WO2018021204A1 - ユーザ端末、無線基地局及び無線通信方法 - Google Patents

ユーザ端末、無線基地局及び無線通信方法 Download PDF

Info

Publication number
WO2018021204A1
WO2018021204A1 PCT/JP2017/026591 JP2017026591W WO2018021204A1 WO 2018021204 A1 WO2018021204 A1 WO 2018021204A1 JP 2017026591 W JP2017026591 W JP 2017026591W WO 2018021204 A1 WO2018021204 A1 WO 2018021204A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
user terminal
information
neurology
frame configuration
Prior art date
Application number
PCT/JP2017/026591
Other languages
English (en)
French (fr)
Inventor
一樹 武田
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to JP2018529860A priority Critical patent/JP6954909B2/ja
Priority to US16/320,641 priority patent/US20190173656A1/en
Priority to CN201780046756.1A priority patent/CN109565804B/zh
Priority to EP17834210.1A priority patent/EP3493622A4/en
Publication of WO2018021204A1 publication Critical patent/WO2018021204A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/023Multiplexing of multicarrier modulation signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J1/00Frequency-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK

Definitions

  • the present invention relates to a user terminal, a radio base station, and a radio communication method in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • Non-Patent Document 1 LTE-A (LTE-Advanced), FRA (Future Radio Access), 4G, 5G, 5G + (plus), NR ( New RAT) and LTE Rel.14, 15 ⁇ ) are also being considered.
  • CA Carrier Aggregation
  • CC Component Carrier
  • UE User Equipment
  • DC Dual Connectivity
  • CG Cell Group
  • CC Carrier
  • Inter-eNB CA inter-base station CA
  • a transmission time interval (TTI: Transmission Time Interval) (also referred to as a subframe) is used, and a downlink (DL: Downlink) and / or Uplink (UL) communication is performed.
  • TTI Transmission Time Interval
  • DL Downlink
  • UL Uplink
  • the 1 ms TTI is a transmission time unit of one channel-encoded data packet, and is a processing unit such as scheduling and link adaptation.
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • the neurology is a communication parameter in the frequency direction and / or time direction (for example, subcarrier interval, bandwidth, symbol length, CP time length (CP length), subframe length, TTI time length ( TTI length), number of symbols per TTI, radio frame configuration, filtering process, windowing process, etc.).
  • the present invention has been made in view of such a point, and even when a plurality of pneumatics are multiplexed in the same carrier to perform communication, a user terminal and a radio base station that can appropriately perform communication
  • Another object is to provide a wireless communication method.
  • a user terminal is a user terminal that performs communication in a wireless communication system in which a plurality of frame structures of a neurology are frequency division multiplexed.
  • a receiving unit for receiving information and second information for specifying a region where DL transmission and / or UL transmission is prohibited in the predetermined neurology, or a region where a specific transmission direction is set;
  • a control unit that controls DL reception and / or UL transmission based on the first information and the second information.
  • communication can be performed appropriately even when communication is performed by multiplexing a plurality of pneumatics in the same carrier.
  • FIG. 2A is a diagram illustrating an example of a frame configuration when the control channel arrangement area is expanded
  • FIG. 2B is a diagram illustrating an example of a frame configuration when the gap section is expanded.
  • FIG. 3A and FIG. 3B are diagrams each showing an example of a frame structure with different neurology.
  • FIG. 4A and FIG. 4B are diagrams illustrating an example of frequency division multiplexing of frame structures having different neurology.
  • FIG. 5A and FIG. 5B are diagrams showing another example in the case of frequency division multiplexing of frame structures with different neumerologies.
  • FIG. 6B are diagrams illustrating an example of frequency division multiplexing frame configurations for DL transmissions having different neumerologies.
  • FIG. 7A and FIG. 7B are diagrams illustrating another example in the case of frequency division multiplexing frame configurations for DL transmissions having different neumerologies.
  • FIG. 8A and FIG. 8B are diagrams showing another example in the case of frequency division multiplexing frame configurations for DL transmissions having different neumerologies.
  • FIG. 9A and FIG. 9B are diagrams illustrating an example of frequency division multiplexing of frame configurations for UL transmissions having different numerologies.
  • FIG. 10A and FIG. 10B are diagrams showing another example in the case of frequency division multiplexing frame configurations for UL transmissions having different neumerologies.
  • FIGS. 11B are diagrams illustrating another example in the case of frequency division multiplexing frame configurations for UL transmissions having different neumerologies.
  • 12A and 12B are diagrams illustrating an example of setting a control channel period to be assigned to a frame configuration for each different neurology.
  • FIG. 13A and FIG. 13B show an example of a predetermined neurology frame configuration used by the user terminal.
  • FIG. 14A and FIG. 14B are diagrams illustrating an example of a blank period setting method in a predetermined neurology frame configuration used by a user terminal.
  • FIGS. 15A and 15B are diagrams illustrating an example in which the blanking of resources is dynamically changed and set in frame configuration # 2 having a relatively wide SC interval (for example, 30 kHz).
  • FIGS. 16A and 16B are diagrams illustrating an example in which the blanking of resources is dynamically changed and set in the frame configuration # 1 in which the SC interval is relatively narrow (for example, 15 kHz).
  • FIGS. 17A and 17B are diagrams illustrating an example in which transmission is controlled by dynamically switching the transmission direction in a predetermined symbol in frame configuration # 2 having a relatively wide SC interval (for example, 30 kHz). It is a figure which shows an example of schematic structure of the radio
  • FIG. 1 shows an example of a frame configuration (here, a time configuration) applicable at 5 G / NR. Note that the frame configuration illustrated in FIG. 1 is an example, and the specific configuration, number, and the like of the frame configuration applicable in the present embodiment are not limited to those illustrated in FIG.
  • FIG. 1 shows an example in which different channels are divided in the time domain, but the frame configuration is not limited to this.
  • the downlink data channel and the downlink control channel are not necessarily divided in time, and may be frequency / code multiplexed in the same time interval (for example, symbol).
  • the uplink data channel and the uplink control channel are not necessarily divided in time, and may be frequency / code-multiplexed in the same time interval (for example, symbol).
  • FIG. 1 shows an example of a frame configuration applicable in a certain neurology.
  • a frame configuration in which a downlink control channel, a downlink shared channel, and an uplink control channel are arranged can be applied.
  • the user terminal controls reception of downlink data and / or transmission of uplink data based on downlink control information transmitted on the downlink control channel.
  • the user terminal may feed back an acknowledgment signal (HARQ-ACK) for data received on the downlink shared channel on the uplink control channel in the same time interval (for example, NR TDD subframe).
  • HARQ-ACK acknowledgment signal
  • a gap section may be set between the downlink shared channel and the uplink control channel.
  • a gap interval may be set between the uplink control channel and the start time of the next frame or subframe.
  • these gap sections are expressed as 0.5 symbol length.
  • the gap section between channels may be an integer multiple of the symbol length (for example, one symbol length), and the gap section between the uplink control channel and the start time of the next frame or subframe may be zero.
  • the start time of the uplink control channel and the next frame or subframe as shown in FIG. 1 can be obtained by advancing the uplink transmission timing of the user terminal, for example, by applying timing advance during actual operation.
  • a gap section can also be provided between the two.
  • assignment that completes transmission / reception control may be performed within the same subframe.
  • This assignment is also referred to as self-contained assignment.
  • a subframe in which self-contained assignment is performed may be referred to as a self-contained subframe.
  • the self-contained subframe may be referred to as, for example, a self-contained TTI, a self-contained symbol set, or other names may be used.
  • the user terminal may receive DL data based on the downlink control channel and transmit a feedback signal (for example, HARQ-ACK) of the DL data.
  • a feedback signal for example, HARQ-ACK
  • the self-contained subframe for example, feedback with an ultra-low delay of 1 ms or less can be realized, so that the delay time can be reduced.
  • uplink data channel When transmitting uplink data (uplink data channel), a frame configuration in which a downlink control channel, an uplink shared channel, and an uplink control channel are arranged can be applied.
  • the user terminal can transmit UL signals (UL data, measurement reports, etc.) in the same (or subsequent) subframes based on downlink control information transmitted on the downlink control channel.
  • a gap interval may be set between the downlink control channel and the uplink shared channel. Also, a gap interval may be set between the uplink control channel and the start time of the next frame or subframe.
  • the channel arrangement order and the length in the time direction are not limited to the configuration shown in FIG.
  • the position of each channel can be changed and applied as appropriate.
  • the arrangement area of the control channel may be changed, or the length of the gap section may be changed.
  • FIG. 2A shows a frame configuration when the arrangement area of the downlink control channel and the uplink control channel is expanded.
  • the arrangement area of the downlink control channel By expanding the arrangement area of the downlink control channel, the capacity of DL control information that can be transmitted in one hour interval can be increased.
  • the uplink control channel allocation time for example, the number of symbols
  • the required quality can be achieved when transmitting an uplink control signal with a predetermined number of bits even in uplinks with limited transmission power. Becomes easy.
  • FIG. 2B shows a case where the gap section is enlarged.
  • the gap interval By setting the gap interval longer, the processing time required for coverage extension and / or data reception in the downlink shared channel to transmission of the uplink control channel or transmission of the downlink control channel to transmission of the uplink shared channel is secured, and a longer processing time can be obtained. Applicable.
  • the neurology is a set of communication parameters (radio parameters) in the frequency and / or time direction.
  • the set of communication parameters includes, for example, subcarrier interval, bandwidth, symbol length, CP length, TTI (subframe) length, number of symbols per TTI (subframe), radio frame configuration, filtering processing, and windowing processing. May be included.
  • “Numerology is different” means, for example, that at least one of subcarrier spacing, bandwidth, symbol length, CP length, TTI (subframe) length, number of symbols per TTI (subframe), and radio frame configuration is new. Although it shows that it differs between melologies, it is not restricted to this.
  • a future wireless communication system that supports multi-numerology is configured to be capable of accommodating a plurality of user terminals with different numerologies.
  • FIG. 3 is a diagram showing an example of a frame structure of different neurology.
  • FIG. 3A shows an example of a first pneumatic frame configuration # 1 with a relatively narrow subcarrier spacing (eg, 15 kHz), and
  • FIG. 3B shows a relatively wide subcarrier spacing (eg, 30 kHz).
  • 2 shows an example of a second neurology frame configuration # 2 having
  • the subcarrier interval of the first neurology is 15 kHz, which is the same as the subcarrier interval of the existing LTE system, but is not limited thereto.
  • the subcarrier interval of the second pneumatics may be set to N (N> 1) times the subcarrier interval of the first pneumatics.
  • the subcarrier interval and the symbol length are in a reciprocal relationship with each other. For this reason, when the subcarrier interval of the second neurology is N times the subcarrier interval of the first neurology, the symbol length of the second neurology is the symbol of the first neurology It can be 1 / N times the length.
  • the configuration of resource elements (RE: Resource Element) configured by subcarriers and symbols may be different between the first and second pneumatics.
  • the subcarrier interval When the subcarrier interval is wide, it is possible to effectively prevent channel-to-channel interference due to Doppler shift when the user terminal moves and transmission quality degradation due to phase noise of the user terminal receiver. In particular, in a high frequency band such as several tens of GHz, it is possible to effectively prevent deterioration in transmission quality by widening the subcarrier interval. For this reason, the 2nd numerology where a subcarrier space
  • the TTI length composed of a predetermined number of symbols (for example, 14 or 12) is also shortened, which is effective for latency reduction.
  • URLLC Ultra-reliable and low latency communication
  • the second neurology which has a shorter symbol length than the first neurology, is suitable.
  • a TTI (subframe) shorter than an existing LTE system for example, a TTI of less than 1 ms
  • a TTI shorter than an existing LTE system (for example, a TTI of less than 1 ms) may be called a shortened TTI, a short TTI, a shortened subframe, a short subframe, a partial subframe, or the like. Good.
  • the first neurology with a subcarrier interval narrower than the second neurology is suitable.
  • the first pneumology is also suitable for large-scale MIMO (Massive Multiple-Input and Multiple-output) using a large amount of antenna elements.
  • each neurology TTI may be referred to as NR TDD subframe or subframe
  • the allocation unit (resource unit) of each neurology resource may be the same as a resource block pair (for example, a PRB (Physical Resource Block) pair consisting of 12 subcarriers) in the existing LTE system, May be different.
  • a resource unit different from the existing LTE system may be called an extended RB (eRB: enhanced RB) or the like.
  • each neurology symbol may be an OFDM (Orthogonal Frequency Division Multiplexing) symbol or an SC-FDMA (Single-Carrier Frequency Division Multiple Access) symbol.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single-Carrier Frequency Division Multiple Access
  • the neurology a configuration in which the subcarrier interval is 1 / N times that of the existing LTE system and the symbol length is N times can be considered. According to this configuration, since the overall length of the symbol increases, the CP length can be increased even when the ratio of the CP length to the overall length of the symbol is constant. This enables stronger (robust) wireless communication against fading in the communication path.
  • the neurology used by the user terminal may be set semi-statically by higher layer signaling such as RRC (Radio Resource Control) signaling and broadcast information, or physical layer control information (L1 / L2 control channel) May be changed dynamically. Alternatively, it may be changed by a combination of higher layer signaling and physical layer control information.
  • higher layer signaling such as RRC (Radio Resource Control) signaling and broadcast information
  • physical layer control information L1 / L2 control channel
  • a plurality of user terminals having different neurology are multiplexed on the same carrier (CC, cell).
  • CC carrier
  • a plurality of user terminals having different nuemologies may be multiplexed in the same carrier by frequency division multiplexing (FDM) and / or time division multiplexing (TDM).
  • FDM frequency division multiplexing
  • TDM time division multiplexing
  • FIG. 4 shows a first pneumatic structure frame # 1 having a relatively narrow subcarrier spacing (eg, 15 kHz) and a second pneumatic structure having a relatively wide subcarrier spacing (eg, 30 kHz).
  • 2 shows an example of frequency division multiplexing of the frame structure # 2 of the logic.
  • 4A FDM frame configuration # 1 and frame configuration # 2 used for transmission of downlink data (downlink data channel)
  • FIG. 4B shows frame configuration # used for transmission of uplink data (uplink data channel). 1 shows a case where FDM is applied to frame configuration # 2.
  • FIG. 5A shows a case where FDM is used for frame configuration # 1 used for downlink data transmission, frame configuration # 2 used for downlink data transmission, and frame configuration # 2 used for uplink data transmission.
  • FIG. 5B shows a case where FDM is used for frame configuration # 1 used for uplink data transmission, frame configuration # 2 used for downlink data transmission, and frame configuration # 2 used for uplink data transmission.
  • the frame configuration # 2 used for downlink data transmission and the frame configuration # 2 used for uplink data transmission are transmitted by TDD.
  • the present inventors have focused on the point that communication cannot be performed properly when different transmission directions are set between frame structures of different pneumatic multiplexes. Therefore, the present inventors, when frequency-multiplexing frame structures of different neurology, in order to prevent different transmission directions (UL transmission and DL transmission) from being set between a plurality of neurology in the same time interval. Inspired to control channel allocation.
  • the radio base station controls the allocation of DL signals and / or UL signals in a predetermined neurology based on the transmission direction of another neurology different from the predetermined neurology.
  • the user terminal includes the first information related to the frame structure of the predetermined neurology, the region where DL transmission and / or UL transmission is prohibited in the predetermined neurology, Alternatively, DL reception and / or UL transmission is controlled based on the second information for specifying a region in which a specific transmission direction is set.
  • FIG. 6 shows a case where the frame configuration # 1 used for DL data transmission in the first pneumatic and the frame configuration # 2 used for DL data transmission in the second pneumatic are frequency division multiplexed. .
  • FIG. 6A shows each frame configuration when an uplink control channel (for example, HARQ-ACK) is transmitted every 0.5 ms
  • FIG. 6B shows a case when an uplink control channel is transmitted every 1 ms. Each frame configuration is shown.
  • an uplink control channel for example, HARQ-ACK
  • FIG. 6 shows a case where the subcarrier interval of frame configuration # 1 is 15 kHz (14 symbols / 1 ms) and the subcarrier interval of frame configuration # 2 is 30 kHz (14 symbols / 0.5 ms).
  • the configuration is not limited to this.
  • the transmission section of the uplink control channel (for example, HARQ-ACK) can be set to be aligned between different nuelologies. Aligning the uplink control channel transmission intervals between different nuelologies means that at least a part of the uplink control channels assigned to the frame structures of the respective numerologies overlap (arranged in the same time domain).
  • a frame configuration with a wide SC interval is used in a time interval in which the user terminal using the frame configuration # 1 with a narrow subcarrier (SC) interval performs uplink control channel transmission.
  • DL cannot be transmitted even if a user terminal using # 2 is assigned. Therefore, when performing communication with a frame configuration # 2 with a wide SC interval, the radio base station performs DL transmission (for example, with an UL transmission (for example, an uplink control channel is transmitted) at least with a frame configuration # 1 with a narrow SC interval). , DL data channel allocation) is not performed.
  • An area where DL transmission is not allocated (for example, a time section) can be set as a prohibited section of DL transmission.
  • the radio base station sets a time region in consideration of the gap interval as a DL transmission prohibited interval in addition to the region (for example, symbol) in which the UL is transmitted in the frame configuration # 1. May be.
  • Control so as not to allocate DL transmission may be called blanking, and a prohibited section of DL transmission may be called a blank area, a blank period, or the like.
  • a user terminal using frame configuration # 2 performs reception processing (for example, decoding processing) assuming that DL data is not included in an area where UL is transmitted at least in frame configuration # 1 with a narrow SC interval. Can do. In addition, you may notify the user terminal from the information regarding the area
  • an area set as a DL transmission prohibited section (blank area) in FIGS. 6A and 6B may be used for UL transmission (for example, transmission of an uplink control channel and / or an uplink data channel) (see FIG. 7).
  • 7A and 7B show frame configurations when an uplink control channel is assigned to the area set as the DL transmission prohibited section in FIGS. 6A and 6B.
  • the user terminal can transmit the UL control channel with the frame configuration # 2 based on the instruction from the radio base station, at least in the region where the UL is transmitted with the frame configuration # 1 with a narrow SC interval.
  • frame configuration # 2 information regarding a section (DL transmission prohibited section) in which communication in a specific transmission direction (UL transmission in this case) is performed may be notified from the radio base station to the user terminal in advance.
  • the resource use efficiency can be improved by using the resource in the time domain in which the DL transmission is limited in the frame configuration # 2 for the UL transmission. Further, in frame configuration # 2, it is possible to lengthen the transmission section of the UL control channel (increase the number of transmission symbols or lengthen the transmission symbol length). Thereby, the area (coverage) satisfying the required quality of the UL control channel can be widened, or the payload of uplink control information (UCI) that can be transmitted through the UL control channel can be increased.
  • UCI uplink control information
  • the uplink control channel (eg, HARQ-ACK) transmission interval may be set for each neurology.
  • FIG. 8 shows a case where the uplink control channel is transmitted every 1 ms in the frame configuration # 1 with a narrow SC interval, and the uplink control channel is transmitted every 0.5 ms in the frame configuration # 2 with a wide SC interval. ing.
  • the terminal DL data cannot be transmitted. Therefore, when performing communication with a frame configuration # 1 with a narrow SC interval, the radio base station performs DL transmission (for example, with an UL transmission (for example, an uplink control channel is transmitted) at least with a frame configuration # 2 with a wide SC interval). , DL data channel allocation) is controlled not to be performed (see FIG. 8A).
  • a frame configuration # 2 with a wide SC interval is used in a time interval in which a user terminal using the frame configuration # 1 with a narrow subcarrier (SC) interval performs uplink control channel transmission.
  • the DL data of the user terminal that uses can not be transmitted. Therefore, when performing communication with a frame configuration # 2 with a wide SC interval, the radio base station does not allocate a DL data channel in an area where an uplink control channel is transmitted with a frame configuration # 1 with a narrow SC interval. Control (see FIG. 8A).
  • an area where DL transmission allocation is not performed can be set as a prohibited section for DL transmission.
  • the radio base station may set a time region in consideration of the gap interval as a DL transmission prohibited interval in addition to the region where UL is transmitted in another frame configuration.
  • the user terminal Based on information notified from the radio base station (for example, information related to a DL transmission prohibited section), the user terminal assumes that DL data is not included in a predetermined time interval (for example, decoding processing) )It can be performed.
  • a predetermined time interval for example, decoding processing
  • the region set as the DL transmission prohibited section in the frame configuration # 2 in FIG. 8A may be used for UL transmission (for example, uplink control channel and / or uplink data channel) (see FIG. 8B).
  • UL transmission for example, uplink control channel and / or uplink data channel
  • FIG. 9 shows a case where the frame configuration # 1 used for UL data transmission in the first neurology and the frame configuration # 2 used for UL data transmission in the second neurology are frequency division multiplexed. .
  • FIG. 9A shows each frame configuration when a downlink control channel is transmitted every 0.5 ms
  • FIG. 9B shows each frame configuration when a downlink control channel is transmitted every 1 ms. .
  • FIG. 9 shows a case where the subcarrier interval of frame configuration # 1 is 15 kHz (14 symbols / 1 ms) and the subcarrier interval of frame configuration # 2 is 30 kHz (14 symbols / 0.5 ms).
  • the configuration is not limited to this.
  • the transmission section of the downlink control channel can be set by aligning different neurology. Aligning the downlink control channel transmission intervals between different nuemologies means that at least a part of the downlink control channels assigned to the frame structure of each numerology overlap (arranged in the same time domain).
  • the radio base station assumes Half-duplex communication, in a time interval in which a user terminal using the frame configuration # 1 with a narrow subcarrier (SC) interval receives the downlink control channel, the frame configuration # 2 with a wide SC interval is used. Even if a user terminal using is assigned, UL cannot be received from the user terminal. Therefore, when a radio base station performs communication with a frame configuration # 2 with a wide SC interval, UL transmission (for example, with a frame configuration # 1 with a narrow SC interval, for example, in a region where DL transmission (for example, a downlink control channel is transmitted) is performed. , UL data channel allocation) is not performed.
  • SC subcarrier
  • An area where UL transmission allocation is not performed (for example, a time section) can be set as a prohibited section for UL transmission.
  • the radio base station sets a time region in consideration of the gap interval as a UL transmission prohibition interval in addition to the region (for example, symbol) in which the DL is transmitted in the frame configuration # 1. May be.
  • Control so as not to allocate UL transmission may be called blanking, and a prohibited section of UL transmission may be called a blank area, a blank period, or the like.
  • the user terminal using the frame configuration # 2 can perform transmission processing (for example, mapping processing) so as not to map UL data in an area where DL is transmitted at least in the frame configuration # 1 having a narrow SC interval. Note that information regarding a region where UL data is not mapped (UL transmission prohibited section, blank region) may be notified from the radio base station to the user terminal in advance.
  • transmission processing for example, mapping processing
  • the area set as the UL transmission prohibited section (blank area) in FIGS. 9A and 9B may be used for DL transmission (for example, transmission of the downlink control channel and / or downlink data channel) (see FIG. 10).
  • FIGS. 10A and 10B show frame configurations when the downlink control channel is assigned to the area set as the UL transmission prohibited section in FIGS. 9A and 9B.
  • the user terminal can transmit the DL control channel with the frame configuration # 2 based on the instruction from the radio base station in the region where the DL is transmitted with the frame configuration # 1 with a narrow SC interval.
  • frame configuration # 2 information regarding a section (UL transmission prohibited section) in which communication in a specific transmission direction (DL transmission in this case) is performed may be notified from the radio base station to the user terminal in advance.
  • the resource use efficiency can be improved by using the resource in the time domain in which the UL transmission is limited in the frame configuration # 2 for the DL transmission.
  • the DL control channel capacity can be increased by lengthening the transmission section of the DL control channel (increasing the number of transmission symbols or increasing the transmission symbol length).
  • DCI DL scheduling information
  • the transmission section of the downlink control channel may be set for each numerology.
  • FIG. 11 shows a case where the downlink control channel is transmitted every 1 ms in the frame configuration # 1 with a narrow SC interval, and the downlink control channel is transmitted every 0.5 ms in the frame configuration # 2 with a wide SC interval. ing.
  • a frame configuration # 1 with a narrow SC interval is used in a time interval in which a user terminal using a frame configuration # 2 with a wide subcarrier (SC) interval performs downlink control channel transmission.
  • the UL data of the user terminal cannot be received. Therefore, when a radio base station performs communication with a frame configuration # 1 with a narrow SC interval, UL transmission (for example, with a frame configuration # 2 with a wide SC interval, for example, in a region where DL transmission (for example, a downlink control channel is transmitted) is performed. , UL data channel allocation) (see FIG. 11A).
  • the radio base station assumes Half-duplex communication, in a time interval in which a user terminal using a frame configuration # 1 with a narrow subcarrier (SC) interval performs downlink control channel transmission, a frame configuration with a wide SC interval # The UL data of the user terminal using 2 cannot be received. Therefore, when performing communication with a frame configuration # 2 with a wide SC interval, the radio base station should not allocate an UL data channel in an area where a downlink control channel is transmitted with a frame configuration # 1 with a narrow SC interval. Control (see FIG. 11A).
  • an area to which no UL transmission is allocated can be set as a prohibited section for UL transmission.
  • the radio base station may set a time region in consideration of the gap interval as a UL transmission prohibited interval in addition to the region where the DL is transmitted in another frame configuration.
  • the user terminal Based on information notified from the radio base station (for example, information related to a UL transmission prohibited section), the user terminal assumes that UL data is not mapped in a predetermined time interval and performs transmission processing (for example, mapping). It can be carried out.
  • information notified from the radio base station for example, information related to a UL transmission prohibited section
  • the user terminal assumes that UL data is not mapped in a predetermined time interval and performs transmission processing (for example, mapping). It can be carried out.
  • the region set as the UL transmission prohibited section in the frame configuration # 2 in FIG. 11A may be used for DL transmission (eg, uplink control channel and / or uplink data channel) (see FIG. 11B).
  • DL transmission eg, uplink control channel and / or uplink data channel
  • DL data allocation (frame configuration for DL data transmission) and UL data allocation (frame configuration for UL data transmission) are performed at an allocation period of a predetermined frame configuration.
  • a predetermined subframe configuration for example, a frame configuration with a wide SC interval can be selected, and control can be performed so as to switch at an allocation period of the frame configuration with a wide SC interval.
  • FIG. 12 shows an allocation period (here, 0.5 ms) of the frame configuration # 2 having a wide SC interval when the frame configuration # 1 having a narrow SC interval and the frame configuration # 2 having a wide SC interval are frequency division multiplexed.
  • FIG. 12A shows a case of switching from a frame configuration for UL data transmission to a frame configuration for DL data transmission
  • FIG. 12B shows a case of switching from a frame configuration for DL data transmission to a frame configuration for UL data transmission. Yes.
  • the DL data transmission frame configuration and the UL data transmission frame configuration are switched based on the allocation period of a predetermined frame configuration (for example, a frame configuration with a wide SC interval).
  • a predetermined frame configuration for example, a frame configuration with a wide SC interval.
  • This avoids frequency division multiplexing (see FIG. 5) of the DL data transmission frame configuration and the UL data transmission frame configuration (see FIG. 5), and the DL data transmission frame configuration and the UL data transmission frame configuration.
  • the case where two types of neurology are multiplexed is shown.
  • the number and frame configuration of the neurology multiplexed depending on the communication environment is static, quasi-static, or dynamic. It is also possible to change to In this case, it is conceivable that the symbol pattern that requires blanking differs depending on the type of neurology, the transmission cycle of the downlink control channel, and the transmission cycle of the uplink control channel (for example, HARQ-ACK).
  • blanking is not necessary when frame structures of different numeric melody are not frequency division multiplexed. Therefore, it is not necessary to perform blanking at all times (for example, transmission is not always performed in a transmission prohibited section). Increase, which may lead to throughput degradation.
  • the wireless base station notifies the user terminal of information related to blanking to control the transmission / reception operation in the user terminal.
  • the information related to blanking may be information that can identify an area where DL transmission and / or UL transmission is prohibited in the neurology used by the user terminal, or an area where a specific transmission direction is set. For example, in the frame structure of the neurology used by the user terminal, the UL transmission prohibition period and / or cycle and the DL transmission prohibition period and / or cycle are notified to the user terminal as blanking information. Further, blanking information may be information instructing communication in a specific transmission direction in the prohibited section of UL transmission and / or DL transmission.
  • the frame structure of other neurology set in the same carrier may be notified to the user terminal as blanking information.
  • the user terminal can specify the blank period by comparing the frame configuration used by the user terminal with another frame configuration.
  • FIG. 13 shows an example of a predetermined neurology frame configuration used by the user terminal.
  • FIG. 13A illustrates a case where a downlink control channel and an uplink control channel are set for each predetermined time interval (here, subframe).
  • FIG. 13B shows a case where a downlink control channel is set for each subframe and an uplink control channel is set for every two subframes.
  • FIG. 14 is a diagram illustrating an example of a setting method of a blank period (for example, a transmission prohibited section) in a predetermined neurology frame configuration used by the user terminal.
  • FIG. 14A shows a case where a prohibited section for DL transmission is set for each predetermined time interval (here, subframe) in FIG. 13A.
  • FIG. 14B illustrates a case where a DL transmission prohibited section is set for every two subframes (subframe to which an uplink control channel is allocated) in FIG. 13B.
  • frame configuration # 2 the user terminal uses frame configuration # 2.
  • the radio base station transmits information related to the frame configuration used when the user terminal communicates and information related to blanking to the user terminal through higher layer signaling (at least one of a broadcast signal, system information, and RRC control information). Notice.
  • the information on the frame configuration includes at least one of subcarrier interval, UL-DL (for example, UL data transmission frame configuration and DL data transmission frame configuration) switching cycle, data interval length, downlink control channel cycle, and uplink control channel cycle. Including one.
  • the information related to blanking includes one or both of a period (for example, a symbol) and a period in which DL transmission and / or UL transmission is prohibited. Further, the information regarding blanking may include information instructing transmission in a specific transmission direction in a section (for example, a symbol) where transmission in a certain transmission direction is prohibited.
  • the radio base station transmits information related to the frame configuration used when the user terminal communicates and information related to the frame configuration that is not used for the communication of the user terminal but can be used in the same carrier. At least one of a signal, system information, and RRC control information). For example, the radio base station notifies the user terminal that performs communication using the frame configuration # 2 of information regarding the frame configuration # 2 and information regarding the frame configuration # 1 that can be set to the same subcarrier. Can do.
  • the user terminal compares the information related to the frame configuration (for example, frame configuration # 2) used by the user terminal with the information related to the frame configuration (for example, frame configuration # 1) that can be used on the same carrier, thereby determining the blank period. I can grasp it. For example, the user terminal compares the frame configuration used by the user terminal with another frame configuration, and when a time interval with a different transmission direction occurs, UL transmission and / or DL transmission is restricted based on a predetermined condition. Control transmission and reception.
  • the radio base station may dynamically instruct the user terminal to change the setting of the number of symbols used for resource blanking and / or data transmission, either implicitly or explicitly. Good.
  • the radio base station notifies the user terminal of information that can determine in advance the resources to be blanked using upper layer signaling or the like (for example, a DL transmission prohibited section and / or period, a UL transmission prohibited section and / or period, etc.). To do.
  • the radio base station can set blanking candidates in which symbols to be blanked are defined in a plurality of user terminals.
  • the user terminal determines whether or not a blanking resource is set based on the scheduled transport block (TB) size, the number of uplink control channel symbols, the symbol position, and the like.
  • the user terminal determines whether or not the blanking resource is set based on a notification bit that indicates whether or not to insert a blanking resource included in downlink control information transmitted from the radio base station. May be.
  • FIG. 15 shows an example in the case of frame configuration # 2 in which the subcarrier interval is relatively wide (for example, 30 kHz) and resource blanking is dynamically changed and set.
  • FIG. 15A shows a frame configuration # 2 for DL transmission
  • FIG. 15B shows a frame configuration # 2 for UL transmission.
  • FIG. 16 shows an example in which the blanking of resources is dynamically changed and set in frame configuration # 1 with a relatively narrow subcarrier interval (for example, 15 kHz).
  • FIG. 16A shows a frame configuration # 1 for DL transmission
  • FIG. 16B shows a frame configuration # 1 for UL transmission.
  • the user terminal performs DL transmission (for example, DL data channel reception) that is dynamically changed and set based on an implicit or explicit notification from the radio base station.
  • DL transmission for example, DL data channel reception
  • a prohibited section can be determined.
  • the user terminal can dynamically change and set the UL transmission (for example, UL data channel transmission) based on the implicit or explicit notification from the radio base station. ) Can be determined.
  • the transmission prohibition section can be set only when different frame configurations are frequency division multiplexed. Therefore, resource utilization efficiency can be improved.
  • FIG. 17 shows an example in which transmission is controlled by dynamically switching the transmission direction in a predetermined symbol in frame configuration # 2 having a relatively wide SC interval (for example, 30 kHz).
  • FIG. 17A shows a frame configuration # 2 for DL transmission
  • FIG. 17B shows a frame configuration # 2 for UL transmission.
  • the user terminal performs DL transmission (for example, reception of a DL data channel) and UL transmission (for example, uplink) in a predetermined symbol based on an implicit or explicit notification from the radio base station.
  • Control channel transmission is dynamically changed.
  • the user terminal performs UL transmission (for example, transmission of UL data channel) and DL transmission (for example, transmission of UL data channel) in a predetermined symbol based on the implicit or explicit notification from the radio base station.
  • the reception of the downlink control channel is dynamically changed and controlled.
  • the capacity of the downlink control channel can be increased by allocating the downlink control channel to the UL transmission prohibited section.
  • the performance of the uplink control channel can be improved by allocating the uplink control channel to the DL transmission prohibited section.
  • wireless communication system Wireless communication system
  • the radio communication method according to each of the above aspects is applied.
  • wireless communication method which concerns on each said aspect may be applied independently, respectively, and may be applied in combination.
  • FIG. 18 is a diagram illustrating an example of a schematic configuration of the wireless communication system according to the present embodiment.
  • carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are applied. can do.
  • the wireless communication system 1 may be called SUPER 3G, LTE-A (LTE-Advanced), IMT-Advanced, 4G, 5G, FRA (Future Radio Access), NR (New Rat), or the like.
  • the radio communication system 1 shown in FIG. 18 includes a radio base station 11 that forms a macro cell C1, and radio base stations 12a to 12c that are arranged in the macro cell C1 and form a small cell C2 that is narrower than the macro cell C1. .
  • the user terminal 20 is arrange
  • the user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 that use different frequencies simultaneously by CA or DC. In addition, the user terminal 20 can apply CA or DC using a plurality of cells (CC) (for example, two or more CCs). Further, the user terminal can use the license band CC and the unlicensed band CC as a plurality of cells. In addition, it can be set as the structure by which the TDD carrier which applies shortening TTI is contained in either of several cells.
  • CC cells
  • Communication between the user terminal 20 and the radio base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (referred to as an existing carrier or a legacy carrier).
  • a carrier having a wide bandwidth in a relatively high frequency band for example, 3.5 GHz, 5 GHz, 30 to 70 GHz, etc.
  • the same carrier as that between the base station 11 and the base station 11 may be used.
  • the configuration of the frequency band used by each radio base station is not limited to this.
  • a wired connection for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface, etc.
  • a wireless connection It can be set as the structure to do.
  • the radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30.
  • the upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
  • RNC radio network controller
  • MME mobility management entity
  • Each radio base station 12 may be connected to the higher station apparatus 30 via the radio base station 11.
  • the radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like.
  • the radio base station 12 is a radio base station having local coverage, and includes a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), and transmission / reception. It may be called a point or the like.
  • the radio base stations 11 and 12 are not distinguished, they are collectively referred to as a radio base station 10.
  • Each user terminal 20 is a terminal that supports various communication schemes such as LTE and LTE-A, and may include not only a mobile communication terminal but also a fixed communication terminal.
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier-frequency division multiple access
  • OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier.
  • SC-FDMA is a single-carrier transmission scheme that reduces interference between terminals by dividing the system bandwidth into bands consisting of one or continuous resource blocks for each terminal and using a plurality of terminals with mutually different bands. is there.
  • the uplink and downlink radio access schemes are not limited to these combinations, and OFDMA may be used in the UL.
  • DL channels DL data channels (PDSCH: Physical Downlink Shared Channel, also referred to as DL shared channel) shared by each user terminal 20, broadcast channels (PBCH: Physical Broadcast Channel), L1 / L2 A control channel or the like is used.
  • PDSCH Physical Downlink Shared Channel
  • PBCH Physical Broadcast Channel
  • SIB System Information Block
  • MIB Master Information Block
  • L1 / L2 control channels include DL control channels (PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel)), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), etc. .
  • Downlink control information (DCI: Downlink Control Information) including PDSCH and PUSCH scheduling information is transmitted by the PDCCH.
  • the number of OFDM symbols used for PDCCH is transmitted by PCFICH.
  • the HAICH transmission confirmation information (ACK / NACK) for PUSCH is transmitted by PHICH.
  • EPDCCH is frequency-division multiplexed with PDSCH (downlink shared data channel), and is used for transmission of DCI and the like in the same manner as PDCCH.
  • a UL data channel (PUSCH: Physical Uplink Shared Channel, also referred to as a UL shared channel) shared by each user terminal 20, a UL control channel (PUCCH: Physical Uplink Control Channel), random An access channel (PRACH: Physical Random Access Channel) or the like is used.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PRACH Physical Random Access Channel
  • User data and higher layer control information are transmitted by the PUSCH.
  • Uplink control information including at least one of delivery confirmation information (ACK / NACK) and radio quality information (CQI) is transmitted by PUSCH or PUCCH.
  • a random access preamble for establishing connection with a cell is transmitted by the PRACH.
  • FIG. 19 is a diagram illustrating an example of the overall configuration of the radio base station according to the present embodiment.
  • the radio base station 10 includes a plurality of transmission / reception antennas 101, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106.
  • the transmission / reception antenna 101, the amplifier unit 102, and the transmission / reception unit 103 may each be configured to include one or more.
  • DL data transmitted from the radio base station 10 to the user terminal 20 is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access
  • Retransmission control for example, HARQ transmission processing
  • scheduling for example, transmission format selection, channel coding, inverse fast Fourier transform (IFFT) processing, precoding processing, and other transmission processing
  • IFFT inverse fast Fourier transform
  • the DL control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and transferred to the transmission / reception unit 103.
  • the transmission / reception unit 103 converts the baseband signal output by precoding for each antenna from the baseband signal processing unit 104 to a radio frequency band and transmits the converted signal.
  • the radio frequency signal frequency-converted by the transmission / reception unit 103 is amplified by the amplifier unit 102 and transmitted from the transmission / reception antenna 101.
  • the transmission / reception unit 103 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device, which is described based on common recognition in the technical field according to the present invention.
  • the transmission / reception part 103 may be comprised as an integral transmission / reception part, and may be comprised from a transmission part and a receiving part.
  • the radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102.
  • the transmission / reception unit 103 receives the UL signal amplified by the amplifier unit 102.
  • the transmission / reception unit 103 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 104.
  • the baseband signal processing unit 104 performs Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing, and error correction on user data included in the input UL signal. Decoding, MAC retransmission control reception processing, RLC layer and PDCP layer reception processing are performed and transferred to the upper station apparatus 30 via the transmission path interface 106.
  • the call processing unit 105 performs call processing such as communication channel setting and release, status management of the radio base station 10, and radio resource management.
  • the transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface.
  • the transmission path interface 106 transmits / receives signals (backhaul signaling) to / from other radio base stations 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface). May be.
  • CPRI Common Public Radio Interface
  • X2 interface May be.
  • the transmission / reception unit 103 includes a DL signal (eg, DL control signal (DL control channel), DL data signal (DL data channel, DL shared channel), DL reference signal (DM-RS, CSI-RS, etc.), discovery signal, and the like. , Synchronization signals, broadcast signals, etc.) and UL signals (eg, UL control signals (UL control channels), UL data signals (UL data channels, UL shared channels), UL reference signals, etc.) are received.
  • DL signal eg, DL control signal (DL control channel), DL data signal (DL data channel, DL shared channel), DL reference signal (DM-RS, CSI-RS, etc.), discovery signal, and the like.
  • UL signals eg, UL control signals (UL control channels), UL data signals (UL data channels, UL shared channels), UL reference signals, etc.
  • the transmission / reception unit 103 performs transmission of a DL signal and / or reception of a UL signal in a predetermined neurology.
  • the transmission / reception unit 103 transmits information on the frame configuration used when the user terminal communicates and information on blanking by higher layer signaling (at least one of broadcast signal, system information, and RRC control information). Also good.
  • the transmission / reception unit 103 may transmit a notification bit indicating whether or not a blanking resource is inserted in the downlink control information.
  • the transmission unit and the reception unit of the present invention are configured by the transmission / reception unit 103 and / or the transmission path interface 106.
  • FIG. 20 is a diagram illustrating an example of a functional configuration of the radio base station according to the present embodiment. Note that FIG. 20 mainly shows functional blocks of characteristic portions in the present embodiment, and the wireless base station 10 also has other functional blocks necessary for wireless communication. As illustrated in FIG. 20, the baseband signal processing unit 104 includes at least a control unit 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305.
  • the control unit 301 controls the entire radio base station 10.
  • the control part 301 can be comprised from the controller, the control circuit, or control apparatus demonstrated based on the common recognition in the technical field which concerns on this invention.
  • the control unit 301 controls signal generation by the transmission signal generation unit 302 and signal allocation by the mapping unit 303, for example.
  • the control unit 301 also controls signal reception processing by the reception signal processing unit 304 and signal measurement by the measurement unit 305.
  • the control unit 301 controls scheduling (for example, resource allocation) of DL signals and / or UL signals. Specifically, the control unit 301 generates a DCI (DL assignment) including DL data channel scheduling information, a DL reference signal, a DCI (UL grant) including UL data channel scheduling information, a UL reference signal, and the like.
  • the transmission signal generation unit 302, the mapping unit 303, and the transmission / reception unit 103 are controlled so as to transmit.
  • the control unit 301 can control the allocation so as to frequency-division multiplex frame structures with different neurology. At this time, the control unit 301 can control the allocation of DL signals and / or UL signals in a predetermined neurology based on the transmission direction of another neurology different from the predetermined neurology (see FIG. 6-12).
  • the transmission signal generation unit 302 generates a DL signal (DL control channel, DL data channel, DL reference signal, etc.) based on an instruction from the control unit 301 and outputs the DL signal to the mapping unit 303.
  • the transmission signal generation unit 302 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
  • the mapping unit 303 maps the DL signal such as the DL reference signal generated by the transmission signal generation unit 302 to a predetermined radio resource based on an instruction from the control unit 301, and outputs the DL signal to the transmission / reception unit 103.
  • the mapping unit 303 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 103.
  • the received signal is, for example, a UL signal (UL control channel, UL data channel, UL reference signal, etc.) transmitted from the user terminal 20.
  • the reception signal processing unit 304 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 outputs the information decoded by the reception processing to the control unit 301.
  • the reception processing unit 304 outputs at least one of a preamble, control information, and UL data to the control unit 301.
  • the reception signal processing unit 304 outputs the reception signal and the signal after reception processing to the measurement unit 305.
  • the measurement unit 305 performs measurement on the received signal.
  • the measurement part 305 can be comprised from the measuring device, measurement circuit, or measurement apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
  • the measurement unit 305 may measure, for example, the received power (for example, RSRP (Reference Signal Received Power)), reception quality (for example, RSRQ (Reference Signal Received Quality)), channel state, and the like of the received signal.
  • the measurement result may be output to the control unit 301.
  • FIG. 21 is a diagram illustrating an example of the overall configuration of the user terminal according to the present embodiment.
  • the user terminal 20 includes a plurality of transmission / reception antennas 201, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205.
  • the transmission / reception antenna 201, the amplifier unit 202, and the transmission / reception unit 203 may each be configured to include one or more.
  • the radio frequency signal received by the transmission / reception antenna 201 is amplified by the amplifier unit 202.
  • the transmission / reception unit 203 receives the DL signal amplified by the amplifier unit 202.
  • the transmission / reception unit 203 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 204.
  • the transmission / reception unit 203 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present invention.
  • the transmission / reception unit 203 may be configured as an integral transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • the baseband signal processing unit 204 performs FFT processing, error correction decoding, retransmission control reception processing, and the like on the input baseband signal.
  • the DL data is transferred to the application unit 205.
  • the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer. Of the DL data, system information and higher layer control information are also transferred to the application unit 205.
  • UL data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs transmission / reception by performing retransmission control transmission processing (for example, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like. Is transferred to the unit 203.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it.
  • the radio frequency signal frequency-converted by the transmission / reception unit 203 is amplified by the amplifier unit 202 and transmitted from the transmission / reception antenna 201.
  • the transmission / reception unit 203 includes a DL signal (eg, DL control signal (DL control channel), DL data signal (DL data channel, DL shared channel), DL reference signal (DM-RS, CSI-RS, etc.), discovery signal, and the like. , A synchronization signal, a broadcast signal, etc.) and a UL signal (for example, UL control signal (UL control channel), UL data signal (UL data channel, UL shared channel), UL reference signal, etc.) is transmitted.
  • DL signal eg, DL control signal (DL control channel), DL data signal (DL data channel, DL shared channel), DL reference signal (DM-RS, CSI-RS, etc.), discovery signal, and the like.
  • a UL signal for example, UL control signal (UL control channel), UL data signal (UL data channel, UL shared channel), UL reference signal, etc.
  • the transmission / reception unit 203 receives a DL signal and / or a UL signal in a predetermined neurology.
  • the transmission / reception unit 203 receives information related to the frame configuration used when the user terminal communicates and information related to blanking by upper layer signaling (at least one of broadcast signal, system information, and RRC control information). Also good.
  • the transmission / reception unit 203 is set with the first information related to the frame structure of a predetermined neurology, a region where DL transmission and / or UL transmission is prohibited in the predetermined neurology, or a specific transmission direction. And second information for specifying the area.
  • the second information is information indicating a time interval and / or a period in which DL transmission and / or UL transmission is prohibited in a predetermined neurology, or other neurology different from the predetermined neurology. It can be information regarding the frame configuration. Further, the transmission / reception unit 103 may transmit a notification bit indicating whether or not a blanking resource is inserted in the downlink control information.
  • FIG. 22 is a diagram illustrating an example of a functional configuration of the user terminal according to the present embodiment. Note that FIG. 22 mainly shows functional blocks of characteristic portions in the present embodiment, and the user terminal 20 also has other functional blocks necessary for wireless communication. As illustrated in FIG. 22, the baseband signal processing unit 204 included in the user terminal 20 includes a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. At least.
  • the control unit 401 controls the entire user terminal 20.
  • the control unit 401 can be composed of a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present invention.
  • the control unit 401 controls, for example, signal generation by the transmission signal generation unit 402 and signal allocation by the mapping unit 403.
  • the control unit 401 controls signal reception processing by the reception signal processing unit 404 and signal measurement by the measurement unit 405.
  • the control unit 401 specifies information related to the frame structure of a predetermined neurology, and an area where DL transmission and / or UL transmission is prohibited in the predetermined neurology, or an area where a specific transmission direction is set. DL reception and / or UL transmission is controlled based on the information (information regarding blanking) (see FIGS. 13 and 14). For example, the control unit 401 dynamically controls whether or not a region where DL transmission and / or UL transmission is prohibited in a predetermined neurology or a region where a specific transmission direction is set is set based on a predetermined condition. (See FIGS. 15 to 17).
  • the transmission signal generation unit 402 generates a UL signal (UL control channel, UL data channel, UL reference signal, etc.) based on an instruction from the control unit 401, and outputs the UL signal to the mapping unit 403.
  • the transmission signal generation unit 402 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 402 generates a UL data channel based on an instruction from the control unit 401. For example, when the UL grant is included in the DL control channel notified from the radio base station 10, the transmission signal generation unit 402 is instructed by the control unit 401 to generate a UL data channel.
  • the mapping unit 403 maps the UL signal generated by the transmission signal generation unit 402 to a radio resource based on an instruction from the control unit 401, and outputs it to the transmission / reception unit 203. For example, the mapping unit 403 performs control so as not to assign an uplink data channel and / or an uplink control channel to a predetermined symbol (for example, a UL transmission prohibited section) based on information related to blanking.
  • the mapping unit 403 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 203.
  • the received signal is, for example, a DL signal (DL control channel, DL data channel, DL reference signal, etc.) transmitted from the radio base station 10.
  • the reception signal processing unit 404 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention. Further, the reception signal processing unit 404 can constitute a reception unit according to the present invention.
  • the received signal processing unit 404 performs blind decoding on the DL control channel that schedules transmission and / or reception of the DL data channel based on an instruction from the control unit 401, and performs DL data channel reception processing based on the DCI.
  • Received signal processing section 404 estimates the channel gain based on DM-RS or CRS, and demodulates the DL data channel based on the estimated channel gain.
  • the reception signal processing unit 404 outputs the information decoded by the reception processing to the control unit 401.
  • the reception signal processing unit 404 outputs broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401, for example.
  • the reception signal processing unit 404 may output the data decoding result to the control unit 401.
  • the reception signal processing unit 404 outputs the reception signal and the signal after reception processing to the measurement unit 405.
  • the measurement unit 405 performs measurement on the received signal.
  • the measurement part 405 can be comprised from the measuring device, measurement circuit, or measurement apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
  • the measurement unit 405 may measure, for example, the received power (for example, RSRP), DL reception quality (for example, RSRQ), channel state, and the like of the received signal.
  • the measurement result may be output to the control unit 401.
  • each functional block may be realized by one device physically and / or logically coupled, and two or more devices physically and / or logically separated may be directly and / or indirectly. (For example, wired and / or wirelessly) and may be realized by these plural devices.
  • a wireless base station, a user terminal, etc. in an embodiment of the present invention may function as a computer that performs processing of the wireless communication method of the present invention.
  • FIG. 23 is a diagram illustrating an example of a hardware configuration of a radio base station and a user terminal according to an embodiment of the present invention.
  • the wireless base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. Good.
  • the term “apparatus” can be read as a circuit, a device, a unit, or the like.
  • the hardware configurations of the radio base station 10 and the user terminal 20 may be configured to include one or a plurality of each device illustrated in the figure, or may be configured not to include some devices.
  • processor 1001 may be implemented by one or more chips.
  • Each function in the radio base station 10 and the user terminal 20 is performed by, for example, reading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, and the processor 1001 performs computation, and communication by the communication device 1004 is performed. Alternatively, it is realized by controlling data reading and / or writing in the memory 1002 and the storage 1003.
  • the processor 1001 controls the entire computer by operating an operating system, for example.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the baseband signal processing unit 104 (204), the call processing unit 105, and the like described above may be realized by the processor 1001.
  • the processor 1001 reads programs (program codes), software modules, data, and the like from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these.
  • programs program codes
  • software modules software modules
  • data data
  • the like data
  • the control unit 401 of the user terminal 20 may be realized by a control program stored in the memory 1002 and operated by the processor 1001, and may be realized similarly for other functional blocks.
  • the memory 1002 is a computer-readable recording medium such as a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically EPROM), a RAM (Random Access Memory), or any other suitable storage medium. It may be configured by one.
  • the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store programs (program codes), software modules, and the like that can be executed to implement the wireless communication method according to an embodiment of the present invention.
  • the storage 1003 is a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc ROM)), a digital versatile disk, Blu-ray® disk), removable disk, hard disk drive, smart card, flash memory device (eg, card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium It may be constituted by.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., in order to realize frequency division duplex (FDD) and / or time division duplex (TDD). It may be configured.
  • FDD frequency division duplex
  • TDD time division duplex
  • the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like described above may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an external input.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED (Light Emitting Diode) lamp, etc.) that performs output to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured with a single bus or may be configured with different buses between apparatuses.
  • the radio base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field Programmable Gate Array), and the like. It may be configured including hardware, and a part or all of each functional block may be realized by the hardware. For example, the processor 1001 may be implemented by at least one of these hardware.
  • DSP digital signal processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the channel and / or symbol may be a signal (signaling).
  • the signal may be a message.
  • the reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot, a pilot signal, or the like depending on an applied standard.
  • a component carrier CC: Component Carrier
  • CC Component Carrier
  • the radio frame may be configured with one or a plurality of periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the radio frame may be referred to as a subframe.
  • a subframe may be composed of one or more slots in the time domain.
  • the slot may be configured with one or a plurality of symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain).
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the radio frame, subframe, slot, and symbol all represent a time unit when transmitting a signal.
  • Different names may be used for the radio frame, the subframe, the slot, and the symbol.
  • one subframe may be referred to as a transmission time interval (TTI)
  • a plurality of consecutive subframes may be referred to as a TTI
  • one slot may be referred to as a TTI.
  • the subframe or TTI may be a subframe (1 ms) in the existing LTE, a period shorter than 1 ms (for example, 1-13 symbols), or a period longer than 1 ms. Also good.
  • TTI means, for example, a minimum time unit for scheduling in wireless communication.
  • a radio base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used in each user terminal) to each user terminal in units of TTI.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit of a channel-encoded data packet (transport block), or may be a processing unit such as scheduling or link adaptation.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, or the like.
  • a TTI shorter than a normal TTI may be called a shortened TTI, a short TTI, a shortened subframe, a short subframe, or the like.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain. Further, the RB may include one or a plurality of symbols in the time domain, and may have a length of one slot, one subframe, or 1 TTI. One TTI and one subframe may each be composed of one or a plurality of resource blocks.
  • the RB may be called a physical resource block (PRB: Physical RB), a PRB pair, an RB pair, or the like.
  • the resource block may be composed of one or a plurality of resource elements (RE: Resource Element).
  • RE Resource Element
  • 1RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • the structure of the above-described radio frame, subframe, slot, symbol, and the like is merely an example.
  • the configuration such as the cyclic prefix (CP) length can be variously changed.
  • information, parameters, and the like described in this specification may be represented by absolute values, may be represented by relative values from predetermined values, or may be represented by other corresponding information.
  • the radio resource may be indicated by a predetermined index.
  • the mathematical formulas and the like using these parameters may be different from those explicitly disclosed herein.
  • information, signals, etc. can be output from the upper layer to the lower layer and / or from the lower layer to the upper layer.
  • Information, signals, and the like may be input / output via a plurality of network nodes.
  • the input / output information, signals, and the like may be stored in a specific location (for example, a memory) or managed by a management table. Input / output information, signals, and the like can be overwritten, updated, or added. The output information, signals, etc. may be deleted. Input information, signals, and the like may be transmitted to other devices.
  • information notification includes physical layer signaling (eg, downlink control information (DCI), uplink control information (UCI)), upper layer signaling (eg, RRC (Radio Resource Control) signaling), It may be implemented by broadcast information (master information block (MIB), system information block (SIB), etc.), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
  • DCI downlink control information
  • UCI uplink control information
  • RRC Radio Resource Control
  • MIB master information block
  • SIB system information block
  • MAC Medium Access Control
  • the physical layer signaling may be referred to as L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like.
  • the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
  • the MAC signaling may be notified by, for example, a MAC control element (MAC CE (Control Element)).
  • notification of predetermined information is not limited to explicitly performed, but implicitly (for example, by not performing notification of the predetermined information or another (By notification of information).
  • the determination may be performed by a value represented by 1 bit (0 or 1), or may be performed by a boolean value represented by true or false.
  • the comparison may be performed by numerical comparison (for example, comparison with a predetermined value).
  • software, instructions, information, etc. may be transmitted / received via a transmission medium.
  • software can use websites, servers using wired technology (coaxial cable, optical fiber cable, twisted pair, digital subscriber line (DSL), etc.) and / or wireless technology (infrared, microwave, etc.) , Or other remote sources, these wired and / or wireless technologies are included within the definition of transmission media.
  • system and “network” used in this specification are used interchangeably.
  • base station BS
  • radio base station eNB
  • cell e.g., a fixed station
  • eNodeB eNodeB
  • cell group e.g., a cell
  • carrier femtocell
  • component carrier e.g., a fixed station, NodeB, eNodeB (eNB), access point, transmission point, reception point, femtocell, small cell, and the like.
  • the base station can accommodate one or a plurality of (for example, three) cells (also called sectors). If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, an indoor small base station (RRH: The term “cell” or “sector” refers to part or all of the coverage area of a base station and / or base station subsystem that provides communication service in this coverage. Point to.
  • RRH indoor small base station
  • MS mobile station
  • UE user equipment
  • terminal may be used interchangeably.
  • a base station may also be called in terms such as a fixed station, NodeB, eNodeB (eNB), access point, transmission point, reception point, femtocell, small cell, and the like.
  • a mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called terminal, remote terminal, handset, user agent, mobile client, client or some other suitable terminology.
  • the radio base station in this specification may be read by the user terminal.
  • each aspect / embodiment of the present invention may be applied to a configuration in which communication between a radio base station and a user terminal is replaced with communication between a plurality of user terminals (D2D: Device-to-Device).
  • the user terminal 20 may have a function that the wireless base station 10 has.
  • words such as “up” and “down” may be read as “side”.
  • the uplink channel may be read as a side channel.
  • a user terminal in this specification may be read by a radio base station.
  • the wireless base station 10 may have a function that the user terminal 20 has.
  • the specific operation assumed to be performed by the base station may be performed by the upper node in some cases.
  • various operations performed for communication with a terminal may be performed by one or more network nodes other than the base station and the base station (for example, It is obvious that the operation can be performed by MME (Mobility Management Entity), S-GW (Serving-Gateway), etc., but not limited to these) or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • each aspect / embodiment described in this specification may be used alone, in combination, or may be switched according to execution.
  • the order of the processing procedures, sequences, flowcharts, and the like of each aspect / embodiment described in the present specification may be changed as long as there is no contradiction.
  • the methods described herein present the elements of the various steps in an exemplary order and are not limited to the specific order presented.
  • Each aspect / embodiment described herein includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile). communication system), 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR (New Radio), NX (New radio access), FX (Future generation radio access), GSM (registered trademark) (Global System for Mobile communications), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802 .20, UWB (Ultra-WideBand), Bluetooth (registered trademark), The present invention may be applied to a system using other appropriate wireless communication methods and / or a next generation system extended based on these.
  • the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using designations such as “first”, “second”, etc. as used herein does not generally limit the amount or order of those elements. These designations can be used herein as a convenient way to distinguish between two or more elements. Thus, reference to the first and second elements does not mean that only two elements can be employed or that the first element must precede the second element in some way.
  • determining may encompass a wide variety of actions. For example, “determination” means calculating, computing, processing, deriving, investigating, looking up (eg, table, database or other data). It may be considered to “determine” (search in structure), ascertaining, etc.
  • “determination (decision)” includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), access ( accessing) (e.g., accessing data in memory), etc., may be considered to be “determining”.
  • “determination” is considered to be “determination (resolving)”, “selecting”, “choosing”, “establishing”, “comparing”, etc. Also good. That is, “determination (determination)” may be regarded as “determination (determination)” of some operation.
  • connection refers to any direct or indirect connection between two or more elements or By coupling, it can include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other.
  • the coupling or connection between the elements may be physical, logical, or a combination thereof.
  • connection may be read as “access”.
  • the two elements are radio frequency by using one or more wires, cables and / or printed electrical connections, and as some non-limiting and non-inclusive examples It can be considered to be “connected” or “coupled” to each other by using electromagnetic energy or the like having wavelengths in the region, microwave region, and / or light (both visible and invisible) region.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

複数のニューメロロジーを同一キャリア内に多重して通信を行う場合であっても、通信を適切に行うこと。複数のニューメロロジーのフレーム構成が周波数分割多重される無線通信システムにおいて通信を行うユーザ端末であって、所定のニューメロロジーのフレーム構成に関する第1の情報と、前記所定のニューメロロジーにおいてDL伝送及び/又はUL伝送が禁止される領域、又は特定の伝送方向が設定される領域を特定するための第2の情報と、を受信する受信部と、前記第1の情報及び第2の情報に基づいてDL受信及び/又はUL送信を制御する制御部と、を有する。

Description

ユーザ端末、無線基地局及び無線通信方法
 本発明は、次世代移動通信システムにおけるユーザ端末、無線基地局及び無線通信方法に関する。
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、さらなる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTEからの更なる広帯域化及び高速化を目的として、LTEの後継システム(例えば、LTE-A(LTE-Advanced)、FRA(Future Radio Access)、4G、5G、5G+(plus)、NR(New RAT)、LTE Rel.14、15~、などともいう)も検討されている。
 既存のLTEシステム(例えば、LTE Rel.10以降)では、広帯域化を図るために、複数のキャリア(コンポーネントキャリア(CC:Component Carrier)、セル)を統合するキャリアアグリゲーション(CA:Carrier Aggregation)が導入されている。各キャリアは、LTE Rel.8のシステム帯域を一単位として構成される。また、CAでは、同一の無線基地局(eNB:eNodeB)の複数のCCがユーザ端末(UE:User Equipment)に設定される。
 また、既存のLTEシステム(例えば、LTE Rel.12以降)では、異なる無線基地局の複数のセルグループ(CG:Cell Group)がユーザ端末に設定されるデュアルコネクティビティ(DC:Dual Connectivity)も導入されている。各セルグループは、少なくとも一つのキャリア(CC、セル)で構成される。異なる無線基地局の複数のキャリアが統合されるため、DCは、基地局間CA(Inter-eNB CA)などとも呼ばれる。
 また、既存のLTEシステム(例えば、LTE Rel.8-13)では、1msの伝送時間間隔(TTI:Transmission Time Interval)(サブフレームともいう)を用いて、下りリンク(DL:Downlink)及び/又は上りリンク(UL:Uplink)の通信が行われる。当該1msのTTIは、チャネル符号化された1データ・パケットの送信時間単位であり、スケジューリング、リンクアダプテーションなどの処理単位となる。
 将来の無線通信システム(例えば、5G、NRなど)では、高速で大容量の通信(eMBB:enhanced Mobile Broad Band)、IoT(Internet of Things)やMTC(Machine Type Communication)などの機器間通信(M2M:Machine-to-Machine)用のデバイス(ユーザ端末)からの大量接続(mMTC:massive MTC)、低遅延で高信頼の通信(URLLC:Ultra-reliable and low latency communication)など、多様なサービスを単一のフレームワークで収容することが望まれている。URLLCでは、eMBBやmMTCよりも高い遅延削減効果が求められる。
 このように、将来の無線通信システムでは、遅延削減に対する要求が異なる複数のサービスが混在することが想定される。そこで、将来の無線通信システムでは、ニューメロロジー(numerology)が異なる複数のユーザ端末を、同一キャリア(CC、セル)内に多重することも検討されている。
 ここで、ニューメロロジーとは、周波数方向及び/又は時間方向における通信パラメータ(例えば、サブキャリア間隔、帯域幅、シンボル長、CPの時間長(CP長)、サブフレーム長、TTIの時間長(TTI長)、TTIあたりのシンボル数、無線フレーム構成、フィルタリング処理、ウィンドウイング処理などの少なくとも一つ)である。
 ニューメロロジーが異なる複数のユーザ端末を同一キャリア内に多重する場合、各ニューメロロジーのフレーム構成を多重(例えば、FDM及び/又はTDM)することが考えられる。しかし、異なるニューメロロジーのフレーム構成をどのように多重して通信を制御するかは決まっておらず、適切な制御方法が望まれる。
 本発明はかかる点に鑑みてなされたものであり、複数のニューメロロジーを同一キャリア内に多重して通信を行う場合であっても、通信を適切に行うことができるユーザ端末、無線基地局及び無線通信方法を提供することを目的の一つとする。
 本発明の一態様に係るユーザ端末は、複数のニューメロロジーのフレーム構成が周波数分割多重される無線通信システムにおいて通信を行うユーザ端末であって、所定のニューメロロジーのフレーム構成に関する第1の情報と、前記所定のニューメロロジーにおいてDL伝送及び/又はUL伝送が禁止される領域、又は特定の伝送方向が設定される領域を特定するための第2の情報と、を受信する受信部と、前記第1の情報及び第2の情報に基づいてDL受信及び/又はUL送信を制御する制御部と、を有することを特徴とする。
 本発明によれば、複数のニューメロロジーを同一キャリア内に多重して通信を行う場合であっても、通信を適切に行うことができる。
ニューメロロジーにおいて適用可能なフレーム構成の一例を示す図である。 図2Aは、制御チャネルの配置領域を拡大した場合のフレーム構成の一例を示す図であり、図2Bは、ギャップ区間を拡大した場合のフレーム構成の一例を示す図である。 図3A、図3Bは、異なるニューメロロジーのフレーム構成の一例をそれぞれ示す図である。 図4A、図4Bは、異なるニューメロロジーのフレーム構成を周波数分割多重する場合の一例を示す図である。 図5A、図5Bは、異なるニューメロロジーのフレーム構成を周波数分割多重する場合の他の例を示す図である。 図6A、図6Bは、異なるニューメロロジーのDL送信用のフレーム構成同士を周波数分割多重する場合の一例を示す図である。 図7A、図7Bは、異なるニューメロロジーのDL送信用のフレーム構成同士を周波数分割多重する場合の他の例を示す図である。 図8A、図8Bは、異なるニューメロロジーのDL送信用のフレーム構成同士を周波数分割多重する場合の他の例を示す図である。 図9A、図9Bは、異なるニューメロロジーのUL送信用のフレーム構成同士を周波数分割多重する場合の一例を示す図である。 図10A、図10Bは、異なるニューメロロジーのUL送信用のフレーム構成同士を周波数分割多重する場合の他の例を示す図である。 図11A、図11Bは、異なるニューメロロジーのUL送信用のフレーム構成同士を周波数分割多重する場合の他の例を示す図である。 図12A、図12Bは、異なるニューメロロジー毎にフレーム構成に割当てる制御チャネル周期を設定する場合の一例を示す図である。 図13A、図13Bは、ユーザ端末が利用する所定のニューメロロジーのフレーム構成の一例を示している。 図14A、図14Bは、ユーザ端末が利用する所定のニューメロロジーのフレーム構成において、ブランク期間の設定方法の一例を示す図である。 図15A、図15Bは、SC間隔が相対的に広い(例えば、30kHz)フレーム構成#2において、リソースのブランキングを動的に変更して設定する場合の一例を示す図である。 図16A、図16Bは、SC間隔が相対的に狭い(例えば、15kHz)フレーム構成#1において、リソースのブランキングを動的に変更して設定する場合の一例を示す図である。 図17A、図17Bは、SC間隔が相対的に広い(例えば、30kHz)フレーム構成#2において、所定シンボルにおいて伝送方向を動的に切り替えて送信を制御する場合の一例を示す図である。 本発明の一実施形態に係る無線通信システムの概略構成の一例を示す図である。 本発明の一実施形態に係る無線基地局の全体構成の一例を示す図である。 本発明の一実施形態に係る無線基地局の機能構成の一例を示す図である。 本発明の一実施形態に係るユーザ端末の全体構成の一例を示す図である。 本発明の一実施形態に係るユーザ端末の機能構成の一例を示す図である。 本発明の一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。
 将来の無線通信システム(5G/NR)では、複数のフレーム構成(Frame structure、フレームタイプ、チャネル構成、サブフレーム構成、サブフレームタイプ、Subframe structure、スロット構成、スロットタイプ、Slot structureとも呼ぶ)を導入することが検討されている。図1に、5G/NRで適用可能なフレーム構成(ここでは、時間構成)の一例を示す。なお、図1に示すフレーム構成は一例であり、本実施の形態で適用可能なフレーム構成の具体的な構成、数等は図1に示す場合に限られない。
 図1では、異なるチャネルが時間領域で分割されている例を示しているが、フレーム構成はこれに限られない。例えば、下りデータチャネルと下り制御チャネルは必ずしも時間的に分割される必要はなく、同じ時間区間(例えば、シンボル)に周波数多重/符号多重されてもよい。また、上りデータチャネルと上り制御チャネルも同様で、必ずしも時間的に分割される必要はなく、同じ時間区間(例えば、シンボル)に周波数多重/符号多重されてもよい。
 図1は、あるニューメロロジーにおいて適用可能なフレーム構成の一例を示している。下りデータ(下りデータチャネル)の送信を行う場合には、下り制御チャネルと下り共有チャネルと上り制御チャネルが配置されるフレーム構成を適用することができる。ユーザ端末は、下り制御チャネルで送信される下り制御情報に基づいて下りデータの受信及び/又は上りデータの送信を制御する。また、ユーザ端末は、下り共有チャネルで受信したデータに対する送達確認信号(HARQ-ACK)を同じ時間区間(例えば、NR TDD サブフレーム)の上り制御チャネルでフィードバックしてもよい。なお、下り共有チャネルと上り制御チャネルの間にはギャップ区間を設定してもよい。また、上り制御チャネルと次のフレーム又はサブフレームの開始時間の間にもギャップ区間を設定してもよい。
 なお、図1では、これらのギャップ区間を0.5シンボル長として表現しているが、実際のチャネル構成では、例えば下り共有チャネルと上り制御チャネルの間のギャップ区間、および下り制御チャネルと上り共有チャネルの間のギャップ区間をシンボル長の整数倍(例えば1シンボル長)とし、上り制御チャネルと次のフレーム又はサブフレームの開始時間の間のギャップ区間を0としてもよい。この場合には、実際の運用時に、例えばタイミングアドバンスの適用などによりユーザ端末の上りリンクの送信タイミングを早めてやることで、図1のように上り制御チャネルと次のフレーム又はサブフレームの開始時間の間にもギャップ区間を設けることができる。
 このように、短時間の通信を可能とするために、同一サブフレーム内で送受信の制御(スケジューリング)が完結する割り当てを行ってもよい。当該割り当てを、自己完結型割り当て(self-contained assignment)ともいう。自己完結型割り当てが行われるサブフレームは、自己完結型(self-contained)サブフレームと呼ばれてもよい。自己完結型サブフレームは、例えば、自己完結型TTI、自己完結型シンボルセットなどと呼ばれてもよいし、他の呼称が用いられてもよい。
 自己完結型サブフレームでは、ユーザ端末は、下り制御チャネルに基づいてDLデータを受信するとともに、当該DLデータのフィードバック信号(例えば、HARQ-ACKなど)を送信してもよい。自己完結型サブフレームを用いることにより、例えば1ms以下の超低遅延のフィードバックが実現できるため、遅延時間(latency)を削減できる。
 上りデータ(上りデータチャネル)の送信を行う場合には、下り制御チャネルと上り共有チャネルと上り制御チャネルが配置されるフレーム構成を適用することができる。ユーザ端末は、下り制御チャネルで送信される下り制御情報に基づいて同じ(又は、次以降の)サブフレームでUL信号(ULデータ、測定報告等)の送信を行うことができる。
 このように、短時間の通信を可能とするために、同一サブフレーム内で送受信の制御(スケジューリング)が完結する割り当てを行ってもよい。なお、下り制御チャネルと上り共有チャネルの間にはギャップ区間を設定してもよい。また、上り制御チャネルと次のフレーム又はサブフレームの開始時間の間にもギャップ区間を設定してもよい。
 複数のチャネルが配置されるフレーム構成において、チャネルの配置順序、時間方向における長さは図1に示した構成に限られない。各チャネルの位置は適宜入れ替えて適用することができる。例えば、制御チャネルの配置領域を変更してもよいし、ギャップ区間の長さを変更してもよい。
 図2Aは、下り制御チャネルと上り制御チャネルの配置領域を拡大した場合のフレーム構成を示している。下り制御チャネルの配置領域を拡大することにより、1時間間隔において送信可能なDL制御情報の容量を増加することができる。また、上り制御チャネルの配置時間(例えばシンボル数)を拡大することにより、送信電力に制限のある上りリンクであっても、所定ビット数の上り制御信号を送信する際に所要品質を達成することが容易となる。図2Bは、ギャップ区間を拡大する場合を示している。ギャップ区間を長く設定することにより、カバレッジ拡張及び/又は下り共有チャネルにおけるデータ受信から上り制御チャネルの送信又は下り制御チャネル受信から上り共有チャネルの送信に要する処理時間を確保し、より長い処理時間の適用が可能となる。
 このように、将来の無線通信システム(5G/NR)では、所定時間間隔(例えば、サブフレーム)において、DL伝送を行う区間とUL伝送を行う区間が設定されたフレーム構成の導入が検討されている。また、将来の無線アクセス方式(5G RAT)では、幅広い周波数帯や、要求条件が異なる多様なサービスに対応するため、複数のニューメロロジーが導入されること(マルチニューメロロジー等ともいう)が想定される。ここで、ニューメロロジーとは、周波数及び/又は時間方向における通信パラメータ(無線パラメータ)のセットである。当該通信パラメータのセットには、例えば、サブキャリア間隔、帯域幅、シンボル長、CP長、TTI(サブフレーム)長、TTI(サブフレーム)あたりのシンボル数、無線フレーム構成、フィルタリング処理、ウィンドウイング処理の少なくとも一つが含まれてもよい。
 「ニューメロロジーが異なる」とは、例えば、サブキャリア間隔、帯域幅、シンボル長、CP長、TTI(サブフレーム)長、TTI(サブフレーム)あたりのシンボル数、無線フレーム構成の少なくとも一つがニューメロロジー間で異なることを示すが、これに限られない。マルチニューメロロジーをサポートする将来の無線通信システムでは、ニューメロロジーが異なる複数のユーザ端末を収容可能に構成される。
 図3は、異なるニューメロロジーのフレーム構成の一例をそれぞれ示す図である。図3Aは、相対的に狭いサブキャリア間隔(例えば、15kHz)を有する第1のニューメロロジーのフレーム構成#1の一例を示し、図3Bは、相対的に広いサブキャリア間隔(例えば、30kHz)を有する第2のニューメロロジーのフレーム構成#2の一例を示している。ここでは、第1のニューメロロジーのサブキャリア間隔を、既存のLTEシステムのサブキャリア間隔と同一の15kHzとしているがこれに限られない。また、第2のニューメロロジーのサブキャリア間隔は、第1のニューメロロジーのサブキャリア間隔のN(N>1)倍に設定してもよい。
 また、サブキャリア間隔とシンボル長とは互いに逆数の関係にある。このため、第2のニューメロロジーのサブキャリア間隔を第1のニューメロロジーのサブキャリア間隔のN倍とする場合、第2のニューメロロジーのシンボル長は、第1のニューメロロジーのシンボル長の1/N倍とすることができる。また、第1のニューメロロジーと第2のニューメロロジーとでは、サブキャリア及びシンボルにより構成されるリソース要素(RE:Resource Element)の構成も異なってもよい。
 サブキャリア間隔が広くなると、ユーザ端末の移動時のドップラー・シフトによるチャネル間干渉や、ユーザ端末の受信機の位相雑音による伝送品質劣化を効果的に防止できる。特に、数十GHzなどの高周波数帯においては、サブキャリア間隔を広げることにより、伝送品質の劣化を効果的に防止できる。このため、第1のニューメロロジーと比べてサブキャリア間隔が広い第2のニューメロロジーは、高周波数帯の通信に適する。また、サブキャリア間隔を広げることにより、高速移動に対する耐性も強くなるので、第1のニューメロロジーと比べてサブキャリア間隔が広い第2のニューメロロジーは、高速移動に適する。
 また、シンボル長が短くなると、所定数(例えば、14又は12)のシンボルで構成されるTTI長も短くなるため、遅延削減(latency Reduction)に有効である。例えば、URLLC(Ultra-reliable and low latency communication)などでは、データ量が小さいが遅延削減が要求される。このような遅延についての要求条件が厳しいサービスには、第1のニューメロロジーと比べてシンボル長が短い第2のニューメロロジーが適する。なお、既存のLTEシステムよりも短いTTI(サブフレーム)(例えば、1ms未満のTTI)は、短縮TTI、ショートTTI、短縮サブフレーム、ショートサブフレーム、部分(partial)サブフレーム等と呼ばれてもよい。
 一方、MBB(Mobile Broad Band)など高い周波数利用効率や高速通信が要求されるサービスでは、第2のニューメロロジーと比べてサブキャリア間隔が狭い第1のニューメロロジーが適する。第1のニューメロロジーは、大量のアンテナ素子を利用する大規模MIMO(Massive Multiple-Input and Multiple-output)にも好適である。
 なお、図示しないが、各ニューメロロジーのTTI(例えば、NR TDDサブフレーム、サブフレームとも呼んでもよい)を構成するシンボル数は、既存のLTEシステムと同様であってもよいし(例えば、通常CPの場合14、拡張CPの場合12)、異なっていてもよい。また、各ニューメロロジーのリソースの割り当て単位(リソースユニット)は、既存のLTEシステムのリソースブロックペア(例えば、12サブキャリアからなるPRB(Physical Resource Block)ペア)と同一であってもよいし、異なっていてもよい。既存のLTEシステムとは異なるリソースユニットは、拡張RB(eRB:enhanced RB)等と呼ばれてもよい。
 また、各ニューメロロジーのシンボルは、OFDM(Orthogonal Frequency Division Multiplexing)シンボルであってもよいし、SC-FDMA(Single-Carrier Frequency Division Multiple Access)シンボルであってもよい。
 また、図示しないが、ニューメロロジーの他の例として、サブキャリア間隔を既存のLTEシステムの1/N倍にし、シンボル長をN倍にする構成も考えられる。この構成によれば、シンボルの全体長が増加するため、シンボルの全体長に占めるCP長の比率が一定である場合でも、CP長を長くすることができる。これにより、通信路におけるフェージングに対して、より強い(ロバストな)無線通信が可能となる。
 また、ユーザ端末が用いるニューメロロジーは、RRC(Radio Resource Control)シグナリングやブロードキャスト情報などの上位レイヤシグナリングなどにより準静的に設定されてもよいし、物理レイヤ制御情報(L1/L2制御チャネル)により動的に変更されてもよい。或いは、上位レイヤシグナリング及び物理レイヤ制御情報の組み合わせにより変更されてもよい。
 以上のような将来の無線通信システムでは、同一キャリア(CC、セル)に、異なるニューメロロジーの複数のユーザ端末を多重することが想定される。例えば、ニューメロロジーが異なる複数のユーザ端末は、周波数分割多重(FDM:Frequency Division Multiplexing)及び/又は時分割多重(TDM:Time Division Multiplexing)により、同一キャリア内に多重されてもよい。
 例えば、図3に示したサブキャリア間隔が異なる第1のニューメロロジーのフレーム構成と、第2のニューメロロジーのフレーム構成とをFDM及び/又はTDMすることが考えられる。しかし、かかる場合にUL伝送及び/又はDL伝送をどのように制御するかが問題となる。
 図4は、相対的に狭いサブキャリア間隔(例えば、15kHz)を有する第1のニューメロロジーのフレーム構成#1と、相対的に広いサブキャリア間隔(例えば、30kHz)を有する第2のニューメロロジーのフレーム構成#2を周波数分割多重する場合の一例を示している。なお、図4Aは、下りデータ(下りデータチャネル)の送信に利用するフレーム構成#1とフレーム構成#2をFDMし、図4Bは、上りデータ(上りデータチャネル)の送信に利用するフレーム構成#1とフレーム構成#2をFDMする場合を示している。
 一般的に、同一キャリアでTDDを適用する場合、UL伝送とDL伝送を同時に行わない半二重(Half-duplex)で通信が制御されることが考えられる。したがって、多くの場合、異なるニューメロロジーを周波数分割多重する場合、同じ時間領域(時間区間)において伝送方向を関連付けた割当て(link direction alignment)が要求される。
 したがって、図4に示すように、異なるニューメロロジーのフレーム構成を同一キャリアに周波数分割多重する場合、同じ時間領域において異なる伝送方向が設定されるとHalf-duplex通信を適切に行うことが出来なくなる。例えば、図4A、図4Bにおいて、第1のニューメロロジーのフレーム構成#1のUL伝送と第2のニューメロロジーのフレーム構成#2のDL伝送が同じ時間領域で重複する場合、及び、フレーム構成#1のDL伝送とフレーム構成#2のUL伝送が同じ時間領域で重複する場合にHalf-duplex通信が出来なくなる。
 また、図5に示すように、異なるニューメロロジーのフレーム構成の一方が下りデータの送信に利用するフレーム構成を適用し、他方が上りデータの送信に利用するフレーム構成を適用することも考えられる。図5Aは、下りデータの送信に利用するフレーム構成#1と、下りデータの送信に利用するフレーム構成#2及び上りデータの送信に利用するフレーム構成#2と、をFDMする場合を示している。図5Bは、上りデータの送信に利用するフレーム構成#1と、下りデータの送信に利用するフレーム構成#2及び上りデータの送信に利用するフレーム構成#2と、をFDMする場合を示している。なお、下りデータの送信に利用するフレーム構成#2及び上りデータの送信に利用するフレーム構成#2はTDDで送信される。
 この場合、フレーム構成#1のDL伝送(例えば、下りデータチャネル)とフレーム構成#2のUL伝送(例えば、上り制御チャネル、上りデータチャネル)が同じ時間領域で重複する場合、Half-duplex通信が出来なくなる。また、フレーム構成#1のUL伝送(例えば、上りデータチャネル)とフレーム構成#2のDL伝送(例えば、下りデータチャネル、下り制御チャネル)が同じ時間領域で重複する場合にHalf-duplex通信が出来なくなる。
 このように、本発明者等は、周波数多重される異なるニューメロロジーのフレーム構成間で異なる伝送方向が設定される場合に、通信が適切に行うことが出来なくなる点に着目した。そこで、本発明者等は、異なるニューメロロジーのフレーム構成を周波数多重する場合、同じ時間間隔において、複数のニューメロロジー間で異なる伝送方向(UL伝送とDL伝送)が設定されないように信号及び/又はチャネルの割当てを制御することを着想した。
 本実施の形態の一態様において、無線基地局は、所定のニューメロロジーにおけるDL信号及び/又はUL信号の割当てを、所定のニューメロロジーと異なる他のニューメロロジーの伝送方向に基づいて制御する。また、本実施の形態の一態様において、ユーザ端末は、所定のニューメロロジーのフレーム構成に関する第1の情報と、当該所定のニューメロロジーにおいてDL伝送及び/又はUL伝送が禁止される領域、又は特定の伝送方向が設定される領域を特定するための第2の情報と、に基づいてDL受信及び/又はUL送信を制御する。
 以下に本実施の形態について詳細に説明する。以下の説明では、サブキャリア間隔が異なるフレーム構成を利用する複数のニューメロロジーを例に挙げて説明するが、本実施の形態が適用可能なフレーム構成はこれに限られない。また、以下に説明する複数の態様はそれぞれ単独で実施してもよいし、適宜組み合わせて実施することも可能である。
(第1の実施形態)
 第1の実施形態では、異なるニューメロロジーでそれぞれ適用されるフレーム構成の伝送方向を考慮して、信号及び/又はチャネルの割当てを制御する場合について説明する。以下の説明では、異なるニューメロロジーのフレーム構成として、DLデータ送信用のフレーム構成同士、ULデータ送信用のフレーム構成同士を周波数分割多重する場合をそれぞれ例に挙げて説明する。
<DLデータ送信用のフレーム構成同士のFDM>
[態様1]
 図6は、第1のニューメロロジーにおいてDLデータ送信に利用するフレーム構成#1と、第2のニューメロロジーにおいてDLデータ送信に利用するフレーム構成#2を周波数分割多重する場合を示している。具体的には、図6Aは、上り制御チャネル(例えば、HARQ-ACK)を0.5ms毎に送信する場合の各フレーム構成を示し、図6Bは、上り制御チャネルを1ms毎に送信する場合の各フレーム構成を示している。
 図6では、フレーム構成#1のサブキャリア間隔が15kHz(14シンボル/1ms)であり、フレーム構成#2のサブキャリア間隔が30kHz(14シンボル/0.5ms)の場合を示しているが、フレーム構成はこれに限られない。
 図6に示すように、DLデータ送信用のフレーム構成同士を周波数分割多重する場合、上り制御チャネル(例えば、HARQ-ACK)の送信区間を異なるニューメロロジー間でそろえて設定することができる。上り制御チャネルの送信区間を異なるニューメロロジー間でそろえるとは、各ニューメロロジーのフレーム構成に割当てられる上り制御チャネルの少なくとも一部が重複する(同じ時間領域に配置される)ことをいう。
 この場合、無線基地局がHalf-duplex通信を想定すると、サブキャリア(SC:Subcarrier)間隔の狭いフレーム構成#1を用いるユーザ端末が上り制御チャネル送信を行う時間区間では、SC間隔の広いフレーム構成#2を用いるユーザ端末が割当てられていてもDLを送信することができない。そのため、無線基地局は、SC間隔の広いフレーム構成#2で通信を行う場合、少なくともSC間隔の狭いフレーム構成#1でUL伝送(例えば、上り制御チャネルが送信)される領域でDL伝送(例えば、DLデータチャネルの割当て)を行わないように制御する。
 DL伝送の割当てを行わない領域(例えば、時間区間)はDL伝送の禁止区間として設定することができる。この際、無線基地局は、フレーム構成#2において、フレーム構成#1でULが伝送される領域(例えば、シンボル)に加えて、ギャップ区間を考慮した時間領域をDL伝送の禁止区間として設定してもよい。DL伝送の割当てを行わないように制御することをブランキング(Blanking)、DL伝送の禁止区間をブランク領域、ブランク期間等と呼んでもよい。
 フレーム構成#2を利用するユーザ端末は、少なくともSC間隔の狭いフレーム構成#1でULが伝送される領域においてDLデータが含まれないと想定して受信処理(例えば、復号処理等)を行うことができる。なお、DLデータが含まれない領域(DL伝送の禁止区間、ブランク領域)に関する情報は、あらかじめ無線基地局からユーザ端末に通知してもよい。
[態様2]
 あるいは、図6A、BにおいてDL伝送禁止区間(ブランク領域)として設定された領域をUL伝送(例えば、上り制御チャネル及び/又は上りデータチャネルの送信)に利用してもよい(図7参照)。図7A、Bは、図6A、BにおいてDL伝送禁止区間として設定された領域に上り制御チャネルを割当てた場合のフレーム構成を示している。
 この場合、ユーザ端末は、少なくともSC間隔の狭いフレーム構成#1でULが伝送される領域において、無線基地局の指示に基づいてフレーム構成#2でUL制御チャネルを送信することができる。フレーム構成#2において、特定の伝送方向(ここでは、UL伝送)の通信を行う区間(DL伝送の禁止区間)に関する情報は、あらかじめ無線基地局からユーザ端末に通知してもよい。
 このように、フレーム構成#2においてDL伝送が制限される時間領域のリソースをUL伝送に利用することにより、リソースの利用効率を向上することができる。また、フレーム構成#2においては、UL制御チャネルの送信区間を長くする(送信シンボル数を増やす、又は送信シンボル長を長くする)ことができる。これにより、UL制御チャネルの所要品質を満たすエリア(カバレッジ)を広くしたり、UL制御チャネルで送信可能な上りリンク制御情報(UCI)のペイロードを増やしたりすることができる。
[態様3]
 また、図8に示すように、DLデータ送信用のフレーム構成同士を周波数分割多重する場合、上り制御チャネル(例えば、HARQ-ACK)の送信区間をニューメロロジー毎にそれぞれ設定してもよい。図8では、SC間隔の狭いフレーム構成#1において、1ms毎に上り制御チャネルの送信を行い、SC間隔の広いフレーム構成#2において、0.5ms毎に上り制御チャネルの送信を行う場合を示している。
 無線基地局がHalf-duplex通信を想定すると、サブキャリア(SC)間隔の広いフレーム構成#2を用いるユーザ端末が上り制御チャネル送信を行う時間区間では、SC間隔の狭いフレーム構成#1を用いるユーザ端末のDLデータを送信することができない。そのため、無線基地局は、SC間隔の狭いフレーム構成#1で通信を行う場合、少なくともSC間隔の広いフレーム構成#2でUL伝送(例えば、上り制御チャネルが送信)される領域でDL伝送(例えば、DLデータチャネルの割当て)を行わないように制御する(図8A参照)。
 同様に、無線基地局がHalf-duplex通信を想定すると、サブキャリア(SC)間隔の狭いフレーム構成#1を用いるユーザ端末が上り制御チャネル送信を行う時間区間では、SC間隔の広いフレーム構成#2を用いるユーザ端末のDLデータを送信することができない。そのため、無線基地局は、SC間隔の広いフレーム構成#2で通信を行う場合、少なくともSC間隔の狭いフレーム構成#1で上り制御チャネルが送信される領域でDLデータチャネルの割当てを行わないように制御する(図8A参照)。
 各フレーム構成において、DL伝送の割当てを行わない領域はDL伝送の禁止区間として設定することができる。この際、無線基地局は、各フレーム構成において、他のフレーム構成でULが伝送される領域に加えて、ギャップ区間を考慮した時間領域をDL伝送の禁止区間として設定してもよい。
 ユーザ端末は、無線基地局から通知される情報(例えば、DL伝送の禁止区間に関する情報等)に基づいて、所定時間区間ではDLデータが含まれないと想定して受信処理(例えば、復号処理等)を行うことができる。
 あるいは、図8Aのフレーム構成#2においてDL伝送禁止区間として設定された領域をUL伝送(例えば、上り制御チャネル及び/又は上りデータチャネル)用に利用してもよい(図8B参照)。これにより、フレーム構成#2において、DL伝送が制限される時間領域のリソースをUL伝送に利用できるため、リソースの利用効率を向上することができる。
<ULデータ送信用のフレーム構成同士のFDM>
[態様1]
 図9は、第1のニューメロロジーにおいてULデータ送信に利用するフレーム構成#1と、第2のニューメロロジーにおいてULデータ送信に利用するフレーム構成#2を周波数分割多重する場合を示している。具体的には、図9Aは、下り制御チャネルを0.5ms毎に送信する場合の各フレーム構成を示し、図9Bは、下り制御チャネルを1ms毎に送信する場合の各フレーム構成を示している。
 図9では、フレーム構成#1のサブキャリア間隔が15kHz(14シンボル/1ms)であり、フレーム構成#2のサブキャリア間隔が30kHz(14シンボル/0.5ms)の場合を示しているが、フレーム構成はこれに限られない。
 図9に示すように、ULデータ送信用のフレーム構成同士を周波数分割多重する場合、下り制御チャネル(DL-CCH)の送信区間を異なるニューメロロジー間でそろえて設定することができる。下り制御チャネルの送信区間を異なるニューメロロジー間でそろえるとは、各ニューメロロジーのフレーム構成に割当てられる下り制御チャネルの少なくとも一部が重複する(同じ時間領域に配置される)ことをいう。
 この場合、無線基地局がHalf-duplex通信を想定すると、サブキャリア(SC)間隔の狭いフレーム構成#1を用いるユーザ端末が下り制御チャネル受信を行う時間区間では、SC間隔の広いフレーム構成#2を用いるユーザ端末が割当てられていても、当該ユーザ端末からULを受信することができない。そのため、無線基地局は、SC間隔の広いフレーム構成#2で通信を行う場合、少なくともSC間隔の狭いフレーム構成#1でDL伝送(例えば、下り制御チャネルが送信)される領域でUL伝送(例えば、ULデータチャネルの割当て)を行わないように制御する。
 UL伝送の割当てを行わない領域(例えば、時間区間)はUL伝送の禁止区間として設定することができる。この際、無線基地局は、フレーム構成#2において、フレーム構成#1でDLが伝送される領域(例えば、シンボル)に加えて、ギャップ区間を考慮した時間領域をUL伝送の禁止区間として設定してもよい。UL伝送の割当てを行わないように制御することをブランキング(Blanking)、UL伝送の禁止区間をブランク領域、ブランク期間等と呼んでもよい。
 フレーム構成#2を利用するユーザ端末は、少なくともSC間隔の狭いフレーム構成#1でDLが伝送される領域においてULデータをマッピングしないように送信処理(例えば、マッピング処理等)を行うことができる。なお、ULデータをマッピングしない領域(UL伝送の禁止区間、ブランク領域)に関する情報は、あらかじめ無線基地局からユーザ端末に通知してもよい。
[態様2]
 あるいは、図9A、BにおいてUL伝送禁止区間(ブランク領域)として設定された領域をDL伝送(例えば、下り制御チャネル及び/又は下りデータチャネルの送信)に利用してもよい(図10参照)。図10A、Bは、図9A、BにおいてUL伝送禁止区間として設定された領域に下り制御チャネルを割当てた場合のフレーム構成を示している。
 この場合、ユーザ端末は、少なくともSC間隔の狭いフレーム構成#1でDLが伝送される領域において、無線基地局の指示に基づいてフレーム構成#2でDL制御チャネルを送信することができる。フレーム構成#2において、特定の伝送方向(ここでは、DL伝送)の通信を行う区間(UL伝送の禁止区間)に関する情報は、あらかじめ無線基地局からユーザ端末に通知してもよい。
 このように、フレーム構成#2においてUL伝送が制限される時間領域のリソースをDL伝送に利用することにより、リソースの利用効率を向上することができる。また、フレーム構成#2においては、DL制御チャネルの送信区間を長くする(送信シンボル数を増やす、又は送信シンボル長を長くする)ことでDL制御チャネルの容量を増加させることができる。これにより、同一サブフレームにスケジューリングするユーザ端末の数を増やしたり、あるユーザ端末に対するDLスケジューリング情報(DCI)の送信に用いるリソース量を増やし、その通信品質を改善することができる。
[態様3]
 また、図11に示すように、ULデータ送信用のフレーム構成同士を周波数分割多重する場合、下り制御チャネルの送信区間をニューメロロジー毎にそれぞれ設定してもよい。図11では、SC間隔の狭いフレーム構成#1において、1ms毎に下り制御チャネルの送信を行い、SC間隔の広いフレーム構成#2において、0.5ms毎に下り制御チャネルの送信を行う場合を示している。
 無線基地局がHalf-duplex通信を想定する場合、サブキャリア(SC)間隔の広いフレーム構成#2を用いるユーザ端末が下り制御チャネル送信を行う時間区間では、SC間隔の狭いフレーム構成#1を用いるユーザ端末のULデータを受信することができない。そのため、無線基地局は、SC間隔の狭いフレーム構成#1で通信を行う場合、少なくともSC間隔の広いフレーム構成#2でDL伝送(例えば、下り制御チャネルが送信)される領域でUL伝送(例えば、ULデータチャネルの割当て)を行わないように制御する(図11A参照)。
 同様に、無線基地局がHalf-duplex通信を想定する場合、サブキャリア(SC)間隔の狭いフレーム構成#1を用いるユーザ端末が下り制御チャネル送信を行う時間区間では、SC間隔の広いフレーム構成#2を用いるユーザ端末のULデータを受信することができない。そのため、無線基地局は、SC間隔の広いフレーム構成#2で通信を行う場合、少なくともSC間隔の狭いフレーム構成#1で下り制御チャネルが送信される領域でULデータチャネルの割当てを行わないように制御する(図11A参照)。
 各フレーム構成において、UL伝送の割当てを行わない領域はUL伝送の禁止区間として設定することができる。この際、無線基地局は、各フレーム構成において、他のフレーム構成でDLが伝送される領域に加えて、ギャップ区間を考慮した時間領域をUL伝送の禁止区間として設定してもよい。
 ユーザ端末は、無線基地局から通知される情報(例えば、UL伝送の禁止区間に関する情報等)に基づいて、所定時間区間ではULデータをマッピングしないと想定して送信処理(例えば、マッピング等)を行うことができる。
 あるいは、図11Aのフレーム構成#2においてUL伝送禁止区間として設定された領域をDL伝送(例えば、上り制御チャネル及び/又は上りデータチャネル)用に利用してもよい(図11B参照)。これにより、フレーム構成#2において、UL伝送が制限される時間領域のリソースをDL伝送に利用できるため、リソースの利用効率を向上することができる。
<バリエーション>
 異なるニューメロロジーのフレーム構成を周波数分割多重する場合、DLデータ割当て(DLデータ送信用のフレーム構成)と、ULデータ割当て(ULデータ送信用のフレーム構成)は、所定のフレーム構成の割当て周期に基づいて制御することができる。所定のサブフレーム構成としては、例えば、SC間隔の広いフレーム構成を選択し、当該SC間隔の広いフレーム構成の割当て周期で切り替えるように制御することができる。
 図12は、SC間隔の狭いフレーム構成#1と、SC間隔の広いフレーム構成#2を周波数分割多重する場合に、SC間隔の広いフレーム構成#2の割当て周期(ここでは、0.5ms)でDLデータ/ULデータの割当てを切り替える場合を示している。図12Aは、ULデータ送信用のフレーム構成からDLデータ送信用のフレーム構成に切り替える場合を示し、図12Bは、DLデータ送信用のフレーム構成からULデータ送信用のフレーム構成に切り替える場合を示している。
 つまり、各ニューメロロジーにおいて、所定のフレーム構成(例えば、SC間隔の広いフレーム構成)の割当て周期に基づいて、DLデータ送信用のフレーム構成と、ULデータ送信用のフレーム構成を切り替える。これにより、DLデータ送信用のフレーム構成とULデータ送信用のフレーム構成を周波数分割多重すること(図5参照)を避けて、DLデータ送信用のフレーム構成同士、ULデータ送信用のフレーム構成同士を周波数分割多重する構成とすることができる。その結果、UL伝送及び/又はDL伝送が禁止される区間を低減し、リソースの利用効率を向上することができる。
 なお、DLデータ送信用のフレーム構成同士、ULデータ送信用のフレーム構成同士を周波数分割多重する場合には、図6-図11で示したように制御することができる。
(第2の実施形態)
 第2の実施形態では、異なるニューメロロジーのフレーム構成を考慮した場合に、UL伝送及び/又はDL伝送が禁止される区間(上記図6、図9参照)、又は、特定の伝送方向の送信が許容される区間(上記図7、図10参照)の通知/設定方法について説明する。なお、以下の説明では、UL伝送及び/又はDL伝送を禁止する動作と、特定の伝送方向の送信を設定する動作をブランキングという。また、UL伝送及び/又はDL伝送が禁止される区間、及び/又は、特定の伝送方向の送信が許容される区間をブランク期間又はブランク区間という。
 第1の実施形態で説明した例では、2種類のニューメロロジーを多重する場合を示したが、通信環境によって多重されるニューメロロジーの数やフレーム構成が静的、準静的又は動的に変更する場合も考えられる。この場合、ニューメロロジーの種類や下り制御チャネルの送信周期、上り制御チャネル(例えば、HARQ-ACK)の送信周期に応じて、ブランキングが必要となるシンボルパターンが異なることが考えられる。
 また、異なるニューメロロジーのフレーム構成が周波数分割多重されていない場合にはブランキングは不要となるため、常にブランキングを行うこと(例えば、送信禁止区間で常に送信を行わないこと)は、オーバヘッドの増加となり、スループットの劣化につながるおそれがある。
 そこで、無線基地局からユーザ端末に対して、ブランキングに関する情報を通知してユーザ端末における送受信動作を制御する。ブランキングに関する情報は、ユーザ端末が利用するニューメロロジーにおいてDL伝送及び/又はUL伝送が禁止される領域、又は特定の伝送方向が設定される領域を特定できる情報であればよい。例えば、ユーザ端末が利用するニューメロロジーのフレーム構成において、UL伝送の禁止区間及び/又は周期、DL伝送の禁止区間及び/又は周期をブランキング情報としてユーザ端末に通知する。また、UL伝送及び/又はDL伝送の禁止区間において、特定の伝送方向の通信を指示する情報をブランキング情報としてもよい。
 あるいは、ユーザ端末は利用しないが、同じキャリアに設定される他のニューメロロジーのフレーム構成をブランキング情報として当該ユーザ端末に通知してもよい。この場合、ユーザ端末は、自端末が利用するフレーム構成と、他のフレーム構成を比較して、ブランク期間を特定することができる。
 図13は、ユーザ端末が利用する所定のニューメロロジーのフレーム構成の一例を示している。図13Aは、所定の時間間隔(ここでは、サブフレーム)毎に下り制御チャネルと上り制御チャネルが設定される場合を示している。図13Bは、1サブフレーム毎に下り制御チャネルを設定し、2サブフレーム毎に上り制御チャネルを設定する場合を示している。
 図14は、ユーザ端末が利用する所定のニューメロロジーのフレーム構成において、ブランク期間(例えば、送信禁止区間)の設定方法の一例を示す図である。図14Aは、図13Aにおいて、所定の時間間隔(ここでは、サブフレーム)毎にDL伝送の禁止区間が設定される場合を示している。図14Bは、図13Bにおいて、2サブフレーム毎(上り制御チャネルが割当てられるサブフレーム)にDL伝送の禁止区間が設定される場合を示している。なお、図14では、ユーザ端末がフレーム構成#2を利用する場合を想定している。
 無線基地局は、ユーザ端末が通信する際に利用するフレーム構成に関する情報と、ブランキングに関する情報を、上位レイヤシグナリング(報知信号、システム情報、及びRRC制御情報の少なくとも一つ)で当該ユーザ端末に通知する。フレーム構成に関する情報は、サブキャリア間隔、UL-DL(例えば、ULデータ送信用フレーム構成とDLデータ送信用フレーム構成)切り替え周期、データ区間長、下り制御チャネル周期、及び上り制御チャネル周期の少なくとも一つを含む。
 また、ブランキングに関する情報は、DL伝送及び/又はUL伝送が禁止される区間(例えば、シンボル)と周期の一方又は双方を含む。また、ブランキングに関する情報として、ある伝送方向の送信が禁止される区間(例えば、シンボル)において、特定の伝送方向の送信を指示する情報を含んでいてもよい。
 あるいは、無線基地局は、ユーザ端末が通信する際に利用するフレーム構成に関する情報と、当該ユーザ端末の通信には用いないが、同じキャリアで使用され得るフレーム構成に関する情報を、上位レイヤシグナリング(報知信号、システム情報、及びRRC制御情報の少なくとも一つ)で当該ユーザ端末に通知する。例えば、無線基地局は、フレーム構成#2を利用して通信を行うユーザ端末に対して、当該フレーム構成#2に関する情報と、同じサブキャリアに設定され得るフレーム構成#1に関する情報を通知することができる。
 ユーザ端末は、自端末が用いるフレーム構成(例えば、フレーム構成#2)に関する情報と、同じキャリアで利用され得るフレーム構成(例えば、フレーム構成#1)に関する情報と、を比較することによりブランク期間を把握することができる。例えば、ユーザ端末は、自端末が用いるフレーム構成と、他のフレーム構成とを比較し、伝送方向が異なる時間区間が生じる場合に、所定条件に基づいてUL伝送及び/又はDL伝送が制限されると想定して送受信を制御する。
 このように、ユーザ端末にブランキングに関する情報を通知してDL伝送及び/又はUL伝送の禁止区間を設定することにより、常にブランキングを行う場合と比較して、リソースの利用効率を向上することが可能となる。
 また、無線基地局は、ユーザ端末に対して暗黙的(implicit)又は明示的(explicit)に、リソースのブランキング及び/又はデータ送信に利用するシンボル数の設定変更を動的に指示してもよい。
 無線基地局は、あらかじめ上位レイヤシグナリング等を用いてブランキングするリソース(例えば、DL伝送の禁止区間及び/又は周期、UL伝送の禁止区間及び/又は周期等)を判断できる情報をユーザ端末に通知する。例えば、無線基地局は、ブランキングするシンボルが定義されたブランキング候補を複数ユーザ端末に設定することができる。その上で、黙示的な指示の場合、ユーザ端末は、スケジューリングされたトランスポートブロック(TB)サイズ、上り制御チャネルのシンボル数、シンボル位置等に基づいて、ブランキングリソースの設定有無を判断する。
 あるいは、明示的な指示の場合、ユーザ端末は、無線基地局から送信される下り制御情報に含まれるブランキングリソースの挿入有無を指示する通知ビットに基づいて、ブランキングリソースの設定有無を判断してもよい。
 図15は、サブキャリア間隔が相対的に広い(例えば、30kHz)フレーム構成#2において、リソースのブランキングを動的に変更して設定する場合の一例を示している。図15Aは、DL送信用のフレーム構成#2を示し、図15Bは、UL送信用のフレーム構成#2を示している。図16は、サブキャリア間隔が相対的に狭い(例えば、15kHz)フレーム構成#1において、リソースのブランキングを動的に変更して設定する場合の一例を示している。図16Aは、DL送信用のフレーム構成#1を示し、図16Bは、UL送信用のフレーム構成#1を示している。
 ユーザ端末は、図15A、図16Aに示すように、無線基地局からの暗示的又は明示的な通知に基づいて、動的に変更して設定されるDL伝送(例えば、DLデータチャネル受信)の禁止区間を判断することができる。また、ユーザ端末は、図15B、図16Bに示すように、無線基地局からの暗示的又は明示的な通知に基づいて、動的に変更して設定されるUL伝送(例えば、ULデータチャネル送信)の禁止区間を判断することができる。
 このように、UL伝送の禁止区間及び/又はDL伝送の禁止区間の設定有無を動的に制御することにより、異なるフレーム構成が周波数分割多重される場合に限って送信禁止区間を設定することができるため、リソースの利用効率を向上することができる。
 あるいは、ブランキング量は増やさずに、下り制御チャネル及び/又は上り制御チャネルの時間区間(例えば、シンボル数)を切り替えるように設定してもよい(図17参照)。図17は、SC間隔が相対的に広い(例えば、30kHz)フレーム構成#2において、所定シンボルにおいて伝送方向を動的に切り替えて送信を制御する場合の一例を示している。図17Aは、DL送信用のフレーム構成#2を示し、図17Bは、UL送信用のフレーム構成#2を示している。
 ユーザ端末は、図17Aに示すように、無線基地局からの暗示的又は明示的な通知に基づいて、所定のシンボルにおいてDL伝送(例えば、DLデータチャネルの受信)と、UL伝送(例えば、上り制御チャネルの送信)を動的に変更して制御する。また、ユーザ端末は、図17Bに示すように、無線基地局からの暗示的又は明示的な通知に基づいて、所定のシンボルにおいてUL伝送(例えば、ULデータチャネルの送信)と、DL伝送(例えば、下り制御チャネルの受信)を動的に変更して制御する。
 このように、特定の伝送方向の送信が禁止される領域において他の伝送方向の送信を設定することにより、送信を行わない時間区間を抑制し、リソースの利用効率を向上することができる。例えば、UL伝送の禁止区間に下り制御チャネルを割当てることにより下り制御チャネルの容量を増加することができる。また、DL伝送の禁止区間に上り制御チャネルを割当てることにより上り制御チャネルの性能を高めることができる。
(無線通信システム)
 以下、本実施の形態に係る無線通信システムの構成について説明する。この無線通信システムでは、上記各態様に係る無線通信方法が適用される。なお、上記各態様に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
 図18は、本実施の形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。なお、無線通信システム1は、SUPER 3G、LTE-A(LTE-Advanced)、IMT-Advanced、4G、5G、FRA(Future Radio Access)、NR(New Rat)等と呼ばれても良い。
 図18に示す無線通信システム1は、マクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12a~12cとを備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。セル間で異なるニューメロロジーが適用される構成としてもよい。なお、ニューメロロジーとは、あるRATにおける信号のデザインや、RATのデザインを特徴付ける通信パラメータのセットのことをいう。
 ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続することができる。ユーザ端末20は、異なる周波数を用いるマクロセルC1とスモールセルC2を、CA又はDCにより同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)(例えば、2個以上のCC)を用いてCA又はDCを適用することができる。また、ユーザ端末は、複数のセルとしてライセンスバンドCCとアンライセンスバンドCCを利用することができる。なお、複数のセルのいずれかに短縮TTIを適用するTDDキャリアが含まれる構成とすることができる。
 ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、Legacy carrier等と呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHz、30~70GHz等)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。なお、各無線基地局が利用する周波数帯域の構成はこれに限られない。
 無線基地局11と無線基地局12との間(又は、2つの無線基地局12間)は、有線接続(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース等)又は無線接続する構成とすることができる。
 無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)等が含まれるが、これに限定されるものではない。また、各無線基地局12は、無線基地局11を介して上位局装置30に接続されてもよい。
 なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、等と呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイント等と呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。
 各ユーザ端末20は、LTE、LTE-A等の各種通信方式に対応した端末であり、移動通信端末だけでなく固定通信端末を含んでもよい。
 無線通信システム1においては、無線アクセス方式として、下りリンク(DL)にOFDMA(直交周波数分割多元接続)が適用でき、上りリンク(UL)にSC-FDMA(シングルキャリア-周波数分割多元接続)が適用できる。OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックからなる帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限られず、ULでOFDMAが用いられてもよい。
 無線通信システム1では、DLチャネルとして、各ユーザ端末20で共有されるDLデータチャネル(PDSCH:Physical Downlink Shared Channel、DL共有チャネル等ともいう)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、L1/L2制御チャネル等が用いられる。PDSCHにより、ユーザデータや上位レイヤ制御情報、SIB(System Information Block)等が伝送される。また、PBCHにより、MIB(Master Information Block)が伝送される。
 L1/L2制御チャネルは、DL制御チャネル(PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel))、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)等を含む。PDCCHにより、PDSCH及びPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)等が伝送される。PCFICHにより、PDCCHに用いるOFDMシンボル数が伝送される。PHICHにより、PUSCHに対するHARQの送達確認情報(ACK/NACK)が伝送される。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCI等の伝送に用いられる。
 無線通信システム1では、ULチャネルとして、各ユーザ端末20で共有されるULデータチャネル(PUSCH:Physical Uplink Shared Channel、UL共有チャネル等ともいう)、UL制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)等が用いられる。PUSCHにより、ユーザデータ、上位レイヤ制御情報が伝送される。送達確認情報(ACK/NACK)や無線品質情報(CQI)等の少なくとも一つを含む上り制御情報(UCI:Uplink Control Information)は、PUSCH又はPUCCHにより、伝送される。PRACHにより、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。
<無線基地局>
 図19は、本実施の形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。
 無線基地局10からユーザ端末20に送信されるDLデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104では、DLデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御等のRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQの送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理等の送信処理が行われて送受信部103に転送される。また、DL制御信号に関しても、チャネル符号化や逆高速フーリエ変換等の送信処理が行われて、送受信部103に転送される。
 送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102により増幅され、送受信アンテナ101から送信される。送受信部103は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 一方、UL信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅されたUL信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。
 ベースバンド信号処理部104では、入力されたUL信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの設定や解放等の呼処理や、無線基地局10の状態管理や、無線リソースの管理を行う。
 伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して他の無線基地局10と信号を送受信(バックホールシグナリング)してもよい。
 なお、送受信部103は、DL信号(例えば、DL制御信号(DL制御チャネル)、DLデータ信号(DLデータチャネル、DL共有チャネル)、DL参照信号(DM-RS、CSI-RS等)、ディスカバリ信号、同期信号、ブロードキャスト信号等)を送信し、UL信号(例えば、UL制御信号(UL制御チャネル)、ULデータ信号(ULデータチャネル、UL共有チャネル)、UL参照信号等)を受信する。
 具体的には、送受信部103は、所定のニューメロロジーにおいてDL信号の送信及び/又はUL信号の受信を行う。また、送受信部103は、ユーザ端末が通信する際に利用するフレーム構成に関する情報と、ブランキングに関する情報を上位レイヤシグナリング(報知信号、システム情報、及びRRC制御情報の少なくとも一つ)で送信してもよい。また、送受信部103は、ブランキングリソースの挿入有無を指示する通知ビットを下り制御情報に含めて送信してもよい。
 本発明の送信部及び受信部は、送受信部103及び/又は伝送路インターフェース106により構成される。
 図20は、本実施の形態に係る無線基地局の機能構成の一例を示す図である。なお、図20では、本実施形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有しているものとする。図20に示すように、ベースバンド信号処理部104は、制御部301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305と、を少なくとも備えている。
 制御部301は、無線基地局10全体の制御を実施する。制御部301は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 制御部301は、例えば、送信信号生成部302による信号の生成や、マッピング部303による信号の割り当てを制御する。また、制御部301は、受信信号処理部304による信号の受信処理や、測定部305による信号の測定を制御する。
 制御部301は、DL信号及び/又はUL信号のスケジューリング(例えば、リソース割り当て)を制御する。具体的には、制御部301は、DLデータチャネルのスケジューリング情報を含むDCI(DLアサインメント)、DL参照信号、ULデータチャネルのスケジューリング情報を含むDCI(ULグラント)、UL参照信号等を生成及び送信するように、送信信号生成部302、マッピング部303、送受信部103を制御する。
 制御部301は、異なるニューメロロジーのフレーム構成を周波数分割多重するように割当てを制御することができる。この際、制御部301は、所定のニューメロロジーにおけるDL信号及び/又はUL信号の割当てを、所定のニューメロロジーと異なる他のニューメロロジーの伝送方向に基づいて制御することができる(図6-12参照)。
 送信信号生成部302は、制御部301からの指示に基づいて、DL信号(DL制御チャネル、DLデータチャネル、DL参照信号等)を生成して、マッピング部303に出力する。送信信号生成部302は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
 マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成されたDL参照信号等のDL信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
 受信信号処理部304は、送受信部103から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号等)を行う。ここで、受信信号は、例えば、ユーザ端末20から送信されるUL信号(UL制御チャネル、ULデータチャネル、UL参照信号等)である。受信信号処理部304は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。
 受信信号処理部304は、受信処理により復号された情報を制御部301に出力する。例えば、受信処理部304は、プリアンブル、制御情報、ULデータの少なくとも一つを制御部301に出力する。また、受信信号処理部304は、受信信号や、受信処理後の信号を、測定部305に出力する。
 測定部305は、受信した信号に関する測定を実施する。測定部305は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
 測定部305は、例えば、受信した信号の受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(例えば、RSRQ(Reference Signal Received Quality))やチャネル状態等について測定してもよい。測定結果は、制御部301に出力されてもよい。
<ユーザ端末>
 図21は、本実施の形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。
 送受信アンテナ201で受信された無線周波数信号は、アンプ部202で増幅される。送受信部203は、アンプ部202で増幅されたDL信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。送受信部203は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理や、誤り訂正復号、再送制御の受信処理等を行う。DLデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤやMACレイヤより上位のレイヤに関する処理等を行う。また、DLデータのうち、システム情報や上位レイヤ制御情報もアプリケーション部205に転送される。
 一方、ULデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)や、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理等が行われて送受信部203に転送される。送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202により増幅され、送受信アンテナ201から送信される。
 なお、送受信部203は、DL信号(例えば、DL制御信号(DL制御チャネル)、DLデータ信号(DLデータチャネル、DL共有チャネル)、DL参照信号(DM-RS、CSI-RS等)、ディスカバリ信号、同期信号、報知信号等)を受信し、UL信号(例えば、UL制御信号(UL制御チャネル)、ULデータ信号(ULデータチャネル、UL共有チャネル)、UL参照信号等)を送信する。
 具体的には、送受信部203は、所定のニューメロロジーにおいてDL信号の受信及び/又はUL信号の受信を行う。また、送受信部203は、ユーザ端末が通信する際に利用するフレーム構成に関する情報と、ブランキングに関する情報を上位レイヤシグナリング(報知信号、システム情報、及びRRC制御情報の少なくとも一つ)で受信してもよい。例えば、送受信部203は、所定のニューメロロジーのフレーム構成に関する第1の情報と、所定のニューメロロジーにおいてDL伝送及び/又はUL伝送が禁止される領域、又は特定の伝送方向が設定される領域を特定するための第2の情報と、を受信する。
 ここで、第2の情報は、所定のニューメロロジーにおいてDL伝送及び/又はUL伝送が禁止される時間区間及び/又は周期を示す情報、あるいは所定のニューメロロジーと異なる他のニューメロロジーのフレーム構成に関する情報とすることができる。また、送受信部103は、ブランキングリソースの挿入有無を指示する通知ビットを下り制御情報に含めて送信してもよい。
 図22は、本実施の形態に係るユーザ端末の機能構成の一例を示す図である。なお、図22においては、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有しているものとする。図22に示すように、ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を少なくとも備えている。
 制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 制御部401は、例えば、送信信号生成部402による信号の生成や、マッピング部403による信号の割り当てを制御する。また、制御部401は、受信信号処理部404による信号の受信処理や、測定部405による信号の測定を制御する。
 制御部401は、所定のニューメロロジーのフレーム構成に関する情報と、所定のニューメロロジーにおいてDL伝送及び/又はUL伝送が禁止される領域、又は特定の伝送方向が設定される領域を特定するための情報(ブランキングに関する情報)とに基づいてDL受信及び/又はUL送信を制御する(図13、図14参照)。例えば、制御部401は、所定のニューメロロジーにおいてDL伝送及び/又はUL伝送が禁止される領域、又は特定の伝送方向が設定される領域の設定有無を、所定条件に基づいて動的に制御する(図15-図17参照)。
 送信信号生成部402は、制御部401からの指示に基づいて、UL信号(UL制御チャネル、ULデータチャネル、UL参照信号等)を生成して、マッピング部403に出力する。送信信号生成部402は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
 送信信号生成部402は、制御部401からの指示に基づいてULデータチャネルを生成する。例えば、送信信号生成部402は、無線基地局10から通知されるDL制御チャネルにULグラントが含まれている場合に、制御部401からULデータチャネルの生成を指示される。
 マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成されたUL信号を無線リソースにマッピングして、送受信部203へ出力する。例えば、マッピング部403は、ブランキングに関する情報に基づいて所定シンボル(例えば、UL伝送の禁止区間)に対して上りデータチャネル及び/又は上り制御チャネルの割当てを行わないように制御する。マッピング部403は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
 受信信号処理部404は、送受信部203から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号等)を行う。ここで、受信信号は、例えば、無線基地局10から送信されるDL信号(DL制御チャネル、DLデータチャネル、DL参照信号等)である。受信信号処理部404は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本発明に係る受信部を構成することができる。
 受信信号処理部404は、制御部401の指示に基づいて、DLデータチャネルの送信及び/又は受信をスケジューリングするDL制御チャネルをブラインド復号し、当該DCIに基づいてDLデータチャネルの受信処理を行う。また、受信信号処理部404は、DM-RS又はCRSに基づいてチャネル利得を推定し、推定されたチャネル利得に基づいて、DLデータチャネルを復調する。
 受信信号処理部404は、受信処理により復号された情報を制御部401に出力する。受信信号処理部404は、例えば、報知情報、システム情報、RRCシグナリング、DCI等を、制御部401に出力する。受信信号処理部404は、データの復号結果を制御部401に出力してもよい。また、受信信号処理部404は、受信信号や、受信処理後の信号を、測定部405に出力する。
 測定部405は、受信した信号に関する測定を実施する。測定部405は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
 測定部405は、例えば、受信した信号の受信電力(例えば、RSRP)、DL受信品質(例えば、RSRQ)やチャネル状態等について測定してもよい。測定結果は、制御部401に出力されてもよい。
<ハードウェア構成>
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線で)接続し、これら複数の装置により実現されてもよい。
 例えば、本発明の一実施形態における無線基地局、ユーザ端末等は、本発明の無線通信方法の処理を行うコンピュータとして機能してもよい。図23は、本発明の一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の無線基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007等を含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニット等に読み替えることができる。無線基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサで実行されてもよいし、処理が同時に、逐次に、又はその他の手法で、1以上のプロセッサで実行されてもよい。なお、プロセッサ1001は、1以上のチップで実装されてもよい。
 無線基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002等のハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ1001が演算を行い、通信装置1004による通信や、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御することで実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタ等を含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105等は、プロセッサ1001で実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データ等を、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つで構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)等と呼ばれてもよい。メモリ1002は、本発明の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュール等を保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD-ROM(Compact Disc ROM)等)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つで構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュール等ともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び/又は時分割複信(TDD:Time Division Duplex)を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザ等を含んで構成されてもよい。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106等は、通信装置1004で実現されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ等)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプ等)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001やメモリ1002等の各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。
 また、無線基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)等のハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つで実装されてもよい。
(変形例)
 なお、本明細書で説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号等と呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数等と呼ばれてもよい。
 また、無線フレームは、時間領域において1つ又は複数の期間(フレーム)で構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットで構成されてもよい。さらに、スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボル等)で構成されてもよい。
 無線フレーム、サブフレーム、スロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロットがTTIと呼ばれてもよい。つまり、サブフレームやTTIは、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、無線基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅や送信電力等)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。TTIは、チャネル符号化されたデータパケット(トランスポートブロック)の送信時間単位であってもよいし、スケジューリングやリンクアダプテーション等の処理単位となってもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、又はロングサブフレーム等と呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、短縮サブフレーム、又はショートサブフレーム等と呼ばれてもよい。
 リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。なお、RBは、物理リソースブロック(PRB:Physical RB)、PRBペア、RBペア等と呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)で構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 なお、上述した無線フレーム、サブフレーム、スロット及びシンボル等の構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレームに含まれるスロットの数、スロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長等の構成は、様々に変更することができる。
 また、本明細書で説明した情報、パラメータ等は、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。例えば、無線リソースは、所定のインデックスで指示されるものであってもよい。さらに、これらのパラメータを使用する数式等は、本明細書で明示的に開示したものと異なってもよい。
 本明細書においてパラメータ等に使用する名称は、いかなる点においても限定的なものではない。例えば、様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)等)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的なものではない。
 本明細書で説明した情報、信号等は、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップ等は、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号等は、上位レイヤから下位レイヤ、及び/又は下位レイヤから上位レイヤへ出力され得る。情報、信号等は、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号等は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報、信号等は、上書き、更新又は追記をされ得る。出力された情報、信号等は、削除されてもよい。入力された情報、信号等は、他の装置へ送信されてもよい。
 情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)等)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)等と呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージ等であってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))で通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能等を意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報等は、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)等)及び/又は無線技術(赤外線、マイクロ波等)を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
 本明細書で使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 本明細書では、「基地局(BS:Base Station)」、「無線基地局」、「eNB」、「セル」、「セクタ」、「セルグループ」、「キャリア」及び「コンポーネントキャリア」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送信ポイント、受信ポイント、フェムトセル、スモールセル等の用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び/又は基地局サブシステムのカバレッジエリアの一部又は全体を指す。
 本明細書では、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」及び「端末」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送信ポイント、受信ポイント、フェムトセル、スモールセル等の用語で呼ばれる場合もある。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 また、本明細書における無線基地局は、ユーザ端末で読み替えてもよい。例えば、無線基地局及びユーザ端末間の通信を、複数のユーザ端末間(D2D:Device-to-Device)の通信に置き換えた構成について、本発明の各態様/実施形態を適用してもよい。この場合、上述の無線基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」や「下り」等の文言は、「サイド」と読み替えられてもよい。例えば、上りチャネルは、サイドチャネルと読み替えられてもよい。
 同様に、本明細書におけるユーザ端末は、無線基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を無線基地局10が有する構成としてもよい。
 本明細書において、基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)から成るネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S-GW(Serving-Gateway)等が考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャート等は、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
 本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本明細書で使用する「第1の」、「第2の」等の呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定するものではない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書で使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本明細書で使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベースまたは別のデータ構造での探索)、確認(ascertaining)等を「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)等を「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)等を「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 本明細書で使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」と読み替えられてもよい。本明細書で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及び/又はプリント電気接続を使用することにより、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び/又は光(可視及び不可視の両方)領域の波長を有する電磁エネルギー等を使用することにより、互いに「接続」又は「結合」されると考えることができる。
 本明細書又は特許請求の範囲で「含む(including)」、「含んでいる(comprising)」、及びそれらの変形が使用されている場合、これらの用語は、用語「備える」と同様に、包括的であることが意図される。さらに、本明細書あるいは特許請求の範囲において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
 本出願は、2016年7月26日出願の特願2016-146465に基づく。この内容は、全てここに含めておく。
 

Claims (5)

  1.  複数のニューメロロジーのフレーム構成が周波数分割多重される無線通信システムにおいて通信を行うユーザ端末であって、
     所定のニューメロロジーのフレーム構成に関する第1の情報と、前記所定のニューメロロジーにおいてDL伝送及び/又はUL伝送が禁止される領域、又は特定の伝送方向が設定される領域を特定するための第2の情報と、を受信する受信部と、
     前記第1の情報及び第2の情報に基づいてDL受信及び/又はUL送信を制御する制御部と、を有することを特徴とするユーザ端末。
  2.  前記第2の情報は、前記所定のニューメロロジーにおいてDL伝送及び/又はUL伝送が禁止される時間区間及び/又は周期を示す情報、あるいは前記所定のニューメロロジーと異なる他のニューメロロジーのフレーム構成に関する情報であることを特徴とする請求項1に記載のユーザ端末。
  3.  前記制御部は、前記所定のニューメロロジーにおいてDL伝送及び/又はUL伝送が禁止される領域、又は特定の伝送方向が設定される領域の設定有無を、所定条件に基づいて動的に制御することを特徴とする請求項1又は請求項2に記載のユーザ端末。
  4.  複数のニューメロロジーのフレーム構成が周波数分割多重される無線通信システムにおいて通信を行う無線基地局であって、
     所定のニューメロロジーにおいてDL信号の送信及び/又はUL信号の受信を行う送受信部と、
     前記所定のニューメロロジーにおける前記DL信号及び/又はUL信号の割当てを、前記所定のニューメロロジーと異なる他のニューメロロジーの伝送方向に基づいて制御する制御部と、を有することを特徴とする無線基地局。
  5.  複数のニューメロロジーのフレーム構成が周波数分割多重される無線通信システムにおいて通信を行うユーザ端末の無線通信方法であって、
     所定のニューメロロジーのフレーム構成に関する第1の情報と、前記所定のニューメロロジーにおいてDL伝送及び/又はUL伝送が禁止される領域、又は特定の伝送方向が設定される領域を特定するための第2の情報と、を受信する工程と、
     前記第1の情報及び第2の情報に基づいてDL受信及び/又はUL送信を制御する工程と、を有することを特徴とする無線通信方法。
     
PCT/JP2017/026591 2016-07-26 2017-07-24 ユーザ端末、無線基地局及び無線通信方法 WO2018021204A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018529860A JP6954909B2 (ja) 2016-07-26 2017-07-24 端末、無線通信方法、基地局及びシステム
US16/320,641 US20190173656A1 (en) 2016-07-26 2017-07-24 User terminal, radio base station and radio communication method
CN201780046756.1A CN109565804B (zh) 2016-07-26 2017-07-24 用户终端、无线基站和无线通信方法
EP17834210.1A EP3493622A4 (en) 2016-07-26 2017-07-24 USER TERMINAL, WIRELESS BASE STATION AND WIRELESS COMMUNICATION METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016146465 2016-07-26
JP2016-146465 2016-07-26

Publications (1)

Publication Number Publication Date
WO2018021204A1 true WO2018021204A1 (ja) 2018-02-01

Family

ID=61016323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026591 WO2018021204A1 (ja) 2016-07-26 2017-07-24 ユーザ端末、無線基地局及び無線通信方法

Country Status (5)

Country Link
US (1) US20190173656A1 (ja)
EP (1) EP3493622A4 (ja)
JP (1) JP6954909B2 (ja)
CN (1) CN109565804B (ja)
WO (1) WO2018021204A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107733830B (zh) * 2016-08-12 2021-12-10 中兴通讯股份有限公司 一种多载波信号产生的方法、装置及系统
US10624066B2 (en) * 2016-11-04 2020-04-14 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for control-signal transmission in a wireless communication system
CN110140322B (zh) * 2017-01-06 2022-03-25 瑞典爱立信有限公司 用于根据无线设备的位置调整参数集的方法、设备和节点
WO2018199984A1 (en) * 2017-04-28 2018-11-01 Nokia Technologies Oy Frequency-domain transmitters and receivers which adapt to different subcarrier spacing configurations
CN116801403A (zh) * 2019-07-04 2023-09-22 维沃移动通信有限公司 一种上行发送处理方法、信息配置方法和相关设备
CN111225448B (zh) * 2019-12-24 2022-12-30 京信网络系统股份有限公司 参数处理方法、装置、计算机设备和存储介质
JP7479158B2 (ja) * 2020-01-31 2024-05-08 パナソニックホールディングス株式会社 送信装置、受信装置、及び、通信方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015512571A (ja) * 2012-03-16 2015-04-27 インターデイジタル パテント ホールディングス インコーポレイテッド Ltefddネットワークにおける半二重fdd動作のための方法
JP2016500940A (ja) * 2012-09-26 2016-01-14 インターデイジタル パテント ホールディングス インコーポレイテッド 動的tddアップリンク/ダウンリンク構成のための方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI382699B (zh) * 2006-11-06 2013-01-11 Qualcomm Inc 在無線通信系統中根據信標之小區搜尋
WO2010100558A2 (en) * 2009-03-05 2010-09-10 Nokia Corporation . Frame structure shifting and interference control to enhance backhaul link capacity in long term evolution (lte) time division duplex (tdd)
US9648500B2 (en) * 2013-10-04 2017-05-09 Qualcomm Incorporated Techniques for enabling wireless communications using subframe structures having different subframe durations
US20150103715A1 (en) * 2013-10-14 2015-04-16 Qualcomm Incorporated Downlink control format indicator
KR101810950B1 (ko) * 2013-11-12 2018-01-25 후아웨이 테크놀러지 컴퍼니 리미티드 고효율 무선 근거리 네트워크 통신을 위한 시스템 및 방법
US20160095039A1 (en) * 2014-09-26 2016-03-31 Qualcomm Incorporated Transmission puncturing for co-existence on a shared communication medium
US20160119969A1 (en) * 2014-10-24 2016-04-28 Qualcomm Incorporated Mac enhancements for concurrent legacy and ecc operation
US10237030B2 (en) * 2014-11-03 2019-03-19 Qualcomm Incorporated Communicating hybrid automatic repeat/request (HARQ) feedback in wireless communications
US10038581B2 (en) * 2015-06-01 2018-07-31 Huawei Technologies Co., Ltd. System and scheme of scalable OFDM numerology
EP3363128B1 (en) * 2015-10-16 2021-09-01 Apple Inc. Time grid with time division duplex switching intervals
CN108352932B (zh) * 2015-11-04 2022-03-04 交互数字专利控股公司 用于窄带lte操作的方法和过程
US10594465B2 (en) * 2016-02-22 2020-03-17 Huawei Technologies Co., Ltd. System and method for flexible channelization
KR102275675B1 (ko) * 2016-06-12 2021-07-09 엘지전자 주식회사 신호를 수신하는 방법 및 그 무선 기기
WO2017218794A1 (en) * 2016-06-15 2017-12-21 Convida Wireless, Llc Upload control signaling for new radio

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015512571A (ja) * 2012-03-16 2015-04-27 インターデイジタル パテント ホールディングス インコーポレイテッド Ltefddネットワークにおける半二重fdd動作のための方法
JP2016500940A (ja) * 2012-09-26 2016-01-14 インターデイジタル パテント ホールディングス インコーポレイテッド 動的tddアップリンク/ダウンリンク構成のための方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FUJITSU: "TDD frame structure with mixed numerology", 3GPP TSG RAN WG1#87 R1- 1611460, 14 November 2016 (2016-11-14), XP051189073, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_87/Docs/R1-1611460.zip> *
FUJITSU: "TDD frame structure with mixed numerology", 3GPP TSG-RAN WG1#85 R1- 164331, 23 May 2016 (2016-05-23), XP051090160, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_452/Docs/R1-164331.zip> *
See also references of EP3493622A4 *

Also Published As

Publication number Publication date
CN109565804A (zh) 2019-04-02
EP3493622A4 (en) 2020-03-11
JP6954909B2 (ja) 2021-10-27
CN109565804B (zh) 2023-04-11
US20190173656A1 (en) 2019-06-06
JPWO2018021204A1 (ja) 2019-05-16
EP3493622A1 (en) 2019-06-05

Similar Documents

Publication Publication Date Title
CN109964504B (zh) 用户终端以及无线通信方法
JP6721786B2 (ja) 端末、無線通信方法及び基地局
WO2018084137A1 (ja) ユーザ端末及び無線通信方法
CN111066356B (zh) 用户终端以及无线通信方法
CN110121908B (zh) 终端、无线通信方法、基站以及系统
JP7007289B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2018030416A1 (ja) ユーザ端末及び無線通信方法
WO2018025949A1 (ja) ユーザ端末及び無線通信方法
WO2019171518A1 (ja) ユーザ端末及び無線通信方法
CN109565804B (zh) 用户终端、无线基站和无线通信方法
CN111165039A (zh) 用户终端以及无线通信方法
CN110999104B (zh) 发送装置、接收装置以及无线通信方法
CN110463304B (zh) 用户终端及无线通信方法
WO2017217456A1 (ja) ユーザ端末及び無線通信方法
WO2018128183A1 (ja) ユーザ端末及び無線通信方法
CN110892689A (zh) 用户终端以及无线通信方法
WO2018030417A1 (ja) ユーザ端末及び無線通信方法
WO2018025948A1 (ja) ユーザ端末及び無線通信方法
WO2018229878A1 (ja) ユーザ端末、無線基地局及び無線通信方法
CN111034140B (zh) 终端、基站、无线通信方法以及系统
JP7467121B2 (ja) 端末、基地局、無線通信方法及びシステム
CN111492698A (zh) 用户终端以及无线通信方法
WO2018003646A1 (ja) ユーザ端末及び無線通信方法
WO2018124031A1 (ja) ユーザ端末及び無線通信方法
WO2017191831A1 (ja) ユーザ端末及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834210

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018529860

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017834210

Country of ref document: EP

Effective date: 20190226