WO2018021243A1 - Fusible material for three-dimensional molding - Google Patents

Fusible material for three-dimensional molding Download PDF

Info

Publication number
WO2018021243A1
WO2018021243A1 PCT/JP2017/026700 JP2017026700W WO2018021243A1 WO 2018021243 A1 WO2018021243 A1 WO 2018021243A1 JP 2017026700 W JP2017026700 W JP 2017026700W WO 2018021243 A1 WO2018021243 A1 WO 2018021243A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
dimensional object
monomer unit
dimensional
polyamide resin
Prior art date
Application number
PCT/JP2017/026700
Other languages
French (fr)
Japanese (ja)
Inventor
丈士 平井
吉村 忠徳
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017141095A external-priority patent/JP2018024850A/en
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to US16/320,940 priority Critical patent/US20190160732A1/en
Priority to CN201780046726.0A priority patent/CN109476840B/en
Priority to EP17834249.9A priority patent/EP3492511A4/en
Publication of WO2018021243A1 publication Critical patent/WO2018021243A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids

Definitions

  • the present invention relates to a soluble material for three-dimensional modeling used as a support material for supporting a three-dimensional object when a three-dimensional object is manufactured by a 3D printer, particularly a hot melt lamination type 3D printer.
  • the 3D printer is a type of rapid prototyping and is a three-dimensional printer that forms a three-dimensional object based on 3D data such as 3D CAD, 3D CG, and the like.
  • a 3D printer system a hot melt lamination system (hereinafter also referred to as an FDM system), an inkjet ultraviolet curing system, an optical modeling system, a laser sintering system, and the like are known.
  • the FDM method is a modeling method for obtaining a three-dimensional object by heating / melting and extruding and laminating polymer filaments, and unlike other methods, does not use a material reaction.
  • FDM 3D printers are small and inexpensive, and have become popular in recent years as devices with little post-processing.
  • a three-dimensional object is formed by stacking a modeling material constituting the three-dimensional object and a support material for supporting the three-dimensional structure of the modeling material.
  • a method for removing the support material from the three-dimensional object precursor there is a method for removing the support material by immersing the three-dimensional object precursor in a high-temperature strong alkaline aqueous solution using a methacrylic acid copolymer as the support material.
  • This method utilizes the fact that the carboxylic acid in the methacrylic acid copolymer is neutralized by an alkali and dissolved in a strong alkaline aqueous solution.
  • the three-dimensional modeling soluble material of the present invention is a three-dimensional modeling soluble material used as a support material for supporting the three-dimensional object when a three-dimensional object is manufactured by an FDM-type 3D printer
  • the three-dimensional modeling soluble material includes a polyamide resin
  • the polyamide resin includes a hydrophilic monomer unit A having a hydrophilic group, a hydrophobic dicarboxylic acid monomer unit B, and a hydrophobic diamine monomer unit C, and the polyamide
  • the ratio of the hydrophilic monomer unit A to the total of all monomer units in the resin is 2.5 mol% or more and less than 13.5 mol%.
  • the three-dimensional object manufacturing method of the present invention includes a step of obtaining a three-dimensional object precursor including a three-dimensional object and a support material, and a support material for removing the support material by bringing the three-dimensional object precursor into contact with neutral water. It is a manufacturing method of the three-dimensional object by the FDM system which has a removal process, Comprising: The material of the said support material is the said soluble material for three-dimensional modeling.
  • the support material of the present invention is a support material that supports a three-dimensional object when the three-dimensional object is manufactured by an FDM-type 3D printer.
  • the support material includes a polyamide resin, and the polyamide resin is hydrophilic.
  • the hydrophilic monomer unit A having a hydrophobic group, the hydrophobic dicarboxylic acid monomer unit B, and the hydrophobic diamine monomer unit C, and the ratio of the hydrophilic monomer unit A to the total of all monomer units in the polyamide resin is 2 0.5 mol% or more and less than 13.5 mol%.
  • Japanese Patent Publication No. 2002-516346 discloses a method for removing a support material by immersing a three-dimensional object precursor in water using polyvinyl alcohol or the like soluble in water as the support material. ing.
  • the support material for the three-dimensional object precursor can be removed without using a strong alkaline aqueous solution, but polyvinyl alcohol or the like has a high affinity for moisture. Therefore, when a three-dimensional modeling soluble material containing polyvinyl alcohol is exposed to high humidity, it absorbs moisture in the air.
  • a 3D modeling soluble material containing water-containing polyvinyl alcohol, etc. is heated / melted / launched / laminated with an FDM 3D printer, the water will evaporate due to high temperature and foam, thereby improving the accuracy of the 3D object. There were times when it was seriously damaged.
  • the present invention is suitable for the production of a three-dimensional object by the FDM method, has moisture absorption resistance, has a high dissolution rate in neutral water, and can be rapidly produced from a three-dimensional object precursor without using a strong alkaline aqueous solution.
  • a three-dimensional modeling soluble material for a support material that can be removed is provided.
  • the present invention can suppress foaming by suppressing the deterioration of accuracy of a three-dimensional object even if it is used for production of a three-dimensional object by a 3D printer after being exposed to high humidity, and can be dissolved in neutral water.
  • a method for producing a three-dimensional object which has a high speed and can quickly remove a support material from a three-dimensional object precursor without using a strong alkaline aqueous solution.
  • the present invention can suppress foaming by suppressing the deterioration of accuracy of a three-dimensional object even if it is used for production of a three-dimensional object by a 3D printer after being exposed to high humidity, and can be dissolved in neutral water.
  • a support material that has a high speed and can be quickly removed from a three-dimensional object precursor without using a strong alkaline aqueous solution.
  • the three-dimensional modeling soluble material of the present invention is a three-dimensional modeling soluble material used as a support material for supporting the three-dimensional object when a three-dimensional object is manufactured by an FDM-type 3D printer
  • the three-dimensional modeling soluble material includes a polyamide resin
  • the polyamide resin includes a hydrophilic monomer unit A having a hydrophilic group, a hydrophobic dicarboxylic acid monomer unit B, and a hydrophobic diamine monomer unit C, and the polyamide
  • the ratio of the hydrophilic monomer unit A to the total of all monomer units in the resin is 2.5 mol% or more and less than 13.5 mol%.
  • the three-dimensional object manufacturing method of the present invention includes a step of obtaining a three-dimensional object precursor including a three-dimensional object and a support material, and a support material for removing the support material by bringing the three-dimensional object precursor into contact with neutral water. It is a manufacturing method of the three-dimensional object by the FDM system which has a removal process, Comprising: The material of the said support material is the said soluble material for three-dimensional modeling.
  • the support material of the present invention is a support material that supports a three-dimensional object when the three-dimensional object is manufactured by an FDM-type 3D printer.
  • the support material includes a polyamide resin, and the polyamide resin is hydrophilic.
  • the hydrophilic monomer unit A having a hydrophobic group, the hydrophobic dicarboxylic acid monomer unit B, and the hydrophobic diamine monomer unit C, and the ratio of the hydrophilic monomer unit A to the total of all monomer units in the polyamide resin is 2 0.5 mol% or more and less than 13.5 mol%.
  • the present invention it is suitable for production of a three-dimensional object by the FDM method, has moisture absorption resistance, has a high dissolution rate in neutral water, and can be used from a three-dimensional object precursor without using a strong alkaline aqueous solution. It is possible to provide a three-dimensional modeling soluble material for a support material that can be quickly removed.
  • the present invention even if it is used for manufacturing a three-dimensional object by a 3D printer after being exposed to high humidity, it is possible to suppress foaming and suppress a decrease in accuracy of the three-dimensional object, and to neutral water.
  • a method for producing a three-dimensional object capable of rapidly removing the support material from the three-dimensional object precursor without using a strong alkaline aqueous solution.
  • the present invention even if it is used for manufacturing a three-dimensional object by a 3D printer after being exposed to high humidity, it is possible to suppress foaming and suppress a decrease in accuracy of the three-dimensional object, and to neutral water. Thus, it is possible to provide a support material that can be rapidly removed from the three-dimensional object precursor without using a strong alkaline aqueous solution.
  • the soluble material for 3D modeling is a soluble material for 3D modeling used as a support material for supporting the 3D object when a 3D object is manufactured by an FDM 3D printer.
  • the three-dimensional modeling soluble material includes a polyamide resin, and the polyamide resin includes a hydrophilic monomer unit A having a hydrophilic group, a hydrophobic dicarboxylic acid monomer unit B, and a hydrophobic diamine monomer unit C, The ratio of the hydrophilic monomer unit A to the total of all monomer units in the polyamide resin is 2.5 mol% or more and less than 13.5 mol%.
  • the support material made of the soluble material for three-dimensional modeling has moisture absorption resistance and has a high dissolution rate in neutral water, so that it can be quickly developed from a three-dimensional object precursor without using a strong alkaline aqueous solution. Can be removed.
  • the reason why the three-dimensional modeling soluble material has such an effect is not clear, but is considered as follows.
  • the three-dimensional modeling soluble material of the present embodiment has a polyamide resin having a specific amount of the hydrophilic monomer unit A, and thus has high solubility in neutral water. Moreover, since the said polyamide resin has the hydrophobic dicarboxylic acid monomer unit B, its hygroscopic property is low. Since the three-dimensional modeling soluble material of this embodiment has such a polyamide resin, the support material containing the three-dimensional modeling soluble material has moisture absorption resistance and is soluble in neutral water. It is considered that the speed is high and it can be quickly removed from the three-dimensional object precursor without using an alkaline aqueous solution.
  • the polyamide resin has a hydrophilic monomer unit A having a hydrophilic group.
  • the hydrophilic monomer unit A is not particularly limited as long as it is a monomer unit having a hydrophilic group.
  • a monomer for inducing the hydrophilic monomer unit A is also referred to as monomer A.
  • the hydrophilic group includes a primary amino group, a secondary amino group, a tertiary amino group, from the viewpoint of solubility in neutral water and the ease of the polymerization reaction during the production of the polyamide resin.
  • examples thereof include at least one selected from the group consisting of a quaternary ammonium base, an oxyethylene group, a hydroxyl group, a carboxyl group, a carboxyl base, a phosphate group, a phosphate group, a sulfonate group, and a sulfonate group.
  • the secondary amino group is —NHR 1 group (where R 1 is linear or branched, from the viewpoint of solubility in neutral water and ease of polymerization reaction during the production of polyamide resin. At least one selected from the group consisting of a secondary amino group represented by (II) and a secondary amino group represented by —NH— group.
  • the tertiary amino group is a —NR 2 R 3 group (provided that R 2 is linear or branched from the viewpoint of solubility in neutral water and ease of polymerization reaction during the production of polyamide resin.
  • Jo having 1 to 4 carbon indicates an alkyl group
  • R 3 is a tertiary amino group represented by denotes a straight or branched carbon atoms 1 to 14 alkyl group.
  • -NR At least one selected from the group consisting of tertiary amino groups represented by a 4 -group (wherein R 4 represents a linear or branched alkyl group having 1 to 4 carbon atoms) is preferred. .
  • the quaternary ammonium base is —N + ⁇ R 5 R 6 R 7 ⁇ ⁇ X ⁇ (where, from the viewpoint of solubility in neutral water and ease of polymerization reaction during the production of polyamide resin.
  • R 5 , R 6 and R 7 each independently represent a hydrogen atom or an alkyl group having 1 to 14 carbon atoms
  • X ⁇ represents a hydroxy ion, a halogen ion, CH 3 SO 4 — or CH 3 CH 2 SO. 4 - at least one or more preferably selected from the group consisting of quaternary ammonium base represented by the illustrated).
  • the oxyethylene group is — ⁇ CH 2 CH 2 O ⁇ n — (where n represents an average number) from the viewpoint of solubility in neutral water and the ease of polymerization reaction during the production of polyamide resin.
  • R 8 is 4 or more and 50 or less
  • the carboxyl base is —COOM 1 (where M 1 represents a counter ion of the carboxyl group constituting the carboxyl base, from the viewpoint of solubility in neutral water and the ease of the polymerization reaction during the production of the polyamide resin.
  • At least one selected from the group consisting of sodium ions, potassium ions, lithium ions, calcium ions, magnesium ions, ammonium ions, barium ions, and zinc ions is preferable, sodium More preferably, at least one selected from the group consisting of ions, potassium ions, lithium ions, magnesium ions, and ammonium ions, more preferably at least one selected from the group consisting of sodium ions and potassium ions, sodium ions Gayo Further preferred.)
  • Carboxyl base is preferably represented by.
  • the phosphate group is —PO 4 M 2 2 , —PO 4 HM 2 , and —PO 4 M 2 from the viewpoint of solubility in neutral water and the ease of polymerization reaction during the production of polyamide resin.
  • M 2 represents a counter ion of a phosphate group constituting a phosphate group, and from the viewpoint of solubility in neutral water, sodium ion, potassium ion, lithium ion, calcium ion, magnesium ion, ammonium ion, barium.
  • At least one selected from the group consisting of ions and zinc ions more preferably at least one selected from the group consisting of sodium ions, potassium ions, lithium ions, magnesium ions, and ammonium ions, sodium ions, And at least one selected from the group consisting of potassium ions is more preferred.
  • Ku at least one or more preferably sodium ion is selected from the group consisting of phosphoric acid base represented by even more preferred.).
  • the sulfonate group is —SO 3 M 3 (where M 3 is a sulfonic acid constituting the sulfonate group).
  • M 3 is a sulfonic acid constituting the sulfonate group.
  • at least one selected from the group consisting of sodium ions, potassium ions, lithium ions, magnesium ions, and ammonium ions and more preferably at least one selected from the group consisting of sodium ions and potassium ions. More preferably, sodium ions are more Preferred.
  • Sulfonate is preferably represented by.
  • the monomer A is a carboxylic acid from the viewpoint of solubility in neutral water, the viewpoint of moisture absorption resistance, the viewpoint of heat resistance required for modeling by a 3D printer, and the ease of polymerization reaction during the production of polyamide resin.
  • At least one selected from the group consisting of amines and amino acids is preferred, and carboxylic acids are more preferred.
  • carboxylic acids aromatic carboxylic acids are preferable from the same viewpoint, and hydroxy group-containing aromatic dicarboxylic acid, primary amino group-containing aromatic dicarboxylic acid, sulfonic acid group-containing aromatic dicarboxylic acid, and sulfonate group-containing Aromatic dicarboxylic acids are more preferred.
  • 5-hydroxyisophthalic acid, 1,3,5-benzenetricarboxylic acid, 5-aminoisophthalic acid, 5-sulfoisophthalic acid, 2-sulfoterephthalic acid, and 4-sulfo-2,6- At least one selected from the group consisting of naphthalenedicarboxylic acid is preferable, at least one selected from the group consisting of 5-sulfoisophthalic acid and 2-sulfoterephthalic acid is more preferable, and 5-sulfoisophthalic acid is more preferable.
  • the content of the hydrophilic group in the polyamide resin is preferably 0.5 mmol / g or more, more preferably 0.6 mmol / g or more, and 0.7 mmol / g or more. Is more preferable, and from the viewpoint of moisture absorption resistance and from the viewpoint of heat resistance required for modeling by a 3D printer, it is preferably less than 1.0 mmol / g, preferably 0.8 mmol / g or less, and more preferably 0.75 mmol / g or less. preferable.
  • content of a hydrophilic group is measured by the method as described in an Example.
  • the ratio of the substance amount of the hydrophilic monomer unit A to the total substance amount of all the monomer units in the polyamide resin is 2.5 mol% or more from the viewpoint of solubility in neutral water, and 4 mol% or more. Is preferably 6 mol% or more, more preferably 8 mol% or more, still more preferably 10 mol% or more, and from the viewpoint of moisture absorption resistance and the heat resistance required for modeling by a 3D printer, less than 13.5 mol% 11.5 mol% or less is preferable, 10.0 mol% or less is more preferable, and 9.5 mol% or less is still more preferable.
  • the composition of the monomer unit of the polyamide resin is measured by the method described in the examples.
  • the polyamide resin has a hydrophobic dicarboxylic acid monomer unit B.
  • the dicarboxylic acid monomer unit B does not have the hydrophilic group.
  • the dicarboxylic acid for deriving the hydrophobic dicarboxylic acid monomer unit B is also referred to as dicarboxylic acid B.
  • the dicarboxylic acid B is not particularly limited as long as it is a dicarboxylic acid, but from the viewpoint of solubility in neutral water, from the viewpoint of moisture absorption resistance, from the viewpoint of heat resistance required for modeling by a 3D printer, and during polyamide resin production From the viewpoint of ease of polymerization reaction, at least one selected from the group consisting of aromatic dicarboxylic acids, aliphatic dicarboxylic acids, and alicyclic dicarboxylic acids is preferred.
  • the group consisting of terephthalic acid, isophthalic acid, 2,5-furandicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, and 1,3-adamantanedicarboxylic acid More preferably, at least one selected from the group consisting of terephthalic acid, 2,5-furandicarboxylic acid, and 2,6-naphthalenedicarboxylic acid is more preferable, and terephthalic acid is still more preferable.
  • the ratio of the substance amount of the hydrophobic dicarboxylic acid monomer unit B in the polyamide resin to the total substance amount of all monomer units in the polyamide resin is preferably 10 mol% or more from the viewpoint of moisture absorption resistance, and is 20 mol%.
  • the above is more preferable, 30 mol% or more is further preferable, 35 mol% or more is more preferable, 40 mol% or more is further more preferable, 42 mol% or more is further more preferable, and 47.5 mol from the viewpoint of solubility in neutral water.
  • the ratio of the substance amount of the hydrophobic dicarboxylic acid monomer unit B in the polyamide resin to the total substance amount of all the monomer units in the polyamide resin is determined in terms of moisture absorption resistance and dissolved in neutral water. From the viewpoint of safety, 10 to 47.5 mol% is preferable, 20 to 45 mol% is more preferable, and 30 to 42 mol% is still more preferable.
  • the molar ratio of the hydrophilic monomer unit A to the hydrophobic dicarboxylic acid monomer unit B is determined by solubility in neutral water, moisture absorption resistance, and From the viewpoint of heat resistance required for modeling by a 3D printer, 10/90 or more is preferable, 15/85 or more is more preferable, 18/82 or more is further preferable, 20/80 or more is further more preferable, and the same viewpoint 27 / 73 is preferable, 25/75 or less is more preferable, and 21/79 or less is still more preferable.
  • the polyamide resin has a hydrophobic diamine monomer unit C.
  • the hydrophobic diamine monomer unit C does not have the hydrophilic group.
  • the diamine for deriving the hydrophobic diamine monomer unit C is also referred to as diamine C.
  • the diamine C is not particularly limited, and at least one selected from the group consisting of aliphatic diamines, alicyclic diamines, and aromatic diamines can be used, and the ease of the polymerization reaction during polyamide resin production. In view of the above, an aliphatic diamine is preferable.
  • the number of carbon atoms of the diamine C is from the viewpoint of solubility in neutral water, from the viewpoint of moisture absorption resistance, from the viewpoint of heat resistance required for modeling by a 3D printer, and from the viewpoint of ease of polymerization reaction when producing a polyamide resin. 2 or more, preferably 3 or more, more preferably 4 or more, from the viewpoint of solubility in neutral water, the viewpoint of moisture absorption resistance, and the heat resistance required for modeling by a 3D printer, 20 or less Is preferably 15 or less, more preferably 10 or less.
  • aliphatic diamine examples include ethylene diamine, trimethylene diamine, tetramethylene diamine, pentamethylene diamine, hexamethylene diamine, heptamethylene diamine, octamethylene diamine, nonane diamine, and decane diamine.
  • hexamethylenediamine is preferable from the viewpoints of solubility in neutral water, moisture absorption resistance, and toughness (strength) required for modeling by a 3D printer.
  • alicyclic diamine examples include 4,4'-diamino-3,3'-dimethyldicyclohexylmethane, diaminecyclohexane, and isophoronediamine.
  • diamine cyclohexane and isophorone diamine is preferable from the viewpoint of solubility in neutral water, moisture absorption resistance, and toughness (strength) required for modeling by a 3D printer. More preferred is diamine cyclohexane.
  • aromatic diamine examples include phenylenediamine, diethyltoluenediamine, and 4,4'-diaminodiphenylmethane.
  • phenylenediamine diethyltoluenediamine
  • 4,4'-diaminodiphenylmethane examples include phenylenediamine, diethyltoluenediamine, and 4,4'-diaminodiphenylmethane.
  • at least one or more selected from the group consisting of phenylenediamine and diethyltoluenediamine is preferable from the viewpoints of solubility in neutral water, moisture absorption resistance, and toughness (strength) required for modeling by a 3D printer. More preferred is phenylenediamine.
  • the diamine C is at least selected from the group consisting of hexamethylenediamine, diaminecyclohexane, and phenylenediamine from the viewpoint of solubility in neutral water, moisture absorption resistance, and toughness (strength) required for modeling by a 3D printer.
  • One or more are preferable, at least one selected from the group consisting of hexamethylenediamine and phenylenediamine is more preferable, and hexamethylenediamine is still more preferable.
  • the diamine C is at least one selected from the group consisting of hexamethylene diamine, diamine cyclohexane, and phenylene diamine, hexamethylene diamine, diamine cyclohexane, phenylene with respect to the total amount of all diamine monomer units in the polyamide resin.
  • the total proportion of the diamine substances is preferably 50 mol% or more, more preferably 70 mol% or more, and 80 mol% from the viewpoints of solubility in neutral water, moisture absorption resistance, and heat resistance required for modeling by a 3D printer. % Or more is more preferable, 90 mol% or more is more preferable, substantially 100 mol% is still more preferable, and 100 mol% is still more preferable.
  • substantially 100 mol% means the case where substances other than hexamethylene diamine, diamine cyclohexane, and phenylene diamine are inevitably mixed.
  • the polyamide resin can be exemplified by the following general formulas (1) to (6).
  • p1 and q1 each represent the number of polymerization degrees. Each polymerization is a block bond and / or a random bond, and a random bond is more preferable from the viewpoint of solubility in neutral water. )
  • p2 and q2 each represent the number of polymerization degrees. Each polymerization is a block bond and / or a random bond, and a random bond is more preferable from the viewpoint of solubility in neutral water. )
  • p3 and q3 each represent the number of polymerization degrees. Each polymerization is a block bond and / or a random bond, and a random bond is more preferable from the viewpoint of solubility in neutral water. )
  • p4 and q4 each represent the number of polymerization degrees. Each polymerization is a block bond and / or a random bond, and a random bond is more preferable from the viewpoint of solubility in neutral water. )
  • p5 and q5 each represent the number of polymerization degrees. Each polymerization is a block bond and / or a random bond, and a random bond is more preferable from the viewpoint of solubility in neutral water. )
  • p6 and q6 each represent the number of polymerization degrees. Each polymerization is a block bond and / or a random bond, and a random bond is more preferable from the viewpoint of solubility in neutral water. )
  • the weight average molecular weight of the polyamide resin is preferably 3000 or more, more preferably 3500 or more, still more preferably 4000 or more, and solubility in neutral water, from the viewpoint of improving toughness required for a three-dimensional modeling soluble material. And 70000 or less, more preferably 50000 or less, still more preferably 30000 or less, and even more preferably 20000 or less, from the viewpoint of formability by a 3D printer.
  • a weight average molecular weight is measured by the method as described in an Example.
  • the glass transition temperature of the polyamide resin is preferably 50 ° C. or higher, more preferably 60 ° C. or higher, still more preferably 70 ° C. or higher, still more preferably 80 ° C. or higher, from the same viewpoint, from the viewpoint of formability by a 3D printer. 250 ° C. or lower is preferable, and 220 ° C. or lower is more preferable.
  • a glass transition temperature is measured by the method as described in an Example.
  • the polyamide resin may have a monomer unit other than the monomer unit A, the dicarboxylic acid monomer unit B, and the diamine monomer unit C as long as the effects of the present embodiment are not impaired.
  • the method for producing the polyamide resin is not particularly limited, and a conventionally known method for producing a polyamide resin can be applied.
  • the content of the polyamide resin in the soluble material for three-dimensional modeling can be adjusted within a range that does not impair the effect of the present embodiment, but it is soluble in neutral water, moisture absorption resistance, and depending on the 3D printer. From the viewpoint of heat resistance required for modeling, it is preferably 30% by mass or more, more preferably 50% by mass or more, still more preferably 60% by mass or more, still more preferably 70% by mass or more, and even more preferably 80% by mass or more. 90 mass% or more is still more preferable, 95 mass% or more is further more preferable, substantially 100 mass% is still more preferable, and 100 mass% is still more preferable. In addition, substantially 100 mol% means that a substance other than the polyamide resin is inevitably mixed.
  • the glass transition temperature of the soluble material for three-dimensional modeling is preferably 50 ° C. or higher, more preferably 60 ° C. or higher, still more preferably 70 ° C. or higher, and still more preferably 80 ° C. or higher, from the viewpoint of formability by a 3D printer. From the same viewpoint, 250 ° C. or lower is preferable, and 220 ° C. or lower is more preferable.
  • the shape of the soluble material for three-dimensional modeling is not particularly limited, and examples thereof include a pellet shape, a powder shape, and a filament shape, but a filament shape is preferable from the viewpoint of modeling by a 3D printer.
  • the diameter of the filament is preferably 0.5 mm or more, more preferably 1.0 mm or more, and preferably 3.0 mm or less from the same viewpoint, from the viewpoints of formability by a 3D printer and improvement of accuracy of a three-dimensional object. 0 mm or less is more preferable, and 1.8 mm or less is still more preferable.
  • the draw ratio in the drawing process is preferably 1.5 times or more, more preferably 2 times or more, more preferably 3 times or more, still more preferably 5 times or more, and the same viewpoint from the viewpoint of both toughness improvement and water solubility.
  • stretching process has the preferable inside of the range of the temperature 110 degreeC higher than the said glass transition temperature from the temperature 20 degreeC lower than the glass transition temperature of the said soluble material for three-dimensional modeling.
  • the lower limit of the stretching temperature is preferably 10 ° C. lower than the glass transition temperature from the viewpoint of toughness improvement and thermal stability, and more preferably the same temperature as the glass transition temperature.
  • the upper limit of the stretching temperature is more preferably 110 ° C. higher than the glass transition temperature, more preferably 100 ° C.
  • the stretching may be performed while air cooling when the resin is discharged from the extruder, or may be heated by hot air or a laser. Moreover, the said extending
  • the three-dimensional modeling soluble material may contain a polymer other than the polyamide resin for the purpose of improving the physical properties of the three-dimensional modeling soluble material as long as the effects of the present embodiment are not impaired.
  • polymers include water-soluble polymers such as polyvinyl alcohol, polyethylene glycol, poly (ethylene glycol / propylene glycol), carboxymethylcellulose, and starch; hydrophobic polymers such as polymethyl methacrylate; hard segments and soft Segmented polyether ester, polyether ester amide, polyurethane and other elastomers, block copolymers of ionic monomers and water-soluble nonionic monomers and hydrophobic monomers, styrene-butadiene, alkyl methacrylates (1-18 carbon atoms) ) -A thermoplastic elastomer composed of alkyl acrylate (having 1 to 18 carbon atoms); a graft polymer obtained by grafting a polymer such as polyacrylic acid or N, N-dimethylacryl
  • the three-dimensional modeling soluble material contains a polymer other than the polyamide resin
  • the affinity and compatibility between the polymer and the polyamide resin are increased to improve the performance of the three-dimensional modeling soluble material and the three-dimensional modeling solubility.
  • the three-dimensional modeling soluble material can contain a compatibilizing agent.
  • the compatibilizer include (i) a monomer having a glycidyl group, an isocyanate group, an epoxy group, an oxazoline group, and / or a monomer having an acid anhydride structure such as maleic anhydride, and acrylic acid or alkyl methacrylate.
  • a copolymer with ethylene, propylene, vinyl acetate, etc. (ii) a block copolymer comprising two or more of the polymers shown below; polyester, polyamide, and acrylic acid, methacrylic acid, acrylic acid or alkyl methacrylate A polymer / copolymer comprising at least one monomer selected from acrylamide, N, N-dimethylacrylamide, ethylene, propylene, butadiene, isopropylene, vinyl acetate, ethylene glycol, or propylene glycol, and (iii) A group consisting of two or more of the indicated polymers Raft copolymer; polyester, polyamide, acrylic acid, methacrylic acid, acrylic acid or alkyl methacrylate, acrylamide, N, N-dimethylacrylamide, ethylene, propylene, butadiene, isopropylene, vinyl acetate, ethylene glycol, or propylene And a polymer / copolymer comprising at least one monomer selected from glyco
  • the soluble material for three-dimensional modeling may contain other components as long as the effects of the present embodiment are not impaired.
  • the other components include polyamide resins other than the above polyamide resins, polymers other than polyamide resins, plasticizers such as polyalkylene glycol diesters of benzoic acid, calcium carbonate, magnesium carbonate, glass balls, graphite, carbon black, carbon Examples thereof include fillers such as fiber, glass fiber, talc, wollastonite, mica, alumina, silica, kaolin, whisker, and silicon carbide.
  • the method for producing a three-dimensional object includes a step of obtaining a three-dimensional object precursor including a three-dimensional object and a support material, and a support for removing the support material by bringing the three-dimensional object precursor into contact with neutral water. It is a manufacturing method of the three-dimensional object by the hot melt lamination system which has a material removal process, Comprising: The material of the said support material is the said soluble material for three-dimensional modeling.
  • foaming can be suppressed even when used for manufacturing a three-dimensional object by a 3D printer after being exposed to high humidity, and a decrease in accuracy of the three-dimensional object can be suppressed.
  • the support material can be quickly removed from the three-dimensional object precursor without using a strong alkaline aqueous solution because of its high dissolution rate in neutral water. The reason why the manufacturing method of the three-dimensional object has such an effect is not clear, but the same reason as the reason why the soluble material for three-dimensional modeling has the effect can be considered.
  • Step of obtaining a three-dimensional object precursor including a three-dimensional object and a support material The step of obtaining a three-dimensional object precursor including a three-dimensional object and a support material is performed in a three-dimensional manner using a known hot-melt lamination type 3D printer except that the material of the support material is the soluble material for three-dimensional modeling.
  • a step of obtaining a three-dimensional object precursor including a three-dimensional object and a support material in the object manufacturing method can be used.
  • the modeling material that is the material of the three-dimensional object can be used without particular limitation as long as it is a resin that is used as a modeling material in a conventional FDM three-dimensional object manufacturing method.
  • the molding material includes ABS resin, polylactic acid resin, polycarbonate resin, 12-nylon, 6,6-nylon, 6-nylon, polyphenylsulfone resin, polyetheretherketone, and polyetherimide.
  • ABS resin and / or polylactic acid resin are more preferable, and ABS resin is more preferable from the viewpoint of the formability by a 3D printer.
  • the support material removing step the support material is removed by bringing the three-dimensional object precursor into contact with neutral water.
  • the method of bringing the three-dimensional object precursor into contact with neutral water is preferably a method of immersing the three-dimensional object precursor in neutral water from the viewpoint of cost and ease of work. From the viewpoint of improving the removability of the support material, it is possible to promote the dissolution of the support material by irradiating ultrasonic waves during the immersion.
  • the neutral water examples include ion-exchanged water, pure water, tap water, and industrial water, but ion-exchanged water and tap water are preferable from the viewpoint of economy.
  • the neutral water may contain the water-soluble organic solvent in the range which does not damage the shaped three-dimensional object.
  • water-soluble organic solvents include lower alcohols such as methanol, ethanol and 2-propanol, glycol ethers such as propylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monotertiary butyl ether and diethylene glycol monobutyl ether, acetone and methyl ethyl ketone. And ketones.
  • the content of the water-soluble organic solvent in the neutral water is preferably 0.1% by mass or more from the viewpoint of solubility and damage to the shaped three-dimensional object, 0.5% by mass or more is more preferable, 1% by mass or more is further preferable, 3% by mass or more is further preferable, 50% by mass or less is preferable, 40% by mass or less is more preferable, and 30% by mass or less is more preferable. 20% by mass or less is even more preferable.
  • the amount of the neutral water used is preferably 10 times by mass or more, more preferably 20 times by mass or more with respect to the support material from the viewpoint of solubility of the support material, and 10,000 from the support material from the viewpoint of economy.
  • the mass times or less are preferable, the 5000 mass times or less are more preferable, the 1000 mass times or less are more preferable, and the 100 mass times or less are more preferable.
  • the time for bringing the soluble material for 3D modeling into contact with neutral water is preferably 5 minutes or more from the viewpoint of the removability of the support material, and reducing damage to the 3D object by contacting with neutral water for a long time. From the viewpoint of viewpoint and economy, it is preferably 180 minutes or shorter, more preferably 120 minutes or shorter, and even more preferably 90 minutes or shorter.
  • the cleaning temperature is preferably 15 ° C. or higher, more preferably 25 ° C. or higher, from the viewpoint of removal of the support material, reduction of damage to the three-dimensional object, and economy, although it depends on the type of model material. More preferably, the temperature is more preferably 40 ° C. or more, more preferably 40 ° C. or more, and from the same viewpoint, 85 ° C. or less is preferable, and 70 ° C. or less is more preferable.
  • the support material of the present embodiment is a support material that supports a three-dimensional object when the three-dimensional object is manufactured by a hot melt lamination type 3D printer, and includes the polyamide resin.
  • the support material can suppress foaming and suppress deterioration in accuracy of a three-dimensional object even when used for manufacturing a three-dimensional object by a 3D printer after being exposed to high humidity.
  • the dissolution rate is high, and the support material can be quickly removed from the three-dimensional object precursor without using a strong alkaline aqueous solution.
  • the reason why the support material has such an effect is not certain, but the same reason as the reason why the soluble material for three-dimensional modeling has the effect can be considered.
  • the present specification further discloses the following composition and production method.
  • a three-dimensional modeling soluble material used as a material of a support material for supporting a three-dimensional object when a three-dimensional object is manufactured by a hot melt lamination type 3D printer,
  • the material includes a polyamide resin, and the polyamide resin has a hydrophilic monomer unit A having a hydrophilic group, a hydrophobic dicarboxylic acid monomer unit B, and a hydrophobic diamine monomer unit C, and all the monomer units in the polyamide resin
  • the three-dimensional modeling soluble material wherein the ratio of the hydrophilic monomer unit A to the total is 2.5 mol% or more and less than 13.5 mol%.
  • the hydrophilic group is a primary amino group, a secondary amino group, a tertiary amino group, a quaternary ammonium base, an oxyethylene group, a hydroxyl group, a carboxyl group, a carboxyl base, a phosphate group,
  • the soluble material for three-dimensional modeling according to ⁇ 1> comprising at least one selected from the group consisting of a phosphate group, a sulfonate group, and a sulfonate group.
  • a secondary amino group in which the secondary amino group is represented by —NHR 1 group (wherein R 1 represents a linear or branched alkyl group having 1 to 14 carbon atoms).
  • At least one selected from the group consisting of secondary amino groups represented by —NH— groups is preferably the soluble material for three-dimensional modeling according to ⁇ 2>.
  • the tertiary amino group is a —NR 2 R 3 group (wherein R 2 represents a linear or branched alkyl group having 1 to 4 carbon atoms, and R 3 represents a linear or branched group.
  • a —NR 4 — group (wherein R 4 is a linear or branched carbon group having 1 to 4 carbon atoms).
  • the quaternary ammonium base is —N + ⁇ R 5 R 6 R 7 ⁇ ⁇ X ⁇ (where R 5 , R 6 and R 7 are each independently a hydrogen atom or a carbon number of 1 or more and 14 X ⁇ represents a hydroxy ion, a halogen ion, CH 3 SO 4 — or CH 3 CH 2 SO 4 — )), and at least selected from the group consisting of quaternary ammonium bases
  • the oxyethylene group is — ⁇ CH 2 CH 2 O ⁇ n — (where n represents an average number, represents a number of 1 to 2500, preferably 2 to 1000, preferably 3 to 100 More preferably 4 or more and 50 or less), and — ⁇ CH 2 CH 2 O ⁇ m —R 8 (where m represents an average number and 1 or more and 2500 or less). It is preferably 2 or more and 1000 or less, more preferably 3 or more and 100 or less, and still more preferably 4 or more and 50 or less, and R 8 represents a hydrogen atom or a linear or branched alkyl group having 1 to 10 carbon atoms.
  • At least one selected from the group consisting of oxyethylene groups represented by the formula (2) to ⁇ 5> is preferred.
  • the carboxyl base is —COOM 1 (where M 1 represents a counter ion of the carboxyl group constituting the carboxyl base, and sodium ion, potassium ion, lithium ion, calcium from the viewpoint of solubility in neutral water)
  • At least one selected from the group consisting of ions, magnesium ions, ammonium ions, barium ions, and zinc ions is preferred, and at least one selected from the group consisting of sodium ions, potassium ions, lithium ions, magnesium ions, and ammonium ions.
  • the phosphate group is —PO 4 M 2 2 , —PO 4 HM 2 , or —PO 4 M 2 (where M 2 represents a counter ion of a phosphate group constituting the phosphate group, From the viewpoint of solubility in basic water, at least one selected from the group consisting of sodium ion, potassium ion, lithium ion, calcium ion, magnesium ion, ammonium ion, barium ion, and zinc ion is preferable.
  • Sodium ion, potassium At least one selected from the group consisting of ions, lithium ions, magnesium ions, and ammonium ions is more preferable, at least one selected from the group consisting of sodium ions and potassium ions is more preferable, and sodium ions are even more preferable. Preferably). More least one preferably selected, ⁇ 2> to ⁇ 7> 3D modeling for soluble material as claimed in any one.
  • the sulfonate group is —SO 3 M 3 (wherein M 3 represents a counter ion of a sulfonate group constituting the sulfonate group, and from the viewpoint of solubility in neutral water, sodium ion and potassium ion) And preferably at least one selected from the group consisting of lithium ions, calcium ions, magnesium ions, ammonium ions, barium ions, and zinc ions, and a group consisting of sodium ions, potassium ions, lithium ions, magnesium ions, and ammonium ions At least one selected from the group consisting of sodium ions and potassium ions is more preferable, and sodium ions are more preferable.
  • the monomer A for deriving the hydrophilic monomer unit A is preferably at least one selected from the group consisting of carboxylic acid, amine and amino acid, more preferably carboxylic acid, ⁇ 1> to ⁇ 9>
  • the carboxylic acid is preferably an aromatic carboxylic acid, a hydroxy group-containing aromatic dicarboxylic acid, a primary amino group-containing aromatic dicarboxylic acid, a sulfonic acid group-containing aromatic dicarboxylic acid, and a sulfonate group-containing aromatic.
  • dicarboxylic acids such as 5-hydroxyisophthalic acid, 1,3,5-benzenetricarboxylic acid, 5-aminoisophthalic acid, 5-sulfoisophthalic acid, 2-sulfoterephthalic acid, and 4-sulfo-2,6-naphthalene. At least one selected from the group consisting of dicarboxylic acids is more preferable, at least one selected from the group consisting of 5-sulfoisophthalic acid and 2-sulfoterephthalic acid is still more preferable, and 5-sulfoisophthalic acid is more preferable. More preferably, the soluble material for three-dimensional modeling according to ⁇ 10>.
  • the hydrophilic group content in the polyamide resin is preferably 0.5 mmol / g or more, more preferably 0.6 mmol / g or more, still more preferably 0.7 mmol / g or more, and 1.0 mmol /
  • the ratio of the substance amount of the hydrophilic monomer unit A to the total substance amount of all monomer units in the polyamide resin is 2.5 mol% or more, preferably 4 mol% or more, more preferably 6 mol% or more.
  • 8 mol% or more is more preferable
  • 10 mol% or more is more preferable, less than 13.5 mol%, 11.5 mol% or less is preferable, 10.0 mol% or less is more preferable, and 9.5 mol% or less is more preferable.
  • the dicarboxylic acid B for deriving the hydrophobic dicarboxylic acid monomer unit B is preferably at least one selected from the group consisting of aromatic dicarboxylic acids, aliphatic dicarboxylic acids, and alicyclic dicarboxylic acids, At least one selected from the group consisting of terephthalic acid, isophthalic acid, 2,5-furandicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, and 1,3-adamantanedicarboxylic acid is more Preferably, at least one selected from the group consisting of terephthalic acid, 2,5-furandicarboxylic acid, and 2,6-naphthalenedicarboxylic acid is more preferable, and terephthalic acid is still more preferable.
  • the soluble material for three-dimensional modeling described in Crab. ⁇ 15> The ratio of the substance amount of the hydrophobic dicarboxylic acid monomer unit B in the polyamide resin to the total substance amount of all monomer units in the polyamide resin is preferably 10 mol% or more, more preferably 20 mol% or more. 30 mol% or more, more preferably 35 mol% or more, still more preferably 40 mol% or more, still more preferably 42 mol% or more, further preferably 47.5 mol% or less, more preferably 45 mol% or less, and 42 mol% or less.
  • the molar ratio of the hydrophilic monomer unit A to the hydrophobic dicarboxylic acid monomer unit B is preferably 10/90 or more, and 15/85
  • the above is more preferable, 18/82 or more is further preferable, 20/80 or more is more preferable, less than 27/73 is preferable, 25/75 or less is more preferable, and 21/79 or less is more preferable, ⁇ 1> to ⁇ 15>
  • the soluble material for three-dimensional modeling according to any one of the above.
  • the diamine C for deriving the hydrophobic diamine monomer unit C is preferably at least one selected from the group consisting of an aliphatic diamine, an alicyclic diamine, and an aromatic diamine, and more preferably an aliphatic diamine.
  • the carbon number of the diamine C for deriving the hydrophobic diamine monomer unit C is preferably 2 or more, more preferably 3 or more, still more preferably 4 or more, preferably 20 or less, more preferably 15 or less, The soluble material for three-dimensional modeling according to any one of ⁇ 1> to ⁇ 17>, further preferably 10 or less.
  • the aliphatic diamine is at least one selected from the group consisting of ethylenediamine, trimethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonanediamine, and decanediamine.
  • the alicyclic diamine is preferably at least one selected from the group consisting of 4,4′-diamino-3,3′-dimethyldicyclohexylmethane, diaminecyclohexane and isophoronediamine, and diaminecyclohexane and isophorone.
  • the aromatic diamine is preferably at least one selected from the group consisting of phenylenediamine, diethyltoluenediamine, and 4,4′-diaminodiphenylmethane, and at least selected from the group consisting of phenylenediamine and diethyltoluenediamine.
  • the diamine C for deriving the hydrophobic diamine monomer unit C is preferably at least one selected from the group consisting of hexamethylene diamine, diamine cyclohexane and phenylene diamine, and a group consisting of hexamethylene diamine and phenylene diamine.
  • the diamine C for deriving the hydrophobic diamine monomer unit C is at least one selected from the group consisting of hexamethylene diamine, diamine cyclohexane and phenylene diamine, all diamine monomer units in the polyamide resin
  • the ratio of the total amount of hexamethylenediamine, diaminecyclohexane, and phenylenediamine to the total amount of these is preferably 50 mol% or more, more preferably 70 mol% or more, still more preferably 80 mol% or more, and more preferably 90 mol% or more.
  • the soluble material for three-dimensional modeling according to any one of ⁇ 1> to ⁇ 22> which is substantially more preferably 100 mol%, still more preferably 100 mol%.
  • p1 and q1 each represent the number of polymerization degrees. Each polymerization is a block bond and / or a random bond, and a random bond is more preferable from the viewpoint of solubility in neutral water.
  • p2 and q2 each represent the number of polymerization degrees.
  • Each polymerization is a block bond and / or a random bond, and a random bond is more preferable from the viewpoint of solubility in neutral water.
  • p3 and q3 each represent the number of polymerization degrees.
  • Each polymerization is a block bond and / or a random bond, and a random bond is more preferable from the viewpoint of solubility in neutral water.
  • p4 and q4 each represent the number of polymerization degrees.
  • Each polymerization is a block bond and / or a random bond, and a random bond is more preferable from the viewpoint of solubility in neutral water.
  • p5 and q5 each represent the number of polymerization degrees. Each polymerization is a block bond and / or a random bond, and a random bond is more preferable from the viewpoint of solubility in neutral water.
  • p6 and q6 each represent the number of polymerization degrees. Each polymerization is a block bond and / or a random bond, and a random bond is more preferable from the viewpoint of solubility in neutral water.
  • the weight average molecular weight of the polyamide resin is preferably 3000 or more, more preferably 3500 or more, further preferably 4000 or more, preferably 70000 or less, more preferably 50000 or less, still more preferably 30000 or less, and more preferably 20000 or less. More preferably, the soluble material for three-dimensional modeling according to any one of ⁇ 1> to ⁇ 24>.
  • the glass transition temperature of the polyamide resin is preferably 50 ° C. or higher, more preferably 60 ° C. or higher, still more preferably 70 ° C. or higher, still more preferably 80 ° C. or higher, preferably 250 ° C. or lower, and 220 ° C. or lower.
  • the content of the polyamide resin in the three-dimensional modeling soluble material is preferably 30% by mass or more, more preferably 50% by mass or more, still more preferably 60% by mass or more, and even more preferably 70% by mass or more.
  • 80% by mass or more is more preferable, 90% by mass or more is further preferable, 95% by mass or more is further preferable, substantially 100% by mass is further more preferable, and 100% by mass is further more preferable, ⁇ 1
  • the glass transition temperature of the three-dimensional modeling soluble material is preferably 50 ° C or higher, more preferably 60 ° C or higher, still more preferably 70 ° C or higher, still more preferably 80 ° C or higher, and preferably 250 ° C or lower,
  • the shape of the three-dimensional modeling soluble material is preferably at least one selected from the group consisting of pellets, powders, and filaments, more preferably filaments, ⁇ 1> to ⁇ 28> The soluble material for 3D modeling described.
  • the shape of the three-dimensional modeling soluble material is a filament
  • the filament has a diameter of preferably 0.5 mm or more, more preferably 1.0 mm or more, preferably 3.0 mm or less, 2.0 mm
  • a hot melt lamination method having a step of obtaining a three-dimensional object precursor including a three-dimensional object and a support material, and a support material removing step of bringing the three-dimensional object precursor into contact with neutral water and removing the support material
  • a modeling material which is a material of a three-dimensional object is ABS resin, polylactic acid resin, polycarbonate resin, 12-nylon, 6,6-nylon, 6-nylon, polyphenylsulfone resin, polyetheretherketone, and The method for producing a three-dimensional object according to ⁇ 31>, wherein at least one selected from the group consisting of polyetherimide is preferable, ABS resin and / or polylactic acid resin is more preferable, and ABS resin is more preferable.
  • the water-soluble organic solvent is a lower alcohol such as methanol, ethanol, 2-propanol, glycol ethers such as propylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monotertiary butyl ether, diethylene glycol monobutyl ether,
  • the content of the water-soluble organic solvent in the neutral water is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, further preferably 1% by mass or more, and further preferably 3% by mass or more.
  • the amount of the neutral water used is preferably 10 times by mass or more, more preferably 20 times by mass or more, more preferably 10,000 times by mass or less, and preferably 5000 times by mass or less with respect to the support material.
  • the hydrophilic monomer unit A, the hydrophobic dicarboxylic acid monomer unit B, and the hydrophobic diamine monomer unit C are included, and the ratio of the hydrophilic monomer unit A to the total of all monomer units in the polyamide resin is 2.
  • the support material which is 5 mol% or more and less than 13.5 mol%.
  • the polyamide resin is a polyamide resin used for the three-dimensional modeling soluble material according to any one of ⁇ 1> to ⁇ 30>.
  • the hydrophilic monomer amount (mmol / g) in the polyamide was calculated from the composition of the hydrophilic monomer unit determined by the analysis method according to the following formula. However, the number of moles of all dicarboxylic acid monomer units and the number of moles of all amine monomer units were assumed to be equal.
  • Mc molecular weight of hydrophobic dicarboxylic acid other than hydrophilic monomer (however, when there are a plurality of dicarboxylic acid species, number average molecular weight)
  • the amount (unit: mmol / g) of hydrophilic groups in the polyamide resin was determined from the composition of the polyamide resin determined by the above method.
  • Measurement device HLC-8320GPC (manufactured by TOSOH) Eluent: HFIP / 0.5 mM sodium trifluoroacetate Flow rate: 0.2 mL / min ⁇ Measurement temperature: 40 °C ⁇
  • Glass transition temperature of polyamide resin A sample of 5 to 10 mg is precisely weighed and sealed in an aluminum pan, and the temperature is increased from 30 ° C. to 350 ° C. at 10 ° C./min using a differential scanning calorimeter “DSC device (DSC7020 manufactured by Seiko Instruments Inc.). And then rapidly cooled to 30 ° C. From the DSC curve obtained by raising the temperature again to 350 ° C. at 10 ° C./min, the glass transition temperature (° C.), melting point (° C.), crystallization temperature (° C.) Asked.
  • DSC device DSC7020 manufactured by Seiko Instruments Inc.
  • the dicarboxylic acid composition, the diol composition, the amount of sulfonate group, the weight average molecular weight (Mw), the glass transition temperature (° C.), the melting point (° C.), the crystallization temperature (° C.) was determined by the analysis method.
  • the measurement results are shown in Table 1.
  • SIP (mol%) is the ratio (mol%) of 5-sulfoisophthalic acid monomer units in all dicarboxylic acid monomer units
  • TPA (mol%) is terephthalic acid monomer units in all dicarboxylic acid monomer units.
  • Ratio (mol%), IPA (mol%) is the ratio (mol%) of isophthalic acid monomer units in all dicarboxylic acid monomer units, and HMDA (mol%) is the ratio of hexamethylenediamine monomer units in all diamine monomer units.
  • Mol%) and the amount of sulfonic acid group (mmol / g) indicate the amount of sulfonic acid group (mmol / g) in the polyamide.
  • Tg means glass transition temperature and Tc means crystallization temperature.
  • Example 1 to 3 and Comparative Examples 1 to 5 With respect to the polyamide compounds 1 to 5 obtained in the synthesis examples described above and the following commercially available support materials 1 to 3, the solubility in neutral water and the hygroscopicity were evaluated by the analysis method. The analysis results are shown in Table 1.
  • the commercial products 1 to 3 in Table 1 are as follows.

Abstract

This fusible material for three-dimensional molding is used as a support material for supporting a three-dimensional object when manufacturing the three-dimensional object using a fused deposition modeling (FDM) 3D printer. The fusible material for three-dimensional molding contains a polyamide resin having: a hydrophilic monomer unit A having a hydrophilic group; a hydrophobic dicarboxylic acid monomer unit B; and a hydrophobic diamine monomer unit C, wherein the proportion of the hydrophilic monomer unit A with respect to the sum of all of the monomer units in the polyamide resin is at least 2.5 mol% and less than 13.5 mol%. This fusible material for three-dimensional molding is used as a support material and suitable for manufacturing a three-dimensional object by the FDM method, has moisture absorption resistance, has a high dissolution rate in neutral water, and can be quickly removed from a three-dimensional object precursor without using a strong alkali aqueous solution.

Description

三次元造形用可溶性材料Soluble material for 3D modeling
 本発明は、3Dプリンタ、特に熱溶融積層方式の3Dプリンタで三次元物体を製造する際に、当該三次元物体を支持するサポート材の材料として用いられる三次元造形用可溶性材料に関する。 The present invention relates to a soluble material for three-dimensional modeling used as a support material for supporting a three-dimensional object when a three-dimensional object is manufactured by a 3D printer, particularly a hot melt lamination type 3D printer.
 3Dプリンタは、ラピッドプロトタイピング(Rapid Prototyping)の一種で、3D CAD、3D CGなどの3Dデータを元に三次元物体を造形する立体プリンタである。3Dプリンタの方式としては、熱溶融積層方式(以下、FDM方式とも称する)、インクジェット紫外線硬化方式、光造形方式、レーザー焼結方式等が知られている。これらのうち、FDM方式は重合体フィラメントを加熱/溶融し押し出して積層させて三次元物体を得る造形方式であり、他の方式とは異なり材料の反応を用いない。そのためFDM方式の3Dプリンタは小型かつ低価格であり、後処理が少ない装置として近年普及が進んでいる。当該FDM方式で、より複雑な形状の三次元物体を造形するためには、三次元物体を構成する造形材、及び造形材の三次元構造を支持するためのサポート材を積層して三次元物体前駆体を得て、その後、三次元物体前駆体からサポート材を除去することで目的とする三次元物体を得ることができる。 The 3D printer is a type of rapid prototyping and is a three-dimensional printer that forms a three-dimensional object based on 3D data such as 3D CAD, 3D CG, and the like. As a 3D printer system, a hot melt lamination system (hereinafter also referred to as an FDM system), an inkjet ultraviolet curing system, an optical modeling system, a laser sintering system, and the like are known. Among these, the FDM method is a modeling method for obtaining a three-dimensional object by heating / melting and extruding and laminating polymer filaments, and unlike other methods, does not use a material reaction. For this reason, FDM 3D printers are small and inexpensive, and have become popular in recent years as devices with little post-processing. In order to model a three-dimensional object having a more complicated shape by the FDM method, a three-dimensional object is formed by stacking a modeling material constituting the three-dimensional object and a support material for supporting the three-dimensional structure of the modeling material. By obtaining the precursor and then removing the support material from the three-dimensional object precursor, the target three-dimensional object can be obtained.
 三次元物体前駆体からサポート材を除去する手法として、サポート材にメタクリル酸共重合体を用い、三次元物体前駆体を高温の強アルカリ水溶液に浸漬することによりサポート材を除去する手法が挙げられる(例えば、特表2012-509777号公報)。当該手法はメタクリル酸共重合体中のカルボン酸がアルカリにより中和され、強アルカリ水溶液に溶解することを利用している。 As a method for removing the support material from the three-dimensional object precursor, there is a method for removing the support material by immersing the three-dimensional object precursor in a high-temperature strong alkaline aqueous solution using a methacrylic acid copolymer as the support material. (For example, JP-T-2012-509777). This method utilizes the fact that the carboxylic acid in the methacrylic acid copolymer is neutralized by an alkali and dissolved in a strong alkaline aqueous solution.
 本発明の三次元造形用可溶性材料は、FDM方式の3Dプリンタによって三次元物体を製造する際に、当該三次元物体を支持するサポート材の材料として用いられる三次元造形用可溶性材料であって、前記三次元造形用可溶性材料がポリアミド樹脂を含み、前記ポリアミド樹脂が、親水性基を有する親水性モノマーユニットA、疎水性ジカルボン酸モノマーユニットB、及び疎水性ジアミンモノマーユニットCを有し、前記ポリアミド樹脂中の全モノマーユニットの合計に対する前記親水性モノマーユニットAの割合が2.5mol%以上13.5mol%未満である。 The three-dimensional modeling soluble material of the present invention is a three-dimensional modeling soluble material used as a support material for supporting the three-dimensional object when a three-dimensional object is manufactured by an FDM-type 3D printer, The three-dimensional modeling soluble material includes a polyamide resin, and the polyamide resin includes a hydrophilic monomer unit A having a hydrophilic group, a hydrophobic dicarboxylic acid monomer unit B, and a hydrophobic diamine monomer unit C, and the polyamide The ratio of the hydrophilic monomer unit A to the total of all monomer units in the resin is 2.5 mol% or more and less than 13.5 mol%.
 本発明の三次元物体の製造方法は、三次元物体及びサポート材を含む三次元物体前駆体を得る工程、及び当該三次元物体前駆体を中性水に接触させ、サポート材を除去するサポート材除去工程を有するFDM方式による三次元物体の製造方法であって、前記サポート材の材料が、前記三次元造形用可溶性材料である。 The three-dimensional object manufacturing method of the present invention includes a step of obtaining a three-dimensional object precursor including a three-dimensional object and a support material, and a support material for removing the support material by bringing the three-dimensional object precursor into contact with neutral water. It is a manufacturing method of the three-dimensional object by the FDM system which has a removal process, Comprising: The material of the said support material is the said soluble material for three-dimensional modeling.
 本発明のサポート材は、FDM方式の3Dプリンタによって三次元物体を製造する際に、当該三次元物体を支持するサポート材であって、前記サポート材がポリアミド樹脂を含み、前記ポリアミド樹脂が、親水性基を有する親水性モノマーユニットA、疎水性ジカルボン酸モノマーユニットB、及び疎水性ジアミンモノマーユニットCを有し、前記ポリアミド樹脂中の全モノマーユニットの合計に対する前記親水性モノマーユニットAの割合が2.5mol%以上13.5mol%未満である。 The support material of the present invention is a support material that supports a three-dimensional object when the three-dimensional object is manufactured by an FDM-type 3D printer. The support material includes a polyamide resin, and the polyamide resin is hydrophilic. The hydrophilic monomer unit A having a hydrophobic group, the hydrophobic dicarboxylic acid monomer unit B, and the hydrophobic diamine monomer unit C, and the ratio of the hydrophilic monomer unit A to the total of all monomer units in the polyamide resin is 2 0.5 mol% or more and less than 13.5 mol%.
発明の詳細な説明Detailed Description of the Invention
 前記特表2012-509777号公報に開示されているメタクリル酸共重合体をサポート材として用いた場合、三次元物体前駆体からサポート材を除去するために強アルカリ水溶液を用いる必要があるが、当該強アルカリ水溶液は人に対する危険性や環境への負荷が大きい。また、三次元物体前駆体を強アルカリ水溶液に長時間浸漬すると当該三次元物体前駆体中の三次元物体はアルカリに侵食される傾向があり、アルカリに対する耐性が低いポリ乳酸(PLA)等のポリエステル樹脂は三次元物体の材料としての適用が制限されてきた。そのため、強アルカリ水溶液ではないpHが6~8の中性水によって除去できるサポート材が求められていた。 In the case where the methacrylic acid copolymer disclosed in JP-T-2012-509777 is used as a support material, it is necessary to use a strong alkaline aqueous solution to remove the support material from the three-dimensional object precursor. Strong alkaline aqueous solutions have a great risk to people and environmental burden. Further, when the three-dimensional object precursor is immersed in a strong alkaline aqueous solution for a long time, the three-dimensional object in the three-dimensional object precursor tends to be eroded by alkali, and polyester such as polylactic acid (PLA) having low resistance to alkali. Resins have limited application as materials for three-dimensional objects. Therefore, there has been a demand for a support material that is not a strong alkaline aqueous solution and can be removed by neutral water having a pH of 6 to 8.
 前記課題に対し、特表2002-516346号公報には、水に可溶なポリビニルアルコール等をサポート材に用い、三次元物体前駆体を水に浸漬することによりサポート材を除去する手法が開示されている。当該特表2002-516346号公報に記載の手法によれば、強アルカリ水溶液を用いること無く三次元物体前駆体のサポート材を除去することができるが、ポリビニルアルコール等が水分との親和性が高いことから、ポリビニルアルコールを含む三次元造形用可溶性材料が高湿度下に暴露されると空気中の水分を吸収する。水分を含んだポリビニルアルコール等を含有する三次元造形用可溶性材料をFDM方式の3Dプリンタで加熱/溶融/打ち出し/積層すると、当該水分が高温によって蒸散することにより発泡し、三次元物体の精度を著しく損ねてしまうことがあった。 In response to the above-mentioned problem, Japanese Patent Publication No. 2002-516346 discloses a method for removing a support material by immersing a three-dimensional object precursor in water using polyvinyl alcohol or the like soluble in water as the support material. ing. According to the technique described in JP-T-2002-516346, the support material for the three-dimensional object precursor can be removed without using a strong alkaline aqueous solution, but polyvinyl alcohol or the like has a high affinity for moisture. Therefore, when a three-dimensional modeling soluble material containing polyvinyl alcohol is exposed to high humidity, it absorbs moisture in the air. When a 3D modeling soluble material containing water-containing polyvinyl alcohol, etc. is heated / melted / launched / laminated with an FDM 3D printer, the water will evaporate due to high temperature and foam, thereby improving the accuracy of the 3D object. There were times when it was seriously damaged.
 本発明は、FDM方式による三次元物体の製造に適し、耐吸湿性を有しつつ、かつ、中性水への溶解速度が大きく、強アルカリ水溶液を用いること無く三次元物体前駆体から速やかに除去することができるサポート材用の三次元造形用可溶性材料を提供する。 The present invention is suitable for the production of a three-dimensional object by the FDM method, has moisture absorption resistance, has a high dissolution rate in neutral water, and can be rapidly produced from a three-dimensional object precursor without using a strong alkaline aqueous solution. A three-dimensional modeling soluble material for a support material that can be removed is provided.
 本発明は、高湿度下に暴露された後に3Dプリンタによる三次元物体の製造に用いても発泡を抑制して三次元物体の精度低下を抑制することができ、かつ、中性水への溶解速度が大きく、強アルカリ水溶液を用いること無く三次元物体前駆体からサポート材を速やかに除去することができる三次元物体の製造方法を提供する。 The present invention can suppress foaming by suppressing the deterioration of accuracy of a three-dimensional object even if it is used for production of a three-dimensional object by a 3D printer after being exposed to high humidity, and can be dissolved in neutral water. Provided is a method for producing a three-dimensional object which has a high speed and can quickly remove a support material from a three-dimensional object precursor without using a strong alkaline aqueous solution.
 本発明は、高湿度下に暴露された後に3Dプリンタによる三次元物体の製造に用いても発泡を抑制して三次元物体の精度低下を抑制することができ、かつ、中性水への溶解速度が大きく、強アルカリ水溶液を用いること無く三次元物体前駆体から速やかに除去することができるサポート材を提供する。 The present invention can suppress foaming by suppressing the deterioration of accuracy of a three-dimensional object even if it is used for production of a three-dimensional object by a 3D printer after being exposed to high humidity, and can be dissolved in neutral water. Provided is a support material that has a high speed and can be quickly removed from a three-dimensional object precursor without using a strong alkaline aqueous solution.
 本発明の三次元造形用可溶性材料は、FDM方式の3Dプリンタによって三次元物体を製造する際に、当該三次元物体を支持するサポート材の材料として用いられる三次元造形用可溶性材料であって、前記三次元造形用可溶性材料がポリアミド樹脂を含み、前記ポリアミド樹脂が、親水性基を有する親水性モノマーユニットA、疎水性ジカルボン酸モノマーユニットB、及び疎水性ジアミンモノマーユニットCを有し、前記ポリアミド樹脂中の全モノマーユニットの合計に対する前記親水性モノマーユニットAの割合が2.5mol%以上13.5mol%未満である。 The three-dimensional modeling soluble material of the present invention is a three-dimensional modeling soluble material used as a support material for supporting the three-dimensional object when a three-dimensional object is manufactured by an FDM-type 3D printer, The three-dimensional modeling soluble material includes a polyamide resin, and the polyamide resin includes a hydrophilic monomer unit A having a hydrophilic group, a hydrophobic dicarboxylic acid monomer unit B, and a hydrophobic diamine monomer unit C, and the polyamide The ratio of the hydrophilic monomer unit A to the total of all monomer units in the resin is 2.5 mol% or more and less than 13.5 mol%.
 本発明の三次元物体の製造方法は、三次元物体及びサポート材を含む三次元物体前駆体を得る工程、及び当該三次元物体前駆体を中性水に接触させ、サポート材を除去するサポート材除去工程を有するFDM方式による三次元物体の製造方法であって、前記サポート材の材料が、前記三次元造形用可溶性材料である。 The three-dimensional object manufacturing method of the present invention includes a step of obtaining a three-dimensional object precursor including a three-dimensional object and a support material, and a support material for removing the support material by bringing the three-dimensional object precursor into contact with neutral water. It is a manufacturing method of the three-dimensional object by the FDM system which has a removal process, Comprising: The material of the said support material is the said soluble material for three-dimensional modeling.
 本発明のサポート材は、FDM方式の3Dプリンタによって三次元物体を製造する際に、当該三次元物体を支持するサポート材であって、前記サポート材がポリアミド樹脂を含み、前記ポリアミド樹脂が、親水性基を有する親水性モノマーユニットA、疎水性ジカルボン酸モノマーユニットB、及び疎水性ジアミンモノマーユニットCを有し、前記ポリアミド樹脂中の全モノマーユニットの合計に対する前記親水性モノマーユニットAの割合が2.5mol%以上13.5mol%未満である。 The support material of the present invention is a support material that supports a three-dimensional object when the three-dimensional object is manufactured by an FDM-type 3D printer. The support material includes a polyamide resin, and the polyamide resin is hydrophilic. The hydrophilic monomer unit A having a hydrophobic group, the hydrophobic dicarboxylic acid monomer unit B, and the hydrophobic diamine monomer unit C, and the ratio of the hydrophilic monomer unit A to the total of all monomer units in the polyamide resin is 2 0.5 mol% or more and less than 13.5 mol%.
 本発明によれば、FDM方式による三次元物体の製造に適し、耐吸湿性を有しつつ、かつ、中性水への溶解速度が大きく、強アルカリ水溶液を用いること無く三次元物体前駆体から速やかに除去することができるサポート材用の三次元造形用可溶性材料を提供することができる。 According to the present invention, it is suitable for production of a three-dimensional object by the FDM method, has moisture absorption resistance, has a high dissolution rate in neutral water, and can be used from a three-dimensional object precursor without using a strong alkaline aqueous solution. It is possible to provide a three-dimensional modeling soluble material for a support material that can be quickly removed.
 本発明によれば、高湿度下に暴露された後に3Dプリンタによる三次元物体の製造に用いても発泡を抑制して三次元物体の精度低下を抑制することができ、かつ、中性水への溶解速度が大きく、強アルカリ水溶液を用いること無く三次元物体前駆体からサポート材を速やかに除去することができる三次元物体の製造方法を提供することができる。 According to the present invention, even if it is used for manufacturing a three-dimensional object by a 3D printer after being exposed to high humidity, it is possible to suppress foaming and suppress a decrease in accuracy of the three-dimensional object, and to neutral water. Thus, it is possible to provide a method for producing a three-dimensional object capable of rapidly removing the support material from the three-dimensional object precursor without using a strong alkaline aqueous solution.
 本発明によれば、高湿度下に暴露された後に3Dプリンタによる三次元物体の製造に用いても発泡を抑制して三次元物体の精度低下を抑制することができ、かつ、中性水への溶解速度が大きく、強アルカリ水溶液を用いること無く三次元物体前駆体から速やかに除去することができるサポート材を提供することができる。 According to the present invention, even if it is used for manufacturing a three-dimensional object by a 3D printer after being exposed to high humidity, it is possible to suppress foaming and suppress a decrease in accuracy of the three-dimensional object, and to neutral water. Thus, it is possible to provide a support material that can be rapidly removed from the three-dimensional object precursor without using a strong alkaline aqueous solution.
 以下、本発明の一実施形態について説明する。 Hereinafter, an embodiment of the present invention will be described.
<三次元造形用可溶性材料>
 本実施形態の三次元造形用可溶性材料は、FDM方式の3Dプリンタによって三次元物体を製造する際に、当該三次元物体を支持するサポート材の材料として用いられる三次元造形用可溶性材料であって、前記三次元造形用可溶性材料がポリアミド樹脂を含み、前記ポリアミド樹脂が、親水性基を有する親水性モノマーユニットA、疎水性ジカルボン酸モノマーユニットB、及び疎水性ジアミンモノマーユニットCを有し、前記ポリアミド樹脂中の全モノマーユニットの合計に対する前記親水性モノマーユニットAの割合が2.5mol%以上13.5mol%未満である。
<Soluble materials for 3D modeling>
The soluble material for 3D modeling according to the present embodiment is a soluble material for 3D modeling used as a support material for supporting the 3D object when a 3D object is manufactured by an FDM 3D printer. The three-dimensional modeling soluble material includes a polyamide resin, and the polyamide resin includes a hydrophilic monomer unit A having a hydrophilic group, a hydrophobic dicarboxylic acid monomer unit B, and a hydrophobic diamine monomer unit C, The ratio of the hydrophilic monomer unit A to the total of all monomer units in the polyamide resin is 2.5 mol% or more and less than 13.5 mol%.
 前記三次元造形用可溶性材料を材料とするサポート材は、耐吸湿性を有しつつ、かつ、中性水への溶解速度が大きく、強アルカリ水溶液を用いること無く三次元物体前駆体から速やかに除去することができる。当該三次元造形用可溶性材料がこのような効果を奏する理由は定かではないが以下のように考えられる。 The support material made of the soluble material for three-dimensional modeling has moisture absorption resistance and has a high dissolution rate in neutral water, so that it can be quickly developed from a three-dimensional object precursor without using a strong alkaline aqueous solution. Can be removed. The reason why the three-dimensional modeling soluble material has such an effect is not clear, but is considered as follows.
 本実施形態の三次元造形用可溶性材料は、親水性モノマーユニットAを特定量有するポリアミド樹脂を有するため、中性水への高い溶解性を有する。また、当該ポリアミド樹脂は疎水性ジカルボン酸モノマーユニットBを有するため吸湿性が低い。本実施形態の三次元造形用可溶性材料はこのようなポリアミド樹脂を有するため、当該三次元造形用可溶性材料を含有するサポート材は、耐吸湿性を有しつつ、かつ、中性水への溶解速度が大きく、アルカリ水溶液を用いること無く三次元物体前駆体から速やかに除去することができると考えられる。 The three-dimensional modeling soluble material of the present embodiment has a polyamide resin having a specific amount of the hydrophilic monomer unit A, and thus has high solubility in neutral water. Moreover, since the said polyamide resin has the hydrophobic dicarboxylic acid monomer unit B, its hygroscopic property is low. Since the three-dimensional modeling soluble material of this embodiment has such a polyamide resin, the support material containing the three-dimensional modeling soluble material has moisture absorption resistance and is soluble in neutral water. It is considered that the speed is high and it can be quickly removed from the three-dimensional object precursor without using an alkaline aqueous solution.
〔ポリアミド樹脂〕
[親水性モノマーユニットA]
 前記ポリアミド樹脂は、親水性基を有する親水性モノマーユニットAを有する。前記親水性モノマーユニットAは、親水性基を有するモノマーユニットであれば特に限定されない。また、当該親水性モノマーユニットAを誘導するためのモノマーをモノマーAとも称する。
[Polyamide resin]
[Hydrophilic monomer unit A]
The polyamide resin has a hydrophilic monomer unit A having a hydrophilic group. The hydrophilic monomer unit A is not particularly limited as long as it is a monomer unit having a hydrophilic group. A monomer for inducing the hydrophilic monomer unit A is also referred to as monomer A.
 前記親水性基としては、中性水への溶解性の観点、及びポリアミド樹脂製造時の重合反応の容易さの観点から、第1級アミノ基、第2級アミノ基、第3級アミノ基、第4級アンモニウム塩基、オキシエチレン基、ヒドロキシル基、カルボキシル基、カルボキシル塩基、リン酸基、リン酸塩基、スルホン酸基、及びスルホン酸塩基からなる群より選ばれる少なくとも1種以上が挙げられる。 The hydrophilic group includes a primary amino group, a secondary amino group, a tertiary amino group, from the viewpoint of solubility in neutral water and the ease of the polymerization reaction during the production of the polyamide resin. Examples thereof include at least one selected from the group consisting of a quaternary ammonium base, an oxyethylene group, a hydroxyl group, a carboxyl group, a carboxyl base, a phosphate group, a phosphate group, a sulfonate group, and a sulfonate group.
 前記第2級アミノ基は、中性水への溶解性の観点、及びポリアミド樹脂製造時の重合反応の容易さの観点から、-NHR基(ただし、Rは直鎖又は分枝状の炭素数1以上14以下のアルキル基を示す。)で表される第2級アミノ基、及び-NH-基で表される第2級アミノ基からなる群より選ばれる少なくとも1種以上が好ましい。 The secondary amino group is —NHR 1 group (where R 1 is linear or branched, from the viewpoint of solubility in neutral water and ease of polymerization reaction during the production of polyamide resin. At least one selected from the group consisting of a secondary amino group represented by (II) and a secondary amino group represented by —NH— group.
 前記第3級アミノ基は、中性水への溶解性の観点、及びポリアミド樹脂製造時の重合反応の容易さの観点から、-NR基(ただし、Rは直鎖又は分枝状の炭素数1以上4以下のアルキル基を示し、Rは直鎖又は分枝状の炭素数1以上14以下のアルキル基を示す。)で表される第3級アミノ基、及び-NR-基(ただし、Rは直鎖又は分枝状の炭素数1以上4以下のアルキル基を示す。)で表される第3級アミノ基からなる群より選ばれる少なくとも1種以上が好ましい。 The tertiary amino group is a —NR 2 R 3 group (provided that R 2 is linear or branched from the viewpoint of solubility in neutral water and ease of polymerization reaction during the production of polyamide resin. Jo having 1 to 4 carbon indicates an alkyl group, R 3 is a tertiary amino group represented by denotes a straight or branched carbon atoms 1 to 14 alkyl group.), and -NR At least one selected from the group consisting of tertiary amino groups represented by a 4 -group (wherein R 4 represents a linear or branched alkyl group having 1 to 4 carbon atoms) is preferred. .
 前記第4級アンモニウム塩基は、中性水への溶解性の観点、及びポリアミド樹脂製造時の重合反応の容易さの観点から、-N{R}・X(ただし、R、R、Rは、それぞれ独立に、水素原子又は炭素数1以上14以下のアルキル基を示し、Xは、ヒドロキシイオン、ハロゲンイオン、CHSO 又はCHCHSO を示す。)で表される第4級アンモニウム塩基からなる群より選ばれる少なくとも1種以上が好ましい。 The quaternary ammonium base is —N + {R 5 R 6 R 7 } · X (where, from the viewpoint of solubility in neutral water and ease of polymerization reaction during the production of polyamide resin. R 5 , R 6 and R 7 each independently represent a hydrogen atom or an alkyl group having 1 to 14 carbon atoms, and X represents a hydroxy ion, a halogen ion, CH 3 SO 4 or CH 3 CH 2 SO. 4 - at least one or more preferably selected from the group consisting of quaternary ammonium base represented by the illustrated)..
 前記オキシエチレン基は、中性水への溶解性の観点、及びポリアミド樹脂製造時の重合反応の容易さの観点から、-{CHCHO}-(ただし、nは平均数を示し、1以上2500以下の数を示し、2以上1000以下が好ましく、3以上100以下がより好ましく、4以上50以下が更に好ましい。)で表されるオキシエチレン基、及び-{CHCHO}-R(ただし、mは平均数を示し、1以上2500以下の数を示し、2以上1000以下が好ましく、3以上100以下がより好ましく、4以上50以下が更に好ましい。Rは水素原子又は炭素数1以上10以下の直鎖若しくは分岐鎖のアルキル基を示し、2以上6以下がより好ましく、3以上5以下がさらに好ましい。)で表されるオキシエチレン基からなる群より選ばれる少なくとも1種以上が好ましい。 The oxyethylene group is — {CH 2 CH 2 O} n — (where n represents an average number) from the viewpoint of solubility in neutral water and the ease of polymerization reaction during the production of polyamide resin. An oxyethylene group represented by a number of 1 to 2500, preferably 2 to 1000, more preferably 3 to 100, and still more preferably 4 to 50, and — {CH 2 CH 2 O } m -R 8 (although, m represents the average number indicates the number of 1 or more 2500 or less, preferably 2 to 1,000, more preferably 3 or more and 100 or less, still more preferably .R 8 is 4 or more and 50 or less A hydrogen atom or a linear or branched alkyl group having 1 to 10 carbon atoms, more preferably 2 or more and 6 or less, and further preferably 3 or more and 5 or less. That at least one or more preferably selected from the group.
 前記カルボキシル塩基は、中性水への溶解性の観点、及びポリアミド樹脂製造時の重合反応の容易さの観点から、-COOM(ただし、Mはカルボキシル塩基を構成するカルボキシル基の対イオンを示し、中性水への溶解性の観点からナトリウムイオン、カリウムイオン、リチウムイオン、カルシウムイオン、マグネシウムイオン、アンモニウムイオン、バリウムイオン、及び亜鉛イオンからなる群より選ばれる少なくとも1種以上が好ましく、ナトリウムイオン、カリウムイオン、リチウムイオン、マグネシウムイオン、及びアンモニウムイオンからなる群より選ばれる少なくとも1種以上がより好ましく、ナトリウムイオン、及びカリウムイオンからなる群より選ばれる少なくとも1種以上が更に好ましく、ナトリウムイオンがより更に好ましい。)で表されるカルボキシル塩基が好ましい。 The carboxyl base is —COOM 1 (where M 1 represents a counter ion of the carboxyl group constituting the carboxyl base, from the viewpoint of solubility in neutral water and the ease of the polymerization reaction during the production of the polyamide resin. In view of solubility in neutral water, at least one selected from the group consisting of sodium ions, potassium ions, lithium ions, calcium ions, magnesium ions, ammonium ions, barium ions, and zinc ions is preferable, sodium More preferably, at least one selected from the group consisting of ions, potassium ions, lithium ions, magnesium ions, and ammonium ions, more preferably at least one selected from the group consisting of sodium ions and potassium ions, sodium ions Gayo Further preferred.) Carboxyl base is preferably represented by.
 前記リン酸塩基は、中性水への溶解性の観点、及びポリアミド樹脂製造時の重合反応の容易さの観点から、-PO 、-POHM、及び-PO(ただし、Mはリン酸塩基を構成するリン酸基の対イオンを示し、中性水への溶解性の観点からナトリウムイオン、カリウムイオン、リチウムイオン、カルシウムイオン、マグネシウムイオン、アンモニウムイオン、バリウムイオン、及び亜鉛イオンからなる群より選ばれる少なくとも1種以上が好ましく、ナトリウムイオン、カリウムイオン、リチウムイオン、マグネシウムイオン、及びアンモニウムイオンからなる群より選ばれる少なくとも1種以上がより好ましく、ナトリウムイオン、及びカリウムイオンからなる群より選ばれる少なくとも1種以上が更に好ましく、ナトリウムイオンがより更に好ましい。)で表されるリン酸塩基からなる群より選ばれる少なくとも1種以上が好ましい。 The phosphate group is —PO 4 M 2 2 , —PO 4 HM 2 , and —PO 4 M 2 from the viewpoint of solubility in neutral water and the ease of polymerization reaction during the production of polyamide resin. (However, M 2 represents a counter ion of a phosphate group constituting a phosphate group, and from the viewpoint of solubility in neutral water, sodium ion, potassium ion, lithium ion, calcium ion, magnesium ion, ammonium ion, barium. Preferably at least one selected from the group consisting of ions and zinc ions, more preferably at least one selected from the group consisting of sodium ions, potassium ions, lithium ions, magnesium ions, and ammonium ions, sodium ions, And at least one selected from the group consisting of potassium ions is more preferred. Ku, at least one or more preferably sodium ion is selected from the group consisting of phosphoric acid base represented by even more preferred.).
 前記スルホン酸塩基は、中性水への溶解性の観点、及びポリアミド樹脂製造時の重合反応の容易さの観点から、-SO(ただし、Mはスルホン酸塩基を構成するスルホン酸基の対イオンを示し、中性水への溶解性の観点からナトリウムイオン、カリウムイオン、リチウムイオン、カルシウムイオン、マグネシウムイオン、アンモニウムイオン、バリウムイオン、及び亜鉛イオンからなる群より選ばれる少なくとも1種以上が好ましく、ナトリウムイオン、カリウムイオン、リチウムイオン、マグネシウムイオン、及びアンモニウムイオンからなる群より選ばれる少なくとも1種以上がより好ましく、ナトリウムイオン、及びカリウムイオンからなる群より選ばれる少なくとも1種以上が更に好ましく、ナトリウムイオンがより更に好ましい。)で表されるスルホン酸塩基が好ましい。 From the viewpoint of solubility in neutral water and the ease of the polymerization reaction during the production of polyamide resin, the sulfonate group is —SO 3 M 3 (where M 3 is a sulfonic acid constituting the sulfonate group). At least one selected from the group consisting of sodium ion, potassium ion, lithium ion, calcium ion, magnesium ion, ammonium ion, barium ion, and zinc ion from the viewpoint of solubility in neutral water Or more, preferably at least one selected from the group consisting of sodium ions, potassium ions, lithium ions, magnesium ions, and ammonium ions, and more preferably at least one selected from the group consisting of sodium ions and potassium ions. More preferably, sodium ions are more Preferred.) Sulfonate is preferably represented by.
 前記モノマーAは、中性水への溶解性の観点、耐吸湿性の観点、3Dプリンタによる造形に求められる耐熱性の観点、及びポリアミド樹脂製造時の重合反応の容易さの観点から、カルボン酸、アミン、アミノ酸からなる群より選ばれる少なくとも1種以上が好ましく、カルボン酸がより好ましい。当該カルボン酸の中でも、同様の観点から芳香族カルボン酸が好ましく、ヒドロキシ基含有芳香族ジカルボン酸、第1級アミノ基含有芳香族ジカルボン酸、スルホン酸基含有芳香族ジカルボン酸、及びスルホン酸塩基含有芳香族ジカルボン酸がより好ましい。これらの中でも同様の観点から5-ヒドロキシイソフタル酸、1,3,5-ベンゼントリカルボン酸、5-アミノイソフタル酸、5-スルホイソフタル酸、2-スルホテレフタル酸、及び4-スルホ-2,6-ナフタレンジカルボン酸からなる群より選ばれる少なくとも1種以上が好ましく、5-スルホイソフタル酸、及び2-スルホテレフタル酸からなる群より選ばれる少なくとも1種以上がより好ましく、5-スルホイソフタル酸が更に好ましい。 The monomer A is a carboxylic acid from the viewpoint of solubility in neutral water, the viewpoint of moisture absorption resistance, the viewpoint of heat resistance required for modeling by a 3D printer, and the ease of polymerization reaction during the production of polyamide resin. , At least one selected from the group consisting of amines and amino acids is preferred, and carboxylic acids are more preferred. Among the carboxylic acids, aromatic carboxylic acids are preferable from the same viewpoint, and hydroxy group-containing aromatic dicarboxylic acid, primary amino group-containing aromatic dicarboxylic acid, sulfonic acid group-containing aromatic dicarboxylic acid, and sulfonate group-containing Aromatic dicarboxylic acids are more preferred. Among these, from the same viewpoint, 5-hydroxyisophthalic acid, 1,3,5-benzenetricarboxylic acid, 5-aminoisophthalic acid, 5-sulfoisophthalic acid, 2-sulfoterephthalic acid, and 4-sulfo-2,6- At least one selected from the group consisting of naphthalenedicarboxylic acid is preferable, at least one selected from the group consisting of 5-sulfoisophthalic acid and 2-sulfoterephthalic acid is more preferable, and 5-sulfoisophthalic acid is more preferable. .
 前記ポリアミド樹脂中の前記親水性基の含有量は、中性水への溶解性の観点から、0.5mmol/g以上が好ましく、0.6mmol/g以上がより好ましく、0.7mmol/g以上が更に好ましく、耐吸湿性の観点、及び3Dプリンタによる造形に求められる耐熱性の観点から、1.0mmol/g未満が好ましく、0.8mmol/g以下が好ましく、0.75mmol/g以下がより好ましい。なお、本明細書において親水性基の含有量は実施例に記載の方法によって測定する。 From the viewpoint of solubility in neutral water, the content of the hydrophilic group in the polyamide resin is preferably 0.5 mmol / g or more, more preferably 0.6 mmol / g or more, and 0.7 mmol / g or more. Is more preferable, and from the viewpoint of moisture absorption resistance and from the viewpoint of heat resistance required for modeling by a 3D printer, it is preferably less than 1.0 mmol / g, preferably 0.8 mmol / g or less, and more preferably 0.75 mmol / g or less. preferable. In addition, in this specification, content of a hydrophilic group is measured by the method as described in an Example.
 前記ポリアミド樹脂中の全モノマーユニットの物質量の合計に対する、前記親水性モノマーユニットAの物質量の割合は、中性水への溶解性の観点から、2.5mol%以上であり、4mol%以上が好ましく、6mol%以上がより好ましく、8mol%以上が更に好ましく、10mol%以上がより更に好ましく、耐吸湿性の観点、及び3Dプリンタによる造形に求められる耐熱性の観点から、13.5mol%未満であり、11.5mol%以下が好ましく、10.0mol%以下がより好ましく、9.5mol%以下が更に好ましい。なお、本明細書においてポリアミド樹脂のモノマーユニットの組成は実施例に記載の方法によって測定する。 The ratio of the substance amount of the hydrophilic monomer unit A to the total substance amount of all the monomer units in the polyamide resin is 2.5 mol% or more from the viewpoint of solubility in neutral water, and 4 mol% or more. Is preferably 6 mol% or more, more preferably 8 mol% or more, still more preferably 10 mol% or more, and from the viewpoint of moisture absorption resistance and the heat resistance required for modeling by a 3D printer, less than 13.5 mol% 11.5 mol% or less is preferable, 10.0 mol% or less is more preferable, and 9.5 mol% or less is still more preferable. In the present specification, the composition of the monomer unit of the polyamide resin is measured by the method described in the examples.
[疎水性ジカルボン酸モノマーユニットB]
 前記ポリアミド樹脂は、疎水性ジカルボン酸モノマーユニットBを有する。当該ジカルボン酸モノマーユニットBは前記親水性基を有さない。本明細書において、当該疎水性ジカルボン酸モノマーユニットBを誘導するためのジカルボン酸をジカルボン酸Bとも称する。
[Hydrophobic dicarboxylic acid monomer unit B]
The polyamide resin has a hydrophobic dicarboxylic acid monomer unit B. The dicarboxylic acid monomer unit B does not have the hydrophilic group. In this specification, the dicarboxylic acid for deriving the hydrophobic dicarboxylic acid monomer unit B is also referred to as dicarboxylic acid B.
 前記ジカルボン酸Bは、ジカルボン酸であれば特に限定されないが、中性水への溶解性の観点、耐吸湿性の観点、3Dプリンタによる造形に求められる耐熱性の観点、及びポリアミド樹脂製造時の重合反応の容易さの観点から、芳香族ジカルボン酸、脂肪族ジカルボン酸、及び脂環式ジカルボン酸からなる群より選ばれる少なくとも1種以上が好ましい。これらの中でも、同様の観点から、テレフタル酸、イソフタル酸、2,5-フランジカルボン酸、2,6-ナフタレンジカルボン酸、1,4-シクロヘキサンジカルボン酸、及び1,3-アダマンタンジカルボン酸からなる群より選ばれる少なくとも1種以上がより好ましく、テレフタル酸、2,5-フランジカルボン酸、及び2,6-ナフタレンジカルボン酸からなる群より選ばれる少なくとも1種以上が更に好ましく、テレフタル酸がより更に好ましい。 The dicarboxylic acid B is not particularly limited as long as it is a dicarboxylic acid, but from the viewpoint of solubility in neutral water, from the viewpoint of moisture absorption resistance, from the viewpoint of heat resistance required for modeling by a 3D printer, and during polyamide resin production From the viewpoint of ease of polymerization reaction, at least one selected from the group consisting of aromatic dicarboxylic acids, aliphatic dicarboxylic acids, and alicyclic dicarboxylic acids is preferred. Among these, from the same viewpoint, the group consisting of terephthalic acid, isophthalic acid, 2,5-furandicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, and 1,3-adamantanedicarboxylic acid More preferably, at least one selected from the group consisting of terephthalic acid, 2,5-furandicarboxylic acid, and 2,6-naphthalenedicarboxylic acid is more preferable, and terephthalic acid is still more preferable. .
 前記ポリアミド樹脂中の全モノマーユニットの物質量の合計に対する、前記ポリアミド樹脂中の前記疎水性ジカルボン酸モノマーユニットBの物質量の割合は、耐吸湿性の観点から、10mol%以上が好ましく、20mol%以上がより好ましく、30mol%以上が更に好ましく、35mol%以上がより更に好ましく、40mol%以上がより更に好ましく、42mol%以上がより更に好ましく、中性水への溶解性の観点から、47.5mol%以下が好ましく、45mol%以下がより好ましく、42mol%以下が更に好ましく、40mol%以下がより更に好ましい。また、前記ポリアミド樹脂中の全モノマーユニットの物質量の合計に対する、前記ポリアミド樹脂中の前記疎水性ジカルボン酸モノマーユニットBの物質量の割合は、耐吸湿性の観点、及び中性水への溶解性の観点から、10~47.5mol%が好ましく、20~45mol%がより好ましく、30~42mol%が更に好ましい。 The ratio of the substance amount of the hydrophobic dicarboxylic acid monomer unit B in the polyamide resin to the total substance amount of all monomer units in the polyamide resin is preferably 10 mol% or more from the viewpoint of moisture absorption resistance, and is 20 mol%. The above is more preferable, 30 mol% or more is further preferable, 35 mol% or more is more preferable, 40 mol% or more is further more preferable, 42 mol% or more is further more preferable, and 47.5 mol from the viewpoint of solubility in neutral water. % Or less, more preferably 45 mol% or less, still more preferably 42 mol% or less, and even more preferably 40 mol% or less. Further, the ratio of the substance amount of the hydrophobic dicarboxylic acid monomer unit B in the polyamide resin to the total substance amount of all the monomer units in the polyamide resin is determined in terms of moisture absorption resistance and dissolved in neutral water. From the viewpoint of safety, 10 to 47.5 mol% is preferable, 20 to 45 mol% is more preferable, and 30 to 42 mol% is still more preferable.
 前記親水性モノマーユニットAと前記疎水性ジカルボン酸モノマーユニットBのmol比(前記親水性モノマーユニットA/前記疎水性ジカルボン酸モノマーユニットB)は、中性水への溶解性、耐吸湿性、及び3Dプリンタによる造形に求められる耐熱性の観点から、10/90以上が好ましく、15/85以上がより好ましく、18/82以上が更に好ましく、20/80以上がより更に好ましく、同様の観点から27/73未満が好ましく、25/75以下がより好ましく、21/79以下が更に好ましい。 The molar ratio of the hydrophilic monomer unit A to the hydrophobic dicarboxylic acid monomer unit B (the hydrophilic monomer unit A / the hydrophobic dicarboxylic acid monomer unit B) is determined by solubility in neutral water, moisture absorption resistance, and From the viewpoint of heat resistance required for modeling by a 3D printer, 10/90 or more is preferable, 15/85 or more is more preferable, 18/82 or more is further preferable, 20/80 or more is further more preferable, and the same viewpoint 27 / 73 is preferable, 25/75 or less is more preferable, and 21/79 or less is still more preferable.
[疎水性ジアミンモノマーユニットC]
 前記ポリアミド樹脂は、疎水性ジアミンモノマーユニットCを有する。当該疎水性ジアミンモノマーユニットCは、前記親水性基を有さない。前記疎水性ジアミンモノマーユニットCを誘導するためのジアミンを、ジアミンCとも称する。
[Hydrophobic diamine monomer unit C]
The polyamide resin has a hydrophobic diamine monomer unit C. The hydrophobic diamine monomer unit C does not have the hydrophilic group. The diamine for deriving the hydrophobic diamine monomer unit C is also referred to as diamine C.
 前記ジアミンCとしては、特に限定されず、脂肪族ジアミン、脂環式ジアミン、及び芳香族ジアミンからなる群より選ばれる少なくとも1種以上を用いることができ、ポリアミド樹脂製造時の重合反応の容易さの観点から脂肪族ジアミンが好ましい。 The diamine C is not particularly limited, and at least one selected from the group consisting of aliphatic diamines, alicyclic diamines, and aromatic diamines can be used, and the ease of the polymerization reaction during polyamide resin production. In view of the above, an aliphatic diamine is preferable.
 前記ジアミンCの炭素数は、中性水への溶解性の観点、耐吸湿性の観点、3Dプリンタによる造形に求められる耐熱性の観点、及びポリアミド樹脂製造時の重合反応の容易さの観点から、2以上が好ましく、3以上がより好ましく、4以上が更に好ましく、中性水への溶解性の観点、耐吸湿性の観点、及び3Dプリンタによる造形に求められる耐熱性の観点から、20以下が好ましく、15以下がより好ましく、10以下が更に好ましい。 The number of carbon atoms of the diamine C is from the viewpoint of solubility in neutral water, from the viewpoint of moisture absorption resistance, from the viewpoint of heat resistance required for modeling by a 3D printer, and from the viewpoint of ease of polymerization reaction when producing a polyamide resin. 2 or more, preferably 3 or more, more preferably 4 or more, from the viewpoint of solubility in neutral water, the viewpoint of moisture absorption resistance, and the heat resistance required for modeling by a 3D printer, 20 or less Is preferably 15 or less, more preferably 10 or less.
 前記脂肪族ジアミンとしては、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナンジアミン、デカンジアミン等が例示できる。これらの中でも、中性水への溶解性、耐吸湿性、及び3Dプリンタによる造形に求められる靱性(強度)の観点から、ヘキサメチレンジアミンが好ましい。 Examples of the aliphatic diamine include ethylene diamine, trimethylene diamine, tetramethylene diamine, pentamethylene diamine, hexamethylene diamine, heptamethylene diamine, octamethylene diamine, nonane diamine, and decane diamine. Among these, hexamethylenediamine is preferable from the viewpoints of solubility in neutral water, moisture absorption resistance, and toughness (strength) required for modeling by a 3D printer.
 前記脂環式ジアミンとしては、4,4’-ジアミノ-3,3’-ジメチルジシクロヘキシルメタン、ジアミンシクロヘキサン、及びイソホロンジアミン等が例示できる。これらの中でも、中性水への溶解性、耐吸湿性、及び3Dプリンタによる造形に求められる靱性(強度)の観点から、ジアミンシクロヘキサン、及びイソホロンジアミンからなる群より選ばれる少なくとも1種以上が好ましく、ジアミンシクロヘキサンがより好ましい。 Examples of the alicyclic diamine include 4,4'-diamino-3,3'-dimethyldicyclohexylmethane, diaminecyclohexane, and isophoronediamine. Among these, at least one selected from the group consisting of diamine cyclohexane and isophorone diamine is preferable from the viewpoint of solubility in neutral water, moisture absorption resistance, and toughness (strength) required for modeling by a 3D printer. More preferred is diamine cyclohexane.
 前記芳香族ジアミンとしては、フェニレンジアミン、ジエチルトルエンジアミン、及び4,4’-ジアミノジフェニルメタン等が例示できる。これらの中でも、中性水への溶解性、耐吸湿性、及び3Dプリンタによる造形に求められる靱性(強度)の観点から、フェニレンジアミン、ジエチルトルエンジアミンからなる群より選ばれる少なくとも1種以上が好ましく、フェニレンジアミンがより好ましい。 Examples of the aromatic diamine include phenylenediamine, diethyltoluenediamine, and 4,4'-diaminodiphenylmethane. Among these, at least one or more selected from the group consisting of phenylenediamine and diethyltoluenediamine is preferable from the viewpoints of solubility in neutral water, moisture absorption resistance, and toughness (strength) required for modeling by a 3D printer. More preferred is phenylenediamine.
 前記ジアミンCとしては、中性水への溶解性、耐吸湿性、及び3Dプリンタによる造形に求められる靱性(強度)の観点から、ヘキサメチレンジアミン、ジアミンシクロヘキサン、フェニレンジアミンからなる群より選ばれる少なくとも1種以上が好ましく、ヘキサメチレンジアミン、フェニレンジアミンからなる群より選ばれる少なくとも1種以上がより好ましく、ヘキサメチレンジアミンが更に好ましい。 The diamine C is at least selected from the group consisting of hexamethylenediamine, diaminecyclohexane, and phenylenediamine from the viewpoint of solubility in neutral water, moisture absorption resistance, and toughness (strength) required for modeling by a 3D printer. One or more are preferable, at least one selected from the group consisting of hexamethylenediamine and phenylenediamine is more preferable, and hexamethylenediamine is still more preferable.
 前記ジアミンCがヘキサメチレンジアミン、ジアミンシクロヘキサン、フェニレンジアミンからなる群より選ばれる少なくとも1種以上の場合、前記ポリアミド樹脂中の全ジアミンモノマーユニットの物質量の合計に対する、ヘキサメチレンジアミン、ジアミンシクロヘキサン、フェニレンジアミンの物質量の合計の割合は、中性水への溶解性、耐吸湿性、及び3Dプリンタによる造形に求められる耐熱性の観点から、50mol%以上が好ましく、70mol%以上がより好ましく、80mol%以上が更に好ましく、90mol%以上がより更に好ましく、実質的に100mol%がより更に好ましく、100mol%がより更に好ましい。なお、実質的に100mol%とは、ヘキサメチレンジアミン、ジアミンシクロヘキサン、フェニレンジアミン以外の物質が不可避的に混入する場合を含む意味である。 When the diamine C is at least one selected from the group consisting of hexamethylene diamine, diamine cyclohexane, and phenylene diamine, hexamethylene diamine, diamine cyclohexane, phenylene with respect to the total amount of all diamine monomer units in the polyamide resin. The total proportion of the diamine substances is preferably 50 mol% or more, more preferably 70 mol% or more, and 80 mol% from the viewpoints of solubility in neutral water, moisture absorption resistance, and heat resistance required for modeling by a 3D printer. % Or more is more preferable, 90 mol% or more is more preferable, substantially 100 mol% is still more preferable, and 100 mol% is still more preferable. In addition, substantially 100 mol% means the case where substances other than hexamethylene diamine, diamine cyclohexane, and phenylene diamine are inevitably mixed.
 前記ポリアミド樹脂は下記一般式(1)~(6)で例示できる。 The polyamide resin can be exemplified by the following general formulas (1) to (6).
Figure JPOXMLDOC01-appb-C000001
(前記一般式(1)中、p1及びq1はそれぞれ重合度の数を表す。各重合はブロック結合及び/又はランダム結合であり、中性水への溶解性の観点からランダム結合がより好ましい。)
Figure JPOXMLDOC01-appb-C000001
(In the general formula (1), p1 and q1 each represent the number of polymerization degrees. Each polymerization is a block bond and / or a random bond, and a random bond is more preferable from the viewpoint of solubility in neutral water. )
Figure JPOXMLDOC01-appb-C000002
(前記一般式(2)中、p2及びq2はそれぞれ重合度の数を表す。各重合はブロック結合及び/又はランダム結合であり、中性水への溶解性の観点からランダム結合がより好ましい。)
Figure JPOXMLDOC01-appb-C000002
(In the general formula (2), p2 and q2 each represent the number of polymerization degrees. Each polymerization is a block bond and / or a random bond, and a random bond is more preferable from the viewpoint of solubility in neutral water. )
Figure JPOXMLDOC01-appb-C000003
(前記一般式(3)中、p3及びq3はそれぞれ重合度の数を表す。各重合はブロック結合及び/又はランダム結合であり、中性水への溶解性の観点からランダム結合がより好ましい。)
Figure JPOXMLDOC01-appb-C000003
(In the general formula (3), p3 and q3 each represent the number of polymerization degrees. Each polymerization is a block bond and / or a random bond, and a random bond is more preferable from the viewpoint of solubility in neutral water. )
Figure JPOXMLDOC01-appb-C000004
(前記一般式(4)中、p4及びq4はそれぞれ重合度の数を表す。各重合はブロック結合及び/又はランダム結合であり、中性水への溶解性の観点からランダム結合がより好ましい。)
Figure JPOXMLDOC01-appb-C000004
(In the general formula (4), p4 and q4 each represent the number of polymerization degrees. Each polymerization is a block bond and / or a random bond, and a random bond is more preferable from the viewpoint of solubility in neutral water. )
Figure JPOXMLDOC01-appb-C000005
(前記一般式(5)中、p5及びq5はそれぞれ重合度の数を表す。各重合はブロック結合及び/又はランダム結合であり、中性水への溶解性の観点からランダム結合がより好ましい。)
Figure JPOXMLDOC01-appb-C000005
(In the general formula (5), p5 and q5 each represent the number of polymerization degrees. Each polymerization is a block bond and / or a random bond, and a random bond is more preferable from the viewpoint of solubility in neutral water. )
Figure JPOXMLDOC01-appb-C000006
(前記一般式(6)中、p6及びq6はそれぞれ重合度の数を表す。各重合はブロック結合及び/又はランダム結合であり、中性水への溶解性の観点からランダム結合がより好ましい。)
Figure JPOXMLDOC01-appb-C000006
(In the general formula (6), p6 and q6 each represent the number of polymerization degrees. Each polymerization is a block bond and / or a random bond, and a random bond is more preferable from the viewpoint of solubility in neutral water. )
 前記ポリアミド樹脂の重量平均分子量は、三次元造形用可溶性材料に求められる靱性の向上の観点から、3000以上が好ましく、3500以上がより好ましく、4000以上が更に好ましく、中性水への溶解性、及び3Dプリンタによる造形性の観点から、70000以下が好ましく、50000以下がより好ましく、30000以下が更に好ましく、20000以下がより更に好ましい。なお、本明細書において重量平均分子量は実施例に記載の方法によって測定する。 The weight average molecular weight of the polyamide resin is preferably 3000 or more, more preferably 3500 or more, still more preferably 4000 or more, and solubility in neutral water, from the viewpoint of improving toughness required for a three-dimensional modeling soluble material. And 70000 or less, more preferably 50000 or less, still more preferably 30000 or less, and even more preferably 20000 or less, from the viewpoint of formability by a 3D printer. In addition, in this specification, a weight average molecular weight is measured by the method as described in an Example.
 前記ポリアミド樹脂のガラス転移温度は、3Dプリンタによる造形性の観点から、50℃以上が好ましく、60℃以上がより好ましく、70℃以上が更に好ましく、80℃以上がより更に好ましく、同様の観点から、250℃以下が好ましく、220℃以下がより好ましい。なお、本明細書においてガラス転移温度は実施例に記載の方法によって測定する。 The glass transition temperature of the polyamide resin is preferably 50 ° C. or higher, more preferably 60 ° C. or higher, still more preferably 70 ° C. or higher, still more preferably 80 ° C. or higher, from the same viewpoint, from the viewpoint of formability by a 3D printer. 250 ° C. or lower is preferable, and 220 ° C. or lower is more preferable. In addition, in this specification, a glass transition temperature is measured by the method as described in an Example.
 前記ポリアミド樹脂は、本実施形態の効果を損なわない範囲で、前記モノマーユニットA、前記ジカルボン酸モノマーユニットB、及び前記ジアミンモノマーユニットC以外のモノマーユニットを有していても良い。 The polyamide resin may have a monomer unit other than the monomer unit A, the dicarboxylic acid monomer unit B, and the diamine monomer unit C as long as the effects of the present embodiment are not impaired.
 前記ポリアミド樹脂の製造方法には特に限定はなく、従来公知のポリアミド樹脂の製造方法を適用できる。 The method for producing the polyamide resin is not particularly limited, and a conventionally known method for producing a polyamide resin can be applied.
 前記三次元造形用可溶性材料中の前記ポリアミド樹脂の含有量は、本実施形態の効果を損なわない範囲で調整することができるが、中性水への溶解性、耐吸湿性、及び3Dプリンタによる造形に求められる耐熱性の観点から、30質量%以上が好ましく、50質量%以上がより好ましく、60質量%以上が更に好ましく、70質量%以上がより更に好ましく、80質量%以上がより更に好ましく、90質量%以上がより更に好ましく、95質量%以上がより更に好ましく、実質的に100質量%がより更に好ましく、100質量%がより更に好ましい。なお、実質的に100mol%とは、前記ポリアミド樹脂以外の物質が不可避的に混入する場合を含む意味である。 The content of the polyamide resin in the soluble material for three-dimensional modeling can be adjusted within a range that does not impair the effect of the present embodiment, but it is soluble in neutral water, moisture absorption resistance, and depending on the 3D printer. From the viewpoint of heat resistance required for modeling, it is preferably 30% by mass or more, more preferably 50% by mass or more, still more preferably 60% by mass or more, still more preferably 70% by mass or more, and even more preferably 80% by mass or more. 90 mass% or more is still more preferable, 95 mass% or more is further more preferable, substantially 100 mass% is still more preferable, and 100 mass% is still more preferable. In addition, substantially 100 mol% means that a substance other than the polyamide resin is inevitably mixed.
 前記三次元造形用可溶性材料のガラス転移温度は、3Dプリンタによる造形性の観点から、50℃以上が好ましく、60℃以上がより好ましく、70℃以上が更に好ましく、80℃以上がより更に好ましく、同様の観点から、250℃以下が好ましく、220℃以下がより好ましい。 The glass transition temperature of the soluble material for three-dimensional modeling is preferably 50 ° C. or higher, more preferably 60 ° C. or higher, still more preferably 70 ° C. or higher, and still more preferably 80 ° C. or higher, from the viewpoint of formability by a 3D printer. From the same viewpoint, 250 ° C. or lower is preferable, and 220 ° C. or lower is more preferable.
 前記三次元造形用可溶性材料の形状は特に限定されず、ペレット状、粉末状、フィラメント状等が例示できるが、3Dプリンタによる造形性の観点からフィラメント状が好ましい。 The shape of the soluble material for three-dimensional modeling is not particularly limited, and examples thereof include a pellet shape, a powder shape, and a filament shape, but a filament shape is preferable from the viewpoint of modeling by a 3D printer.
 前記フィラメントの直径は、3Dプリンタによる造形性、及び三次元物体の精度向上の観点から0.5mm以上が好ましく、1.0mm以上がより好ましく、同様の観点から3.0mm以下が好ましく、2.0mm以下がより好ましく、1.8mm以下が更に好ましい。また、フィラメントを作成する場合は、靱性を高める観点から延伸加工を行うのが好ましい。当該延伸加工における延伸倍率は、靱性向上と水溶性両立の観点から1.5倍以上が好ましく、2倍以上がより好ましく、3倍以上が更に好ましく、5倍以上がより更に好ましく、同様の観点から200倍以下が好ましく、150倍以下がより好ましく、100倍以下が更に好ましく、50倍以下がより更に好ましい。また、当該延伸加工における延伸温度は、前記三次元造形用可溶性材料のガラス転移温度より20℃低い温度から当該ガラス転移温度より110℃高い温度の範囲内が好ましい。前記延伸温度の下限は靱性向上と熱安定性の観点から当該ガラス転移温度より10℃低い温度がより好ましく、当該ガラス転移温度と同じ温度が更に好ましい。前記延伸温度の上限は同様の観点から当該ガラス転移温度より110℃高い温度がより好ましく、当該ガラス転移温度より100℃高い温度が更に好ましく、当該ガラス転移温度より90℃高い温度が更に好ましい。延伸は、樹脂を押出機から吐出した際に空冷しながら延伸してもよく、また、熱風、レーザーによって加熱しても良い。また当該延伸は、一段階で所定の延伸倍率及びフィラメント径に延伸しても良く、多段階で所定の延伸倍率及びフィラメント径に延伸しても良い。 The diameter of the filament is preferably 0.5 mm or more, more preferably 1.0 mm or more, and preferably 3.0 mm or less from the same viewpoint, from the viewpoints of formability by a 3D printer and improvement of accuracy of a three-dimensional object. 0 mm or less is more preferable, and 1.8 mm or less is still more preferable. Moreover, when producing a filament, it is preferable to perform an extending | stretching process from a viewpoint of improving toughness. The draw ratio in the drawing process is preferably 1.5 times or more, more preferably 2 times or more, more preferably 3 times or more, still more preferably 5 times or more, and the same viewpoint from the viewpoint of both toughness improvement and water solubility. To 200 times or less, more preferably 150 times or less, still more preferably 100 times or less, and even more preferably 50 times or less. Moreover, the extending | stretching temperature in the said extending | stretching process has the preferable inside of the range of the temperature 110 degreeC higher than the said glass transition temperature from the temperature 20 degreeC lower than the glass transition temperature of the said soluble material for three-dimensional modeling. The lower limit of the stretching temperature is preferably 10 ° C. lower than the glass transition temperature from the viewpoint of toughness improvement and thermal stability, and more preferably the same temperature as the glass transition temperature. From the same viewpoint, the upper limit of the stretching temperature is more preferably 110 ° C. higher than the glass transition temperature, more preferably 100 ° C. higher than the glass transition temperature, and still more preferably 90 ° C. higher than the glass transition temperature. The stretching may be performed while air cooling when the resin is discharged from the extruder, or may be heated by hot air or a laser. Moreover, the said extending | stretching may be extended | stretched to a predetermined draw ratio and a filament diameter in one step, and may be extended to a predetermined draw ratio and a filament diameter in multiple steps.
 三次元造形用可溶性材料は、本実施形態の効果を損なわない範囲で三次元造形用可溶性材料の物性を高める目的でポリアミド樹脂以外の重合体を含有しても良い。当該重合体の例としては、ポリビニルアルコール、ポリエチレングリコール、ポリ(エチレングリコール/プロピレングリコール)、カルボキシメチルセルロース、及び澱粉等の水溶性ポリマー、;ポリメタクリル酸メチル等の疎水性ポリマー、;ハードセグメントとソフトセグメントからなるポリエーテルエステル、ポリエーテルエステルアミド、ポリウレタン等のエラストマー、イオン性モノマーや水溶性非イオン性モノマーと疎水性モノマーのブロック共重合体、スチレン-ブタジエン、メタクリル酸アルキル(炭素数1~18)-アクリル酸アルキル(炭素数1~18)等から構成される熱可塑性エラストマー、;疎水性のゴムにポリアクリル酸やN,N-ジメチルアクリルアミド等のポリマーをグラフトさせたグラフトポリマーや、シリコーンにポリオキサゾリンやN,N-ジメチルアクリルアミドがグラフトしたグラフトポリマー等のグラフトポリマー、;アクリル酸やメタクリル酸等のカルボキシル基を有するモノマー、メタクリル酸グリシジル等のエポキシ基を有するモノマー、N,N-ジメチルアクリルアミド等のアミド基を有するモノマー等と共重合したエチレンやアクリル酸アルキル(炭素数1~18)との共重合体、;アクリルゴム、天然ゴムラテックス等の衝撃緩衝剤等が挙げられる。 The three-dimensional modeling soluble material may contain a polymer other than the polyamide resin for the purpose of improving the physical properties of the three-dimensional modeling soluble material as long as the effects of the present embodiment are not impaired. Examples of such polymers include water-soluble polymers such as polyvinyl alcohol, polyethylene glycol, poly (ethylene glycol / propylene glycol), carboxymethylcellulose, and starch; hydrophobic polymers such as polymethyl methacrylate; hard segments and soft Segmented polyether ester, polyether ester amide, polyurethane and other elastomers, block copolymers of ionic monomers and water-soluble nonionic monomers and hydrophobic monomers, styrene-butadiene, alkyl methacrylates (1-18 carbon atoms) ) -A thermoplastic elastomer composed of alkyl acrylate (having 1 to 18 carbon atoms); a graft polymer obtained by grafting a polymer such as polyacrylic acid or N, N-dimethylacrylamide onto a hydrophobic rubber; Graft polymer such as graft polymer obtained by grafting polyoxazoline or N, N-dimethylacrylamide onto silicone; monomer having carboxyl group such as acrylic acid or methacrylic acid; monomer having epoxy group such as glycidyl methacrylate; N, N— Examples thereof include copolymers of ethylene and alkyl acrylates (having 1 to 18 carbon atoms) copolymerized with monomers having an amide group such as dimethylacrylamide; impact buffers such as acrylic rubber and natural rubber latex.
 三次元造形用可溶性材料がポリアミド樹脂以外の重合体を含有する場合、当該重合体と前記ポリアミド樹脂との親和性及び相溶性を高めて三次元造形用可溶性材料の性能や当該三次元造形用可溶性材料に係るフィラメントの靭性を向上させる観点から、三次元造形用可溶性材料は相溶化剤を含有することができる。当該相溶化剤の例としては、(i)グリシジル基、イソシアネート基、エポキシ基、オキサゾリン基を有するモノマー、及び/又は無水マレイン酸等の酸無水物構造を有するモノマーとアクリル酸やメタクリル酸アルキル、エチレン、プロピレン、酢酸ビニル等との共重合体、(ii)以下に示されるポリマーの2種以上からなるブロック共重合体;ポリエステル、ポリアミド、及び、アクリル酸、メタクリル酸、アクリル酸やメタクリル酸アルキル、アクリルアミド、N,N-ジメチルアクリルアミド、エチレン、プロピレン、ブタジエン、イソプロピレン、酢酸ビニル、エチレングリコール、又はプロピレングリコールから選ばれる1種以上のモノマーからなる重合体/共重合体、(iii)以下に示されるポリマーの2種以上からなるグラフト共重合体;ポリエステル、ポリアミド、及び、アクリル酸、メタクリル酸、アクリル酸やメタクリル酸アルキル、アクリルアミド、N,N-ジメチルアクリルアミド、エチレン、プロピレン、ブタジエン、イソプロピレン、酢酸ビニル、エチレングリコール、又はプロピレングリコールから選ばれる1種以上のモノマーからなる重合体/共重合体、(iv)界面活性剤が挙げられる。 When the three-dimensional modeling soluble material contains a polymer other than the polyamide resin, the affinity and compatibility between the polymer and the polyamide resin are increased to improve the performance of the three-dimensional modeling soluble material and the three-dimensional modeling solubility. From the viewpoint of improving the toughness of the filament according to the material, the three-dimensional modeling soluble material can contain a compatibilizing agent. Examples of the compatibilizer include (i) a monomer having a glycidyl group, an isocyanate group, an epoxy group, an oxazoline group, and / or a monomer having an acid anhydride structure such as maleic anhydride, and acrylic acid or alkyl methacrylate. A copolymer with ethylene, propylene, vinyl acetate, etc., (ii) a block copolymer comprising two or more of the polymers shown below; polyester, polyamide, and acrylic acid, methacrylic acid, acrylic acid or alkyl methacrylate A polymer / copolymer comprising at least one monomer selected from acrylamide, N, N-dimethylacrylamide, ethylene, propylene, butadiene, isopropylene, vinyl acetate, ethylene glycol, or propylene glycol, and (iii) A group consisting of two or more of the indicated polymers Raft copolymer; polyester, polyamide, acrylic acid, methacrylic acid, acrylic acid or alkyl methacrylate, acrylamide, N, N-dimethylacrylamide, ethylene, propylene, butadiene, isopropylene, vinyl acetate, ethylene glycol, or propylene And a polymer / copolymer comprising at least one monomer selected from glycols, and (iv) a surfactant.
 三次元造形用可溶性材料は、本実施形態の効果を損なわない範囲で他の成分を含有していても良い。当該他の成分の例としては、前記ポリアミド樹脂以外のポリアミド樹脂、ポリアミド樹脂以外の重合体、安息香酸ポリアルキレングリコールジエステル等の可塑剤、炭酸カルシウム、炭酸マグネシウム、ガラス球、黒鉛、カーボンブラック、カーボン繊維、ガラス繊維、タルク、ウォラストナイト、マイカ、アルミナ、シリカ、カオリン、ウィスカー、炭化珪素等の充填材等が挙げられる。 The soluble material for three-dimensional modeling may contain other components as long as the effects of the present embodiment are not impaired. Examples of the other components include polyamide resins other than the above polyamide resins, polymers other than polyamide resins, plasticizers such as polyalkylene glycol diesters of benzoic acid, calcium carbonate, magnesium carbonate, glass balls, graphite, carbon black, carbon Examples thereof include fillers such as fiber, glass fiber, talc, wollastonite, mica, alumina, silica, kaolin, whisker, and silicon carbide.
<三次元物体の製造方法>
 本実施形態の三次元物体の製造方法は、三次元物体及びサポート材を含む三次元物体前駆体を得る工程、及び当該三次元物体前駆体を中性水に接触させ、サポート材を除去するサポート材除去工程を有する熱溶融積層方式による三次元物体の製造方法であって、前記サポート材の材料が、前記三次元造形用可溶性材料である。当該三次元物体の製造方法によれば、高湿度下に暴露された後に3Dプリンタによる三次元物体の製造に用いても発泡を抑制して三次元物体の精度低下を抑制することができ、かつ、中性水への溶解速度が大きく、強アルカリ水溶液を用いること無く三次元物体前駆体からサポート材を速やかに除去することができる。当該三次元物体の製造方法がこの様な効果を奏する理由は定かでないが、前記三次元造形用可溶性材料が前記効果を奏する理由と同様の理由が考えられる。
<Method of manufacturing a three-dimensional object>
The method for producing a three-dimensional object according to this embodiment includes a step of obtaining a three-dimensional object precursor including a three-dimensional object and a support material, and a support for removing the support material by bringing the three-dimensional object precursor into contact with neutral water. It is a manufacturing method of the three-dimensional object by the hot melt lamination system which has a material removal process, Comprising: The material of the said support material is the said soluble material for three-dimensional modeling. According to the method of manufacturing a three-dimensional object, foaming can be suppressed even when used for manufacturing a three-dimensional object by a 3D printer after being exposed to high humidity, and a decrease in accuracy of the three-dimensional object can be suppressed. The support material can be quickly removed from the three-dimensional object precursor without using a strong alkaline aqueous solution because of its high dissolution rate in neutral water. The reason why the manufacturing method of the three-dimensional object has such an effect is not clear, but the same reason as the reason why the soluble material for three-dimensional modeling has the effect can be considered.
〔三次元物体及びサポート材を含む三次元物体前駆体を得る工程〕
 三次元物体及びサポート材を含む三次元物体前駆体を得る工程は、前記サポート材の材料が前記三次元造形用可溶性材料である点を除けば、公知の熱溶融積層方式の3Dプリンタによる三次元物体の製造方法における三次元物体及びサポート材を含む三次元物体前駆体を得る工程を利用することができる。
[Step of obtaining a three-dimensional object precursor including a three-dimensional object and a support material]
The step of obtaining a three-dimensional object precursor including a three-dimensional object and a support material is performed in a three-dimensional manner using a known hot-melt lamination type 3D printer except that the material of the support material is the soluble material for three-dimensional modeling. A step of obtaining a three-dimensional object precursor including a three-dimensional object and a support material in the object manufacturing method can be used.
 三次元物体の材料である造形材は、従来のFDM方式の三次元物体の製造方法で造形材として用いられる樹脂であれば特に限定なく用いることが出来る。当該造形材としては、ABS樹脂、ポリ乳酸樹脂、ポリカーボネート樹脂、12-ナイロン、6,6-ナイロン、6-ナイロン、ポリフェニルサルフォン樹脂、ポリエーテルエーテルケトン、及びポリエーテルイミド等の熱可塑性樹脂が例示でき、3Dプリンタによる造形性の観点からこれらの中でもABS樹脂及び/又はポリ乳酸樹脂がより好ましく、ABS樹脂が更に好ましい。 The modeling material that is the material of the three-dimensional object can be used without particular limitation as long as it is a resin that is used as a modeling material in a conventional FDM three-dimensional object manufacturing method. The molding material includes ABS resin, polylactic acid resin, polycarbonate resin, 12-nylon, 6,6-nylon, 6-nylon, polyphenylsulfone resin, polyetheretherketone, and polyetherimide. Among these, ABS resin and / or polylactic acid resin are more preferable, and ABS resin is more preferable from the viewpoint of the formability by a 3D printer.
〔三次元物体前駆体を中性水に接触させ、サポート材を除去するサポート材除去工程〕
 前記サポート材除去工程において、サポート材の除去は三次元物体前駆体を中性水に接触させることによって行われる。三次元物体前駆体を中性水に接触させる手法は、コストの観点、及び作業の容易さの観点から、三次元物体前駆体を中性水に浸漬させる手法が好ましい。サポート材の除去性を向上させる観点から、浸漬中に超音波を照射し、サポート材の溶解を促すこともできる。
[Support material removal process to remove the support material by bringing the three-dimensional object precursor into contact with neutral water]
In the support material removing step, the support material is removed by bringing the three-dimensional object precursor into contact with neutral water. The method of bringing the three-dimensional object precursor into contact with neutral water is preferably a method of immersing the three-dimensional object precursor in neutral water from the viewpoint of cost and ease of work. From the viewpoint of improving the removability of the support material, it is possible to promote the dissolution of the support material by irradiating ultrasonic waves during the immersion.
[中性水]
 前記中性水としては、イオン交換水、純水、水道水、工業用水が挙げられるが、経済性の観点からイオン交換水、水道水が好ましい。また、中性水は造形した三次元物体にダメージを与えない範囲で水溶性有機溶媒を含んでいてもよい。水溶性有機溶媒としては、メタノール、エタノール、2-プロパノールなどの低級アルコール類、プロピレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノターシャリーブチルエーテル、ジエチレングリコールモノブチルエーテルなどのグリコールエーテル類、アセトン、メチルエチルケトンなどのケトン類が挙げられる。中性水が前記水溶性有機溶媒を含む場合、溶解性と造形した三次元物体へのダメージ性の観点から中性水中の前記水溶性有機溶媒の含有量は0.1質量%以上が好ましく、0.5質量%以上がより好ましく、1質量%以上が更に好ましく、3質量%以上が更に好ましく、また、50%質量以下が好ましく、40%質量以下がより好ましく、30%質量以下が更に好ましく、20%質量以下がより更に好ましい。
[Neutral water]
Examples of the neutral water include ion-exchanged water, pure water, tap water, and industrial water, but ion-exchanged water and tap water are preferable from the viewpoint of economy. Moreover, the neutral water may contain the water-soluble organic solvent in the range which does not damage the shaped three-dimensional object. Examples of water-soluble organic solvents include lower alcohols such as methanol, ethanol and 2-propanol, glycol ethers such as propylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monotertiary butyl ether and diethylene glycol monobutyl ether, acetone and methyl ethyl ketone. And ketones. When the neutral water contains the water-soluble organic solvent, the content of the water-soluble organic solvent in the neutral water is preferably 0.1% by mass or more from the viewpoint of solubility and damage to the shaped three-dimensional object, 0.5% by mass or more is more preferable, 1% by mass or more is further preferable, 3% by mass or more is further preferable, 50% by mass or less is preferable, 40% by mass or less is more preferable, and 30% by mass or less is more preferable. 20% by mass or less is even more preferable.
 前記中性水の使用量は、サポート材の溶解性の観点から当該サポート材に対して10質量倍以上が好ましく、20質量倍以上がより好ましく、経済性の観点から当該サポート材に対して10000質量倍以下が好ましく、5000質量倍以下がより好ましく、1000質量倍以下が更に好ましく、100質量倍以下がより更に好ましい。 The amount of the neutral water used is preferably 10 times by mass or more, more preferably 20 times by mass or more with respect to the support material from the viewpoint of solubility of the support material, and 10,000 from the support material from the viewpoint of economy. The mass times or less are preferable, the 5000 mass times or less are more preferable, the 1000 mass times or less are more preferable, and the 100 mass times or less are more preferable.
 前記三次元造形用可溶性材料を中性水に接触させる時間は、サポート材の除去性の観点から5分以上が好ましく、長時間中性水を接触することによって三次元物体が受けるダメージを軽減する観点、及び経済性の観点から180分以下が好ましく、120分以下がより好ましく、90分以下が更に好ましい。洗浄温度は、モデル材の種類にもよるが、サポート材の除去性、三次元物体が受けるダメージを軽減する観点、及び経済性の観点から15℃以上が好ましく、25℃以上がより好ましく、30℃以上が更に好ましく、40℃以上がより更に好ましく、同様の観点から、85℃以下が好ましく、70℃以下がより好ましい。 The time for bringing the soluble material for 3D modeling into contact with neutral water is preferably 5 minutes or more from the viewpoint of the removability of the support material, and reducing damage to the 3D object by contacting with neutral water for a long time. From the viewpoint of viewpoint and economy, it is preferably 180 minutes or shorter, more preferably 120 minutes or shorter, and even more preferably 90 minutes or shorter. The cleaning temperature is preferably 15 ° C. or higher, more preferably 25 ° C. or higher, from the viewpoint of removal of the support material, reduction of damage to the three-dimensional object, and economy, although it depends on the type of model material. More preferably, the temperature is more preferably 40 ° C. or more, more preferably 40 ° C. or more, and from the same viewpoint, 85 ° C. or less is preferable, and 70 ° C. or less is more preferable.
<サポート材>
 本実施形態のサポート材は、熱溶融積層方式の3Dプリンタによって三次元物体を製造する際に、当該三次元物体を支持するサポート材であって、前記ポリアミド樹脂を含む。当該サポート材は、高湿度下に暴露された後に3Dプリンタによる三次元物体の製造に用いても発泡を抑制して三次元物体の精度低下を抑制することができ、かつ、中性水への溶解速度が大きく、強アルカリ水溶液を用いること無く三次元物体前駆体からサポート材を速やかに除去することができる。当該サポート材がこの様な効果を奏する理由は定かでないが、前記三次元造形用可溶性材料が前記効果を奏する理由と同様の理由が考えられる。
<Support material>
The support material of the present embodiment is a support material that supports a three-dimensional object when the three-dimensional object is manufactured by a hot melt lamination type 3D printer, and includes the polyamide resin. The support material can suppress foaming and suppress deterioration in accuracy of a three-dimensional object even when used for manufacturing a three-dimensional object by a 3D printer after being exposed to high humidity. The dissolution rate is high, and the support material can be quickly removed from the three-dimensional object precursor without using a strong alkaline aqueous solution. The reason why the support material has such an effect is not certain, but the same reason as the reason why the soluble material for three-dimensional modeling has the effect can be considered.
 上述した実施形態に関し、本明細書は更に以下の組成物、及び製造方法を開示する。 Regarding the above-described embodiment, the present specification further discloses the following composition and production method.
<1>熱溶融積層方式の3Dプリンタによって三次元物体を製造する際に、当該三次元物体を支持するサポート材の材料として用いられる三次元造形用可溶性材料であって、前記三次元造形用可溶性材料がポリアミド樹脂を含み、前記ポリアミド樹脂が、親水性基を有する親水性モノマーユニットA、疎水性ジカルボン酸モノマーユニットB、及び疎水性ジアミンモノマーユニットCを有し、前記ポリアミド樹脂中の全モノマーユニットの合計に対する前記親水性モノマーユニットAの割合が2.5mol%以上13.5mol%未満である、三次元造形用可溶性材料。
<2>前記親水性基が、第1級アミノ基、第2級アミノ基、第3級アミノ基、第4級アンモニウム塩基、オキシエチレン基、ヒドロキシル基、カルボキシル基、カルボキシル塩基、リン酸基、リン酸塩基、スルホン酸基、及びスルホン酸塩基からなる群より選ばれる少なくとも1種以上を含む、<1>に記載の三次元造形用可溶性材料。
<3>前記第2級アミノ基が、-NHR基(ただし、Rは直鎖又は分枝状の炭素数1以上14以下のアルキル基を示す。)で表される第2級アミノ基、及び-NH-基で表される第2級アミノ基からなる群より選ばれる少なくとも1種以上が好ましい、<2>に記載の三次元造形用可溶性材料。
<4>前記第3級アミノ基が、-NR基(ただし、Rは直鎖又は分枝状の炭素数1以上4以下のアルキル基を示し、Rは直鎖又は分枝状の炭素数1以上14以下のアルキル基を示す。)で表される第3級アミノ基、及び-NR-基(ただし、Rは直鎖又は分枝状の炭素数1以上4以下のアルキル基を示す。)で表される第3級アミノ基からなる群より選ばれる少なくとも1種以上が好ましい、<2>又は<3>に記載の三次元造形用可溶性材料。
<5>前記第4級アンモニウム塩基が、-N{R}・X(ただし、R、R、Rは、それぞれ独立に、水素原子又は炭素数1以上14以下のアルキル基を示し、Xは、ヒドロキシイオン、ハロゲンイオン、CHSO 又はCHCHSO を示す。)で表される第4級アンモニウム塩基からなる群より選ばれる少なくとも1種以上が好ましい、<2>~<4>いずれかに記載の三次元造形用可溶性材料。
<6>前記オキシエチレン基が、-{CHCHO}-(ただし、nは平均数を示し、1以上2500以下の数を示し、2以上1000以下が好ましく、3以上100以下がより好ましく、4以上50以下が更に好ましい。)で表されるオキシエチレン基、及び-{CHCHO}-R(ただし、mは平均数を示し、1以上2500以下の数を示し、2以上1000以下が好ましく、3以上100以下がより好ましく、4以上50以下が更に好ましい。Rは水素原子又は炭素数1以上10以下の直鎖若しくは分岐鎖のアルキル基を示し、2以上6以下がより好ましく、3以上5以下がさらに好ましい。)で表されるオキシエチレン基からなる群より選ばれる少なくとも1種以上が好ましい、<2>~<5>いずれかに記載の三次元造形用可溶性材料。
<7>前記カルボキシル塩基が、-COOM(ただし、Mはカルボキシル塩基を構成するカルボキシル基の対イオンを示し、中性水への溶解性の観点からナトリウムイオン、カリウムイオン、リチウムイオン、カルシウムイオン、マグネシウムイオン、アンモニウムイオン、バリウムイオン、及び亜鉛イオンからなる群より選ばれる少なくとも1種以上が好ましく、ナトリウムイオン、カリウムイオン、リチウムイオン、マグネシウムイオン、及びアンモニウムイオンからなる群より選ばれる少なくとも1種以上がより好ましく、ナトリウムイオン、及びカリウムイオンからなる群より選ばれる少なくとも1種以上が更に好ましく、ナトリウムイオンがより更に好ましい。)で表されるカルボキシル塩基が好ましい、<2>~<6>いずれかに記載の三次元造形用可溶性材料。
<8>前記リン酸塩基が、-PO 、-POHM、及び-PO(ただし、Mはリン酸塩基を構成するリン酸基の対イオンを示し、中性水への溶解性の観点からナトリウムイオン、カリウムイオン、リチウムイオン、カルシウムイオン、マグネシウムイオン、アンモニウムイオン、バリウムイオン、及び亜鉛イオンからなる群より選ばれる少なくとも1種以上が好ましく、ナトリウムイオン、カリウムイオン、リチウムイオン、マグネシウムイオン、及びアンモニウムイオンからなる群より選ばれる少なくとも1種以上がより好ましく、ナトリウムイオン、及びカリウムイオンからなる群より選ばれる少なくとも1種以上が更に好ましく、ナトリウムイオンがより更に好ましい。)で表されるリン酸塩基からなる群より選ばれる少なくとも1種以上が好ましい、<2>~<7>いずれかに記載の三次元造形用可溶性材料。
<9>前記スルホン酸塩基が、-SO(ただし、Mはスルホン酸塩基を構成するスルホン酸基の対イオンを示し、中性水への溶解性の観点からナトリウムイオン、カリウムイオン、リチウムイオン、カルシウムイオン、マグネシウムイオン、アンモニウムイオン、バリウムイオン、及び亜鉛イオンからなる群より選ばれる少なくとも1種以上が好ましく、ナトリウムイオン、カリウムイオン、リチウムイオン、マグネシウムイオン、及びアンモニウムイオンからなる群より選ばれる少なくとも1種以上がより好ましく、ナトリウムイオン、及びカリウムイオンからなる群より選ばれる少なくとも1種以上が更に好ましく、ナトリウムイオンがより更に好ましい。)で表されるスルホン酸塩基が好ましい、<2>~<8>いずれかに記載の三次元造形用可溶性材料。
<10>前記親水性モノマーユニットAを誘導するためのモノマーAが、カルボン酸、アミン、アミノ酸からなる群より選ばれる少なくとも1種以上が好ましく、カルボン酸がより好ましい、<1>~<9>いずれかに記載の三次元造形用可溶性材料。
<11>前記カルボン酸が、芳香族カルボン酸が好ましく、ヒドロキシ基含有芳香族ジカルボン酸、第1級アミノ基含有芳香族ジカルボン酸、スルホン酸基含有芳香族ジカルボン酸、及びスルホン酸塩基含有芳香族ジカルボン酸がより好ましく、5-ヒドロキシイソフタル酸、1,3,5-ベンゼントリカルボン酸、5-アミノイソフタル酸、5-スルホイソフタル酸、2-スルホテレフタル酸、及び4-スルホ-2,6-ナフタレンジカルボン酸からなる群より選ばれる少なくとも1種以上が更に好ましく、5-スルホイソフタル酸、及び2-スルホテレフタル酸からなる群より選ばれる少なくとも1種以上がより更に好ましく、5-スルホイソフタル酸がより更に好ましい、<10>に記載の三次元造形用可溶性材料。
<12>前記ポリアミド樹脂中の前記親水性基の含有量が、0.5mmol/g以上が好ましく、0.6mmol/g以上がより好ましく、0.7mmol/g以上が更に好ましく、1.0mmol/g未満が好ましく、0.8mmol/g以下がより好ましく、0.75mmol/g以下が更に好ましい、<1>~<11>いずれかに記載の三次元造形用可溶性材料。
<13>前記ポリアミド樹脂中の全モノマーユニットの物質量の合計に対する、前記親水性モノマーユニットAの物質量の割合が、2.5mol%以上であり、4mol%以上が好ましく、6mol%以上がより好ましく、8mol%以上が更に好ましく、10mol%以上がより更に好ましく、13.5mol%未満であり、11.5mol%以下が好ましく、10.0mol%以下がより好ましく、9.5mol%以下が更に好ましい、<1>~<12>いずれかに記載の三次元造形用可溶性材料。
<14>前記疎水性ジカルボン酸モノマーユニットBを誘導するためのジカルボン酸Bが、芳香族ジカルボン酸、脂肪族ジカルボン酸、及び脂環式ジカルボン酸からなる群より選ばれる少なくとも1種以上が好ましく、テレフタル酸、イソフタル酸、2,5-フランジカルボン酸、2,6-ナフタレンジカルボン酸、1,4-シクロヘキサンジカルボン酸、及び1,3-アダマンタンジカルボン酸からなる群より選ばれる少なくとも1種以上がより好ましく、テレフタル酸、2,5-フランジカルボン酸、及び2,6-ナフタレンジカルボン酸からなる群より選ばれる少なくとも1種以上が更に好ましく、テレフタル酸がより更に好ましい、<1>~<13>いずれかに記載の三次元造形用可溶性材料。
<15>前記ポリアミド樹脂中の全モノマーユニットの物質量の合計に対する、前記ポリアミド樹脂中の前記疎水性ジカルボン酸モノマーユニットBの物質量の割合が、10mol%以上が好ましく、20mol%以上がより好ましく、30mol%以上が更に好ましく、35mol%以上がより更に好ましく、40mol%以上がより更に好ましく、42mol%以上がより更に好ましく、47.5mol%以下が好ましく、45mol%以下がより好ましく、42mol%以下が更に好ましく、40mol%以下がより更に好ましく、10~47.5mol%が好ましく、20~45mol%がより好ましく、30~42mol%が更に好ましい、<1>~<14>いずれかに記載の三次元造形用可溶性材料。
<16>前記親水性モノマーユニットAと前記疎水性ジカルボン酸モノマーユニットBのmol比(前記親水性モノマーユニットA/前記疎水性ジカルボン酸モノマーユニットB)が、10/90以上が好ましく、15/85以上がより好ましく、18/82以上が更に好ましく、20/80以上がより更に好ましく、27/73未満が好ましく、25/75以下がより好ましく、21/79以下が更に好ましい、<1>~<15>いずれかに記載の三次元造形用可溶性材料。
<17>前記疎水性ジアミンモノマーユニットCを誘導するためのジアミンCが、脂肪族ジアミン、脂環式ジアミン、及び芳香族ジアミンからなる群より選ばれる少なくとも1種以上が好ましく、脂肪族ジアミンがより好ましい、<1>~<16>いずれかに記載の三次元造形用可溶性材料。
<18>前記疎水性ジアミンモノマーユニットCを誘導するためのジアミンCの炭素数が、2以上が好ましく、3以上がより好ましく、4以上が更に好ましく、20以下が好ましく、15以下がより好ましく、10以下が更に好ましい、<1>~<17>いずれかに記載の三次元造形用可溶性材料。
<19>前記脂肪族ジアミンが、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナンジアミン、デカンジアミンからなる群より選ばれる少なくとも1種以上が好ましく、ヘキサメチレンジアミンがより好ましい、<17>又は<18>に記載の三次元造形用可溶性材料。
<20>前記脂環式ジアミンが、4,4’-ジアミノ-3,3’-ジメチルジシクロヘキシルメタン、ジアミンシクロヘキサン、及びイソホロンジアミンからなる群より選ばれる少なくとも1種以上が好ましく、ジアミンシクロヘキサン、及びイソホロンジアミンからなる群より選ばれる少なくとも1種以上がより好ましく、ジアミンシクロヘキサンが更に好ましい、<17>~<19>いずれかに記載の三次元造形用可溶性材料。
<21>前記芳香族ジアミンが、フェニレンジアミン、ジエチルトルエンジアミン、及び4,4’-ジアミノジフェニルメタンからなる群より選ばれる少なくとも1種以上が好ましく、フェニレンジアミン、ジエチルトルエンジアミンからなる群より選ばれる少なくとも1種以上がより好ましく、フェニレンジアミンが更に好ましい、<17>~<20>いずれかに記載の三次元造形用可溶性材料。
<22>前記疎水性ジアミンモノマーユニットCを誘導するためのジアミンCが、ヘキサメチレンジアミン、ジアミンシクロヘキサン、フェニレンジアミンからなる群より選ばれる少なくとも1種以上が好ましく、ヘキサメチレンジアミン、フェニレンジアミンからなる群より選ばれる少なくとも1種以上がより好ましく、ヘキサメチレンジアミンが更に好ましい、<1>~<21>いずれかに記載の三次元造形用可溶性材料。
<23>前記疎水性ジアミンモノマーユニットCを誘導するためのジアミンCが、ヘキサメチレンジアミン、ジアミンシクロヘキサン、フェニレンジアミンからなる群より選ばれる少なくとも1種以上の場合、前記ポリアミド樹脂中の全ジアミンモノマーユニットの物質量の合計に対する、ヘキサメチレンジアミン、ジアミンシクロヘキサン、フェニレンジアミンの物質量の合計の割合が、50mol%以上が好ましく、70mol%以上がより好ましく、80mol%以上が更に好ましく、90mol%以上がより更に好ましく、実質的に100mol%がより更に好ましく、100mol%がより更に好ましい、<1>~<22>いずれかに記載の三次元造形用可溶性材料。
<24>前記ポリアミド樹脂が下記一般式(1)~(6)からなる群より選ばれる少なくとも1種以上が好ましい、<1>~<23>いずれかに記載の三次元造形用可溶性材料。
Figure JPOXMLDOC01-appb-C000007
(前記一般式(1)中、p1及びq1はそれぞれ重合度の数を表す。各重合はブロック結合及び/又はランダム結合であり、中性水への溶解性の観点からランダム結合がより好ましい。)
Figure JPOXMLDOC01-appb-C000008
(前記一般式(2)中、p2及びq2はそれぞれ重合度の数を表す。各重合はブロック結合及び/又はランダム結合であり、中性水への溶解性の観点からランダム結合がより好ましい。)
Figure JPOXMLDOC01-appb-C000009
(前記一般式(3)中、p3及びq3はそれぞれ重合度の数を表す。各重合はブロック結合及び/又はランダム結合であり、中性水への溶解性の観点からランダム結合がより好ましい。)
Figure JPOXMLDOC01-appb-C000010
(前記一般式(4)中、p4及びq4はそれぞれ重合度の数を表す。各重合はブロック結合及び/又はランダム結合であり、中性水への溶解性の観点からランダム結合がより好ましい。)
Figure JPOXMLDOC01-appb-C000011
(前記一般式(5)中、p5及びq5はそれぞれ重合度の数を表す。各重合はブロック結合及び/又はランダム結合であり、中性水への溶解性の観点からランダム結合がより好ましい。)
Figure JPOXMLDOC01-appb-C000012
(前記一般式(6)中、p6及びq6はそれぞれ重合度の数を表す。各重合はブロック結合及び/又はランダム結合であり、中性水への溶解性の観点からランダム結合がより好ましい。)
<25>前記ポリアミド樹脂の重量平均分子量が、3000以上が好ましく、3500以上がより好ましく、4000以上が更に好ましく、70000以下が好ましく、50000以下がより好ましく、30000以下が更に好ましく、20000以下がより更に好ましい、<1>~<24>いずれかに記載の三次元造形用可溶性材料。
<26>前記ポリアミド樹脂のガラス転移温度が、50℃以上が好ましく、60℃以上がより好ましく、70℃以上が更に好ましく、80℃以上がより更に好ましく、250℃以下が好ましく、220℃以下がより好ましい、<1>~<25>いずれかに記載の三次元造形用可溶性材料。
<27>前記三次元造形用可溶性材料中の前記ポリアミド樹脂の含有量が、30質量%以上が好ましく、50質量%以上がより好ましく、60質量%以上が更に好ましく、70質量%以上がより更に好ましく、80質量%以上がより更に好ましく、90質量%以上がより更に好ましく、95質量%以上がより更に好ましく、実質的に100質量%がより更に好ましく、100質量%がより更に好ましい、<1>~<26>いずれかに記載の三次元造形用可溶性材料。
<28>前記三次元造形用可溶性材料のガラス転移温度が、50℃以上が好ましく、60℃以上がより好ましく、70℃以上が更に好ましく、80℃以上がより更に好ましく、250℃以下が好ましく、220℃以下がより好ましい、<1>~<27>いずれかに記載の三次元造形用可溶性材料。
<29>前記三次元造形用可溶性材料の形状が、ペレット状、粉末状、フィラメント状からなる群より選ばれる少なくとも1種が好ましく、フィラメント状がより好ましい、<1>~<28>いずれかに記載の三次元造形用可溶性材料。
<30>前記三次元造形用可溶性材料の形状がフィラメント状である場合、当該フィラメントの直径が、0.5mm以上が好ましく、1.0mm以上がより好ましく、3.0mm以下が好ましく、2.0mm以下がより好ましく、1.8mm以下が更に好ましい、<1>~<29>いずれかに記載の三次元造形用可溶性材料。
<31>三次元物体及びサポート材を含む三次元物体前駆体を得る工程、及び当該三次元物体前駆体を中性水に接触させ、サポート材を除去するサポート材除去工程を有する熱溶融積層方式による三次元物体の製造方法であって、前記サポート材の材料が、<1>~<30>いずれかの三次元造形用可溶性材料である、三次元物体の製造方法。
<32>三次元物体の材料である造形材が、ABS樹脂、ポリ乳酸樹脂、ポリカーボネート樹脂、12-ナイロン、6,6-ナイロン、6-ナイロン、ポリフェニルサルフォン樹脂、ポリエーテルエーテルケトン、及びポリエーテルイミドからなる群より選ばれる少なくとも1種以上が好ましく、ABS樹脂及び/又はポリ乳酸樹脂がより好ましく、ABS樹脂が更に好ましい、<31>に記載の三次元物体の製造方法。
<33>前記三次元物体前駆体を中性水に浸漬し、前記サポート材を溶解させて除去するサポート材除去工程を含む、<31>又は<32>に記載の三次元物体の製造方法。
<34>前記中性水が水溶性有機溶媒を含有する、<33>に記載の三次元物体の製造方法。
<35>前記水溶性有機溶媒が、メタノール、エタノール、2-プロパノールなどの低級アルコール類、プロピレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノターシャリーブチルエーテル、ジエチレングリコールモノブチルエーテルなどのグリコールエーテル類、アセトン、メチルエチルケトンなどのケトン類からなる群より選ばれる少なくとも1種以上が好ましい、<34>に記載の三次元物体の製造方法。
<36>中性水中の前記水溶性有機溶媒の含有量が0.1質量%以上が好ましく、0.5質量%以上がより好ましく、1質量%以上が更に好ましく、3質量%以上が更に好ましく、50%質量以下が好ましく、40%質量以下がより好ましく、30%質量以下が更に好ましく、20%質量以下がより更に好ましい、<34>又は<35>に記載の三次元物体の製造方法。
<37>前記中性水の使用量が、前記サポート材に対して10質量倍以上が好ましく、20質量倍以上がより好ましく、前記サポート材に対して10000質量倍以下が好ましく、5000質量倍以下がより好ましく、1000質量倍以下が更に好ましく、100質量倍以下がより更に好ましい、<34>~<36>いずれかに記載の三次元物体の製造方法。
<38>熱溶融積層方式の3Dプリンタによって三次元物体を製造する際に、当該三次元物体を支持するサポート材であって、前記サポート材がポリアミド樹脂を含み、前記ポリアミド樹脂が、親水性基を有する親水性モノマーユニットA、疎水性ジカルボン酸モノマーユニットB、及び疎水性のジアミンモノマーユニットCを有し、前記ポリアミド樹脂中の全モノマーユニットの合計に対する前記親水性モノマーユニットAの割合が2.5mol%以上13.5mol%未満である、サポート材。
<39>前記ポリアミド樹脂が、<1>~<30>いずれかに記載の三次元造形用可溶性材料に用いられるポリアミド樹脂である、<38>に記載のサポート材。
<40>前記<1>~<30>のいずれかに記載の三次元造形用可溶性材料のサポート材の材料としての使用。
<1> A three-dimensional modeling soluble material used as a material of a support material for supporting a three-dimensional object when a three-dimensional object is manufactured by a hot melt lamination type 3D printer, The material includes a polyamide resin, and the polyamide resin has a hydrophilic monomer unit A having a hydrophilic group, a hydrophobic dicarboxylic acid monomer unit B, and a hydrophobic diamine monomer unit C, and all the monomer units in the polyamide resin The three-dimensional modeling soluble material, wherein the ratio of the hydrophilic monomer unit A to the total is 2.5 mol% or more and less than 13.5 mol%.
<2> The hydrophilic group is a primary amino group, a secondary amino group, a tertiary amino group, a quaternary ammonium base, an oxyethylene group, a hydroxyl group, a carboxyl group, a carboxyl base, a phosphate group, The soluble material for three-dimensional modeling according to <1>, comprising at least one selected from the group consisting of a phosphate group, a sulfonate group, and a sulfonate group.
<3> A secondary amino group in which the secondary amino group is represented by —NHR 1 group (wherein R 1 represents a linear or branched alkyl group having 1 to 14 carbon atoms). And at least one selected from the group consisting of secondary amino groups represented by —NH— groups, is preferably the soluble material for three-dimensional modeling according to <2>.
<4> The tertiary amino group is a —NR 2 R 3 group (wherein R 2 represents a linear or branched alkyl group having 1 to 4 carbon atoms, and R 3 represents a linear or branched group. And a —NR 4 — group (wherein R 4 is a linear or branched carbon group having 1 to 4 carbon atoms). The soluble material for three-dimensional modeling according to <2> or <3>, wherein at least one selected from the group consisting of a tertiary amino group represented by:
<5> The quaternary ammonium base is —N + {R 5 R 6 R 7 } · X (where R 5 , R 6 and R 7 are each independently a hydrogen atom or a carbon number of 1 or more and 14 X represents a hydroxy ion, a halogen ion, CH 3 SO 4 or CH 3 CH 2 SO 4 )), and at least selected from the group consisting of quaternary ammonium bases The soluble material for three-dimensional modeling according to any one of <2> to <4>, preferably one or more.
<6> The oxyethylene group is — {CH 2 CH 2 O} n — (where n represents an average number, represents a number of 1 to 2500, preferably 2 to 1000, preferably 3 to 100 More preferably 4 or more and 50 or less), and — {CH 2 CH 2 O} m —R 8 (where m represents an average number and 1 or more and 2500 or less). It is preferably 2 or more and 1000 or less, more preferably 3 or more and 100 or less, and still more preferably 4 or more and 50 or less, and R 8 represents a hydrogen atom or a linear or branched alkyl group having 1 to 10 carbon atoms. Or more, preferably 6 or less, more preferably 3 or more and 5 or less.) At least one selected from the group consisting of oxyethylene groups represented by the formula (2) to <5> is preferred. Three-dimensional modeling for the soluble material of the mounting.
<7> The carboxyl base is —COOM 1 (where M 1 represents a counter ion of the carboxyl group constituting the carboxyl base, and sodium ion, potassium ion, lithium ion, calcium from the viewpoint of solubility in neutral water) At least one selected from the group consisting of ions, magnesium ions, ammonium ions, barium ions, and zinc ions is preferred, and at least one selected from the group consisting of sodium ions, potassium ions, lithium ions, magnesium ions, and ammonium ions. More preferably, at least one selected from the group consisting of sodium ions and potassium ions is more preferable, and sodium ions are more preferable. <2> to <6> No Three-dimensional modeling for the soluble material according to any Re.
<8> The phosphate group is —PO 4 M 2 2 , —PO 4 HM 2 , or —PO 4 M 2 (where M 2 represents a counter ion of a phosphate group constituting the phosphate group, From the viewpoint of solubility in basic water, at least one selected from the group consisting of sodium ion, potassium ion, lithium ion, calcium ion, magnesium ion, ammonium ion, barium ion, and zinc ion is preferable. Sodium ion, potassium At least one selected from the group consisting of ions, lithium ions, magnesium ions, and ammonium ions is more preferable, at least one selected from the group consisting of sodium ions and potassium ions is more preferable, and sodium ions are even more preferable. Preferably). More least one preferably selected, <2> to <7> 3D modeling for soluble material as claimed in any one.
<9> The sulfonate group is —SO 3 M 3 (wherein M 3 represents a counter ion of a sulfonate group constituting the sulfonate group, and from the viewpoint of solubility in neutral water, sodium ion and potassium ion) And preferably at least one selected from the group consisting of lithium ions, calcium ions, magnesium ions, ammonium ions, barium ions, and zinc ions, and a group consisting of sodium ions, potassium ions, lithium ions, magnesium ions, and ammonium ions At least one selected from the group consisting of sodium ions and potassium ions is more preferable, and sodium ions are more preferable. Any of 2> to <8> Three-dimensional modeling for the soluble material described.
<10> The monomer A for deriving the hydrophilic monomer unit A is preferably at least one selected from the group consisting of carboxylic acid, amine and amino acid, more preferably carboxylic acid, <1> to <9> The soluble material for three-dimensional modeling according to any one of the above.
<11> The carboxylic acid is preferably an aromatic carboxylic acid, a hydroxy group-containing aromatic dicarboxylic acid, a primary amino group-containing aromatic dicarboxylic acid, a sulfonic acid group-containing aromatic dicarboxylic acid, and a sulfonate group-containing aromatic. More preferred are dicarboxylic acids, such as 5-hydroxyisophthalic acid, 1,3,5-benzenetricarboxylic acid, 5-aminoisophthalic acid, 5-sulfoisophthalic acid, 2-sulfoterephthalic acid, and 4-sulfo-2,6-naphthalene. At least one selected from the group consisting of dicarboxylic acids is more preferable, at least one selected from the group consisting of 5-sulfoisophthalic acid and 2-sulfoterephthalic acid is still more preferable, and 5-sulfoisophthalic acid is more preferable. More preferably, the soluble material for three-dimensional modeling according to <10>.
<12> The hydrophilic group content in the polyamide resin is preferably 0.5 mmol / g or more, more preferably 0.6 mmol / g or more, still more preferably 0.7 mmol / g or more, and 1.0 mmol / The soluble material for three-dimensional modeling according to any one of <1> to <11>, preferably less than g, more preferably 0.8 mmol / g or less, and still more preferably 0.75 mmol / g or less.
<13> The ratio of the substance amount of the hydrophilic monomer unit A to the total substance amount of all monomer units in the polyamide resin is 2.5 mol% or more, preferably 4 mol% or more, more preferably 6 mol% or more. Preferably, 8 mol% or more is more preferable, 10 mol% or more is more preferable, less than 13.5 mol%, 11.5 mol% or less is preferable, 10.0 mol% or less is more preferable, and 9.5 mol% or less is more preferable. <3> The soluble material for three-dimensional modeling according to any one of <1> to <12>.
<14> The dicarboxylic acid B for deriving the hydrophobic dicarboxylic acid monomer unit B is preferably at least one selected from the group consisting of aromatic dicarboxylic acids, aliphatic dicarboxylic acids, and alicyclic dicarboxylic acids, At least one selected from the group consisting of terephthalic acid, isophthalic acid, 2,5-furandicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, and 1,3-adamantanedicarboxylic acid is more Preferably, at least one selected from the group consisting of terephthalic acid, 2,5-furandicarboxylic acid, and 2,6-naphthalenedicarboxylic acid is more preferable, and terephthalic acid is still more preferable. Any of <1> to <13> The soluble material for three-dimensional modeling described in Crab.
<15> The ratio of the substance amount of the hydrophobic dicarboxylic acid monomer unit B in the polyamide resin to the total substance amount of all monomer units in the polyamide resin is preferably 10 mol% or more, more preferably 20 mol% or more. 30 mol% or more, more preferably 35 mol% or more, still more preferably 40 mol% or more, still more preferably 42 mol% or more, further preferably 47.5 mol% or less, more preferably 45 mol% or less, and 42 mol% or less. Is more preferably 40 mol% or less, more preferably 10 to 47.5 mol%, more preferably 20 to 45 mol%, still more preferably 30 to 42 mol%, <3> according to any one of <1> to <14> Soluble material for original modeling.
<16> The molar ratio of the hydrophilic monomer unit A to the hydrophobic dicarboxylic acid monomer unit B (the hydrophilic monomer unit A / the hydrophobic dicarboxylic acid monomer unit B) is preferably 10/90 or more, and 15/85 The above is more preferable, 18/82 or more is further preferable, 20/80 or more is more preferable, less than 27/73 is preferable, 25/75 or less is more preferable, and 21/79 or less is more preferable, <1> to <15> The soluble material for three-dimensional modeling according to any one of the above.
<17> The diamine C for deriving the hydrophobic diamine monomer unit C is preferably at least one selected from the group consisting of an aliphatic diamine, an alicyclic diamine, and an aromatic diamine, and more preferably an aliphatic diamine. The three-dimensional modeling soluble material according to any one of <1> to <16>.
<18> The carbon number of the diamine C for deriving the hydrophobic diamine monomer unit C is preferably 2 or more, more preferably 3 or more, still more preferably 4 or more, preferably 20 or less, more preferably 15 or less, The soluble material for three-dimensional modeling according to any one of <1> to <17>, further preferably 10 or less.
<19> The aliphatic diamine is at least one selected from the group consisting of ethylenediamine, trimethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonanediamine, and decanediamine. The soluble material for three-dimensional modeling according to <17> or <18>, wherein hexamethylenediamine is more preferable.
<20> The alicyclic diamine is preferably at least one selected from the group consisting of 4,4′-diamino-3,3′-dimethyldicyclohexylmethane, diaminecyclohexane and isophoronediamine, and diaminecyclohexane and isophorone. The soluble material for three-dimensional modeling according to any one of <17> to <19>, wherein at least one selected from the group consisting of diamines is more preferable, and diaminecyclohexane is more preferable.
<21> The aromatic diamine is preferably at least one selected from the group consisting of phenylenediamine, diethyltoluenediamine, and 4,4′-diaminodiphenylmethane, and at least selected from the group consisting of phenylenediamine and diethyltoluenediamine. The soluble material for three-dimensional modeling according to any one of <17> to <20>, wherein one or more are more preferable, and phenylenediamine is more preferable.
<22> The diamine C for deriving the hydrophobic diamine monomer unit C is preferably at least one selected from the group consisting of hexamethylene diamine, diamine cyclohexane and phenylene diamine, and a group consisting of hexamethylene diamine and phenylene diamine. The soluble material for three-dimensional modeling according to any one of <1> to <21>, wherein at least one selected from the above is more preferable, and hexamethylenediamine is further preferable.
<23> When the diamine C for deriving the hydrophobic diamine monomer unit C is at least one selected from the group consisting of hexamethylene diamine, diamine cyclohexane and phenylene diamine, all diamine monomer units in the polyamide resin The ratio of the total amount of hexamethylenediamine, diaminecyclohexane, and phenylenediamine to the total amount of these is preferably 50 mol% or more, more preferably 70 mol% or more, still more preferably 80 mol% or more, and more preferably 90 mol% or more. More preferably, the soluble material for three-dimensional modeling according to any one of <1> to <22>, which is substantially more preferably 100 mol%, still more preferably 100 mol%.
<24> The three-dimensional modeling soluble material according to any one of <1> to <23>, wherein the polyamide resin is preferably at least one selected from the group consisting of the following general formulas (1) to (6).
Figure JPOXMLDOC01-appb-C000007
(In the general formula (1), p1 and q1 each represent the number of polymerization degrees. Each polymerization is a block bond and / or a random bond, and a random bond is more preferable from the viewpoint of solubility in neutral water. )
Figure JPOXMLDOC01-appb-C000008
(In the general formula (2), p2 and q2 each represent the number of polymerization degrees. Each polymerization is a block bond and / or a random bond, and a random bond is more preferable from the viewpoint of solubility in neutral water. )
Figure JPOXMLDOC01-appb-C000009
(In the general formula (3), p3 and q3 each represent the number of polymerization degrees. Each polymerization is a block bond and / or a random bond, and a random bond is more preferable from the viewpoint of solubility in neutral water. )
Figure JPOXMLDOC01-appb-C000010
(In the general formula (4), p4 and q4 each represent the number of polymerization degrees. Each polymerization is a block bond and / or a random bond, and a random bond is more preferable from the viewpoint of solubility in neutral water. )
Figure JPOXMLDOC01-appb-C000011
(In the general formula (5), p5 and q5 each represent the number of polymerization degrees. Each polymerization is a block bond and / or a random bond, and a random bond is more preferable from the viewpoint of solubility in neutral water. )
Figure JPOXMLDOC01-appb-C000012
(In the general formula (6), p6 and q6 each represent the number of polymerization degrees. Each polymerization is a block bond and / or a random bond, and a random bond is more preferable from the viewpoint of solubility in neutral water. )
<25> The weight average molecular weight of the polyamide resin is preferably 3000 or more, more preferably 3500 or more, further preferably 4000 or more, preferably 70000 or less, more preferably 50000 or less, still more preferably 30000 or less, and more preferably 20000 or less. More preferably, the soluble material for three-dimensional modeling according to any one of <1> to <24>.
<26> The glass transition temperature of the polyamide resin is preferably 50 ° C. or higher, more preferably 60 ° C. or higher, still more preferably 70 ° C. or higher, still more preferably 80 ° C. or higher, preferably 250 ° C. or lower, and 220 ° C. or lower. More preferably, the soluble material for three-dimensional modeling according to any one of <1> to <25>.
<27> The content of the polyamide resin in the three-dimensional modeling soluble material is preferably 30% by mass or more, more preferably 50% by mass or more, still more preferably 60% by mass or more, and even more preferably 70% by mass or more. Preferably, 80% by mass or more is more preferable, 90% by mass or more is further preferable, 95% by mass or more is further preferable, substantially 100% by mass is further more preferable, and 100% by mass is further more preferable, <1 The soluble material for three-dimensional modeling according to any one of> to <26>.
<28> The glass transition temperature of the three-dimensional modeling soluble material is preferably 50 ° C or higher, more preferably 60 ° C or higher, still more preferably 70 ° C or higher, still more preferably 80 ° C or higher, and preferably 250 ° C or lower, The soluble material for three-dimensional modeling according to any one of <1> to <27>, wherein 220 ° C. or lower is more preferable.
<29> The shape of the three-dimensional modeling soluble material is preferably at least one selected from the group consisting of pellets, powders, and filaments, more preferably filaments, <1> to <28> The soluble material for 3D modeling described.
<30> When the shape of the three-dimensional modeling soluble material is a filament, the filament has a diameter of preferably 0.5 mm or more, more preferably 1.0 mm or more, preferably 3.0 mm or less, 2.0 mm The soluble material for three-dimensional modeling according to any one of <1> to <29>, wherein the following is more preferable and 1.8 mm or less is further preferable.
<31> A hot melt lamination method having a step of obtaining a three-dimensional object precursor including a three-dimensional object and a support material, and a support material removing step of bringing the three-dimensional object precursor into contact with neutral water and removing the support material The method for manufacturing a three-dimensional object according to claim 1, wherein the material of the support material is any one of the soluble materials for three-dimensional modeling <1> to <30>.
<32> A modeling material which is a material of a three-dimensional object is ABS resin, polylactic acid resin, polycarbonate resin, 12-nylon, 6,6-nylon, 6-nylon, polyphenylsulfone resin, polyetheretherketone, and The method for producing a three-dimensional object according to <31>, wherein at least one selected from the group consisting of polyetherimide is preferable, ABS resin and / or polylactic acid resin is more preferable, and ABS resin is more preferable.
<33> The method for producing a three-dimensional object according to <31> or <32>, comprising a support material removing step of immersing the three-dimensional object precursor in neutral water and dissolving and removing the support material.
<34> The method for producing a three-dimensional object according to <33>, wherein the neutral water contains a water-soluble organic solvent.
<35> The water-soluble organic solvent is a lower alcohol such as methanol, ethanol, 2-propanol, glycol ethers such as propylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monotertiary butyl ether, diethylene glycol monobutyl ether, The method for producing a three-dimensional object according to <34>, wherein at least one selected from the group consisting of ketones such as acetone and methyl ethyl ketone is preferred.
<36> The content of the water-soluble organic solvent in the neutral water is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, further preferably 1% by mass or more, and further preferably 3% by mass or more. The method for producing a three-dimensional object according to <34> or <35>, wherein 50% by mass or less is preferable, 40% by mass or less is more preferable, 30% by mass or less is more preferable, and 20% by mass or less is even more preferable.
<37> The amount of the neutral water used is preferably 10 times by mass or more, more preferably 20 times by mass or more, more preferably 10,000 times by mass or less, and preferably 5000 times by mass or less with respect to the support material. The method for producing a three-dimensional object according to any one of <34> to <36>, wherein is more preferably 1000 times by mass or less, and still more preferably 100 times by mass or less.
<38> A support material that supports a three-dimensional object when a three-dimensional object is manufactured by a hot melt lamination type 3D printer, the support material including a polyamide resin, and the polyamide resin is a hydrophilic group The hydrophilic monomer unit A, the hydrophobic dicarboxylic acid monomer unit B, and the hydrophobic diamine monomer unit C are included, and the ratio of the hydrophilic monomer unit A to the total of all monomer units in the polyamide resin is 2. The support material which is 5 mol% or more and less than 13.5 mol%.
<39> The support material according to <38>, wherein the polyamide resin is a polyamide resin used for the three-dimensional modeling soluble material according to any one of <1> to <30>.
<40> Use of the soluble material for three-dimensional modeling according to any one of <1> to <30> as a support material.
<分析方法>
〔ポリアミド樹脂の親水性のモノマー組成、疎水性のジカルボン酸組成、疎水性のジアミン組成〕
 Agilent社製NMR、MR400を用いたプロトンNMR測定により、親水性のモノマーユニット、疎水性のジカルボン酸モノマーユニットの組成、及び疎水性のジアミンモノマーユニットの組成を求めた。
<Analysis method>
[Polyamide resin hydrophilic monomer composition, hydrophobic dicarboxylic acid composition, hydrophobic diamine composition]
The composition of the hydrophilic monomer unit, the hydrophobic dicarboxylic acid monomer unit, and the composition of the hydrophobic diamine monomer unit were determined by proton NMR measurement using NMR and MR400 manufactured by Agilent.
〔ポリアミド樹脂の親水性のモノマー量〕
 前記分析方法で求めた親水性モノマーユニットの組成からポリアミド中の親水性モノマー量(mmol/g)を下式に従い算出した。但し、全ジカルボン酸モノマーユニットのmol数と全アミンモノマーユニットのmol数は等しいと仮定した。
 親水性のモノマー量(mmol/g)=A×1000/(A×Ms+B×Mc+C×Ma-2×18.0×50)
・A:親水性のモノマーの割合(mol%)
・B:疎水性のジカルボン酸モノマーの割合(mol%)
・C:疎水性のジアミンモノマーの割合(mol%)
・Ms:親水性のモノマーの分子量
・Mc:親水性のモノマー以外の疎水性のジカルボン酸の分子量(ただし、当該ジカルボン酸種が複数の場合は数平均分子量)
・Ma:親水性のモノマー以外の疎水性のジアミンの分子量(ただし、ジアミン種が複数の場合は数平均分子量)
[Amount of hydrophilic monomer of polyamide resin]
The hydrophilic monomer amount (mmol / g) in the polyamide was calculated from the composition of the hydrophilic monomer unit determined by the analysis method according to the following formula. However, the number of moles of all dicarboxylic acid monomer units and the number of moles of all amine monomer units were assumed to be equal.
Hydrophilic monomer amount (mmol / g) = A × 1000 / (A × Ms + B × Mc + C × Ma−2 × 18.0 × 50)
A: Ratio of hydrophilic monomer (mol%)
B: Ratio of hydrophobic dicarboxylic acid monomer (mol%)
C: Ratio of hydrophobic diamine monomer (mol%)
Ms: molecular weight of hydrophilic monomer Mc: molecular weight of hydrophobic dicarboxylic acid other than hydrophilic monomer (however, when there are a plurality of dicarboxylic acid species, number average molecular weight)
Ma: Molecular weight of a hydrophobic diamine other than a hydrophilic monomer (however, when there are a plurality of diamine species, the number average molecular weight)
〔ポリアミド樹脂中の親水性基の量〕
 前記方法により求めたポリアミド樹脂の組成から、ポリアミド樹脂中の親水性基の量(単位:mmol/g)を求めた。
[Amount of hydrophilic group in polyamide resin]
The amount (unit: mmol / g) of hydrophilic groups in the polyamide resin was determined from the composition of the polyamide resin determined by the above method.
〔ポリアミド樹脂の重量平均分子量及び分子量分布〕
 ポリアミド樹脂10mgをHFIP(1,1,1,3,3,3-Hexafluoro-2-propanol 和光純薬製)3gに8時間溶解させ、下記条件に従って、ゲル浸透クロマトグラフィー(GPC)により測定した。
・測定装置:HLC-8320GPC(TOSOH製)
・溶離液:HFIP/0.5mMトリフルオロ酢酸ナトリウム
・流量:0.2mL/min
・測定温度:40℃
・分析カラム:TSK-Gel Super AWM-H(TOSOH製)
・検量線:ShodexSTANDARD M-75
・標準物質:ポリメチルメタクリレート(PMMA)
[Weight average molecular weight and molecular weight distribution of polyamide resin]
10 mg of polyamide resin was dissolved in 3 g of HFIP (1,1,1,3,3,3-Hexafluoro-2-propanol manufactured by Wako Pure Chemical Industries, Ltd.) for 8 hours and measured by gel permeation chromatography (GPC) according to the following conditions.
・ Measurement device: HLC-8320GPC (manufactured by TOSOH)
Eluent: HFIP / 0.5 mM sodium trifluoroacetate Flow rate: 0.2 mL / min
・ Measurement temperature: 40 ℃
・ Analytical column: TSK-Gel Super AWM-H (manufactured by TOSOH)
-Calibration curve: ShodexSTANDARD M-75
・ Standard material: Polymethylmethacrylate (PMMA)
〔ポリアミド樹脂のガラス転移温度〕
 5~10mgの試料をアルミパンに精秤して封入し、示差走査熱量分析装置「DSC装置(セイコーインスツル株式会社製DSC7020)を用いて、30℃から350℃まで10℃/minで昇温させた後、急速に30℃まで冷却した。再び10℃/minで350℃まで昇温させて得られたDSC曲線より、ガラス転移温度(℃)、融点(℃)、結晶化温度(℃)を求めた。
[Glass transition temperature of polyamide resin]
A sample of 5 to 10 mg is precisely weighed and sealed in an aluminum pan, and the temperature is increased from 30 ° C. to 350 ° C. at 10 ° C./min using a differential scanning calorimeter “DSC device (DSC7020 manufactured by Seiko Instruments Inc.). And then rapidly cooled to 30 ° C. From the DSC curve obtained by raising the temperature again to 350 ° C. at 10 ° C./min, the glass transition temperature (° C.), melting point (° C.), crystallization temperature (° C.) Asked.
<ポリアミド樹脂の合成>
〔合成例1〕(化合物1)
 温度計、撹拌羽を備えた内容量100ミリリットルのガラス製反応器にテレフタル酸1.66g、5-スルホイソフタル酸一ナトリウム4.36g、ヘキサメチレンジアミン3.05g、4-メチルモルホリン5.31g、N-メチルピロリドン50g、を仕込み、0℃まで降温した。ついで、4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド16.7gを加え、0℃で保持し、大気中6時間撹拌を継続した。撹拌後、DMF/メタノール混合溶液に注ぎ、ポリマーを沈殿させた。ポリマーを濾別し、60℃減圧乾燥して、白色固体(化合物1)を得た。
<Synthesis of polyamide resin>
[Synthesis Example 1] (Compound 1)
A glass reactor equipped with a thermometer and stirring blades and having an internal volume of 100 ml was charged with 1.66 g of terephthalic acid, 4.36 g of monosodium 5-sulfoisophthalate, 3.05 g of hexamethylenediamine, 5.31 g of 4-methylmorpholine, N-methylpyrrolidone (50 g) was charged, and the temperature was lowered to 0 ° C. Next, 16.7 g of 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride was added and maintained at 0 ° C., and stirring was continued for 6 hours in the atmosphere. did. After stirring, the mixture was poured into a DMF / methanol mixed solution to precipitate the polymer. The polymer was filtered off and dried under reduced pressure at 60 ° C. to obtain a white solid (Compound 1).
〔合成例2〕(化合物2)
 合成例1においてテレフタル酸を2.49g、5-スルホイソフタル酸一ナトリウム3.11g、ヘキサメチレンジアミン3.09g、4-メチルモルホリン5.38gに、4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド量を16.9gに変更する以外は合成例1と同様にして化合物2を得た。
[Synthesis Example 2] (Compound 2)
In Synthesis Example 1, 2.49 g of terephthalic acid, 3.11 g of monosodium 5-sulfoisophthalate, 3.09 g of hexamethylenediamine, 5.38 g of 4-methylmorpholine, 4- (4,6-dimethoxy-1,3 , 5-Triazin-2-yl) -4-methylmorpholinium chloride was obtained in the same manner as in Synthesis Example 1 except that the amount was changed to 16.9 g.
〔合成例3〕(化合物3)
 合成例1においてテレフタル酸を3.32g、5-スルホイソフタル酸一ナトリウム2.03g、ヘキサメチレンジアミン3.20g、4-メチルモルホリン5.58gに、4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド量を17.5gに変更する以外は合成例1と同様にして化合物3を得た。
[Synthesis Example 3] (Compound 3)
In Synthesis Example 1, 3.32 g of terephthalic acid, 2.03 g of monosodium 5-sulfoisophthalate, 3.20 g of hexamethylenediamine, 5.58 g of 4-methylmorpholine, 4- (4,6-dimethoxy-1,3 , 5-Triazin-2-yl) -4-methylmorpholinium chloride was obtained in the same manner as in Synthesis Example 1 except that the amount was changed to 17.5 g.
〔合成例4〕(化合物4)
 合成例1においてテレフタル酸を2.41g、5-スルホイソフタル酸一ナトリウム1.46g、ヘキサメチレンジアミン2.32g、4-メチルモルホリン4.04gに、4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド量を13.8gに変更する以外は合成例1と同様にして化合物4を得た。
[Synthesis Example 4] (Compound 4)
In Synthesis Example 1, 2.41 g of terephthalic acid, 1.46 g of monosodium 5-sulfoisophthalate, 2.32 g of hexamethylenediamine, 4.04 g of 4-methylmorpholine, 4- (4,6-dimethoxy-1,3 , 5-Triazin-2-yl) -4-methylmorpholinium chloride was obtained in the same manner as in Synthesis Example 1 except that the amount was changed to 13.8 g.
〔合成例5〕(化合物5)
 合成例1においてテレフタル酸を1.16g、イソフタル酸を1.16g、5-スルホイソフタル酸一ナトリウム1.61g、ヘキサメチレンジアミン2.32g、4-メチルモルホリン4.04gに、4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド量を13.8gに変更する以外は合成例1と同様にして化合物5を得た。
[Synthesis Example 5] (Compound 5)
In Synthesis Example 1, 1.16 g of terephthalic acid, 1.16 g of isophthalic acid, 1.61 g of monosodium 5-sulfoisophthalate, 2.32 g of hexamethylenediamine, 4.04 g of 4-methylmorpholine, 4- (4, Compound 5 was obtained in the same manner as in Synthesis Example 1 except that the amount of 6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride was changed to 13.8 g.
 合成例1~5で得られたポリアミド化合物1~5について、ジカルボン酸組成、ジオール組成、スルホン酸塩基量、重量平均分子量(Mw)、ガラス転移温度(℃)、融点(℃)、結晶化温度(℃)を前記分析方法により求めた。測定結果を表1に示す。なお、表1中、SIP(mol%)は全ジカルボン酸モノマーユニット中の5-スルホイソフタル酸モノマーユニットの割合(mol%)、TPA(mol%)は全ジカルボン酸モノマーユニット中のテレフタル酸モノマーユニットの割合(mol%)、IPA(mol%)は全ジカルボン酸モノマーユニット中のイソフタル酸モノマーユニットの割合(mol%)、HMDA(mol%)は全ジアミンモノマーユニット中のヘキサメチレンジアミンモノマーユニットの割合(mol%)、スルホン酸基量(mmol/g)はポリアミド中のスルホン酸塩基の量(mmol/g)を示す。また、表1中、Tgはガラス転移温度、Tcは結晶化温度を意味する。 For the polyamide compounds 1 to 5 obtained in Synthesis Examples 1 to 5, the dicarboxylic acid composition, the diol composition, the amount of sulfonate group, the weight average molecular weight (Mw), the glass transition temperature (° C.), the melting point (° C.), the crystallization temperature (° C.) was determined by the analysis method. The measurement results are shown in Table 1. In Table 1, SIP (mol%) is the ratio (mol%) of 5-sulfoisophthalic acid monomer units in all dicarboxylic acid monomer units, and TPA (mol%) is terephthalic acid monomer units in all dicarboxylic acid monomer units. Ratio (mol%), IPA (mol%) is the ratio (mol%) of isophthalic acid monomer units in all dicarboxylic acid monomer units, and HMDA (mol%) is the ratio of hexamethylenediamine monomer units in all diamine monomer units. (Mol%) and the amount of sulfonic acid group (mmol / g) indicate the amount of sulfonic acid group (mmol / g) in the polyamide. In Table 1, Tg means glass transition temperature and Tc means crystallization temperature.
<実施例及び比較例>
〔性能評価方法〕
[中性水への溶解性]
 コーヒーミル(大阪ケミカル株式会社製 Mini Blender)にて粉砕(粉砕時間は120秒)したポリマー粉末0.25gを70℃のイオン交換水(pH7)の量5gに分散させ、10分間静置した。溶け残ったポリマーを減圧濾過により濾別(アドバンテック社製、濾紙No.2/70mm)し、少量のイオン交換水で洗浄した後、乾燥した。溶け残ったポリマーの乾燥質量を測定し、下記式により溶解率を算出した。
 溶解率(%)=(溶解前のポリマー質量-溶け残ったポリマー質量)/溶解前のポリマー質量×100
<Examples and Comparative Examples>
[Performance evaluation method]
[Solubility in neutral water]
0.25 g of polymer powder pulverized with a coffee mill (Mini Blender manufactured by Osaka Chemical Co., Ltd.) (pulverization time was 120 seconds) was dispersed in 5 g of ion-exchanged water (pH 7) at 70 ° C. and allowed to stand for 10 minutes. The undissolved polymer was filtered off under reduced pressure (advantech, filter paper No. 2/70 mm), washed with a small amount of ion-exchanged water, and dried. The dry mass of the undissolved polymer was measured, and the dissolution rate was calculated by the following formula.
Dissolution rate (%) = (polymer mass before dissolution−polymer mass remaining undissolved) / polymer mass before dissolution × 100
[吸湿性]
 上記と同様の方法で粉砕したポリマー粉末約2gを80℃で3時間、真空乾燥した後、シャーレに精秤し、25℃、98%RHの恒湿槽に放置した。24時間後、質量測定を行い、下記式により、吸湿率を算出した。
 吸湿率(%)=(放置後のポリマー質量―放置前ポリマー質量)/放置前のポリマー質量×100
[Hygroscopicity]
About 2 g of the polymer powder pulverized by the same method as above was vacuum-dried at 80 ° C. for 3 hours, precisely weighed in a petri dish, and left in a constant humidity chamber at 25 ° C. and 98% RH. After 24 hours, mass measurement was performed, and the moisture absorption rate was calculated by the following formula.
Moisture absorption (%) = (polymer weight after standing-polymer weight before standing) / polymer weight before standing × 100
[熱による発泡]
 上記と同様の方法で粉砕したポリマー粉末約2gを80℃で3時間、真空乾燥した後、シャーレに精秤し、25℃、98%RHの恒湿槽に放置した。24時間後、280℃のホットプレート(アズワン社製ND-1)上に置き、発泡の有無を観察した。
[Foaming by heat]
About 2 g of the polymer powder pulverized by the same method as above was vacuum-dried at 80 ° C. for 3 hours, precisely weighed in a petri dish, and left in a constant humidity chamber at 25 ° C. and 98% RH. After 24 hours, the sample was placed on a hot plate at 280 ° C. (ND-1 manufactured by ASONE), and the presence or absence of foaming was observed.
〔実施例1~3及び比較例1~5〕
 前記合成例で得られたポリアミド化合物1~5、及び下記市販のサポート材1~3について、前記分析方法で中性水への溶解性、及び吸湿性を評価した。分析結果を表1に示す。なお、表1中の市販品1~3はそれぞれ下記のとおりである。
・市販品1:Soluble Support Material SR-30(登録商標)、メタクリル酸/スチレン/メタクリル酸ブチル:45/34/21質量%の共重合体(Stratasys社製、組成はプロトンNMR(DMSO-d6)で解析、重量平均分子量:130000、ガラス転移温度:113℃、添加剤:エポキシ基含有ポリマー)
・市販品2:Natural PVA/1.75mmポリビニルアルコール(ケンビル社製、数平均分子量30000、ガラス転移温度:80℃)
・市販品3:Soluble Support Material P400SR(登録商標)、メタクリル酸/メタクリル酸メチル:55/45質量%の共重合体(Stratasys社製、組成はプロトンNMR(DMSO-d6)で解析、重量平均分子量:130000、ガラス転移温度:100℃、可塑剤:リン酸トリフェニル等含有)
[Examples 1 to 3 and Comparative Examples 1 to 5]
With respect to the polyamide compounds 1 to 5 obtained in the synthesis examples described above and the following commercially available support materials 1 to 3, the solubility in neutral water and the hygroscopicity were evaluated by the analysis method. The analysis results are shown in Table 1. The commercial products 1 to 3 in Table 1 are as follows.
Commercial product 1: Soluble Support Material SR-30 (registered trademark), methacrylic acid / styrene / butyl methacrylate: 45/34/21% by weight copolymer (manufactured by Stratasys, composition is proton NMR (DMSO-d6)) Analysis, weight average molecular weight: 130000, glass transition temperature: 113 ° C., additive: epoxy group-containing polymer)
-Commercial product 2: Natural PVA / 1.75 mm polyvinyl alcohol (manufactured by Kenville, number average molecular weight 30000, glass transition temperature: 80 ° C.)
-Commercial product 3: Soluble Support Material P400SR (registered trademark), methacrylic acid / methyl methacrylate: 55/45% by weight copolymer (manufactured by Stratasys, composition is analyzed by proton NMR (DMSO-d6), weight average molecular weight : 130000, glass transition temperature: 100 ° C., plasticizer: containing triphenyl phosphate, etc.)
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013

Claims (13)

  1.  熱溶融積層方式の3Dプリンタによって三次元物体を製造する際に、当該三次元物体を支持するサポート材の材料として用いられる三次元造形用可溶性材料であって、
     前記三次元造形用可溶性材料がポリアミド樹脂を含み、
     前記ポリアミド樹脂が、親水性基を有する親水性モノマーユニットA、疎水性ジカルボン酸モノマーユニットB、及び疎水性ジアミンモノマーユニットCを有し、
     前記ポリアミド樹脂中の全モノマーユニットの合計に対する前記親水性モノマーユニットAの割合が2.5mol%以上13.5mol%未満である、三次元造形用可溶性材料。
    When manufacturing a three-dimensional object by a hot melt lamination type 3D printer, a soluble material for three-dimensional modeling used as a material of a support material for supporting the three-dimensional object,
    The three-dimensional modeling soluble material includes a polyamide resin,
    The polyamide resin has a hydrophilic monomer unit A having a hydrophilic group, a hydrophobic dicarboxylic acid monomer unit B, and a hydrophobic diamine monomer unit C;
    The soluble material for three-dimensional modeling, wherein the ratio of the hydrophilic monomer unit A to the total of all monomer units in the polyamide resin is 2.5 mol% or more and less than 13.5 mol%.
  2.  前記親水性基が、第1級アミノ基、第2級アミノ基、第3級アミノ基、第4級アンモニウム塩基、オキシエチレン基、ヒドロキシル基、カルボキシル基、カルボキシル塩基、リン酸基、リン酸塩基、スルホン酸基、及びスルホン酸塩基からなる群より選ばれる少なくとも1種以上を含む、請求項1に記載の三次元造形用可溶性材料。 The hydrophilic group is a primary amino group, a secondary amino group, a tertiary amino group, a quaternary ammonium base, an oxyethylene group, a hydroxyl group, a carboxyl group, a carboxyl group, a phosphate group, or a phosphate group. The soluble material for three-dimensional modeling according to claim 1, comprising at least one selected from the group consisting of sulfonic acid groups and sulfonic acid groups.
  3.  前記スルホン酸塩基を構成するスルホン酸基の対イオンが、ナトリウムイオン、カリウムイオン、リチウムイオン、マグネシウムイオン、カルシウムイオン、バリウムイオン、亜鉛イオン及びアンモニウムイオンからなる群より選ばれる少なくとも1種以上である、請求項2に記載の三次元造形用可溶性材料。 The sulfonate group counter ion constituting the sulfonate group is at least one selected from the group consisting of sodium ion, potassium ion, lithium ion, magnesium ion, calcium ion, barium ion, zinc ion and ammonium ion. The three-dimensional modeling soluble material according to claim 2.
  4.  前記親水性モノマーユニットAを誘導するためのモノマーAが、5-スルホイソフタル酸、及び2-スルホテレフタル酸からなる群より選ばれる少なくとも1種以上である、請求項1~3いずれか1項に記載の三次元造形用可溶性材料。 The monomer A for deriving the hydrophilic monomer unit A is at least one selected from the group consisting of 5-sulfoisophthalic acid and 2-sulfoterephthalic acid. The soluble material for 3D modeling described.
  5.  前記疎水性ジカルボン酸モノマーユニットBを誘導するためのジカルボン酸Bが、芳香族ジカルボン酸、及び脂環式ジカルボン酸からなる群より選ばれる少なくとも1種以上を含む、請求項1~4いずれか1項に記載の三次元造形用可溶性材料。 The dicarboxylic acid B for deriving the hydrophobic dicarboxylic acid monomer unit B includes at least one selected from the group consisting of an aromatic dicarboxylic acid and an alicyclic dicarboxylic acid. The soluble material for three-dimensional modeling described in the item.
  6.  前記ポリアミド樹脂中の前記親水性基の含有量が0.5mmol/g以上1.0mmol/g未満である、請求項1~5いずれか1項に記載の三次元造形用可溶性材料。 The three-dimensional modeling soluble material according to any one of claims 1 to 5, wherein the content of the hydrophilic group in the polyamide resin is 0.5 mmol / g or more and less than 1.0 mmol / g.
  7.  前記疎水性ジアミンモノマーユニットCを誘導するためのジアミンCの炭素数が2~20である、請求項1~6いずれか1項に記載の三次元造形用可溶性材料。 The soluble material for three-dimensional modeling according to any one of claims 1 to 6, wherein the diamine C for inducing the hydrophobic diamine monomer unit C has 2 to 20 carbon atoms.
  8.  前記ポリアミド樹脂の重量平均分子量が3000~70000である、請求項1~7いずれか1項に記載の三次元造形用可溶性材料。 The soluble material for three-dimensional modeling according to any one of claims 1 to 7, wherein the polyamide resin has a weight average molecular weight of 3000 to 70000.
  9.  形状がフィラメント状である、請求項1~8いずれか1項に記載の三次元造形用可溶性材料。 The soluble material for three-dimensional modeling according to any one of claims 1 to 8, wherein the shape is a filament.
  10.  フィラメントの直径が、0.5~3.0mmである、請求項9に記載の三次元造形用可溶性材料。 The soluble material for three-dimensional modeling according to claim 9, wherein the filament has a diameter of 0.5 to 3.0 mm.
  11.  三次元物体及びサポート材を含む三次元物体前駆体を得る工程、及び当該三次元物体前駆体を中性水に接触させ、サポート材を除去するサポート材除去工程を有する熱溶融積層方式による三次元物体の製造方法であって、
     前記サポート材の材料が、請求項1~10いずれか1項に記載の三次元造形用可溶性材料である、三次元物体の製造方法。
    Three-dimensional by a hot melt laminating method having a step of obtaining a three-dimensional object precursor including a three-dimensional object and a support material, and a support material removing step of bringing the three-dimensional object precursor into contact with neutral water and removing the support material An object manufacturing method comprising:
    A method for producing a three-dimensional object, wherein the material of the support material is the soluble material for three-dimensional modeling according to any one of claims 1 to 10.
  12.  前記三次元物体前駆体を中性水に浸漬し、前記サポート材を溶解させて除去するサポート材除去工程を含む、請求項11に記載の三次元物体の製造方法。 The method for producing a three-dimensional object according to claim 11, further comprising a support material removing step of immersing the three-dimensional object precursor in neutral water to dissolve and remove the support material.
  13.  熱溶融積層方式の3Dプリンタによって三次元物体を製造する際に、当該三次元物体を支持するサポート材であって、
     前記サポート材がポリアミド樹脂を含み、前記ポリアミド樹脂が、親水性基を有する親水性モノマーユニットA、疎水性ジカルボン酸モノマーユニットB、及び疎水性のジアミンモノマーユニットCを有し、前記ポリアミド樹脂中の全モノマーユニットの合計に対する前記親水性モノマーユニットAの割合が2.5mol%以上13.5mol%未満である、サポート材。
    A support material for supporting a three-dimensional object when the three-dimensional object is manufactured by a hot melt lamination type 3D printer,
    The support material includes a polyamide resin, and the polyamide resin includes a hydrophilic monomer unit A having a hydrophilic group, a hydrophobic dicarboxylic acid monomer unit B, and a hydrophobic diamine monomer unit C. The support material whose ratio of the said hydrophilic monomer unit A with respect to the sum total of all the monomer units is 2.5 mol% or more and less than 13.5 mol%.
PCT/JP2017/026700 2016-07-28 2017-07-24 Fusible material for three-dimensional molding WO2018021243A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/320,940 US20190160732A1 (en) 2016-07-28 2017-07-24 Fusible material for three-dimensional molding
CN201780046726.0A CN109476840B (en) 2016-07-28 2017-07-24 Soluble material for three-dimensional modeling
EP17834249.9A EP3492511A4 (en) 2016-07-28 2017-07-24 Fusible material for three-dimensional molding

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-148336 2016-07-28
JP2016148336 2016-07-28
JP2017-141095 2017-07-20
JP2017141095A JP2018024850A (en) 2016-07-28 2017-07-20 Soluble material for three-dimensional shaping

Publications (1)

Publication Number Publication Date
WO2018021243A1 true WO2018021243A1 (en) 2018-02-01

Family

ID=61017077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026700 WO2018021243A1 (en) 2016-07-28 2017-07-24 Fusible material for three-dimensional molding

Country Status (1)

Country Link
WO (1) WO2018021243A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3495108A4 (en) * 2016-08-05 2020-03-11 Kao Corporation Method for producing fusible material for three-dimensional molding

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5092996A (en) * 1973-12-22 1975-07-24
JPS57167339A (en) * 1981-04-08 1982-10-15 Unitika Ltd Preparation of resin composition with excellent water resistance
JPH05210241A (en) * 1992-01-30 1993-08-20 Toray Ind Inc Photosensitive resin printing plate
JPH07258407A (en) * 1994-03-23 1995-10-09 Tomoegawa Paper Co Ltd Production of sulfonic acid group-containing polyamide
JP2007231087A (en) * 2006-02-28 2007-09-13 Toray Ind Inc Method for producing aqueous solution of water-soluble polyamide
JP2010159414A (en) * 2008-12-12 2010-07-22 Emg-Patent Ag Polyamide layered silicate composition
JP2011518938A (en) * 2008-04-29 2011-06-30 アルケマ フランス Method to widen the difference between the melting temperature and crystallization temperature of polyamide powder
JP2015519456A (en) * 2012-06-12 2015-07-09 ロディア オペレーションズRhodia Operations Powder heat treatment method
JP2016501136A (en) * 2012-11-09 2016-01-18 エボニック インダストリーズ アクチエンゲゼルシャフトEvonik Industries AG Multicolor extrusion 3D printing
JP2016078284A (en) * 2014-10-14 2016-05-16 花王株式会社 Soluble material for three-dimensional molding
WO2016125860A1 (en) * 2015-02-06 2016-08-11 花王株式会社 Three-dimensional-modeling soluble material

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5092996A (en) * 1973-12-22 1975-07-24
JPS57167339A (en) * 1981-04-08 1982-10-15 Unitika Ltd Preparation of resin composition with excellent water resistance
JPH05210241A (en) * 1992-01-30 1993-08-20 Toray Ind Inc Photosensitive resin printing plate
JPH07258407A (en) * 1994-03-23 1995-10-09 Tomoegawa Paper Co Ltd Production of sulfonic acid group-containing polyamide
JP2007231087A (en) * 2006-02-28 2007-09-13 Toray Ind Inc Method for producing aqueous solution of water-soluble polyamide
JP2011518938A (en) * 2008-04-29 2011-06-30 アルケマ フランス Method to widen the difference between the melting temperature and crystallization temperature of polyamide powder
JP2010159414A (en) * 2008-12-12 2010-07-22 Emg-Patent Ag Polyamide layered silicate composition
JP2015519456A (en) * 2012-06-12 2015-07-09 ロディア オペレーションズRhodia Operations Powder heat treatment method
JP2016501136A (en) * 2012-11-09 2016-01-18 エボニック インダストリーズ アクチエンゲゼルシャフトEvonik Industries AG Multicolor extrusion 3D printing
JP2016078284A (en) * 2014-10-14 2016-05-16 花王株式会社 Soluble material for three-dimensional molding
WO2016125860A1 (en) * 2015-02-06 2016-08-11 花王株式会社 Three-dimensional-modeling soluble material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3495108A4 (en) * 2016-08-05 2020-03-11 Kao Corporation Method for producing fusible material for three-dimensional molding

Similar Documents

Publication Publication Date Title
JP6706084B2 (en) Soluble material for 3D modeling
WO2018139537A1 (en) Soluble material for three-dimensional molding
JP2018024850A (en) Soluble material for three-dimensional shaping
US10954378B2 (en) Soluble material for three-dimensional molding
US10738142B2 (en) Soluble material for three-dimensional molding
JP2018024243A (en) Three-dimensional object precursor treatment agent composition
JP7148301B2 (en) Method for producing thermoplastic resin composition
WO2016185874A1 (en) Method for recovering water-soluble polyester resin from dissolved support material effluent
JP6359793B1 (en) Soluble material for 3D modeling
EP3689585B1 (en) Soluble material for three-dimensional modeling
WO2018025704A1 (en) Composition for treating three-dimensional object precursor
US20200263046A1 (en) Soluble material for three-dimensional modeling
WO2018021243A1 (en) Fusible material for three-dimensional molding
JP2021088061A (en) Soluble material
US20230183482A1 (en) Water-dispersible resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834249

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017834249

Country of ref document: EP

Effective date: 20190228