WO2018021142A1 - Carbon dioxide supply assistance device and carbon dioxide supply assistance program - Google Patents

Carbon dioxide supply assistance device and carbon dioxide supply assistance program Download PDF

Info

Publication number
WO2018021142A1
WO2018021142A1 PCT/JP2017/026279 JP2017026279W WO2018021142A1 WO 2018021142 A1 WO2018021142 A1 WO 2018021142A1 JP 2017026279 W JP2017026279 W JP 2017026279W WO 2018021142 A1 WO2018021142 A1 WO 2018021142A1
Authority
WO
WIPO (PCT)
Prior art keywords
greenhouse
carbon dioxide
rate
environmental
unit
Prior art date
Application number
PCT/JP2017/026279
Other languages
French (fr)
Japanese (ja)
Inventor
和宏 富士原
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Priority to JP2018529825A priority Critical patent/JP6692102B2/en
Publication of WO2018021142A1 publication Critical patent/WO2018021142A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/02Treatment of plants with carbon dioxide
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/18Greenhouses for treating plants with carbon dioxide or the like

Definitions

  • the present invention relates to a carbon dioxide application support apparatus and a carbon dioxide application support program.
  • This application claims priority based on Japanese Patent Application No. 2016-148443 filed in Japan on July 28, 2016, the contents of which are incorporated herein by reference.
  • Patent Document 1 a technique for applying carbon dioxide to a greenhouse for growing plants to promote plant growth is known (for example, Patent Document 1).
  • the subject of this invention is providing the carbon dioxide application assistance apparatus and carbon dioxide application assistance program which can notify a management of the flow volume of the carbon dioxide applied in a greenhouse.
  • One aspect of the present invention is an environmental condition acquisition unit that acquires an environmental condition in which a plant is grown from a measurement unit that measures the environment inside and outside the greenhouse that grows the plant, and the environmental condition that the environmental condition acquisition unit acquires.
  • the carbon dioxide concentration in the greenhouse the carbon dioxide concentration outside the greenhouse, the ventilation frequency of the greenhouse, and the light intensity in the greenhouse
  • exchange of carbon dioxide performed by plants in the greenhouse An environment for generating environmental data in which an exchange rate calculation unit for calculating a rate, the environmental condition acquired by the environmental condition acquisition unit, and the carbon dioxide exchange rate calculated by the exchange rate calculation unit are associated with each other
  • environmental data similar to the environmental condition acquired by the environmental condition acquisition unit is acquired as similar environmental data
  • plants in the greenhouse are converted to carbon dioxide in the greenhouse.
  • the greenhouse in the consumption rate calculation unit that calculates the rate of consuming carbon, the volume in the greenhouse, the consumption rate calculated by the absorption rate calculation unit, It is a carbon dioxide application assistance apparatus provided with the application speed estimation part which estimates the relationship between the application speed of the carbon dioxide applied in the said greenhouse, and the said consumed speed based on the ventilation frequency of this.
  • the consumption rate calculation unit is a relative value between the exchange rate of the carbon dioxide calculated by the exchange rate calculation unit and the exchange rate of the carbon dioxide included in the similar environment data.
  • the carbon dioxide application support apparatus calculates the consumed speed based on the above.
  • the application rate estimation unit further calculates a value related to the state of the plant based on the consumption rate calculated by the consumption rate calculation unit. It is.
  • the value related to the state of the plant includes a growth rate of the foliage part indicating the speed of elongation of the foliage part including the growth point of the plant, and the moisture transpiration from the plant.
  • the environmental conditions include a condition of saturation in the greenhouse, a condition of air temperature in the greenhouse, and a condition of a feed rate supplied to the plant.
  • the speed estimation unit is a carbon dioxide application support apparatus that estimates a relationship between at least one of the environmental conditions and the consumed speed.
  • One aspect of the present invention is acquired in an environmental condition acquisition step of acquiring an environmental condition in which a plant is grown from a measurement unit that measures the environment inside and outside the greenhouse in which the plant is grown.
  • the plants in the greenhouse perform based on the carbon dioxide concentration in the greenhouse, the carbon dioxide concentration outside the greenhouse, the ventilation frequency of the greenhouse, and the light intensity in the greenhouse.
  • the respiration rate calculation step for calculating the carbon dioxide exchange rate, the environmental condition acquired in the environmental condition acquisition step, and the carbon dioxide exchange rate calculated in the respiration rate calculation step are associated with each other.
  • Environmental data acquisition step for acquiring environmental data similar to the environmental condition acquired in the environmental condition acquisition step as similar environmental data, the similar environmental data acquired in the environmental data acquisition step, and the respiration rate calculation step
  • FIG. 1 is a diagram illustrating an example of an external configuration of a greenhouse 1.
  • plant NP is vegetated.
  • the greenhouse 1 is a building in which the plant NP is grown.
  • the greenhouse 1 may receive sunlight and grow the internal plant NP, or may grow the internal plant NP by artificial light.
  • the plant NP grows according to the environmental conditions of the greenhouse 1. Specifically, the plant NP receives light in the greenhouse 1, absorbs carbon dioxide in the greenhouse 1, and performs photosynthesis.
  • the plant NP is vegetated in the greenhouse 1 in a seedling state.
  • the plant NP may be vegetated in the greenhouse 1 in a state other than the seedling.
  • the greenhouse 1 includes a measurement unit 10, a window 20, a saturation calculation device 15, a ventilation frequency calculation unit 16, a carbon dioxide application control device 17, a greenhouse information device 18, and a carbon dioxide application support device 100. .
  • the measuring unit 10 measures the environmental conditions of the greenhouse 1.
  • the environmental conditions of the greenhouse 1 include the temperature in the greenhouse 1, the light intensity indicating the intensity of light in the greenhouse 1, the saturation in the greenhouse 1, the carbon dioxide concentration inside and outside the greenhouse 1, and the ventilation frequency of the greenhouse 1. .
  • the saturation is a difference between the total amount of water vapor in the air at a certain temperature and the amount of water vapor already contained in the air.
  • the number of ventilations is the amount of air flowing into the structure per hour divided by the air volume in the structure. In this example, the ventilation rate is obtained by dividing the amount of air flowing into the greenhouse 1 per hour by the air volume in the greenhouse 1.
  • the number of ventilations refers to the number of ventilations when “500” (m 3 ) of air flows into the greenhouse 1 having an air volume of “500” (m 3 ) per hour. 1 ′′ (h ⁇ 1 ).
  • the measurement unit 10 includes a temperature sensor 11, a light intensity sensor 12, an indoor carbon dioxide concentration measurement sensor 13, an outdoor carbon dioxide concentration measurement sensor 14, a saturation calculation device 15, and a ventilation frequency calculation unit 16.
  • the temperature sensor 11 measures the temperature in the greenhouse 1.
  • the temperature sensor 11 outputs the measured temperature in the greenhouse 1 to the carbon dioxide application support apparatus 100.
  • the temperature sensor 11 measures the temperature in the greenhouse 1.
  • the light intensity sensor 12 measures the intensity of light in the greenhouse 1.
  • the light intensity sensor 12 outputs the measured light intensity in the greenhouse 1 to the carbon dioxide application support apparatus 100.
  • the light intensity sensor 12 measures the amount of solar radiation in the greenhouse 1.
  • the light intensity sensor 12 may measure the intensity of artificial light.
  • the indoor carbon dioxide concentration measuring sensor 13 measures the carbon dioxide concentration in the greenhouse 1.
  • the indoor carbon dioxide concentration measurement sensor 13 outputs the measured carbon dioxide concentration in the greenhouse 1 to the carbon dioxide application support apparatus 100.
  • the outdoor carbon dioxide concentration measurement sensor 14 measures the carbon dioxide concentration outside the greenhouse 1.
  • the outdoor carbon dioxide concentration measurement sensor 14 outputs the measured carbon dioxide concentration outside the greenhouse 1 to the carbon dioxide application support apparatus 100.
  • the saturation calculation device 15 calculates the saturation in the greenhouse 1.
  • the saturation calculation device 15 calculates the saturation based on the temperature in the greenhouse 1 and the relative humidity in the greenhouse 1.
  • the saturation calculation device 15 outputs the calculated saturation to the carbon dioxide application support device 100.
  • the ventilation frequency calculation unit 16 calculates the ventilation frequency of the greenhouse 1.
  • the ventilation frequency measurement unit 16 calculates the ventilation frequency based on the water balance method or the like.
  • the water balance method is a method of calculating the number of ventilations of the greenhouse 1 based on the moisture input to the greenhouse 1 and the moisture discharged from the greenhouse 1.
  • the ventilation frequency calculation unit 16 outputs the measured ventilation frequency to the carbon dioxide application support apparatus 100.
  • the ventilation frequency of the greenhouse 1 may be controlled by a fan (not shown) or the like. In this example, a case where the ventilation frequency is 1 will be described.
  • the window 20 opens and closes.
  • the environmental conditions in the greenhouse 1 change. Specifically, when the window 20 is opened, the degree to which the air in the greenhouse 1 is replaced increases.
  • the window 20 is opened, if the temperature in the greenhouse 1 is higher than the temperature outside the greenhouse 1, the temperature in the greenhouse 1 is lowered.
  • the window 20 is closed, the air in the greenhouse 1 is hardly changed.
  • the window 20 is closed, the temperature in the greenhouse 1 generally rises if the greenhouse 1 is exposed to sunlight.
  • the carbon dioxide application control device 17 controls the application rate of carbon dioxide supplied into the greenhouse 1 based on the application rate of carbon dioxide calculated by the carbon dioxide application support device 100. In other words, the carbon dioxide application control device 17 controls the amount of carbon dioxide supplied into the greenhouse 1 based on the carbon dioxide application speed calculated by the carbon dioxide application support device 100.
  • the carbon dioxide application control device 17 outputs a carbon dioxide application rate CS indicating the application rate of carbon dioxide supplied from the carbon dioxide application control device 17 into the greenhouse 1 to the environmental data generation unit 109.
  • the greenhouse information device 18 is a device in which information related to the greenhouse 1 is stored.
  • the greenhouse information device 18 stores information on the air volume in the greenhouse 1.
  • the air volume in the greenhouse 1 is the volume of air in the greenhouse 1.
  • the air volume information in the greenhouse 1 stored in the greenhouse information device 18 may be handled as a substantially fixed value for each greenhouse 1. Information on the air volume in the greenhouse 1 may be stored anywhere.
  • the carbon dioxide application support apparatus 100 acquires environmental conditions inside and outside the greenhouse 1 that change according to the season, weather, time, and the like.
  • the carbon dioxide application support apparatus 100 estimates the application rate of carbon dioxide suitable for the plant NP in the greenhouse 1 based on the acquired environmental conditions.
  • the carbon dioxide application speed estimated by the carbon dioxide application support apparatus 100 is the carbon dioxide application speed applied to the plant NP in the greenhouse 1 and the plant NP in the greenhouse 1 according to the environmental conditions inside and outside the greenhouse 1. It is a curve which shows the relationship with the pure photosynthesis speed
  • a curve indicating the relationship between the carbon dioxide application rate applied to the plant NP in the greenhouse 1 and the net photosynthetic rate of the plant NP in the greenhouse 1 according to the environmental conditions inside and outside the greenhouse 1 is simply a CP curve. It may be described. Details of the carbon dioxide application support apparatus 100 will be described later.
  • FIG. 2 is a diagram illustrating an example of the configuration of the carbon dioxide application support apparatus 100.
  • the carbon dioxide application support apparatus 100 includes an environmental condition acquisition unit 101, an exchange rate calculation unit 108, an environmental data generation unit 109, a storage unit 110, an environmental data acquisition unit 111, a consumption rate calculation unit 112, and an application rate.
  • An estimation unit 113 and a display unit 114 are provided.
  • the environmental condition acquisition unit 101 acquires, from the measurement unit 10, environmental conditions under which the plant NP is grown. When the plant NP is planted in the greenhouse 1, the environmental condition acquisition unit 101 acquires the environmental condition from the measurement unit 10 with a time interval. Specifically, the environmental condition acquisition unit 101 includes a temperature acquisition unit 102, a light intensity acquisition unit 103, a saturation acquisition unit 104, an indoor carbon dioxide concentration acquisition unit 105, and an outdoor carbon dioxide concentration acquisition unit 106. The ventilation frequency acquisition unit 107 is included.
  • the temperature acquisition unit 102 acquires the temperature TV in the greenhouse 1 from the temperature sensor 11.
  • the temperature acquisition unit 102 outputs the acquired temperature TV in the greenhouse 1 to the exchange rate calculation unit 108 and the environment data generation unit 109.
  • the light intensity acquisition unit 103 acquires the light intensity LS in the greenhouse 1 from the light intensity sensor 12.
  • the light intensity acquisition unit 103 outputs the acquired light intensity LS in the greenhouse 1 to the exchange rate calculation unit 108 and the environment data generation unit 109.
  • the saturation acquisition unit 104 acquires the saturation HD in the greenhouse 1 from the saturation calculation device 15.
  • the saturation acquisition unit 104 outputs the acquired saturation HD in the greenhouse 1 to the environment data generation unit 109.
  • the indoor carbon dioxide concentration acquisition unit 105 acquires the carbon dioxide concentration ICD in the greenhouse 1 from the indoor carbon dioxide concentration measurement sensor 13.
  • the indoor carbon dioxide concentration acquisition unit 105 outputs the acquired carbon dioxide concentration ICD in the greenhouse 1 to the exchange rate calculation unit 108 and the environment data generation unit 109.
  • the outdoor carbon dioxide concentration acquisition unit 106 acquires the carbon dioxide concentration OCD outside the greenhouse 1 from the outdoor carbon dioxide concentration measurement sensor 14.
  • the outdoor carbon dioxide concentration acquisition unit 106 outputs the acquired carbon dioxide concentration OCD outside the greenhouse 1 to the exchange rate calculation unit 108 and the environment data generation unit 109.
  • the ventilation frequency acquisition unit 107 acquires the ventilation frequency VC from the ventilation frequency calculation unit 16.
  • the ventilation frequency acquisition unit 107 outputs the acquired ventilation frequency VC to the replacement speed calculation unit 108, the environment data generation unit 109, and the application speed estimation unit 113.
  • the exchange rate calculation unit 108 calculates the carbon dioxide exchange rate PS of the plant NP in the greenhouse 1.
  • the carbon dioxide exchange rate PS is the rate of carbon dioxide that is consumed or released by the plant NP in the greenhouse 1.
  • the exchange rate calculation unit 108 acquires the light intensity LS in the greenhouse 1 from the light intensity acquisition unit 103.
  • the exchange rate calculation unit 108 acquires the carbon dioxide concentration ICD in the greenhouse 1 from the indoor carbon dioxide concentration acquisition unit 105.
  • the exchange rate calculation unit 108 acquires the carbon dioxide concentration OCD outside the greenhouse 1 from the outdoor carbon dioxide concentration acquisition unit 106.
  • the replacement speed calculation unit 108 acquires the ventilation frequency VC from the ventilation frequency acquisition unit 107.
  • the exchange speed calculation unit 108 acquires the air volume AC from the greenhouse information device 18.
  • the exchange rate calculation unit 108 is the carbon dioxide concentration ICD inside the greenhouse 1, the carbon dioxide concentration OCD outside the greenhouse 1, the ventilation frequency VC of the greenhouse 1, the greenhouse 1 Based on the light intensity LS, the carbon dioxide exchange rate PS performed by the plant NP in the greenhouse 1 is calculated. Specifically, the exchange rate calculation unit 108 calculates the carbon dioxide exchange rate PS using an equation in a steady state derived from the Seidel equation shown in Equation (1).
  • M in the formula (1) is the carbon dioxide exchange rate PS of the plant NP in the greenhouse 1.
  • N in Formula (1) is the ventilation frequency VC.
  • V in Formula (1) is the air volume AC in the greenhouse 1.
  • ⁇ C in the equation (1) is a difference between the carbon dioxide concentration ICD in the greenhouse 1 and the carbon dioxide concentration OCD outside the greenhouse 1.
  • the carbon dioxide exchange rate PS calculated by the exchange rate calculation unit 108 is the light intensity LS in the greenhouse 1 when the light intensity suitable for the photosynthesis of the plant NP is not shown (for example, at night). Indicates the dark breathing rate.
  • dark respiration is respiration in which the plant NP emits carbon dioxide.
  • the exchange rate PS of carbon dioxide calculated by the exchange rate calculation unit 108 is that the light intensity LS in the greenhouse 1 indicates the intensity of light suitable for the photosynthesis of the plant NP (for example, daytime). Pure photosynthesis rate.
  • the net photosynthetic rate is the rate of carbon dioxide absorbed by the plant NP in the greenhouse 1 according to the carbon dioxide concentration ICD in the greenhouse 1.
  • the pure photosynthetic rate may be described as a consumed rate UD. That is, the exchange rate calculation unit 108 calculates the carbon dioxide exchange rate PS as the dark respiration rate when the light intensity indicated by the light intensity LS in the greenhouse 1 does not reach the intensity at which the plant NP can be photosynthesized. To do.
  • the exchange rate calculation unit 108 calculates the carbon dioxide exchange rate PS as the pure photosynthesis rate. .
  • the carbon dioxide exchange rate PS calculated by the exchange rate calculating unit 108 may distinguish between the dark breathing rate and the pure photosynthetic rate based on time information. Specifically, the carbon dioxide exchange rate PS calculated by the exchange rate calculation unit 108 may be the time during which the sun is out as the pure photosynthetic rate. Further, the carbon dioxide exchange rate PS calculated by the exchange rate calculation unit 108 may be the time during which the sun is setting as the dark breathing rate.
  • the environmental data generation unit 109 generates environmental data ED in which the environmental conditions acquired by the environmental condition acquisition unit 101 and the carbon dioxide exchange rate PS calculated by the exchange rate calculation unit 108 are associated with each other. Specifically, the environment data generation unit 109 acquires the temperature TV in the greenhouse 1 from the temperature acquisition unit 102. The environment data generation unit 109 acquires the light intensity LS in the greenhouse 1 from the light intensity acquisition unit 103. The environmental data generation unit 109 acquires the saturation HD in the greenhouse 1 from the saturation acquisition unit 104. The environmental data generation unit 109 acquires the carbon dioxide concentration ICD in the greenhouse 1 from the indoor carbon dioxide concentration acquisition unit 105. The environmental data generation unit 109 acquires the carbon dioxide concentration OCD outside the greenhouse 1 from the outdoor carbon dioxide concentration acquisition unit 106. The environmental data generation unit 109 acquires the ventilation frequency VC from the ventilation frequency acquisition unit 107. The environmental data generation unit 109 acquires the carbon dioxide application speed CS from the carbon dioxide application control device 17.
  • the environmental data generation unit 109 includes a temperature TV in the greenhouse 1, a light intensity LS in the greenhouse 1, a saturation HD in the greenhouse 1, a carbon dioxide concentration ICD in the greenhouse 1, and a carbon dioxide concentration outside the greenhouse 1.
  • the environmental data ED is generated by associating the OCD, the ventilation frequency VC, the carbon dioxide application rate CS, the date and time when the environmental conditions are acquired, and the carbon dioxide exchange rate PS with each other.
  • the environment data generation unit 109 causes the storage unit 110 to store the generated environment data ED.
  • the environment data generation unit 109 outputs the generated environment data ED to the environment data acquisition unit 111.
  • the storage unit 110 stores the environment data ED generated by the environment data generation unit 109.
  • the environmental data acquisition unit 111 acquires environmental data similar to the environmental condition ED acquired by the environmental condition acquisition unit 101 as the similar environmental data SED from the environmental data ED generated by the environmental data generation unit 109 in the past.
  • the similar environmental data SED is environmental data ED whose value is close to the environmental data ED used by the application rate estimation unit 113 for estimating the application rate AS of carbon dioxide among the environmental data generated in the past.
  • the environmental data ED used by the environmental data acquisition unit 111 for selecting the similar environmental data SED is that the current environmental conditions in the greenhouse 1 are those in the greenhouse 1 due to sunset, large temperature changes, cloudy weather, and rain. It may be environmental data ED before environmental conditions such as a change in light intensity LS change greatly.
  • the environment data acquisition unit 111 may acquire environment data similar to the environment data ED generated before the most recently generated environment data ED as the similar environment data SED.
  • the environment data acquisition unit 111 acquires, as similar environment data SED, data similar to the environment data ED generated before the most recently generated environment data ED
  • the environment data acquired from the environment data generation unit 109 Data ED may be accumulated, and similar environment data SED may be acquired from storage unit 110 based on accumulated environment data ED.
  • the environmental data acquisition unit 111 acquires environmental data ED from the environmental data generation unit 109.
  • the environmental data acquisition unit 111 is similar in the light intensity LS in the greenhouse 1, the temperature TV in the greenhouse 1, and the saturation HD in the greenhouse 1 among the environmental data ED acquired from the environmental data generation unit 109.
  • Environment data to be acquired is acquired from the storage unit 110 as similar environment data SED.
  • the environmental data acquisition unit 111 includes, among the environmental data ED acquired from the environmental data generation unit 109, the light intensity LS in the greenhouse 1, the temperature TV in the greenhouse 1, and the saturation HD in the greenhouse 1. Are obtained as the similar environment data SED, within the range of about ⁇ 25%.
  • the environmental data acquisition unit 111 has a light intensity LS in the greenhouse 1 of “100”, a temperature TV in the greenhouse 1 of “20”, and a saturation HD in the greenhouse 1 of “30”.
  • the light intensity LS in the greenhouse 1 is “75” to “125”, and the temperature TV in the greenhouse 1 is “15”.
  • the environment data acquisition unit 111 outputs the environment data ED acquired from the environment data generation unit 109 and the similar environment data SED acquired from the storage unit 110 to the consumption speed calculation unit 112.
  • the consumption rate calculation unit 112 Based on the similar environment data SED acquired by the environment data acquisition unit 111 and the carbon dioxide exchange rate PS calculated by the exchange rate calculation unit 108, the consumption rate calculation unit 112 converts the plant NP in the greenhouse 1 into the greenhouse 1 The rate UD at which the carbon dioxide is consumed is calculated.
  • the consumption rate calculation unit 112 consumes the carbon dioxide nearest to the date of the environment data ED based on the latest dark breathing rate of the date of the environment data ED and the dark breathing rate of the date of the similar environment data SED.
  • the speed UD is corrected. Specifically, the consumption rate calculation unit 112 determines that the dark breathing rate closest to the date of the environment data ED is “1” and the dark breathing rate closest to the date of the similar environment data SED is “0.5”.
  • the speed UD for consuming carbon dioxide contained in the similar environment data SED is doubled. That is, the consumption rate calculation unit 112 corrects the rate UD that consumes carbon dioxide increased according to the growth of the plant NP in the greenhouse 1 based on the relative value of the dark respiration rate.
  • the consumption speed calculation unit 112 performs the above-described correction for each carbon dioxide concentration ICD in the greenhouse 1 included in the similar environment data SED.
  • the consumption rate calculation unit 112 calculates the relationship between the carbon dioxide concentration ICD in the greenhouse 1 and the rate UD at which the corrected plant NP in the greenhouse 1 consumes carbon dioxide.
  • the consumption rate calculation unit 112 outputs the relationship between the calculated carbon dioxide concentration ICD in the greenhouse 1 and the rate UD at which carbon dioxide is consumed to the application rate estimation unit 113.
  • the application rate estimation unit 113 calculates the application rate of carbon dioxide applied in the greenhouse 1 based on the air volume AC in the greenhouse 1, the consumption rate UD, and the ventilation frequency VC of the greenhouse 1 among the environmental conditions. The relationship with the speed UD consumed by the plant NP in the greenhouse 1 is estimated.
  • the application speed estimation unit 113 acquires the speed UD at which carbon dioxide is consumed from the consumption speed calculation unit 112.
  • the application speed estimation unit 113 acquires the air volume AC from the greenhouse information device 18.
  • the application speed estimation unit 113 acquires the ventilation frequency VC from the ventilation frequency acquisition unit 107.
  • the application speed estimation unit 113 is based on the speed UD that consumes carbon dioxide acquired from the consumption speed calculation unit 112, the air volume AC acquired from the greenhouse information device 18, and the ventilation frequency VC acquired by the ventilation frequency acquisition unit 107.
  • the CP curve is estimated. Specifically, the application speed estimation unit 113 estimates a CP curve from the above-described equation (1). Note that the application rate estimation unit 113 uses the equation in the steady state derived from the Seidel equation shown in the equation (2) for the similar environment data SED when carbon dioxide is applied in the greenhouse 1, and CP Estimate the curve.
  • M in the formula (2) is the carbon dioxide exchange rate PS of the plant NP in the greenhouse 1.
  • N in Formula (2) is the ventilation frequency VC.
  • V in Formula (2) is the air volume AC in the greenhouse 1.
  • ⁇ C in equation (2) is the difference between the carbon dioxide concentration ICD in the greenhouse 1 and the carbon dioxide concentration OCD outside the greenhouse 1.
  • S in Formula (2) is the application rate of the carbon dioxide which the carbon dioxide application control apparatus 17 applies.
  • the application speed estimation unit 113 causes the display unit 114 to display the estimated CP curve.
  • the display unit 114 displays a CP curve.
  • the manager of the greenhouse 1 confirms the CP curve displayed on the display unit 114.
  • the administrator inputs in advance a condition for determining that an effect of applying carbon dioxide can be expected by operating an operation unit (not shown) included in the carbon dioxide application support apparatus 100, thereby providing the carbon dioxide application control device 17.
  • the application rate of carbon dioxide in the amount calculated by the carbon dioxide application support apparatus 100 can be controlled.
  • the carbon dioxide application support apparatus 100 may have a predetermined threshold value for applying carbon dioxide to the greenhouse 1 in advance. When a threshold value is set in advance, the carbon dioxide application assisting apparatus 100 outputs the calculated carbon dioxide application speed to the carbon dioxide application control apparatus 17 according to the threshold value.
  • FIG. 3 is a flowchart S ⁇ b> 1 showing an example of the operation of the carbon dioxide application support apparatus 100.
  • the environmental condition acquisition unit 101 included in the carbon dioxide application support apparatus 100 starts to acquire the environmental conditions in the greenhouse 1 after the plant NP is planted in the greenhouse 1.
  • the light intensity acquisition unit 103 acquires the light intensity LS in the greenhouse 1 from the light intensity sensor 12.
  • the light intensity acquisition unit 103 outputs the light intensity LS in the greenhouse 1 acquired from the light intensity sensor 12 to the environment data generation unit 109 and the exchange rate calculation unit 108 (step S110).
  • the temperature acquisition unit 102 acquires the temperature TV in the greenhouse 1 from the temperature sensor 11.
  • the temperature acquisition unit 102 outputs the temperature TV in the greenhouse 1 acquired from the temperature sensor 11 to the environment data generation unit 109 (step S120).
  • the saturation acquisition unit 104 acquires the saturation HD in the greenhouse 1 from the saturation calculation device 15.
  • the saturation acquisition unit 104 outputs the saturation HD in the greenhouse 1 acquired from the saturation calculation device 15 to the environmental data generation unit 109 (step S130).
  • the outdoor carbon dioxide concentration acquisition unit 106 acquires the carbon dioxide concentration OCD outside the greenhouse 1 from the outdoor carbon dioxide concentration measurement sensor 14.
  • the outdoor carbon dioxide concentration acquisition unit 106 outputs the carbon dioxide concentration OCD outside the greenhouse 1 acquired from the outdoor carbon dioxide concentration measurement sensor 14 to the environmental data generation unit 109 and the exchange rate calculation unit 108 (step S140). ).
  • the indoor carbon dioxide concentration acquisition unit 105 acquires the carbon dioxide concentration ICD in the greenhouse 1 from the indoor carbon dioxide concentration measurement sensor 13.
  • the indoor carbon dioxide concentration acquisition unit 105 outputs the carbon dioxide concentration ICD in the greenhouse 1 acquired from the indoor carbon dioxide concentration measurement sensor 13 to the environmental data generation unit 109 and the exchange rate calculation unit 108 (step S150). ).
  • the ventilation frequency acquisition unit 107 acquires the ventilation frequency VC from the ventilation frequency calculation unit 16.
  • the ventilation frequency acquisition unit 107 outputs the ventilation frequency VC acquired from the ventilation frequency calculation unit 16 to the environment data generation unit 109, the replacement speed calculation unit 108, and the application speed estimation unit 113 (step S160).
  • the environmental data generation unit 109 acquires the carbon dioxide application speed CS from the carbon dioxide application control device 17 (step S170).
  • the exchange speed calculation unit 108 acquires the light intensity LS in the greenhouse 1 from the light intensity acquisition unit 103.
  • the exchange rate calculation unit 108 acquires the carbon dioxide concentration ICD in the greenhouse 1 from the indoor carbon dioxide concentration acquisition unit 105.
  • the exchange rate calculation unit 108 acquires the carbon dioxide concentration OCD outside the greenhouse 1 from the outdoor carbon dioxide concentration acquisition unit 106.
  • the replacement speed calculation unit 108 acquires the ventilation frequency VC from the ventilation frequency acquisition unit 107.
  • the exchange rate calculation unit 108 calculates the carbon dioxide exchange rate PS of the plant NP in the greenhouse 1 based on the above-described equation (1).
  • the exchange rate calculation unit 108 outputs the calculated carbon dioxide exchange rate PS to the environment data generation unit 109 (step S180).
  • the environment data generation unit 109 acquires the temperature TV in the greenhouse 1 from the temperature acquisition unit 102.
  • the environment data generation unit 109 acquires the light intensity LS in the greenhouse 1 from the light intensity acquisition unit 103.
  • the environmental data generation unit 109 acquires the saturation HD in the greenhouse 1 from the saturation acquisition unit 104.
  • the environmental data generation unit 109 acquires the carbon dioxide concentration ICD in the greenhouse 1 from the indoor carbon dioxide concentration acquisition unit 105.
  • the environmental data generation unit 109 acquires the carbon dioxide concentration OCD outside the greenhouse 1 from the outdoor carbon dioxide concentration acquisition unit 106.
  • the environmental data generation unit 109 acquires the ventilation frequency VC from the ventilation frequency acquisition unit 107.
  • the environmental data generation unit 109 acquires the carbon dioxide exchange rate PS from the exchange rate calculation unit 108.
  • the environmental data generation unit 109 includes the temperature TV in the greenhouse 1 acquired from the temperature acquisition unit 102, the light intensity LS in the greenhouse 1 acquired from the light intensity acquisition unit 103, and the inside of the greenhouse 1 acquired from the saturation acquisition unit 104. , The carbon dioxide concentration ICD in the greenhouse 1 acquired from the indoor carbon dioxide concentration acquisition unit 105, the carbon dioxide concentration OCD outside the greenhouse 1 acquired from the outdoor carbon dioxide concentration acquisition unit 106, and the ventilation frequency acquisition unit Environmental data ED in which the ventilation frequency VC acquired from 107 and the carbon dioxide replacement speed PS acquired from the replacement speed calculation unit 108 are associated with each other is generated. The environment data generation unit 109 stores the generated environment data ED in the storage unit 110 (step S190).
  • the carbon dioxide application support apparatus 100 repeatedly executes the process of the flowchart S1.
  • the carbon dioxide application support apparatus 100 repeatedly executes the process of the flowchart S1 with a time interval.
  • the time interval for executing the processing of the flowchart S1 is an interval of several tens of seconds to several tens of minutes. More specifically, the carbon dioxide application support apparatus 100 accumulates a lot of environmental data ED used for estimating the CP curve when the process of the flowchart S1 is repeatedly executed at a time interval of 10 minutes or less. be able to. In this case, the carbon dioxide application support apparatus 100 can estimate a more accurate CP curve based on a lot of environmental data ED.
  • the carbon dioxide application support apparatus 100 continuously performs the process of the flowchart S1 for several days or more, and accumulates the environmental data ED in the storage unit 110. Note that the processing order from step S110 to step S170 may be switched.
  • FIG. 4 is a flowchart S2 illustrating an example of the operation of the carbon dioxide application support apparatus 100.
  • the environment data generation unit 109 outputs the environment data ED to the environment data acquisition unit 111.
  • the environment data acquisition unit 111 acquires the environment data ED acquired from the environment data generation unit 109 and similar environment data as the similar environment data SED from the storage unit 110 (step S210).
  • the environment data acquisition unit 111 includes the environment data ED acquired from the environment data acquisition unit 111, the similar environment data SED acquired from the storage unit 110, the dark breathing rate closest to the date of the environment data ED, and the similar environment data SED.
  • the dark breathing rate closest to the date is output to the consumption rate calculating unit 112.
  • the consumption rate calculation unit 112 receives the environment data ED, the similar environment data SED, the dark respiratory rate closest to the date of the environmental data ED, and the dark respiratory rate closest to the date of the similar environment data SED from the environmental data acquisition unit 111 And get.
  • the consumption rate calculation unit 112 corrects the pure photosynthetic rate of the similar environment data SED based on the latest dark breathing rate on the date of the environment data ED and the dark breathing rate on the date of the similar environment data SED.
  • the consumption rate calculation unit 112 calculates a rate UD at which carbon dioxide is consumed indicating the relationship between the corrected pure photosynthetic rate and the carbon dioxide concentration ICD in the greenhouse 1 included in the similar environment data SED (step S220).
  • the consumption speed calculation unit 112 outputs the calculated speed UD for consuming carbon dioxide to the application speed estimation unit 113.
  • the application speed estimation unit 113 acquires the speed UD at which carbon dioxide is consumed from the consumption speed calculation unit 112.
  • the application speed estimation unit 113 acquires the ventilation frequency VC from the ventilation frequency calculation unit 16.
  • the application speed estimation unit 113 acquires the air volume AC from the greenhouse information device 18.
  • the application rate estimation unit 113 estimates the CP curve for the plant NP in the current greenhouse 1 from the above-described equation (1) (step S230).
  • Application speed estimation unit 113 outputs a CP curve to display unit 114.
  • the display unit 114 acquires a CP curve from the application speed estimation unit 113.
  • the display unit 114 displays the CP curve acquired from the application speed estimation unit 113 (step S240).
  • the application rate estimation unit 113 sets the greenhouse rate based on the condition and the calculated CP curve.
  • the application rate of carbon dioxide applied in 1 is calculated.
  • the application rate estimation unit 113 outputs the calculated application rate of carbon dioxide applied in the greenhouse 1 to the carbon dioxide application control device 17.
  • the carbon dioxide application control device 17 acquires the application speed of carbon dioxide applied to the greenhouse 1 from the application speed estimation unit 113.
  • the carbon dioxide application control device 17 controls the application speed of the amount of carbon dioxide acquired from the application speed estimation unit 113.
  • the carbon dioxide application support apparatus 100 repeatedly performs the process of the flowchart S2 described above.
  • FIG. 5 is a diagram illustrating an example of environment data ED stored in the storage unit 110.
  • the storage unit 110 stores the date when the environmental data ED was generated, the time when the environmental data ED was generated, the light intensity LS in the greenhouse 1, the temperature TV in the greenhouse 1, and the saturation HD in the greenhouse 1. , Carbon dioxide concentration ICD in the greenhouse 1, carbon dioxide concentration OCD outside the greenhouse 1, information on the application rate of carbon dioxide applied by the carbon dioxide application controller 17, and pure photosynthesis corresponding to the application rate of carbon dioxide
  • the speed UD that consumes carbon dioxide indicating the speed and the ventilation frequency VC are stored in association with each other.
  • the storage unit 110 stores environmental data ED measured every 5 minutes for the past month.
  • the storage unit 110 stores environment data ED indicating the April 1 dark breathing rate and environment data ED indicating the April 1 pure light synthesis rate. Similarly to April 1, the storage unit 110 includes environmental data ED indicating the dark respiration rate of April 20 and April 30, and environmental data ED indicating the pure photosynthesis rate of April 1. Is remembered.
  • the environmental data ED of April 20 is environmental data ED during the growth of the plant NP.
  • the environmental data ED on April 30 is the latest environmental data ED. More specifically, in the storage unit 110, the date is “4/1”, the time is “0:00”, and the light intensity LS in the greenhouse 1 is “0” ( ⁇ mol m ⁇ 2 s ⁇ 1 ).
  • the temperature TV in the greenhouse 1 is “15” (° C.), the saturation HD in the greenhouse 1 is “2.08” (kPa), and the carbon dioxide concentration ICD in the greenhouse 1 is “450” (mol mol mol). ⁇ 1 ), the carbon dioxide concentration OCD outside the greenhouse 1 is “440” (mol mol ⁇ 1 ), the carbon dioxide application rate is “0” (L min ⁇ 1 ), and the net photosynthesis rate is “ ⁇ 0.4”. “(Mol s ⁇ 1 )” and “1” (h ⁇ 1 ) are stored in association with each other.
  • the date is “4/1”, the time is “10:00”, the light intensity LS in the greenhouse 1 is “930” ( ⁇ mol m ⁇ 2 s ⁇ 1 ), The temperature TV is “29.0” (° C.), the saturation HD in the greenhouse 1 is “2.58” (kPa), and the carbon dioxide concentration ICD in the greenhouse 1 is “650” (mol mol ⁇ 1 ).
  • the carbon dioxide concentration OCD outside the greenhouse 1 is “444” (mol mol ⁇ 1 )
  • the carbon dioxide application rate is “30.1” (L min ⁇ 1 )
  • the pure photosynthesis rate is “1.2” (mol s ⁇ 1 ) and the ventilation frequency “1” (h ⁇ 1 ) are stored in association with each other.
  • the storage unit 110 stores data after 5 minutes and after 10 minutes.
  • the date is “4/20”
  • the time is “0:00”
  • the light intensity LS in the greenhouse 1 is “0” ( ⁇ mol m ⁇ 2 s ⁇ 1 )
  • the temperature TV is “17” (° C.)
  • the saturation HD in the greenhouse 1 is “1.88” (kPa)
  • the carbon dioxide concentration ICD in the greenhouse 1 is “470” (mol mol ⁇ 1 )
  • the carbon dioxide concentration OCD outside 1 is “440” (mol mol ⁇ 1 )
  • the carbon dioxide application rate is “0” (L min ⁇ 1 )
  • the pure photosynthesis rate is “ ⁇ 0.75” (mol s ⁇ 1).
  • the ventilation frequency “1” (h ⁇ 1 ) are stored in association with each other.
  • the date is “4/20”
  • the time is “13:00”
  • the light intensity LS in the greenhouse 1 is “924” ( ⁇ mol m ⁇ 2 s ⁇ 1 )
  • the temperature TV is “32.1” (° C.)
  • the saturation HD in the greenhouse 1 is “2.02” (kPa)
  • the carbon dioxide concentration ICD in the greenhouse 1 is “639” (mol mol ⁇ 1 ).
  • the carbon dioxide concentration OCD outside the greenhouse 1 is “440” (mol mol ⁇ 1 )
  • the carbon dioxide application rate is “0” (L min ⁇ 1 )
  • the pure photosynthesis rate is “2.1” (mol s ⁇ 1 ) and the ventilation frequency “1” (h ⁇ 1 ) are stored in association with each other.
  • the storage unit 110 stores data after 5 minutes and after 10 minutes.
  • the date is “4/30”, the time is “0:00”, the light intensity LS in the greenhouse 1 is “0” ( ⁇ mol m ⁇ 2 s ⁇ 1 ), The temperature TV is “19” (° C.), the saturation HD in the greenhouse 1 is “2.30” (kPa), the carbon dioxide concentration ICD in the greenhouse 1 is “432” (mol mol ⁇ 1 ), and the greenhouse The carbon dioxide concentration OCD outside 1 is “444” (mol mol ⁇ 1 ), the carbon dioxide application rate is “0” (L min ⁇ 1 ), and the pure photosynthesis rate is “ ⁇ 1.0” (mol s ⁇ 1). ) And the ventilation frequency “1” (h ⁇ 1 ) are stored in association with each other.
  • the date is “4/30”
  • the time is “10:00”
  • the light intensity LS in the greenhouse 1 is “920” ( ⁇ mol m ⁇ 2 s ⁇ 1 )
  • the temperature TV is “32.1” (° C.)
  • the saturation HD in the greenhouse 1 is “2.00” (kPa)
  • the carbon dioxide concentration ICD in the greenhouse 1 is “441” (mol mol ⁇ 1 ).
  • the carbon dioxide concentration OCD outside the greenhouse 1 is “445” (mol mol ⁇ 1 )
  • the carbon dioxide application rate is “0” (L min ⁇ 1 )
  • the pure photosynthesis rate is “3.0” (mol s ⁇ 1 ) and the ventilation frequency “1” (h ⁇ 1 ) are stored in association with each other.
  • the environmental data acquisition unit 111 indicates that the date is “4/30”, the time is “0:00”, the light intensity LS in the greenhouse 1 is “920” ( ⁇ mol m ⁇ 2 s ⁇ 1 ), and the inside of the greenhouse 1 Temperature TV is “32.1" (° C), the saturation HD in the greenhouse 1 is “2.00” (kPa), and the carbon dioxide concentration ICD in the greenhouse 1 is "441" (mol mol -1 )
  • the carbon dioxide concentration OCD outside the greenhouse 1 is “445” (mol mol ⁇ 1 )
  • the carbon dioxide application rate is “0” (L min ⁇ 1 )
  • the pure photosynthesis rate is “3.0” (mol s -1 ) and the ventilation frequency “1” (h ⁇ 1 ) are acquired in association with each other, the allowable range for acquiring the similar environment data SED from the storage unit 110 is set to “ ⁇ 1” ( %) Will be described.
  • the environmental data acquisition unit 111 determines that the temperature TV in the greenhouse 1 ranges from “910.8” to “929.2” and the light intensity LS in the greenhouse 1 is “from the storage unit 110.
  • Environment data ED having data in the range from 31.779 ”to“ 32.421 ”and the saturation HD in the greenhouse 1 between“ 19.8 ”and“ 20.2 ”is similar environment data. Obtain as SED.
  • the environment data acquisition unit 111 indicates that the date is “4/30”, the time is “10:00”, the light intensity LS in the greenhouse 1 is “920” ( ⁇ mol m ⁇ 2 s ⁇ 1 ),
  • the temperature TV in the greenhouse 1 is “32.1” (° C.)
  • the saturation HD in the greenhouse 1 is “2.00” (kPa)
  • the carbon dioxide concentration ICD in the greenhouse 1 is “441” (mol mol) ⁇ 1 )
  • the carbon dioxide concentration OCD outside the greenhouse 1 is “455” (mol mol ⁇ 1 )
  • the carbon dioxide application rate is “0” (L min ⁇ 1 )
  • the net photosynthesis rate is “3.0”.
  • the environmental data acquisition unit 111 reads from the storage unit 110 that the light intensity LS in the greenhouse 1 in the greenhouse 1 is “910.8” ( ⁇ mol m ⁇ 2 s ⁇ 1 ) to “929.2” ( ⁇ mol m ⁇ 2 s ⁇ 1 ), the temperature TV in the greenhouse 1 is in the range from “31.779” (° C.) to “32.421” (° C.), and the temperature difference in the greenhouse 1
  • the environment data ED having data in which the HD is between “19.8” (kPa) and “20.2” (kPa) is acquired as the similar environment data SED.
  • the past environment data ED that falls within the range of “ ⁇ 1” (%) is the environment data ED with the date “4/20” and the time “13:00”.
  • the environment data acquisition unit 111 acquires the environment data ED with the date “4/20” and the time “13:00” as the similar environment data SED.
  • An example of past environmental data ED that does not fall within the range of “ ⁇ 1” (%) is environmental data ED with the date “4/20” and the time “13:05”.
  • the light intensity LS in the greenhouse 1 and the saturation HD in the greenhouse 1 are not within the range. For this reason, the environment data acquisition unit 111 does not select the environment data ED with the date “4/20” and the time “13:05”.
  • FIG. 6 is a diagram illustrating an example of the relationship between the carbon dioxide concentration ICD in the greenhouse 1 and the pure photosynthetic rate.
  • the consumption speed calculation unit 112 acquires the environment data ED and the similar environment data SED from the environment data acquisition unit 111.
  • the consumption rate calculation unit 112 is based on the environmental conditions indicated by the environment data ED based on the relationship between the carbon dioxide concentration ICD in the greenhouse 1 included in the similar environment data SED acquired from the environment data acquisition unit 111 and the pure photosynthetic rate.
  • the rate UD at which the carbon dioxide of the plant NP is consumed is calculated.
  • the consumption rate calculation unit 112 shows the relationship between the carbon dioxide concentration ICD in the greenhouse 1 included in the similar environment data SED on the horizontal axis and the net photosynthetic rate of the plant NP in the greenhouse 1 on the vertical axis. Generate a graph.
  • the consumption rate calculation unit 112 calculates a relative value between the latest dark breathing rate and the latest dark breathing rate on the day when the similar environment data SED is recorded.
  • the consumption speed calculation unit 112 corrects the pure light synthesis speed included in the similar environment data SED based on the calculated relative value.
  • the consumption rate calculation unit 112 plots the corrected net photosynthetic rate on a graph showing the relationship between the carbon dioxide concentration ICD in the greenhouse 1 and the net photosynthesis rate of the plant NP in the greenhouse 1 on the vertical axis.
  • the consumption speed calculation unit 112 repeats the process until the correction of the pure light synthesis speed included in all the similar environment data SED acquired by the environment data acquisition unit 111 is completed.
  • the consumption speed calculation unit 112 performs regression analysis on each value of the corrected pure light synthesis speed.
  • the consumption speed calculation unit 112 calculates a regression line L1 shown in FIG. 6 as a result of regression analysis of the corrected pure light synthesis speed.
  • the consumption rate calculation unit 112 consumes carbon dioxide based on the graph indicating the relationship between the carbon dioxide concentration ICD in the greenhouse 1 and the net photosynthesis rate of the plant NP in the greenhouse 1 on the vertical axis.
  • the consumption speed calculation unit 112 does not need to plot the graph.
  • the consumption rate calculation unit 112 may perform regression analysis based on the corrected pure photosynthetic rate and the carbon dioxide concentration.
  • FIG. 7 is a diagram illustrating an example of the case where correction is made to the pure light combining speed of the similar environment data SED and the case where correction is not performed.
  • FIG. 7A is an example of the pure light synthesis rate calculated by performing correction based on the relative value calculated from the dark respiration rate.
  • FIG. 7B is an example of a case where the pure respiration rate included in the similar environment data SED is plotted as it is without correction. Comparing FIG. 7 (a) with FIG. 7 (b), it can be seen that FIG. 7 (a) after correction can obtain a pure light synthesis speed approximate to the measured pure light synthesis speed.
  • FIG. 8 is a diagram illustrating an example of a CP curve estimated by the application speed estimation unit 113.
  • FIG. 8 is a diagram illustrating an example of a CP curve estimated by the application rate estimation unit 113 at a certain time on the 18th day after the carbon dioxide application support apparatus 100 acquires the environmental information in the greenhouse 1.
  • FIG. 8 is a diagram illustrating an example of a CP curve estimated by the application rate estimation unit 113 at a certain time on the 18th day after the carbon dioxide application support apparatus 100 acquires the environmental information in the greenhouse 1.
  • the light intensity LS in the greenhouse 1 is “200” ( ⁇ mol m ⁇ 2 s ⁇ 1 ), and the allowable range of the similar environment data SED acquired from the storage unit 110 is “ ⁇ 50” ( ⁇ mol m ⁇ 2 s ⁇ 1 ), the temperature TV in the greenhouse 1 is “25” (° C.), and the allowable range of the similar environmental data SED acquired from the storage unit 110 is “ ⁇ 5” (° C.), and the saturation HD in the greenhouse 1 is “ The allowable range of the similar environment data SED acquired from 1.5 ”(kPa) and the storage unit 110 is a CP curve calculated from the similar environment data SED that meets the environmental condition of“ ⁇ 1.0 ”(kPa).
  • FIG. 9 is a diagram illustrating an example of a CP curve estimated by the application speed estimation unit 113.
  • FIG. 9 is a diagram illustrating an example of a CP curve estimated by the application rate estimation unit 113 at a certain time on the 18th day after the carbon dioxide application support apparatus 100 acquires environmental information in the greenhouse 1.
  • FIG. 9 is a diagram illustrating an example of a CP curve estimated by the application speed estimation unit 113.
  • FIG. 9 is a diagram illustrating an example of a CP curve estimated by the application rate estimation unit 113 at a certain time on the 18th day after the carbon dioxide application support apparatus 100 acquires environmental information in the greenhouse 1.
  • FIG. 9 is a diagram illustrating an example of a CP curve estimated by the application speed estimation unit 113.
  • FIG. 9 is a diagram illustrating an example of a CP curve estimated by the application rate estimation unit 113 at a certain time on the 18th day after the carbon dioxide application support apparatus 100 acquires environmental information in the greenhouse 1.
  • FIG. 9 is
  • the allowable range of the similar environment data SED acquired from 2.0 ”(kPa) and the storage unit 110 is a CP curve estimated from the similar environment data SED that meets the environmental condition of“ ⁇ 1.0 ”(kPa).
  • the environment shown in FIG. 9 is more effective in increasing the net photosynthetic rate of the plant NP by applying carbon dioxide.
  • the manager of the greenhouse 1 inputs conditions for determining the application rate of carbon dioxide in the greenhouse 1 based on the shape of the regression line.
  • FIG. 10 is a diagram illustrating an example of the relationship between the amount of environmental data ED stored in the storage unit 110 and the pure light synthesis speed calculated by the consumption speed calculation unit 112.
  • FIG. 10A shows an example of the pure light synthesis rate calculated by the consumption rate calculation unit 112 when seven days of environmental data ED is stored in the storage unit 110.
  • FIG. 10B shows an example of the pure light synthesis rate calculated by the consumption rate calculation unit 112 when the storage unit 110 stores 12 days of environmental data ED.
  • FIG. 10C shows an example of the pure light synthesis rate calculated by the consumption rate calculation unit 112 when the storage unit 110 stores 17 days of environmental data ED.
  • the consumption rate calculation unit 112 can calculate an accurate pure light synthesis rate as the environmental data ED accumulated in the storage unit 110 increases.
  • FIG. 11 is a diagram illustrating an example of a relationship between the allowable range of the similar environment data SED acquired by the environment data acquisition unit 111 from the storage unit 110 and the pure light synthesis speed calculated by the consumption speed calculation unit 112.
  • the consumption rate calculation unit 112 is set based on the result of acquiring the similar environment data SED from the storage unit 110 by setting the allowable range of the light intensity LS in the greenhouse 1 to “ ⁇ 10”.
  • the consumption rate calculation unit 112 is set based on the result of acquiring the similar environment data SED from the storage unit 110 by setting the allowable range of the light intensity LS in the greenhouse 1 to “ ⁇ 50”.
  • the consumption rate calculation unit 112 is set based on the result of acquiring the similar environment data SED from the storage unit 110 by setting the allowable range of the light intensity LS in the greenhouse 1 to “ ⁇ 300”. Shows an example of the pure light synthesis rate calculated by The consumption speed calculation unit 112 can calculate a more accurate pure light synthesis speed as the allowable range is narrower. In this case, sufficient environmental data ED is preferably stored in the storage unit 110. When the allowable range of the similar environmental data SED acquired by the environmental data acquisition unit 111 is narrowed, if the sufficient environmental data ED is not accumulated in the storage unit 110, the similar environmental data SED acquired by the environmental data acquisition unit 111 is not stored. The number decreases. If the similar environment data SED is small, the consumption speed calculation unit 112 may not be able to accurately calculate the pure light synthesis speed.
  • the carbon dioxide application support apparatus 100 includes the environmental condition acquisition unit 101, the exchange rate calculation unit 108, the environmental data generation unit 109, the environmental data acquisition unit 111, the consumption rate calculation unit 112, And an application speed estimation unit 113.
  • the environmental condition acquisition unit 101 acquires environmental conditions inside and outside the greenhouse 1 from the measurement unit 10 provided in the greenhouse 1.
  • the exchange rate calculation unit 108 calculates the carbon dioxide exchange rate PS of the plant NP in the greenhouse 1 based on the environmental conditions acquired by the environmental condition acquisition unit 101 and the air volume AC of the greenhouse 1.
  • the carbon dioxide exchange rate PS is the net photosynthesis rate and dark respiration rate of the plant NP.
  • the exchange rate calculation unit 108 calculates a dark respiration rate and a pure photosynthetic rate performed by the plant NP in the greenhouse 1 based on the light intensity LS in the greenhouse 1.
  • the environmental data generation unit 109 associates the environmental condition acquired by the environmental condition acquisition unit 101 with the carbon dioxide exchange rate PS calculated by the exchange rate calculation unit 108 and stores it in the storage unit 110 as environmental data ED.
  • the environment data acquisition unit 111 acquires environment data ED similar to the environment data ED generated by the environment data generation unit 109 from the storage unit 110 as similar environment data SED.
  • the consumption rate calculation unit 112 is a rate at which the plant NP in the greenhouse 1 at the time of acquiring the environment data ED consumes carbon dioxide based on the environment data ED acquired by the environment data acquisition unit 111 and the similar environment data SED. UD is calculated.
  • the consumption rate calculation unit 112 calculates the rate UD at which carbon dioxide is consumed by performing correction based on a relative value between the latest dark respiration rate of the plant NP and the past dark respiration rate of the plant NP. .
  • the application speed estimation unit 113 estimates the CP curve based on the speed UD that consumes the carbon dioxide calculated by the consumption speed calculation unit 112. That is, the application rate estimation unit 113 calculates a curve of the pure photosynthetic rate with respect to the carbon dioxide application rate according to the environmental conditions inside and outside the greenhouse 1.
  • the application speed estimation unit 113 displays the calculated CP curve as a graph on the display unit 114. Thereby, the manager of the greenhouse 1 inputs conditions for determining the rate of applying carbon dioxide into the greenhouse 1 from the shape of the graph indicated by the CP curve. For example, even if the window 20 provided in the greenhouse 1 is opened to adjust the environment in the greenhouse 1, the carbon dioxide application support apparatus 100 is based on the change in the consumption efficiency of carbon dioxide due to the change in the plant growth environment.
  • the application rate of carbon dioxide for applying the amount of carbon dioxide corresponding to the consumption efficiency into the greenhouse can be automatically and sequentially estimated according to the conditions input by the administrator.
  • the application rate estimation unit 113 has been described with respect to the case where the estimated application rate AS of carbon dioxide is displayed using a CP curve.
  • the application rate AS of carbon dioxide estimated by the application rate estimation unit 113 is not limited to a curve.
  • the application speed estimation unit 113 may display words, numerical values, charts, or the like based on the estimated degree of inclination of the CP curve or the sequential change of the CP curve.
  • the carbon dioxide application support apparatus 100 described above may not include the storage unit 110.
  • the carbon dioxide application support apparatus 100 may store the environmental data ED in another apparatus connected to the network, a server, or the like.
  • the method of obtaining the environmental data ED and calculating the CP curve until the plant NP in the greenhouse 1 is vegetated once and the plant NP is harvested has been described.
  • the carbon dioxide application support apparatus 100 uses a part of the past environmental data ED to generate a CP curve. It may be estimated. If the environmental data ED can be used, the appropriate carbon dioxide application rate is sufficient even if the environmental data ED is insufficient when estimating the CP curve without using the environmental data ED in the current environment. AS can be estimated.
  • the application speed estimation unit 113 may further calculate a value related to the state of the plant NP based on the speed UD that consumes the carbon dioxide calculated by the consumption speed calculation unit 112. Specifically, the application speed estimation unit 113 may estimate the parameter calculated based on the pure light synthesis speed indicated on the vertical axis of the CP curve with the vertical axis. For example, the application rate estimation unit 113 may estimate the relationship between the carbon dioxide application rate applied to the plant NP in the greenhouse 1 and the degree of growth of the plant NP in the greenhouse 1.
  • the degree of growth is a foliage part extension rate indicating the degree of extension of the foliage part including the growth point of the plant NP, or a stem increase rate indicating the degree of increase of the stem of the plant NP.
  • the application rate estimation unit 113 may estimate the relationship between the carbon dioxide application rate applied to the plant NP in the greenhouse 1 and the transpiration rate of the plant NP in the greenhouse 1.
  • the transpiration rate is the amount of transpiration per unit time of water vapor released from the plant NP into the atmosphere. In this example, the amount of transpiration per unit time of water vapor released from the plant NP into the greenhouse 1.
  • the degree of growth described above is further calculated based on a captured image in which a predetermined growth point of a certain plant NP in the greenhouse 1 is captured by an imaging device (not shown).
  • the captured image in which the predetermined growth point is captured the form of the foliage part including the shoot apex growth point is captured.
  • the shoot apex growth point is the growth point at the tip of the main stem.
  • the imaging device generates a plurality of captured images at predetermined intervals of the plant NP in the greenhouse 1 with a time interval.
  • the application speed estimation unit 113 acquires a captured image generated by the imaging device.
  • the application speed estimation unit 113 analyzes the foliage part elongation speed and the stem diameter increase speed of the plant NP based on a plurality of captured images acquired from the imaging device.
  • the application rate estimation part 113 may calculate the quantity of the fertilizer component given to the plant NP based on the analyzed foliage growth rate.
  • the storage unit 110 stores the types of fertilizer components according to the foliage growth rate in advance. Fertilizer component information indicating the amount is stored.
  • the imaging device images a plurality of growth points of the main tomato stem at intervals.
  • the growth point of the main stem of tomato is in the range of 20-30 (cm) from the tip of the main stem.
  • the application speed estimation unit 113 grows the growth point of the main stem based on the captured image captured at the time when the plant NP starts photosynthesis and the captured image captured at the time when the plant NP ends photosynthesis.
  • the rate of elongation of the foliage and the rate of increase in stem are analyzed. In general, the elongation rate of the main stem indicating the degree of growth of tomatoes and the diameter (thickness) of the main stem vary depending on the components and amounts of the given fertilizer components.
  • the application speed estimation unit 113 determines the current degree of growth of the tomato stock according to the increasing speed of the diameter of the main stem of the tomato stock captured in the captured image.
  • the application rate estimation unit 113 calculates the component and amount of the fertilizer component to be given to the tomato strain in the greenhouse 1 based on the determined degree of growth of the tomato strain and the fertilizer component information stored in the storage unit 110. To do.
  • the application rate estimation unit 113 calculates the amount of the fertilizer component given to the plant NP based on the degree of growth of the plant NP, thereby growing the plant NP fertilizer component in the greenhouse 1 (other than the breeding organ). It is possible to evaluate the balance between the growth of the part) and the reproductive growth (growth of the reproductive organs), and to estimate the growth environment conditions so as to achieve a desirable balance at the present time. That is, the carbon dioxide application support apparatus 100 can appropriately estimate the amount of the fertilizer component supplied to the plant NP in the greenhouse 1 based on the environmental data ED and the captured image of the plant NP.
  • the type of plant NP is a tomato strain, but the tomato strain is an example, and the present invention is not limited to this.
  • the application speed estimation unit 113 may further estimate the relationship between at least one condition among other environmental conditions in the greenhouse 1 and the speed UD that consumes carbon dioxide.
  • Other environmental conditions in the greenhouse 1 are the saturation HD in the greenhouse 1, the temperature TV in the greenhouse 1, the liquid supply speed to the plant NP, and the like.
  • the application rate estimation unit 113 may set the carbon dioxide application rate UD applied to the plant NP in the greenhouse 1 indicated on the horizontal axis of the CP curve as another environmental condition in the greenhouse 1. That is, the application rate estimation unit 113 may estimate the relationship between the pure photosynthetic rate and environmental conditions other than the carbon dioxide application rate applied to the plant NP in the greenhouse 1.
  • the application rate estimation unit 113 based on the environment data ED acquired by the environment data acquisition unit 111 and the similar environment data SED, the latest dark respiration rate of the plant NP and the past darkness of the plant NP.
  • the environment other than the net photosynthesis rate of the plant NP in the greenhouse 1 at the time of acquiring the environmental data ED and the carbon dioxide application rate applied to the plant NP in the greenhouse 1 Estimate the relationship with conditions.
  • the application rate estimation unit 113 is not limited to the relationship between the pure photosynthetic rate and the carbon dioxide application rate indicated by the CP curve, and can estimate information used for controlling the environment in which the plant NP in the greenhouse 1 is grown. it can.
  • the above-mentioned carbon dioxide application assistance apparatus 100 has a computer inside.
  • Each process of the above-described apparatus is stored in a computer-readable recording medium in the form of a program, and the above-described process is performed by the computer reading and executing the program.
  • the computer-readable recording medium means a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like.
  • the computer program may be distributed to the computer via a communication line, and the computer that has received the distribution may execute the program.
  • the program may be for realizing a part of the functions described above. Furthermore, what can implement

Abstract

Provided is a carbon dioxide supply assistance device that: measures the environment inside and outside a greenhouse in which plants are raised; obtains environmental conditions; calculates the rate of exchange of carbon dioxide by the plants in the greenhouse on the basis of, from among the environmental conditions, carbon dioxide concentrations inside and outside the greenhouse, the greenhouse ventilation frequency, and the light intensity in the greenhouse; generates environmental data in which the environmental conditions and the rate of exchange of carbon dioxide are associated with each other; obtains, from among the environmental data that an environmental data generating unit previously generated, similar environmental data which are similar to the environmental conditions; calculates the rate at which the plants in the greenhouse consume the carbon dioxide in the greenhouse on the basis of the similar environmental data and the rate of exchange of carbon dioxide; and estimates the relationship between the rate at which the carbon dioxide is supplied into the greenhouse and the rate at which carbon dioxide is consumed, on the basis of the inner volume of the greenhouse, the consumption rate, and, from among the environmental conditions, the greenhouse ventilation frequency.

Description

二酸化炭素施用支援装置及び二酸化炭素施用支援プログラムCarbon dioxide application support device and carbon dioxide application support program
 本発明は、二酸化炭素施用支援装置及び二酸化炭素施用支援プログラムに関する。
 本願は、2016年7月28日に、日本に出願された特願2016-148443号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a carbon dioxide application support apparatus and a carbon dioxide application support program.
This application claims priority based on Japanese Patent Application No. 2016-148443 filed in Japan on July 28, 2016, the contents of which are incorporated herein by reference.
 従来、植物を育成する温室に二酸化炭素を施用し、植物の育成を促進する技術が知られている(例えば、特許文献1)。 Conventionally, a technique for applying carbon dioxide to a greenhouse for growing plants to promote plant growth is known (for example, Patent Document 1).
特開2014-128263号公報JP 2014-128263 A
 植物が活発に光合成を行う光強度の時間帯には、温室内の温度が上昇しすぎる為、温室の窓を開放する場合がある。温室の窓を開放すると、温室内に二酸化炭素を施用しても、温室内に施用した二酸化炭素の多くは窓から温室外に漏れてしまう。温室を管理する管理者は、植物の生育環境の変化に応じて温室に施用する二酸化炭素の流量を増減させるべきであるが、その流量の合理的な決定方法がないという問題があった。
 本発明の課題は、温室内に施用する二酸化炭素の流量を管理者に通知することができる二酸化炭素施用支援装置及び二酸化炭素施用支援プログラムを提供することにある。
In the time zone of light intensity in which plants actively carry out photosynthesis, the temperature in the greenhouse rises too much, so the windows of the greenhouse may be opened. When the greenhouse window is opened, even if carbon dioxide is applied to the greenhouse, much of the carbon dioxide applied to the greenhouse leaks out of the greenhouse through the window. The manager who manages the greenhouse should increase or decrease the flow rate of carbon dioxide applied to the greenhouse in accordance with changes in the growth environment of the plant, but there is a problem that there is no rational method for determining the flow rate.
The subject of this invention is providing the carbon dioxide application assistance apparatus and carbon dioxide application assistance program which can notify a management of the flow volume of the carbon dioxide applied in a greenhouse.
 本発明の一態様は、植物の育成を行う温室内外の環境を測定する測定部から、植物が育成される環境条件を取得する環境条件取得部と、前記環境条件取得部が取得する前記環境条件のうち、前記温室内の二酸化炭素濃度と、前記温室外の二酸化炭素濃度と、前記温室の換気回数と、前記温室内の光強度とに基づいて、前記温室内の植物が行う二酸化炭素の交換速度を算出する交換速度算出部と、前記環境条件取得部が取得する前記環境条件と、前記交換速度算出部が算出する前記二酸化炭素の交換速度とが互いに対応付けられた環境データを生成する環境データ生成部と、前記環境データ生成部が過去に生成した前記環境データのうちから、前記環境条件取得部が取得する前記環境条件と類似する環境データを類似環境データとして取得する環境データ取得部と、前記環境データ取得部が取得する前記類似環境データと、前記交換速度算出部が算出する前記二酸化炭素の交換速度とに基づいて、前記温室内の植物が前記温室内の二酸化炭素を消費する速度を算出する消費速度算出部と、前記温室内の容積と、前記吸収速度算出部が算出する前記消費する速度と、前記環境条件取得部が取得する前記環境条件のうち前記温室の換気回数とに基づいて、前記温室内に施用される二酸化炭素の施用速度と前記消費する速度との関係を推定する施用速度推定部とを備える二酸化炭素施用支援装置である。 One aspect of the present invention is an environmental condition acquisition unit that acquires an environmental condition in which a plant is grown from a measurement unit that measures the environment inside and outside the greenhouse that grows the plant, and the environmental condition that the environmental condition acquisition unit acquires. Of the carbon dioxide concentration in the greenhouse, the carbon dioxide concentration outside the greenhouse, the ventilation frequency of the greenhouse, and the light intensity in the greenhouse, exchange of carbon dioxide performed by plants in the greenhouse An environment for generating environmental data in which an exchange rate calculation unit for calculating a rate, the environmental condition acquired by the environmental condition acquisition unit, and the carbon dioxide exchange rate calculated by the exchange rate calculation unit are associated with each other From among the environmental data generated in the past by the data generation unit and the environmental data generation unit, environmental data similar to the environmental condition acquired by the environmental condition acquisition unit is acquired as similar environmental data Based on the environmental data acquisition unit, the similar environmental data acquired by the environmental data acquisition unit, and the carbon dioxide exchange rate calculated by the exchange rate calculation unit, plants in the greenhouse are converted to carbon dioxide in the greenhouse. Among the environmental conditions acquired by the environmental condition acquisition unit, the greenhouse in the consumption rate calculation unit that calculates the rate of consuming carbon, the volume in the greenhouse, the consumption rate calculated by the absorption rate calculation unit, It is a carbon dioxide application assistance apparatus provided with the application speed estimation part which estimates the relationship between the application speed of the carbon dioxide applied in the said greenhouse, and the said consumed speed based on the ventilation frequency of this.
 また、本発明の他の態様は、前記消費速度算出部は、前記交換速度算出部が算出する前記二酸化炭素の交換速度と、前記類似環境データに含まれる前記二酸化炭素の交換速度との相対値に基づいて、前記消費する速度を算出する二酸化炭素施用支援装置である。 In another aspect of the present invention, the consumption rate calculation unit is a relative value between the exchange rate of the carbon dioxide calculated by the exchange rate calculation unit and the exchange rate of the carbon dioxide included in the similar environment data. The carbon dioxide application support apparatus calculates the consumed speed based on the above.
 また、本発明の他の態様は、前記施用速度推定部は、前記消費速度算出部が算出した前記消費する速度に基づいて、前記植物の状態に関係する値を更に算出する二酸化炭素施用支援装置である。 In another aspect of the present invention, the application rate estimation unit further calculates a value related to the state of the plant based on the consumption rate calculated by the consumption rate calculation unit. It is.
 また、本発明の他の態様は、前記植物の状態に関係する値には、前記植物の生長点を含む茎葉部の伸長の速さを示す茎葉部成長速度、前記植物から蒸散される水分の単位時間あたりの量を示す蒸散速度のうちの少なくとも1つが含まれる二酸化炭素施用支援装置である。 In another aspect of the present invention, the value related to the state of the plant includes a growth rate of the foliage part indicating the speed of elongation of the foliage part including the growth point of the plant, and the moisture transpiration from the plant. This is a carbon dioxide application support device including at least one of the transpiration rates indicating the amount per unit time.
 また、本発明の他の態様は、前記環境条件には、前記温室内の飽差の条件、前記温室内の気温の条件、前記植物に供給される給液速度の条件が含まれ、前記施用速度推定部は、更に、前記環境条件のうちから少なくとも1つの条件と前記消費する速度との関係を推定する二酸化炭素施用支援装置である。 In another aspect of the present invention, the environmental conditions include a condition of saturation in the greenhouse, a condition of air temperature in the greenhouse, and a condition of a feed rate supplied to the plant. The speed estimation unit is a carbon dioxide application support apparatus that estimates a relationship between at least one of the environmental conditions and the consumed speed.
 本発明の一態様は、コンピュータに、植物の育成を行う温室内外の環境を測定する測定部から、植物が育成される環境条件を取得する環境条件取得ステップと、前記環境条件取得ステップにおいて取得される前記環境条件のうち、前記温室内の二酸化炭素濃度と、前記温室外の二酸化炭素濃度と、前記温室の換気回数と、前記温室内の光強度とに基づいて、前記温室内の植物が行う二酸化炭素の交換速度を算出する呼吸速度算出ステップと、前記環境条件取得ステップにおいて取得される前記環境条件と、前記呼吸速度算出ステップにおいて算出される前記二酸化炭素の交換速度とが互いに対応付けられた環境データを生成する環境データ生成ステップと、前記環境データ生成ステップにおいて過去に生成された前記環境データのうちから、前記環境条件取得ステップにおいて取得される前記環境条件と類似する環境データを類似環境データとして取得する環境データ取得ステップと、前記環境データ取得ステップにおいて取得される前記類似環境データと、前記呼吸速度算出ステップにおいて算出される前記二酸化炭素の交換速度とに基づいて、前記温室内の植物が前記温室内の二酸化炭素を消費する速度を算出する消費速度算出ステップと、前記温室内の容積と、前記消費速度算出ステップにおいて算出される前記消費する速度と、前記環境条件取得ステップにおいて取得される前記環境条件のうち前記温室の換気回数とに基づいて、前記温室内に施用される二酸化炭素の施用速度と前記消費する速度との関係を推定する施用速度推定ステップとを実行させるための二酸化炭素施用支援プログラムである。 One aspect of the present invention is acquired in an environmental condition acquisition step of acquiring an environmental condition in which a plant is grown from a measurement unit that measures the environment inside and outside the greenhouse in which the plant is grown. Among the environmental conditions, the plants in the greenhouse perform based on the carbon dioxide concentration in the greenhouse, the carbon dioxide concentration outside the greenhouse, the ventilation frequency of the greenhouse, and the light intensity in the greenhouse. The respiration rate calculation step for calculating the carbon dioxide exchange rate, the environmental condition acquired in the environmental condition acquisition step, and the carbon dioxide exchange rate calculated in the respiration rate calculation step are associated with each other. An environmental data generating step for generating environmental data, and the environmental data generated in the past in the environmental data generating step. Environmental data acquisition step for acquiring environmental data similar to the environmental condition acquired in the environmental condition acquisition step as similar environmental data, the similar environmental data acquired in the environmental data acquisition step, and the respiration rate calculation step A consumption rate calculating step of calculating a rate at which plants in the greenhouse consume carbon dioxide in the greenhouse based on the exchange rate of carbon dioxide calculated in step 3, a volume in the greenhouse, and the consumption rate Based on the consumption rate calculated in the calculation step and the ventilation frequency of the greenhouse among the environmental conditions acquired in the environmental condition acquisition step, the application rate of carbon dioxide applied in the greenhouse and the Coal dioxide for performing an application rate estimation step for estimating a relationship with consumption rate Is an application support program.
 本発明によれば、温室内に施用する二酸化炭素の流量を管理者に通知することができる二酸化炭素施用支援装置及び二酸化炭素施用支援プログラムを提供することができる。 According to the present invention, it is possible to provide a carbon dioxide application support apparatus and a carbon dioxide application support program capable of notifying an administrator of the flow rate of carbon dioxide applied in a greenhouse.
温室の外観構成の一例を示す図である。It is a figure which shows an example of the external appearance structure of a greenhouse. 二酸化炭素施用支援装置の構成の一例を示す図である。It is a figure which shows an example of a structure of a carbon dioxide application assistance apparatus. 二酸化炭素施用支援装置の動作の一例を示す流れ図である。It is a flowchart which shows an example of operation | movement of a carbon dioxide application assistance apparatus. 二酸化炭素施用支援装置の動作の一例を示す流れ図である。It is a flowchart which shows an example of operation | movement of a carbon dioxide application assistance apparatus. 記憶部に記憶される環境データの一例を示す図である。It is a figure which shows an example of the environmental data memorize | stored in a memory | storage part. 温室内の二酸化炭素濃度と、純光合成速度との関係の一例を示す図である。It is a figure which shows an example of the relationship between the carbon dioxide density | concentration in a greenhouse, and a pure photosynthesis rate. 類似環境データの純光合成速度に補正を行う場合と、行わない場合との一例を示す図である。It is a figure which shows an example with the case where it corrects to the pure light composition speed | rate of similar environment data, and the case where it does not perform. 施用速度推定部が推定した二酸化炭素の施用速度の一例を示す図である。It is a figure which shows an example of the application rate of the carbon dioxide which the application rate estimation part estimated. 施用速度推定部が推定した二酸化炭素の施用速度の一例を示す図である。It is a figure which shows an example of the application rate of the carbon dioxide which the application rate estimation part estimated. 記憶部に記憶された環境データの量と、消費速度算出部が算出する純光合成速度との関係の一例を示す図である。It is a figure which shows an example of the relationship between the quantity of the environmental data memorize | stored in the memory | storage part, and the pure light composition speed | rate which a consumption speed calculation part calculates. 環境データ取得部が記憶部から取得する類似環境データの許容範囲と、消費速度算出部が算出する純光合成速度との関係の一例を示す図である。It is a figure which shows an example of the relationship between the tolerance | permissible_range of the similar environmental data which an environmental data acquisition part acquires from a memory | storage part, and the pure light composition speed | rate which a consumption speed calculation part calculates.
[実施形態]
[温室1の外観構成]
 以下、図面を参照して、本発明に係る二酸化炭素施用支援装置の実施形態について説明する。なお、この実施形態に記載されている構成部品の個数等は、特定的な記載がない限り本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 図1は、温室1の外観構成の一例を示す図である。
[Embodiment]
[Appearance structure of greenhouse 1]
Hereinafter, an embodiment of a carbon dioxide application support device according to the present invention will be described with reference to the drawings. It should be noted that the number of components described in this embodiment is not intended to limit the scope of the present invention unless otherwise specified, and is merely an illustrative example.
FIG. 1 is a diagram illustrating an example of an external configuration of a greenhouse 1.
 温室1には、植物NPが植生される。温室1とは、その内部において植物NPを育成する建造物のことである。温室1は、太陽光を受けて内部の植物NPを育成してもよく、人工光によって内部の植物NPを育成してもよい。植物NPは、温室1の環境条件に応じて生育する。具体的には、植物NPは、温室1内の光を受けて、温室1内の二酸化炭素を吸収し、光合成を行う。この一例では、植物NPは、苗の状態の時に温室1内に植生される。なお、植物NPは、苗以外の状態の時に温室1内に植生されてもよい。 In the greenhouse 1, plant NP is vegetated. The greenhouse 1 is a building in which the plant NP is grown. The greenhouse 1 may receive sunlight and grow the internal plant NP, or may grow the internal plant NP by artificial light. The plant NP grows according to the environmental conditions of the greenhouse 1. Specifically, the plant NP receives light in the greenhouse 1, absorbs carbon dioxide in the greenhouse 1, and performs photosynthesis. In this example, the plant NP is vegetated in the greenhouse 1 in a seedling state. The plant NP may be vegetated in the greenhouse 1 in a state other than the seedling.
 温室1は、測定部10と、窓20と、飽差算出装置15と、換気回数算出部16と、二酸化炭素施用制御装置17と、温室情報装置18と、二酸化炭素施用支援装置100とを備える。 The greenhouse 1 includes a measurement unit 10, a window 20, a saturation calculation device 15, a ventilation frequency calculation unit 16, a carbon dioxide application control device 17, a greenhouse information device 18, and a carbon dioxide application support device 100. .
 測定部10は、温室1の環境条件を測定する。温室1の環境条件には、温室1内の気温、温室1内の光の強さを示す光強度、温室1内の飽差、温室1内外の二酸化炭素濃度及び温室1の換気回数が含まれる。ここで、飽差とは、ある気温における空気中の水蒸気の総量と、既に空気中に含まれる水蒸気の量の差である。換気回数とは、1時間あたりに構造物内に流入する空気量を構造物内の空気容積で除したものである。この一例では、換気回数とは、1時間あたりに温室1内に流入する空気量を温室1内の空気容積で除したものである。具体的には、換気回数とは、空気容積が”500”(m)の温室1内に、1時間あたりに”500”(m)の空気が流入する場合には、換気回数は”1”(h-1)である。 The measuring unit 10 measures the environmental conditions of the greenhouse 1. The environmental conditions of the greenhouse 1 include the temperature in the greenhouse 1, the light intensity indicating the intensity of light in the greenhouse 1, the saturation in the greenhouse 1, the carbon dioxide concentration inside and outside the greenhouse 1, and the ventilation frequency of the greenhouse 1. . Here, the saturation is a difference between the total amount of water vapor in the air at a certain temperature and the amount of water vapor already contained in the air. The number of ventilations is the amount of air flowing into the structure per hour divided by the air volume in the structure. In this example, the ventilation rate is obtained by dividing the amount of air flowing into the greenhouse 1 per hour by the air volume in the greenhouse 1. Specifically, the number of ventilations refers to the number of ventilations when “500” (m 3 ) of air flows into the greenhouse 1 having an air volume of “500” (m 3 ) per hour. 1 ″ (h −1 ).
 測定部10は、温度センサ11と、光強度センサ12と、屋内二酸化炭素濃度測定センサ13と、屋外二酸化炭素濃度測定センサ14と、飽差算出装置15と、換気回数算出部16とを備える。
 温度センサ11は、温室1内の温度を測定する。温度センサ11は、測定した温室1内の温度を二酸化炭素施用支援装置100に対して出力する。具体的には、温度センサ11は、温室1内の気温を測定する。
 光強度センサ12は、温室1内の光の強さを測定する。光強度センサ12は、測定した温室1内の光の強さを二酸化炭素施用支援装置100に対して出力する。この一例では、光強度センサ12は、温室1内の日射量を測定する。なお、人工光によって植物を育成する温室の場合、光強度センサ12は人工光の強さを測定してもよい。
The measurement unit 10 includes a temperature sensor 11, a light intensity sensor 12, an indoor carbon dioxide concentration measurement sensor 13, an outdoor carbon dioxide concentration measurement sensor 14, a saturation calculation device 15, and a ventilation frequency calculation unit 16.
The temperature sensor 11 measures the temperature in the greenhouse 1. The temperature sensor 11 outputs the measured temperature in the greenhouse 1 to the carbon dioxide application support apparatus 100. Specifically, the temperature sensor 11 measures the temperature in the greenhouse 1.
The light intensity sensor 12 measures the intensity of light in the greenhouse 1. The light intensity sensor 12 outputs the measured light intensity in the greenhouse 1 to the carbon dioxide application support apparatus 100. In this example, the light intensity sensor 12 measures the amount of solar radiation in the greenhouse 1. In the case of a greenhouse where plants are grown by artificial light, the light intensity sensor 12 may measure the intensity of artificial light.
 屋内二酸化炭素濃度測定センサ13は、温室1内の二酸化炭素濃度を測定する。屋内二酸化炭素濃度測定センサ13は、測定した温室1内の二酸化炭素濃度を二酸化炭素施用支援装置100に対して出力する。
 屋外二酸化炭素濃度測定センサ14は、温室1外の二酸化炭素濃度を測定する。屋外二酸化炭素濃度測定センサ14は、測定した温室1外の二酸化炭素濃度を二酸化炭素施用支援装置100に対して出力する。
The indoor carbon dioxide concentration measuring sensor 13 measures the carbon dioxide concentration in the greenhouse 1. The indoor carbon dioxide concentration measurement sensor 13 outputs the measured carbon dioxide concentration in the greenhouse 1 to the carbon dioxide application support apparatus 100.
The outdoor carbon dioxide concentration measurement sensor 14 measures the carbon dioxide concentration outside the greenhouse 1. The outdoor carbon dioxide concentration measurement sensor 14 outputs the measured carbon dioxide concentration outside the greenhouse 1 to the carbon dioxide application support apparatus 100.
 飽差算出装置15は、温室1内の飽差を算出する。飽差算出装置15は、温室1内の温度と、温室1内の相対湿度とに基づいて、飽差を算出する。飽差算出装置15は、算出した飽差を二酸化炭素施用支援装置100に対して出力する。 The saturation calculation device 15 calculates the saturation in the greenhouse 1. The saturation calculation device 15 calculates the saturation based on the temperature in the greenhouse 1 and the relative humidity in the greenhouse 1. The saturation calculation device 15 outputs the calculated saturation to the carbon dioxide application support device 100.
 換気回数算出部16は、温室1の換気回数を算出する。換気回数測定部16は、換気回数を、水収支法などに基づいて算出する。ここで、水収支法とは、温室1に投入された水分と、温室1から排出された水分とに基づいて、温室1の換気回数を算出する方法である。換気回数算出部16は、測定した換気回数を二酸化炭素施用支援装置100に対して出力する。なお、温室1は、ファン(不図示)などにより換気回数が制御されてもよい。この一例では、換気回数が1である場合について説明する。 The ventilation frequency calculation unit 16 calculates the ventilation frequency of the greenhouse 1. The ventilation frequency measurement unit 16 calculates the ventilation frequency based on the water balance method or the like. Here, the water balance method is a method of calculating the number of ventilations of the greenhouse 1 based on the moisture input to the greenhouse 1 and the moisture discharged from the greenhouse 1. The ventilation frequency calculation unit 16 outputs the measured ventilation frequency to the carbon dioxide application support apparatus 100. Note that the ventilation frequency of the greenhouse 1 may be controlled by a fan (not shown) or the like. In this example, a case where the ventilation frequency is 1 will be described.
 窓20は、開閉動作する。窓20が開閉動作すると、温室1内の環境条件が変化する。
具体的には、窓20は開放されると、温室1内の空気が入れ替わる程度が大きくなる。窓20が開放されると、温室1内の温度が、温室1外の温度よりも大きければ、温室1内の温度は下がる。窓20が閉じられると、温室1内の空気は、ほとんど入れ替わらない。窓20が閉じられると、温室1に日光が当たっていれば、温室1内の温度は一般には上昇する。
The window 20 opens and closes. When the window 20 opens and closes, the environmental conditions in the greenhouse 1 change.
Specifically, when the window 20 is opened, the degree to which the air in the greenhouse 1 is replaced increases. When the window 20 is opened, if the temperature in the greenhouse 1 is higher than the temperature outside the greenhouse 1, the temperature in the greenhouse 1 is lowered. When the window 20 is closed, the air in the greenhouse 1 is hardly changed. When the window 20 is closed, the temperature in the greenhouse 1 generally rises if the greenhouse 1 is exposed to sunlight.
 二酸化炭素施用制御装置17は、二酸化炭素施用支援装置100が算出する二酸化炭素の施用速度に基づいて、温室1内に供給される二酸化炭素の施用速度を制御する。言い換えると、二酸化炭素施用制御装置17は、二酸化炭素施用支援装置100が算出する二酸化炭素の施用速度に基づいて、温室1内に供給される二酸化炭素の量を制御する。
 二酸化炭素施用制御装置17は、環境データ生成部109に対して、二酸化炭素施用制御装置17が温室1内に供給する二酸化炭素の施用速度を示す二酸化炭素施用速度CSを出力する。
The carbon dioxide application control device 17 controls the application rate of carbon dioxide supplied into the greenhouse 1 based on the application rate of carbon dioxide calculated by the carbon dioxide application support device 100. In other words, the carbon dioxide application control device 17 controls the amount of carbon dioxide supplied into the greenhouse 1 based on the carbon dioxide application speed calculated by the carbon dioxide application support device 100.
The carbon dioxide application control device 17 outputs a carbon dioxide application rate CS indicating the application rate of carbon dioxide supplied from the carbon dioxide application control device 17 into the greenhouse 1 to the environmental data generation unit 109.
 温室情報装置18とは、温室1に関係する情報が記憶される装置である。この一例では、温室情報装置18には、温室1内の空気容積の情報が記憶される。温室1内の空気容積とは、温室1内の空気の容積である。なお、温室情報装置18に記憶される温室1内の空気容積の情報は、温室1毎のほぼ固定の値として扱ってよい。温室1内の空気容積の情報は、どこに記憶されてもよい。 The greenhouse information device 18 is a device in which information related to the greenhouse 1 is stored. In this example, the greenhouse information device 18 stores information on the air volume in the greenhouse 1. The air volume in the greenhouse 1 is the volume of air in the greenhouse 1. Note that the air volume information in the greenhouse 1 stored in the greenhouse information device 18 may be handled as a substantially fixed value for each greenhouse 1. Information on the air volume in the greenhouse 1 may be stored anywhere.
 二酸化炭素施用支援装置100は、季節、天候、時刻などにより変化する温室1内外の環境条件を取得する。二酸化炭素施用支援装置100は、取得した環境条件に基づいて、温室1内の植物NPに適した二酸化炭素の施用速度を推定する。この一例では、二酸化炭素施用支援装置100が推定する二酸化炭素の施用速度とは、温室1内外の環境条件に応じて温室1内の植物NPに施用する二酸化炭素施用速度と温室1内の植物NPの純光合成速度との関係を示す曲線である。以降の説明では、温室1内外の環境条件に応じて温室1内の植物NPに施用する二酸化炭素施用速度と温室1内の植物NPの純光合成速度との関係を示す曲線を、単にCP曲線と記載する場合もある。
 二酸化炭素施用支援装置100の詳細は後述する。
The carbon dioxide application support apparatus 100 acquires environmental conditions inside and outside the greenhouse 1 that change according to the season, weather, time, and the like. The carbon dioxide application support apparatus 100 estimates the application rate of carbon dioxide suitable for the plant NP in the greenhouse 1 based on the acquired environmental conditions. In this example, the carbon dioxide application speed estimated by the carbon dioxide application support apparatus 100 is the carbon dioxide application speed applied to the plant NP in the greenhouse 1 and the plant NP in the greenhouse 1 according to the environmental conditions inside and outside the greenhouse 1. It is a curve which shows the relationship with the pure photosynthesis speed | rate. In the following description, a curve indicating the relationship between the carbon dioxide application rate applied to the plant NP in the greenhouse 1 and the net photosynthetic rate of the plant NP in the greenhouse 1 according to the environmental conditions inside and outside the greenhouse 1 is simply a CP curve. It may be described.
Details of the carbon dioxide application support apparatus 100 will be described later.
 次に、図2を参照して、二酸化炭素施用支援装置100の機能構成について説明する。
 図2は、二酸化炭素施用支援装置100の構成の一例を示す図である。
 二酸化炭素施用支援装置100は、環境条件取得部101と、交換速度算出部108と、環境データ生成部109と、記憶部110と、環境データ取得部111と、消費速度算出部112と、施用速度推定部113と、表示部114とを備える。
Next, the functional configuration of the carbon dioxide application support apparatus 100 will be described with reference to FIG.
FIG. 2 is a diagram illustrating an example of the configuration of the carbon dioxide application support apparatus 100.
The carbon dioxide application support apparatus 100 includes an environmental condition acquisition unit 101, an exchange rate calculation unit 108, an environmental data generation unit 109, a storage unit 110, an environmental data acquisition unit 111, a consumption rate calculation unit 112, and an application rate. An estimation unit 113 and a display unit 114 are provided.
 環境条件取得部101は、測定部10から、植物NPが育成される環境条件を取得する。環境条件取得部101は、温室1内に植物NPが定植されると、時間間隔を開けて測定部10から環境条件を取得する。
 具体的には、環境条件取得部101には、温度取得部102と、光強度取得部103と、飽差取得部104と、屋内二酸化炭素濃度取得部105と、屋外二酸化炭素濃度取得部106と、換気回数取得部107とが含まれる。
The environmental condition acquisition unit 101 acquires, from the measurement unit 10, environmental conditions under which the plant NP is grown. When the plant NP is planted in the greenhouse 1, the environmental condition acquisition unit 101 acquires the environmental condition from the measurement unit 10 with a time interval.
Specifically, the environmental condition acquisition unit 101 includes a temperature acquisition unit 102, a light intensity acquisition unit 103, a saturation acquisition unit 104, an indoor carbon dioxide concentration acquisition unit 105, and an outdoor carbon dioxide concentration acquisition unit 106. The ventilation frequency acquisition unit 107 is included.
 温度取得部102は、温度センサ11から、温室1内の温度TVを取得する。温度取得部102は、取得した温室1内の温度TVを、交換速度算出部108と、環境データ生成部109とに対して出力する。 The temperature acquisition unit 102 acquires the temperature TV in the greenhouse 1 from the temperature sensor 11. The temperature acquisition unit 102 outputs the acquired temperature TV in the greenhouse 1 to the exchange rate calculation unit 108 and the environment data generation unit 109.
 光強度取得部103は、光強度センサ12から、温室1内の光強度LSを取得する。光強度取得部103は、取得した温室1内の光強度LSを、交換速度算出部108と、環境データ生成部109とに対して出力する。 The light intensity acquisition unit 103 acquires the light intensity LS in the greenhouse 1 from the light intensity sensor 12. The light intensity acquisition unit 103 outputs the acquired light intensity LS in the greenhouse 1 to the exchange rate calculation unit 108 and the environment data generation unit 109.
 飽差取得部104は、飽差算出装置15から、温室1内の飽差HDを取得する。飽差取得部104は、取得した温室1内の飽差HDを、環境データ生成部109に対して出力する。 The saturation acquisition unit 104 acquires the saturation HD in the greenhouse 1 from the saturation calculation device 15. The saturation acquisition unit 104 outputs the acquired saturation HD in the greenhouse 1 to the environment data generation unit 109.
 屋内二酸化炭素濃度取得部105は、屋内二酸化炭素濃度測定センサ13から、温室1内の二酸化炭素濃度ICDを取得する。屋内二酸化炭素濃度取得部105は、取得した温室1内の二酸化炭素濃度ICDを、交換速度算出部108と、環境データ生成部109とに対して出力する。 The indoor carbon dioxide concentration acquisition unit 105 acquires the carbon dioxide concentration ICD in the greenhouse 1 from the indoor carbon dioxide concentration measurement sensor 13. The indoor carbon dioxide concentration acquisition unit 105 outputs the acquired carbon dioxide concentration ICD in the greenhouse 1 to the exchange rate calculation unit 108 and the environment data generation unit 109.
 屋外二酸化炭素濃度取得部106は、屋外二酸化炭素濃度測定センサ14から、温室1外の二酸化炭素濃度OCDを取得する。屋外二酸化炭素濃度取得部106は、取得した温室1外の二酸化炭素濃度OCDを、交換速度算出部108と、環境データ生成部109とに対して出力する。 The outdoor carbon dioxide concentration acquisition unit 106 acquires the carbon dioxide concentration OCD outside the greenhouse 1 from the outdoor carbon dioxide concentration measurement sensor 14. The outdoor carbon dioxide concentration acquisition unit 106 outputs the acquired carbon dioxide concentration OCD outside the greenhouse 1 to the exchange rate calculation unit 108 and the environment data generation unit 109.
 換気回数取得部107は、換気回数算出部16から、換気回数VCを取得する。換気回数取得部107は、取得した換気回数VCを交換速度算出部108と、環境データ生成部109と、施用速度推定部113とに対して出力する。 The ventilation frequency acquisition unit 107 acquires the ventilation frequency VC from the ventilation frequency calculation unit 16. The ventilation frequency acquisition unit 107 outputs the acquired ventilation frequency VC to the replacement speed calculation unit 108, the environment data generation unit 109, and the application speed estimation unit 113.
 交換速度算出部108は、温室1内の植物NPの二酸化炭素の交換速度PSを算出する。二酸化炭素の交換速度PSとは、温室1内の植物NPが正味に消費又は放出する二酸化炭素の速度である。具体的には、交換速度算出部108は、光強度取得部103から温室1内の光強度LSを取得する。交換速度算出部108は、屋内二酸化炭素濃度取得部105から温室1内の二酸化炭素濃度ICDを取得する。交換速度算出部108は、屋外二酸化炭素濃度取得部106から温室1外の二酸化炭素濃度OCDを取得する。交換速度算出部108は、換気回数取得部107から換気回数VCを取得する。交換速度算出部108は、温室情報装置18から空気容積ACを取得する。 The exchange rate calculation unit 108 calculates the carbon dioxide exchange rate PS of the plant NP in the greenhouse 1. The carbon dioxide exchange rate PS is the rate of carbon dioxide that is consumed or released by the plant NP in the greenhouse 1. Specifically, the exchange rate calculation unit 108 acquires the light intensity LS in the greenhouse 1 from the light intensity acquisition unit 103. The exchange rate calculation unit 108 acquires the carbon dioxide concentration ICD in the greenhouse 1 from the indoor carbon dioxide concentration acquisition unit 105. The exchange rate calculation unit 108 acquires the carbon dioxide concentration OCD outside the greenhouse 1 from the outdoor carbon dioxide concentration acquisition unit 106. The replacement speed calculation unit 108 acquires the ventilation frequency VC from the ventilation frequency acquisition unit 107. The exchange speed calculation unit 108 acquires the air volume AC from the greenhouse information device 18.
 交換速度算出部108は、環境条件取得部101が取得する環境条件のうち、温室1内の二酸化炭素濃度ICDと、温室1外の二酸化炭素濃度OCDと、温室1の換気回数VCと、温室1内の光強度LSとに基づいて、温室1内の植物NPが行う二酸化炭素の交換速度PSを算出する。具体的には、交換速度算出部108は、式(1)に示すザイデルの式から導かれる定常状態における式を用いて、二酸化炭素の交換速度PSを算出する。 Among the environmental conditions acquired by the environmental condition acquisition unit 101, the exchange rate calculation unit 108 is the carbon dioxide concentration ICD inside the greenhouse 1, the carbon dioxide concentration OCD outside the greenhouse 1, the ventilation frequency VC of the greenhouse 1, the greenhouse 1 Based on the light intensity LS, the carbon dioxide exchange rate PS performed by the plant NP in the greenhouse 1 is calculated. Specifically, the exchange rate calculation unit 108 calculates the carbon dioxide exchange rate PS using an equation in a steady state derived from the Seidel equation shown in Equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、式(1)中のMとは、温室1内の植物NPの二酸化炭素の交換速度PSである。式(1)中のNは、換気回数VCである。式(1)中のVとは、温室1内の空気容積ACである。式(1)中のΔCとは、温室1内の二酸化炭素濃度ICDと、温室1外の二酸化炭素濃度OCDとの差である。
 交換速度算出部108が算出する二酸化炭素の交換速度PSとは、温室1内の光強度LSが植物NPの光合成に適した光の強さを示さない場合(例えば夜間)には、植物NPの暗呼吸速度を示す。ここで、暗呼吸とは、植物NPが二酸化炭素を排出する呼吸である。
 交換速度算出部108が算出する二酸化炭素の交換速度PSとは、温室1内の光強度LSが、植物NPの光合成に適した光の強さを示す場合(例えば昼間)には、植物NPの純光合成速度である。純光合成速度とは、温室1内の植物NPが、温室1内の二酸化炭素濃度ICDに応じて吸収する二酸化炭素の速度である。以下の説明では、純光合成速度を、消費する速度UDと記載することもある。
 つまり、交換速度算出部108は、温室1内の光強度LSが示す光強度が、植物NPが光合成可能な強さに達していない場合には、二酸化炭素の交換速度PSを暗呼吸速度として算出する。交換速度算出部108は、温室1内の光強度LSが示す光強度が、植物NPが光合成可能な強さに達している場合には、二酸化炭素の交換速度PSを、純光合成速度として算出する。
Here, M in the formula (1) is the carbon dioxide exchange rate PS of the plant NP in the greenhouse 1. N in Formula (1) is the ventilation frequency VC. V in Formula (1) is the air volume AC in the greenhouse 1. ΔC in the equation (1) is a difference between the carbon dioxide concentration ICD in the greenhouse 1 and the carbon dioxide concentration OCD outside the greenhouse 1.
The carbon dioxide exchange rate PS calculated by the exchange rate calculation unit 108 is the light intensity LS in the greenhouse 1 when the light intensity suitable for the photosynthesis of the plant NP is not shown (for example, at night). Indicates the dark breathing rate. Here, dark respiration is respiration in which the plant NP emits carbon dioxide.
The exchange rate PS of carbon dioxide calculated by the exchange rate calculation unit 108 is that the light intensity LS in the greenhouse 1 indicates the intensity of light suitable for the photosynthesis of the plant NP (for example, daytime). Pure photosynthesis rate. The net photosynthetic rate is the rate of carbon dioxide absorbed by the plant NP in the greenhouse 1 according to the carbon dioxide concentration ICD in the greenhouse 1. In the following description, the pure photosynthetic rate may be described as a consumed rate UD.
That is, the exchange rate calculation unit 108 calculates the carbon dioxide exchange rate PS as the dark respiration rate when the light intensity indicated by the light intensity LS in the greenhouse 1 does not reach the intensity at which the plant NP can be photosynthesized. To do. When the light intensity indicated by the light intensity LS in the greenhouse 1 has reached the intensity at which the plant NP can be photosynthesized, the exchange rate calculation unit 108 calculates the carbon dioxide exchange rate PS as the pure photosynthesis rate. .
 なお、交換速度算出部108が算出する二酸化炭素の交換速度PSは、時刻の情報に基づいて暗呼吸速度と、純光合成速度とを区別してもよい。具体的には、交換速度算出部108が算出する二酸化炭素の交換速度PSは、太陽が出ている間の時刻を純光合成速度としてもよい。また、交換速度算出部108が算出する二酸化炭素の交換速度PSは、太陽が沈んでいる間の時刻を、暗呼吸速度としてもよい。 The carbon dioxide exchange rate PS calculated by the exchange rate calculating unit 108 may distinguish between the dark breathing rate and the pure photosynthetic rate based on time information. Specifically, the carbon dioxide exchange rate PS calculated by the exchange rate calculation unit 108 may be the time during which the sun is out as the pure photosynthetic rate. Further, the carbon dioxide exchange rate PS calculated by the exchange rate calculation unit 108 may be the time during which the sun is setting as the dark breathing rate.
 環境データ生成部109は、環境条件取得部101が取得する環境条件と、交換速度算出部108が算出する二酸化炭素の交換速度PSとが互いに対応付けられた環境データEDを生成する。具体的には、環境データ生成部109は、温度取得部102から温室1内の温度TVを取得する。環境データ生成部109は、光強度取得部103から温室1内の光強度LSを取得する。環境データ生成部109は、飽差取得部104から温室1内の飽差HDを取得する。環境データ生成部109は、屋内二酸化炭素濃度取得部105から温室1内の二酸化炭素濃度ICDを取得する。環境データ生成部109は、屋外二酸化炭素濃度取得部106から温室1外の二酸化炭素濃度OCDを取得する。環境データ生成部109は、換気回数取得部107から換気回数VCを取得する。環境データ生成部109は、二酸化炭素施用制御装置17から、二酸化炭素施用速度CSを取得する。 The environmental data generation unit 109 generates environmental data ED in which the environmental conditions acquired by the environmental condition acquisition unit 101 and the carbon dioxide exchange rate PS calculated by the exchange rate calculation unit 108 are associated with each other. Specifically, the environment data generation unit 109 acquires the temperature TV in the greenhouse 1 from the temperature acquisition unit 102. The environment data generation unit 109 acquires the light intensity LS in the greenhouse 1 from the light intensity acquisition unit 103. The environmental data generation unit 109 acquires the saturation HD in the greenhouse 1 from the saturation acquisition unit 104. The environmental data generation unit 109 acquires the carbon dioxide concentration ICD in the greenhouse 1 from the indoor carbon dioxide concentration acquisition unit 105. The environmental data generation unit 109 acquires the carbon dioxide concentration OCD outside the greenhouse 1 from the outdoor carbon dioxide concentration acquisition unit 106. The environmental data generation unit 109 acquires the ventilation frequency VC from the ventilation frequency acquisition unit 107. The environmental data generation unit 109 acquires the carbon dioxide application speed CS from the carbon dioxide application control device 17.
 環境データ生成部109は、温室1内の温度TVと、温室1内の光強度LSと、温室1内の飽差HDと、温室1内の二酸化炭素濃度ICDと、温室1外の二酸化炭素濃度OCDと、換気回数VCと、二酸化炭素施用速度CSと、環境条件を取得した日付及び時刻と、二酸化炭素の交換速度PSとを互いに対応付けて、環境データEDを生成する。
 環境データ生成部109は、生成した環境データEDを、記憶部110に記憶させる。環境データ生成部109は、生成した環境データEDを環境データ取得部111に対して出力する。
 記憶部110には、環境データ生成部109が生成した環境データEDが記憶される。
The environmental data generation unit 109 includes a temperature TV in the greenhouse 1, a light intensity LS in the greenhouse 1, a saturation HD in the greenhouse 1, a carbon dioxide concentration ICD in the greenhouse 1, and a carbon dioxide concentration outside the greenhouse 1. The environmental data ED is generated by associating the OCD, the ventilation frequency VC, the carbon dioxide application rate CS, the date and time when the environmental conditions are acquired, and the carbon dioxide exchange rate PS with each other.
The environment data generation unit 109 causes the storage unit 110 to store the generated environment data ED. The environment data generation unit 109 outputs the generated environment data ED to the environment data acquisition unit 111.
The storage unit 110 stores the environment data ED generated by the environment data generation unit 109.
 環境データ取得部111は、環境データ生成部109が過去に生成した環境データEDのうちから、環境条件取得部101が取得する環境条件EDと類似する環境データを類似環境データSEDとして取得する。類似環境データSEDとは、過去に生成された環境データのうち、施用速度推定部113が二酸化炭素の施用速度ASの推定に用いる環境データEDと値が近い環境データEDのことである。具体的には、環境データ取得部111が類似環境データSEDの選択に用いる環境データEDは、現在の温室1内の環境条件が、日没、大きな気温の変化、曇天、降雨による温室1内の光強度LSの変化などの環境条件が大きく変化する前の環境データEDであればよい。より具体的には、例えば、環境データ取得部111は、直近に生成された環境データEDよりも以前に生成された環境データEDと類似する環境データを、類似環境データSEDとして取得してもよい。環境データ取得部111は、直近に生成された環境データEDよりも以前に生成された環境データEDと類似するデータを類似環境データSEDとして取得する場合には、環境データ生成部109から取得した環境データEDを蓄積し、蓄積された環境データEDに基づいて記憶部110から類似環境データSEDを取得すればよい。 The environmental data acquisition unit 111 acquires environmental data similar to the environmental condition ED acquired by the environmental condition acquisition unit 101 as the similar environmental data SED from the environmental data ED generated by the environmental data generation unit 109 in the past. The similar environmental data SED is environmental data ED whose value is close to the environmental data ED used by the application rate estimation unit 113 for estimating the application rate AS of carbon dioxide among the environmental data generated in the past. Specifically, the environmental data ED used by the environmental data acquisition unit 111 for selecting the similar environmental data SED is that the current environmental conditions in the greenhouse 1 are those in the greenhouse 1 due to sunset, large temperature changes, cloudy weather, and rain. It may be environmental data ED before environmental conditions such as a change in light intensity LS change greatly. More specifically, for example, the environment data acquisition unit 111 may acquire environment data similar to the environment data ED generated before the most recently generated environment data ED as the similar environment data SED. . When the environment data acquisition unit 111 acquires, as similar environment data SED, data similar to the environment data ED generated before the most recently generated environment data ED, the environment data acquired from the environment data generation unit 109 Data ED may be accumulated, and similar environment data SED may be acquired from storage unit 110 based on accumulated environment data ED.
 環境データ取得部111は、環境データ生成部109から環境データEDを取得する。
 環境データ取得部111は、環境データ生成部109から取得した環境データEDのうち、温室1内の光強度LSと、温室1内の温度TVと、温室1内の飽差HDとのそれぞれが類似する環境データを、記憶部110から類似環境データSEDとして取得する。
 具体的には、環境データ取得部111は、環境データ生成部109から取得した環境データEDのうち、温室1内の光強度LSと、温室1内の温度TVと、温室1内の飽差HDとのそれぞれの値が、±25%程度の範囲内に収まる値を類似環境データSEDとして取得する。一例として、環境データ取得部111は、環境データEDのうち、温室1内の光強度LSが”100”、温室1内の温度TVが”20”、温室1内の飽差HDが”30”の場合には、記憶部110に記憶される過去に生成された環境データEDのうちから、温室1内の光強度LSが”75”から”125”、温室1内の温度TVが”15”から”25”、温室1内の飽差HDが”22.5”から”37.5”に収まる環境データを、類似環境データSEDとして取得する。
The environmental data acquisition unit 111 acquires environmental data ED from the environmental data generation unit 109.
The environmental data acquisition unit 111 is similar in the light intensity LS in the greenhouse 1, the temperature TV in the greenhouse 1, and the saturation HD in the greenhouse 1 among the environmental data ED acquired from the environmental data generation unit 109. Environment data to be acquired is acquired from the storage unit 110 as similar environment data SED.
Specifically, the environmental data acquisition unit 111 includes, among the environmental data ED acquired from the environmental data generation unit 109, the light intensity LS in the greenhouse 1, the temperature TV in the greenhouse 1, and the saturation HD in the greenhouse 1. Are obtained as the similar environment data SED, within the range of about ± 25%. As an example, in the environmental data ED, the environmental data acquisition unit 111 has a light intensity LS in the greenhouse 1 of “100”, a temperature TV in the greenhouse 1 of “20”, and a saturation HD in the greenhouse 1 of “30”. In the case of the environmental data ED generated in the past stored in the storage unit 110, the light intensity LS in the greenhouse 1 is “75” to “125”, and the temperature TV in the greenhouse 1 is “15”. To “25”, and environmental data in which the saturation HD in the greenhouse 1 falls within “22.5” to “37.5” is acquired as similar environmental data SED.
 環境データ取得部111は、環境データ生成部109から取得する環境データEDと、記憶部110から取得する類似環境データSEDとを、消費速度算出部112に対して出力する。 The environment data acquisition unit 111 outputs the environment data ED acquired from the environment data generation unit 109 and the similar environment data SED acquired from the storage unit 110 to the consumption speed calculation unit 112.
 消費速度算出部112は、環境データ取得部111が取得する類似環境データSEDと、交換速度算出部108が算出する二酸化炭素の交換速度PSとに基づいて、温室1内の植物NPが温室1内の二酸化炭素を消費する速度UDを算出する。消費速度算出部112は、環境データEDの日付の直近の暗呼吸速度と、類似環境データSEDの日付の直近の暗呼吸速度とに基づいて、環境データEDの日付の直近の二酸化炭素を消費する速度UDを補正する。具体的には、消費速度算出部112は、環境データEDの日付の直近の暗呼吸速度が”1”、類似環境データSEDの日付の直近の暗呼吸速度が”0.5”の場合には、類似環境データSEDに含まれる二酸化炭素を消費する速度UDを2倍にする。つまり、消費速度算出部112は、温室1内の植物NPの生育に応じて増加した二酸化炭素を消費する速度UDを、暗呼吸速度の相対値に基づいて補正する。
 消費速度算出部112は、上述した補正を、類似環境データSEDに含まれる温室1内の二酸化炭素濃度ICD毎に行う。消費速度算出部112は、温室1内の二酸化炭素濃度ICDと、補正後の温室1内の植物NPが二酸化炭素を消費する速度UDとの関係を算出する。
 消費速度算出部112は、算出した温室1内の二酸化炭素濃度ICDと、二酸化炭素を消費する速度UDとの関係を、施用速度推定部113に対して出力する。
Based on the similar environment data SED acquired by the environment data acquisition unit 111 and the carbon dioxide exchange rate PS calculated by the exchange rate calculation unit 108, the consumption rate calculation unit 112 converts the plant NP in the greenhouse 1 into the greenhouse 1 The rate UD at which the carbon dioxide is consumed is calculated. The consumption rate calculation unit 112 consumes the carbon dioxide nearest to the date of the environment data ED based on the latest dark breathing rate of the date of the environment data ED and the dark breathing rate of the date of the similar environment data SED. The speed UD is corrected. Specifically, the consumption rate calculation unit 112 determines that the dark breathing rate closest to the date of the environment data ED is “1” and the dark breathing rate closest to the date of the similar environment data SED is “0.5”. The speed UD for consuming carbon dioxide contained in the similar environment data SED is doubled. That is, the consumption rate calculation unit 112 corrects the rate UD that consumes carbon dioxide increased according to the growth of the plant NP in the greenhouse 1 based on the relative value of the dark respiration rate.
The consumption speed calculation unit 112 performs the above-described correction for each carbon dioxide concentration ICD in the greenhouse 1 included in the similar environment data SED. The consumption rate calculation unit 112 calculates the relationship between the carbon dioxide concentration ICD in the greenhouse 1 and the rate UD at which the corrected plant NP in the greenhouse 1 consumes carbon dioxide.
The consumption rate calculation unit 112 outputs the relationship between the calculated carbon dioxide concentration ICD in the greenhouse 1 and the rate UD at which carbon dioxide is consumed to the application rate estimation unit 113.
 施用速度推定部113は、温室1内の空気容積ACと、消費する速度UDと、環境条件のうち温室1の換気回数VCとに基づいて、温室1内に施用される二酸化炭素の施用速度と温室1内の植物NPが消費する速度UDとの関係を推定する。
 施用速度推定部113は、消費速度算出部112から二酸化炭素を消費する速度UDを取得する。施用速度推定部113は、温室情報装置18から空気容積ACを取得する。施用速度推定部113は、換気回数取得部107から換気回数VCを取得する。施用速度推定部113は、消費速度算出部112から取得した二酸化炭素を消費する速度UDと、温室情報装置18から取得した空気容積ACと、換気回数取得部107が取得する換気回数VCとに基づいて、CP曲線を推定する。具体的には、施用速度推定部113は、上述した式(1)から、CP曲線を推定する。
 なお、施用速度推定部113は、温室1内に二酸化炭素を施用している場合の類似環境データSEDには、式(2)に示すザイデルの式から導かれる定常状態における式を用いて、CP曲線を推定する。
The application rate estimation unit 113 calculates the application rate of carbon dioxide applied in the greenhouse 1 based on the air volume AC in the greenhouse 1, the consumption rate UD, and the ventilation frequency VC of the greenhouse 1 among the environmental conditions. The relationship with the speed UD consumed by the plant NP in the greenhouse 1 is estimated.
The application speed estimation unit 113 acquires the speed UD at which carbon dioxide is consumed from the consumption speed calculation unit 112. The application speed estimation unit 113 acquires the air volume AC from the greenhouse information device 18. The application speed estimation unit 113 acquires the ventilation frequency VC from the ventilation frequency acquisition unit 107. The application speed estimation unit 113 is based on the speed UD that consumes carbon dioxide acquired from the consumption speed calculation unit 112, the air volume AC acquired from the greenhouse information device 18, and the ventilation frequency VC acquired by the ventilation frequency acquisition unit 107. The CP curve is estimated. Specifically, the application speed estimation unit 113 estimates a CP curve from the above-described equation (1).
Note that the application rate estimation unit 113 uses the equation in the steady state derived from the Seidel equation shown in the equation (2) for the similar environment data SED when carbon dioxide is applied in the greenhouse 1, and CP Estimate the curve.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、式(2)中のMとは、温室1内の植物NPの二酸化炭素の交換速度PSである。式(2)中のNは、換気回数VCである。式(2)中のVとは、温室1内の空気容積ACである。式(2)中のΔCとは、温室1内の二酸化炭素濃度ICDと、温室1外の二酸化炭素濃度OCDとの差である。式(2)中のSとは、二酸化炭素施用制御装置17が施用する二酸化炭素の施用速度である。
 施用速度推定部113は、推定したCP曲線を、表示部114に表示させる。
Here, M in the formula (2) is the carbon dioxide exchange rate PS of the plant NP in the greenhouse 1. N in Formula (2) is the ventilation frequency VC. V in Formula (2) is the air volume AC in the greenhouse 1. ΔC in equation (2) is the difference between the carbon dioxide concentration ICD in the greenhouse 1 and the carbon dioxide concentration OCD outside the greenhouse 1. S in Formula (2) is the application rate of the carbon dioxide which the carbon dioxide application control apparatus 17 applies.
The application speed estimation unit 113 causes the display unit 114 to display the estimated CP curve.
 表示部114は、CP曲線を表示する。
 温室1の管理者は、表示部114に表示されたCP曲線を確認する。管理者は、予め二酸化炭素を施用する効果が見込めると判断する条件を、二酸化炭素施用支援装置100が備える操作部(不図示)を操作して入力しておくことにより、二酸化炭素施用制御装置17に二酸化炭素施用支援装置100が算出した量の二酸化炭素の施用速度の制御を行うようにすることができる。なお、二酸化炭素施用支援装置100は、予め温室1内に対しての二酸化炭素を施用する速度の閾値が定められていてもよい。二酸化炭素施用支援装置100は、予め閾値が定められている場合には、算出した二酸化炭素の施用速度を、閾値に応じて二酸化炭素施用制御装置17に対して出力する。
The display unit 114 displays a CP curve.
The manager of the greenhouse 1 confirms the CP curve displayed on the display unit 114. The administrator inputs in advance a condition for determining that an effect of applying carbon dioxide can be expected by operating an operation unit (not shown) included in the carbon dioxide application support apparatus 100, thereby providing the carbon dioxide application control device 17. The application rate of carbon dioxide in the amount calculated by the carbon dioxide application support apparatus 100 can be controlled. Note that the carbon dioxide application support apparatus 100 may have a predetermined threshold value for applying carbon dioxide to the greenhouse 1 in advance. When a threshold value is set in advance, the carbon dioxide application assisting apparatus 100 outputs the calculated carbon dioxide application speed to the carbon dioxide application control apparatus 17 according to the threshold value.
[二酸化炭素施用支援装置100の環境条件取得動作の概要]
 次に、図3を参照して、二酸化炭素施用支援装置100の環境条件取得動作の概要について説明する。
 図3は、二酸化炭素施用支援装置100の動作の一例を示す流れ図S1である。
[Outline of Environmental Condition Acquisition Operation of Carbon Dioxide Application Support Device 100]
Next, with reference to FIG. 3, the outline | summary of the environmental condition acquisition operation | movement of the carbon dioxide application assistance apparatus 100 is demonstrated.
FIG. 3 is a flowchart S <b> 1 showing an example of the operation of the carbon dioxide application support apparatus 100.
 二酸化炭素施用支援装置100が備える環境条件取得部101は、温室1内に植物NPが定植されてから、温室1内の環境条件を取得し始める。光強度取得部103は、光強度センサ12から、温室1内の光強度LSを取得する。光強度取得部103は、光強度センサ12から取得した温室1内の光強度LSを、環境データ生成部109と、交換速度算出部108とに対して出力する(ステップS110)。 The environmental condition acquisition unit 101 included in the carbon dioxide application support apparatus 100 starts to acquire the environmental conditions in the greenhouse 1 after the plant NP is planted in the greenhouse 1. The light intensity acquisition unit 103 acquires the light intensity LS in the greenhouse 1 from the light intensity sensor 12. The light intensity acquisition unit 103 outputs the light intensity LS in the greenhouse 1 acquired from the light intensity sensor 12 to the environment data generation unit 109 and the exchange rate calculation unit 108 (step S110).
 温度取得部102は、温度センサ11から、温室1内の温度TVを取得する。温度取得部102は、温度センサ11から取得した温室1内の温度TVを、環境データ生成部109に対して出力する(ステップS120)。 The temperature acquisition unit 102 acquires the temperature TV in the greenhouse 1 from the temperature sensor 11. The temperature acquisition unit 102 outputs the temperature TV in the greenhouse 1 acquired from the temperature sensor 11 to the environment data generation unit 109 (step S120).
 飽差取得部104は、飽差算出装置15から、温室1内の飽差HDを取得する。飽差取得部104は、飽差算出装置15から取得した温室1内の飽差HDを、環境データ生成部109に対して出力する(ステップS130)。 The saturation acquisition unit 104 acquires the saturation HD in the greenhouse 1 from the saturation calculation device 15. The saturation acquisition unit 104 outputs the saturation HD in the greenhouse 1 acquired from the saturation calculation device 15 to the environmental data generation unit 109 (step S130).
 屋外二酸化炭素濃度取得部106は、屋外二酸化炭素濃度測定センサ14から、温室1外の二酸化炭素濃度OCDを取得する。屋外二酸化炭素濃度取得部106は、屋外二酸化炭素濃度測定センサ14から取得した温室1外の二酸化炭素濃度OCDを、環境データ生成部109と、交換速度算出部108とに対して出力する(ステップS140)。 The outdoor carbon dioxide concentration acquisition unit 106 acquires the carbon dioxide concentration OCD outside the greenhouse 1 from the outdoor carbon dioxide concentration measurement sensor 14. The outdoor carbon dioxide concentration acquisition unit 106 outputs the carbon dioxide concentration OCD outside the greenhouse 1 acquired from the outdoor carbon dioxide concentration measurement sensor 14 to the environmental data generation unit 109 and the exchange rate calculation unit 108 (step S140). ).
 屋内二酸化炭素濃度取得部105は、屋内二酸化炭素濃度測定センサ13から、温室1内の二酸化炭素濃度ICDを取得する。屋内二酸化炭素濃度取得部105は、屋内二酸化炭素濃度測定センサ13から取得した温室1内の二酸化炭素濃度ICDを、環境データ生成部109と、交換速度算出部108とに対して出力する(ステップS150)。 The indoor carbon dioxide concentration acquisition unit 105 acquires the carbon dioxide concentration ICD in the greenhouse 1 from the indoor carbon dioxide concentration measurement sensor 13. The indoor carbon dioxide concentration acquisition unit 105 outputs the carbon dioxide concentration ICD in the greenhouse 1 acquired from the indoor carbon dioxide concentration measurement sensor 13 to the environmental data generation unit 109 and the exchange rate calculation unit 108 (step S150). ).
 換気回数取得部107は、換気回数算出部16から、換気回数VCを取得する。換気回数取得部107は、換気回数算出部16から取得した換気回数VCを、環境データ生成部109と、交換速度算出部108と、施用速度推定部113とに対して出力する(ステップS160)。 The ventilation frequency acquisition unit 107 acquires the ventilation frequency VC from the ventilation frequency calculation unit 16. The ventilation frequency acquisition unit 107 outputs the ventilation frequency VC acquired from the ventilation frequency calculation unit 16 to the environment data generation unit 109, the replacement speed calculation unit 108, and the application speed estimation unit 113 (step S160).
 環境データ生成部109は、二酸化炭素施用制御装置17から、二酸化炭素施用速度CSを取得する(ステップS170)。 The environmental data generation unit 109 acquires the carbon dioxide application speed CS from the carbon dioxide application control device 17 (step S170).
 交換速度算出部108は、光強度取得部103から温室1内の光強度LSを取得する。交換速度算出部108は、屋内二酸化炭素濃度取得部105から温室1内の二酸化炭素濃度ICDを取得する。交換速度算出部108は、屋外二酸化炭素濃度取得部106から温室1外の二酸化炭素濃度OCDを取得する。交換速度算出部108は、換気回数取得部107から換気回数VCを取得する。交換速度算出部108は、上述した式(1)に基づいて、温室1内の植物NPの二酸化炭素の交換速度PSを算出する。交換速度算出部108は、算出した二酸化炭素の交換速度PSを、環境データ生成部109に対して出力する(ステップS180)。 The exchange speed calculation unit 108 acquires the light intensity LS in the greenhouse 1 from the light intensity acquisition unit 103. The exchange rate calculation unit 108 acquires the carbon dioxide concentration ICD in the greenhouse 1 from the indoor carbon dioxide concentration acquisition unit 105. The exchange rate calculation unit 108 acquires the carbon dioxide concentration OCD outside the greenhouse 1 from the outdoor carbon dioxide concentration acquisition unit 106. The replacement speed calculation unit 108 acquires the ventilation frequency VC from the ventilation frequency acquisition unit 107. The exchange rate calculation unit 108 calculates the carbon dioxide exchange rate PS of the plant NP in the greenhouse 1 based on the above-described equation (1). The exchange rate calculation unit 108 outputs the calculated carbon dioxide exchange rate PS to the environment data generation unit 109 (step S180).
 環境データ生成部109は、温度取得部102から温室1内の温度TVを取得する。環境データ生成部109は、光強度取得部103から温室1内の光強度LSを取得する。環境データ生成部109は、飽差取得部104から温室1内の飽差HDを取得する。環境データ生成部109は、屋内二酸化炭素濃度取得部105から温室1内の二酸化炭素濃度ICDを取得する。環境データ生成部109は、屋外二酸化炭素濃度取得部106から温室1外の二酸化炭素濃度OCDを取得する。環境データ生成部109は、換気回数取得部107から換気回数VCを取得する。環境データ生成部109は、交換速度算出部108から二酸化炭素の交換速度PSを取得する。環境データ生成部109は、温度取得部102から取得した温室1内の温度TVと、光強度取得部103から取得した温室1内の光強度LSと、飽差取得部104から取得した温室1内の飽差HDと、屋内二酸化炭素濃度取得部105から取得した温室1内の二酸化炭素濃度ICDと、屋外二酸化炭素濃度取得部106から取得した温室1外の二酸化炭素濃度OCDと、換気回数取得部107から取得した換気回数VCと、交換速度算出部108から取得した二酸化炭素の交換速度PSとを互いに対応付けた環境データEDを生成する。環境データ生成部109は、生成した環境データEDを記憶部110に記憶させる(ステップS190)。 The environment data generation unit 109 acquires the temperature TV in the greenhouse 1 from the temperature acquisition unit 102. The environment data generation unit 109 acquires the light intensity LS in the greenhouse 1 from the light intensity acquisition unit 103. The environmental data generation unit 109 acquires the saturation HD in the greenhouse 1 from the saturation acquisition unit 104. The environmental data generation unit 109 acquires the carbon dioxide concentration ICD in the greenhouse 1 from the indoor carbon dioxide concentration acquisition unit 105. The environmental data generation unit 109 acquires the carbon dioxide concentration OCD outside the greenhouse 1 from the outdoor carbon dioxide concentration acquisition unit 106. The environmental data generation unit 109 acquires the ventilation frequency VC from the ventilation frequency acquisition unit 107. The environmental data generation unit 109 acquires the carbon dioxide exchange rate PS from the exchange rate calculation unit 108. The environmental data generation unit 109 includes the temperature TV in the greenhouse 1 acquired from the temperature acquisition unit 102, the light intensity LS in the greenhouse 1 acquired from the light intensity acquisition unit 103, and the inside of the greenhouse 1 acquired from the saturation acquisition unit 104. , The carbon dioxide concentration ICD in the greenhouse 1 acquired from the indoor carbon dioxide concentration acquisition unit 105, the carbon dioxide concentration OCD outside the greenhouse 1 acquired from the outdoor carbon dioxide concentration acquisition unit 106, and the ventilation frequency acquisition unit Environmental data ED in which the ventilation frequency VC acquired from 107 and the carbon dioxide replacement speed PS acquired from the replacement speed calculation unit 108 are associated with each other is generated. The environment data generation unit 109 stores the generated environment data ED in the storage unit 110 (step S190).
 二酸化炭素施用支援装置100は、流れ図S1の処理を、繰り返し実行する。二酸化炭素施用支援装置100は、流れ図S1の処理を、時間間隔を空けて繰り返し実行する。ここで、流れ図S1の処理を実行する時間間隔とは、数十秒から数十分間隔である。より具体的には、二酸化炭素施用支援装置100は、流れ図S1の処理を時間間隔が10分以下の時間間隔で繰り返し実行する場合には、CP曲線の推定に用いる多くの環境データEDを蓄積することができる。この場合には、二酸化炭素施用支援装置100は、多くの環境データEDに基づく、より正確なCP曲線を推定可能である。
 二酸化炭素施用支援装置100は、流れ図S1の処理を数日間以上継続して行い、記憶部110に、環境データEDを蓄積させる。
 なお、ステップS110からステップS170までの処理の順番は入れ替えてもよい。
The carbon dioxide application support apparatus 100 repeatedly executes the process of the flowchart S1. The carbon dioxide application support apparatus 100 repeatedly executes the process of the flowchart S1 with a time interval. Here, the time interval for executing the processing of the flowchart S1 is an interval of several tens of seconds to several tens of minutes. More specifically, the carbon dioxide application support apparatus 100 accumulates a lot of environmental data ED used for estimating the CP curve when the process of the flowchart S1 is repeatedly executed at a time interval of 10 minutes or less. be able to. In this case, the carbon dioxide application support apparatus 100 can estimate a more accurate CP curve based on a lot of environmental data ED.
The carbon dioxide application support apparatus 100 continuously performs the process of the flowchart S1 for several days or more, and accumulates the environmental data ED in the storage unit 110.
Note that the processing order from step S110 to step S170 may be switched.
[二酸化炭素施用支援装置100の二酸化炭素施用速度推定動作の概要]
 次に、図4を参照して、二酸化炭素施用支援装置100の二酸化炭素施用速度推定動作の概要について説明する。
 図4は、二酸化炭素施用支援装置100の動作の一例を示す流れ図S2である。
[Outline of carbon dioxide application speed estimation operation of carbon dioxide application support apparatus 100]
Next, with reference to FIG. 4, the outline | summary of the carbon dioxide application speed estimation operation | movement of the carbon dioxide application assistance apparatus 100 is demonstrated.
FIG. 4 is a flowchart S2 illustrating an example of the operation of the carbon dioxide application support apparatus 100.
 環境データ生成部109は、環境データ取得部111に対して環境データEDを出力する。環境データ取得部111は、環境データ生成部109から取得する環境データEDと、類似する環境データを類似環境データSEDとして、記憶部110から取得する(ステップS210)。環境データ取得部111は、環境データ取得部111から取得した環境データEDと、記憶部110から取得した類似環境データSEDと、環境データEDの日付の直近の暗呼吸速度と、類似環境データSEDの日付の直近の暗呼吸速度とを、消費速度算出部112に対して出力する。 The environment data generation unit 109 outputs the environment data ED to the environment data acquisition unit 111. The environment data acquisition unit 111 acquires the environment data ED acquired from the environment data generation unit 109 and similar environment data as the similar environment data SED from the storage unit 110 (step S210). The environment data acquisition unit 111 includes the environment data ED acquired from the environment data acquisition unit 111, the similar environment data SED acquired from the storage unit 110, the dark breathing rate closest to the date of the environment data ED, and the similar environment data SED. The dark breathing rate closest to the date is output to the consumption rate calculating unit 112.
 消費速度算出部112は、環境データ取得部111から、環境データEDと、類似環境データSEDと、環境データEDの日付の直近の暗呼吸速度と、類似環境データSEDの日付の直近の暗呼吸速度とを取得する。消費速度算出部112は、環境データEDの日付の直近の暗呼吸速度と、類似環境データSEDの日付の直近の暗呼吸速度とに基づいて、類似環境データSEDの純光合成速度を補正する。消費速度算出部112は、補正された純光合成速度と、類似環境データSEDに含まれる温室1内の二酸化炭素濃度ICDとの関係を示す二酸化炭素を消費する速度UDを算出する(ステップS220)。
 消費速度算出部112は、算出した二酸化炭素を消費する速度UDを、施用速度推定部113に対して出力する。
The consumption rate calculation unit 112 receives the environment data ED, the similar environment data SED, the dark respiratory rate closest to the date of the environmental data ED, and the dark respiratory rate closest to the date of the similar environment data SED from the environmental data acquisition unit 111 And get. The consumption rate calculation unit 112 corrects the pure photosynthetic rate of the similar environment data SED based on the latest dark breathing rate on the date of the environment data ED and the dark breathing rate on the date of the similar environment data SED. The consumption rate calculation unit 112 calculates a rate UD at which carbon dioxide is consumed indicating the relationship between the corrected pure photosynthetic rate and the carbon dioxide concentration ICD in the greenhouse 1 included in the similar environment data SED (step S220).
The consumption speed calculation unit 112 outputs the calculated speed UD for consuming carbon dioxide to the application speed estimation unit 113.
 施用速度推定部113は、消費速度算出部112から二酸化炭素を消費する速度UDを取得する。施用速度推定部113は、換気回数算出部16から換気回数VCを取得する。施用速度推定部113は、温室情報装置18から空気容積ACを取得する。施用速度推定部113は、上述した式(1)から、現在の温室1内の植物NPについてのCP曲線を推定する(ステップS230)。施用速度推定部113は、CP曲線を、表示部114に対して出力する。 The application speed estimation unit 113 acquires the speed UD at which carbon dioxide is consumed from the consumption speed calculation unit 112. The application speed estimation unit 113 acquires the ventilation frequency VC from the ventilation frequency calculation unit 16. The application speed estimation unit 113 acquires the air volume AC from the greenhouse information device 18. The application rate estimation unit 113 estimates the CP curve for the plant NP in the current greenhouse 1 from the above-described equation (1) (step S230). Application speed estimation unit 113 outputs a CP curve to display unit 114.
 表示部114は、施用速度推定部113から、CP曲線を取得する。表示部114は、施用速度推定部113から取得したCP曲線を表示する(ステップS240)。 The display unit 114 acquires a CP curve from the application speed estimation unit 113. The display unit 114 displays the CP curve acquired from the application speed estimation unit 113 (step S240).
 また、施用速度推定部113は、温室1の管理者が予め二酸化炭素を施用する効果が見込めると判断する条件を設定している場合には、当該条件と算出したCP曲線とに基づいて、温室1内に施用する二酸化炭素の施用速度を算出する。施用速度推定部113は、算出した温室1内に施用する二酸化炭素の施用速度を、二酸化炭素施用制御装置17に対して出力する。二酸化炭素施用制御装置17は、施用速度推定部113から温室1内に施用する二酸化炭素の施用速度を取得する。二酸化炭素施用制御装置17は、施用速度推定部113から取得した量の二酸化炭素の施用速度の制御を行う。
 二酸化炭素施用支援装置100は、上述した流れ図S2の処理を、繰り返し行う。
In addition, when the manager of the greenhouse 1 sets a condition for determining that the effect of applying carbon dioxide can be expected in advance, the application rate estimation unit 113 sets the greenhouse rate based on the condition and the calculated CP curve. The application rate of carbon dioxide applied in 1 is calculated. The application rate estimation unit 113 outputs the calculated application rate of carbon dioxide applied in the greenhouse 1 to the carbon dioxide application control device 17. The carbon dioxide application control device 17 acquires the application speed of carbon dioxide applied to the greenhouse 1 from the application speed estimation unit 113. The carbon dioxide application control device 17 controls the application speed of the amount of carbon dioxide acquired from the application speed estimation unit 113.
The carbon dioxide application support apparatus 100 repeatedly performs the process of the flowchart S2 described above.
[二酸化炭素施用支援装置100の動作の具体例]
 次に、図5から図8を参照して、二酸化炭素施用支援装置100の動作の具体例の一例について説明する。
 図5は、記憶部110に記憶される環境データEDの一例を示す図である。
[Specific Example of Operation of Carbon Dioxide Application Support Device 100]
Next, an example of a specific example of the operation of the carbon dioxide application support apparatus 100 will be described with reference to FIGS.
FIG. 5 is a diagram illustrating an example of environment data ED stored in the storage unit 110.
[環境データEDの一例]
 記憶部110には、環境データEDが生成された日付と、環境データEDが生成された時刻と、温室1内の光強度LSと、温室1内の温度TVと、温室1内の飽差HDと、温室1内の二酸化炭素濃度ICDと、温室1外の二酸化炭素濃度OCDと、二酸化炭素施用制御装置17が施用する二酸化炭素の施用速度の情報と、二酸化炭素の施用速度と対応する純光合成速度を示す二酸化炭素を消費する速度UDと、換気回数VCとが、互いに対応付けられて記憶される。この一例では、記憶部110には、過去1か月分の5分毎に測定された環境データEDが記憶されている。
[Example of environmental data ED]
The storage unit 110 stores the date when the environmental data ED was generated, the time when the environmental data ED was generated, the light intensity LS in the greenhouse 1, the temperature TV in the greenhouse 1, and the saturation HD in the greenhouse 1. , Carbon dioxide concentration ICD in the greenhouse 1, carbon dioxide concentration OCD outside the greenhouse 1, information on the application rate of carbon dioxide applied by the carbon dioxide application controller 17, and pure photosynthesis corresponding to the application rate of carbon dioxide The speed UD that consumes carbon dioxide indicating the speed and the ventilation frequency VC are stored in association with each other. In this example, the storage unit 110 stores environmental data ED measured every 5 minutes for the past month.
 具体的には、記憶部110には、4月1日の暗呼吸速度を示す環境データEDと、4月1日の純光合成速度を示す環境データEDとが記憶されている。記憶部110には、4月1日と同様に、4月20日と、4月30日との暗呼吸速度を示す環境データEDと、4月1日の純光合成速度を示す環境データEDとが記憶されている。ここで、4月20日の環境データEDとは、植物NPが成長途中の環境データEDである。4月30日の環境データEDとは、直近の環境データEDである。
 より具体的には、記憶部110には、日付が”4/1”と、時刻が”0:00”と、温室1内の光強度LSが”0”(μmol m-2 s-1)と、温室1内の温度TVが”15”(℃)と、温室1内の飽差HDが”2.08”(kPa)と、温室1内の二酸化炭素濃度ICDが”450”(mol mol-1)と、温室1外の二酸化炭素濃度OCDが”440”(mol mol-1)と、二酸化炭素施用速度が”0”(L min-1)と、純光合成速度が”-0.4”(mol s-1)と、換気回数が”1”(h-1)とが互いに対応付けられて記憶されている。
 記憶部110には、日付が”4/1”と、時刻が”10:00”と、温室1内の光強度LSが”930”(μmol m-2 s-1)と、温室1内の温度TVが”29.0”(℃)と、温室1内の飽差HDが”2.58”(kPa)と、温室1内の二酸化炭素濃度ICDが”650”(mol mol-1)と、温室1外の二酸化炭素濃度OCDが”444”(mol mol-1)と、二酸化炭素施用速度が”30.1”(L min-1)と、純光合成速度が”1.2”(mol s-1)と、換気回数が”1”(h-1)とが互いに対応付けられて記憶されている。
 同様に、記憶部110には、5分後と、10分後とのデータが記憶されている。
Specifically, the storage unit 110 stores environment data ED indicating the April 1 dark breathing rate and environment data ED indicating the April 1 pure light synthesis rate. Similarly to April 1, the storage unit 110 includes environmental data ED indicating the dark respiration rate of April 20 and April 30, and environmental data ED indicating the pure photosynthesis rate of April 1. Is remembered. Here, the environmental data ED of April 20 is environmental data ED during the growth of the plant NP. The environmental data ED on April 30 is the latest environmental data ED.
More specifically, in the storage unit 110, the date is “4/1”, the time is “0:00”, and the light intensity LS in the greenhouse 1 is “0” (μmol m −2 s −1 ). The temperature TV in the greenhouse 1 is “15” (° C.), the saturation HD in the greenhouse 1 is “2.08” (kPa), and the carbon dioxide concentration ICD in the greenhouse 1 is “450” (mol mol mol). −1 ), the carbon dioxide concentration OCD outside the greenhouse 1 is “440” (mol mol −1 ), the carbon dioxide application rate is “0” (L min −1 ), and the net photosynthesis rate is “−0.4”. “(Mol s −1 )” and “1” (h −1 ) are stored in association with each other.
In the storage unit 110, the date is “4/1”, the time is “10:00”, the light intensity LS in the greenhouse 1 is “930” (μmol m −2 s −1 ), The temperature TV is “29.0” (° C.), the saturation HD in the greenhouse 1 is “2.58” (kPa), and the carbon dioxide concentration ICD in the greenhouse 1 is “650” (mol mol −1 ). The carbon dioxide concentration OCD outside the greenhouse 1 is “444” (mol mol −1 ), the carbon dioxide application rate is “30.1” (L min −1 ), and the pure photosynthesis rate is “1.2” (mol s −1 ) and the ventilation frequency “1” (h −1 ) are stored in association with each other.
Similarly, the storage unit 110 stores data after 5 minutes and after 10 minutes.
 記憶部110には、日付が”4/20”と、時刻が”0:00”と、温室1内の光強度LSが”0”(μmol m-2 s-1)と、温室1内の温度TVが”17”(℃)と、温室1内の飽差HDが”1.88”(kPa)と、温室1内の二酸化炭素濃度ICDが”470”(mol mol-1)と、温室1外の二酸化炭素濃度OCDが”440”(mol mol-1)と、二酸化炭素施用速度が”0”(L min-1)と、純光合成速度が”-0.75”(mol s-1)と、換気回数が”1”(h-1)とが互いに対応付けられて記憶されている。
 記憶部110には、日付が”4/20”と、時刻が”13:00”と、温室1内の光強度LSが”924”(μmol m-2 s-1)と、温室1内の温度TVが”32.1”(℃)と、温室1内の飽差HDが”2.02”(kPa)と、温室1内の二酸化炭素濃度ICDが”639”(mol mol-1)と、温室1外の二酸化炭素濃度OCDが”440”(mol mol-1)と、二酸化炭素施用速度が”0”(L min-1)と、純光合成速度が”2.1”(mol s-1)と、換気回数が”1”(h-1)とが互いに対応付けられて記憶されている。
 同様に、記憶部110には、5分後と、10分後とのデータが記憶されている。
In the storage unit 110, the date is “4/20”, the time is “0:00”, the light intensity LS in the greenhouse 1 is “0” (μmol m −2 s −1 ), The temperature TV is “17” (° C.), the saturation HD in the greenhouse 1 is “1.88” (kPa), the carbon dioxide concentration ICD in the greenhouse 1 is “470” (mol mol −1 ), the greenhouse The carbon dioxide concentration OCD outside 1 is “440” (mol mol −1 ), the carbon dioxide application rate is “0” (L min −1 ), and the pure photosynthesis rate is “−0.75” (mol s −1). ) And the ventilation frequency “1” (h −1 ) are stored in association with each other.
In the storage unit 110, the date is “4/20”, the time is “13:00”, the light intensity LS in the greenhouse 1 is “924” (μmol m −2 s −1 ), The temperature TV is “32.1” (° C.), the saturation HD in the greenhouse 1 is “2.02” (kPa), and the carbon dioxide concentration ICD in the greenhouse 1 is “639” (mol mol −1 ). The carbon dioxide concentration OCD outside the greenhouse 1 is “440” (mol mol −1 ), the carbon dioxide application rate is “0” (L min −1 ), and the pure photosynthesis rate is “2.1” (mol s − 1 ) and the ventilation frequency “1” (h −1 ) are stored in association with each other.
Similarly, the storage unit 110 stores data after 5 minutes and after 10 minutes.
 記憶部110には、日付が”4/30”と、時刻が”0:00”と、温室1内の光強度LSが”0”(μmol m-2 s-1)と、温室1内の温度TVが”19”(℃)と、温室1内の飽差HDが”2.30”(kPa)と、温室1内の二酸化炭素濃度ICDが”432”(mol mol-1)と、温室1外の二酸化炭素濃度OCDが”444”(mol mol-1)と、二酸化炭素施用速度が”0”(L min-1)と、純光合成速度が”-1.0”(mol s-1)と、換気回数が”1”(h-1)とが互いに対応付けられて記憶されている。
 記憶部110には、日付が”4/30”と、時刻が”10:00”と、温室1内の光強度LSが”920”(μmol m-2 s-1)と、温室1内の温度TVが”32.1”(℃)と、温室1内の飽差HDが”2.00”(kPa)と、温室1内の二酸化炭素濃度ICDが”441”(mol mol-1)と、温室1外の二酸化炭素濃度OCDが”445”(mol mol-1)と、二酸化炭素施用速度が”0”(L min-1)と、純光合成速度が”3.0”(mol s-1)と、換気回数が”1”(h-1)とが互いに対応付けられて記憶されている。
In the storage unit 110, the date is “4/30”, the time is “0:00”, the light intensity LS in the greenhouse 1 is “0” (μmol m −2 s −1 ), The temperature TV is “19” (° C.), the saturation HD in the greenhouse 1 is “2.30” (kPa), the carbon dioxide concentration ICD in the greenhouse 1 is “432” (mol mol −1 ), and the greenhouse The carbon dioxide concentration OCD outside 1 is “444” (mol mol −1 ), the carbon dioxide application rate is “0” (L min −1 ), and the pure photosynthesis rate is “−1.0” (mol s −1). ) And the ventilation frequency “1” (h −1 ) are stored in association with each other.
In the storage unit 110, the date is “4/30”, the time is “10:00”, the light intensity LS in the greenhouse 1 is “920” (μmol m −2 s −1 ), The temperature TV is “32.1” (° C.), the saturation HD in the greenhouse 1 is “2.00” (kPa), and the carbon dioxide concentration ICD in the greenhouse 1 is “441” (mol mol −1 ). The carbon dioxide concentration OCD outside the greenhouse 1 is “445” (mol mol −1 ), the carbon dioxide application rate is “0” (L min −1 ), and the pure photosynthesis rate is “3.0” (mol s − 1 ) and the ventilation frequency “1” (h −1 ) are stored in association with each other.
 環境データ取得部111が、日付が”4/30”と、時刻が”0:00”と、温室1内の光強度LSが”920”(μmol m-2 s-1)と、温室1内の温度TVが”32.1”(℃)と、温室1内の飽差HDが”2.00”(kPa)と、温室1内の二酸化炭素濃度ICDが”441”(mol mol-1)と、温室1外の二酸化炭素濃度OCDが”445”(mol mol-1)と、二酸化炭素施用速度が”0”(L min-1)と、純光合成速度が”3.0”(mol s-1)と、換気回数が”1”(h-1)とが互いに対応付けられた環境データEDを取得し、記憶部110から類似環境データSEDを取得する許容範囲を、”±1”(%)にする場合について説明する。この場合には、環境データ取得部111は、記憶部110から、温室1内の温度TVが”910.8”から”929.2”までの範囲、かつ、温室1内の光強度LSが”31.779”から”32.421”までの範囲、かつ、温室1内の飽差HDが”19.8”から”20.2”までの間のデータを持つ環境データEDを、類似環境データSEDとして取得する。 The environmental data acquisition unit 111 indicates that the date is “4/30”, the time is “0:00”, the light intensity LS in the greenhouse 1 is “920” (μmol m −2 s −1 ), and the inside of the greenhouse 1 Temperature TV is "32.1" (° C), the saturation HD in the greenhouse 1 is "2.00" (kPa), and the carbon dioxide concentration ICD in the greenhouse 1 is "441" (mol mol -1 ) The carbon dioxide concentration OCD outside the greenhouse 1 is “445” (mol mol −1 ), the carbon dioxide application rate is “0” (L min −1 ), and the pure photosynthesis rate is “3.0” (mol s -1 ) and the ventilation frequency “1” (h −1 ) are acquired in association with each other, the allowable range for acquiring the similar environment data SED from the storage unit 110 is set to “± 1” ( %) Will be described. In this case, the environmental data acquisition unit 111 determines that the temperature TV in the greenhouse 1 ranges from “910.8” to “929.2” and the light intensity LS in the greenhouse 1 is “from the storage unit 110. Environment data ED having data in the range from 31.779 ”to“ 32.421 ”and the saturation HD in the greenhouse 1 between“ 19.8 ”and“ 20.2 ”is similar environment data. Obtain as SED.
 言い換えると、環境データ取得部111が、日付が”4/30”と、時刻が”10:00”と、温室1内の光強度LSが”920”(μmol m-2 s-1)と、温室1内の温度TVが”32.1”(℃)と、温室1内の飽差HDが”2.00”(kPa)と、温室1内の二酸化炭素濃度ICDが”441”(mol mol-1)と、温室1外の二酸化炭素濃度OCDが”455”(mol mol-1)と、二酸化炭素施用速度が”0”(L min-1)と、純光合成速度が”3.0”(mol s-1)と、換気回数が”1”(h-1)とが互いに対応付けられた環境データEDを取得し、記憶部110から類似環境データSEDを取得する許容範囲を、”±1”(%)にする場合について説明する。この場合には、環境データ取得部111は、記憶部110から、温室1内の温室1内の光強度LSが”910.8”(μmol m-2 s-1)から”929.2”(μmol m-2 s-1)までの範囲、かつ、温室1内の温度TVが”31.779”(℃)から”32.421”(℃)までの範囲、かつ、温室1内の飽差HDが”19.8”(kPa)から”20.2”(kPa)までの間のデータを持つ環境データEDを、類似環境データSEDとして取得する。 In other words, the environment data acquisition unit 111 indicates that the date is “4/30”, the time is “10:00”, the light intensity LS in the greenhouse 1 is “920” (μmol m −2 s −1 ), The temperature TV in the greenhouse 1 is “32.1” (° C.), the saturation HD in the greenhouse 1 is “2.00” (kPa), and the carbon dioxide concentration ICD in the greenhouse 1 is “441” (mol mol) −1 ), the carbon dioxide concentration OCD outside the greenhouse 1 is “455” (mol mol −1 ), the carbon dioxide application rate is “0” (L min −1 ), and the net photosynthesis rate is “3.0”. The environmental data ED in which (mol s −1 ) and the ventilation frequency are “1” (h −1 ) are associated with each other, and the allowable range for acquiring the similar environmental data SED from the storage unit 110 is set to “± The case of 1 ″ (%) will be described. In this case, the environmental data acquisition unit 111 reads from the storage unit 110 that the light intensity LS in the greenhouse 1 in the greenhouse 1 is “910.8” (μmol m −2 s −1 ) to “929.2” ( μmol m −2 s −1 ), the temperature TV in the greenhouse 1 is in the range from “31.779” (° C.) to “32.421” (° C.), and the temperature difference in the greenhouse 1 The environment data ED having data in which the HD is between “19.8” (kPa) and “20.2” (kPa) is acquired as the similar environment data SED.
 図5に示す一例では、”±1”(%)の範囲内に収まる過去の環境データEDは、日付が”4/20”、時刻が”13:00”の環境データEDである。環境データ取得部111は、日付が”4/20”、時刻が”13:00”の環境データEDを、類似環境データSEDとして取得する。
 また、”±1”(%)の範囲内に収まらない過去の環境データEDの一例は、日付が”4/20”、時刻が”13:05”の環境データEDである。日付が”4/20”、時刻が”13:05”の環境データEDは、温室1内の光強度LSと、温室1内の飽差HDとが範囲内に収まっていない。このため、環境データ取得部111は、日付が”4/20”、時刻が”13:05”の環境データEDを選択しない。
In the example shown in FIG. 5, the past environment data ED that falls within the range of “± 1” (%) is the environment data ED with the date “4/20” and the time “13:00”. The environment data acquisition unit 111 acquires the environment data ED with the date “4/20” and the time “13:00” as the similar environment data SED.
An example of past environmental data ED that does not fall within the range of “± 1” (%) is environmental data ED with the date “4/20” and the time “13:05”. In the environmental data ED with the date “4/20” and the time “13:05”, the light intensity LS in the greenhouse 1 and the saturation HD in the greenhouse 1 are not within the range. For this reason, the environment data acquisition unit 111 does not select the environment data ED with the date “4/20” and the time “13:05”.
[温室1内の二酸化炭素濃度ICDと、純光合成速度との関係の算出]
 次に、図6及び図7を参照して、消費速度算出部112が算出する二酸化炭素を消費する速度UDについて説明する。
 図6は、温室1内の二酸化炭素濃度ICDと、純光合成速度との関係の一例を示す図である。
[Calculation of Carbon Dioxide Concentration ICD in Greenhouse 1 and Pure Photosynthesis Rate]
Next, with reference to FIG.6 and FIG.7, the speed UD which consumes the carbon dioxide which the consumption speed calculation part 112 calculates is demonstrated.
FIG. 6 is a diagram illustrating an example of the relationship between the carbon dioxide concentration ICD in the greenhouse 1 and the pure photosynthetic rate.
 消費速度算出部112は、環境データEDと、類似環境データSEDとを環境データ取得部111から取得する。消費速度算出部112は、環境データ取得部111から取得した類似環境データSEDに含まれる温室1内の二酸化炭素濃度ICDと、純光合成速度との関係に基づいて、環境データEDが示す環境条件下での植物NPの二酸化炭素を消費する速度UDを算出する。
 具体的には、消費速度算出部112は、横軸に類似環境データSEDに含まれる温室1内の二酸化炭素濃度ICDと、縦軸に温室1内の植物NPの純光合成速度との関係を示すグラフを生成する。より具体的には、消費速度算出部112は、直近の暗呼吸速度と、類似環境データSEDが記録された日の直近の暗呼吸速度との相対値を算出する。消費速度算出部112は算出した相対値に基づいて、類似環境データSEDに含まれる純光合成速度を補正する。消費速度算出部112は、温室1内の二酸化炭素濃度ICDと、縦軸に温室1内の植物NPの純光合成速度との関係を示すグラフに、補正した後の純光合成速度をプロットする。
The consumption speed calculation unit 112 acquires the environment data ED and the similar environment data SED from the environment data acquisition unit 111. The consumption rate calculation unit 112 is based on the environmental conditions indicated by the environment data ED based on the relationship between the carbon dioxide concentration ICD in the greenhouse 1 included in the similar environment data SED acquired from the environment data acquisition unit 111 and the pure photosynthetic rate. The rate UD at which the carbon dioxide of the plant NP is consumed is calculated.
Specifically, the consumption rate calculation unit 112 shows the relationship between the carbon dioxide concentration ICD in the greenhouse 1 included in the similar environment data SED on the horizontal axis and the net photosynthetic rate of the plant NP in the greenhouse 1 on the vertical axis. Generate a graph. More specifically, the consumption rate calculation unit 112 calculates a relative value between the latest dark breathing rate and the latest dark breathing rate on the day when the similar environment data SED is recorded. The consumption speed calculation unit 112 corrects the pure light synthesis speed included in the similar environment data SED based on the calculated relative value. The consumption rate calculation unit 112 plots the corrected net photosynthetic rate on a graph showing the relationship between the carbon dioxide concentration ICD in the greenhouse 1 and the net photosynthesis rate of the plant NP in the greenhouse 1 on the vertical axis.
 消費速度算出部112は、環境データ取得部111が取得した全ての類似環境データSEDに含まれる純光合成速度に対して補正を終えるまで、処理を繰り返す。
 消費速度算出部112は、補正後の純光合成速度の各値を、回帰分析する。消費速度算出部112は、補正後の純光合成速度を回帰分析した結果、図6に示す回帰線L1を算出する。
The consumption speed calculation unit 112 repeats the process until the correction of the pure light synthesis speed included in all the similar environment data SED acquired by the environment data acquisition unit 111 is completed.
The consumption speed calculation unit 112 performs regression analysis on each value of the corrected pure light synthesis speed. The consumption speed calculation unit 112 calculates a regression line L1 shown in FIG. 6 as a result of regression analysis of the corrected pure light synthesis speed.
 なお、上述した説明では、消費速度算出部112は、温室1内の二酸化炭素濃度ICDと、縦軸に温室1内の植物NPの純光合成速度との関係を示すグラフに基づいて二酸化炭素を消費する速度UDを算出する場合について説明したが、説明のための一例であり、消費速度算出部112はグラフにプロットする必要はない。消費速度算出部112は、補正後の純光合成速度と、二酸化炭素濃度とに基づいて回帰分析を行えばよい。 In the above description, the consumption rate calculation unit 112 consumes carbon dioxide based on the graph indicating the relationship between the carbon dioxide concentration ICD in the greenhouse 1 and the net photosynthesis rate of the plant NP in the greenhouse 1 on the vertical axis. Although the case where the speed UD to be calculated is described is an example for explanation, the consumption speed calculation unit 112 does not need to plot the graph. The consumption rate calculation unit 112 may perform regression analysis based on the corrected pure photosynthetic rate and the carbon dioxide concentration.
 次に、図7を参照して、消費速度算出部112が、類似環境データSEDの純光合成速度に対して補正を行う場合と行わない場合と違いについて説明する。
 図7は、類似環境データSEDの純光合成速度に補正を行う場合と、行わない場合との一例を示す図である。
 図7(a)は、暗呼吸速度から算出される相対値に基づく補正を行い算出された純光合成速度の一例である。
 図7(b)は、補正を行なわずに、類似環境データSEDに含まれる純呼吸速度をそのままプロットした場合の一例である。
 図7(a)と、図7(b)とを比較すると、補正を行った図7(a)は、実測した純光合成速度と近似した純光合成速度が得られることがわかる。
Next, with reference to FIG. 7, the difference between the case where the consumption speed calculation unit 112 corrects the pure light synthesis speed of the similar environment data SED and the case where the correction is not performed will be described.
FIG. 7 is a diagram illustrating an example of the case where correction is made to the pure light combining speed of the similar environment data SED and the case where correction is not performed.
FIG. 7A is an example of the pure light synthesis rate calculated by performing correction based on the relative value calculated from the dark respiration rate.
FIG. 7B is an example of a case where the pure respiration rate included in the similar environment data SED is plotted as it is without correction.
Comparing FIG. 7 (a) with FIG. 7 (b), it can be seen that FIG. 7 (a) after correction can obtain a pure light synthesis speed approximate to the measured pure light synthesis speed.
[CP曲線の推定]
 次に、施用速度推定部113が推定するCP曲線について説明する。
 図8は、施用速度推定部113が推定したCP曲線の一例を示す図である。
 図8には、二酸化炭素施用支援装置100が、温室1内の環境情報を取得して18日目のある時刻での、施用速度推定部113が推定したCP曲線の一例を示す図である。
 図8は、温室1内の光強度LSが”200”(μmol m-2 s-1)及び記憶部110から取得する類似環境データSEDの許容範囲は”±50”(μmol m-2 s-1)と、温室1内の温度TVが”25”(℃)及び記憶部110から取得する類似環境データSEDの許容範囲は”±5”(℃)と、温室1内の飽差HDが”1.5”(kPa)及び記憶部110から取得する類似環境データSEDの許容範囲は”±1.0”(kPa)との環境条件に合う類似環境データSEDから算出したCP曲線である。
[Estimation of CP curve]
Next, the CP curve estimated by the application speed estimation unit 113 will be described.
FIG. 8 is a diagram illustrating an example of a CP curve estimated by the application speed estimation unit 113.
FIG. 8 is a diagram illustrating an example of a CP curve estimated by the application rate estimation unit 113 at a certain time on the 18th day after the carbon dioxide application support apparatus 100 acquires the environmental information in the greenhouse 1.
FIG. 8 shows that the light intensity LS in the greenhouse 1 is “200” (μmol m −2 s −1 ), and the allowable range of the similar environment data SED acquired from the storage unit 110 is “± 50” (μmol m −2 s − 1 ), the temperature TV in the greenhouse 1 is “25” (° C.), and the allowable range of the similar environmental data SED acquired from the storage unit 110 is “± 5” (° C.), and the saturation HD in the greenhouse 1 is “ The allowable range of the similar environment data SED acquired from 1.5 ”(kPa) and the storage unit 110 is a CP curve calculated from the similar environment data SED that meets the environmental condition of“ ± 1.0 ”(kPa).
 図9は、施用速度推定部113が推定したCP曲線の一例を示す図である。
 図9には、二酸化炭素施用支援装置100が、温室1内の環境情報を取得して18日目のある時刻での、施用速度推定部113が推定したCP曲線の一例を示す図である。
 図9は、温室1内の光強度LSが”300”(μmol m-2 s-1)及び記憶部110から取得する類似環境データSEDの許容範囲は”±50”(μmol m-2 s-1)と、温室1内の温度TVが”30”(℃)及び記憶部110から取得する類似環境データSEDの許容範囲は”±5”(℃)と、温室1内の飽差HDが”2.0”(kPa)及び記憶部110から取得する類似環境データSEDの許容範囲は”±1.0”(kPa)との環境条件に合う類似環境データSEDから推定したCP曲線である。
FIG. 9 is a diagram illustrating an example of a CP curve estimated by the application speed estimation unit 113.
FIG. 9 is a diagram illustrating an example of a CP curve estimated by the application rate estimation unit 113 at a certain time on the 18th day after the carbon dioxide application support apparatus 100 acquires environmental information in the greenhouse 1.
FIG. 9 shows that the light intensity LS in the greenhouse 1 is “300” (μmol m −2 s −1 ), and the allowable range of the similar environment data SED acquired from the storage unit 110 is “± 50” (μmol m −2 s − 1 ), the temperature TV in the greenhouse 1 is “30” (° C.), and the allowable range of the similar environmental data SED acquired from the storage unit 110 is “± 5” (° C.), and the saturation HD in the greenhouse 1 is “ The allowable range of the similar environment data SED acquired from 2.0 ”(kPa) and the storage unit 110 is a CP curve estimated from the similar environment data SED that meets the environmental condition of“ ± 1.0 ”(kPa).
 図8に示す回帰線L2と図9に示す回帰線L3とを比較すると、図9に示す環境の方が、二酸化炭素施用による植物NPの純光合成速度増加の効果が高いことがわかる。温室1の管理者は、回帰線の形状に基づいて、温室1内に二酸化炭素の施用速度を決定する条件を入力することになる。 Comparing the regression line L2 shown in FIG. 8 and the regression line L3 shown in FIG. 9, it can be seen that the environment shown in FIG. 9 is more effective in increasing the net photosynthetic rate of the plant NP by applying carbon dioxide. The manager of the greenhouse 1 inputs conditions for determining the application rate of carbon dioxide in the greenhouse 1 based on the shape of the regression line.
[環境データEDと、CP曲線の推定精度との関係]
 ここまでは、二酸化炭素施用支援装置100が、CP曲線を算出する動作の一例について説明した。
 次に、図10から図11を参照して、記憶部110に記憶された環境データEDの量と、二酸化炭素施用支援装置100が推定する純光合成速度の精度との関係について説明する。
 図10は、記憶部110に記憶された環境データEDの量と、消費速度算出部112が算出する純光合成速度との関係の一例を示す図である。
 図10(a)には、記憶部110に、7日分の環境データEDが記憶された場合に、消費速度算出部112が算出する純光合成速度の一例を示す。
 図10(b)には、記憶部110に、12日分の環境データEDが記憶された場合に、消費速度算出部112が算出する純光合成速度の一例を示す。
 図10(c)には、記憶部110に、17日分の環境データEDが記憶された場合に、消費速度算出部112が算出する純光合成速度の一例を示す。
 消費速度算出部112は、記憶部110に蓄積された環境データEDが多いほど、正確な純光合成速度を算出することができる。
[Relationship between environmental data ED and CP curve estimation accuracy]
Up to this point, an example of the operation in which the carbon dioxide application support apparatus 100 calculates the CP curve has been described.
Next, the relationship between the amount of environmental data ED stored in the storage unit 110 and the accuracy of the pure photosynthetic rate estimated by the carbon dioxide application support apparatus 100 will be described with reference to FIGS.
FIG. 10 is a diagram illustrating an example of the relationship between the amount of environmental data ED stored in the storage unit 110 and the pure light synthesis speed calculated by the consumption speed calculation unit 112.
FIG. 10A shows an example of the pure light synthesis rate calculated by the consumption rate calculation unit 112 when seven days of environmental data ED is stored in the storage unit 110.
FIG. 10B shows an example of the pure light synthesis rate calculated by the consumption rate calculation unit 112 when the storage unit 110 stores 12 days of environmental data ED.
FIG. 10C shows an example of the pure light synthesis rate calculated by the consumption rate calculation unit 112 when the storage unit 110 stores 17 days of environmental data ED.
The consumption rate calculation unit 112 can calculate an accurate pure light synthesis rate as the environmental data ED accumulated in the storage unit 110 increases.
 図11は、環境データ取得部111が記憶部110から取得する類似環境データSEDの許容範囲と、消費速度算出部112が算出する純光合成速度との関係の一例を示す図である。
 図11(a)には、記憶部110から、温室1内の光強度LSの許容範囲を”±10”に設定して、類似環境データSEDを取得した結果に基づいて、消費速度算出部112が算出する純光合成速度の一例を示す。
 図11(b)には、記憶部110から、温室1内の光強度LSの許容範囲を”±50”に設定して、類似環境データSEDを取得した結果に基づいて、消費速度算出部112が算出する純光合成速度の一例を示す。
 図11(c)には、記憶部110から、温室1内の光強度LSの許容範囲を”±300”に設定して、類似環境データSEDを取得した結果に基づいて、消費速度算出部112が算出する純光合成速度の一例を示す。
 消費速度算出部112は、許容範囲が狭いほど正確な純光合成速度を算出することができる。この場合には、記憶部110には、十分な環境データEDが蓄積されているとよい。環境データ取得部111が取得する類似環境データSEDの許容範囲を狭める場合には、記憶部110に十分な環境データEDが蓄積されていないと、環境データ取得部111が取得する類似環境データSEDの数が少なくなる。消費速度算出部112は、類似環境データSEDが少ないと、精度よく純光合成速度を算出できない場合がある。
FIG. 11 is a diagram illustrating an example of a relationship between the allowable range of the similar environment data SED acquired by the environment data acquisition unit 111 from the storage unit 110 and the pure light synthesis speed calculated by the consumption speed calculation unit 112.
In FIG. 11A, the consumption rate calculation unit 112 is set based on the result of acquiring the similar environment data SED from the storage unit 110 by setting the allowable range of the light intensity LS in the greenhouse 1 to “± 10”. Shows an example of the pure light synthesis rate calculated by
In FIG. 11B, the consumption rate calculation unit 112 is set based on the result of acquiring the similar environment data SED from the storage unit 110 by setting the allowable range of the light intensity LS in the greenhouse 1 to “± 50”. Shows an example of the pure light synthesis rate calculated by
In FIG. 11C, the consumption rate calculation unit 112 is set based on the result of acquiring the similar environment data SED from the storage unit 110 by setting the allowable range of the light intensity LS in the greenhouse 1 to “± 300”. Shows an example of the pure light synthesis rate calculated by
The consumption speed calculation unit 112 can calculate a more accurate pure light synthesis speed as the allowable range is narrower. In this case, sufficient environmental data ED is preferably stored in the storage unit 110. When the allowable range of the similar environmental data SED acquired by the environmental data acquisition unit 111 is narrowed, if the sufficient environmental data ED is not accumulated in the storage unit 110, the similar environmental data SED acquired by the environmental data acquisition unit 111 is not stored. The number decreases. If the similar environment data SED is small, the consumption speed calculation unit 112 may not be able to accurately calculate the pure light synthesis speed.
 以上、説明したように、二酸化炭素施用支援装置100は、環境条件取得部101と、交換速度算出部108と、環境データ生成部109と、環境データ取得部111と、消費速度算出部112と、施用速度推定部113とを備える。
 環境条件取得部101は、温室1に備えられる測定部10から、温室1内外の環境条件を取得する。交換速度算出部108は、環境条件取得部101が取得する環境条件と、温室1の空気容積ACとに基づいて、温室1内の植物NPの二酸化炭素の交換速度PSを算出する。二酸化炭素の交換速度PSとは、植物NPの純光合成速度と、暗呼吸速度とである。交換速度算出部108は、温室1内の光強度LSに基づいて、温室1内の植物NPが行う暗呼吸速度と、純光合成速度とを算出する。
As described above, the carbon dioxide application support apparatus 100 includes the environmental condition acquisition unit 101, the exchange rate calculation unit 108, the environmental data generation unit 109, the environmental data acquisition unit 111, the consumption rate calculation unit 112, And an application speed estimation unit 113.
The environmental condition acquisition unit 101 acquires environmental conditions inside and outside the greenhouse 1 from the measurement unit 10 provided in the greenhouse 1. The exchange rate calculation unit 108 calculates the carbon dioxide exchange rate PS of the plant NP in the greenhouse 1 based on the environmental conditions acquired by the environmental condition acquisition unit 101 and the air volume AC of the greenhouse 1. The carbon dioxide exchange rate PS is the net photosynthesis rate and dark respiration rate of the plant NP. The exchange rate calculation unit 108 calculates a dark respiration rate and a pure photosynthetic rate performed by the plant NP in the greenhouse 1 based on the light intensity LS in the greenhouse 1.
 環境データ生成部109は、環境条件取得部101が取得する環境条件と、交換速度算出部108が算出する二酸化炭素の交換速度PSとを関連付けて環境データEDとして記憶部110に記憶させる。環境データ取得部111は、環境データ生成部109が生成する環境データEDに、類似する環境データEDを、記憶部110から類似環境データSEDとして取得する。消費速度算出部112は、環境データ取得部111が取得した環境データEDと、類似環境データSEDとに基づいて、環境データEDを取得した時点の温室1内の植物NPが二酸化炭素を消費する速度UDを算出する。ここで、消費速度算出部112は、二酸化炭素を消費する速度UDを、植物NPの直近の暗呼吸速度と、植物NPの過去の暗呼吸速度との相対値に基づく補正を行うことにより算出する。 The environmental data generation unit 109 associates the environmental condition acquired by the environmental condition acquisition unit 101 with the carbon dioxide exchange rate PS calculated by the exchange rate calculation unit 108 and stores it in the storage unit 110 as environmental data ED. The environment data acquisition unit 111 acquires environment data ED similar to the environment data ED generated by the environment data generation unit 109 from the storage unit 110 as similar environment data SED. The consumption rate calculation unit 112 is a rate at which the plant NP in the greenhouse 1 at the time of acquiring the environment data ED consumes carbon dioxide based on the environment data ED acquired by the environment data acquisition unit 111 and the similar environment data SED. UD is calculated. Here, the consumption rate calculation unit 112 calculates the rate UD at which carbon dioxide is consumed by performing correction based on a relative value between the latest dark respiration rate of the plant NP and the past dark respiration rate of the plant NP. .
 施用速度推定部113は、消費速度算出部112が算出する二酸化炭素を消費する速度UDに基づいて、CP曲線を推定する。
 つまり、施用速度推定部113は、温室1内外の環境条件に応じた二酸化炭素施用速度に対する純光合成速度の曲線を算出する。また、施用速度推定部113は、算出したCP曲線をグラフにして表示部114に表示させる。これにより、温室1の管理者は、CP曲線が示すグラフの形状から温室1内に二酸化炭素を施用する速度を決定するための条件を入力することになる。例えば、温室1が備える窓20が、温室1内の環境を調整する為に開放されたとしても、二酸化炭素施用支援装置100は、植物の生育環境の変化による二酸化炭素の消費効率の変化に基づいて、消費効率に応じた量の二酸化炭素を温室内に施用する二酸化炭素の施用速度を、管理者が入力した条件に従い自動的に逐次推定できる。
 なお、ここまでは、施用速度推定部113は推定した二酸化炭素の施用速度ASを、CP曲線によって表示する場合について説明した。施用速度推定部113が、推定した二酸化炭素の施用速度ASは、曲線に限られない。施用速度推定部113は、推定したCP曲線の傾きの程度又はCP曲線の逐次変化などに基づいて、言葉、数値、又は図表などによって表示してもよい。
The application speed estimation unit 113 estimates the CP curve based on the speed UD that consumes the carbon dioxide calculated by the consumption speed calculation unit 112.
That is, the application rate estimation unit 113 calculates a curve of the pure photosynthetic rate with respect to the carbon dioxide application rate according to the environmental conditions inside and outside the greenhouse 1. The application speed estimation unit 113 displays the calculated CP curve as a graph on the display unit 114. Thereby, the manager of the greenhouse 1 inputs conditions for determining the rate of applying carbon dioxide into the greenhouse 1 from the shape of the graph indicated by the CP curve. For example, even if the window 20 provided in the greenhouse 1 is opened to adjust the environment in the greenhouse 1, the carbon dioxide application support apparatus 100 is based on the change in the consumption efficiency of carbon dioxide due to the change in the plant growth environment. Thus, the application rate of carbon dioxide for applying the amount of carbon dioxide corresponding to the consumption efficiency into the greenhouse can be automatically and sequentially estimated according to the conditions input by the administrator.
Heretofore, the application rate estimation unit 113 has been described with respect to the case where the estimated application rate AS of carbon dioxide is displayed using a CP curve. The application rate AS of carbon dioxide estimated by the application rate estimation unit 113 is not limited to a curve. The application speed estimation unit 113 may display words, numerical values, charts, or the like based on the estimated degree of inclination of the CP curve or the sequential change of the CP curve.
 なお、上述した二酸化炭素施用支援装置100は、記憶部110を備えなくてもよい。この場合には、二酸化炭素施用支援装置100は、ネットワークに接続された別の装置や、サーバなどに環境データEDを記憶させればよい。 Note that the carbon dioxide application support apparatus 100 described above may not include the storage unit 110. In this case, the carbon dioxide application support apparatus 100 may store the environmental data ED in another apparatus connected to the network, a server, or the like.
 上述した実施例では、温室1内の植物NPを1回植生し、植物NPを収穫するまでの間に、環境データEDを取得し、CP曲線を算出する方法について説明した。なお、二酸化炭素施用支援装置100は、同一の温室1において、同一種類の植物NP、同一量の植物NPを繰り返し植生する場合には、過去の環境データEDの一部を流用してCP曲線を推定してもよい。環境データEDを流用可能な場合には、現在の環境における環境データEDを流用しないでCP曲線を推定する場合には不十分な量の環境データEDであっても、適切な二酸化炭素の施用速度ASを推定することができる。 In the above-described embodiment, the method of obtaining the environmental data ED and calculating the CP curve until the plant NP in the greenhouse 1 is vegetated once and the plant NP is harvested has been described. When the same type of plant NP and the same amount of plant NP are repeatedly vegetated in the same greenhouse 1, the carbon dioxide application support apparatus 100 uses a part of the past environmental data ED to generate a CP curve. It may be estimated. If the environmental data ED can be used, the appropriate carbon dioxide application rate is sufficient even if the environmental data ED is insufficient when estimating the CP curve without using the environmental data ED in the current environment. AS can be estimated.
 また、上述した実施例では、二酸化炭素施用支援装置100は、図8又は図9に示すCP曲線を推定する構成について説明したが、これに限られない。施用速度推定部113は、消費速度算出部112が算出する二酸化炭素を消費する速度UDに基づいて、植物NPの状態に関係する値を更に算出してもよい。具体的には、施用速度推定部113は、CP曲線の縦軸に示される純光合成速度に基づいて算出されるパラメータを縦軸にして推定してもよい。例えば、施用速度推定部113は、温室1内の植物NPに施用する二酸化炭素施用速度と温室1内の植物NPの成長の程度との関係を推定してもよい。成長の程度とは、植物NPの生長点を含む茎葉部の伸長の程度を示す茎葉部伸長速度や、植物NPの茎の増大の程度を示す茎増大速度である。また、施用速度推定部113は、温室1内の植物NPに施用する二酸化炭素施用速度と、温室1内の植物NPの蒸散速度との関係を推定してもよい。蒸散速度とは、植物NPから大気中へ放出される水蒸気の単位時間当たりの蒸散量である。この一例では、植物NPから温室1内へ放出される水蒸気の単位時間当たりの蒸散量である。 In the above-described embodiment, the carbon dioxide application support apparatus 100 has been described with respect to the configuration for estimating the CP curve illustrated in FIG. 8 or FIG. 9, but is not limited thereto. The application speed estimation unit 113 may further calculate a value related to the state of the plant NP based on the speed UD that consumes the carbon dioxide calculated by the consumption speed calculation unit 112. Specifically, the application speed estimation unit 113 may estimate the parameter calculated based on the pure light synthesis speed indicated on the vertical axis of the CP curve with the vertical axis. For example, the application rate estimation unit 113 may estimate the relationship between the carbon dioxide application rate applied to the plant NP in the greenhouse 1 and the degree of growth of the plant NP in the greenhouse 1. The degree of growth is a foliage part extension rate indicating the degree of extension of the foliage part including the growth point of the plant NP, or a stem increase rate indicating the degree of increase of the stem of the plant NP. The application rate estimation unit 113 may estimate the relationship between the carbon dioxide application rate applied to the plant NP in the greenhouse 1 and the transpiration rate of the plant NP in the greenhouse 1. The transpiration rate is the amount of transpiration per unit time of water vapor released from the plant NP into the atmosphere. In this example, the amount of transpiration per unit time of water vapor released from the plant NP into the greenhouse 1.
 なお、上述した成長の程度は、不図示の撮像装置によって温室1内のある植物NPの所定の生長点が撮像された撮像画像に更に基づいて算出する。所定の生長点が撮像された撮像画像には、茎頂部成長点を含む茎葉部の形態が撮像される。茎頂部成長点とは、主茎の先端にある生長点である。
 撮像装置は、温室1内の植物NPの所定の生長点を、時間間隔をあけて、複数の撮像画像を生成する。施用速度推定部113は、撮像装置が生成した撮像画像を取得する。施用速度推定部113は、撮像装置から取得した複数の撮像画像に基づいて、植物NPの茎葉部伸長速度や茎の径の増大速度を解析する。また、施用速度推定部113は、解析した茎葉部成長速度に基づいて、植物NPに与える肥料成分の量を算出してもよい。施用速度推定部113が、解析した茎葉部成長速度に基づいて植物NPに与える肥料成分の量を算出する場合には、記憶部110には、予め茎葉部成長速度に応じた肥料成分の種類や量を示す肥料成分情報が記憶される。
The degree of growth described above is further calculated based on a captured image in which a predetermined growth point of a certain plant NP in the greenhouse 1 is captured by an imaging device (not shown). In the captured image in which the predetermined growth point is captured, the form of the foliage part including the shoot apex growth point is captured. The shoot apex growth point is the growth point at the tip of the main stem.
The imaging device generates a plurality of captured images at predetermined intervals of the plant NP in the greenhouse 1 with a time interval. The application speed estimation unit 113 acquires a captured image generated by the imaging device. The application speed estimation unit 113 analyzes the foliage part elongation speed and the stem diameter increase speed of the plant NP based on a plurality of captured images acquired from the imaging device. Moreover, the application rate estimation part 113 may calculate the quantity of the fertilizer component given to the plant NP based on the analyzed foliage growth rate. When the application rate estimation unit 113 calculates the amount of the fertilizer component to be given to the plant NP based on the analyzed foliage growth rate, the storage unit 110 stores the types of fertilizer components according to the foliage growth rate in advance. Fertilizer component information indicating the amount is stored.
 以下の説明では、植物NPがトマトの株の場合について説明する。撮像装置は、トマトの主茎の生長点を、時間間隔をあけて複数撮像する。トマトの主茎の生長点は、主茎の先端から20~30(cm)の範囲にある。施用速度推定部113は、植物NPが光合成を開始する時刻に撮像された撮像画像と、植物NPが光合成を終了する時刻に撮像された撮像画像とに、基づいて、主茎の生長点の成長の程度を示す茎葉部伸長速度や、茎増大速度を解析する。一般に、トマトの成長の程度を示す主茎の伸長速度や、主茎の径(太さ)は、与えられた肥料成分の成分や量に応じて変化する。主茎の伸長速度や、主茎の径の増大速度がわかると、数日間の生育環境条件が適切であったか否かがわかる。
 施用速度推定部113は、撮像画像に撮像されたトマトの株の主茎の径の増大速度に応じて、現在のトマト株の成長の程度を判定する。施用速度推定部113は、判定したトマトの株の成長の程度と、記憶部110に記憶された肥料成分情報とに基づいて、温室1内のトマトの株に与える肥料成分の成分や量を算出する。
In the following description, the case where the plant NP is a tomato strain will be described. The imaging device images a plurality of growth points of the main tomato stem at intervals. The growth point of the main stem of tomato is in the range of 20-30 (cm) from the tip of the main stem. The application speed estimation unit 113 grows the growth point of the main stem based on the captured image captured at the time when the plant NP starts photosynthesis and the captured image captured at the time when the plant NP ends photosynthesis. The rate of elongation of the foliage and the rate of increase in stem are analyzed. In general, the elongation rate of the main stem indicating the degree of growth of tomatoes and the diameter (thickness) of the main stem vary depending on the components and amounts of the given fertilizer components. If the elongation rate of the main stem and the increase rate of the diameter of the main stem are known, it can be determined whether the growth environment conditions for several days were appropriate.
The application speed estimation unit 113 determines the current degree of growth of the tomato stock according to the increasing speed of the diameter of the main stem of the tomato stock captured in the captured image. The application rate estimation unit 113 calculates the component and amount of the fertilizer component to be given to the tomato strain in the greenhouse 1 based on the determined degree of growth of the tomato strain and the fertilizer component information stored in the storage unit 110. To do.
 上述したように、施用速度推定部113は、植物NPの成長の程度に基づいて、植物NPに与える肥料成分の量を算出することにより、温室1内の植物NP肥料成分成長(繁殖器官以外の部位の成長)と生殖成長(生殖器官の成長)とのバランスを評価し、現時点での望ましいバランスになるよう生育環境条件を推定することができる。つまり、二酸化炭素施用支援装置100は、環境データEDと、植物NPの撮像画像とに基づいて、温室1内の植物NPに供給する肥料成分の量を適切に推定できる。なお、上述した説明では、植物NPの種類が、トマトの株の場合について説明したが、トマトの株は一例であって、これに限られない。 As described above, the application rate estimation unit 113 calculates the amount of the fertilizer component given to the plant NP based on the degree of growth of the plant NP, thereby growing the plant NP fertilizer component in the greenhouse 1 (other than the breeding organ). It is possible to evaluate the balance between the growth of the part) and the reproductive growth (growth of the reproductive organs), and to estimate the growth environment conditions so as to achieve a desirable balance at the present time. That is, the carbon dioxide application support apparatus 100 can appropriately estimate the amount of the fertilizer component supplied to the plant NP in the greenhouse 1 based on the environmental data ED and the captured image of the plant NP. In the above description, the type of plant NP is a tomato strain, but the tomato strain is an example, and the present invention is not limited to this.
 また、施用速度推定部113は、更に、温室1内の他の環境条件のうちから少なくとも1つの条件と二酸化炭素を消費する速度UDとの関係を推定してもよい。温室1内の他の環境条件とは、温室1内の飽差HD、温室1内の温度TV又は、植物NPへの給液速度などである。具体的には、施用速度推定部113は、CP曲線の横軸に示される温室1内の植物NPに施用する二酸化炭素施用速度UDを、温室1内の他の環境条件にしてもよい。つまり、施用速度推定部113は、純光合成速度と、温室1内の植物NPに施用する二酸化炭素施用速度以外の環境条件との関係を推定してもよい。 Further, the application speed estimation unit 113 may further estimate the relationship between at least one condition among other environmental conditions in the greenhouse 1 and the speed UD that consumes carbon dioxide. Other environmental conditions in the greenhouse 1 are the saturation HD in the greenhouse 1, the temperature TV in the greenhouse 1, the liquid supply speed to the plant NP, and the like. Specifically, the application rate estimation unit 113 may set the carbon dioxide application rate UD applied to the plant NP in the greenhouse 1 indicated on the horizontal axis of the CP curve as another environmental condition in the greenhouse 1. That is, the application rate estimation unit 113 may estimate the relationship between the pure photosynthetic rate and environmental conditions other than the carbon dioxide application rate applied to the plant NP in the greenhouse 1.
 この場合には、施用速度推定部113は、環境データ取得部111が取得した環境データEDと、類似環境データSEDとに基づいて、植物NPの直近の暗呼吸速度と、植物NPの過去の暗呼吸速度との相対値に基づく補正を行うことにより、環境データEDを取得した時点の温室1内の植物NPの純光合成速度と、温室1内の植物NPに施用する二酸化炭素施用速度以外の環境条件との関係を推定する。 In this case, the application rate estimation unit 113, based on the environment data ED acquired by the environment data acquisition unit 111 and the similar environment data SED, the latest dark respiration rate of the plant NP and the past darkness of the plant NP. By performing the correction based on the relative value with the respiration rate, the environment other than the net photosynthesis rate of the plant NP in the greenhouse 1 at the time of acquiring the environmental data ED and the carbon dioxide application rate applied to the plant NP in the greenhouse 1 Estimate the relationship with conditions.
 これにより、施用速度推定部113は、CP曲線が示す純光合成速度と二酸化炭素施用速度との関係に限られず、温室1内の植物NPを成育させる環境の制御に用いられる情報を推定することができる。 Accordingly, the application rate estimation unit 113 is not limited to the relationship between the pure photosynthetic rate and the carbon dioxide application rate indicated by the CP curve, and can estimate information used for controlling the environment in which the plant NP in the greenhouse 1 is grown. it can.
 以上、本発明の実施形態を、図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更を加えることができる。 The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and appropriate modifications may be made without departing from the spirit of the present invention. it can.
 なお、上述の二酸化炭素施用支援装置100は内部にコンピュータを有している。そして、上述した装置の各処理の過程は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって、上記処理が行われる。ここでコンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等をいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしてもよい。 In addition, the above-mentioned carbon dioxide application assistance apparatus 100 has a computer inside. Each process of the above-described apparatus is stored in a computer-readable recording medium in the form of a program, and the above-described process is performed by the computer reading and executing the program. Here, the computer-readable recording medium means a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like. Alternatively, the computer program may be distributed to the computer via a communication line, and the computer that has received the distribution may execute the program.
 また、上記プログラムは、前述した機能の一部を実現するためのものであってもよい。
さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。
The program may be for realizing a part of the functions described above.
Furthermore, what can implement | achieve the function mentioned above in combination with the program already recorded on the computer system, what is called a difference file (difference program) may be sufficient.
 1…温室、10…測定部、11…温度センサ、12…光強度センサ、13…屋内二酸化炭素濃度測定センサ、14…屋外二酸化炭素濃度測定センサ、15…飽差算出装置、16…換気回数測定部、17…二酸化炭素施用制御装置、18…温室情報装置、20…窓、100…二酸化炭素施用支援装置、114…表示部、101…環境条件取得部、102…温度取得部、103…光強度取得部、104…飽差取得部、105…屋内二酸化炭素濃度取得部、106…屋外二酸化炭素濃度取得部、107…換気回数取得部、108…交換速度算出部、109…環境データ生成部、110…記憶部、111…環境データ取得部、112…消費速度算出部、113…施用速度推定部、TV…温室内の温度、LS…温室内の光強度、HD…温室内の飽差、ICD…温室内の二酸化炭素濃度、OCD…温室外の二酸化炭素濃度、VC…換気回数、AC…空気容積、ED…環境データ、SED…類似環境データ、UD…二酸化炭素を消費する速度、AS…二酸化炭素の施用速度 DESCRIPTION OF SYMBOLS 1 ... Greenhouse, 10 ... Measuring part, 11 ... Temperature sensor, 12 ... Light intensity sensor, 13 ... Indoor carbon dioxide concentration measuring sensor, 14 ... Outdoor carbon dioxide concentration measuring sensor, 15 ... Saturation calculation apparatus, 16 ... Ventilation frequency measurement , 17 ... carbon dioxide application control device, 18 ... greenhouse information device, 20 ... window, 100 ... carbon dioxide application support device, 114 ... display unit, 101 ... environmental condition acquisition unit, 102 ... temperature acquisition unit, 103 ... light intensity Acquiring unit, 104 ... Saturation acquiring unit, 105 ... Indoor carbon dioxide concentration acquiring unit, 106 ... Outdoor carbon dioxide concentration acquiring unit, 107 ... Ventilation frequency acquiring unit, 108 ... Exchange rate calculating unit, 109 ... Environmental data generating unit, 110 DESCRIPTION OF SYMBOLS ... Storage part 111 ... Environmental data acquisition part 112 ... Consumption rate calculation part 113 ... Application speed estimation part, TV ... Temperature in greenhouse, LS ... Light intensity in greenhouse, HD ... Saturation in greenhouse, CD: carbon dioxide concentration in the greenhouse, OCD: carbon dioxide concentration outside the greenhouse, VC: ventilation frequency, AC: air volume, ED: environmental data, SED: similar environmental data, UD: carbon dioxide consumption rate, AS ... Carbon dioxide application rate

Claims (6)

  1.  植物の育成を行う温室内外の環境を測定する測定部から、植物が育成される環境条件を取得する環境条件取得部と、
     前記環境条件取得部が取得する前記環境条件のうち、前記温室内の二酸化炭素濃度と、前記温室外の二酸化炭素濃度と、前記温室の換気回数と、前記温室内の光強度とに基づいて、前記温室内の植物が行う二酸化炭素の交換速度を算出する交換速度算出部と、
     前記環境条件取得部が取得する前記環境条件と、前記交換速度算出部が算出する前記二酸化炭素の交換速度とが互いに対応付けられた環境データを生成する環境データ生成部と、
     前記環境データ生成部が過去に生成した前記環境データのうちから、前記環境条件取得部が取得する前記環境条件と類似する環境データを類似環境データとして取得する環境データ取得部と、
     前記環境データ取得部が取得する前記類似環境データと、前記交換速度算出部が算出する前記二酸化炭素の交換速度とに基づいて、前記温室内の植物が前記温室内の二酸化炭素を消費する速度を算出する消費速度算出部と、
     前記温室内の容積と、前記消費速度算出部が算出する前記消費する速度と、前記環境条件取得部が取得する前記環境条件のうち前記温室の換気回数とに基づいて、前記温室内に施用される二酸化炭素の施用速度と前記消費する速度との関係を推定する施用速度推定部と
     を備える二酸化炭素施用支援装置。
    An environmental condition acquisition unit that acquires environmental conditions for growing plants from a measurement unit that measures the environment inside and outside the greenhouse that grows plants,
    Among the environmental conditions acquired by the environmental condition acquisition unit, based on the carbon dioxide concentration in the greenhouse, the carbon dioxide concentration outside the greenhouse, the ventilation frequency of the greenhouse, and the light intensity in the greenhouse, An exchange rate calculation unit for calculating an exchange rate of carbon dioxide performed by plants in the greenhouse;
    An environmental data generation unit that generates environmental data in which the environmental conditions acquired by the environmental condition acquisition unit and the carbon dioxide exchange rate calculated by the exchange rate calculation unit are associated with each other;
    Among the environmental data generated in the past by the environmental data generation unit, an environmental data acquisition unit that acquires environmental data similar to the environmental condition acquired by the environmental condition acquisition unit as similar environmental data;
    Based on the similar environment data acquired by the environment data acquisition unit and the carbon dioxide exchange rate calculated by the exchange rate calculation unit, a rate at which plants in the greenhouse consume carbon dioxide in the greenhouse is calculated. A consumption speed calculation unit to calculate,
    Based on the volume in the greenhouse, the consumption speed calculated by the consumption speed calculation unit, and the ventilation frequency of the greenhouse among the environmental conditions acquired by the environmental condition acquisition unit, it is applied to the greenhouse. A carbon dioxide application support apparatus comprising: an application speed estimation unit that estimates a relationship between an application speed of carbon dioxide and a consumption speed.
  2.  前記消費速度算出部は、
     前記交換速度算出部が算出する前記二酸化炭素の交換速度と、前記類似環境データに含まれる前記二酸化炭素の交換速度との相対値に基づいて、前記消費する速度を算出する
     請求項1に記載の二酸化炭素施用支援装置。
    The consumption speed calculation unit
    2. The consumption rate is calculated based on a relative value between the carbon dioxide exchange rate calculated by the exchange rate calculation unit and the carbon dioxide exchange rate included in the similar environment data. Carbon dioxide application support device.
  3.  前記施用速度推定部は、前記消費速度算出部が算出した前記消費する速度に基づいて、前記植物の状態に関係する値を更に算出する
     請求項2に記載の二酸化炭素施用支援装置。
    The carbon dioxide application support apparatus according to claim 2, wherein the application speed estimation unit further calculates a value related to the state of the plant based on the consumption speed calculated by the consumption speed calculation unit.
  4.  前記植物の状態に関係する値には、前記植物の茎頂部生長点を含む茎葉部の伸長の速さを示す茎葉部成長速度、前記植物から蒸散される水分の単位時間あたりの量を示す蒸散速度のうちの少なくとも1つが含まれる
     請求項3に記載の二酸化炭素施用支援装置。
    The values relating to the state of the plant include shoot and leaf growth speed indicating the speed of elongation of the shoot and leaf portion including the shoot apex growth point of the plant, and transpiration indicating the amount of water transpiration from the plant per unit time. The carbon dioxide application support apparatus according to claim 3, wherein at least one of speeds is included.
  5.  前記環境条件には、前記温室内の飽差の条件、前記温室内の気温の条件、前記植物に供給される給液速度の条件が含まれ、
     前記施用速度推定部は、更に、前記環境条件のうちから少なくとも1つの条件と前記消費する速度との関係を推定する
     請求項1から請求項4のいずれか一項に記載の二酸化炭素施用支援装置。
    The environmental conditions include a condition of saturation in the greenhouse, a temperature condition in the greenhouse, a condition of a supply rate supplied to the plant,
    The carbon dioxide application support apparatus according to any one of claims 1 to 4, wherein the application speed estimation unit further estimates a relationship between at least one of the environmental conditions and the consumption speed. .
  6.  コンピュータに、
     植物の育成を行う温室内外の環境を測定する測定部から、植物が育成される環境条件を取得する環境条件取得ステップと、
     前記環境条件取得ステップにおいて取得される前記環境条件のうち、前記温室内の二酸化炭素濃度と、前記温室外の二酸化炭素濃度と、前記温室の換気回数と、前記温室内の光強度とに基づいて、前記温室内の植物が行う二酸化炭素の交換速度を算出する呼吸速度算出ステップと、
     前記環境条件取得ステップにおいて取得される前記環境条件と、前記呼吸速度算出ステップにおいて算出される前記二酸化炭素の交換速度とが互いに対応付けられた環境データを生成する環境データ生成ステップと、
     前記環境データ生成ステップにおいて過去に生成された前記環境データのうちから、前記環境条件取得ステップにおいて取得される前記環境条件と類似する環境データを類似環境データとして取得する環境データ取得ステップと、
     前記環境データ取得ステップにおいて取得される前記類似環境データと、前記呼吸速度算出ステップにおいて算出される前記二酸化炭素の交換速度とに基づいて、前記温室内の植物が前記温室内の二酸化炭素を消費する速度を算出する消費速度算出ステップと、
     前記温室内の容積と、前記消費速度算出ステップにおいて算出される前記消費する速度と、前記環境条件取得ステップにおいて取得される前記環境条件のうち前記温室の換気回数とに基づいて、前記温室内に施用される二酸化炭素の施用速度と前記消費する速度との関係を推定する施用速度推定ステップと
     を実行させるための二酸化炭素施用支援プログラム。
    On the computer,
    An environmental condition acquisition step for acquiring an environmental condition for growing the plant from a measurement unit that measures the environment inside and outside the greenhouse for growing the plant;
    Of the environmental conditions acquired in the environmental condition acquisition step, based on the carbon dioxide concentration in the greenhouse, the carbon dioxide concentration outside the greenhouse, the ventilation frequency of the greenhouse, and the light intensity in the greenhouse. A respiration rate calculating step of calculating a carbon dioxide exchange rate performed by the plants in the greenhouse;
    An environmental data generating step for generating environmental data in which the environmental condition acquired in the environmental condition acquiring step and the carbon dioxide exchange rate calculated in the respiration rate calculating step are associated with each other;
    An environmental data acquisition step for acquiring environmental data similar to the environmental condition acquired in the environmental condition acquisition step as similar environmental data from the environmental data generated in the past in the environmental data generation step;
    Based on the similar environment data acquired in the environmental data acquisition step and the carbon dioxide exchange rate calculated in the respiration rate calculation step, plants in the greenhouse consume carbon dioxide in the greenhouse. A consumption speed calculation step for calculating a speed;
    Based on the volume in the greenhouse, the consumption speed calculated in the consumption speed calculation step, and the ventilation frequency of the greenhouse among the environmental conditions acquired in the environmental condition acquisition step, A carbon dioxide application support program for executing an application rate estimation step for estimating a relationship between an application rate of applied carbon dioxide and the consumption rate.
PCT/JP2017/026279 2016-07-28 2017-07-20 Carbon dioxide supply assistance device and carbon dioxide supply assistance program WO2018021142A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018529825A JP6692102B2 (en) 2016-07-28 2017-07-20 Carbon dioxide application support device and carbon dioxide application support program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-148443 2016-07-28
JP2016148443 2016-07-28

Publications (1)

Publication Number Publication Date
WO2018021142A1 true WO2018021142A1 (en) 2018-02-01

Family

ID=61016208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026279 WO2018021142A1 (en) 2016-07-28 2017-07-20 Carbon dioxide supply assistance device and carbon dioxide supply assistance program

Country Status (2)

Country Link
JP (1) JP6692102B2 (en)
WO (1) WO2018021142A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6956839B1 (en) * 2020-09-29 2021-11-02 ソフトバンク株式会社 Carbon dioxide absorption estimation system and method
CN114740712A (en) * 2021-12-21 2022-07-12 百倍云(浙江)物联科技有限公司 Greenhouse carbon dioxide net absorption regulation and control method facing carbon neutralization
CN115443838A (en) * 2022-10-11 2022-12-09 合肥创农生物科技有限公司 Plant gas self-balancing system for indoor environment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4941127A (en) * 1972-09-07 1974-04-17
JPH0866126A (en) * 1994-08-30 1996-03-12 Iseki & Co Ltd Controller for greenhouse
JP2005065602A (en) * 2003-08-25 2005-03-17 Esd:Kk Greenhouse control system and greenhouse control method
JP2014128263A (en) * 2012-11-28 2014-07-10 National Agriculture & Food Research Organization Carbon dioxide application controller, carbon dioxide application device, carbon dioxide application method and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4941127A (en) * 1972-09-07 1974-04-17
JPH0866126A (en) * 1994-08-30 1996-03-12 Iseki & Co Ltd Controller for greenhouse
JP2005065602A (en) * 2003-08-25 2005-03-17 Esd:Kk Greenhouse control system and greenhouse control method
JP2014128263A (en) * 2012-11-28 2014-07-10 National Agriculture & Food Research Organization Carbon dioxide application controller, carbon dioxide application device, carbon dioxide application method and program

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6956839B1 (en) * 2020-09-29 2021-11-02 ソフトバンク株式会社 Carbon dioxide absorption estimation system and method
WO2022071411A1 (en) * 2020-09-29 2022-04-07 ソフトバンク株式会社 System for estimating amount of absorbed carbon dioxide and method for estimating amount of absorbed carbon dioxide
US11913928B2 (en) 2020-09-29 2024-02-27 Softbank Corp. System for estimating amount of absorbed carbon dioxide and method for estimating amount of absorbed carbon dioxide
CN114740712A (en) * 2021-12-21 2022-07-12 百倍云(浙江)物联科技有限公司 Greenhouse carbon dioxide net absorption regulation and control method facing carbon neutralization
CN114740712B (en) * 2021-12-21 2023-10-17 百倍云(浙江)物联科技有限公司 Carbon neutralization-oriented greenhouse carbon dioxide net absorption regulation and control method
CN115443838A (en) * 2022-10-11 2022-12-09 合肥创农生物科技有限公司 Plant gas self-balancing system for indoor environment

Also Published As

Publication number Publication date
JPWO2018021142A1 (en) 2019-05-09
JP6692102B2 (en) 2020-05-13

Similar Documents

Publication Publication Date Title
Bhattacharyya et al. Tropical low land rice ecosystem is a net carbon sink
WO2018021142A1 (en) Carbon dioxide supply assistance device and carbon dioxide supply assistance program
JP6506444B2 (en) Carbon dioxide application system, carbon dioxide control device, carbon dioxide application method and program
JP6132269B2 (en) Plant growing device
KR102342392B1 (en) Irrigation system and method using water shortage diagnosis of crops
Marin et al. Irrigation requirements and transpiration coupling to the atmosphere of a citrus orchard in Southern Brazil
CN109447426B (en) Response analysis method of irrigation water demand to changing environment based on crop water demand mechanism
Janka et al. A coupled model of leaf photosynthesis, stomatal conductance, and leaf energy balance for chrysanthemum (Dendranthema grandiflora)
JP2022133359A (en) Information processing device, information processing method and program
JP2018007630A (en) Cultivation support device
KR20150068754A (en) Method for controlling irrigation amount in soilless culture
JP2019050820A5 (en)
DE102008027635A1 (en) Method and arrangement for optimizing the carbon dioxide supply of plants grown in a greenhouse
ROMDHONAH et al. Averaging techniques in processing the high time-resolution photosynthesis data of cherry tomato plants for model development
JP7295565B2 (en) Growth environment control program, growth environment control method, and growth environment control device
CN111983141B (en) Method for formulating crop irrigation strategy based on bicarbonate ion utilization capacity
Li et al. CO2 balance of a commercial closed system with artificial lighting for producing lettuce plants
JP6737130B2 (en) Plant cultivation equipment
JP2019120606A (en) measuring device
CN111080465A (en) Method for calculating actual crop coefficient of summer corn based on weather and biological factors
JP2019150015A (en) Crop activity index based protected horticulture combination environmental control system and method
CN113645835B (en) Cultivation control system, cultivation control device, cultivation control method, and cultivation control program
JP7000553B2 (en) Cultivation system, management server and cultivation method
JP7416394B2 (en) Cropping schedule calculation device, cropping schedule calculation program, and cropping schedule calculation method
CN108333325A (en) A kind of determination method to Nitraria shrub soil respiration rates average value observation period in the daytime

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018529825

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834150

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17834150

Country of ref document: EP

Kind code of ref document: A1