾斜角α(±α)で傾斜している。これに対し、図16の(c)に示すように、実施形態2に係るアイセーフ光源2のパッケージ208において、反射面216,217の中心軸は、光軸218に対して傾斜していない。 20B, in the package 306, the central axes of the reflecting surfaces 316 and 317 are inclined at an inclination angle α (± α) in directions opposite to each other with respect to the optical axis 218. On the other hand, as shown in FIG. 16C, in the package 208 of the eye-safe light source 2 according to the second embodiment, the central axes of the reflecting surfaces 216 and 217 are not inclined with respect to the optical axis 218.
 反射面316,317の中心軸のなす角度が2αである場合、リードフレーム104の上面に垂直な方向で測定する光強度は、図16の(c)に示すアイセーフ光源2のパッケージ208と比べ、図20の(b)に示す実施形態3の場合では低下している。例えば、2αの値を4°以上の角度として、αの値を2°以上の角度とすれば、半導体レーザ200の両端から出射された光が、反射面316,317で反射された後に同時に人間の瞳に入射する状態を多くの場合で回避できる。 When the angle formed by the central axes of the reflecting surfaces 316 and 317 is 2α, the light intensity measured in the direction perpendicular to the upper surface of the lead frame 104 is compared with the package 208 of the eye-safe light source 2 shown in FIG. In the case of Embodiment 3 shown in FIG. For example, if the value of 2α is set to an angle of 4 ° or more and the value of α is set to an angle of 2 ° or more, the light emitted from both ends of the semiconductor laser 200 is reflected on the reflecting surfaces 316 and 317 at the same time. In many cases, it is possible to avoid the state of being incident on the pupil.
 実施形態1に係るアイセーフ光源1では、半導体レーザ100から出射されたレーザ光114は、図10の(a)の配光特性を示す。アイセーフ光源2においては、パッケージ208において2つの対向する反射面216,217の中心軸は平行(α=0°)である。反射面216,217による反射光は、図10の(b)の配光特性を示す。 In the eye-safe light source 1 according to the first embodiment, the laser beam 114 emitted from the semiconductor laser 100 exhibits the light distribution characteristic of FIG. In the eye-safe light source 2, the central axes of the two opposing reflecting surfaces 216 and 217 in the package 208 are parallel (α = 0 °). The light reflected by the reflection surfaces 216 and 217 shows the light distribution characteristics shown in FIG.
 これに対し、本実施形態に係るアイセーフ光源3では、半導体レーザ200から出射されたレーザ光214は、両端面から出た光の配光特性の合成として表せば、アイセーフ光源1と同様、図10の(a)の配光特性を示す。また、反射面316,317による反射光は、図21の(a)および(b)の配光特性を示す。アイセーフ光源3では、上述のように、反射面316,317の中心軸のなす角度が2αであるため、図21の(a)および(b)に示すように、反射光の配光特性が、左発光端面200l(一点鎖線)および右発光端面200r(二点鎖線)で異なっている。ここでは、反射面216,217の中心軸を、向きとして水平開き角θ//の方向に傾かせることで、水平開き角θ//で示されるFWHM(半値全角)値を拡げている。 On the other hand, in the eye-safe light source 3 according to the present embodiment, the laser light 214 emitted from the semiconductor laser 200 can be expressed as a combination of the light distribution characteristics of the light emitted from both end faces, as in the eye-safe light source 1. The light distribution characteristic of (a) is shown. Further, the light reflected by the reflecting surfaces 316 and 317 shows the light distribution characteristics of (a) and (b) of FIG. In the eye-safe light source 3, as described above, the angle formed by the central axes of the reflecting surfaces 316 and 317 is 2α. Therefore, as shown in FIGS. 21A and 21B, the light distribution characteristic of the reflected light is The left light emitting end face 200l (one-dot chain line) and the right light emitting end face 200r (two-dot chain line) are different. Here, the FWHM (full width at half maximum) value indicated by the horizontal opening angle θ // is expanded by tilting the central axes of the reflecting surfaces 216 and 217 in the direction of the horizontal opening angle θ //.
 実施形態2のアイセーフ光源2では、図10の(b)に示す水平開き角θ//の値が9°である。これに対し、反射面316,317の中心軸をα=±3°(2α=6°)傾けた図21の(a)に示す配光特性では、水平開き角θ//の値は13°である。また、反射面316,317の中心軸をα=±5°(2α=10°)傾けた図21の(b)に示す配光特性では、水平開き角θ//の値はさらに拡がり19°となる。パッケージ306の光軸方向(図21において0°方向)の光強度は、図10の(b)に示す配光特性において100とすると、図21の(a)に示す配光特性では75となり、図21の(b)に示す配光特性では50を下回る。ピーク強度で比較しても、図21の(b)に示す配光特性は、図10の(b)に示す配光特性に対して50程度(50強)である。 In the eye-safe light source 2 of Embodiment 2, the value of the horizontal opening angle θ // shown in (b) of FIG. 10 is 9 °. On the other hand, in the light distribution characteristic shown in FIG. 21A in which the central axes of the reflecting surfaces 316 and 317 are inclined by α = ± 3 ° (2α = 6 °), the value of the horizontal opening angle θ // is 13 °. It is. Further, in the light distribution characteristic shown in FIG. 21B in which the central axes of the reflecting surfaces 316 and 317 are inclined by α = ± 5 ° (2α = 10 °), the value of the horizontal opening angle θ // is further expanded to 19 °. It becomes. If the light intensity in the optical axis direction (0 ° direction in FIG. 21) of the package 306 is 100 in the light distribution characteristic shown in FIG. 10B, the light intensity is 75 in the light distribution characteristic shown in FIG. In the light distribution characteristic shown in FIG. Even when compared with the peak intensity, the light distribution characteristic shown in FIG. 21B is about 50 (slightly over 50) with respect to the light distribution characteristic shown in FIG.
 このように、αの値を大きくとることで、全光束を変えることなく、水平開き角θ//の値を大きく、パッケージ306の光軸方向(図10の(b)における0°方向)の光強度を小さくすることが可能となる。 Thus, by increasing the value of α, the value of the horizontal opening angle θ // is increased without changing the total luminous flux, and the optical axis direction of the package 306 (the 0 ° direction in FIG. 10B) is increased. The light intensity can be reduced.
 レーザ光214は、反射面316,317によって反射した後、更に光拡散層を通過する。これにより、最終的に得られた光の垂直開き角θ⊥および水平開き角θ//は、ほぼ同一となる(図10の(c)参照)。この目的のために使用する光としては、図21の(a)に示す配光特性を有する光が好適である。これは、次の理由による。2つの反射面316,317の中心軸を互いに傾けることで、光散乱層に入射する前の水平開き角θ//の値は垂直開き角θ⊥の値に近づく。これにより、光散乱層の通過後における垂直開き角θ⊥および水平開き角θ//をほぼ同一にすることが容易になる。このように、光散乱層の通過前における水平開き角θ//の値を調整できることは実用上非常に有用である。 The laser beam 214 is reflected by the reflecting surfaces 316 and 317 and then passes through the light diffusion layer. Thereby, the vertical opening angle θ⊥ and the horizontal opening angle θ // of the finally obtained light are substantially the same (see (c) of FIG. 10). As light used for this purpose, light having a light distribution characteristic shown in FIG. This is due to the following reason. By tilting the central axes of the two reflecting surfaces 316 and 317, the value of the horizontal opening angle θ // before entering the light scattering layer approaches the value of the vertical opening angle θ⊥. This facilitates making the vertical opening angle θ⊥ and the horizontal opening angle θ // substantially the same after passing through the light scattering layer. Thus, the ability to adjust the value of the horizontal opening angle θ // before passing through the light scattering layer is very useful in practice.
 ここで、αの値を2°以上としたのは、分散光源に関する安全性の規格である「日本工業規格JISC6802条件3」を考慮しているからである。ここでは、分散光源の安全性を判定する基準の一部として、「光源から10cm離れた位置に置かれたφ7mm開口に入射する光量」を用いている。したがって、光源から10cm離れた位置に置かれたφ7mmの開口で検出される光量をあらゆる場所で測定した場合、得られる最大値がなるべく小さくなるようにすればより安全である。このとき、全光束を減じることなく、このような状況を実現することが望まれる。 Here, the reason why the value of α is set to 2 ° or more is because “Japan Industrial Standards JIS C6802 Condition 3” which is a safety standard regarding a dispersed light source is taken into consideration. Here, “amount of light incident on a φ7 mm aperture placed at a position 10 cm away from the light source” is used as part of the criteria for determining the safety of the dispersed light source. Therefore, when the amount of light detected by an opening of φ7 mm placed at a position 10 cm away from the light source is measured everywhere, it is safer to make the maximum value obtained as small as possible. At this time, it is desired to realize such a situation without reducing the total luminous flux.
 「10cm離れた位置に置かれたφ7mmの開口」を光源から見た場合の開き角2θは、およそ4°に相当する。この領域に入る光強度を下げるには、図20、図21の(a)および(b)に示した、2つの反射面316,317の中心軸間の開き角2αを2α>2θとすることが望ましい。このように設定すると、図21の(a)において一点鎖線で示される左発光端面200lのレーザ光214と、図21の(a)において二点鎖線で示される右発光端面200rのレーザ光214とで、光強度のピークの中心が、同時に上記のφ7mmの領域に指向することは無くなる。また、上記の領域に同時に入射する光の最大量を極力抑制することは、眼や網膜の安全性確保の観点から理に適っている。反射面316,317の中心軸は通例、各々の反射面316,317から得られる反射光の最大ピークに対応する。このため、反射面316,317の中心軸を2α>2θ=4°とした場合、2つの最大ピークが同時に2θ=4°で規定される範囲内に入射することを防ぎ、アイセーフ性を高めることが可能となる。つまり、上記の領域に入射するのは、反射面316,317からの反射光のどちらか一方に常に限定されるため、レーザ光214に対する安全性を高めることができる。この目的のためには、図21の(b)に示す配光特性を有する光が最も好ましい。 The opening angle 2θ when the “opening of φ7 mm placed at a position 10 cm away” is viewed from the light source corresponds to about 4 °. In order to reduce the light intensity entering this region, the opening angle 2α between the central axes of the two reflecting surfaces 316 and 317 shown in FIGS. 20 and 21 (a) and (b) should be 2α> 2θ. Is desirable. With this setting, the laser light 214 on the left light emitting end surface 200l indicated by the one-dot chain line in FIG. 21A and the laser light 214 on the right light emitting end surface 200r indicated by the two-dot chain line in FIG. Thus, the center of the peak of the light intensity is not directed to the φ7 mm region at the same time. Moreover, it is reasonable from the viewpoint of ensuring the safety of the eyes and retina to suppress as much as possible the maximum amount of light that is simultaneously incident on the above region. The central axes of the reflecting surfaces 316, 317 typically correspond to the maximum peak of reflected light obtained from each reflecting surface 316, 317. For this reason, when the central axes of the reflecting surfaces 316 and 317 are 2α> 2θ = 4 °, two maximum peaks are prevented from entering the range defined by 2θ = 4 ° at the same time, and eye-safety is improved. Is possible. In other words, since the incident light is always limited to one of the reflected lights from the reflecting surfaces 316 and 317, the safety against the laser light 214 can be improved. For this purpose, light having the light distribution characteristic shown in FIG. 21B is most preferable.
 続いて、上記のような配光特性の光を投影した場合の光強度について説明する。図22の(a)は図21の(a)に示す配光特性の光を投影した場合の光強度の模式的なマッピングを示す図である。図22の(b)は図21の(b)に示す配光特性の光を投影した場合の光強度の模式的なマッピングを示す図である。図22の(c)は図10の(b)に示す配光特性の光を投影した場合の光強度の模式的なマッピングを示す図である。図23は、図22に示すマッピングに対する比較例として、放物面からなる反射面(パラボラ形状リフレクタ)を用いて得られる図10の(d)に示す配光特性を有する光を投影した場合の光強度のマッピング図である。図22の(a)~(c)は、上記の配光特性を有する光を光源から30cm先10cm四方の面に投影した場合の光強度を模式的に示している。 Subsequently, the light intensity when light having the above light distribution characteristics is projected will be described. FIG. 22A is a diagram showing a schematic mapping of light intensity when light having the light distribution characteristics shown in FIG. 21A is projected. FIG. 22B is a diagram showing a schematic mapping of the light intensity when the light having the light distribution characteristic shown in FIG. 21B is projected. FIG. 22C is a diagram showing a schematic mapping of light intensity when light having the light distribution characteristic shown in FIG. 10B is projected. FIG. 23 shows a case where light having a light distribution characteristic shown in FIG. 10D obtained by using a parabolic reflecting surface (parabolic reflector) is projected as a comparative example for the mapping shown in FIG. It is a mapping figure of light intensity. (A) to (c) of FIG. 22 schematically show the light intensity when light having the above-mentioned light distribution characteristics is projected on a 10 cm square surface 30 cm ahead from the light source.
 図23に示すように、比較例の反射面で得られる光の投影光の光強度は、光が狭く絞られているため、中心部分だけが明るくなってしまう。これに対し、図22の(c)に示す、アイセーフ光源2(実施形態2)で得られる光の投影光の光強度は、より広い範囲を均一に照射している。さらに、図22の(a)に示すように、アイセーフ光源3(α=3°)は、光の投影光の光強度が、更に広い範囲を均一に照射する。図22の(b)に示すように、アイセーフ光源3(α=5°)は、光の投影光の光強度が、最も広い範囲を均一に照射する。 As shown in FIG. 23, the light intensity of the projection light of the light obtained on the reflecting surface of the comparative example is narrowed down, so that only the central portion is brightened. On the other hand, the light intensity of the projection light obtained by the eye-safe light source 2 (Embodiment 2) shown in (c) of FIG. Further, as shown in FIG. 22A, the eye-safe light source 3 (α = 3 °) uniformly irradiates a wider range of the light intensity of the projected light. As shown in FIG. 22B, the eye-safe light source 3 (α = 5 °) uniformly irradiates the widest range of the light intensity of the projected light.
 このような適度に広がった範囲を均一に照射できる光は、虹彩認証、顔認証などに使用する場合に好適である。図22の(a)および(b)に示す配光特性の光を更に光散乱層に通過させて上記の認証に使用することが望ましい。光散乱層の通過は、アイセーフ性を向上させることや、光の均一照射領域を広げることだけでなく、レーザ光線に特有な、スペックルノイズの低減や、干渉縞の低減を実行することができ、有効である。このように、図22の(a)および(b)に示す配光特性を有する光が光散乱層を通過することで得られる光の一例としては、図10の(c)に示す配光特性を有する光が挙げられる。 Such light that can uniformly irradiate a moderately wide range is suitable for use in iris authentication, face authentication, and the like. It is desirable that the light having the light distribution characteristics shown in FIGS. 22A and 22B is further passed through the light scattering layer and used for the authentication. The passage of the light scattering layer not only improves eye-safety and widens the uniform light irradiation area, but also reduces speckle noise and interference fringes, which are characteristic of laser beams. ,It is valid. Thus, as an example of the light obtained by the light having the light distribution characteristics shown in FIGS. 22A and 22B passing through the light scattering layer, the light distribution characteristics shown in FIG. The light which has is mentioned.
 なお、2つの反射面316,317のそれぞれの中心軸は、半導体レーザ200のレーザ共振器(図示せず)を半導体レーザ200の長手方向に貫く貫通軸回りの回転に対し、互いに反対方向に傾斜していてもよい。このような構成を採用することで、良好な対称性をもって、広い範囲にわたり均一にレーザ光214を照射することが可能となる。
 (変形例1)
 上述した実施形態3では、パッケージ308の中心に配置されたリードフレーム104の面に対して垂直な軸について180°の回転対称性を持つパッケージ308を例に挙げて説明した。この例では、反射面316,317の中心軸の傾斜角度は±αとなる。しかしながら、本実施形態は、このような特別な例に限定されるものではない、例えば、反射面316の中心軸の傾斜角度を+α傾斜とし、反射面317の中心軸の傾斜角度を-β(ただしα≠β)としてもよい。この場合、α+β>2θ=4°であることが望ましい。
The central axes of the two reflecting surfaces 316 and 317 are inclined in directions opposite to each other with respect to the rotation around the through-axis passing through the laser resonator (not shown) of the semiconductor laser 200 in the longitudinal direction of the semiconductor laser 200. You may do it. By adopting such a configuration, it becomes possible to irradiate the laser beam 214 uniformly over a wide range with good symmetry.
(Modification 1)
In the above-described third embodiment, the package 308 having a rotational symmetry of 180 ° with respect to an axis perpendicular to the surface of the lead frame 104 disposed at the center of the package 308 has been described as an example. In this example, the inclination angle of the central axis of the reflecting surfaces 316 and 317 is ± α. However, the present embodiment is not limited to such a special example. For example, the inclination angle of the central axis of the reflection surface 316 is + α inclination, and the inclination angle of the central axis of the reflection surface 317 is −β ( However, it may be α ≠ β). In this case, it is desirable that α + β> 2θ = 4 °.
 (変形例2)
 反射面316,317の共振器を貫く中心軸の傾斜角度は、実施形態3および変形例1のように半導体レーザ200の中心軸に対して垂直方向に限定されるものではない。反射面316,317の中心軸は、目的に応じて任意の方向に、かつ任意の角度に傾斜させることが想定されている。ただし、アイセーフ性の観点からは、反射面316,317の中心軸が互いになす角度を2γとすると、2γ>2θ=4°であることが望ましい。
(Modification 2)
The inclination angle of the central axis passing through the resonators of the reflecting surfaces 316 and 317 is not limited to the direction perpendicular to the central axis of the semiconductor laser 200 as in the third embodiment and the first modification. It is assumed that the central axes of the reflecting surfaces 316 and 317 are inclined in an arbitrary direction and an arbitrary angle depending on the purpose. However, from the viewpoint of eye-safety, if the angle formed by the central axes of the reflecting surfaces 316 and 317 is 2γ, it is desirable that 2γ> 2θ = 4 °.
 〔実施形態4〕
 本発明の他の実施形態について、図24および図25に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、実施形態1~3にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 4]
The following will describe another embodiment of the present invention with reference to FIGS. For convenience of explanation, members having the same functions as those described in the first to third embodiments are denoted by the same reference numerals and description thereof is omitted.
 図24は、本発明の実施形態4に係るアイセーフ光源4の半導体レーザ100周辺の概略構成を示す図である。図24の(a)は、カバー228を除いて樹脂部406を透視した上面図である。図24の(b)は、図24の(a)のL-L矢視断面図である。図24の(c)は、図24の(a)のM-M矢視断面図である。図24の(d)は、図24の(a)のN-N矢視断面図である。 FIG. 24 is a diagram showing a schematic configuration around the semiconductor laser 100 of the eye-safe light source 4 according to Embodiment 4 of the present invention. FIG. 24A is a top view of the resin portion 406 seen through, except for the cover 228. FIG. 24B is a cross-sectional view taken along line LL in FIG. FIG. 24C is a cross-sectional view taken along the line MM in FIG. FIG. 24D is a cross-sectional view taken along the line NN in FIG.
 図24に示すように、アイセーフ光源4は、レーザ光114を出射する半導体レーザ100、半導体レーザ100を載置するサブマウント102、リードフレーム104と樹脂部406とを有するパッケージ408、ワイヤ110、および、呼吸孔230を有するカバー228を備える。また、アノードおよびカソードの方向が分かるように、印112が設けられている。 As shown in FIG. 24, the eye-safe light source 4 includes a semiconductor laser 100 that emits laser light 114, a submount 102 on which the semiconductor laser 100 is mounted, a package 408 having a lead frame 104 and a resin portion 406, a wire 110, and And a cover 228 having a breathing hole 230. A mark 112 is provided so that the direction of the anode and the cathode can be seen.
 (凹部)
 以下に、樹脂部406が備える凹部420について説明する。
(Concave)
Below, the recessed part 420 with which the resin part 406 is provided is demonstrated.
 凹部420は、実施形態1に係る第1凹部1201と同じ形状をなす第1凹部4201を有している。また、凹部420は、実施形態1に係る第2凹部1202に代えて、第2凹部4202を有している。 The recess 420 has a first recess 4201 having the same shape as the first recess 1201 according to the first embodiment. The recess 420 has a second recess 4202 instead of the second recess 1202 according to the first embodiment.
 第2凹部4202は、実施形態1に係る第2凹部1202と同じく、半導体レーザ100の右側の発光端面(右発光端面200r)に対向するように配置されている。 The second recess 4202 is disposed so as to face the right light emitting end surface (right light emitting end surface 200r) of the semiconductor laser 100, like the second recess 1202 according to the first embodiment.
 (反射面)
 反射面416は第2凹部4202を形成する樹脂部406の内壁である。反射面416は、レーザ光114を出射する半導体レーザ100の右側の発光端面(右発光端面100r)に対向する。反射面416は、光軸118に対して180°の回転対称である。また、反射面416は、リードフレーム104の上面に対して上向きに拡径し、実施形態1の反射面116と同様に、複数の傾斜面を有している。
(Reflective surface)
The reflective surface 416 is an inner wall of the resin portion 406 that forms the second recess 4202. The reflective surface 416 faces the light emitting end surface (right light emitting end surface 100r) on the right side of the semiconductor laser 100 that emits the laser light 114. The reflective surface 416 is 180 ° rotationally symmetric with respect to the optical axis 118. In addition, the reflecting surface 416 has an upward diameter with respect to the upper surface of the lead frame 104, and has a plurality of inclined surfaces like the reflecting surface 116 of the first embodiment.
 また、反射面416は、所定の中心軸(回転軸)を中心に回転する回転体が回転した回転体の外周面の軌跡の形状をなしている。その中心軸は、光軸118に対して傾斜している。この点で、実施形態4に係るアイセーフ光源4と、実施形態1に係るアイセーフ光源1とが相違している。 Also, the reflecting surface 416 has a shape of a locus on the outer peripheral surface of the rotating body rotated by a rotating body rotating around a predetermined center axis (rotating axis). The central axis is inclined with respect to the optical axis 118. In this respect, the eye-safe light source 4 according to the fourth embodiment is different from the eye-safe light source 1 according to the first embodiment.
 (反射面による効果)
 反射面416による効果について説明する。
(Effects of reflecting surface)
The effect by the reflective surface 416 will be described.
 図25の(a)はアイセーフ光源4の発光状態を示す断面図である。図25の(b)はアイセーフ光源4の側面図である。図25の(c)は発光状態にある実施形態1のアイセーフ光源1の側面図である。 FIG. 25A is a cross-sectional view showing a light emission state of the eye-safe light source 4. FIG. 25B is a side view of the eye-safe light source 4. FIG. 25C is a side view of the eye-safe light source 1 of the first embodiment in a light emitting state.
 図25の(a)に示すように、実施形態4に係るアイセーフ光源4において、反射面416は、実施形態1に係るアイセーフ光源1の反射面116と同様に、レーザ光114を半導体レーザ100の光軸118の方向に散乱反射する。 As shown in FIG. 25A, in the eye-safe light source 4 according to the fourth embodiment, the reflection surface 416 emits laser light 114 from the semiconductor laser 100 in the same manner as the reflection surface 116 of the eye-safe light source 1 according to the first embodiment. Scattered and reflected in the direction of the optical axis 118.
 図25の(c)に示すように、実施形態1に係るアイセーフ光源1では、反射面116の中心軸が光軸118に対して傾斜していない。これに対し、図25の(b)に示すように、反射面416の中心軸は、上記のように光軸118に対して傾斜している。このように構成することで、レンズを用いることなく、容易に反射光の光軸を傾斜させることが可能となる。これにより、レンズを使う構成と比べ、光源の薄型化が容易となる。 25 (c), in the eye-safe light source 1 according to the first embodiment, the central axis of the reflecting surface 116 is not inclined with respect to the optical axis 118. On the other hand, as shown in FIG. 25B, the central axis of the reflecting surface 416 is inclined with respect to the optical axis 118 as described above. With this configuration, it is possible to easily tilt the optical axis of the reflected light without using a lens. This makes it easier to reduce the thickness of the light source compared to a configuration using lenses.
 〔実施形態5〕
 本発明の実施形態5について、図26および図27に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、実施形態1~4にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 5]
The fifth embodiment of the present invention will be described below with reference to FIGS. 26 and 27. For convenience of explanation, members having the same functions as those described in the first to fourth embodiments are denoted by the same reference numerals and description thereof is omitted.
 図26は、本発明の実施形態5に係るアイセーフ光源5の半導体レーザ200周辺の概略構成を示す図である。図26の(a)は、カバー228を除いて樹脂部506を透視した上面図である。図26の(b)は、図26の(a)のO-O矢視断面図である。図26の(c)は、図26の(a)のP-P矢視断面図である。図26の(d)は、図26の(a)のQ-Q矢視断面図である。図26の(e)は、図26の(a)のR-R矢視断面図である。図26の(f)は、図26の(a)のS-S矢視断面図である。 FIG. 26 is a diagram showing a schematic configuration around the semiconductor laser 200 of the eye-safe light source 5 according to the fifth embodiment of the present invention. FIG. 26A is a top view of the resin portion 506 seen through without the cover 228. FIG. 26B is a cross-sectional view taken along the line OO in FIG. FIG. 26 (c) is a cross-sectional view taken along the line PP in FIG. 26 (a). FIG. 26D is a cross-sectional view taken along the line QQ in FIG. FIG. 26E is a cross-sectional view taken along the line RR in FIG. FIG. 26F is a cross-sectional view taken along the line SS of FIG.
 図26に示すように、アイセーフ光源5は、レーザ光214を出射する半導体レーザ200、半導体レーザ200を載置するサブマウント102、リードフレーム104と樹脂部506とを有するパッケージ508、ワイヤ110、および、呼吸孔230を有するカバー228を備える。また、アノードおよびカソードの方向が分かるように、印112が設けられている。 As shown in FIG. 26, the eye-safe light source 5 includes a semiconductor laser 200 that emits laser light 214, a submount 102 on which the semiconductor laser 200 is placed, a package 508 having a lead frame 104 and a resin portion 506, a wire 110, and And a cover 228 having a breathing hole 230. A mark 112 is provided so that the direction of the anode and the cathode can be seen.
 (凹部)
 以下に、樹脂部506が備える凹部520について説明する。
(Concave)
Below, the recessed part 520 with which the resin part 506 is provided is demonstrated.
 凹部520は、実施形態2に係る第1凹部2201と同じ形状をなす第1凹部5201を有している。また、凹部520は、実施形態2に係る第2凹部2202および第3凹部2203に代えて、第2凹部5202および第3凹部5203を有している。 The recess 520 has a first recess 5201 having the same shape as the first recess 2201 according to the second embodiment. The recess 520 includes a second recess 5202 and a third recess 5203 instead of the second recess 2202 and the third recess 2203 according to the second embodiment.
 第2凹部5202および第3凹部5203は、実施形態2に係る第2凹部2202および第3凹部2203と同様、半導体レーザ200の左右両側の発光端面(左発光端面200lと右発光端面200r)に対向するように配置されている。凹部520は、光軸218に対して180°の回転対称となるように形成されている。 Similarly to the second recess 2202 and the third recess 2203 according to the second embodiment, the second recess 5202 and the third recess 5203 are opposed to the left and right light emitting end surfaces (the left light emitting end surface 200l and the right light emitting end surface 200r) of the semiconductor laser 200. Are arranged to be. The recess 520 is formed so as to be 180 ° rotationally symmetric with respect to the optical axis 218.
 (反射面)
 反射面516は第2凹部5202を形成する樹脂部506の内壁であり、反射面517は第3凹部3203を形成する樹脂部306の内壁である。反射面516,517は、レーザ光214を出射する半導体レーザ200の左右両側の発光端面(左発光端面200lと右発光端面200r)にそれぞれ対向する。反射面516,517は、光軸218に対して180°の回転対称である。また、反射面516,517は、リードフレーム104の上面に対して上向きに拡径する傾斜面である。
(Reflective surface)
The reflective surface 516 is an inner wall of the resin portion 506 that forms the second concave portion 5202, and the reflective surface 517 is an inner wall of the resin portion 306 that forms the third concave portion 3203. The reflecting surfaces 516 and 517 are opposed to the left and right light emitting end surfaces (left light emitting end surface 200l and right light emitting end surface 200r) of the semiconductor laser 200 that emits the laser light 214, respectively. The reflection surfaces 516 and 517 are 180 ° rotationally symmetric with respect to the optical axis 218. Further, the reflecting surfaces 516 and 517 are inclined surfaces whose diameter is increased upward with respect to the upper surface of the lead frame 104.
 また、反射面516,517は、放物面(パラボラ形状)に形成されており、所定の中心軸(回転軸)を中心に放物線が回転した軌跡の形状をなしている。この点で、実施形態5に係るアイセーフ光源5と、実施形態3に係るアイセーフ光源3とが相違している。その中心軸が平面に対して非対称であること、その中心軸が光軸218に対して互いに異なる方向に傾斜していることは、実施形態3に係るアイセーフ光源3と共通している。 Further, the reflecting surfaces 516 and 517 are formed in a parabolic shape (parabolic shape), and have a shape of a locus in which a parabola rotates around a predetermined central axis (rotating axis). In this respect, the eye-safe light source 5 according to the fifth embodiment is different from the eye-safe light source 3 according to the third embodiment. The central axis is asymmetric with respect to the plane, and the central axis is inclined in different directions with respect to the optical axis 218 in common with the eye-safe light source 3 according to the third embodiment.
 (反射面による効果)
 反射面516,517による効果について説明する。
(Effects of reflecting surface)
The effect by the reflective surfaces 516 and 517 will be described.
 図27の(a)はアイセーフ光源5の発光状態を示す断面図である。図27の(b)はアイセーフ光源5の側面図である。図27の(c)は反射面の中心軸が光軸に対して傾斜していない発光状態にあるアイセーフ光源5の側面図である。 FIG. 27A is a cross-sectional view showing a light emission state of the eye-safe light source 5. FIG. 27B is a side view of the eye-safe light source 5. FIG. 27C is a side view of the eye-safe light source 5 in a light emitting state in which the central axis of the reflecting surface is not inclined with respect to the optical axis.
 図27の(a)に示すように、実施形態5に係るアイセーフ光源5において、反射面516,517は、実施形態3に係るアイセーフ光源3の反射面316,317と同様に、レーザ光214を、半導体レーザ200のほぼ光軸218の方向へ散乱反射する。 As shown in FIG. 27A, in the eye-safe light source 5 according to the fifth embodiment, the reflecting surfaces 516 and 517 emit the laser beam 214 in the same manner as the reflecting surfaces 316 and 317 of the eye-safe light source 3 according to the third embodiment. The semiconductor laser 200 is scattered and reflected substantially in the direction of the optical axis 218.
 また、反射面516,517の中心軸は、上記のように互いに異なる方向に傾斜している。反射面516,517の中心軸を互いに傾斜させることにより、アイセーフ光源5の全体の光軸、すなわちリードフレーム104に対する垂線方向の光の密度を低下させることができる。このように、実施形態5に係るアイセーフ光源5も、実施形態3の議論と同様の議論により、アイセーフ性が向上する。 Further, the central axes of the reflection surfaces 516 and 517 are inclined in different directions as described above. By tilting the central axes of the reflecting surfaces 516 and 517 with respect to each other, the entire optical axis of the eye-safe light source 5, that is, the light density in the direction perpendicular to the lead frame 104 can be reduced. As described above, the eye-safe light source 5 according to the fifth embodiment also has improved eye-safety due to the same discussion as that of the third embodiment.
 図27の(b)に示すように、アイセーフ光源5では、反射面516,517の中心軸が互いに傾斜していることにより、2つの光軸が交差し、パッケージ508の全体としての軸上光度が低下する。反射面516,517の中心軸がなす角を2γで表すと、2γ>2θ=4°以上とすることが望ましいことは、本実施形態でも成り立つ。また、反射面516,517の中心軸の傾斜角度および向きは、目的に応じて対称性を持たせてもよいし、任意の方向、任意の角度としてもよい。これも、実施形態3と同様に成り立つ。 As shown in FIG. 27B, in the eye-safe light source 5, the central axes of the reflecting surfaces 516 and 517 are inclined to each other, so that the two optical axes intersect with each other, and the on-axis luminous intensity of the package 508 as a whole is obtained. Decreases. If the angle formed by the central axes of the reflecting surfaces 516 and 517 is represented by 2γ, it is also desirable in this embodiment that 2γ> 2θ = 4 ° or more. Further, the inclination angle and direction of the central axis of the reflecting surfaces 516 and 517 may be symmetric according to the purpose, or may be an arbitrary direction and an arbitrary angle. This also holds similarly to the third embodiment.
 比較例として挙げる図27の(c)に示すアイセーフ光源は、2つの反射面の中心軸が光軸に対して傾斜していないので、2つの反射面からの反射光が同じ方向に進む。 In the eye-safe light source shown in FIG. 27C as a comparative example, the central axes of the two reflecting surfaces are not inclined with respect to the optical axis, so that the reflected light from the two reflecting surfaces proceeds in the same direction.
 なお、2つの反射面516,517のそれぞれの中心軸は、半導体レーザ200のレーザ共振器(図示せず)を半導体レーザ200の長手方向に貫く貫通軸回りの回転に対し、互いに逆回転方向に傾斜していてもよい。このような構成を採用することで、良好な対称性をもって広い範囲にわたり均一に照射することが可能となる。 The central axes of the two reflecting surfaces 516 and 517 are opposite to each other with respect to the rotation around the through-axis passing through the laser resonator (not shown) of the semiconductor laser 200 in the longitudinal direction of the semiconductor laser 200. It may be inclined. By adopting such a configuration, it becomes possible to irradiate uniformly over a wide range with good symmetry.
 〔実施形態6〕
 本発明の実施形態6について、図28および図29に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、実施形態1~5にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 6]
The following describes Embodiment 6 of the present invention with reference to FIGS. 28 and 29. FIG. For convenience of explanation, members having the same functions as those described in the first to fifth embodiments are denoted by the same reference numerals and description thereof is omitted.
 〈構成1〉
 図28は、本発明の実施形態6に係るアイセーフ光源6の半導体レーザ100周辺の概略構成を示す図である。図28の(a)は、カバー628を除いて樹脂部606を透視した上面図である。図28の(b)は図28の(a)のT-T矢視断面図である。図28の(c)は図28の(a)のU-U矢視断面図である。
<Configuration 1>
FIG. 28 is a diagram showing a schematic configuration around the semiconductor laser 100 of the eye-safe light source 6 according to Embodiment 6 of the present invention. FIG. 28A is a top view of the resin portion 606 seen through, except for the cover 628. FIG. 28B is a cross-sectional view taken along the line TT in FIG. FIG. 28C is a cross-sectional view taken along the line U-U in FIG.
 図28の(a)~(c)に示すように、アイセーフ光源6は、レーザ光114を出射する半導体レーザ100、半導体レーザ100を載置するサブマウント102、リードフレーム104と樹脂部606とを有するパッケージ608、ワイヤ110、および呼吸孔630を有するカバー628(光散乱層)を備える。また、アノードおよびカソードの方向が分かるように、印112が設けられている。 As shown in FIGS. 28A to 28C, the eye-safe light source 6 includes a semiconductor laser 100 that emits a laser beam 114, a submount 102 on which the semiconductor laser 100 is mounted, a lead frame 104, and a resin portion 606. And a cover 628 (light scattering layer) having a breathing hole 630. A mark 112 is provided so that the direction of the anode and the cathode can be seen.
 また、樹脂部606の凹部620は、第1凹部6201および第2凹部6202により形成されている。第2凹部6202を形成する反射面616は、樹脂部606の表面に金属メッキが施されることにより形成されている。金属メッキにより、反射面616はレーザ光114を散乱せずに反射する。なお、反射面616以外の樹脂部606の表面については、金属メッキを施してもよいし、施さなくてもよい。 Further, the recess 620 of the resin portion 606 is formed by the first recess 6201 and the second recess 6202. The reflective surface 616 that forms the second recess 6202 is formed by applying metal plating to the surface of the resin portion 606. Due to the metal plating, the reflecting surface 616 reflects the laser beam 114 without scattering. Note that the surface of the resin portion 606 other than the reflective surface 616 may or may not be subjected to metal plating.
 実施形態1に係るアイセーフ光源1と、実施形態6に係るアイセーフ光源6とを比較すると、相違点は次の1点である。 When the eye-safe light source 1 according to the first embodiment and the eye-safe light source 6 according to the sixth embodiment are compared, the difference is the following one point.
 その1点は、実施形態1に係るアイセーフ光源1において、反射面116は樹脂部106の表面のままであるのに対し、実施形態6に係るアイセーフ光源6において、反射面616は金属メッキにより形成されていることである。すなわち、実施形態1と異なり、実施形態6に係る反射面616はレーザ光114を散乱せずに反射する光の割合を高くすることが可能である。 One point is that in the eye-safe light source 1 according to the first embodiment, the reflective surface 116 remains the surface of the resin portion 106, whereas in the eye-safe light source 6 according to the sixth embodiment, the reflective surface 616 is formed by metal plating. It has been done. That is, unlike the first embodiment, the reflecting surface 616 according to the sixth embodiment can increase the ratio of light reflected without scattering the laser light 114.
 (反射面)
 以下に、金属メッキにより形成されている反射面616について説明する。
(Reflective surface)
Hereinafter, the reflecting surface 616 formed by metal plating will be described.
 反射面616は、金属メッキに被覆されているため、リードフレーム104の上面に平行なレーザ光114を、光軸118に平行な方向に、ほぼ散乱することなく反射する。また、凹部620の内部は空洞であるために、凹部620の内部には、空気が存在するが、レーザ光114を散乱する光散乱体は存在しない。これらにより、レーザ光114は発光端面(右発光端面100r)からカバー628に到るまで、散乱されずに進む。カバー628に入射するレーザ光114は、散乱されないので、半導体レーザ100から出射されたときの偏光特性を維持している。また、配光特性は、反射面616の形状だけから容易に予測可能であるため、容易に光学設計が可能となる。 Since the reflection surface 616 is covered with metal plating, the laser beam 114 parallel to the upper surface of the lead frame 104 is reflected in a direction parallel to the optical axis 118 with almost no scattering. Further, since the inside of the recess 620 is hollow, air exists in the recess 620, but there is no light scatterer that scatters the laser light 114. Accordingly, the laser beam 114 travels without being scattered until it reaches the cover 628 from the light emitting end face (the right light emitting end face 100r). Since the laser beam 114 incident on the cover 628 is not scattered, the polarization characteristic when the laser beam 114 is emitted from the semiconductor laser 100 is maintained. Further, since the light distribution characteristic can be easily predicted only from the shape of the reflecting surface 616, optical design can be easily performed.
 反射面616は、半導体レーザ100の発光端面(右発光端面100r)から離れており、レーザ光114は、半導体レーザ100の発光端面(右発光端面100r)から広がるように出射される。このため、反射面616において、レーザ光114のスポット径は広がっており、レーザ光114の光密度は低下している。したがって、反射面616で反射されたレーザ光114は、散乱されていないが、ある程度アイセーフ化されている。 The reflection surface 616 is separated from the light emitting end surface (right light emitting end surface 100r) of the semiconductor laser 100, and the laser beam 114 is emitted so as to spread from the light emitting end surface (right light emitting end surface 100r) of the semiconductor laser 100. For this reason, on the reflecting surface 616, the spot diameter of the laser beam 114 is widened, and the light density of the laser beam 114 is reduced. Therefore, the laser beam 114 reflected by the reflecting surface 616 is not scattered but is made eye-safe to some extent.
 なお、半導体レーザ100が赤外線の半導体レーザである場合、反射面616に用いる金属としては、金もしくは金を成分として含む合金が望ましい。理由としては、700nmを超える波長領域あるいは赤外線の領域で高反射率であることに加え、金は、通常の環境では非常に安定な物質で腐食、酸化等を受けないことが挙げられる。これに対し、銀などは初期の光反射率は高いものの、腐食または酸化の影響を受けやすい。特に、銀などは、硫黄に対しては、硫化作用により黒化することが知られており、特別な表面コートが必要となってしまう。このため、反射面616の表面に用いる金属としては、金もしくは金を成分として含む合金が望ましい。 When the semiconductor laser 100 is an infrared semiconductor laser, the metal used for the reflecting surface 616 is preferably gold or an alloy containing gold as a component. The reason is that, in addition to high reflectivity in the wavelength region exceeding 700 nm or in the infrared region, gold is a very stable substance in a normal environment and is not subject to corrosion, oxidation, or the like. On the other hand, silver and the like have high initial light reflectivity, but are susceptible to corrosion or oxidation. In particular, silver and the like are known to be blackened by sulfurization with respect to sulfur, and a special surface coat is required. For this reason, as a metal used for the surface of the reflective surface 616, gold or an alloy containing gold as a component is desirable.
 樹脂部606を直接、無電解メッキで被覆することも可能ではある。これに限らず、金属板から金型による打ち抜き等で作った反射構造体の表面を電解メッキで覆ったものをあらかじめ準備し、樹脂部606に覆いかぶせ反射面616を形成してもよい。樹脂部606の無電解メッキよりも、金属の構造体の電解メッキの方が、反射面の剥離等の問題が少なく長期信頼性を確保し易い。このような金属板から作った反射面616は、樹脂部606の成型時に一体成型してもよいし、樹脂部606の形成後に取付けてもよい。金属表面を金で被覆する以外には、アルミニウムあるいはアルミニウム合金から形成した反射構造体の表面をアルマイト処理した物を反射面616として使用してもよい。表面鏡面処理したうえでアルマイト処理した板の反射率および耐腐食性は、それぞれ金の反射率および耐腐食性と同等であることから、長期信頼性を確保するのに好適である。 It is also possible to directly coat the resin portion 606 with electroless plating. However, the present invention is not limited thereto, and the reflective surface 616 may be formed by covering the resin portion 606 with the surface of the reflective structure formed by punching from a metal plate with a metal mold in advance. Compared to the electroless plating of the resin portion 606, the electrolytic plating of the metal structure has less problems such as peeling of the reflecting surface and it is easy to ensure long-term reliability. The reflective surface 616 made of such a metal plate may be integrally formed when the resin portion 606 is formed, or may be attached after the resin portion 606 is formed. In addition to coating the metal surface with gold, a reflective surface 616 may be used that is obtained by alumite-treating the surface of a reflective structure formed of aluminum or an aluminum alloy. Since the reflectivity and corrosion resistance of the alumite-treated plate after the surface mirror treatment are equivalent to the reflectivity and corrosion resistance of gold, respectively, it is suitable for ensuring long-term reliability.
 金属反射面を形成する別の手法としては、樹脂部606の成型時にフィルム状の金属を取り込んで成型することで反射面を形成してもよい。ここで、フィルム状の金属は樹脂フィルムで保護されていることが望ましい。 As another method of forming the metal reflecting surface, the reflecting surface may be formed by taking in and molding a film-like metal when the resin portion 606 is molded. Here, the film-like metal is preferably protected by a resin film.
 (カバー)
 以下に、光散乱体を含む樹脂により形成されているカバー628について説明する。
(cover)
Hereinafter, the cover 628 formed of a resin containing a light scatterer will be described.
 カバー628は、光散乱体を含む樹脂により形成されているため、透過するレーザ光114を散乱する。散乱により、レーザ光114のスポット径が広がり、レーザ光114の光密度が低下する。したがって、カバー628を透過したレーザ光114は十分にアイセーフ化される。 Since the cover 628 is formed of a resin containing a light scatterer, the cover 628 scatters the transmitted laser beam 114. Due to the scattering, the spot diameter of the laser beam 114 is widened, and the light density of the laser beam 114 is lowered. Therefore, the laser beam 114 transmitted through the cover 628 is sufficiently eye-safe.
 一方、散乱により、レーザ光114の配光特性および偏光特性は乱されるが、カバー628を透過したレーザ光114はある程度の配光特性および偏光特性を維持している。なぜならば、カバー628に入射するときにすでに、レーザ光114はある程度アイセーフ化されているため、配光特性および偏光特性を失わない範囲の散乱により、レーザ光114を十分にアイセーフ化できるからである。 On the other hand, the light distribution characteristics and polarization characteristics of the laser light 114 are disturbed by scattering, but the laser light 114 transmitted through the cover 628 maintains a certain degree of light distribution characteristics and polarization characteristics. This is because the laser beam 114 is already made eye-safe to some extent when it enters the cover 628, and therefore the laser beam 114 can be made sufficiently eye-safe by scattering within a range that does not lose the light distribution characteristic and the polarization characteristic. .
 例えば、カバー628を形成する樹脂が含む光散乱体の濃度、およびカバー628の厚みを調整する。これにより、レーザ光114の十分なアイセーフ化と、レーザ光114の配光特性または偏光特性との十分な維持と、を両立することができる。 For example, the concentration of the light scatterer included in the resin forming the cover 628 and the thickness of the cover 628 are adjusted. Thereby, it is possible to achieve both sufficient eye-safety of the laser beam 114 and sufficient maintenance of the light distribution characteristic or polarization characteristic of the laser beam 114.
 (サブマウントに関する補足)
 実施形態1~5において、サブマウント102を介してリードフレーム104に半導体レーザ100,200を搭載する場合を開示してきた。これは、サブマウントを介さず、直接背の高い半導体レーザチップを用いた場合、放熱性が悪くなり、また、金属のリードフレーム104の膨張収縮に起因する応力が直接、半導体レーザチップの活性層に伝わり、半導体レーザチップの光出力低下や頓死などが発生するからである。サブマウント102を介することにより、このような光出力低下及び頓死の発生を防ぐことができる。各実施形態1~5の様に、発光点(発光端面)をリードフレームから離して設置し、レーザ光を対向する反射面に効率的に照射する構造では、サブマウントの使用が不可欠である。
(Supplementary information on submount)
In the first to fifth embodiments, the case where the semiconductor lasers 100 and 200 are mounted on the lead frame 104 via the submount 102 has been disclosed. This is because if a semiconductor laser chip that is directly tall without using a submount is used, the heat dissipation becomes worse, and the stress caused by expansion and contraction of the metal lead frame 104 is directly applied to the active layer of the semiconductor laser chip. This is because a decrease in the optical output of the semiconductor laser chip or a sudden death occurs. By using the submount 102, it is possible to prevent such a decrease in light output and the occurrence of sudden death. As in each of the first to fifth embodiments, the use of a submount is indispensable in a structure in which the light emitting point (light emitting end face) is set apart from the lead frame and the laser beam is efficiently irradiated to the opposing reflecting surface.
 特に、サファイヤ半導体レーザおよび窒化ガリウム(GaN)系の熱伝導率の高い基板を使う窒化ガリウム系の半導体レーザとは異なり、ガリウムヒ素(GaAs)系の基板を用いる赤外線半導体レーザは熱伝導率が低く、特に、放熱に注意する必要がある。このため、リードフレームに直接、搭載する可能性があるものは、低出力の赤外線半導体レーザであったり、放熱性の高いGaN系の半導体レーザなどに限定されたりする。 In particular, unlike gallium nitride semiconductor lasers that use sapphire semiconductor lasers and gallium nitride (GaN) -based substrates with high thermal conductivity, infrared semiconductor lasers that use gallium arsenide (GaAs) -based substrates have low thermal conductivity. In particular, it is necessary to pay attention to heat dissipation. For this reason, what can be directly mounted on the lead frame is limited to a low-power infrared semiconductor laser or a GaN-based semiconductor laser with high heat dissipation.
 また、サブマウントの代わりに、半導体レーザ搭載部分に対応するリードフレーム104の部分を突状に形成してもよい。このように形状を形成するには、リードフレーム形成時にプレス加工やエッチングを用いることが考えられる。この場合、金属フレームの膨張収縮が半導体レーザの信頼性に対して悪影響を与えないように、膨張係数の小さな金属、たとえば鉄や鉄を主要な原材料として含む合金などを用いるようにすることが望ましい。更には、インジウムはんだの様に膨張収縮の影響を緩和する材料で半導体レーザチップをリードフレーム104に接合することが重要である。リードフレームの部分を突状に加工する場合にも、この形状が、レーザ光の光路を遮らないようにする必要がある。一般に、このような形状をリードフレーム上に形成することは、手間がかかる上に精度が出しにくい。このことからも、サブマウント102を使用することが望ましい。 Further, instead of the submount, the lead frame 104 corresponding to the semiconductor laser mounting portion may be formed in a protruding shape. In order to form the shape in this way, it is conceivable to use press working or etching when forming the lead frame. In this case, it is desirable to use a metal having a small expansion coefficient, such as iron or an alloy containing iron as a main raw material, so that the expansion and contraction of the metal frame does not adversely affect the reliability of the semiconductor laser. . Furthermore, it is important to join the semiconductor laser chip to the lead frame 104 with a material that reduces the influence of expansion and contraction, such as indium solder. Even when the lead frame portion is processed into a projecting shape, it is necessary that this shape does not block the optical path of the laser beam. In general, forming such a shape on a lead frame takes time and is difficult to obtain accuracy. From this point of view, it is desirable to use the submount 102.
 なお、本構成では、反射面616が金属により形成されている例を示したが、これに代えて反射面がレーザ光を散乱する光散乱体を含む樹脂により形成されていてもよい。これは、次に述べる構成2においても同様である。 In this configuration, the example in which the reflection surface 616 is made of metal is shown, but instead, the reflection surface may be made of a resin including a light scatterer that scatters laser light. The same applies to Configuration 2 described below.
 〈構成2〉
 図29は、本発明の実施形態6に係る他のアイセーフ光源7の半導体レーザ200周辺の概略構成を示す図である。図29の(a)は、カバー628を除いて樹脂部706を透視した上面図である。図29の(b)は図29の(a)のV-V矢視断面図である。図29の(c)は図29の(a)のX-X矢視断面図である。
<Configuration 2>
FIG. 29 is a diagram showing a schematic configuration around the semiconductor laser 200 of another eye-safe light source 7 according to Embodiment 6 of the present invention. FIG. 29A is a top view of the resin portion 706 seen through with the cover 628 removed. FIG. 29B is a cross-sectional view taken along arrow VV in FIG. FIG. 29C is a cross-sectional view taken along the line XX of FIG.
 図29の(a)~(c)に示すように、アイセーフ光源7は、レーザ光214を出射する半導体レーザ200、半導体レーザ200を載置するサブマウント102、リードフレーム104と樹脂部706とを有するパッケージ708、ワイヤ110、および呼吸孔630を有するカバー628(光散乱層)(図29中非図示)を備える。また、アノードおよびカソードの方向が分かるように、印112が設けられている。 As shown in FIGS. 29A to 29C, the eye-safe light source 7 includes a semiconductor laser 200 that emits a laser beam 214, a submount 102 on which the semiconductor laser 200 is mounted, a lead frame 104, and a resin portion 706. And a cover 628 (light scattering layer) (not shown in FIG. 29) having a breathing hole 630. A mark 112 is provided so that the direction of the anode and the cathode can be seen.
 また、樹脂部706の凹部720は、第1凹部7201、第2凹部7202および第3凹部7203により形成されている。第2凹部7202を形成する反射面716は、樹脂部706の表面に金属メッキが施されることにより形成されている。第2凹部7203を形成する反射面717についても、反射面716と同じに形成されている。金属メッキにより、反射面716,717はレーザ光214をほぼ散乱することなく反射する。なお、反射面716,717以外の樹脂部706の表面については、金属メッキを施してもよいし、施さなくてもよい。 Further, the concave portion 720 of the resin portion 706 is formed by a first concave portion 7201, a second concave portion 7202, and a third concave portion 7203. The reflective surface 716 that forms the second recess 7202 is formed by applying metal plating to the surface of the resin portion 706. The reflective surface 717 that forms the second recess 7203 is also formed in the same manner as the reflective surface 716. Due to the metal plating, the reflecting surfaces 716 and 717 reflect the laser light 214 almost without scattering. In addition, about the surface of the resin parts 706 other than the reflective surfaces 716,717, metal plating may be given and it is not necessary to give.
 実施形態2に係るアイセーフ光源2と、実施形態6に係る他のアイセーフ光源7とを比較すると、相違点は次の2点である。 When comparing the eye-safe light source 2 according to the second embodiment and the other eye-safe light source 7 according to the sixth embodiment, the difference is the following two points.
 1点は、実施形態2に係るアイセーフ光源2において、反射面216,217は樹脂部206の表面のままであるのに対し、実施形態6に係るアイセーフ光源7において、反射面716,717は金属メッキにより形成されていることである。すなわち、実施形態2と異なり、実施形態6に係る反射面716はレーザ光214をほぼ散乱することなく反射する。 One point is that in the eye-safe light source 2 according to the second embodiment, the reflecting surfaces 216 and 217 remain on the surface of the resin portion 206, whereas in the eye-safe light source 7 according to the sixth embodiment, the reflecting surfaces 716 and 717 are metal. It is formed by plating. That is, unlike the second embodiment, the reflecting surface 716 according to the sixth embodiment reflects the laser light 214 almost without being scattered.
 もう1点は、実施形態2に係るアイセーフ光源2(図18に示す変形例)において、カバー232aは光散乱体を含まない樹脂により形成されていてもよいのに対し、実施形態6に係るアイセーフ光源7において、カバー628は光散乱体を含む樹脂により形成されていることが望ましいことである。すなわち、実施形態2と異なり、カバー628は透過するレーザ光214を散乱することが望ましい。 Another point is that in the eye-safe light source 2 according to the second embodiment (the modification shown in FIG. 18), the cover 232a may be formed of a resin not including a light scatterer, whereas the eye-safe according to the sixth embodiment. In the light source 7, it is desirable that the cover 628 be formed of a resin containing a light scatterer. That is, unlike the second embodiment, it is desirable that the cover 628 scatters the transmitted laser light 214.
 なお、構成1のアイセーフ光源6について上述した「反射面」の説明は、構成2のアイセーフ光源7についても同様であるため、ここではその説明を省略する。また、上述した「カバー」および「サブマウントに関する補足」についても、構成2のアイセーフ光源7に適用できるため、ここではその説明を省略する。 The description of the “reflecting surface” described above for the eye-safe light source 6 having the configuration 1 is the same for the eye-safe light source 7 having the configuration 2, and thus the description thereof is omitted here. Further, since the above-described “cover” and “supplement regarding submount” can also be applied to the eye-safe light source 7 of Configuration 2, the description thereof is omitted here.
 〔実施形態7〕
 本発明の実施形態7について、図30に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、実施形態1~6にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 7]
The seventh embodiment of the present invention will be described below with reference to FIG. For convenience of explanation, members having the same functions as those described in the first to sixth embodiments are denoted by the same reference numerals and description thereof is omitted.
 図30は、本発明の実施形態7に係る光学センサ8の概略構成を示す図である。 FIG. 30 is a diagram showing a schematic configuration of the optical sensor 8 according to Embodiment 7 of the present invention.
 図30に示すように、光学センサ(電子機器)8は、アイセーフ光源11、生体からの反射光を受光する受光部832、およびアイセーフ光源11と受光部832とを制御する制御部834とを備える。 As shown in FIG. 30, the optical sensor (electronic device) 8 includes an eye-safe light source 11, a light receiving unit 832 that receives reflected light from a living body, and a control unit 834 that controls the eye-safe light source 11 and the light receiving unit 832. .
 アイセーフ光源11は、前述の実施形態1~6に係るアイセーフ光源1~7の何れか1つによって構成される。 The eye-safe light source 11 is configured by any one of the eye-safe light sources 1 to 7 according to the first to sixth embodiments.
 受光部832は、アイセーフ光源1~7と同様に、パッケージ108~708の何れか1つに設けられてもよい。また、受光部832は、アイセーフ光源1~7と別に設けられてもよい。 The light receiving unit 832 may be provided in any one of the packages 108 to 708 similarly to the eye-safe light sources 1 to 7. Further, the light receiving unit 832 may be provided separately from the eye-safe light sources 1 to 7.
 制御部834は、パッケージ108~708の何れか1つの内部に設けられた半導体素子であってもよい。すなわち、制御部834は、リードフレーム104に接合され、樹脂部106~708の何れか1つにより樹脂封止された半導体素子であってもよい。また、制御部834は、アイセーフ光源11と別に設けられてもよい。 The control unit 834 may be a semiconductor element provided in any one of the packages 108 to 708. In other words, the control unit 834 may be a semiconductor element that is bonded to the lead frame 104 and sealed with any one of the resin units 106 to 708. Further, the control unit 834 may be provided separately from the eye-safe light source 11.
 アイセーフ光源11から放射されたアイセーフ光を生体が反射し、生体に反射された反射光を受光部832が受光する。そして、制御部834は、アイセーフ光源11から放射されたアイセーフ光と、受光部832で受光した反射光とを比較することにより、アイセーフ光を反射した生体の情報を算出する。受光部832としては画像素子を用い、画像データを制御部834で解析して生体情報を得てもよい。 The eye-safe light emitted from the eye-safe light source 11 is reflected by the living body, and the light receiving unit 832 receives the reflected light reflected by the living body. And the control part 834 calculates the information of the biological body which reflected eye safe light by comparing the eye safe light radiated | emitted from the eye safe light source 11, and the reflected light received by the light-receiving part 832. An image element may be used as the light receiving unit 832, and image data may be analyzed by the control unit 834 to obtain biological information.
 アイセーフ光源11は、薄型化に適した表面実装型の光源であるため、光学センサ8は薄型である。アイセーフ光源11を光源として利用して収集できる生体情報の種類は、虹彩、指や手のひらなどの静脈、指紋、掌紋など多岐にわたる。これらの生体情報を用いた生体認証を携帯電子機器で実現するために、アイセーフ光源11は効果的に利用される。これら携帯電子機器に限らず、通常の据置型の電子機器、たとえば、現金預け払い機(ATM)、電子ロック式金庫、車や家の電子キーなどの光源としても利用可能である。 Since the eye-safe light source 11 is a surface mount type light source suitable for thinning, the optical sensor 8 is thin. The types of biological information that can be collected using the eye-safe light source 11 as a light source are diverse, such as irises, veins such as fingers and palms, fingerprints, and palm prints. In order to realize biometric authentication using such biometric information with a portable electronic device, the eye-safe light source 11 is effectively used. The present invention is not limited to these portable electronic devices, and can be used as a light source for ordinary stationary electronic devices such as a cash dispenser (ATM), an electronic lock-type safe, an electronic key for a car or a house.
 なお、薄型化は、電子機器に広く要求されているため、アイセーフ光源11の用途は、生体認証に限定されるものではない。アイセーフ光源11は、投光器、プロジェクター、暗視カメラ用光源、モーションセンサ用光源、小型の電子機器、携帯用の電子機器などに用いられてもよい。通信機器、例えば、光ファイバとの光学的結合を必要とする電子機器でも、小型で表面実装型のアイセーフ光源を有効に活用できる。 In addition, since thinning is widely required for electronic devices, the use of the eye-safe light source 11 is not limited to biometric authentication. The eye safe light source 11 may be used for a projector, a projector, a night vision camera light source, a motion sensor light source, a small electronic device, a portable electronic device, and the like. Even a communication device, for example, an electronic device that requires optical coupling with an optical fiber, can effectively use a small, surface-mount type eye-safe light source.
 また、上述した各実施形態に係るアイセーフ光源は、小型の投光器、暗視カメラ用光源、モーションセンサ用光源、小型のプロジェクター、および生体認証用の電子機器、特に、偏光特性を利用する生体認証用の電子機器等に利用することができる。更には、通信機器、例えば、光ファイバとの光学的結合を必要とする電子機器の光源としても利用することが出来る。また、各アイセーフ光源は、表面実装に適する。 In addition, the eye-safe light source according to each of the embodiments described above is a small projector, a light source for a night vision camera, a light source for a motion sensor, a small projector, and an electronic device for biometric authentication, particularly for biometric authentication using polarization characteristics. It can be used for electronic devices. Furthermore, it can also be used as a light source for communication equipment, for example, electronic equipment that requires optical coupling with an optical fiber. Each eye-safe light source is suitable for surface mounting.
 〔まとめ〕
 本発明の態様1に係るアイセーフ光源は、基板(パッケージ108~708)と、レーザ光114、214を発光端面(左発光端面100l、右発光端面100r)から出射する半導体レーザ100、200とを備え、前記半導体レーザ100、200は、前記レーザ光114、214を前記基板の基準面に対して平行に出射するように前記基板に接合され、前記基板は、前記レーザ光114、214を反射する反射面116、反射面216、317、317、517、516を有し、前記反射面116は、前記発光端面に対向するように設けられており、かつ、多段の傾斜面の集合体からなり、前記傾斜面の傾斜角度が前記レーザ光114、214の出射端部に近づくほど大きくなるように異なる。
[Summary]
The eye-safe light source according to aspect 1 of the present invention includes a substrate (packages 108 to 708) and semiconductor lasers 100 and 200 that emit laser beams 114 and 214 from the light emitting end surfaces (left light emitting end surface 100l and right light emitting end surface 100r). The semiconductor lasers 100 and 200 are bonded to the substrate so as to emit the laser beams 114 and 214 in parallel to the reference plane of the substrate, and the substrate reflects the laser beams 114 and 214. Surface 116, reflecting surfaces 216, 317, 317, 517, 516, the reflecting surface 116 is provided so as to face the light emitting end surface, and is composed of an assembly of multi-stage inclined surfaces, The inclination angle of the inclined surface is different so as to increase as it approaches the emission end of the laser beams 114 and 214.
 上記の構成によれば、レーザ光は、基板の基準面に対して平行な方向に出射され、反射面により反射される。このため、アイセーフ光源の厚みを増すことなく、発光端面から反射面までの光路長を長くすることができる。発光端面から反射面までの光路長を長くすることにより、反射面におけるレーザ光のスポット径を広げることができる。スポット径を広げることにより、レーザ光の光密度を下げることができ、レーザ光をアイセーフ化することができる。また、反射面を多段の傾斜面からなる集合体とし、所望する配光開き角のレーザ光あるいはそれに近い開き角のレーザ光を容易に得ることができる。 According to the above configuration, the laser light is emitted in a direction parallel to the reference surface of the substrate and reflected by the reflecting surface. For this reason, the optical path length from the light emitting end surface to the reflecting surface can be increased without increasing the thickness of the eye-safe light source. By increasing the optical path length from the light emitting end surface to the reflecting surface, the spot diameter of the laser beam on the reflecting surface can be increased. By widening the spot diameter, the light density of the laser light can be lowered, and the laser light can be made eye-safe. In addition, the reflecting surface is an aggregate composed of multi-step inclined surfaces, and laser light having a desired light distribution opening angle or an opening angle close thereto can be easily obtained.
 また、上記の構成によれば、レーザ光は、光散乱体を含む光散乱領域を透過しないで、あるいは、偏光特性を維持できる範囲内で光散乱領域を透過して、アイセーフ化されることができる。これにより、アイセーフ光源から放射される光は、レーザ光の偏光特性を(少なくとも部分的に)維持している。このため、本アイセーフ光源は、偏光特性を利用する用途に適しており、例えば、生体認証用の光学センサに適している。 Further, according to the above configuration, the laser light can be made eye-safe without passing through the light scattering region including the light scatterer or through the light scattering region within a range in which the polarization characteristics can be maintained. it can. Thereby, the light emitted from the eye-safe light source maintains (at least partially) the polarization characteristics of the laser light. For this reason, this eye safe light source is suitable for the use which utilizes a polarization characteristic, for example, is suitable for the optical sensor for biometrics authentication.
 また、上記の構成によれば、レーザ光は、光散乱体を含む光散乱層を透過しないで、あるいは、偏光特性を維持できる範囲内で光散乱層を透過して、アイセーフ化されることができる。これにより、レーザ光の配光特性を多段の反射面により整えることができ、アイセーフ光源から発光される光は、反射面により整えられた配光特性を(少なくとも部分的に)維持している。このため、アイセーフ光源において、発光効率の向上と共に、アイセーフ光源から放射される光の配光特性を整えることができる。 Further, according to the above configuration, the laser light can be made eye-safe without passing through the light scattering layer including the light scatterer or through the light scattering layer within a range in which the polarization characteristics can be maintained. it can. Thereby, the light distribution characteristic of the laser light can be adjusted by the multi-stage reflection surface, and the light emitted from the eye-safe light source maintains (at least partially) the light distribution characteristic adjusted by the reflection surface. For this reason, in an eye safe light source, the luminous efficiency of the light radiated | emitted from an eye safe light source can be adjusted with the improvement of luminous efficiency.
 本発明の態様2に係るアイセーフ光源は、上記態様1において、前記発光端面は、前記半導体レーザ200の両側に設けられており、前記反射面216、317、317、517、516、616、716、717は、前記発光端面のそれぞれに対向するように設けられていてもよい。 The eye-safe light source according to aspect 2 of the present invention is the above-described aspect 1, wherein the light emitting end faces are provided on both sides of the semiconductor laser 200, and the reflecting surfaces 216, 317, 317, 517, 516, 616, 716, 717 may be provided to face each of the light emitting end faces.
 本発明の態様3に係るアイセーフ光源は、上記態様2において、前記発光端面は互いに光学的に対称であり、前記反射面216、317、317、517、516、616、716、717は、前記発光端面から前記レーザ光が出射される方向に垂直な、前記半導体レーザの中心を通る対称面について面対称であってもよい。 The eye-safe light source according to aspect 3 of the present invention is the above-described aspect 2, wherein the light emitting end faces are optically symmetrical with each other, and the reflecting surfaces 216, 317, 317, 517, 516, 616, 716, 717 A plane of symmetry that passes through the center of the semiconductor laser and is perpendicular to the direction in which the laser beam is emitted from the end face may be plane symmetric.
 本発明の態様4に係るアイセーフ光源は、上記態様1から3の何れかにおいて、前記反射面116、216、317、317、517、516、616、716、717は、中心軸を中心に回転体が回転した軌跡の一部の形状をなすように形成されていてもよい。 The eye-safe light source according to Aspect 4 of the present invention is the eye-safe light source according to any one of Aspects 1 to 3, wherein the reflecting surfaces 116, 216, 317, 317, 517, 516, 616, 716, 717 are rotating bodies around a central axis. It may be formed so as to form a shape of a part of the trajectory rotated.
 本発明の態様5に係るアイセーフ光源は、上記態様2において、前記発光端面は互いに光学的に対称であり、前記反射面217、317、517、516は、前記発光端面から前記レーザ光が出射される方向に垂直な、前記半導体レーザの中心を通る対称面について非対称であり、前記基板の基準面に対して垂直な、前記半導体レーザの中心を通る軸である対称軸に対して対称であってもよい。 The eye-safe light source according to aspect 5 of the present invention is the eye safe light source according to aspect 2, wherein the light emitting end faces are optically symmetrical with each other, and the reflecting surfaces 217, 317, 517, and 516 emit the laser light from the light emitting end faces. Asymmetric with respect to a plane of symmetry passing through the center of the semiconductor laser perpendicular to the direction of symmetry and symmetric with respect to a symmetry axis that is perpendicular to the reference plane of the substrate and passing through the center of the semiconductor laser. Also good.
 本発明の態様6に係るアイセーフ光源は、上記態様5において、前記反射面217、317、517、516は、前記基板の前記基準面に対して異なる向きに傾斜したそれぞれの中心軸を中心に回転体が回転した軌跡の一部の形状をなすように形成されていてもよい。 The eye-safe light source according to aspect 6 of the present invention is the eye safe light source according to aspect 5 described above, wherein the reflecting surfaces 217, 317, 517, and 516 rotate around respective central axes inclined in different directions with respect to the reference surface of the substrate. You may form so that the shape of a part of locus | trajectory which the body rotated may be made | formed.
 本発明の態様7に係るアイセーフ光源は、上記態様6において、2つの前記反射面のそれぞれの前記中心軸は、前記半導体レーザのレーザ共振器を前記半導体レーザの長手方向に貫く貫通軸回りの回転に対し、互いに反対方向に傾斜していてもよい。 The eye-safe light source according to aspect 7 of the present invention is the eye-safe light source according to aspect 6, wherein the central axes of the two reflecting surfaces rotate about a through-axis that penetrates the laser resonator of the semiconductor laser in the longitudinal direction of the semiconductor laser. On the other hand, they may be inclined in opposite directions.
 本発明の態様8に係るアイセーフ光源は、上記態様2において、前記発光端面は互いに光学的に対称であり、前記反射面217、317、517、516は、前記基板の前記基準面に対して異なる向きに傾斜したそれぞれの中心軸を中心に回転体が回転した軌跡の一部の形状をなすように形成されていてもよい。 The eye-safe light source according to aspect 8 of the present invention is the above-described aspect 2, wherein the light emitting end faces are optically symmetrical with each other, and the reflecting surfaces 217, 317, 517, and 516 are different from the reference surface of the substrate. You may form so that the shape of a part of locus | trajectory which the rotary body rotated centering on each central axis inclined in direction may be made.
 上記の態様2~8の構成によれば、反射面を多段の傾斜面からなる集合体としているため、各段の傾斜面の幅や傾斜角を調整でき、これにより、仮想光源の光密度および配向特性を理想に近づけやすくなる。また、反射面の中心軸を対称軸について傾斜させることにより、半導体レーザの両端から出射された光が、反射面で反射された後に同時に人間の瞳に入射する状態を多くの場合で回避できる。 According to the configurations of the above aspects 2 to 8, since the reflecting surface is an aggregate composed of multi-step inclined surfaces, the width and the inclination angle of the inclined surface of each step can be adjusted. It becomes easy to bring the orientation characteristics close to ideal. In addition, by tilting the central axis of the reflecting surface with respect to the symmetry axis, it is possible in many cases to avoid the state where light emitted from both ends of the semiconductor laser is reflected on the reflecting surface and simultaneously enters the human pupil.
 本発明の態様9に係るアイセーフ光源は、基板(パッケージ508)と、レーザ光214を発光端面(左発光端面100l、右発光端面100r)から出射する半導体レーザ200とを備え、前記半導体レーザ200は、前記レーザ光214を前記基板の基準面に対して水平方向に出射するように、前記基板に接合され、前記発光端面は、前記半導体レーザ200の両側に設けられており、かつ、互いに光学的に対称であり、前記基板は、前記レーザ光200を反射する2つの反射面516、517を有し、前記反射面516、517は、それぞれ、前記発光端面に対向するように設けられており、かつ、中心軸を中心に放物線が回転した軌跡の放物面の一部の形状をなすように形成され、前記反射面516、517のそれぞれの中心軸は、前記基板の基準面に対して異なる向きに傾斜する。 The eye-safe light source according to the ninth aspect of the present invention includes a substrate (package 508) and a semiconductor laser 200 that emits laser light 214 from a light emitting end face (left light emitting end face 100l, right light emitting end face 100r). The laser beam 214 is bonded to the substrate so as to be emitted in a horizontal direction with respect to the reference surface of the substrate, and the light emitting end surfaces are provided on both sides of the semiconductor laser 200 and are optically connected to each other. The substrate has two reflecting surfaces 516 and 517 that reflect the laser beam 200, and the reflecting surfaces 516 and 517 are provided to face the light emitting end surface, respectively. In addition, each of the reflecting surfaces 516 and 517 is formed so as to have a shape of a part of a parabolic surface of a locus in which a parabola rotates around the central axis. Inclined in different directions with respect to the reference plane of the substrate.
 上記の構成によれば、レーザ光は、基板の基準面に対して平行な方向に出射され、反射面により反射される。このため、アイセーフ光源の厚みを増すことなく、発光端面から反射面までの光路長を長くすることができる。発光端面から反射面までの光路長を長くすることにより、反射面におけるレーザ光のスポット径を広げることができる。スポット径を広げることにより、レーザ光の光密度を下げることができ、レーザ光をアイセーフ化することができる。また、反射面を放物面とすることで、所望する配光開き角のレーザ光あるいはそれに近い開き角のレーザ光を容易に得ることができる。また、反射面の中心軸を基板の基準面に対して異なる向きに傾斜させることにより、半導体レーザの両端から出射された光が、反射面で反射された後に同時に人間の瞳に入射する状態を多くの場合で回避できる。 According to the above configuration, the laser light is emitted in a direction parallel to the reference surface of the substrate and reflected by the reflecting surface. For this reason, the optical path length from the light emitting end surface to the reflecting surface can be increased without increasing the thickness of the eye-safe light source. By increasing the optical path length from the light emitting end surface to the reflecting surface, the spot diameter of the laser beam on the reflecting surface can be increased. By widening the spot diameter, the light density of the laser light can be lowered, and the laser light can be made eye-safe. Further, by making the reflecting surface a paraboloid, laser light having a desired light distribution opening angle or laser light having an opening angle close thereto can be easily obtained. In addition, by tilting the central axis of the reflecting surface in different directions with respect to the reference surface of the substrate, the light emitted from both ends of the semiconductor laser is reflected by the reflecting surface and then enters the human pupil at the same time. It can be avoided in many cases.
 本発明の態様10に係るアイセーフ光源は、上記態様9において、前記中心軸は、前記発光端面から前記レーザ光200が出射される方向に垂直な、前記半導体レーザ200の中心を通る対称面について非対称であり、前記基板の基準面に対して垂直な、前記半導体レーザ200の中心を通る軸である対称軸に対して180°の回転対称であってもよい。 An eye-safe light source according to aspect 10 of the present invention is the eye safe light source according to aspect 9, wherein the central axis is asymmetric with respect to a symmetry plane that passes through the center of the semiconductor laser 200 and is perpendicular to the direction in which the laser light 200 is emitted from the light emitting end surface. And may be 180 ° rotationally symmetric with respect to an axis of symmetry that is perpendicular to the reference plane of the substrate and passes through the center of the semiconductor laser 200.
 本発明の態様11に係るアイセーフ光源は、上記態様10において、2つの前記反射面516、517のそれぞれの前記中心軸は、前記半導体レーザ200のレーザ共振器を前記半導体レーザ200の長手方向に貫く貫通軸回りの回転に対し、互いに逆回転方向に傾斜していてもよい。 The eye-safe light source according to aspect 11 of the present invention is the eye safe light source according to aspect 10, in which the central axes of the two reflecting surfaces 516 and 517 penetrate the laser resonator of the semiconductor laser 200 in the longitudinal direction of the semiconductor laser 200. You may incline in a mutually reverse rotation direction with respect to the rotation around a penetration axis.
 本発明の態様12に係るアイセーフ光源は、上記態様11において、前記基板は、金属製リードフレーム104と、前記金属製リードフレーム104を少なくとも部分的に覆う樹脂(樹脂部506)と、を含み、前記半導体レーザ200は、前記金属製リードフレーム104に接合されていてもよい。 The eye-safe light source according to aspect 12 of the present invention is the eye safe light source according to aspect 11, wherein the substrate includes a metal lead frame 104 and a resin (resin portion 506) that at least partially covers the metal lead frame 104. The semiconductor laser 200 may be bonded to the metal lead frame 104.
 本発明の態様13に係るアイセーフ光源は、上記態様1から12の何れかにおいて、前記基板に垂直な方向から見て、前記発光端面がサブマウントから突出するように、前記半導体レーザ、200は、前記サブマウントを介して前記基板に接合されていてもよい。 The eye-safe light source according to Aspect 13 of the present invention is the semiconductor laser according to any one of Aspects 1 to 12, wherein the light emitting end surface protrudes from the submount when viewed from the direction perpendicular to the substrate. It may be joined to the substrate via the submount.
 本発明の態様14に係るアイセーフ光源は、上記態様1から13の何れかにおいて、前記発光端面と前記発光端面に対向する前記反射面216、317、317、517、516との間には、前記レーザ光214を散乱する光散乱体は存在しなくてもよい。 The eye-safe light source according to the fourteenth aspect of the present invention is the eye-safe light source according to any one of the first to thirteenth aspects, wherein the light emitting end surface and the reflecting surfaces 216, 317, 317, 517, 516 facing the light emitting end surface The light scatterer which scatters the laser beam 214 may not exist.
 本発明の態様15に係るアイセーフ光源は、上記態様1から14の何れかにおいて、前記反射面616、716、717は、前記レーザ光214を散乱する光散乱体を含む樹脂により形成されていてもよい。 In the eye-safe light source according to aspect 15 of the present invention, in any of the above aspects 1 to 14, the reflection surfaces 616, 716, and 717 may be formed of a resin including a light scatterer that scatters the laser light 214. Good.
 本発明の態様16に係るアイセーフ光源は、上記態様1から14の何れかにおいて、前記反射面616、716、717は、金属により形成されていてもよい。 In the eye-safe light source according to Aspect 16 of the present invention, in any one of Aspects 1 to 14, the reflection surfaces 616, 716, and 717 may be made of metal.
 本発明の態様17に係るアイセーフ光源は、上記態様1から16の何れかにおいて、前記反射面116、216、317、317、517、516、616、716、717により反射された前記レーザ光114、214は、前記レーザ光を散乱する光散乱体を含む光散乱層を透過してもよい。 The eye-safe light source according to aspect 17 of the present invention is the laser light 114 reflected by the reflecting surfaces 116, 216, 317, 317, 517, 516, 616, 716, 717 in any of the above aspects 1 to 16. 214 may pass through a light scattering layer including a light scatterer that scatters the laser light.
 本発明の態様18に係るアイセーフ光源は、上記態様1から17の何れかにおいて、前記半導体レーザ100、200は、樹脂封止されていなくてもよい。 In the eye-safe light source according to aspect 18 of the present invention, in any of the above aspects 1 to 17, the semiconductor lasers 100 and 200 may not be resin-sealed.
 本発明の態様19に係るアイセーフ光源は、上記態様1から18の何れかにおいて、前記半導体レーザ100、200を覆う気体は、外部に出入り可能であってもよい。 In the eye-safe light source according to Aspect 19 of the present invention, in any one of Aspects 1 to 18, the gas covering the semiconductor lasers 100 and 200 may be able to enter and exit outside.
 本発明の態様20に係るアイセーフ光源は、上記態様1から19の何れかにおいて、前記半導体レーザ100、200は不活性気体により気体封止されていてもよい。 In the eye-safe light source according to aspect 20 of the present invention, in any of the above aspects 1 to 19, the semiconductor lasers 100 and 200 may be gas-sealed with an inert gas.
 本発明の態様21に係る電子機器(光学センサ8)は、上記態様1から20の何れか1態様に係るアイセーフ光源を備えることを特徴とする。 An electronic apparatus (optical sensor 8) according to aspect 21 of the present invention includes the eye-safe light source according to any one of aspects 1 to 20.
 上記の構成によれば、本発明に係るアイセーフ光源を備える電子機器を実現できる。 According to said structure, an electronic device provided with the eye safe light source which concerns on this invention is realizable.
 本発明の態様22に係る電子機器(光学センサ8)は、上記態様21に係る電子機器であり、生体認証用の電子機器であることが好ましい。 The electronic device (optical sensor 8) according to Aspect 22 of the present invention is the electronic device according to Aspect 21, and is preferably an electronic device for biometric authentication.
 上記の構成によれば、本発明に係るアイセーフ光源を備える生体認証用の電子機器を実現できる。 According to the above configuration, an electronic device for biometric authentication provided with the eye-safe light source according to the present invention can be realized.
 本発明の態様23に係る電子機器(光学センサ8)は、上記態様21に係る電子機器であり、小型の投光器であることが好ましい。 The electronic apparatus (optical sensor 8) according to aspect 23 of the present invention is the electronic apparatus according to aspect 21 described above, and is preferably a small projector.
 上記の構成によれば、本発明に係るアイセーフ光源を備える小型の投光器を実現できる。 According to the above configuration, a small projector equipped with the eye-safe light source according to the present invention can be realized.
 本発明の態様24に係る電子機器(光学センサ8)は、上記態様21に係る電子機器であり、小型のプロジェクターであることが好ましい。 The electronic apparatus (optical sensor 8) according to aspect 24 of the present invention is the electronic apparatus according to aspect 21 described above, and is preferably a small projector.
 上記の構成によれば、本発明に係るアイセーフ光源を備える小型のプロジェクターを実現できる。 According to the above configuration, a small projector including the eye-safe light source according to the present invention can be realized.
 本発明の態様25に係る電子機器(光学センサ8)は、上記態様21に係る電子機器であり、光ファイバと結合することが好ましい。 The electronic apparatus (optical sensor 8) according to aspect 25 of the present invention is the electronic apparatus according to aspect 21 described above, and is preferably coupled to an optical fiber.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention. Furthermore, a new technical feature can be formed by combining the technical means disclosed in each embodiment.
 例えば、実施形態2、3、5、6の各々においては、左右対称になる構造、回転対称になる構造を基本に開示しているが、利用目的に応じて、左右対称性、回転対称性を意図的に非対称にして用いることを何ら排除するものではない。また、レーザ光が反射面で反射した後の光軸は、必ずしも、リードフレームに対して垂直方向になるとは限らない。左右反射面で傾斜角度を互いに違えたり、リードフレームに対する垂線に対し、放物曲面の中心軸を傾けたりすることでも容易に所望の方向に光軸を傾斜させることが可能であり、これらも本発明の技術的範囲に当然含まれる。 For example, each of Embodiments 2, 3, 5, and 6 discloses a structure that is bilaterally symmetric and a structure that is rotationally symmetric. This does not exclude the intentional use of an asymmetry. Further, the optical axis after the laser light is reflected by the reflecting surface is not necessarily in the direction perpendicular to the lead frame. It is possible to easily tilt the optical axis in the desired direction by changing the tilt angle between the left and right reflecting surfaces, or by tilting the central axis of the paraboloid with respect to the perpendicular to the lead frame. It is naturally included in the technical scope of the invention.
1、1A、1B、2~7、11 アイセーフ光源
8 光学センサ(電子機器)
100、200 半導体レーザ
100l 左発光端面(発光端面)
100r 右発光端面(発光端面)
102 サブマウント
104 リードフレーム(金属製リードフレーム)
104a アノード部
104c カソード部
106、206、306、406、506、606、706 樹脂部(樹脂)
108、208、308、408、508、608、708 パッケージ(基板)
110 ワイヤ
114、214 レーザ光
116、216、316、416、516、616、716、717 反射面
118、218 光軸(対称軸)
120、220、320、420、520、620、720 凹部
122 露出部
124、224 開口
128a、228b、628 カバー(光散乱層)
132、142 レンズ
134 光軸
230、630 呼吸孔
832 受光部
834 制御部
1, 1A, 1B, 2-7, 11 Eye-safe light source 8 Optical sensor (electronic equipment)
100, 200 Semiconductor laser 100l Left emission end face (light emission end face)
100r Right emission end face (light emission end face)
102 Submount 104 Lead frame (metal lead frame)
104a Anode part 104c Cathode part 106, 206, 306, 406, 506, 606, 706 Resin part (resin)
108, 208, 308, 408, 508, 608, 708 Package (substrate)
110 Wire 114, 214 Laser beam 116, 216, 316, 416, 516, 616, 716, 717 Reflective surface 118, 218 Optical axis (symmetric axis)
120, 220, 320, 420, 520, 620, 720 Recessed portion 122 Exposed portion 124, 224 Openings 128a, 228b, 628 Cover (light scattering layer)
132, 142 Lens 134 Optical axis 230, 630 Breathing hole 832 Light receiving unit 834 Control unit

Claims (27)

  1.  基板と、
     レーザ光を発光端面から出射する半導体レーザとを備え、
     前記半導体レーザは、前記レーザ光を前記基板の基準面に対して水平方向に出射するように、前記基板に接合され、
     前記基板は、前記レーザ光を反射する反射面を有し、
     前記反射面は、前記発光端面に対向するように設けられており、かつ、多段の傾斜面の集合体からなり、前記傾斜面の傾斜角度が前記レーザ光の出射端部に近づくほど大きくなるように異なることを特徴とするアイセーフ光源。
    A substrate,
    A semiconductor laser that emits laser light from the light emitting end face,
    The semiconductor laser is bonded to the substrate so as to emit the laser light in a horizontal direction with respect to a reference surface of the substrate,
    The substrate has a reflective surface that reflects the laser light;
    The reflection surface is provided so as to face the light emitting end surface, and is composed of an assembly of multi-step inclined surfaces, and the inclination angle of the inclined surface increases as it approaches the emission end of the laser beam. Eye-safe light source characterized by different.
  2.  前記発光端面は、前記半導体レーザの両側に設けられており、
     前記反射面は、前記発光端面のそれぞれに対向するように設けられていることを特徴とする請求項1に記載のアイセーフ光源。
    The light emitting end faces are provided on both sides of the semiconductor laser,
    The eye-safe light source according to claim 1, wherein the reflecting surface is provided to face each of the light emitting end surfaces.
  3.  前記発光端面は互いに光学的に対称であり、
     前記反射面は、前記発光端面から前記レーザ光が出射される方向に垂直な、前記半導体レーザの中心を通る対称面について面対称であることを特徴とする請求項2に記載のアイセーフ光源。
    The light emitting end faces are optically symmetric with respect to each other;
    3. The eye-safe light source according to claim 2, wherein the reflection surface is symmetrical with respect to a symmetry plane that passes through a center of the semiconductor laser and is perpendicular to a direction in which the laser light is emitted from the light emitting end surface.
  4.  前記反射面は、中心軸を中心に回転体が回転した軌跡の一部の形状をなすように形成されることを特徴とする請求項1から3の何れか1項に記載のアイセーフ光源。 The eye-safe light source according to any one of claims 1 to 3, wherein the reflecting surface is formed so as to form a part of a locus of rotation of the rotating body around a central axis.
  5.  前記発光端面は互いに光学的に対称であり、
     前記反射面は、
     前記発光端面から前記レーザ光が出射される方向に垂直な、前記半導体レーザの中心を通る対称面について非対称であり、
     前記基板の基準面に対して垂直な、前記半導体レーザの中心を通る軸である対称軸に対して対称であることを特徴とする請求項2に記載のアイセーフ光源。
    The light emitting end faces are optically symmetric with respect to each other;
    The reflective surface is
    Asymmetric with respect to a symmetry plane that passes through the center of the semiconductor laser and is perpendicular to the direction in which the laser light is emitted from the light emitting end face;
    3. The eye-safe light source according to claim 2, wherein the eye-safe light source is symmetric with respect to a symmetry axis that is perpendicular to the reference plane of the substrate and passes through the center of the semiconductor laser.
  6.  前記反射面は、前記基板の前記基準面に対して異なる向きに傾斜したそれぞれの中心軸を中心に回転体が回転した軌跡の一部の形状をなすように形成されていることを特徴とする請求項5に記載のアイセーフ光源。 The reflecting surface is formed so as to form a part of a locus of rotation of a rotating body around respective central axes inclined in different directions with respect to the reference surface of the substrate. The eye-safe light source according to claim 5.
  7.  2つの前記反射面のそれぞれの前記中心軸は、前記半導体レーザのレーザ共振器を前記半導体レーザの長手方向に貫く貫通軸回りの回転に対し、互いに反対方向に傾斜していることを特徴とする請求項6に記載のアイセーフ光源。 The central axes of the two reflecting surfaces are inclined in directions opposite to each other with respect to rotation about a through-axis passing through the laser resonator of the semiconductor laser in the longitudinal direction of the semiconductor laser. The eye-safe light source according to claim 6.
  8.  前記発光端面は互いに光学的に対称であり、
     前記反射面は、前記基板の前記基準面に対して異なる向きに傾斜したそれぞれの中心軸を中心に回転体が回転した軌跡の一部の形状をなすように形成されていることを特徴とする請求項2に記載のアイセーフ光源。
    The light emitting end faces are optically symmetric with respect to each other;
    The reflecting surface is formed so as to form a part of a locus of rotation of a rotating body around respective central axes inclined in different directions with respect to the reference surface of the substrate. The eye-safe light source according to claim 2.
  9.  基板と、
     レーザ光を発光端面から出射する半導体レーザとを備え、
     前記半導体レーザは、前記レーザ光を前記基板の基準面に対して水平方向に出射するように、前記基板に接合され、
     前記発光端面は、前記半導体レーザの両側に設けられており、かつ、互いに光学的に対称であり、
     前記基板は、前記レーザ光を反射する2つの反射面を有し、
     前記反射面は、それぞれ、前記発光端面に対向するように設けられており、かつ、中心軸を中心に放物線が回転した軌跡の放物面の一部の形状をなすように形成され、
     前記反射面のそれぞれの中心軸は、前記基板の基準面に対して異なる向きに傾斜することを特徴とするアイセーフ光源。
    A substrate,
    A semiconductor laser that emits laser light from the light emitting end face,
    The semiconductor laser is bonded to the substrate so as to emit the laser light in a horizontal direction with respect to a reference surface of the substrate,
    The light emitting end faces are provided on both sides of the semiconductor laser and are optically symmetric with respect to each other;
    The substrate has two reflecting surfaces that reflect the laser light,
    Each of the reflecting surfaces is provided so as to face the light emitting end surface, and is formed so as to have a shape of a part of a parabolic surface of a locus in which a parabola rotates around a central axis.
    The eye-safe light source characterized in that the respective central axes of the reflecting surfaces are inclined in different directions with respect to the reference surface of the substrate.
  10.  前記中心軸は、
     前記発光端面から前記レーザ光が出射される方向に垂直な、前記半導体レーザの中心を通る対称面について非対称であり、
     前記基板の基準面に対して垂直な、前記半導体レーザの中心を通る軸である対称軸に対して180°の回転対称であることを特徴とする請求項9に記載のアイセーフ光源。
    The central axis is
    Asymmetric with respect to a symmetry plane that passes through the center of the semiconductor laser and is perpendicular to the direction in which the laser light is emitted from the light emitting end face;
    10. The eye-safe light source according to claim 9, wherein the eye-safe light source has a rotational symmetry of 180 ° with respect to a symmetry axis that is an axis that passes through a center of the semiconductor laser and is perpendicular to a reference plane of the substrate.
  11.  2つの前記反射面のそれぞれの前記中心軸は、前記半導体レーザのレーザ共振器を前記半導体レーザの長手方向に貫く貫通軸回りの回転に対し、互いに逆回転方向に傾斜していることを特徴とする請求項10に記載のアイセーフ光源。 The central axes of the two reflecting surfaces are inclined in directions opposite to each other with respect to the rotation about the through-axis passing through the laser resonator of the semiconductor laser in the longitudinal direction of the semiconductor laser. The eye-safe light source according to claim 10.
  12.  前記基板は、金属製リードフレームと、前記金属製リードフレームを少なくとも部分的に覆う樹脂と、を含み、
     前記半導体レーザは、前記金属製リードフレームに接合されていることを特徴とする請求項1から11の何れか1項に記載のアイセーフ光源。
    The substrate includes a metal lead frame and a resin that at least partially covers the metal lead frame;
    The eye-safe light source according to any one of claims 1 to 11, wherein the semiconductor laser is bonded to the metal lead frame.
  13.  前記基板に垂直な方向から見て、前記発光端面がサブマウントから突出するように、前記半導体レーザは、前記サブマウントを介して前記基板に接合されていることを特徴とする請求項1から12の何れか1項に記載のアイセーフ光源。 13. The semiconductor laser is bonded to the substrate via the submount so that the light emitting end face protrudes from the submount when viewed from a direction perpendicular to the substrate. The eye-safe light source according to any one of the above.
  14.  前記発光端面と前記発光端面に対向する前記反射面との間には、前記レーザ光を散乱する光散乱体は存在しないことを特徴とする請求項1から13の何れか1項に記載のアイセーフ光源。 The eye-safe according to any one of claims 1 to 13, wherein there is no light scatterer that scatters the laser light between the light emitting end surface and the reflecting surface facing the light emitting end surface. light source.
  15.  前記反射面は、前記レーザ光を散乱する光散乱体を含む樹脂により形成されていることを特徴とする請求項1から14の何れか1項に記載のアイセーフ光源。 The eye-safe light source according to any one of claims 1 to 14, wherein the reflecting surface is formed of a resin including a light scatterer that scatters the laser light.
  16.  前記反射面は、金属により形成されていることを特徴とする請求項1から14の何れか1項に記載のアイセーフ光源。 The eye-safe light source according to any one of claims 1 to 14, wherein the reflecting surface is made of metal.
  17.  前記反射面により反射された前記レーザ光は、前記レーザ光を散乱する光散乱体を含む光散乱層を透過することを特徴とする請求項1から16の何れか1項に記載のアイセーフ光源。 The eye-safe light source according to any one of claims 1 to 16, wherein the laser light reflected by the reflecting surface is transmitted through a light scattering layer including a light scatterer that scatters the laser light.
  18.  前記半導体レーザは、樹脂封止されていないことを特徴とする請求項1から17の何れか1項に記載のアイセーフ光源。 The eye-safe light source according to any one of claims 1 to 17, wherein the semiconductor laser is not resin-sealed.
  19.  前記半導体レーザを覆う気体は、外部に出入り可能であることを特徴とする請求項18に記載のアイセーフ光源。 The eye-safe light source according to claim 18, wherein the gas covering the semiconductor laser can enter and exit outside.
  20.  前記半導体レーザは不活性気体により気体封止されていることを特徴とする請求項18に記載のアイセーフ光源。 The eye-safe light source according to claim 18, wherein the semiconductor laser is sealed with an inert gas.
  21.  前記レーザ光は、700nmよりも長波長であることを特徴とする請求項1から20の何れか1項に記載のアイセーフ光源。 The eye-safe light source according to any one of claims 1 to 20, wherein the laser beam has a wavelength longer than 700 nm.
  22.  表面実装型のアイセーフ光源であることを特徴とする請求項1から21の何れか1項に記載のアイセーフ光源。 The eye-safe light source according to any one of claims 1 to 21, wherein the eye-safe light source is a surface-mount type eye-safe light source.
  23.  前記基板に平行な、光学的な開口部を備え、
     前記開口部から、前記レーザ光が放射されることを特徴とする請求項1から22の何れか1項に記載のアイセーフ光源。
    An optical opening parallel to the substrate,
    The eye-safe light source according to any one of claims 1 to 22, wherein the laser light is emitted from the opening.
  24.  請求項1から23の何れか1項に記載のアイセーフ光源を備えることを特徴とする電子機器。 An electronic device comprising the eye-safe light source according to any one of claims 1 to 23.
  25.  生体認証用の電子機器であることを特徴とする請求項24に記載の電子機器。 The electronic device according to claim 24, wherein the electronic device is a biometric authentication electronic device.
  26.  小型の投光器であることを特徴とする請求項24に記載の電子機器。 The electronic device according to claim 24, wherein the electronic device is a small projector.
  27.  小型のプロジェクターであることを特徴とする請求項24に記載の電子機器。 The electronic device according to claim 24, wherein the electronic device is a small projector.
PCT/JP2017/027060 2016-07-29 2017-07-26 Eye-safe light source and electronic device WO2018021414A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016150785 2016-07-29
JP2016-150785 2016-07-29

Publications (1)

Publication Number Publication Date
WO2018021414A1 true WO2018021414A1 (en) 2018-02-01

Family

ID=61016857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027060 WO2018021414A1 (en) 2016-07-29 2017-07-26 Eye-safe light source and electronic device

Country Status (1)

Country Link
WO (1) WO2018021414A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019134017A (en) * 2018-01-30 2019-08-08 日亜化学工業株式会社 Light-emitting device
US11152758B2 (en) 2018-09-06 2021-10-19 Nichia Corporation Light emitting device
US11189987B2 (en) * 2017-08-16 2021-11-30 Nichia Corporation Light emitting device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53126286A (en) * 1977-04-11 1978-11-04 Hitachi Ltd Semiconductor laser package
JPS5493371U (en) * 1977-12-14 1979-07-02
JP2004128273A (en) * 2002-10-03 2004-04-22 Sharp Corp Light emitting element
JP2005235841A (en) * 2004-02-17 2005-09-02 Harison Toshiba Lighting Corp Light emitting device
WO2011108038A1 (en) * 2010-03-03 2011-09-09 パナソニック株式会社 Light emitting device and backlight module using same
US20110249445A1 (en) * 2010-04-09 2011-10-13 Khatod Optoelectronic Srl Parabolic reflector and relative led lighting device
JP2013533583A (en) * 2010-06-11 2013-08-22 インテマティックス・コーポレーション LED spotlight
WO2016005150A1 (en) * 2014-07-10 2016-01-14 Osram Opto Semiconductors Gmbh Semiconductor laser device and camera

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53126286A (en) * 1977-04-11 1978-11-04 Hitachi Ltd Semiconductor laser package
JPS5493371U (en) * 1977-12-14 1979-07-02
JP2004128273A (en) * 2002-10-03 2004-04-22 Sharp Corp Light emitting element
JP2005235841A (en) * 2004-02-17 2005-09-02 Harison Toshiba Lighting Corp Light emitting device
WO2011108038A1 (en) * 2010-03-03 2011-09-09 パナソニック株式会社 Light emitting device and backlight module using same
US20110249445A1 (en) * 2010-04-09 2011-10-13 Khatod Optoelectronic Srl Parabolic reflector and relative led lighting device
JP2013533583A (en) * 2010-06-11 2013-08-22 インテマティックス・コーポレーション LED spotlight
WO2016005150A1 (en) * 2014-07-10 2016-01-14 Osram Opto Semiconductors Gmbh Semiconductor laser device and camera

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11189987B2 (en) * 2017-08-16 2021-11-30 Nichia Corporation Light emitting device
JP2019134017A (en) * 2018-01-30 2019-08-08 日亜化学工業株式会社 Light-emitting device
US10920937B2 (en) 2018-01-30 2021-02-16 Nichia Corporation Light emitting device
US11527864B2 (en) 2018-01-30 2022-12-13 Nichia Corporation Light emitting device
US11152758B2 (en) 2018-09-06 2021-10-19 Nichia Corporation Light emitting device
US11837843B2 (en) 2018-09-06 2023-12-05 Nichia Corporation Light emitting device

Similar Documents

Publication Publication Date Title
WO2017086053A1 (en) Eye-safe light source
US10465873B2 (en) Light emitting device, vehicle headlamp, illumination device, and laser element
JP4182783B2 (en) LED package
JP5781838B2 (en) Light source device and lamp for vehicle
US9074877B2 (en) Positional deviation detection unit, light emitting device, illumination apparatus, projector, vehicle headlamp, and positional deviation adjustment method
US6900587B2 (en) Light-emitting diode
US6641287B2 (en) Reflective type light-emitting diode
JP5703531B2 (en) Vehicle lighting
US20180216811A1 (en) Light source device and projection device
US10749311B2 (en) Light source device and projection device
US20020139990A1 (en) Light emitting diode and manufacturing method thereof
WO2018021414A1 (en) Eye-safe light source and electronic device
JP5435854B2 (en) Semiconductor light emitting device
JP2007165803A (en) Light emitting device
CN112639355B (en) Lamp for vehicle
TW201836434A (en) Vcsel illuminator package including an optical structure integrated in the encapsulant
JP2004281606A (en) Light emitting device and its manufacturing method
JP2007142289A (en) Light-emitting apparatus
KR101867284B1 (en) Camera flash module
US20100314641A1 (en) Lighting Device
US10563825B2 (en) Light flux control member, light-emitting device and illumination device
US11231569B2 (en) Light-emitting device and illumination device
JP2005142447A (en) Light emitting device, light receiving device, electronic apparatus, and manufacturing method of lens
TWI443877B (en) Reflective element and light emitting diode package apparatus
US11525554B2 (en) Irradiation unit comprising a pump radiation source and a conversion element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834416

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17834416

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP