WO2018021130A1 - Electricity storage system, charging and discharging control device and control method, and recording medium having program recorded thereon - Google Patents

Electricity storage system, charging and discharging control device and control method, and recording medium having program recorded thereon Download PDF

Info

Publication number
WO2018021130A1
WO2018021130A1 PCT/JP2017/026215 JP2017026215W WO2018021130A1 WO 2018021130 A1 WO2018021130 A1 WO 2018021130A1 JP 2017026215 W JP2017026215 W JP 2017026215W WO 2018021130 A1 WO2018021130 A1 WO 2018021130A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
output
charge
charging
suppressed
Prior art date
Application number
PCT/JP2017/026215
Other languages
French (fr)
Japanese (ja)
Inventor
一男 森
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2018021130A1 publication Critical patent/WO2018021130A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/20Systems characterised by their energy storage means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the present invention relates to a power storage system, a charge / discharge control device, a control method thereof, and a recording medium on which a program is recorded.
  • Patent Document 1 An example of a power conditioner for connecting a DC power generation facility such as a solar power generation facility to a power system such as a commercial power supply is described in Patent Document 1.
  • the power conditioner of Patent Document 1 has a function of charging the storage battery with the power to be suppressed while executing the system voltage increase suppression control when the system voltage exceeds a predetermined voltage. Thereby, when the system voltage rises, the electric power generated by the DC power generation facility can be effectively used.
  • Patent Document 2 When the solar power generation system described in Patent Document 2 acquires output suppression information that instructs output suppression via a communication network from a command center installed by an electric power company or the like, for example, the boiling operation of an electric water heater is performed. When possible, the output suppression is released, and the electric power used for the electric water heater boiling operation is calculated using the power generated by the photovoltaic power generation system.
  • Patent Document 3 When the power generation system described in Patent Document 3 detects a voltage increase such that the system voltage exceeds a predetermined threshold, the output voltage on each distributed power source (natural power generation device or fuel cell power generation device) is decreased, Voltage rise suppression control is performed so as to be lower than the voltage value on the system power side.
  • the output voltage of the solar cell is converted into AC power, and the power can be reversely flowed to the system distribution line, and the output voltage of the inverter is suppressed so that the system voltage does not exceed a predetermined upper limit value.
  • An interconnected inverter device including an output voltage suppression unit is described.
  • Non-Patent Documents 1 and 2 due to the rapid increase in distributed power sources (power generation devices) using renewable energy centered on sunlight, surplus power flowing backward to the power system has increased in recent years. There is a problem that the power system becomes unstable.
  • Non-Patent Document 1 it is expected that it will become difficult to stably supply power with rapid expansion of renewable energy centered on sunlight in a certain area. It is described that output control is performed when the amount is exceeded.
  • the output control is to limit the amount of power that flows backward to the power system in order to stabilize the power system.
  • the amount of power generated in the power generation apparatus is controlled to a predetermined amount of power by PCS (Power Conditioning System), and reverse power flows to the power system.
  • PCS Power Conditioning System
  • Non-Patent Document 2 describes an operation method of output control in a photovoltaic power generation facility.
  • the operation method varies depending on whether the purchase contract of generated power is purchase of all or surplus, and in the case of surplus purchase, if the private power consumption exceeds the output control value (% of the rated output of the PCS), go to the power grid
  • JP 2012-139019 A Japanese Patent Laying-Open No. 2015-106937 JP 2012-138888 A JP-A-9-172784
  • output suppression information is transmitted via a communication network from a command station installed by a power company or the like when a system voltage rises in a photovoltaic power generation system.
  • PV-PCS PhotoVoltaics Power ⁇ ⁇ Conditioning ⁇ ⁇ System
  • PV-PCS PhotoVoltaics Power ⁇ ⁇ Conditioning ⁇ ⁇ System
  • the power conditioner (PCS) of Patent Literature 1 includes a converter that boosts DC power from a DC power generation facility such as a solar power generation facility, and an inverter that converts the boosted DC power into AC power and supplies the AC power to the power system.
  • the converter (which also performs charge / discharge control) that converts the DC power of the power storage unit to a voltage is connected between the DC links (DC link unit). Has the ability to charge.
  • output suppression information (command value) will be obtained from the command station installed by the power company. If the frequency is increased and the frequency is increased, a large amount of power is wasted.
  • the existing PV-PCS is replaced with a PCS as in Patent Document 1, that is, a PCS (multi-source type) that can be connected to a plurality of DC power sources such as a solar power generation facility and a storage battery and can be integratedly controlled.
  • a PCS multi-source type
  • DC power sources such as a solar power generation facility and a storage battery and can be integratedly controlled.
  • the present invention has been made in view of the above circumstances, and the object of the present invention is that it can be easily and relatively inexpensively installed in an existing solar power generation system by retrofitting, and the output of the solar power generation facility
  • a charge / discharge control device, a control method thereof, a program charge / discharge control device, a control method thereof, and a recording medium recording the program which can efficiently and maximally use power to be suppressed at the time of suppression. is there.
  • the first aspect relates to a power storage system.
  • the power storage system according to the first aspect is Power storage means; Control means for controlling charging and discharging of the power storage means; With The DC power generator is connected to the converter via a DC power line, The conversion device connects the DC power line and the AC power line, and converts DC power into AC power, The AC power line is connected to a power system, is connected to the DC power generation device via the conversion device, The power storage means is connected to the DC power line between the DC power generator and the converter, and the control means When it is detected that the output of the DC power generation device is being suppressed, the charging current of the power storage unit is controlled so that the charging power of the power storage unit or the output power of the DC power generation device is maximized.
  • the second aspect relates to a charge / discharge control device.
  • the charge / discharge control device according to the second aspect is A charge / discharge control device connected to a power storage device,
  • the DC power generator is connected to the converter via a DC power line,
  • the conversion device connects the DC power line and the AC power line, and converts DC power into AC power
  • the AC power line is connected to a power system, is connected to the DC power generation device via the conversion device, Connected to the DC power line between the DC generator and the converter,
  • the charge / discharge control device comprises: Control that controls the charging current of the power storage device so that the charging power of the power storage device or the output power of the DC power generation device is maximized when it is detected that the output of the DC power generation device is being suppressed. Have means.
  • a 3rd side is related with the control method of the charging / discharging control apparatus performed by at least 1 computer.
  • the control method of the charge / discharge control device according to the third aspect is as follows: A control method of a charge / discharge control device for controlling charge / discharge of a power storage device,
  • the DC power generator is connected to the converter via a DC power line,
  • the conversion device connects the DC power line and the AC power line, and converts DC power into AC power
  • the AC power line is connected to a power system, is connected to the DC power generation device via the conversion device, Connected to the DC power line between the DC generator and the converter,
  • the charge / discharge control device comprises: When it is detected that the output of the DC power generation device is being suppressed, the charging current of the power storage device is controlled so that the charging power of the power storage device or the output power of the DC power generation device is maximized. Including that.
  • a program for causing at least one computer to execute the method of the third aspect or a computer-readable recording medium recording such a program. May be.
  • This recording medium includes a non-transitory tangible medium.
  • This computer program includes computer program code that, when executed by a computer, causes the computer to perform its control method on the charge / discharge control device.
  • a plurality of components are formed as a single member, and a single component is formed of a plurality of members. It may be that a certain component is a part of another component, a part of a certain component overlaps with a part of another component, or the like.
  • the plurality of procedures of the method and computer program of the present invention are not limited to being executed at different timings. For this reason, another procedure may occur during the execution of a certain procedure, or some or all of the execution timing of a certain procedure and the execution timing of another procedure may overlap.
  • a power storage system, a charge / discharge control device, a control method thereof, and a recording medium on which a program is recorded can be provided.
  • FIG. 1 is a schematic block diagram illustrating a configuration example of a photovoltaic power generation (PV: PhotoVoltaics) system 10.
  • FIG. 2 is a schematic block diagram showing a configuration example of the power storage system 1 according to the embodiment of the present invention.
  • the power storage system 1 shows a configuration after the power storage device 40 is added to the DC power line 16 side of the existing PV system 10 of FIG.
  • the configuration of parts not related to the essence of the present invention is omitted and is not shown.
  • the existing PV system 10 of FIG. 1 includes a PV panel 12, a PV-PCS (PhotoVoltaics Power Conditioning System) 14, a distribution board 24, and a load 26.
  • PV panel 12 and the PV-PCS 14 are installed outdoors, and the distribution board 24 and the load 26 are installed indoors.
  • the distribution board 24 and the load 26 may be installed outdoors.
  • the PV panel 12 and the PV-PCS 14 are connected by a DC power line 16 (shown by a broken line).
  • the PV-PCS 14, the distribution board 24, and the power system 22 are connected by an AC power line 28 (shown by a one-dot chain line (28a, 28b)).
  • a load 26 is further connected to the AC power line 28 (28a, 28b) via a distribution board 24.
  • the PV panel 12 includes a plurality of solar cells that receive solar light energy and converts them into electricity, and is protected by tempered glass or acrylic resin.
  • the PV panel 12 is installed on a roof of a residence.
  • the DC power generated by the PV panel 12 is input to the PV-PCS 14 through the DC power line 16.
  • the PV-PCS 14 has a function of converting DC power generated by the PV panel 12 into AC power generally used in home appliances (load 26).
  • the PV-PCS 14 receives, for example, an output suppression control signal 32 (hereinafter also referred to as a PV output suppression signal) for the PV panel 12 from the external server 30 or the like, and outputs the PV panel 12 according to the PV output suppression signal 32. And has a function of outputting to the AC power line 28 (28a).
  • the PV output suppression signal 32 includes, for example, an instruction to suppress the output to a predetermined ratio (%) of the rated output of the PV-PCS 14.
  • the PV output suppression signal 32 instructs to suppress the output to 80% of the rated output of the PV-PCS 14
  • the PV-PCS 14 converts the DC power output from the PV panel 12 into AC power. At this time, it is suppressed to 80% of the rated output of the PV-PCS 14 and output to the AC power line 28a, and the power exceeding 80% is not output to the AC power line 28a. That is, the PV output suppression signal 32 sets the upper limit of the PV output power amount.
  • the load 26 is at least one of various electric devices such as an air conditioner, a lighting device, a refrigerator, a television, a microwave oven, a dryer, a personal computer, a game machine, a telephone, a water heater, an electric vehicle, and a plug-in hybrid vehicle.
  • various electric devices such as an air conditioner, a lighting device, a refrigerator, a television, a microwave oven, a dryer, a personal computer, a game machine, a telephone, a water heater, an electric vehicle, and a plug-in hybrid vehicle.
  • Electricity is supplied from the electric power system 22 to the distribution board 24 of the customer's house via the power transmission network, and electricity is distributed to each load 26 via the distribution board 24.
  • the DC power generated by the PV panel 12 is input to the PV-PCS 14 via the DC power line 16, is converted into AC power, and is output to the AC power line 28a. Then, it can be supplied to the load 26 through the distribution board 24 through the AC power line 28a.
  • surplus power generated by the PV panel 12 may be charged to a power storage device (not shown) connected to the AC power line 28a side as much as possible without causing the power system 22 to reversely flow, or to the DC power line 16 side.
  • the connected lithium ion secondary battery of the battery system 42 may be charged by the power storage device 40 according to the embodiment of the present invention. This configuration will be described later as a configuration example that may be implemented in combination with the embodiment of the present invention.
  • the PV-PCS 14 also has a function of adjusting the power obtained from the PV panel 12.
  • the electric power obtained from the PV panel 12 varies in current and voltage depending on the amount of solar radiation and temperature, and the characteristics always change.
  • the output of the PV panel 12 can be maximized by always controlling the current and voltage of the output of the PV panel 12 so that the power obtained by the product of the current and the voltage becomes the maximum power point.
  • This control is called maximum power point tracking (MPPT) control, and is executed by, for example, the PV-PCS 14.
  • MPPT maximum power point tracking
  • the PV-PCS 14 constantly monitors the state of the power system connected on the AC power line 28 side, and suppresses the output of the inverter (output of the PV panel 12) when the system voltage exceeds a predetermined voltage. (One of the grid connection protection functions).
  • the difference portion (hatched portion) between the power generation amount (solid line) of the PV panel 12 and the power consumption amount (broken line) of the load 26 is the power generated by the PV panel 12 and output from the PV-PCS 14. Of this, the surplus power is not consumed by the load 26.
  • the generation amount suppression control is performed by the PV output suppression signal 32
  • the generation amount (PV ⁇ The power output from the PCS 14) is suppressed to the PV output suppression line.
  • the hatched portion is not output from the PV-PCS 14 and cannot be sold and is wasted.
  • the PV-PCS 14 is, for example, a power distribution It is necessary to detect the direction (and magnitude) of the current flowing through the AC power line 28b by using a clamp-type AC current sensor (not shown) installed on the AC power line 28b between the panel 24 and the power system 22.
  • the power storage device 40 of this embodiment includes a battery system 42 and a charge / discharge control device 100.
  • the power storage device 40 is electrically connected to the DC power line 16 between the PV panel 12 and the PV-PCS 14 via the connection line 17.
  • the charge / discharge control apparatus 100 of this embodiment controls charge / discharge of the battery system 42 connected to the PV system 10.
  • the electrical storage apparatus 40 in this embodiment shall be installed outdoors, you may install indoors.
  • the battery system 42 includes at least one lithium-ion secondary battery (not shown) (hereinafter also referred to as “storage battery”) and a battery management unit (Battery Management Unit) that manages the lithium ion secondary battery. BMU).
  • the battery system 42 has an electric capacity indicated by a rated capacity (kWh) that can be charged by the system. In the battery system 42, charging / discharging of the storage battery is controlled by the charging / discharging control device 100.
  • the charge / discharge control of the storage battery is performed within a predetermined range with respect to the rated capacity of the storage battery.
  • the output from the PV panel 12 is suppressed when the PV-PCS 14 is executing the output suppression control. Efficiently charge and use the storage battery without suppressing it. The electric power charged in the storage battery can be efficiently used without being wasted if it is discharged and supplied to the load 26 in a dischargeable time zone.
  • the suppression is performed. To be able to charge the power that is being used.
  • the power storage device 40 performs charging while performing MPPT control, whereby the power output from the PV panel 12 is extracted to the maximum and charged.
  • FIG. 4 is a functional block diagram logically showing the configuration of the charge / discharge control apparatus 100 according to the embodiment of the present invention.
  • the configuration of the charge / discharge control apparatus 100 of the present embodiment will be described with reference to FIGS.
  • the DC power generator (PV panel 12) is connected to the converter (PV-PCS 14) via the DC power line 16.
  • the converter (PV-PCS 14) connects the DC power line 16 and the AC power line 28a, and converts DC power into AC power.
  • the AC power lines 28 (28a, 28b) are connected to the power system 22 from the converter (PV-PCS 14), and are connected to the DC power generator (PV panel 12) via the converter (PV-PCS 14).
  • a power storage device 40 (battery system 42) is connected to the DC power line 16 between the DC power generator (PV panel 12) and the converter (PV-PCS 14).
  • the charge / discharge control apparatus 100 includes an acquisition unit 102 and a control unit 104.
  • the control unit 104 determines the charging current of the power storage device 40 (battery system 42) as the power storage device 40 (battery system 42). Control is performed so that the charging power or the output power of the DC power generator (PV panel 12) is maximized.
  • the charge / discharge control device 100 of this embodiment may be further connected to a storage device 110 (not shown) so as to be accessible.
  • the storage device 110 may be included in the charge / discharge control device 100 or may be a device external to the charge / discharge control device 100.
  • the storage device 110 may be realized by a memory 84 or a storage 85 of the computer 80 shown in FIG.
  • control by the control unit 104 corresponds to the above-described MPPT control.
  • the control unit 104 receives the PV output suppression signal 32 out of the electric power that can be output from the PV panel 12, or performs MPPT control on the electric power whose output from the PV-PCS 14 is suppressed due to the system voltage exceeding a predetermined voltage. , The electric power output from the PV panel 12 is extracted to the maximum and charged.
  • the control unit 104 charges the storage battery with electric power (hatching unit) that suppresses the output from the PV-PCS 14 that is above the PV output suppression line and that is above the self-power consumption. At this time, the control unit 104 performs MPPT control on the charging power, thereby maximizing the power output from the PV panel 12 and realizing efficient charging.
  • the control unit 104 may also control discharge of the storage battery.
  • the power charged in the storage battery can be discharged from the storage battery and supplied to the load 26.
  • the battery may be discharged, or the power consumption of the load 26 is only by the power supplied from the PV panel 12 while the PV panel 12 is generating power.
  • you may discharge from a storage battery and supply to the load 26.
  • FIG. In the above case, it is a condition that the control for suppressing the power generation amount of the PV panel 12 is not performed. Further, the power charged in the storage battery may be reversely flowed to the power system 22.
  • the control unit 104 uses the charging current and charging voltage of the power storage device (battery system 42) or the output current and voltage of the PV panel 12 acquired by the acquiring unit 102.
  • the charging power can be calculated from the values of the storage battery charging current and charging voltage, and the output power can be calculated from the output current and voltage values of the PV panel 12. For these, the measured values of a current sensor and a voltage sensor described later can be used.
  • acquisition means that the device itself obtains data or information stored in another device or storage medium (active acquisition), for example, requests or inquires of another device. Receiving data, accessing and reading out other devices and storage media, etc., and inputting data or information output from other devices into the device (passive acquisition), for example, distribution (or , Transmission, push notification, etc.) and / or receiving received data or information. It also includes selecting and acquiring from received data or information, or selecting and receiving distributed data or information.
  • the power storage system 1 of the present embodiment includes a power storage device 40 and clamp type DC current sensors 44, 46, and 48 as shown in FIG.
  • Each clamp type DC current sensor 44, 46, 48 corresponds to the acquisition unit 102, and the current value measured by each sensor is used for control by the control unit 104 of the charge / discharge control device 100.
  • the clamp type DC current sensor 44 is provided in the connection line 17 between the DC power line 16 and the power storage device 40 and measures the current flowing through the connection line 17.
  • the clamp type direct current sensor 46 is provided on the first direct current power line 16a between the connection position of the power storage device 40 on the direct current power line 16 and the PV panel 12, and measures the current flowing through the first direct current power line 16a.
  • the clamp type DC current sensor 48 is provided on the second DC power line 16b between the connection position with the power storage device 40 on the DC power line 16 and the PV-PCS 14, and measures the current flowing through the second DC power line 16b.
  • the voltage value of the power output from the PV panel 12 is measured by a voltage sensor (not shown), and the acquisition unit 102 also acquires this voltage value.
  • the output (power generation amount) of the PV panel 12 may be calculated from this voltage value and the current value measured by the clamp type DC current sensor 46.
  • the voltage value of the charging power of the storage battery of the power storage device 40 is measured by a voltage sensor (not shown), and the acquisition unit 102 also acquires this voltage value.
  • the charging power of the storage battery may be calculated from this voltage value and the current value measured by the clamp type DC current sensor 44.
  • the detection method of the output of PV panel 12 being suppressed is illustrated below, it is not limited to these. Moreover, you may combine the following plurality.
  • (A1) Obtain or refer to information regarding the PV output suppression signal 32 received by the PV-PCS 14 from an external device.
  • A2) Charging the storage battery is performed on a trial basis to monitor whether the current input to the PV-PCS 14 decreases. When the current does not decrease, it is determined that the PV output suppression control is being performed.
  • the MPPT control method is not particularly limited in the present invention, but for example, a so-called hill climbing method, incremental conductance method, scanning method, or the like may be used.
  • the control unit 104 performs MPPT control so that the charging current of the power storage device (battery system 42) is maximized, or the charging power of the power storage device (battery system 42) or the output power of the DC power generation device (PV panel 12) is maximized. Just do it.
  • FIG. 5 is a diagram illustrating an example of the configuration of a computer 80 that implements the charge / discharge control apparatus 100 of the present embodiment.
  • the computer 80 of the present embodiment includes a CPU (Central Processing Unit) 82, a memory 84, a computer program 90 that realizes the components of the charge / discharge control device 100 loaded in the memory 84, a storage 85 that stores the computer program 90, An I / O (Input / Output) 86 and a network connection interface (communication I / F 87) are provided.
  • a CPU Central Processing Unit
  • the CPU 82, the memory 84, the storage 85, the I / O 86, and the communication I / F 87 are connected to each other via the bus 89, and the entire charge / discharge control apparatus 100 is controlled by the CPU 82.
  • the method of connecting the CPUs 82 and the like is not limited to bus connection.
  • the memory 84 is a memory such as a RAM (Random Access Memory) or a ROM (Read Only Memory).
  • the storage 85 is a storage device such as a hard disk, an SSD (Solid State Drive), or a memory card.
  • the storage 85 may be a memory such as a RAM or a ROM.
  • the storage 85 may be provided inside the computer 80 or may be provided outside the computer 80 and connected to the computer 80 by wire or wireless as long as the computer 80 is accessible. Alternatively, the computer 80 may be detachably provided.
  • the CPU 82 reads out the computer program 90 stored in the storage 85 to the memory 84 and executes it, whereby each function of each unit of the charge / discharge control device 100 can be realized.
  • the I / O 86 performs input / output control of data and control signals between the computer 80 and other input / output devices.
  • the other input / output devices include, for example, an input device (not shown) such as a keyboard, a touch panel, a mouse, and a microphone connected to the computer 80, and an output device (not shown) such as a display, a printer, and a speaker, These input / output devices and the interface of the computer 80 are included.
  • the I / O 86 may perform data input / output control with a reading or writing device (not shown) of another recording medium.
  • the communication I / F 87 is a network connection interface for performing communication between the computer 80 and an external device.
  • the communication I / F 87 is not always necessary.
  • the communication I / F 87 may be a network interface for connecting to a wired line or a network interface for connecting to a wireless line.
  • the computer 80 that implements the charge / discharge control apparatus 100 may be connected to a HEMS (Home Energy Management System) via a network by the communication I / F 87.
  • HEMS Home Energy Management System
  • Each component of the charge / discharge control apparatus 100 of this embodiment is realized by an arbitrary combination of hardware and software of the computer 80 in FIG. It will be understood by those skilled in the art that there are various modifications to the implementation method and apparatus.
  • the functional block diagram showing the charge / discharge control device of each embodiment to be described below shows a block of logical functional units, not a configuration of hardware units.
  • the charge / discharge control apparatus 100 does not exclude a configuration including a plurality of computers 80.
  • the computer program 90 of the present embodiment charges the power storage device (battery system 42) when the computer 80 for realizing the charge / discharge control device 100 detects that the output of the PV panel 12 is being suppressed. It is described that a procedure for controlling the current so that the charging power of the power storage device (battery system 42) or the output power of the DC power generation device (PV panel 12) is maximized is executed.
  • the computer program 90 of this embodiment may be recorded on a recording medium that can be read by the computer 80.
  • the recording medium is not particularly limited, and various forms can be considered.
  • the computer program 90 may be loaded from a recording medium into the memory 84 of the computer 80, or may be downloaded to the computer 80 through a network and loaded into the memory 84.
  • the recording medium for recording the computer program 90 includes a medium that can be used by the non-transitory tangible computer 80, and a program code that can be read by the computer 80 is embedded in the medium.
  • the computer 80 is caused to execute the following control method for realizing the charge / discharge control apparatus 100.
  • FIG. 6 is a flowchart showing an example of the operation of the charge / discharge control apparatus 100 of the present embodiment.
  • the control method according to the embodiment of the present invention is a control method of the charge / discharge control device 100, and is a control method executed by the computer 80 that implements the charge / discharge control device 100.
  • the control method of the present embodiment is a power storage device (battery system 42). ) Is controlled so that the charging power of the power storage device (battery system 42) or the output power of the DC power generation device (PV panel 12) is maximized (step S103).
  • the control unit 104 detects each sensor acquired by the acquisition unit 102. Based on the measured value, the charging current of the storage battery of the battery system 42 is controlled so that the charging power of the storage battery or the output power of the PV panel 12 is maximized (step S103).
  • the output of the PV panel 12 can be maximized.
  • the control unit 104 when it is detected that the output of the PV panel 12 is being suppressed, the control unit 104 performs MPPT control (charging current of the storage battery of the battery system 42). Is controlled so that the charging power of the storage battery or the output power of the PV panel 12 is maximized), the output of the PV panel 12 can be maximized to efficiently charge the surplus power.
  • MPPT control charging current of the storage battery of the battery system 42
  • the power storage system 1 of the present embodiment is a configuration that can be retrofitted easily and relatively inexpensively to an existing photovoltaic power generation system, and only by controlling the power storage system 1 alone,
  • the electric power that should be suppressed when the output of the photovoltaic power generation facility is suppressed can be efficiently and maximized.
  • FIG. 7 is a functional block diagram showing a logical configuration of the charge / discharge control apparatus 100 according to the present embodiment.
  • the charge / discharge control device 100 acquires information related to the PV output suppression signal 32 received by the PV-PCS 14 and determines whether or not the PV output is being suppressed based on the information. explain.
  • the configuration of the present embodiment can be combined with other embodiments.
  • the charge / discharge control apparatus 100 of this embodiment includes an acquisition unit 102, a control unit 104, and an information acquisition unit 106.
  • the acquisition unit 102 and the control unit 104 have the same configuration as the charge / discharge control device 100 of FIG.
  • the information acquisition unit 106 acquires information related to an instruction to suppress the output of the PV panel 12 from an external apparatus (PV-PCS 14 or external server 30).
  • the information acquisition unit 106 receives at least one of the presence / absence of reception of the PV output suppression signal 32 in the PV-PCS 14, the PV output suppression time, and information indicating that the PV output suppression control is being performed. You may get it.
  • the information acquisition unit 106 may be configured to receive the PV output suppression signal 32 directly from the server 30.
  • the information acquisition unit 106 may inquire the server 30 or the PV-PCS 14 to acquire information related to the output suppression instruction of the PV panel 12.
  • the charge / discharge control device 100 may communicate with the server 30 via a communication device (for example, a gateway, a router, etc.) not shown.
  • a communication device for example, a gateway, a router, etc.
  • the control unit 104 determines whether or not the output of the PV panel 12 is being suppressed based on the information regarding the suppression instruction acquired by the information acquisition unit 106. When it is detected that the output is being suppressed, the control unit 104 performs MPPT control of the output of the PV panel 12 to adjust the charging current of the storage battery, and performs charging control to the battery system 42.
  • the operation of the charge / discharge control device 100 of the present embodiment is the same as the operation of the charge / discharge control device 100 of the above-described embodiment of FIG. 6, but the information acquisition unit 106 determines that the PV output suppression signal 32 in step S101. When the information regarding is acquired, it is detected that the output of the PV panel 12 is being suppressed.
  • the information acquisition unit 106 acquires information (for example, the PV output suppression signal 32) regarding the output suppression instruction of the PV panel 12, and based on the information.
  • MPPT control can be performed when it is detected by the control unit 104 that PV output is being suppressed. According to this configuration, it is possible to easily and reliably detect whether or not the PV output is being suppressed, based on the information related to the PV output suppression signal 32, while having the same effects as the above embodiment.
  • FIG. 8 is a block diagram showing a main configuration of the power storage system according to this embodiment.
  • the power storage system of the present embodiment is different from the power storage system of the above embodiment in determining whether or not PV output suppression is continuing without acquiring information related to the PV output suppression instruction (for example, the PV output suppression signal 32). It is different in that it has a configuration that can be performed.
  • the structure of the charging / discharging control apparatus of this embodiment is the same as that of the charging / discharging control apparatus 100 of the said embodiment of FIG. 4, it demonstrates using FIG.
  • the structure of this embodiment can also be combined with the structure of the charging / discharging control apparatus of other embodiment.
  • the acquisition unit 102 acquires at least one of the direction and the magnitude of the DC power input to the PV-PCS 14. Based on the change in at least one of the direction and the magnitude of the DC power acquired by the acquisition unit 102 when the charge amount to the power storage device (battery system 42) is increased by a predetermined amount, the control unit 104 It is determined whether the output of is being suppressed. When it is determined that the output of the PV panel 12 is being suppressed, the control unit 104 uses the charging current of the power storage device (battery system 42) as the charging power of the power storage device (battery system 42) or the PV panel 12. Is controlled so as to maximize the output power.
  • control unit 104 is configured to charge the storage battery with the power that is output-suppressed and controlled by the PV output suppression signal among the power that can be output from the PV panel 12, but the control unit of the present invention is configured as follows.
  • the charging / discharging control of the storage battery may be performed using a combination of at least one of a plurality of conditions exemplified below.
  • (B1) Charging / discharging is performed according to a predetermined first chargeable time zone and second dischargeable time zone of the storage battery. In this configuration, information on the first time zone and the second time zone is stored in the storage device 110 in advance.
  • a first time period in which the storage battery can be charged and a second time period in which the storage battery can be discharged are determined in advance.
  • the first time zone is from 6:00 to 18:00
  • the second time zone is from 18:00 to 6:00 on the next day.
  • the charge / discharge control apparatus 100 has a timepiece (not shown) and acquires time information from the timepiece. Further, the timepiece may not be included in the charge / discharge control device 100 and may be a device external to the charge / discharge control device 100.
  • the acquisition unit 102 may further acquire information indicating that the storage battery is fully charged from the BMU of the battery system 42.
  • the charging / discharging of the storage battery is controlled according to the status of power purchase or power sale in the power system 22.
  • the acquisition unit 102 may further acquire information related to the current direction of the AC power line 28b on the power system 22 side that indicates the status of power purchase or power sale in the power system 22.
  • This configuration will be described later as an example of a configuration that may be implemented in combination with the embodiment of the present invention.
  • the acquisition unit 102 may acquire information related to the remaining storage capacity or free capacity of the storage battery from the BMU of the battery system 42.
  • the threshold value is stored in advance in the storage device 110. Each threshold may have a configuration that can be updated from the outside.
  • various units as described above are realized as various functions by the CPU 82 of the computer 80 executing various processing operations corresponding to the computer program 90.
  • the computer program 90 of this embodiment is a procedure for acquiring at least one of the direction and the magnitude of the DC power input to the PV-PCS 14 in the computer 80 for realizing the charge / discharge control device 100, a power storage device (battery system) 42) Whether or not the output of the PV panel 12 is being suppressed based on a change in at least one of the direction and the magnitude of the acquired direct current (electric power) when the charge amount to the predetermined amount is increased.
  • Procedure for determining, when it is determined that the output of the PV panel 12 is being suppressed, the charging current of the power storage device (battery system 42) is determined as the charging power of the power storage device (battery system 42) or the output power of the PV panel 12. Is described so as to execute a procedure for controlling so as to be maximized.
  • the recording medium for recording the computer program 90 includes a medium that can be used by the non-transitory tangible computer 80, and a program code that can be read by the computer 80 is embedded in the medium.
  • the computer 80 is caused to execute the following control method for realizing the charge / discharge control apparatus 100.
  • FIG. 9 is a flowchart showing an example of the operation of the charge / discharge control apparatus 100 of the present embodiment.
  • the control method according to the embodiment of the present invention is a control method of the charge / discharge control device 100, and is a control method executed by the computer 80 that implements the charge / discharge control device 100.
  • the direct current (power) acquired by the acquisition unit 102 when the charge / discharge control device 100 increases the amount of charge to the power storage device (battery system 42) by a predetermined amount (step S201).
  • step S203 When it is determined whether the output of the PV panel 12 is being suppressed based on the change in at least one of the direction and the size (step S203), and it is determined that the output of the PV panel 12 is being suppressed
  • step S205 the charging current of the power storage device (battery system 42) is controlled so that the charging power of the power storage device (battery system 42) or the output power of the PV panel 12 is maximized (step S209).
  • This processing routine may be repeatedly executed periodically.
  • the period of periodically repeating is not particularly limited, and may be, for example, every several minutes, several tens of minutes, or every several tens of minutes.
  • this processing routine may be executed only for a predetermined number of minutes at the beginning of every fixed time (repeated multiple times). May be)
  • the control unit 104 performs a short test charge.
  • a predetermined current value I3 (A) (for example, 1A) is charged for a short time (step S201).
  • the “short time” of the execution time for performing the test charging may be, for example, around 1 second, but is not limited thereto.
  • the short test charge may be repeated a plurality of times with a predetermined interval.
  • the current value I3 (A) of the test charge, the execution time, and the cycle and number of times when the test charge is repeatedly executed are the scale of the output of the PV panel 12, the method of MPPT control in the PV-PCS 14, and the response speed. It is preferable that the value is appropriately determined according to the above.
  • the acquisition unit 102 measures the current value I2 (FIG. 8) input to the PV-PCS 14 of the DC power line 16b using the clamp type DC current sensor 48.
  • the measurement is preferably performed at least before the start of the test charge and during the test charge in step S201.
  • the current value acquired by the acquisition unit 102 is stored in the storage device 110 together with time information as current value information 112 (FIG. 10A). (The information in the “Remarks” column in the figure does not have to be included in the current value information 112. It is described for explanation.) Then, the control unit 104 performs test charging (“before charging”). From the “charging” to “charging”), it is determined whether or not the current value I2 has decreased (step S203). If it has not decreased (NO in step S203), it is determined that the PV output is being suppressed (NO in step S203). Step S205).
  • the current value I2 (A) in FIG. 10A is zero (0.0A). This is because the PV output suppression line by the PV-PCS 14 is zero% (0%). This is because the case where there is no power consumption by the load 26 (the same applies to the purchase of all the quantity) is described as an example.
  • the current value I2 (A) when the PV output is being suppressed but power is being output from the PV-PCS 14 to the AC side is a finite value that is not zero.
  • the total current drawn from the PV panel increases, so the voltage of the PV panel decreases (according to the general IV characteristics in the PV panel), but the PV-PCS 14 sets the output power to a predetermined value. Therefore, the current value I2 (A) during the test charging slightly increases (in this case, since it does not decrease, it can be correctly determined that the PV output is being suppressed).
  • the determination is based on the change in the current value I2 (A).
  • the output power of the PV-PCS 14 may be estimated using the voltage value measured at the same time, and used for the determination. If the output power does not decrease (fluctuate) due to charging, it can be determined that the PV output is being suppressed.
  • the difference between the current values of the current value information 112 is obtained and stored as the difference information 114 (FIG. 10B) together with the time information.
  • the information in the “Remarks” column in the figure does not have to be included in the difference information 114. It is described for the sake of explanation.
  • this difference information 114 whether or not the current value I2 has decreased. Can be determined.
  • a difference between current values may be calculated as an average value from a plurality of measured values.
  • control unit 104 determines that the free capacity of the storage battery is a predetermined value (for example, the rated capacity). 30%) or more is determined (step S207). If it is equal to or greater than the predetermined value (YES in step S207), the control unit 104 executes MPPT control of the output of the PV panel 12 to adjust the charging current of the storage battery, and performs charging control to the battery system 42 (step S209). ). If the free space is less than the predetermined value (NO in step S207), this process ends.
  • a predetermined value for example, the rated capacity. 30%
  • the charge / discharge control apparatus 100 of the present embodiment whether or not the PV output is being suppressed can be detected without the PV output suppression signal 32, and further, while performing MPPT control, The charging process can be performed. Therefore, the electric power suppressed by the PV output suppression control can be efficiently charged to the storage battery while maximizing the output of the PV panel 12.
  • the period for periodically executing this processing is not particularly limited, but may be, for example, every several minutes, several tens of minutes, or every few tens of minutes.
  • this processing routine may be executed only for several minutes of switching at regular intervals (repeated multiple times). Also good).
  • the control unit 104 decreases the charging current set by the MPPT control by a predetermined amount (step S221). Note that, unlike the case of FIG. 10, when the charging current is decreased by a predetermined amount, the charging current is not restored and the process proceeds to the next step S223 (determining whether or not the current value I2 has increased). Further, the acquisition unit 102 measures the current value I2 (FIG. 8) input to the PV-PCS 14 of the DC power line 16b using the clamp type DC current sensor 48. The measurement is preferably performed at least before and after the test charging in step S221.
  • the current value acquired by the acquisition unit 102 is stored in the storage device 110 together with time information as current value information 113 (FIG. 12A). Furthermore, the difference between the current values of the current value information 113 is obtained and stored as the difference information 115 (FIG. 12B) together with the time information. With reference to the difference information 115, it can be determined whether or not the current value I2 has increased. (The information in the “Remarks” column in the figure does not have to be included in the current value information 113 or the difference information 115. It is described for explanation.)
  • step S225 determines whether the electric current value I2 increased before and after step S221 with reference to the difference information 115 (step S223), and when it increases (YES of step S223), PV output suppression It is determined that the control has been released (step S225).
  • FIG. 12 is an example in the case where it is determined that the PV output suppression control has been released.
  • this processing is terminated assuming that the PV output suppression has not been released. .
  • the charging current decreased in step S221 may be returned to the original state before the end of this process, or the process may be shifted to MPPT control as it is.
  • step S225 when it is determined that the PV output suppression control has been released (step S225), the MPPT control by the charge / discharge control device 100 may be stopped immediately, but the PV output suppression value has only been changed to a larger value. Therefore, the PV output suppression control itself may be ongoing. Therefore, in the present embodiment, the following processing is continued.
  • step S225 When determining that the PV output suppression control has been released (step S225), the control unit 104 reduces the charging current of the MPPT control by a predetermined amount (step S227). Similar to step S223, the current value I2 is measured before and after the change of the current value of the charging current in step S227, and it is determined whether or not the current value I2 has increased (step S229). Step S227 is repeated until the current value I2 does not increase, and the charging current is decreased by a predetermined amount. When the current value I2 does not increase (NO in step S229), this process is terminated, and the process returns to the MPPT control by the charge / discharge control device 100. Alternatively, when the charging current reaches almost zero, it is determined that the PV output suppression control has been released, and the process stops without returning to the MPPT control.
  • the same effects as those of the above-described embodiment can be achieved, and even when the PV output suppression signal 32 cannot be received (referenced), the output is suppressed. Power can be maximized by MPPT control, and the storage battery can be efficiently charged.
  • Boosting device For example, as another embodiment, as shown in FIG. 13, a booster 50 exists between the PV panel 12 and the PV-PCS 14, and the PV system 10 in which the booster 50 performs MPPT control is also used in the power storage of the present invention.
  • the device 40 can be connected and controlled in the same manner as in the above embodiment.
  • the power storage device 40 of the present embodiment is connected to the DC power line 16b between the PV panel 12 and the booster device 50. Other than that is the same as that of the said embodiment.
  • the PV-PCS 14 or the booster device 50 may be configured to detect whether the MPPT control is in operation based on the output voltage and current values of the PV panel 12. . If the current and voltage fluctuation pattern of the output power of the PV panel 12 during the operation of the MPPT control by the PV-PCS 14 or the booster device 50 is known in advance, whether or not the MPPT control operation is performed accurately and easily using that information. Can be determined.
  • the MPPT It may be determined whether control is being performed.
  • the fluctuation pattern of the voltage and current of the output power of the PV panel 12 is analyzed in advance, the fluctuation pattern during the operation of the MPPT control by the PV-PCS 14 or the booster 50 is extracted and learned, and the storage device 110. Using this as a learned variation pattern, it is determined whether MPPT control is in progress.
  • control unit 104 may have an automatic tuning function based on the learning algorithm as described above, and can learn the operation of the MPPT control by the PV-PCS 14 or the booster 50 combined arbitrarily.
  • the voltage value and current value of the output power of the PV panel 12 are acquired by the acquisition unit 102, collated with the fluctuation pattern stored in the storage device 110, and determined to be in the operation of MPPT control. Good.
  • this determination may be made in combination with other conditions in other embodiments.
  • the stop of the MPPT control may be further confirmed by the method of the present embodiment, or when the stop of the MPPT control is detected by the method of the present embodiment, Therefore, test charging may be performed, and it can be comprehensively determined that the PV output is being suppressed.
  • control unit 104 starts the MPPT control in the charge / discharge control device 100 instead of the PV-PCS 14 or the booster 50 and performs the charge control. Also good.
  • FIG. 14 is a diagram illustrating a configuration of the power storage system 1 of the present embodiment.
  • the power storage system 1 of the present embodiment further includes a clamp-type AC current sensor 49 in addition to any configuration of the power storage system 1 of the above embodiment.
  • the clamp type AC current sensor 49 is installed on the AC power line 28b between the distribution board 24 and the power system 22, and detects the direction of the current flowing through the AC power line 28b.
  • the acquisition unit 102 acquires information regarding the direction of the current flowing through the AC power line 28b from the clamped AC current sensor 49.
  • control part 104 detects the reverse power flow to the electric power grid
  • the power exceeding the threshold may be charged as a surplus.
  • the threshold may be, for example, the total power consumption by the customer's load 26 or the like. According to this configuration, the clamp-type AC current sensor 49 is not necessary.
  • the same effect as that of the above-described embodiment can be obtained, and even when the PV output suppression signal 32 is not received, the surplus power derived from the PV panel 12 can be supplied to the power storage device 40 without causing reverse flow. It can be charged and used effectively.
  • Power storage means Power storage means; Control means for controlling charging and discharging of the power storage means; With The DC power generator is connected to the converter via a DC power line, The conversion device connects the DC power line and the AC power line, and converts DC power into AC power, The AC power line is connected to a power system, is connected to the DC power generation device via the conversion device, The power storage means is connected to the DC power line between the DC power generator and the converter, and the control means When it is detected that the output of the DC power generation device is being suppressed, the charging current of the power storage means is controlled so that the charging power of the power storage means or the output power of the DC power generation device is maximized.
  • the power storage system (Appendix 2) The power storage system according to appendix 1, wherein the control means periodically checks whether or not the output of the DC power generation device is continuing to be suppressed every predetermined time. (Appendix 3) The apparatus further comprises information acquisition means for acquiring information related to an instruction to suppress the output of the DC power generator from the converter. The power storage system according to appendix 1 or 2, wherein the control unit determines whether or not the output of the DC power generation device is being suppressed based on information regarding the suppression instruction acquired by the information acquisition unit.
  • (Appendix 4) Further comprising power information acquisition means for acquiring at least one of the direction and magnitude of the DC power input to the converter,
  • the control means includes Based on a change in at least one of the direction and magnitude of the DC power acquired by the power information acquisition unit when the charge amount to the power storage unit is increased by a predetermined amount, the output of the DC power generation device is being suppressed.
  • the power storage system according to any one of appendices 1 to 3, wherein the power storage system determines whether or not.
  • the DC power generator is a photovoltaic power generation facility,
  • a charge / discharge control device connected to a power storage device,
  • the DC power generator is connected to the converter via a DC power line,
  • the conversion device connects the DC power line and the AC power line, and converts DC power into AC power
  • the AC power line is connected to a power system, is connected to the DC power generation device via the conversion device, Connected to the DC power line between the DC generator and the converter,
  • the charge / discharge control device comprises: Control that controls the charging current of the power storage device so that the charging power of the power storage device or the output power of the DC power generation device is maximized when it is detected that the output of the DC power generation device is being suppressed.
  • Charge / discharge control apparatus comprising means.
  • the apparatus further comprises information acquisition means for acquiring information related to an instruction to suppress the output of the DC power generator from the converter.
  • (Appendix 9) Further comprising power information acquisition means for acquiring at least one of the direction and magnitude of the DC power input to the converter,
  • the control means includes Based on a change in at least one of the direction and magnitude of the DC power acquired by the power information acquisition means when the amount of charge to the power storage device is increased by a predetermined amount, the output of the DC power generation device is being suppressed.
  • the charge / discharge control apparatus according to any one of appendices 6 to 8, which determines whether or not (Appendix 10)
  • the DC power generator is a photovoltaic power generation facility
  • the charge / discharge control device according to any one of appendices 6 to 9, wherein the conversion device is a photovoltaic power conditioner.
  • a control method of a charge / discharge control device connected to a power storage device The DC power generator is connected to the converter via a DC power line, The conversion device connects the DC power line and the AC power line, and converts DC power into AC power, The AC power line is connected to a power system, is connected to the DC power generation device via the conversion device, Connected to the DC power line between the DC generator and the converter,
  • the charge / discharge control device comprises: When it is detected that the output of the DC power generation device is being suppressed, the charging current of the power storage device is controlled so that the charging power of the power storage device or the output power of the DC power generation device is maximized. Control method.
  • the charge / discharge control device comprises: The control method according to appendix 11, wherein the output of the DC power generation device is periodically checked at predetermined time intervals to determine whether or not the output of the DC power generation device is continuing to be suppressed.
  • the charge / discharge control device comprises: From the converter, obtain information on the instruction to suppress the output of the DC power generator, The control method according to appendix 11 or 12, wherein it is determined whether or not the output of the DC power generation device is being suppressed based on the acquired information regarding the suppression instruction.
  • the charge / discharge control device comprises: Obtaining at least one of the direction and magnitude of the DC power input to the converter, Whether or not the output of the DC power generation device is being suppressed based on a change in at least one of the direction and magnitude of the acquired DC power when the amount of charge to the power storage device is increased by a predetermined amount.
  • the control method according to any one of appendices 11 to 13, which is determined.
  • the DC power generator is a photovoltaic power generation facility, The control method according to any one of appendices 11 to 14, wherein the conversion device is a photovoltaic power conditioner.
  • a computer-readable recording medium recording a computer program for realizing a charge / discharge control device connected to a power storage device,
  • the DC power generator is connected to the converter via a DC power line,
  • the conversion device connects the DC power line and the AC power line, and converts DC power into AC power
  • the AC power line is connected to a power system, is connected to the DC power generation device via the conversion device, Connected to the DC power line between the DC generator and the converter,
  • a procedure for controlling the charging current of the power storage device so that the charging power of the power storage device or the output power of the DC power generation device is maximized when it is detected that the output of the DC power generation device is being suppressed.
  • the computer-readable recording medium which recorded the program for performing this.
  • Appendix 17 In a computer-readable recording medium in which the program according to appendix 16 is recorded, A computer-readable recording medium having recorded thereon a program for causing a computer to execute a procedure for periodically checking whether or not the output of the DC power generation device is continuing to be suppressed every predetermined time.
  • Appendix 18 In a computer-readable recording medium on which the program according to appendix 16 or 17 is recorded, A procedure for obtaining information relating to an instruction for suppressing the output of the DC power generator from the converter, and determining whether or not the output of the DC power generator is being suppressed based on the obtained information relating to the instruction for suppression.
  • a computer-readable recording medium on which a program for causing a computer to execute a procedure is recorded.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The objective of the present invention is to provide an electricity storage system, a charging and discharging control device and control method, and a program, which can be easily and relatively inexpensively installed by retrofitting to a photovoltaic power generation system that has already been installed, and with which electric power to be limited when the output power of a photovoltaic power generating facility is being limited can be utilized efficiently to the maximum extent. To this end, the electricity storage system is provided with an electricity storage device and a charging and discharging control device which controls charging and discharging of the electricity storage device. A PV panel is connected to a PV-PCS via a direct-current power cable. The PV-PCS connects the direct-current power cable to an alternating-current power cable, and converts direct-current power into alternating-current power. The alternating-current power cable is connected to a power grid and is connected to the PV panel via the PV-PCS. Upon detecting that the output from the direct-current power generating device is being limited, the charging and discharging control device, which is connected to the direct-current power cable between the PV panel 12 and the PV-PCS, controls the charging current of the electricity storage device to maximize the electricity storage device charging power or the PV panel output power.

Description

蓄電システム、充放電制御装置、その制御方法、およびプログラムを記録した記録媒体Power storage system, charge / discharge control device, control method thereof, and recording medium recording program
 本発明は、蓄電システム、充放電制御装置、その制御方法、およびプログラムを記録した記録媒体に関する。 The present invention relates to a power storage system, a charge / discharge control device, a control method thereof, and a recording medium on which a program is recorded.
 太陽光発電設備などの直流発電設備を商用電源などの電力系統に接続するためのパワーコンディショナの一例が特許文献1に記載されている。特許文献1のパワーコンディショナは、系統電圧が所定電圧を超えたときに、系統電圧上昇抑制制御を実行する一方で、その抑制されるべき電力を蓄電池に充電する機能も有している。これにより、系統電圧が上昇した場合に、直流発電設備で発電された電力を有効利用することができる。 An example of a power conditioner for connecting a DC power generation facility such as a solar power generation facility to a power system such as a commercial power supply is described in Patent Document 1. The power conditioner of Patent Document 1 has a function of charging the storage battery with the power to be suppressed while executing the system voltage increase suppression control when the system voltage exceeds a predetermined voltage. Thereby, when the system voltage rises, the electric power generated by the DC power generation facility can be effectively used.
 特許文献2に記載の太陽光発電システムは、電力会社等が設置した指令所から、通信網を介して出力抑制を指示する出力抑制情報を取得したとき、たとえば、電気温水器の沸き上げ動作が可能な場合に、出力抑制を解除し、太陽光発電システムの発電した電力を電気温水器の沸き上げ動作に使用させる使用電力を算出する。 When the solar power generation system described in Patent Document 2 acquires output suppression information that instructs output suppression via a communication network from a command center installed by an electric power company or the like, for example, the boiling operation of an electric water heater is performed. When possible, the output suppression is released, and the electric power used for the electric water heater boiling operation is calculated using the power generated by the photovoltaic power generation system.
 特許文献3に記載の発電システムは、系統電圧が所定の閾値を超えるような電圧上昇を検知したときに、各分散電源(自然発電装置または燃料電池発電装置)側の出力電圧を下げて、そのときの系統電力側の電圧値よりも低くなるように電圧上昇抑制制御を行う。
 特許文献4には、太陽電池の出力電圧を交流電力に変換し、その電力を系統配電線に逆潮流可能であって、系統電圧が所定の上限値を超えないようにインバータの出力電圧を抑制する出力電圧抑制部を備えた連系型インバータ装置が記載されている。
When the power generation system described in Patent Document 3 detects a voltage increase such that the system voltage exceeds a predetermined threshold, the output voltage on each distributed power source (natural power generation device or fuel cell power generation device) is decreased, Voltage rise suppression control is performed so as to be lower than the voltage value on the system power side.
In Patent Document 4, the output voltage of the solar cell is converted into AC power, and the power can be reversely flowed to the system distribution line, and the output voltage of the inverter is suppressed so that the system voltage does not exceed a predetermined upper limit value. An interconnected inverter device including an output voltage suppression unit is described.
 以下の分析は、本発明によって与えられたものである。非特許文献1および2に記載されているように、近年、太陽光を中心とした再生可能エネルギーを用いた分散型電源(発電装置)の急増により、電力系統に逆潮流する余剰電力が増加し、電力系統が不安定となる問題が生じている。 The following analysis is given by the present invention. As described in Non-Patent Documents 1 and 2, due to the rapid increase in distributed power sources (power generation devices) using renewable energy centered on sunlight, surplus power flowing backward to the power system has increased in recent years. There is a problem that the power system becomes unstable.
 非特許文献1には、ある地域において太陽光を中心とした再生可能エネルギーの急速な拡大に伴って電力の安定供給が困難となる見通しとなったことから、接続可能量が検証され、接続可能量を超える場合には出力制御が実施される旨が記載されている。ここで、出力制御とは、電力系統の安定化のために電力系統に逆潮流する電力量を制限するものである。具体的に、出力制御は、PCS(Power Conditioning System)によって発電装置における発電電力量を、所定の電力量に制御し、電力系統へ逆潮流する。今後は、家庭用等の小型太陽光発電設備も出力制御の対象となることが予定されている旨も記載されている。 In Non-Patent Document 1, it is expected that it will become difficult to stably supply power with rapid expansion of renewable energy centered on sunlight in a certain area. It is described that output control is performed when the amount is exceeded. Here, the output control is to limit the amount of power that flows backward to the power system in order to stabilize the power system. Specifically, in the output control, the amount of power generated in the power generation apparatus is controlled to a predetermined amount of power by PCS (Power Conditioning System), and reverse power flows to the power system. In the future, it is also stated that small solar power generation equipment for home use is scheduled to be subject to output control.
 非特許文献2には、太陽光発電設備における出力制御の運用方法について記載されている。発電電力の買取契約が全量買取か余剰買取かによって運用方法は異なり、余剰買取の場合に出力制御値(PCSの定格出力の何%)よりも自家消費電力量が上回った場合は、電力系統への逆潮流=0とする制御が可能となる。すなわち、発電装置の発電電力量-自家消費電力量=0とする制御である。 Non-Patent Document 2 describes an operation method of output control in a photovoltaic power generation facility. The operation method varies depending on whether the purchase contract of generated power is purchase of all or surplus, and in the case of surplus purchase, if the private power consumption exceeds the output control value (% of the rated output of the PCS), go to the power grid The reverse power flow = 0 can be controlled. That is, the control is such that the amount of power generated by the power generation apparatus−the amount of private power consumption = 0.
特開2012-139019号公報JP 2012-139019 A 特開2015-106937号公報Japanese Patent Laying-Open No. 2015-106937 特開2012-138988号公報JP 2012-138888 A 特開平9-172784号公報JP-A-9-172784
 上述した特許文献および非特許文献に記載されているように、太陽光発電システムにおいて系統電圧が上昇した場合や電力会社等が設置した指令所から通信網を介して出力抑制情報(指令値)を取得した場合など、PV-PCS(PhotoVoltaics Power Conditioning System:太陽光発電パワーコンディショナ)は出力抑制制御を行うことになるが、太陽光発電設備で発電可能な電力をできるだけ無駄にしないためには、この抑制されるべき分の電力を抑制せずに蓄電池に充電することが考えられる。 As described in the above-mentioned patent document and non-patent document, output suppression information (command value) is transmitted via a communication network from a command station installed by a power company or the like when a system voltage rises in a photovoltaic power generation system. For example, PV-PCS (PhotoVoltaics Power 太 陽光 Conditioning 太 陽光 System) will perform output suppression control, but in order not to waste as much as possible the power that can be generated by the solar power generation facility, It is conceivable to charge the storage battery without suppressing the power to be suppressed.
 特許文献1のパワーコンディショナ(PCS)は、太陽光発電設備など直流発電設備からの直流電力を昇圧するコンバータと、昇圧された直流電力を交流電力に変換して電力系統に供給するインバータとの間(直流リンク部)に、蓄電部の直流電力を電圧変換するコンバータ(充放電制御も行う)が接続されており、系統電圧上昇抑制制御時に出力抑制されるべき電力を抑制せずに蓄電池に充電する機能を備えている。 The power conditioner (PCS) of Patent Literature 1 includes a converter that boosts DC power from a DC power generation facility such as a solar power generation facility, and an inverter that converts the boosted DC power into AC power and supplies the AC power to the power system. The converter (which also performs charge / discharge control) that converts the DC power of the power storage unit to a voltage is connected between the DC links (DC link unit). Has the ability to charge.
 ところが、既に設置され運用されている多くの太陽光発電システムは、出力抑制時に蓄電池に充電する機能を備えていないため、今後、電力会社等が設置した指令所から出力抑制情報(指令値)を取得するようになり、かつその頻度が増えて来ると、多くの電力が無駄に抑制されてしまうことになる。 However, since many photovoltaic power generation systems that have already been installed and operated do not have a function of charging the storage battery when the output is suppressed, output suppression information (command value) will be obtained from the command station installed by the power company. If the frequency is increased and the frequency is increased, a large amount of power is wasted.
 そこで、たとえば、既設のPV-PCSを特許文献1のようなPCS、すなわち、太陽光発電設備や蓄電池など複数の直流電源に接続して一体制御が可能な(マルチソースタイプの)PCSに置換えた上で蓄電池を追加することが考えられるが、多大なコストが掛り、システム全体の見直しも必要になるなど問題が多かった。 Therefore, for example, the existing PV-PCS is replaced with a PCS as in Patent Document 1, that is, a PCS (multi-source type) that can be connected to a plurality of DC power sources such as a solar power generation facility and a storage battery and can be integratedly controlled. Although it is conceivable to add a storage battery above, there are many problems such as high costs and a review of the entire system.
 本発明は上記事情に鑑みてなされたものであり、その目的とするところは、既設の太陽光発電システムにも容易かつ比較的安価に後付による設置が可能であり、太陽光発電設備の出力抑制時に抑制されるべき電力を効率よく最大限に利用できる蓄電システム、充放電制御装置、その制御方法、およびプログラム充放電制御装置、その制御方法、およびプログラムを記録した記録媒体を提供することにある。 The present invention has been made in view of the above circumstances, and the object of the present invention is that it can be easily and relatively inexpensively installed in an existing solar power generation system by retrofitting, and the output of the solar power generation facility To provide a power storage system, a charge / discharge control device, a control method thereof, a program charge / discharge control device, a control method thereof, and a recording medium recording the program, which can efficiently and maximally use power to be suppressed at the time of suppression. is there.
 本発明の各側面では、上述した課題を解決するために、それぞれ以下の構成を採用する。 In each aspect of the present invention, the following configurations are adopted in order to solve the above-described problems.
 第一の側面は、蓄電システムに関する。
 第一の側面に係る蓄電システムは、
 蓄電手段と、
 前記蓄電手段の充放電を制御する制御手段と、
を備え、
 直流発電装置が直流電力線を介して変換装置に接続しており、
 前記変換装置は、前記直流電力線と交流電力線とを接続しており、かつ、直流電力を交流電力に変換し、
 前記交流電力線は、電力系統に接続しており、前記変換装置を介して前記直流発電装置に接続しており、
 前記直流発電装置と前記変換装置の間の前記直流電力線に、前記蓄電手段が接続され、 前記制御手段は、
  前記直流発電装置の出力が抑制中であることが検出された場合に、前記蓄電手段の充電電流を、前記蓄電手段の充電電力または前記直流発電装置の出力電力が最大となるように制御する。
The first aspect relates to a power storage system.
The power storage system according to the first aspect is
Power storage means;
Control means for controlling charging and discharging of the power storage means;
With
The DC power generator is connected to the converter via a DC power line,
The conversion device connects the DC power line and the AC power line, and converts DC power into AC power,
The AC power line is connected to a power system, is connected to the DC power generation device via the conversion device,
The power storage means is connected to the DC power line between the DC power generator and the converter, and the control means
When it is detected that the output of the DC power generation device is being suppressed, the charging current of the power storage unit is controlled so that the charging power of the power storage unit or the output power of the DC power generation device is maximized.
 第二の側面は、充放電制御装置に関する。
 第二の側面に係る充放電制御装置は、
 蓄電装置に接続される充放電制御装置であって、
 直流発電装置が直流電力線を介して変換装置に接続しており、
 前記変換装置は、前記直流電力線と交流電力線とを接続しており、かつ、直流電力を交流電力に変換し、
 前記交流電力線は、電力系統に接続しており、前記変換装置を介して前記直流発電装置に接続しており、
 前記直流発電装置と前記変換装置の間の前記直流電力線に、接続され、
 前記充放電制御装置は、
 前記直流発電装置の出力が抑制中であることが検出された場合に、前記蓄電装置の充電電流を、前記蓄電装置の充電電力または前記直流発電装置の出力電力が最大となるように制御する制御手段を有する。
The second aspect relates to a charge / discharge control device.
The charge / discharge control device according to the second aspect is
A charge / discharge control device connected to a power storage device,
The DC power generator is connected to the converter via a DC power line,
The conversion device connects the DC power line and the AC power line, and converts DC power into AC power,
The AC power line is connected to a power system, is connected to the DC power generation device via the conversion device,
Connected to the DC power line between the DC generator and the converter,
The charge / discharge control device comprises:
Control that controls the charging current of the power storage device so that the charging power of the power storage device or the output power of the DC power generation device is maximized when it is detected that the output of the DC power generation device is being suppressed. Have means.
 第三の側面は、少なくとも1つのコンピュータにより実行される充放電制御装置の制御方法に関する。
 第三の側面に係る充放電制御装置の制御方法は、
 蓄電装置の充放電を制御する充放電制御装置の制御方法であって、
 直流発電装置が直流電力線を介して変換装置に接続しており、
 前記変換装置は、前記直流電力線と交流電力線とを接続しており、かつ、直流電力を交流電力に変換し、
 前記交流電力線は、電力系統に接続しており、前記変換装置を介して前記直流発電装置に接続しており、
 前記直流発電装置と前記変換装置の間の前記直流電力線に、接続され、
 前記充放電制御装置が、
 前記直流発電装置の出力が抑制中であることが検出された場合に、前記蓄電装置の充電電流を、前記蓄電装置の充電電力または前記直流発電装置の出力電力が最大となるように制御する、ことを含む。
A 3rd side is related with the control method of the charging / discharging control apparatus performed by at least 1 computer.
The control method of the charge / discharge control device according to the third aspect is as follows:
A control method of a charge / discharge control device for controlling charge / discharge of a power storage device,
The DC power generator is connected to the converter via a DC power line,
The conversion device connects the DC power line and the AC power line, and converts DC power into AC power,
The AC power line is connected to a power system, is connected to the DC power generation device via the conversion device,
Connected to the DC power line between the DC generator and the converter,
The charge / discharge control device comprises:
When it is detected that the output of the DC power generation device is being suppressed, the charging current of the power storage device is controlled so that the charging power of the power storage device or the output power of the DC power generation device is maximized. Including that.
 なお、本発明の他の側面としては、上記第三の側面の方法を少なくとも1つのコンピュータに実行させるプログラムであってもよいし、このようなプログラムを記録したコンピュータが読み取り可能な記録媒体であってもよい。この記録媒体は、非一時的な有形の媒体を含む。
 このコンピュータプログラムは、コンピュータにより実行されたとき、コンピュータに、充放電制御装置上で、その制御方法を実施させるコンピュータプログラムコードを含む。
As another aspect of the present invention, there may be a program for causing at least one computer to execute the method of the third aspect, or a computer-readable recording medium recording such a program. May be. This recording medium includes a non-transitory tangible medium.
This computer program includes computer program code that, when executed by a computer, causes the computer to perform its control method on the charge / discharge control device.
 なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システム、記録媒体、コンピュータプログラムなどの間で変換したものもまた、本発明の態様として有効である。 It should be noted that an arbitrary combination of the above-described components and a conversion of the expression of the present invention between a method, an apparatus, a system, a recording medium, a computer program, etc. are also effective as an aspect of the present invention.
 また、本発明の各種の構成要素は、必ずしも個々に独立した存在である必要はなく、複数の構成要素が一個の部材として形成されていること、一つの構成要素が複数の部材で形成されていること、ある構成要素が他の構成要素の一部であること、ある構成要素の一部と他の構成要素の一部とが重複していること、等でもよい。 The various components of the present invention do not necessarily have to be independent of each other. A plurality of components are formed as a single member, and a single component is formed of a plurality of members. It may be that a certain component is a part of another component, a part of a certain component overlaps with a part of another component, or the like.
 また、本発明の方法およびコンピュータプログラムには複数の手順を順番に記載してあるが、その記載の順番は複数の手順を実行する順番を限定するものではない。このため、本発明の方法およびコンピュータプログラムを実施するときには、その複数の手順の順番は内容的に支障のない範囲で変更することができる。 In addition, although a plurality of procedures are described in order in the method and computer program of the present invention, the order of description does not limit the order in which the plurality of procedures are executed. For this reason, when the method and computer program of the present invention are implemented, the order of the plurality of procedures can be changed within a range that does not hinder the contents.
 さらに、本発明の方法およびコンピュータプログラムの複数の手順は個々に相違するタイミングで実行されることに限定されない。このため、ある手順の実行中に他の手順が発生すること、ある手順の実行タイミングと他の手順の実行タイミングとの一部ないし全部が重複していること、等でもよい。 Furthermore, the plurality of procedures of the method and computer program of the present invention are not limited to being executed at different timings. For this reason, another procedure may occur during the execution of a certain procedure, or some or all of the execution timing of a certain procedure and the execution timing of another procedure may overlap.
 上記各側面によれば、既設の太陽光発電システムにも容易かつ比較的安価に後付による設置が可能であり、太陽光発電設備の出力抑制時に抑制されるべき電力を効率よく最大限に利用できる蓄電システム、充放電制御装置、その制御方法、およびプログラムを記録した記録媒体を提供することができる。 According to each of the above aspects, it is possible to install the existing photovoltaic power generation system by retrofitting easily and at a relatively low cost, and efficiently and efficiently use the power that should be suppressed when suppressing the output of the photovoltaic power generation equipment. A power storage system, a charge / discharge control device, a control method thereof, and a recording medium on which a program is recorded can be provided.
太陽光発電システムの構成例を示す概略ブロック図である。It is a schematic block diagram which shows the structural example of a solar energy power generation system. 本発明の実施の形態に係る蓄電システムの構成例を示す概略ブロック図である。It is a schematic block diagram which shows the structural example of the electrical storage system which concerns on embodiment of this invention. PV出力電力とPV出力抑制を説明するための図である。It is a figure for demonstrating PV output electric power and PV output suppression. PV出力電力とPV出力抑制を説明するための図である。It is a figure for demonstrating PV output electric power and PV output suppression. PV出力電力とPV出力抑制を説明するための図である。It is a figure for demonstrating PV output electric power and PV output suppression. 本発明の実施の形態に係る充放電制御装置の構成を論理的に示す機能ブロック図である。It is a functional block diagram which shows logically the structure of the charging / discharging control apparatus which concerns on embodiment of this invention. 本実施形態の充放電制御装置を実現するコンピュータの構成の一例を示す図である。It is a figure which shows an example of a structure of the computer which implement | achieves the charging / discharging control apparatus of this embodiment. 本実施形態の充放電制御装置の動作の一例を示すフローチャートである。It is a flowchart which shows an example of operation | movement of the charging / discharging control apparatus of this embodiment. 本実施形態に係る充放電制御装置の論理的な構成を示す機能ブロック図である。It is a functional block diagram which shows the logical structure of the charging / discharging control apparatus which concerns on this embodiment. 本実施形態に係る蓄電システムの要部構成を示すブロック図である。It is a block diagram which shows the principal part structure of the electrical storage system which concerns on this embodiment. 本実施形態の充放電制御装置の動作の一例を示すフローチャートである。It is a flowchart which shows an example of operation | movement of the charging / discharging control apparatus of this embodiment. 本実施形態の記憶装置に記憶される情報のデータ構造の一例を示す図である。It is a figure which shows an example of the data structure of the information memorize | stored in the memory | storage device of this embodiment. 本実施形態の記憶装置に記憶される情報のデータ構造の一例を示す図である。It is a figure which shows an example of the data structure of the information memorize | stored in the memory | storage device of this embodiment. 本実施形態の充放電制御装置の動作の一例を示すフローチャートである。It is a flowchart which shows an example of operation | movement of the charging / discharging control apparatus of this embodiment. 本実施形態の記憶装置に記憶される情報のデータ構造の一例を示す図である。It is a figure which shows an example of the data structure of the information memorize | stored in the memory | storage device of this embodiment. 本実施形態の記憶装置に記憶される情報のデータ構造の一例を示す図である。It is a figure which shows an example of the data structure of the information memorize | stored in the memory | storage device of this embodiment. 本発明の実施の形態に係る蓄電システムの構成例を示す概略ブロック図である。It is a schematic block diagram which shows the structural example of the electrical storage system which concerns on embodiment of this invention. 本発明の実施の形態に係る蓄電システムの構成例を示す概略ブロック図である。It is a schematic block diagram which shows the structural example of the electrical storage system which concerns on embodiment of this invention.
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.
(第1の実施の形態)
 本発明の第1の実施の形態に係る蓄電システムについて、以下説明する。
 図1は、太陽光発電(PV:PhotoVoltaics)システム10の構成例を示す概略ブロック図である。
 図2は、本発明の実施の形態に係る蓄電システム1の構成例を示す概略ブロック図である。蓄電システム1は、図1の既存のPVシステム10の直流電力線16側に蓄電装置40を付加した後の構成を示している。
 本明細書の各図において、本発明の本質に関わらない部分の構成については省略してあり、図示されていない。
(First embodiment)
The power storage system according to the first embodiment of the present invention will be described below.
FIG. 1 is a schematic block diagram illustrating a configuration example of a photovoltaic power generation (PV: PhotoVoltaics) system 10.
FIG. 2 is a schematic block diagram showing a configuration example of the power storage system 1 according to the embodiment of the present invention. The power storage system 1 shows a configuration after the power storage device 40 is added to the DC power line 16 side of the existing PV system 10 of FIG.
In each drawing of the present specification, the configuration of parts not related to the essence of the present invention is omitted and is not shown.
 図1の既存のPVシステム10は、PVパネル12と、PV-PCS(PhotoVoltaics Power Conditioning System:太陽光発電パワーコンディショナ)14と、分電盤24と、負荷26とを含む。本実施形態では、PVパネル12、およびPV-PCS14は屋外に設置されており、分電盤24、および負荷26は、屋内に設置されているものとする。
上記は一例であり、PV-PCSが屋内に設置されるシステムも存在する。また、分電盤24、および負荷26の少なくともいずれか一つ(またはそれらの一部)が、屋外に設置されていてもよい。
The existing PV system 10 of FIG. 1 includes a PV panel 12, a PV-PCS (PhotoVoltaics Power Conditioning System) 14, a distribution board 24, and a load 26. In the present embodiment, it is assumed that the PV panel 12 and the PV-PCS 14 are installed outdoors, and the distribution board 24 and the load 26 are installed indoors.
The above is an example, and there is a system in which PV-PCS is installed indoors. In addition, at least one of the distribution board 24 and the load 26 (or part of them) may be installed outdoors.
 PVパネル12とPV-PCS14は、直流電力線16(破線で示す)で接続されている。
 PV-PCS14と、分電盤24と、電力系統22は、交流電力線28(一点鎖線で示す(28a、28b))で接続されている。交流電力線28(28a、28b)には、さらに、分電盤24を介して負荷26が接続されている。
The PV panel 12 and the PV-PCS 14 are connected by a DC power line 16 (shown by a broken line).
The PV-PCS 14, the distribution board 24, and the power system 22 are connected by an AC power line 28 (shown by a one-dot chain line (28a, 28b)). A load 26 is further connected to the AC power line 28 (28a, 28b) via a distribution board 24.
 PVパネル12は、太陽の光エネルギーを受けて電気に変換する太陽電池を複数含み、強化ガラスやアクリル樹脂などで保護したもので、たとえば、住居の屋根等に設置される。
 PVパネル12で発電された直流電力は、直流電力線16を通りPV-PCS14に入力される。PV-PCS14は、PVパネル12で発電した直流電力を、家電(負荷26)で一般的に使われる交流電力に変換する機能を有する。
The PV panel 12 includes a plurality of solar cells that receive solar light energy and converts them into electricity, and is protected by tempered glass or acrylic resin. For example, the PV panel 12 is installed on a roof of a residence.
The DC power generated by the PV panel 12 is input to the PV-PCS 14 through the DC power line 16. The PV-PCS 14 has a function of converting DC power generated by the PV panel 12 into AC power generally used in home appliances (load 26).
 また、PV-PCS14は、たとえば、PVパネル12に対する出力抑制制御信号32(以下、PV出力抑制信号とも呼ぶ)を外部のサーバ30等から受信し、PV出力抑制信号32に従い、PVパネル12の出力を抑制して、交流電力線28(28a)に出力する機能も有する。PV出力抑制信号32には、たとえば、PV-PCS14の定格出力の所定の割合(%)に出力を抑制する指示が含まれる。 The PV-PCS 14 receives, for example, an output suppression control signal 32 (hereinafter also referred to as a PV output suppression signal) for the PV panel 12 from the external server 30 or the like, and outputs the PV panel 12 according to the PV output suppression signal 32. And has a function of outputting to the AC power line 28 (28a). The PV output suppression signal 32 includes, for example, an instruction to suppress the output to a predetermined ratio (%) of the rated output of the PV-PCS 14.
 すなわち、PV出力抑制信号32によりPV-PCS14の定格出力の80%に出力を抑制する指示がなされた場合には、PV-PCS14は、PVパネル12から出力された直流電力を交流電力に変換する際に、PV-PCS14の定格出力の80%に抑制して交流電力線28aに出力し、80%を超える電力は交流電力線28aに出力しない。つまり、PV出力抑制信号32によりPV出力の電力量の上限が設定される。 That is, when the PV output suppression signal 32 instructs to suppress the output to 80% of the rated output of the PV-PCS 14, the PV-PCS 14 converts the DC power output from the PV panel 12 into AC power. At this time, it is suppressed to 80% of the rated output of the PV-PCS 14 and output to the AC power line 28a, and the power exceeding 80% is not output to the AC power line 28a. That is, the PV output suppression signal 32 sets the upper limit of the PV output power amount.
 負荷26は、エアコン、照明機器、冷蔵庫、テレビ、電子レンジ、ドライヤー、パーソナルコンピュータ、ゲーム機、電話機、給湯器、電気自動車、およびプラグインハイブリッド自動車等、様々な電気機器の少なくとも一つであり、特に限定されない。 The load 26 is at least one of various electric devices such as an air conditioner, a lighting device, a refrigerator, a television, a microwave oven, a dryer, a personal computer, a game machine, a telephone, a water heater, an electric vehicle, and a plug-in hybrid vehicle. There is no particular limitation.
 電力系統22から需要家宅の分電盤24に、送電ネットワークを介して電気が供給され、分電盤24を介して各負荷26に電気が分配される。
 また、PVパネル12で発電された直流電力は、直流電力線16を介してPV-PCS14に入力され、交流電力に変換されて交流電力線28aに出力される。そして、交流電力線28aを通り、分電盤24を介して負荷26に供給することができる。
Electricity is supplied from the electric power system 22 to the distribution board 24 of the customer's house via the power transmission network, and electricity is distributed to each load 26 via the distribution board 24.
Also, the DC power generated by the PV panel 12 is input to the PV-PCS 14 via the DC power line 16, is converted into AC power, and is output to the AC power line 28a. Then, it can be supplied to the load 26 through the distribution board 24 through the AC power line 28a.
 PVパネル12で発電された電力は、需要家の負荷26で消費する以外に、余剰分を、分電盤24を介して電力系統22に逆潮流されて売電することもできる。
 または、PVパネル12で発電された余剰電力は、できるだけ電力系統22に逆潮流させず、交流電力線28a側に接続した蓄電装置(不図示)に充電してもよく、あるいは、直流電力線16側に接続された、たとえば、本発明の実施の形態に係る蓄電装置40で電池システム42のリチウムイオン二次電池に充電させてもよい。この構成については、本発明の実施の形態に組み合わせて実施してもよい構成例として後述する。
In addition to consuming the power generated by the PV panel 12 at the load 26 of the consumer, the surplus can be reversely flowed to the power system 22 via the distribution board 24 and sold.
Alternatively, surplus power generated by the PV panel 12 may be charged to a power storage device (not shown) connected to the AC power line 28a side as much as possible without causing the power system 22 to reversely flow, or to the DC power line 16 side. For example, the connected lithium ion secondary battery of the battery system 42 may be charged by the power storage device 40 according to the embodiment of the present invention. This configuration will be described later as a configuration example that may be implemented in combination with the embodiment of the present invention.
 本実施形態では、PV-PCS14は、PVパネル12から得られる電力を調整する機能も有する。PVパネル12から得られる電力は、日射量や温度で電流と電圧が変動し、特性が常に変化する。電流と電圧の積により求まる電力が最大となる電力点になるように、PVパネル12の出力の電流と電圧を常に制御することで、PVパネル12の出力を最大化することができる。この制御は最大電力点追従(Maximum Power Point Tracking:MPPT)制御と呼ばれ、たとえば、PV-PCS14により実行されている。 In the present embodiment, the PV-PCS 14 also has a function of adjusting the power obtained from the PV panel 12. The electric power obtained from the PV panel 12 varies in current and voltage depending on the amount of solar radiation and temperature, and the characteristics always change. The output of the PV panel 12 can be maximized by always controlling the current and voltage of the output of the PV panel 12 so that the power obtained by the product of the current and the voltage becomes the maximum power point. This control is called maximum power point tracking (MPPT) control, and is executed by, for example, the PV-PCS 14.
 また、PV-PCS14は、交流電力線28側で連系する電力系統の状態を常に監視しており、系統電圧が所定電圧を超えたときにインバータの出力(PVパネル12の出力)を抑制する機能(系統連系保護機能の1つ)を有する。 The PV-PCS 14 constantly monitors the state of the power system connected on the AC power line 28 side, and suppresses the output of the inverter (output of the PV panel 12) when the system voltage exceeds a predetermined voltage. (One of the grid connection protection functions).
 以下、PV-PCS14が出力抑制してない場合(図3A)と、PV出力抑制信号32による出力抑制を実施している場合(図3B、図3C)について説明する。
 まず、PV-PCS14が出力抑制してない場合、すなわち、PV出力抑制信号32を受信していない(かつ系統電圧も所定電圧を超えてない)場合について説明する。図3Aに示すように、PVパネル12の発電量(実線)と負荷26の消費電力量(破線)の差分部分(ハッチング部分)は、PVパネル12で発電されPV-PCS14から出力された電力のうち負荷26で消費されない余剰電力となる。この余剰電力は電力系統22に逆潮流(売電)されるが、前述したように、蓄電池に充電し、放電可能な時間帯に放電して負荷26に供給すれば、無駄にせずに効率よく利用できる。この構成については、本発明の実施の形態に組み合わせて実施してもよい構成例として後述する。
Hereinafter, the case where the PV-PCS 14 does not suppress the output (FIG. 3A) and the case where the output suppression by the PV output suppression signal 32 is performed (FIGS. 3B and 3C) will be described.
First, the case where the PV-PCS 14 does not suppress the output, that is, the case where the PV output suppression signal 32 is not received (and the system voltage does not exceed the predetermined voltage) will be described. As shown in FIG. 3A, the difference portion (hatched portion) between the power generation amount (solid line) of the PV panel 12 and the power consumption amount (broken line) of the load 26 is the power generated by the PV panel 12 and output from the PV-PCS 14. Of this, the surplus power is not consumed by the load 26. This surplus power is reversely flowed (sold) into the power system 22. However, as described above, if the storage battery is charged, discharged in a dischargeable time zone, and supplied to the load 26, it is efficiently used without being wasted. Available. This configuration will be described later as a configuration example that may be implemented in combination with the embodiment of the present invention.
 次に、PV-PCS14がPV出力抑制信号32による出力抑制を実施している場合について説明する。まず、負荷26がなく、全量を売電する全量買取の場合は、図3Bに示すように、PV出力抑制信号32により発電量の抑制制御が行われると、PVパネル12の発電量(PV-PCS14から出力される電力)がPV出力抑制ラインまで抑制される。すなわち、ハッチング部分はPV-PCS14から出力されず、売電できず無駄になる。(このPVパネル12の発電が抑制されて売電できない電力分を蓄電池に充電し、PV出力抑制信号32による抑制指示が解除されたときに放電すれば、電力を無駄にせずに効率よく利用できる。) Next, the case where the PV-PCS 14 performs output suppression by the PV output suppression signal 32 will be described. First, in the case of purchasing the entire amount in which there is no load 26 and sells the entire amount, as shown in FIG. 3B, when the generation amount suppression control is performed by the PV output suppression signal 32, the generation amount (PV− The power output from the PCS 14) is suppressed to the PV output suppression line. In other words, the hatched portion is not output from the PV-PCS 14 and cannot be sold and is wasted. (If the power generated by the PV panel 12 is suppressed and cannot be sold, the battery is charged and discharged when the suppression instruction by the PV output suppression signal 32 is released, so that the power can be efficiently used without wasting it. .)
 一方、負荷26がある余剰買取の場合、図3Cに示すように、PV出力抑制信号32により発電量の抑制制御が行われると、PV-PCS14から出力される電力は、PV出力抑制ラインまで、または負荷26による自家消費電力量と同様の発電量になる(電力系統への逆潮流が0となる)ように抑制される。この場合、PV出力抑制ラインより上、かつ、自家消費電力量より上の出力抑制された電力(ハッチング部分)は、PV-PCS14から出力されず、使用することができない。 On the other hand, in the case of surplus purchase with the load 26, as shown in FIG. 3C, when the suppression control of the power generation amount is performed by the PV output suppression signal 32, the power output from the PV-PCS 14 is reduced to the PV output suppression line. Or it is suppressed so that it may become the electric power generation amount similar to the private power consumption amount by the load 26 (the reverse power flow to the electric power system becomes zero). In this case, the output-suppressed power (hatched portion) above the PV output suppression line and above the private power consumption is not output from the PV-PCS 14 and cannot be used.
 なお、PV-PCS14が、負荷26による自家消費電力量と同様の発電量になる(電力系統への逆潮流が0となる)ように抑制するためには、PV-PCS14は、たとえば、分電盤24と電力系統22の間の交流電力線28bに設置されたクランプ式交流電流センサ(不図示)を利用して、交流電力線28bを流れる電流の向き(と大きさ)を検出する必要がある。 In order to suppress the PV-PCS 14 so that the amount of power generated is the same as the amount of private power consumed by the load 26 (the reverse power flow to the power system is zero), the PV-PCS 14 is, for example, a power distribution It is necessary to detect the direction (and magnitude) of the current flowing through the AC power line 28b by using a clamp-type AC current sensor (not shown) installed on the AC power line 28b between the panel 24 and the power system 22.
 図2に示すように、本実施形態の蓄電装置40は、電池システム42と、充放電制御装置100とを含む。蓄電装置40は、PVパネル12とPV-PCS14の間の直流電力線16に接続ライン17を介して電気的に接続される。本実施形態の充放電制御装置100は、PVシステム10に接続される電池システム42の充放電を制御する。また、本実施形態における蓄電装置40は、屋外に設置されるものとしているが、屋内に設置されていてもよい。 As shown in FIG. 2, the power storage device 40 of this embodiment includes a battery system 42 and a charge / discharge control device 100. The power storage device 40 is electrically connected to the DC power line 16 between the PV panel 12 and the PV-PCS 14 via the connection line 17. The charge / discharge control apparatus 100 of this embodiment controls charge / discharge of the battery system 42 connected to the PV system 10. Moreover, although the electrical storage apparatus 40 in this embodiment shall be installed outdoors, you may install indoors.
 電池システム42は、図示されない、少なくとも一つのリチウムイオン二次電池(lithium-ion rechargeable battery)(以下、「蓄電池」とも呼ぶ)と、リチウムイオン二次電池を管理するバッテリマネジメントユニット(Battery Management Unit:BMU)とを含む。電池システム42は、定格容量(kWh)で示される、システムが充電可能な電気容量を有する。電池システム42は、充放電制御装置100により蓄電池の充放電が制御される。 The battery system 42 includes at least one lithium-ion secondary battery (not shown) (hereinafter also referred to as “storage battery”) and a battery management unit (Battery Management Unit) that manages the lithium ion secondary battery. BMU). The battery system 42 has an electric capacity indicated by a rated capacity (kWh) that can be charged by the system. In the battery system 42, charging / discharging of the storage battery is controlled by the charging / discharging control device 100.
 また、本実施形態では、詳細な説明は省略するが、蓄電池の充放電制御においては、蓄電池の定格容量に対する所定の範囲内で充放電制御が行われるものとする。 Further, in the present embodiment, although detailed description is omitted, in the charge / discharge control of the storage battery, the charge / discharge control is performed within a predetermined range with respect to the rated capacity of the storage battery.
 本実施形態では、PV出力抑制信号32を受信するか、系統電圧が所定電圧を超えることで、PV-PCS14が出力抑制制御を実施中の場合に、PVパネル12からの出力が抑制された電力分を、抑制せずに蓄電池に効率よく充電して利用する。蓄電池に充電した電力は、放電可能な時間帯に放電して負荷26に供給すれば、無駄にせずに効率よく利用できる。 In this embodiment, when the PV output suppression signal 32 is received or the system voltage exceeds a predetermined voltage, the output from the PV panel 12 is suppressed when the PV-PCS 14 is executing the output suppression control. Efficiently charge and use the storage battery without suppressing it. The electric power charged in the storage battery can be efficiently used without being wasted if it is discharged and supplied to the load 26 in a dischargeable time zone.
 本実施形態では、そのために、PVパネル12とPV-PCS14の間の直流電力線16に、蓄電装置40を接続して、PVパネル12の出力が抑制中であることが検知された場合に、抑制されている電力を充電できるようにする。 In the present embodiment, for this purpose, when the power storage device 40 is connected to the DC power line 16 between the PV panel 12 and the PV-PCS 14 and it is detected that the output of the PV panel 12 is being suppressed, the suppression is performed. To be able to charge the power that is being used.
 ここで、PV-PCS14が出力抑制制御中の場合は、PV-PCS14によるMPPT制御が行われない。そこで、PV-PCS14に代わり、蓄電装置40がMPPT制御しながら充電を行うことで、PVパネル12から出力される電力を最大限に取り出して充電する。 Here, when the PV-PCS 14 is under the output suppression control, the MPPT control by the PV-PCS 14 is not performed. Therefore, instead of the PV-PCS 14, the power storage device 40 performs charging while performing MPPT control, whereby the power output from the PV panel 12 is extracted to the maximum and charged.
 図4は、本発明の実施の形態に係る充放電制御装置100の構成を論理的に示す機能ブロック図である。以下、本実施形態の充放電制御装置100の構成について、図2~図4を用いて説明する。 FIG. 4 is a functional block diagram logically showing the configuration of the charge / discharge control apparatus 100 according to the embodiment of the present invention. Hereinafter, the configuration of the charge / discharge control apparatus 100 of the present embodiment will be described with reference to FIGS.
 直流発電装置(PVパネル12)は、直流電力線16を介して変換装置(PV-PCS14)に接続している。
 変換装置(PV-PCS14)は、直流電力線16と交流電力線28aとを接続しており、かつ、直流電力を交流電力に変換する。
 交流電力線28(28a、28b)は、変換装置(PV-PCS14)から電力系統22に接続しており、変換装置(PV-PCS14)を介して直流発電装置(PVパネル12)に接続している。
 直流発電装置(PVパネル12)と変換装置(PV-PCS14)の間の直流電力線16に、蓄電装置40(電池システム42)が接続されている。
The DC power generator (PV panel 12) is connected to the converter (PV-PCS 14) via the DC power line 16.
The converter (PV-PCS 14) connects the DC power line 16 and the AC power line 28a, and converts DC power into AC power.
The AC power lines 28 (28a, 28b) are connected to the power system 22 from the converter (PV-PCS 14), and are connected to the DC power generator (PV panel 12) via the converter (PV-PCS 14). .
A power storage device 40 (battery system 42) is connected to the DC power line 16 between the DC power generator (PV panel 12) and the converter (PV-PCS 14).
 本実施形態の充放電制御装置100は、取得部102と、制御部104とを有する。
 制御部104は、直流発電装置(PVパネル12)の出力が抑制中であることが検出された場合に、蓄電装置40(電池システム42)の充電電流を、蓄電装置40(電池システム42)の充電電力または直流発電装置(PVパネル12)の出力電力が最大となるように制御する。
The charge / discharge control apparatus 100 according to the present embodiment includes an acquisition unit 102 and a control unit 104.
When it is detected that the output of the DC power generation device (PV panel 12) is being suppressed, the control unit 104 determines the charging current of the power storage device 40 (battery system 42) as the power storage device 40 (battery system 42). Control is performed so that the charging power or the output power of the DC power generator (PV panel 12) is maximized.
 本実施形態の充放電制御装置100は、さらに、図示されない記憶装置110にアクセス可能に接続されてもよい。記憶装置110は、充放電制御装置100に含まれてもよいし、充放電制御装置100の外部の装置であってもよい。本実施形態では、記憶装置110は、後述する図5のコンピュータ80のメモリ84またはストレージ85により実現されてよい。 The charge / discharge control device 100 of this embodiment may be further connected to a storage device 110 (not shown) so as to be accessible. The storage device 110 may be included in the charge / discharge control device 100 or may be a device external to the charge / discharge control device 100. In the present embodiment, the storage device 110 may be realized by a memory 84 or a storage 85 of the computer 80 shown in FIG.
 本実施形態において、制御部104による制御は、上述したMPPT制御に相当する。
 制御部104は、PVパネル12から出力可能な電力のうち、PV出力抑制信号32を受信するか、系統電圧が所定電圧を超えることによってPV-PCS14からの出力が抑制されている電力についてMPPT制御を行うことで、PVパネル12から出力される電力を最大限に取り出して充電する。
In the present embodiment, the control by the control unit 104 corresponds to the above-described MPPT control.
The control unit 104 receives the PV output suppression signal 32 out of the electric power that can be output from the PV panel 12, or performs MPPT control on the electric power whose output from the PV-PCS 14 is suppressed due to the system voltage exceeding a predetermined voltage. , The electric power output from the PV panel 12 is extracted to the maximum and charged.
 図3Cに示すように、PV出力抑制信号32によりPVパネル12の発電量の抑制制御が行われると、PV-PCS14から出力される電力は、PV出力抑制ラインまで、または負荷26による自家消費電力量と同様の発電量になる(たとえば、電力系統への逆潮流が0となる)ように抑制される。本実施形態では、制御部104は、PV出力抑制ラインより上、かつ、自家消費電力量より上のPV-PCS14からの出力が抑制される電力(ハッチング部)を蓄電池に充電する。このとき、制御部104は、充電電力に対してMPPT制御を行うことで、PVパネル12から出力される電力を最大化し、効率のよい充電を実現する。 As shown in FIG. 3C, when the control of the amount of power generation of the PV panel 12 is performed by the PV output suppression signal 32, the power output from the PV-PCS 14 is the power consumption by the load 26 up to the PV output suppression line. The amount of power generation is the same as the amount of power (for example, the reverse power flow to the power system becomes zero). In the present embodiment, the control unit 104 charges the storage battery with electric power (hatching unit) that suppresses the output from the PV-PCS 14 that is above the PV output suppression line and that is above the self-power consumption. At this time, the control unit 104 performs MPPT control on the charging power, thereby maximizing the power output from the PV panel 12 and realizing efficient charging.
 また、制御部104は、蓄電池の放電の制御も行ってもよい。
 たとえば、電力系統22またはPVパネル12から負荷26に供給される電力の代わりに、蓄電池に充電された電力を蓄電池から放電して負荷26に供給することができる。具体的には、夜間などでPVパネル12が発電していない場合に蓄電池から放電してもよいし、PVパネル12が発電中にPVパネル12から供給される電力だけでは負荷26の消費電力を賄えない場合に、蓄電池から放電して負荷26に供給してもよい。上記の場合には、PVパネル12の発電量の抑制制御が行われていないことが条件である。また、蓄電池に充電された電力を電力系統22に逆潮流してもよい。
The control unit 104 may also control discharge of the storage battery.
For example, instead of the power supplied from the power system 22 or the PV panel 12 to the load 26, the power charged in the storage battery can be discharged from the storage battery and supplied to the load 26. Specifically, when the PV panel 12 is not generating power at night or the like, the battery may be discharged, or the power consumption of the load 26 is only by the power supplied from the PV panel 12 while the PV panel 12 is generating power. When it cannot cover, you may discharge from a storage battery and supply to the load 26. FIG. In the above case, it is a condition that the control for suppressing the power generation amount of the PV panel 12 is not performed. Further, the power charged in the storage battery may be reversely flowed to the power system 22.
 MPPT制御を行う際、制御部104は、取得部102が取得する、蓄電装置(電池システム42)の充電電流と充電電圧、またはPVパネル12の出力の電流と電圧とを用いる。蓄電池の充電電流と充電電圧の値から充電電力が算出でき、PVパネル12の出力の電流と電圧の値から出力電力が算出できる。これらは、後述する電流センサおよび電圧センサの計測値を用いることができる。 When performing MPPT control, the control unit 104 uses the charging current and charging voltage of the power storage device (battery system 42) or the output current and voltage of the PV panel 12 acquired by the acquiring unit 102. The charging power can be calculated from the values of the storage battery charging current and charging voltage, and the output power can be calculated from the output current and voltage values of the PV panel 12. For these, the measured values of a current sensor and a voltage sensor described later can be used.
 本明細書において、「取得」とは、自装置が他の装置や記憶媒体に格納されているデータまたは情報を取りに行くこと(能動的な取得)、たとえば、他の装置にリクエストまたは問い合わせして受信すること、他の装置や記憶媒体にアクセスして読み出すこと等、および、自装置に他の装置から出力されるデータまたは情報を入力すること(受動的な取得)、たとえば、配信(または、送信、プッシュ通知等)されるデータまたは情報を受信すること等、の少なくともいずれか一方を含む。また、受信したデータまたは情報の中から選択して取得すること、または、配信されたデータまたは情報を選択して受信することも含む。 In this specification, “acquisition” means that the device itself obtains data or information stored in another device or storage medium (active acquisition), for example, requests or inquires of another device. Receiving data, accessing and reading out other devices and storage media, etc., and inputting data or information output from other devices into the device (passive acquisition), for example, distribution (or , Transmission, push notification, etc.) and / or receiving received data or information. It also includes selecting and acquiring from received data or information, or selecting and receiving distributed data or information.
 本実施形態の蓄電システム1は、図2に示すように、蓄電装置40と、クランプ式直流電流センサ44、46、48とを含む。各クランプ式直流電流センサ44、46、48は、取得部102に相当し、各センサによって計測される電流値は、充放電制御装置100の制御部104による制御に用いられる。 The power storage system 1 of the present embodiment includes a power storage device 40 and clamp type DC current sensors 44, 46, and 48 as shown in FIG. Each clamp type DC current sensor 44, 46, 48 corresponds to the acquisition unit 102, and the current value measured by each sensor is used for control by the control unit 104 of the charge / discharge control device 100.
 クランプ式直流電流センサ44は、直流電力線16と蓄電装置40の間の接続ライン17に設けられ、接続ライン17を流れる電流を計測する。 The clamp type DC current sensor 44 is provided in the connection line 17 between the DC power line 16 and the power storage device 40 and measures the current flowing through the connection line 17.
 クランプ式直流電流センサ46は、直流電力線16上の蓄電装置40との接続位置とPVパネル12の間の第1の直流電力線16aに設けられ、第1の直流電力線16aを流れる電流を計測する。 The clamp type direct current sensor 46 is provided on the first direct current power line 16a between the connection position of the power storage device 40 on the direct current power line 16 and the PV panel 12, and measures the current flowing through the first direct current power line 16a.
 クランプ式直流電流センサ48は、直流電力線16上の蓄電装置40との接続位置とPV-PCS14の間の第2の直流電力線16bに設けられ、第2の直流電力線16bを流れる電流を計測する。 The clamp type DC current sensor 48 is provided on the second DC power line 16b between the connection position with the power storage device 40 on the DC power line 16 and the PV-PCS 14, and measures the current flowing through the second DC power line 16b.
 さらに、本実施形態の蓄電システム1は、電圧センサ(不図示)により、PVパネル12から出力される電力の電圧値が計測され、取得部102はこの電圧値も取得する。この電圧値とクランプ式直流電流センサ46が計測する電流値によりPVパネル12の出力(発電量)を算出してもよい。 Furthermore, in the power storage system 1 of this embodiment, the voltage value of the power output from the PV panel 12 is measured by a voltage sensor (not shown), and the acquisition unit 102 also acquires this voltage value. The output (power generation amount) of the PV panel 12 may be calculated from this voltage value and the current value measured by the clamp type DC current sensor 46.
 さらに、電圧センサ(不図示)により、蓄電装置40(電池システム42)の蓄電池の充電電力の電圧値が計測され、取得部102はこの電圧値も取得する。この電圧値とクランプ式直流電流センサ44が計測する電流値により蓄電池の充電電力を算出してもよい。 Furthermore, the voltage value of the charging power of the storage battery of the power storage device 40 (battery system 42) is measured by a voltage sensor (not shown), and the acquisition unit 102 also acquires this voltage value. The charging power of the storage battery may be calculated from this voltage value and the current value measured by the clamp type DC current sensor 44.
 本実施形態において、PVパネル12の出力が抑制中であることの検出方法は、以下に例示されるが、これらに限定されない。また、以下の複数を組み合わせてもよい。
(a1)外部装置からPV-PCS14が受信するPV出力抑制信号32に関する情報を取得または参照する。
(a2)蓄電池への充電を試験的に行い、PV-PCS14に入力される電流が減少するか否かをモニタする。電流が減少しない場合、PV出力抑制制御中であると判断する。
In this embodiment, although the detection method of the output of PV panel 12 being suppressed is illustrated below, it is not limited to these. Moreover, you may combine the following plurality.
(A1) Obtain or refer to information regarding the PV output suppression signal 32 received by the PV-PCS 14 from an external device.
(A2) Charging the storage battery is performed on a trial basis to monitor whether the current input to the PV-PCS 14 decreases. When the current does not decrease, it is determined that the PV output suppression control is being performed.
 上記(a2)によれば、PV出力抑制信号32に関する情報を直接参照できない場合でも、PV出力抑制中であるか否かを判断できる。 According to (a2) above, it is possible to determine whether or not the PV output is being suppressed even when the information regarding the PV output suppression signal 32 cannot be directly referred to.
 MPPT制御方法については、本発明では特に限定しないが、たとえば、所謂、山登り法、増分コンダクタンス法、スキャン法等を用いてよい。制御部104は、蓄電装置(電池システム42)の充電電流を、蓄電装置(電池システム42)の充電電力または直流発電装置(PVパネル12)の出力電力が最大となるように、MPPT制御を行えばよい。 The MPPT control method is not particularly limited in the present invention, but for example, a so-called hill climbing method, incremental conductance method, scanning method, or the like may be used. The control unit 104 performs MPPT control so that the charging current of the power storage device (battery system 42) is maximized, or the charging power of the power storage device (battery system 42) or the output power of the DC power generation device (PV panel 12) is maximized. Just do it.
 図5は、本実施形態の充放電制御装置100を実現するコンピュータ80の構成の一例を示す図である。
 本実施形態のコンピュータ80は、CPU(Central Processing Unit)82、メモリ84、メモリ84にロードされた充放電制御装置100の構成要素を実現するコンピュータプログラム90、そのコンピュータプログラム90を格納するストレージ85、I/O(Input/Output)86、およびネットワーク接続用インタフェース(通信I/F87)を備える。
FIG. 5 is a diagram illustrating an example of the configuration of a computer 80 that implements the charge / discharge control apparatus 100 of the present embodiment.
The computer 80 of the present embodiment includes a CPU (Central Processing Unit) 82, a memory 84, a computer program 90 that realizes the components of the charge / discharge control device 100 loaded in the memory 84, a storage 85 that stores the computer program 90, An I / O (Input / Output) 86 and a network connection interface (communication I / F 87) are provided.
 CPU82、メモリ84、ストレージ85、I/O86、通信I/F87は、バス89を介して互いに接続され、CPU82により充放電制御装置100全体が制御される。ただし、CPU82などを互いに接続する方法は、バス接続に限定されない。 The CPU 82, the memory 84, the storage 85, the I / O 86, and the communication I / F 87 are connected to each other via the bus 89, and the entire charge / discharge control apparatus 100 is controlled by the CPU 82. However, the method of connecting the CPUs 82 and the like is not limited to bus connection.
 メモリ84は、RAM(Random Access Memory)やROM(Read Only Memory)などのメモリである。ストレージ85は、ハードディスク、SSD(Solid State Drive)、またはメモリカードなどの記憶装置である。 The memory 84 is a memory such as a RAM (Random Access Memory) or a ROM (Read Only Memory). The storage 85 is a storage device such as a hard disk, an SSD (Solid State Drive), or a memory card.
 ストレージ85は、RAMやROMなどのメモリであってもよい。ストレージ85は、コンピュータ80の内部に設けられてもよいし、コンピュータ80がアクセス可能であれば、コンピュータ80の外部に設けられ、コンピュータ80と有線または無線で接続されてもよい。あるいは、コンピュータ80に着脱可能に設けられてもよい。 The storage 85 may be a memory such as a RAM or a ROM. The storage 85 may be provided inside the computer 80 or may be provided outside the computer 80 and connected to the computer 80 by wire or wireless as long as the computer 80 is accessible. Alternatively, the computer 80 may be detachably provided.
 CPU82が、ストレージ85に記憶されるコンピュータプログラム90をメモリ84に読み出して実行することにより、充放電制御装置100の各ユニットの各機能を実現することができる。 The CPU 82 reads out the computer program 90 stored in the storage 85 to the memory 84 and executes it, whereby each function of each unit of the charge / discharge control device 100 can be realized.
 I/O86は、コンピュータ80と他の入出力装置間のデータおよび制御信号の入出力制御を行う。他の入出力装置とは、たとえば、コンピュータ80に接続されるキーボード、タッチパネル、マウス、およびマイクロフォン等の入力装置(不図示)と、ディスプレイ、プリンタ、およびスピーカ等の出力装置(不図示)と、これらの入出力装置とコンピュータ80のインタフェースとを含む。さらに、I/O86は、他の記録媒体の読み取りまたは書き込み装置(不図示)とのデータの入出力制御を行ってもよい。 The I / O 86 performs input / output control of data and control signals between the computer 80 and other input / output devices. The other input / output devices include, for example, an input device (not shown) such as a keyboard, a touch panel, a mouse, and a microphone connected to the computer 80, and an output device (not shown) such as a display, a printer, and a speaker, These input / output devices and the interface of the computer 80 are included. Further, the I / O 86 may perform data input / output control with a reading or writing device (not shown) of another recording medium.
 通信I/F87は、コンピュータ80と外部の装置との通信を行うためのネットワーク接続用インタフェースである。通信I/F87は、必ずしも必要ない。通信I/F87は、有線回線と接続するためのネットワークインタフェースでもよいし、無線回線と接続するためのネットワークインタフェースでもよい。たとえば、充放電制御装置100を実現するコンピュータ80は、通信I/F87によりネットワークを介してHEMS(Home Energy Management System)と接続されてもよい。 The communication I / F 87 is a network connection interface for performing communication between the computer 80 and an external device. The communication I / F 87 is not always necessary. The communication I / F 87 may be a network interface for connecting to a wired line or a network interface for connecting to a wireless line. For example, the computer 80 that implements the charge / discharge control apparatus 100 may be connected to a HEMS (Home Energy Management System) via a network by the communication I / F 87.
 本実施形態の充放電制御装置100の各構成要素は、図5のコンピュータ80のハードウェアとソフトウェアの任意の組合せによって実現される。そして、その実現方法、装置にはいろいろな変形例があることは、当業者には理解されるところである。以下説明する各実施形態の充放電制御装置を示す機能ブロック図は、ハードウェア単位の構成ではなく、論理的な機能単位のブロックを示している。 Each component of the charge / discharge control apparatus 100 of this embodiment is realized by an arbitrary combination of hardware and software of the computer 80 in FIG. It will be understood by those skilled in the art that there are various modifications to the implementation method and apparatus. The functional block diagram showing the charge / discharge control device of each embodiment to be described below shows a block of logical functional units, not a configuration of hardware units.
 また、充放電制御装置100は、複数のコンピュータ80からなる構成も排除されない。 Further, the charge / discharge control apparatus 100 does not exclude a configuration including a plurality of computers 80.
 本実施形態のコンピュータプログラム90は、充放電制御装置100を実現させるためのコンピュータ80に、PVパネル12の出力が抑制中であることが検出された場合に、蓄電装置(電池システム42)の充電電流を、蓄電装置(電池システム42)の充電電力または直流発電装置(PVパネル12)の出力電力が最大となるように制御する手順、を実行させるように記述されている。 The computer program 90 of the present embodiment charges the power storage device (battery system 42) when the computer 80 for realizing the charge / discharge control device 100 detects that the output of the PV panel 12 is being suppressed. It is described that a procedure for controlling the current so that the charging power of the power storage device (battery system 42) or the output power of the DC power generation device (PV panel 12) is maximized is executed.
 本実施形態のコンピュータプログラム90は、コンピュータ80で読み取り可能な記録媒体に記録されてもよい。記録媒体は特に限定されず、様々な形態のものが考えられる。
また、コンピュータプログラム90は、記録媒体からコンピュータ80のメモリ84にロードされてもよいし、ネットワークを通じてコンピュータ80にダウンロードされ、メモリ84にロードされてもよい。
The computer program 90 of this embodiment may be recorded on a recording medium that can be read by the computer 80. The recording medium is not particularly limited, and various forms can be considered.
The computer program 90 may be loaded from a recording medium into the memory 84 of the computer 80, or may be downloaded to the computer 80 through a network and loaded into the memory 84.
 コンピュータプログラム90を記録する記録媒体は、非一時的な有形のコンピュータ80が使用可能な媒体を含み、その媒体に、コンピュータ80が読み取り可能なプログラムコードが埋め込まれる。コンピュータプログラム90が、コンピュータ80上で実行されたとき、コンピュータ80に、充放電制御装置100を実現する以下の制御方法を実行させる。 The recording medium for recording the computer program 90 includes a medium that can be used by the non-transitory tangible computer 80, and a program code that can be read by the computer 80 is embedded in the medium. When the computer program 90 is executed on the computer 80, the computer 80 is caused to execute the following control method for realizing the charge / discharge control apparatus 100.
 このように構成された本実施形態の充放電制御装置100の制御方法について、以下説明する。
 図6は、本実施形態の充放電制御装置100の動作の一例を示すフローチャートである。
 本発明の実施の形態に係る制御方法は、充放電制御装置100の制御方法であり、充放電制御装置100を実現するコンピュータ80により実行される制御方法である。
 本実施形態の制御方法は、充放電制御装置100が、直流発電装置(PVパネル12)の出力が抑制中であることが検出された場合に(ステップS101のYES)、蓄電装置(電池システム42)の充電電流を、蓄電装置(電池システム42)の充電電力または直流発電装置(PVパネル12)の出力電力が最大となるように制御する(ステップS103)、ことを含む。
A control method of the charge / discharge control apparatus 100 of the present embodiment configured as described above will be described below.
FIG. 6 is a flowchart showing an example of the operation of the charge / discharge control apparatus 100 of the present embodiment.
The control method according to the embodiment of the present invention is a control method of the charge / discharge control device 100, and is a control method executed by the computer 80 that implements the charge / discharge control device 100.
When the charge / discharge control device 100 detects that the output of the DC power generation device (PV panel 12) is being suppressed (YES in step S101), the control method of the present embodiment is a power storage device (battery system 42). ) Is controlled so that the charging power of the power storage device (battery system 42) or the output power of the DC power generation device (PV panel 12) is maximized (step S103).
 具体的には、充放電制御装置100において、PVパネル12の出力が抑制中であることが検出された場合に(ステップS101のYES)、制御部104は、取得部102により取得された各センサの計測値に基づいて、電池システム42の蓄電池の充電電流を、蓄電池の充電電力またはPVパネル12の出力電力が最大となるように制御する(ステップS103)。 Specifically, in the charge / discharge control device 100, when it is detected that the output of the PV panel 12 is being suppressed (YES in step S101), the control unit 104 detects each sensor acquired by the acquisition unit 102. Based on the measured value, the charging current of the storage battery of the battery system 42 is controlled so that the charging power of the storage battery or the output power of the PV panel 12 is maximized (step S103).
 これにより、PV出力抑制信号32により出力が抑制された電力に関し、PV-PCS14においてMPPT制御が停止している場合であっても、充放電制御装置100により蓄電池に充電される充電電流をMPPT制御するので、PVパネル12の出力を最大化することができる。 As a result, regarding the power whose output is suppressed by the PV output suppression signal 32, even when the MPPT control is stopped in the PV-PCS 14, the charging current charged in the storage battery by the charge / discharge control device 100 is controlled by the MPPT control. Thus, the output of the PV panel 12 can be maximized.
 以上説明したように、本実施形態の充放電制御装置100において、PVパネル12の出力が抑制中であることが検出された場合に、制御部104によりMPPT制御(電池システム42の蓄電池の充電電流を、蓄電池の充電電力またはPVパネル12の出力電力が最大となるように制御)されるので、PVパネル12の出力を最大化して余剰分の電力を効率よく充電することができる。 As described above, in the charge / discharge control device 100 of this embodiment, when it is detected that the output of the PV panel 12 is being suppressed, the control unit 104 performs MPPT control (charging current of the storage battery of the battery system 42). Is controlled so that the charging power of the storage battery or the output power of the PV panel 12 is maximized), the output of the PV panel 12 can be maximized to efficiently charge the surplus power.
 すなわち、本実施形態の蓄電システム1によれば、既設の太陽光発電システムにも容易かつ比較的安価に後付設置が可能な構成であって、かつ蓄電システム1を単独で制御するだけで、太陽光発電設備の出力抑制時に抑制されるべき電力を効率よく最大限に利用することができる。 That is, according to the power storage system 1 of the present embodiment, it is a configuration that can be retrofitted easily and relatively inexpensively to an existing photovoltaic power generation system, and only by controlling the power storage system 1 alone, The electric power that should be suppressed when the output of the photovoltaic power generation facility is suppressed can be efficiently and maximized.
(第2の実施の形態)
 次に、本発明の第2の実施の形態に係る蓄電システムについて、以下説明する。
 図7は、本実施形態に係る充放電制御装置100の論理的な構成を示す機能ブロック図である。
 本実施形態では、充放電制御装置100が、PV-PCS14が受信するPV出力抑制信号32に関する情報を取得し、その情報に基づいて、PV出力抑制中か否かを判断する構成を有する形態について説明する。本実施形態の構成は、他の実施形態と組み合わせることもできる。
(Second Embodiment)
Next, a power storage system according to the second embodiment of the present invention will be described below.
FIG. 7 is a functional block diagram showing a logical configuration of the charge / discharge control apparatus 100 according to the present embodiment.
In the present embodiment, the charge / discharge control device 100 acquires information related to the PV output suppression signal 32 received by the PV-PCS 14 and determines whether or not the PV output is being suppressed based on the information. explain. The configuration of the present embodiment can be combined with other embodiments.
 本実施形態の充放電制御装置100は、取得部102と、制御部104と、情報取得部106と、を備える。取得部102と制御部104は、図4の充放電制御装置100と同様な構成を有する。 The charge / discharge control apparatus 100 of this embodiment includes an acquisition unit 102, a control unit 104, and an information acquisition unit 106. The acquisition unit 102 and the control unit 104 have the same configuration as the charge / discharge control device 100 of FIG.
 本実施形態の充放電制御装置100において、情報取得部106は、外部装置(PV-PCS14、または外部サーバ30)からPVパネル12の出力の抑制指示に関する情報を取得する。 In the charge / discharge control apparatus 100 of the present embodiment, the information acquisition unit 106 acquires information related to an instruction to suppress the output of the PV panel 12 from an external apparatus (PV-PCS 14 or external server 30).
 具体的には、情報取得部106は、PV-PCS14におけるPV出力抑制信号32の受信の有無、PV出力抑制時間、およびPV出力抑制制御中であることを示す情報等の少なくともいずれか一つを取得してよい。また、情報取得部106は、サーバ30から直接PV出力抑制信号32を受信する構成としてもよい。また、情報取得部106が、サーバ30またはPV-PCS14に問い合わせてPVパネル12の出力の抑制指示に関する情報を取得する構成としてもよい。 Specifically, the information acquisition unit 106 receives at least one of the presence / absence of reception of the PV output suppression signal 32 in the PV-PCS 14, the PV output suppression time, and information indicating that the PV output suppression control is being performed. You may get it. The information acquisition unit 106 may be configured to receive the PV output suppression signal 32 directly from the server 30. In addition, the information acquisition unit 106 may inquire the server 30 or the PV-PCS 14 to acquire information related to the output suppression instruction of the PV panel 12.
 なお、充放電制御装置100がPV出力抑制信号32を受信する際には、図示されない通信装置(たとえば、ゲートウェイ、ルータ等)を介してサーバ30と通信してもよい。 When the charge / discharge control device 100 receives the PV output suppression signal 32, the charge / discharge control device 100 may communicate with the server 30 via a communication device (for example, a gateway, a router, etc.) not shown.
 制御部104は、情報取得部106により取得された抑制指示に関する情報に基づいて、PVパネル12の出力が抑制中であるか否かを判定する。
 そして、出力抑制中であることを検出した場合に、制御部104は、PVパネル12の出力のMPPT制御を実行して蓄電池の充電電流を調整して、電池システム42への充電制御を行う。
The control unit 104 determines whether or not the output of the PV panel 12 is being suppressed based on the information regarding the suppression instruction acquired by the information acquisition unit 106.
When it is detected that the output is being suppressed, the control unit 104 performs MPPT control of the output of the PV panel 12 to adjust the charging current of the storage battery, and performs charging control to the battery system 42.
 本実施形態の充放電制御装置100の動作は、図6の上記実施形態の充放電制御装置100の動作と同様であるが、ステップS101の判断において、情報取得部106が、PV出力抑制信号32に関する情報を取得した時、PVパネル12の出力が抑制中であることを検出する。 The operation of the charge / discharge control device 100 of the present embodiment is the same as the operation of the charge / discharge control device 100 of the above-described embodiment of FIG. 6, but the information acquisition unit 106 determines that the PV output suppression signal 32 in step S101. When the information regarding is acquired, it is detected that the output of the PV panel 12 is being suppressed.
 以上説明したように、本実施形態の充放電制御装置100において、情報取得部106により、PVパネル12の出力の抑制指示に関する情報(たとえば、PV出力抑制信号32)が取得され、その情報に基づいて、制御部104によりPV出力の抑制中であることが検出された場合に、MPPT制御を行うことができる。
 この構成によれば、上記実施形態と同様な効果を奏するとともに、PV出力抑制信号32に関する情報に基づいて、PV出力の抑制中か否かを簡単に、かつ確実に検出できる。
As described above, in the charge / discharge control device 100 of the present embodiment, the information acquisition unit 106 acquires information (for example, the PV output suppression signal 32) regarding the output suppression instruction of the PV panel 12, and based on the information. Thus, MPPT control can be performed when it is detected by the control unit 104 that PV output is being suppressed.
According to this configuration, it is possible to easily and reliably detect whether or not the PV output is being suppressed, based on the information related to the PV output suppression signal 32, while having the same effects as the above embodiment.
(第3の実施の形態)
 次に、本発明の第3の実施の形態に係る蓄電システムについて、以下説明する。
 図8は、本実施形態に係る蓄電システムの要部構成を示すブロック図である。
 本実施形態の蓄電システムは、上記実施形態の蓄電システムとは、PV出力抑制継続中か否かの判定処理を、PV出力抑制指示に関する情報(たとえば、PV出力抑制信号32)を取得せずとも行える構成を有する点で相違する。
 なお、本実施形態の充放電制御装置の構成は、図4の上記実施形態の充放電制御装置100と同様であるので、図4を用いて説明する。また、本実施形態の構成は、他の実施形態の充放電制御装置の構成と組み合わせることもできる。
(Third embodiment)
Next, a power storage system according to the third embodiment of the present invention will be described below.
FIG. 8 is a block diagram showing a main configuration of the power storage system according to this embodiment.
The power storage system of the present embodiment is different from the power storage system of the above embodiment in determining whether or not PV output suppression is continuing without acquiring information related to the PV output suppression instruction (for example, the PV output suppression signal 32). It is different in that it has a configuration that can be performed.
In addition, since the structure of the charging / discharging control apparatus of this embodiment is the same as that of the charging / discharging control apparatus 100 of the said embodiment of FIG. 4, it demonstrates using FIG. Moreover, the structure of this embodiment can also be combined with the structure of the charging / discharging control apparatus of other embodiment.
 本実施形態の充放電制御装置100において、取得部102は、PV-PCS14に入力される直流電力の向きおよび大きさの少なくとも一方を取得する。
 制御部104は、蓄電装置(電池システム42)への充電量を所定量増やしたときの、取得部102により取得された直流電力の向きおよび大きさの少なくとも一方の変化に基づいて、PVパネル12の出力が抑制中であるか否かを判定する。そして、制御部104は、PVパネル12の出力が抑制中であると判定された場合に、蓄電装置(電池システム42)の充電電流を、蓄電装置(電池システム42)の充電電力またはPVパネル12の出力電力が最大となるように制御する。
In the charge / discharge control apparatus 100 of the present embodiment, the acquisition unit 102 acquires at least one of the direction and the magnitude of the DC power input to the PV-PCS 14.
Based on the change in at least one of the direction and the magnitude of the DC power acquired by the acquisition unit 102 when the charge amount to the power storage device (battery system 42) is increased by a predetermined amount, the control unit 104 It is determined whether the output of is being suppressed. When it is determined that the output of the PV panel 12 is being suppressed, the control unit 104 uses the charging current of the power storage device (battery system 42) as the charging power of the power storage device (battery system 42) or the PV panel 12. Is controlled so as to maximize the output power.
 本実施形態では、制御部104は、PVパネル12から出力可能な電力のうち、PV出力抑制信号により出力抑制制御されている電力分を蓄電池に充電する構成としているが、本発明の制御部は、以下に例示される複数の条件のうち、少なくともいずれかを組み合わせて用いて蓄電池の充放電の制御を行ってもよい。
(b1)予め定められている蓄電池の充電可能な第1時間帯と放電可能な第2時間帯に従い、充放電する。
 この構成では、第1時間帯と第2時間帯の情報を記憶装置110に予め記憶する。
 本実施形態の蓄電装置40は、蓄電池に充電可能な第1時間帯と放電可能な第2時間帯が予め定められているものとする。第1時間帯は、6時~18時であり、第2時間帯は18時~翌日の6時とする。
In the present embodiment, the control unit 104 is configured to charge the storage battery with the power that is output-suppressed and controlled by the PV output suppression signal among the power that can be output from the PV panel 12, but the control unit of the present invention is configured as follows. The charging / discharging control of the storage battery may be performed using a combination of at least one of a plurality of conditions exemplified below.
(B1) Charging / discharging is performed according to a predetermined first chargeable time zone and second dischargeable time zone of the storage battery.
In this configuration, information on the first time zone and the second time zone is stored in the storage device 110 in advance.
In the power storage device 40 of the present embodiment, it is assumed that a first time period in which the storage battery can be charged and a second time period in which the storage battery can be discharged are determined in advance. The first time zone is from 6:00 to 18:00, and the second time zone is from 18:00 to 6:00 on the next day.
 また、充放電制御装置100は、図示されない時計を有し、時計から時刻情報を取得するものとする。また、時計は充放電制御装置100に含まれなくてもよく、充放電制御装置100の外部の装置であってもよい。 Further, the charge / discharge control apparatus 100 has a timepiece (not shown) and acquires time information from the timepiece. Further, the timepiece may not be included in the charge / discharge control device 100 and may be a device external to the charge / discharge control device 100.
(b2)蓄電池が満充電の場合は、充電しない。
 この構成では、取得部102は、電池システム42のBMUから蓄電池が満充電であることを示す情報をさらに取得してもよい。
(B2) When the storage battery is fully charged, it is not charged.
In this configuration, the acquisition unit 102 may further acquire information indicating that the storage battery is fully charged from the BMU of the battery system 42.
(b3)蓄電池に、蓄電容量の所定の割合(%)以上、充電されたら充電を停止する。
 この構成では、蓄電池の蓄電容量の所定の割合(%)を記憶装置110に予め記憶する。
(B3) When the storage battery is charged by a predetermined ratio (%) or more of the storage capacity, the charging is stopped.
In this configuration, a predetermined percentage (%) of the storage capacity of the storage battery is stored in advance in the storage device 110.
(b4)電力系統22における買電または売電の状況に応じて、蓄電池の充放電を制御する。
 この構成では、取得部102は、電力系統22における買電または売電の状況を示す電力系統22側の交流電力線28bの電流の向きに関する情報をさらに取得してもよい。この構成については、本発明の実施形態に組み合わせて実施してもよい構成の一例として後述する。
(B4) The charging / discharging of the storage battery is controlled according to the status of power purchase or power sale in the power system 22.
In this configuration, the acquisition unit 102 may further acquire information related to the current direction of the AC power line 28b on the power system 22 side that indicates the status of power purchase or power sale in the power system 22. This configuration will be described later as an example of a configuration that may be implemented in combination with the embodiment of the present invention.
(b5)蓄電池の蓄電残容量が第1の閾値以上、または、空き容量が第2の閾値未満になったら、蓄電池の充電を停止する。
 この構成では、取得部102は、電池システム42のBMUから蓄電池の蓄電残容量、または、空き容量に関する情報を取得してもよい。また、閾値を記憶装置110に予め記憶する。各閾値は、外部から更新できる構成を有してもよい。
(B5) When the remaining storage capacity of the storage battery is equal to or greater than the first threshold value or the free capacity is less than the second threshold value, charging of the storage battery is stopped.
In this configuration, the acquisition unit 102 may acquire information related to the remaining storage capacity or free capacity of the storage battery from the BMU of the battery system 42. The threshold value is stored in advance in the storage device 110. Each threshold may have a configuration that can be updated from the outside.
 このように構成された本実施形態の充放電制御装置100は、コンピュータプログラム90に対応する各種の処理動作をコンピュータ80のCPU82が実行することにより、前述のような各種ユニットが各種機能として実現される。 In the charge / discharge control apparatus 100 of the present embodiment configured as described above, various units as described above are realized as various functions by the CPU 82 of the computer 80 executing various processing operations corresponding to the computer program 90. The
 本実施形態のコンピュータプログラム90は、充放電制御装置100を実現させるためのコンピュータ80に、PV-PCS14に入力される直流電力の向きおよび大きさの少なくとも一方を取得する手順、蓄電装置(電池システム42)への充電量を所定量増やしたときの、取得された直流電流(電力)の向きおよび大きさの少なくとも一方の変化に基づいて、PVパネル12の出力が抑制中であるか否かを判定する手順、PVパネル12の出力が抑制中であると判定された場合に、蓄電装置(電池システム42)の充電電流を、蓄電装置(電池システム42)の充電電力またはPVパネル12の出力電力が最大となるように制御する手順、を実行させるように記述されている。 The computer program 90 of this embodiment is a procedure for acquiring at least one of the direction and the magnitude of the DC power input to the PV-PCS 14 in the computer 80 for realizing the charge / discharge control device 100, a power storage device (battery system) 42) Whether or not the output of the PV panel 12 is being suppressed based on a change in at least one of the direction and the magnitude of the acquired direct current (electric power) when the charge amount to the predetermined amount is increased. Procedure for determining, when it is determined that the output of the PV panel 12 is being suppressed, the charging current of the power storage device (battery system 42) is determined as the charging power of the power storage device (battery system 42) or the output power of the PV panel 12. Is described so as to execute a procedure for controlling so as to be maximized.
 コンピュータプログラム90を記録する記録媒体は、非一時的な有形のコンピュータ80が使用可能な媒体を含み、その媒体に、コンピュータ80が読み取り可能なプログラムコードが埋め込まれる。コンピュータプログラム90が、コンピュータ80上で実行されたとき、コンピュータ80に、充放電制御装置100を実現する以下の制御方法を実行させる。 The recording medium for recording the computer program 90 includes a medium that can be used by the non-transitory tangible computer 80, and a program code that can be read by the computer 80 is embedded in the medium. When the computer program 90 is executed on the computer 80, the computer 80 is caused to execute the following control method for realizing the charge / discharge control apparatus 100.
 このように構成された本実施形態の充放電制御装置100の制御方法について、以下説明する。
 図9は、本実施形態の充放電制御装置100の動作の一例を示すフローチャートである。
 本発明の実施の形態に係る制御方法は、充放電制御装置100の制御方法であり、充放電制御装置100を実現するコンピュータ80により実行される制御方法である。
 本実施形態の制御方法は、充放電制御装置100が、蓄電装置(電池システム42)への充電量を所定量増やしたときの(ステップS201)、取得部102により取得された直流電流(電力)の向きおよび大きさの少なくとも一方の変化に基づいて、PVパネル12の出力が抑制中であるか否かを判定し(ステップS203)、PVパネル12の出力が抑制中であると判定された場合に(ステップS205)、蓄電装置(電池システム42)の充電電流を、蓄電装置(電池システム42)の充電電力またはPVパネル12の出力電力が最大となるように制御する(ステップS209)、ことを含む。
A control method of the charge / discharge control apparatus 100 of the present embodiment configured as described above will be described below.
FIG. 9 is a flowchart showing an example of the operation of the charge / discharge control apparatus 100 of the present embodiment.
The control method according to the embodiment of the present invention is a control method of the charge / discharge control device 100, and is a control method executed by the computer 80 that implements the charge / discharge control device 100.
In the control method of the present embodiment, the direct current (power) acquired by the acquisition unit 102 when the charge / discharge control device 100 increases the amount of charge to the power storage device (battery system 42) by a predetermined amount (step S201). When it is determined whether the output of the PV panel 12 is being suppressed based on the change in at least one of the direction and the size (step S203), and it is determined that the output of the PV panel 12 is being suppressed In step S205, the charging current of the power storage device (battery system 42) is controlled so that the charging power of the power storage device (battery system 42) or the output power of the PV panel 12 is maximized (step S209). Including.
 以下、詳細に説明する。
 本処理ルーチンは、定期的に繰り返し実行されてよい。定期的に繰り返す周期は、特に限定されないが、たとえば、数分、十数分、または数十分毎等としてよい。また、PV出力抑制指示が、時刻単位で指定されることが予め分かっている場合は、たとえば、定時毎の初めの所定の数分の間のみ本処理ルーチンを実行してもよい(複数回繰り返してもよい)。
Details will be described below.
This processing routine may be repeatedly executed periodically. The period of periodically repeating is not particularly limited, and may be, for example, every several minutes, several tens of minutes, or every several tens of minutes. In addition, when it is known in advance that the PV output suppression instruction is specified in time units, for example, this processing routine may be executed only for a predetermined number of minutes at the beginning of every fixed time (repeated multiple times). May be)
 まず、制御部104が、短時間のテスト充電を行う。ここでは、所定の電流値I3(A)(たとえば、1A)を短時間充電する(ステップS201)。なお、テスト充電を行う実行時間の「短時間」とは、たとえば、1秒前後等が考えられるが、これに限定されない。また、短時間のテスト充電は所定の間隔を空けて複数回繰り返し行ってもよい。 First, the control unit 104 performs a short test charge. Here, a predetermined current value I3 (A) (for example, 1A) is charged for a short time (step S201). Note that the “short time” of the execution time for performing the test charging may be, for example, around 1 second, but is not limited thereto. Further, the short test charge may be repeated a plurality of times with a predetermined interval.
 上記のテスト充電の電流値I3(A)および実行時間やテスト充電を繰り返し複数回実行する場合の周期および回数は、PVパネル12の出力の規模、PV-PCS14におけるMPPT制御の方式や、応答速度に応じて適切な値に適宜決定されるのが好ましい。 The current value I3 (A) of the test charge, the execution time, and the cycle and number of times when the test charge is repeatedly executed are the scale of the output of the PV panel 12, the method of MPPT control in the PV-PCS 14, and the response speed. It is preferable that the value is appropriately determined according to the above.
 また、取得部102は、クランプ式直流電流センサ48を用いて直流電力線16bのPV-PCS14に入力される電流値I2(図8)を計測する。計測は、ステップS201においてテスト充電の開始前とテスト充電中に少なくとも行われるのが好ましい。 Also, the acquisition unit 102 measures the current value I2 (FIG. 8) input to the PV-PCS 14 of the DC power line 16b using the clamp type DC current sensor 48. The measurement is preferably performed at least before the start of the test charge and during the test charge in step S201.
 取得部102が取得した電流値は、記憶装置110に電流値情報112(図10A)として時刻情報とともに記憶する。(図中の「備考」欄の情報は、電流値情報112には含まれなくてよい。説明のために記載したものである。)そして、制御部104が、テスト充電(「充電開始前」から「充電中」への遷移)によって、電流値I2が減少したか否かを判別し(ステップS203)、減少しなかった場合(ステップS203のNO)、PV出力抑制中であると判断する(ステップS205)。 The current value acquired by the acquisition unit 102 is stored in the storage device 110 together with time information as current value information 112 (FIG. 10A). (The information in the “Remarks” column in the figure does not have to be included in the current value information 112. It is described for explanation.) Then, the control unit 104 performs test charging (“before charging”). From the “charging” to “charging”), it is determined whether or not the current value I2 has decreased (step S203). If it has not decreased (NO in step S203), it is determined that the PV output is being suppressed (NO in step S203). Step S205).
 なお、本実施形態(PV出力抑制中)では図10Aの電流値I2(A)がゼロ(0.0A)になっているが、これはPV-PCS14によるPV出力抑制ラインがゼロ%(0%)かつ負荷26による電力消費がない場合(全量買取の場合も同様)を例に説明しているためである。 In this embodiment (during PV output suppression), the current value I2 (A) in FIG. 10A is zero (0.0A). This is because the PV output suppression line by the PV-PCS 14 is zero% (0%). This is because the case where there is no power consumption by the load 26 (the same applies to the purchase of all the quantity) is described as an example.
 一方、PV出力抑制中だがPV-PCS14から交流側に電力が出力されている場合の電流値I2(A)はゼロではない有限値となる。この場合、テスト充電中はPVパネルから取り出される総電流が増加するためPVパネルの電圧は減少するが(PVパネルにおける一般的なI-V特性に従う)、PV-PCS14は出力電力を所定の値に保つように動作するため、テスト充電中の電流値I2(A)は若干増加することになる(この場合も減少はしないので、PV出力抑制中であることは正しく判断できる)。 On the other hand, the current value I2 (A) when the PV output is being suppressed but power is being output from the PV-PCS 14 to the AC side is a finite value that is not zero. In this case, during the test charge, the total current drawn from the PV panel increases, so the voltage of the PV panel decreases (according to the general IV characteristics in the PV panel), but the PV-PCS 14 sets the output power to a predetermined value. Therefore, the current value I2 (A) during the test charging slightly increases (in this case, since it does not decrease, it can be correctly determined that the PV output is being suppressed).
 なお、本実施形態では電流値I2(A)の変化から判断しているが、同時に測定した電圧値も用いて、PV-PCS14の出力電力を見積もり、判断に用いてもよく、この場合はテスト充電によって出力電力が減少(変動)しなければPV出力抑制中であると判断できる。 In this embodiment, the determination is based on the change in the current value I2 (A). However, the output power of the PV-PCS 14 may be estimated using the voltage value measured at the same time, and used for the determination. If the output power does not decrease (fluctuate) due to charging, it can be determined that the PV output is being suppressed.
 ここで、電流値情報112の電流値の差分を求め、差分情報114(図10B)として時刻情報とともに記憶する。(図中の「備考」欄の情報は、差分情報114には含まれなくてよい。説明のために記載したものである。)この差分情報114を参照し、電流値I2が減少したか否かを判別できる。なお、短時間のテスト充電を所定の間隔を空けて繰り返し行う場合は、複数回の測定値から平均値として電流値の差分を算出してもよい。 Here, the difference between the current values of the current value information 112 is obtained and stored as the difference information 114 (FIG. 10B) together with the time information. (The information in the “Remarks” column in the figure does not have to be included in the difference information 114. It is described for the sake of explanation.) With reference to this difference information 114, whether or not the current value I2 has decreased. Can be determined. In addition, when short-time test charging is repeatedly performed at predetermined intervals, a difference between current values may be calculated as an average value from a plurality of measured values.
 電流値I2が減少した場合(ステップS203のYES)、PV出力抑制中でないと判断し、本処理を終了する。
 一方、電流値I2が減少せず(ステップS203のNO)、PV出力抑制中であると判断した場合(ステップS205)は、制御部104は、蓄電池の空き容量が所定値(たとえば、定格容量の30%)以上あるか否かを判定する(ステップS207)。所定値以上ある場合(ステップS207のYES)、制御部104は、PVパネル12の出力のMPPT制御を実行して蓄電池の充電電流を調整して、電池システム42への充電制御を行う(ステップS209)。
 空き容量が所定値未満の場合(ステップS207のNO)、本処理を終了する。
If the current value I2 has decreased (YES in step S203), it is determined that the PV output is not being suppressed, and the process ends.
On the other hand, if current value I2 does not decrease (NO in step S203) and it is determined that PV output is being suppressed (step S205), control unit 104 determines that the free capacity of the storage battery is a predetermined value (for example, the rated capacity). 30%) or more is determined (step S207). If it is equal to or greater than the predetermined value (YES in step S207), the control unit 104 executes MPPT control of the output of the PV panel 12 to adjust the charging current of the storage battery, and performs charging control to the battery system 42 (step S209). ).
If the free space is less than the predetermined value (NO in step S207), this process ends.
 このようにして、本実施形態の充放電制御装置100によれば、PV出力抑制中か否かをPV出力抑制信号32がなくても検知できるとともに、さらに、MPPT制御を行いながら、蓄電池への充電処理を行うことができる。よって、PVパネル12の出力を最大化しながら効率よくPV出力抑制制御により抑制されている電力を蓄電池に充電することができる。 Thus, according to the charge / discharge control apparatus 100 of the present embodiment, whether or not the PV output is being suppressed can be detected without the PV output suppression signal 32, and further, while performing MPPT control, The charging process can be performed. Therefore, the electric power suppressed by the PV output suppression control can be efficiently charged to the storage battery while maximizing the output of the PV panel 12.
 さらに、充放電制御装置100によるMPPT制御中に、PVパネル12の出力抑制制御が解除された場合の処理について、図11のフローチャートを用いて説明する。
 制御部104によりMPPT制御が行われている最中に、定期的に本処理を実行する。
Furthermore, the process when the output suppression control of the PV panel 12 is canceled during the MPPT control by the charge / discharge control device 100 will be described with reference to the flowchart of FIG.
While the MPPT control is being performed by the control unit 104, this processing is periodically executed.
 この処理を定期的に実行する周期は、特に限定されないが、たとえば、数分、十数分、または数十分毎等としてよい。また、PV出力抑制指示が、時刻単位で指定されることが予め分かっている場合は、たとえば、定時毎の切り替わりの数分の間のみ、本処理ルーチンを実行してもよい(複数回繰り返してもよい)。 The period for periodically executing this processing is not particularly limited, but may be, for example, every several minutes, several tens of minutes, or every few tens of minutes. In addition, when it is known in advance that the PV output suppression instruction is specified in units of time, for example, this processing routine may be executed only for several minutes of switching at regular intervals (repeated multiple times). Also good).
 なお、以下でも上記説明における前提条件を引き継ぎ、PV出力抑制中の電流値I2(A)がゼロ(0.0A)である(PV-PCS14によるPV出力抑制ラインがゼロ%(0%)かつ負荷26による電力消費がない)場合について説明する。 In the following description, the precondition in the above description is taken over, and the current value I2 (A) during PV output suppression is zero (0.0A) (PV output suppression line by PV-PCS14 is zero% (0%) and load The case where there is no power consumption by H.26) will be described.
 まず、制御部104が、MPPT制御で設定されている充電電流を所定量減少させる(ステップS221)。なお、図10の場合とは異なり、充電電流を所定量減少させたら元に戻さずに、次のステップS223(電流値I2が増加したか否かを判別)に遷移するものとする。
 また、取得部102は、クランプ式直流電流センサ48を用いて直流電力線16bのPV-PCS14に入力される電流値I2(図8)を計測する。計測は、ステップS221のテスト充電の前後で少なくとも行われるのが好ましい。
First, the control unit 104 decreases the charging current set by the MPPT control by a predetermined amount (step S221). Note that, unlike the case of FIG. 10, when the charging current is decreased by a predetermined amount, the charging current is not restored and the process proceeds to the next step S223 (determining whether or not the current value I2 has increased).
Further, the acquisition unit 102 measures the current value I2 (FIG. 8) input to the PV-PCS 14 of the DC power line 16b using the clamp type DC current sensor 48. The measurement is preferably performed at least before and after the test charging in step S221.
 取得部102が取得した電流値は、記憶装置110に電流値情報113(図12A)として時刻情報とともに記憶する。さらに、電流値情報113の電流値の差分を求め、差分情報115(図12B)として時刻情報とともに記憶する。この差分情報115を参照し、電流値I2が増加したか否かを判別できる。(図中の「備考」欄の情報は、電流値情報113または差分情報115には含まれなくてよい。説明のために記載したものである。) The current value acquired by the acquisition unit 102 is stored in the storage device 110 together with time information as current value information 113 (FIG. 12A). Furthermore, the difference between the current values of the current value information 113 is obtained and stored as the difference information 115 (FIG. 12B) together with the time information. With reference to the difference information 115, it can be determined whether or not the current value I2 has increased. (The information in the “Remarks” column in the figure does not have to be included in the current value information 113 or the difference information 115. It is described for explanation.)
 そして、制御部104が、差分情報115を参照し、ステップS221の前後において、電流値I2が増加したか否かを判別し(ステップS223)、増加した場合(ステップS223のYES)、PV出力抑制制御が解除されたと判断する(ステップS225)。
(図12はPV出力抑制制御が解除されたと判断される場合の例である。)増加しなかった場合(ステップS223のNO)、PV出力抑制は解除されていないものとして、本処理を終了する。なお、ステップS221で減少させた充電電流は、本処理を終了する前に元に戻す処理を行ってもよいし、そのままMPPT制御に処理を移行してもよい。
And the control part 104 discriminate | determines whether the electric current value I2 increased before and after step S221 with reference to the difference information 115 (step S223), and when it increases (YES of step S223), PV output suppression It is determined that the control has been released (step S225).
(FIG. 12 is an example in the case where it is determined that the PV output suppression control has been released.) When the increase has not been made (NO in step S223), this processing is terminated assuming that the PV output suppression has not been released. . Note that the charging current decreased in step S221 may be returned to the original state before the end of this process, or the process may be shifted to MPPT control as it is.
 ここで、PV出力抑制制御が解除されたと判断する場合(ステップS225)、充放電制御装置100によるMPPT制御を直ちに停止してもよいが、PV出力抑制値がより大きな値に変更になっただけで、PV出力抑制制御自体は継続中である可能性もある。そこで、本実施形態では引き続き以下の処理を行うことにする。 Here, when it is determined that the PV output suppression control has been released (step S225), the MPPT control by the charge / discharge control device 100 may be stopped immediately, but the PV output suppression value has only been changed to a larger value. Therefore, the PV output suppression control itself may be ongoing. Therefore, in the present embodiment, the following processing is continued.
 PV出力抑制制御が解除されたと判断する場合(ステップS225)は、制御部104は、MPPT制御の充電電流を所定量減らす(ステップS227)。上記ステップS223と同様に、ステップS227の充電電流の電流値の変更前後で電流値I2を計測しておき、電流値I2が増加したか否かを判別する(ステップS229)。電流値I2が増加しなくなるまで、ステップS227を繰り返し、充電電流を所定量ずつ減少させる。電流値I2が増加しなくなったら(ステップS229のNO)、本処理を終了し、充放電制御装置100によるMPPT制御に処理を戻す。あるいは、充電電流がほぼゼロに到達した場合は、PV出力抑制制御が解除されたと判断し、MPPT制御に処理を戻さずに停止する。 When determining that the PV output suppression control has been released (step S225), the control unit 104 reduces the charging current of the MPPT control by a predetermined amount (step S227). Similar to step S223, the current value I2 is measured before and after the change of the current value of the charging current in step S227, and it is determined whether or not the current value I2 has increased (step S229). Step S227 is repeated until the current value I2 does not increase, and the charging current is decreased by a predetermined amount. When the current value I2 does not increase (NO in step S229), this process is terminated, and the process returns to the MPPT control by the charge / discharge control device 100. Alternatively, when the charging current reaches almost zero, it is determined that the PV output suppression control has been released, and the process stops without returning to the MPPT control.
 以上説明したように、本実施形態の充放電制御装置100において、制御部104により、蓄電池への充電量を所定量増やしたときの、取得部102により取得された直流電力の向きおよび大きさの少なくとも一方の変化に基づいて、PVパネル12の出力が抑制中であるか否かが判定される。 As described above, in the charge / discharge control apparatus 100 of the present embodiment, the direction and magnitude of the DC power acquired by the acquisition unit 102 when the control unit 104 increases the amount of charge to the storage battery by a predetermined amount. Based on at least one of the changes, it is determined whether or not the output of the PV panel 12 is being suppressed.
 このように、本実施形態の充放電制御装置100によれば、上記実施形態と同様な効果を奏するとともに、さらに、PV出力抑制信号32を受信(参照)できない場合であっても、出力抑制された電力をMPPT制御により最大化し、効率よく蓄電池に充電することができる。 As described above, according to the charge / discharge control device 100 of the present embodiment, the same effects as those of the above-described embodiment can be achieved, and even when the PV output suppression signal 32 cannot be received (referenced), the output is suppressed. Power can be maximized by MPPT control, and the storage battery can be efficiently charged.
 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 As described above, the embodiments of the present invention have been described with reference to the drawings. However, these are exemplifications of the present invention, and various configurations other than the above can be adopted.
<昇圧装置>
 たとえば、他の実施形態として、図13に示すように、PVパネル12とPV-PCS14の間に昇圧装置50が存在し、昇圧装置50がMPPT制御を行うPVシステム10についても、本発明の蓄電装置40を接続し、上記実施形態と同様に制御することができる。
 本実施形態の蓄電装置40は、PVパネル12と昇圧装置50の間の直流電力線16bに接続される。それ以外は、上記実施形態と同様である。
<Boosting device>
For example, as another embodiment, as shown in FIG. 13, a booster 50 exists between the PV panel 12 and the PV-PCS 14, and the PV system 10 in which the booster 50 performs MPPT control is also used in the power storage of the present invention. The device 40 can be connected and controlled in the same manner as in the above embodiment.
The power storage device 40 of the present embodiment is connected to the DC power line 16b between the PV panel 12 and the booster device 50. Other than that is the same as that of the said embodiment.
 この構成によれば、上記実施形態と同様な効果を奏する。 According to this configuration, the same effects as those of the above embodiment can be obtained.
<MPPT制御停止検出>
 さらに、他の実施形態として、PV-PCS14または上記昇圧装置50においてMPPT制御が動作中か否かを、PVパネル12の出力電圧および電流の値に基づいて、検出する構成を有してもよい。PV-PCS14または昇圧装置50によるMPPT制御の動作中におけるPVパネル12の出力電力の電流と電圧の変動パターンが予め分かっていれば、その情報を用いて、精度よく簡単にMPPT制御の動作の有無を判別できる。
<MPPT control stop detection>
Furthermore, as another embodiment, the PV-PCS 14 or the booster device 50 may be configured to detect whether the MPPT control is in operation based on the output voltage and current values of the PV panel 12. . If the current and voltage fluctuation pattern of the output power of the PV panel 12 during the operation of the MPPT control by the PV-PCS 14 or the booster device 50 is known in advance, whether or not the MPPT control operation is performed accurately and easily using that information. Can be determined.
 また、上述したように、MPPT制御の手法は、いくつか存在する。
 そこで、PV-PCS14または昇圧装置50の入出力をモニタして得られる特徴(たとえば、各センサにより計測されたPVパネル12の出力電力の電圧と電流の変動パターンなど)の解析に基づいて、MPPT制御が行われているか否かを判断してもよい。
Further, as described above, there are several MPPT control methods.
Therefore, based on the analysis of characteristics obtained by monitoring the input / output of the PV-PCS 14 or the booster 50 (for example, the voltage and current fluctuation patterns of the output power of the PV panel 12 measured by each sensor), the MPPT It may be determined whether control is being performed.
 具体的には、事前に、PVパネル12の出力電力の電圧および電流の変動パターンを解析し、PV-PCS14または昇圧装置50によるMPPT制御の動作中における変動パターンを抽出して学習し、記憶装置110に記憶する。これを学習済みの変動パターンとして用いて、MPPT制御中か否かを判断する。 Specifically, the fluctuation pattern of the voltage and current of the output power of the PV panel 12 is analyzed in advance, the fluctuation pattern during the operation of the MPPT control by the PV-PCS 14 or the booster 50 is extracted and learned, and the storage device 110. Using this as a learned variation pattern, it is determined whether MPPT control is in progress.
 さらに、制御部104が上記のような学習アルゴリズムに基づく自動チューニング機能を備えていてもよく、任意に組み合わされたPV-PCS14または昇圧装置50によるMPPT制御の動作を随時学習することができる。 Furthermore, the control unit 104 may have an automatic tuning function based on the learning algorithm as described above, and can learn the operation of the MPPT control by the PV-PCS 14 or the booster 50 combined arbitrarily.
 判断処理においては、取得部102によりPVパネル12の出力電力の電圧値および電流値を取得し、記憶装置110に記憶されている変動パターンと照合し、MPPT制御の動作中であると判断してよい。 In the determination process, the voltage value and current value of the output power of the PV panel 12 are acquired by the acquisition unit 102, collated with the fluctuation pattern stored in the storage device 110, and determined to be in the operation of MPPT control. Good.
 ただし、この判断は、他の実施形態における他の条件と組み合わせて行ってもよい。たとえば、PV出力抑制信号32を受信した際に、さらに本実施形態の方法でMPPT制御の停止を確認してもよく、あるいは、本実施形態の方法でMPPT制御の停止を検出した際に、念のためテスト充電を行ってもよく、PV出力抑制中であることを総合的に判断することができる。 However, this determination may be made in combination with other conditions in other embodiments. For example, when the PV output suppression signal 32 is received, the stop of the MPPT control may be further confirmed by the method of the present embodiment, or when the stop of the MPPT control is detected by the method of the present embodiment, Therefore, test charging may be performed, and it can be comprehensively determined that the PV output is being suppressed.
 このようにしてMPPT制御が停止していることが検出された場合に、充放電制御装置100においてPV-PCS14または昇圧装置50の代わりに制御部104がMPPT制御を開始して充電制御を行ってもよい。 When it is detected that the MPPT control is stopped in this way, the control unit 104 starts the MPPT control in the charge / discharge control device 100 instead of the PV-PCS 14 or the booster 50 and performs the charge control. Also good.
 この構成によれば、上記実施形態と同様な効果を奏する。 According to this configuration, the same effects as those of the above embodiment can be obtained.
 以上、図面を参照して本発明の実施形態について述べたが、本発明の実施形態に他の様々な構成を組み合わせて実施してもよい。 The embodiments of the present invention have been described above with reference to the drawings. However, various other configurations may be combined with the embodiments of the present invention.
<グリーンモード>
 たとえば、図3Aで説明した、PV出力抑制信号32がない状態で、売電(逆潮流)しないように、余剰電力を充電する構成についても、本発明に組み合わせて適用できる。
 図14は、本実施形態の蓄電システム1の構成を示す図である。
 本実施形態の蓄電システム1は、上記実施形態の蓄電システム1のいずれかの構成に加え、さらに、クランプ式交流電流センサ49を有する。
 クランプ式交流電流センサ49は、分電盤24と電力系統22の間の交流電力線28bに設置され、交流電力線28bを流れる電流の向きを検出する。取得部102は、クランプ式交流電流センサ49から交流電力線28bを流れる電流の向きに関する情報を取得する。
<Green mode>
For example, the configuration described in FIG. 3A for charging surplus power so as not to sell power (reverse power flow) without the PV output suppression signal 32 can also be applied in combination with the present invention.
FIG. 14 is a diagram illustrating a configuration of the power storage system 1 of the present embodiment.
The power storage system 1 of the present embodiment further includes a clamp-type AC current sensor 49 in addition to any configuration of the power storage system 1 of the above embodiment.
The clamp type AC current sensor 49 is installed on the AC power line 28b between the distribution board 24 and the power system 22, and detects the direction of the current flowing through the AC power line 28b. The acquisition unit 102 acquires information regarding the direction of the current flowing through the AC power line 28b from the clamped AC current sensor 49.
 そして、制御部104は、取得部102が取得した電流の向きに基づいて、電力系統22への逆潮流を検出する。そして、逆潮流が検出された場合に、逆潮流が発生しないように、追従制御しながら、PVパネル12で発電された電力の余剰分を蓄電装置40に充電する。
 この場合、上記実施形態で実施したMPPT制御は行わない。
And the control part 104 detects the reverse power flow to the electric power grid | system 22, based on the direction of the electric current which the acquisition part 102 acquired. Then, when a reverse power flow is detected, the power storage device 40 is charged with the surplus power generated by the PV panel 12 while performing follow-up control so that the reverse power flow does not occur.
In this case, the MPPT control performed in the above embodiment is not performed.
 また、この構成において、PVパネル12から出力される電力が閾値以上の場合に、閾値を超える電力を余剰分として充電してもよい。閾値は、たとえば、需要家の負荷26による総電力消費量等としてよい。この構成によれば、クランプ式交流電流センサ49が不要となる。 In this configuration, when the power output from the PV panel 12 is equal to or greater than the threshold, the power exceeding the threshold may be charged as a surplus. The threshold may be, for example, the total power consumption by the customer's load 26 or the like. According to this configuration, the clamp-type AC current sensor 49 is not necessary.
 この構成によれば、上記実施形態と同様な効果を奏するとともに、さらに、PV出力抑制信号32を受信していない場合にも、PVパネル12由来の余剰電力を逆潮流させずに蓄電装置40に充電し、有効活用することができる。 According to this configuration, the same effect as that of the above-described embodiment can be obtained, and even when the PV output suppression signal 32 is not received, the surplus power derived from the PV panel 12 can be supplied to the power storage device 40 without causing reverse flow. It can be charged and used effectively.
 なお、本発明において利用者に関する情報を取得、利用する場合は、これを適法に行うものとする。 In addition, when acquiring and using information about a user in the present invention, this shall be done legally.
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
 (付記1)
 蓄電手段と、
 前記蓄電手段の充放電を制御する制御手段と、
を備え、
 直流発電装置が直流電力線を介して変換装置に接続しており、
 前記変換装置は、前記直流電力線と交流電力線とを接続しており、かつ、直流電力を交流電力に変換し、
 前記交流電力線は、電力系統に接続しており、前記変換装置を介して前記直流発電装置に接続しており、
 前記直流発電装置と前記変換装置の間の前記直流電力線に、前記蓄電手段が接続され、 前記制御手段は、
  前記直流発電装置の出力が抑制中であることが検出された場合に、前記蓄電手段の充電電流を、前記蓄電手段の充電電力または前記直流発電装置の出力電力が最大となるように制御する、蓄電システム。
 (付記2)
 前記制御手段は、前記直流発電装置の出力が抑制継続中であるか否かを所定時間毎に定期的に確認する、付記1に記載の蓄電システム。
 (付記3)
 前記変換装置から、前記直流発電装置の出力の抑制指示に関する情報を取得する情報取得手段をさらに備え、
 前記制御手段は、前記情報取得手段により取得された前記抑制指示に関する情報に基づいて、前記直流発電装置の出力が抑制中であるか否かを判定する、付記1または2に記載の蓄電システム。
 (付記4)
 前記変換装置に入力される前記直流電力の向きおよび大きさの少なくとも一方を取得する電力情報取得手段をさらに備え、
 前記制御手段は、
  前記蓄電手段への充電量を所定量増やしたときの、前記電力情報取得手段により取得された前記直流電力の向きおよび大きさの少なくとも一方の変化に基づいて、前記直流発電装置の出力が抑制中であるか否かを判定する、付記1から3いずれか一項に記載の蓄電システム。
 (付記5)
 前記直流発電装置は、太陽光発電設備であり、
 前記変換装置は、太陽光発電パワーコンディショナである、付記1から4いずれか一項に記載の蓄電システム。
 (付記6)
 蓄電装置に接続される充放電制御装置であって、
 直流発電装置が直流電力線を介して変換装置に接続しており、
 前記変換装置は、前記直流電力線と交流電力線とを接続しており、かつ、直流電力を交流電力に変換し、
 前記交流電力線は、電力系統に接続しており、前記変換装置を介して前記直流発電装置に接続しており、
 前記直流発電装置と前記変換装置の間の前記直流電力線に、接続され、
 前記充放電制御装置は、
 前記直流発電装置の出力が抑制中であることが検出された場合に、前記蓄電装置の充電電流を、前記蓄電装置の充電電力または前記直流発電装置の出力電力が最大となるように制御する制御手段を備える充放電制御装置。
 (付記7)
 前記制御手段は、前記直流発電装置の出力が抑制継続中であるか否かを所定時間毎に定期的に確認する、付記6に記載の充放電制御装置。
 (付記8)
 前記変換装置から、前記直流発電装置の出力の抑制指示に関する情報を取得する情報取得手段をさらに備え、
 前記制御手段は、前記情報取得手段により取得された前記抑制指示に関する情報に基づいて、前記直流発電装置の出力が抑制中であるか否かを判定する、付記6または7に記載の充放電制御装置。
 (付記9)
 前記変換装置に入力される前記直流電力の向きおよび大きさの少なくとも一方を取得する電力情報取得手段をさらに備え、
 前記制御手段は、
  前記蓄電装置への充電量を所定量増やしたときの、前記電力情報取得手段により取得された前記直流電力の向きおよび大きさの少なくとも一方の変化に基づいて、前記直流発電装置の出力が抑制中であるか否かを判定する、付記6から8のいずれか一項に記載の充放電制御装置。
 (付記10)
 前記直流発電装置は、太陽光発電設備であり、
 前記変換装置は、太陽光発電パワーコンディショナである、付記6から9のいずれか一項に記載の充放電制御装置。
 (付記11)
 蓄電装置に接続される充放電制御装置の制御方法であって、
 直流発電装置が直流電力線を介して変換装置に接続しており、
 前記変換装置は、前記直流電力線と交流電力線とを接続しており、かつ、直流電力を交流電力に変換し、
 前記交流電力線は、電力系統に接続しており、前記変換装置を介して前記直流発電装置に接続しており、
 前記直流発電装置と前記変換装置の間の前記直流電力線に、接続され、
 前記充放電制御装置が、
 前記直流発電装置の出力が抑制中であることが検出された場合に、前記蓄電装置の充電電流を、前記蓄電装置の充電電力または前記直流発電装置の出力電力が最大となるように制御する、制御方法。
 (付記12)
 前記充放電制御装置が、
 前記直流発電装置の出力が抑制継続中であるか否かを所定時間毎に定期的に確認する、付記11に記載の制御方法。
 (付記13)
 前記充放電制御装置が、
 前記変換装置から、前記直流発電装置の出力の抑制指示に関する情報を取得し、
 取得された前記抑制指示に関する情報に基づいて、前記直流発電装置の出力が抑制中であるか否かを判定する、付記11または12に記載の制御方法。
 (付記14)
 前記充放電制御装置が、
 前記変換装置に入力される前記直流電力の向きおよび大きさの少なくとも一方を取得し、
 前記蓄電装置への充電量を所定量増やしたときの、取得された前記直流電力の向きおよび大きさの少なくとも一方の変化に基づいて、前記直流発電装置の出力が抑制中であるか否かを判定する、付記11から13のいずれか一項に記載の制御方法。
 (付記15)
 前記直流発電装置は、太陽光発電設備であり、
 前記変換装置は、太陽光発電パワーコンディショナである、付記11から14のいずれか一項に記載の制御方法。
 (付記16)
 蓄電装置に接続される充放電制御装置を実現するコンピュータのプログラムを記録したコンピュータ読み取り可能な記録媒体であって、
 直流発電装置が直流電力線を介して変換装置に接続しており、
 前記変換装置は、前記直流電力線と交流電力線とを接続しており、かつ、直流電力を交流電力に変換し、
 前記交流電力線は、電力系統に接続しており、前記変換装置を介して前記直流発電装置に接続しており、
 前記直流発電装置と前記変換装置の間の前記直流電力線に、接続され、
 コンピュータに、
 前記直流発電装置の出力が抑制中であることが検出された場合に、前記蓄電装置の充電電流を、前記蓄電装置の充電電力または前記直流発電装置の出力電力が最大となるように制御する手順を実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体。
 (付記17)
 付記16に記載のプログラムを記録したコンピュータ読み取り可能な記録媒体において、
 前記直流発電装置の出力が抑制継続中であるか否かを所定時間毎に定期的に確認する手順をコンピュータに実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体。
 (付記18)
 付記16または17に記載のプログラムを記録したコンピュータ読み取り可能な記録媒体において、
 前記変換装置から、前記直流発電装置の出力の抑制指示に関する情報を取得する手順、 取得された前記抑制指示に関する情報に基づいて、前記直流発電装置の出力が抑制中であるか否かを判定する手順をコンピュータに実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体。
 (付記19)
 付記16から18のいずれか一項に記載のプログラムを記録したコンピュータ読み取り可能な記録媒体において、
 前記変換装置に入力される前記直流電力の向きおよび大きさの少なくとも一方を取得する手順、
 前記蓄電装置への充電量を所定量増やしたときの、取得された前記直流電力の向きおよび大きさの少なくとも一方の変化に基づいて、前記直流発電装置の出力が抑制中であるか否かを判定する手順をコンピュータに実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体。
 (付記20)
 付記16から19のいずれか一項に記載のプログラムを記録したコンピュータ読み取り可能な記録媒体において、
 前記直流発電装置は、太陽光発電設備であり、
 前記変換装置は、太陽光発電パワーコンディショナであるプログラムを記録したコンピュータ読み取り可能な記録媒体。
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2016年7月26日に出願された日本出願特願2016-146771を基礎とする優先権を主張し、その開示の全てをここに取り込む。
A part or all of the above-described embodiment can be described as in the following supplementary notes, but is not limited thereto.
(Appendix 1)
Power storage means;
Control means for controlling charging and discharging of the power storage means;
With
The DC power generator is connected to the converter via a DC power line,
The conversion device connects the DC power line and the AC power line, and converts DC power into AC power,
The AC power line is connected to a power system, is connected to the DC power generation device via the conversion device,
The power storage means is connected to the DC power line between the DC power generator and the converter, and the control means
When it is detected that the output of the DC power generation device is being suppressed, the charging current of the power storage means is controlled so that the charging power of the power storage means or the output power of the DC power generation device is maximized. Power storage system.
(Appendix 2)
The power storage system according to appendix 1, wherein the control means periodically checks whether or not the output of the DC power generation device is continuing to be suppressed every predetermined time.
(Appendix 3)
The apparatus further comprises information acquisition means for acquiring information related to an instruction to suppress the output of the DC power generator from the converter.
The power storage system according to appendix 1 or 2, wherein the control unit determines whether or not the output of the DC power generation device is being suppressed based on information regarding the suppression instruction acquired by the information acquisition unit.
(Appendix 4)
Further comprising power information acquisition means for acquiring at least one of the direction and magnitude of the DC power input to the converter,
The control means includes
Based on a change in at least one of the direction and magnitude of the DC power acquired by the power information acquisition unit when the charge amount to the power storage unit is increased by a predetermined amount, the output of the DC power generation device is being suppressed. The power storage system according to any one of appendices 1 to 3, wherein the power storage system determines whether or not.
(Appendix 5)
The DC power generator is a photovoltaic power generation facility,
The power storage system according to any one of appendices 1 to 4, wherein the conversion device is a photovoltaic power conditioner.
(Appendix 6)
A charge / discharge control device connected to a power storage device,
The DC power generator is connected to the converter via a DC power line,
The conversion device connects the DC power line and the AC power line, and converts DC power into AC power,
The AC power line is connected to a power system, is connected to the DC power generation device via the conversion device,
Connected to the DC power line between the DC generator and the converter,
The charge / discharge control device comprises:
Control that controls the charging current of the power storage device so that the charging power of the power storage device or the output power of the DC power generation device is maximized when it is detected that the output of the DC power generation device is being suppressed. Charge / discharge control apparatus comprising means.
(Appendix 7)
The charge / discharge control device according to appendix 6, wherein the control means periodically checks whether or not the output of the DC power generation device is continuing to be suppressed every predetermined time.
(Appendix 8)
The apparatus further comprises information acquisition means for acquiring information related to an instruction to suppress the output of the DC power generator from the converter.
The charge / discharge control according to appendix 6 or 7, wherein the control unit determines whether or not the output of the DC power generation device is being suppressed based on information on the suppression instruction acquired by the information acquisition unit. apparatus.
(Appendix 9)
Further comprising power information acquisition means for acquiring at least one of the direction and magnitude of the DC power input to the converter,
The control means includes
Based on a change in at least one of the direction and magnitude of the DC power acquired by the power information acquisition means when the amount of charge to the power storage device is increased by a predetermined amount, the output of the DC power generation device is being suppressed. The charge / discharge control apparatus according to any one of appendices 6 to 8, which determines whether or not
(Appendix 10)
The DC power generator is a photovoltaic power generation facility,
The charge / discharge control device according to any one of appendices 6 to 9, wherein the conversion device is a photovoltaic power conditioner.
(Appendix 11)
A control method of a charge / discharge control device connected to a power storage device,
The DC power generator is connected to the converter via a DC power line,
The conversion device connects the DC power line and the AC power line, and converts DC power into AC power,
The AC power line is connected to a power system, is connected to the DC power generation device via the conversion device,
Connected to the DC power line between the DC generator and the converter,
The charge / discharge control device comprises:
When it is detected that the output of the DC power generation device is being suppressed, the charging current of the power storage device is controlled so that the charging power of the power storage device or the output power of the DC power generation device is maximized. Control method.
(Appendix 12)
The charge / discharge control device comprises:
The control method according to appendix 11, wherein the output of the DC power generation device is periodically checked at predetermined time intervals to determine whether or not the output of the DC power generation device is continuing to be suppressed.
(Appendix 13)
The charge / discharge control device comprises:
From the converter, obtain information on the instruction to suppress the output of the DC power generator,
The control method according to appendix 11 or 12, wherein it is determined whether or not the output of the DC power generation device is being suppressed based on the acquired information regarding the suppression instruction.
(Appendix 14)
The charge / discharge control device comprises:
Obtaining at least one of the direction and magnitude of the DC power input to the converter,
Whether or not the output of the DC power generation device is being suppressed based on a change in at least one of the direction and magnitude of the acquired DC power when the amount of charge to the power storage device is increased by a predetermined amount. The control method according to any one of appendices 11 to 13, which is determined.
(Appendix 15)
The DC power generator is a photovoltaic power generation facility,
The control method according to any one of appendices 11 to 14, wherein the conversion device is a photovoltaic power conditioner.
(Appendix 16)
A computer-readable recording medium recording a computer program for realizing a charge / discharge control device connected to a power storage device,
The DC power generator is connected to the converter via a DC power line,
The conversion device connects the DC power line and the AC power line, and converts DC power into AC power,
The AC power line is connected to a power system, is connected to the DC power generation device via the conversion device,
Connected to the DC power line between the DC generator and the converter,
On the computer,
A procedure for controlling the charging current of the power storage device so that the charging power of the power storage device or the output power of the DC power generation device is maximized when it is detected that the output of the DC power generation device is being suppressed. The computer-readable recording medium which recorded the program for performing this.
(Appendix 17)
In a computer-readable recording medium in which the program according to appendix 16 is recorded,
A computer-readable recording medium having recorded thereon a program for causing a computer to execute a procedure for periodically checking whether or not the output of the DC power generation device is continuing to be suppressed every predetermined time.
(Appendix 18)
In a computer-readable recording medium on which the program according to appendix 16 or 17 is recorded,
A procedure for obtaining information relating to an instruction for suppressing the output of the DC power generator from the converter, and determining whether or not the output of the DC power generator is being suppressed based on the obtained information relating to the instruction for suppression. A computer-readable recording medium on which a program for causing a computer to execute a procedure is recorded.
(Appendix 19)
In a computer-readable recording medium on which the program according to any one of supplementary notes 16 to 18 is recorded,
A procedure for obtaining at least one of the direction and the magnitude of the DC power input to the converter;
Whether or not the output of the DC power generation device is being suppressed based on a change in at least one of the direction and magnitude of the acquired DC power when the amount of charge to the power storage device is increased by a predetermined amount. A computer-readable recording medium having recorded thereon a program for causing a computer to execute a determination procedure.
(Appendix 20)
In a computer-readable recording medium on which the program according to any one of supplementary notes 16 to 19 is recorded,
The DC power generator is a photovoltaic power generation facility,
The said converter is a computer-readable recording medium which recorded the program which is a photovoltaic power conditioner.
While the present invention has been described with reference to the embodiments, the present invention is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
This application claims priority based on Japanese Patent Application No. 2016-147671 filed on Jul. 26, 2016, the entire disclosure of which is incorporated herein.
1 蓄電システム
10 PVシステム
12 PVパネル
16 直流電力線
16a 第1の直流電力線
16b 第2の直流電力線
17 接続ライン
22 電力系統
24 分電盤
26 負荷
28、28a、28b 交流電力線
30 サーバ
32 PV出力抑制信号
40 蓄電装置
42 電池システム
44 クランプ式直流電流センサ
46 クランプ式直流電流センサ
48 クランプ式直流電流センサ
49 クランプ式交流電流センサ
50 昇圧装置
80 コンピュータ
82 CPU
84 メモリ
85 ストレージ
86 I/O
87 通信I/F
89 バス
90 コンピュータプログラム
100 充放電制御装置
102 取得部
104 制御部
106 情報取得部
110 記憶装置
112 電流値情報
113 電流値情報
114 差分情報
115 差分情報
DESCRIPTION OF SYMBOLS 1 Power storage system 10 PV system 12 PV panel 16 DC power line 16a 1st DC power line 16b 2nd DC power line 17 Connection line 22 Power system 24 Distribution board 26 Load 28, 28a, 28b AC power line 30 Server 32 PV output suppression signal 40 Power Storage Device 42 Battery System 44 Clamp Type DC Current Sensor 46 Clamp Type DC Current Sensor 48 Clamp Type DC Current Sensor 49 Clamp Type AC Current Sensor 50 Booster 80 Computer 82 CPU
84 Memory 85 Storage 86 I / O
87 Communication I / F
89 Bus 90 Computer program 100 Charge / discharge control device 102 Acquisition unit 104 Control unit 106 Information acquisition unit 110 Storage device 112 Current value information 113 Current value information 114 Difference information 115 Difference information

Claims (20)

  1.  蓄電手段と、
     前記蓄電手段の充放電を制御する制御手段と、
    を備え、
     直流発電装置が直流電力線を介して変換装置に接続しており、
     前記変換装置は、前記直流電力線と交流電力線とを接続しており、かつ、直流電力を交流電力に変換し、
     前記交流電力線は、電力系統に接続しており、前記変換装置を介して前記直流発電装置に接続しており、
     前記直流発電装置と前記変換装置の間の前記直流電力線に、前記蓄電手段が接続され、 前記制御手段は、
      前記直流発電装置の出力が抑制中であることが検出された場合に、前記蓄電手段の充電電流を、前記蓄電手段の充電電力または前記直流発電装置の出力電力が最大となるように制御する、蓄電システム。
    Power storage means;
    Control means for controlling charging and discharging of the power storage means;
    With
    The DC power generator is connected to the converter via a DC power line,
    The conversion device connects the DC power line and the AC power line, and converts DC power into AC power,
    The AC power line is connected to a power system, is connected to the DC power generation device via the conversion device,
    The power storage means is connected to the DC power line between the DC power generator and the converter, and the control means
    When it is detected that the output of the DC power generation device is being suppressed, the charging current of the power storage means is controlled so that the charging power of the power storage means or the output power of the DC power generation device is maximized. Power storage system.
  2.  前記制御手段は、前記直流発電装置の出力が抑制継続中であるか否かを所定時間毎に定期的に確認する、請求項1に記載の蓄電システム。 2. The power storage system according to claim 1, wherein the control unit periodically checks whether or not the output of the DC power generation device is continuing to be suppressed every predetermined time.
  3.  前記変換装置から、前記直流発電装置の出力の抑制指示に関する情報を取得する情報取得手段をさらに備え、
     前記制御手段は、前記情報取得手段により取得された前記抑制指示に関する情報に基づいて、前記直流発電装置の出力が抑制中であるか否かを判定する、請求項1または2に記載の蓄電システム。
    The apparatus further comprises information acquisition means for acquiring information related to an instruction to suppress the output of the DC power generator from the converter.
    The power storage system according to claim 1 or 2, wherein the control unit determines whether or not the output of the DC power generation device is being suppressed based on information regarding the suppression instruction acquired by the information acquisition unit. .
  4.  前記変換装置に入力される前記直流電力の向きおよび大きさの少なくとも一方を取得する電力情報取得手段をさらに備え、
     前記制御手段は、
      前記蓄電手段への充電量を所定量増やしたときの、前記電力情報取得手段により取得された前記直流電力の向きおよび大きさの少なくとも一方の変化に基づいて、前記直流発電装置の出力が抑制中であるか否かを判定する、請求項1から3いずれか一項に記載の蓄電システム。
    Further comprising power information acquisition means for acquiring at least one of the direction and magnitude of the DC power input to the converter,
    The control means includes
    Based on a change in at least one of the direction and magnitude of the DC power acquired by the power information acquisition unit when the charge amount to the power storage unit is increased by a predetermined amount, the output of the DC power generation device is being suppressed. The power storage system according to any one of claims 1 to 3, wherein it is determined whether or not.
  5.  前記直流発電装置は、太陽光発電設備であり、
     前記変換装置は、太陽光発電パワーコンディショナである、請求項1から4いずれか一項に記載の蓄電システム。
    The DC power generator is a photovoltaic power generation facility,
    The power storage system according to any one of claims 1 to 4, wherein the conversion device is a photovoltaic power conditioner.
  6.  蓄電装置に接続される充放電制御装置であって、
     直流発電装置が直流電力線を介して変換装置に接続しており、
     前記変換装置は、前記直流電力線と交流電力線とを接続しており、かつ、直流電力を交流電力に変換し、
     前記交流電力線は、電力系統に接続しており、前記変換装置を介して前記直流発電装置に接続しており、
     前記直流発電装置と前記変換装置の間の前記直流電力線に、接続され、
     前記充放電制御装置は、
     前記直流発電装置の出力が抑制中であることが検出された場合に、前記蓄電装置の充電電流を、前記蓄電装置の充電電力または前記直流発電装置の出力電力が最大となるように制御する制御手段を備える充放電制御装置。
    A charge / discharge control device connected to a power storage device,
    The DC power generator is connected to the converter via a DC power line,
    The conversion device connects the DC power line and the AC power line, and converts DC power into AC power,
    The AC power line is connected to a power system, is connected to the DC power generation device via the conversion device,
    Connected to the DC power line between the DC generator and the converter,
    The charge / discharge control device comprises:
    Control that controls the charging current of the power storage device so that the charging power of the power storage device or the output power of the DC power generation device is maximized when it is detected that the output of the DC power generation device is being suppressed. Charge / discharge control apparatus comprising means.
  7.  前記制御手段は、前記直流発電装置の出力が抑制継続中であるか否かを所定時間毎に定期的に確認する、請求項6に記載の充放電制御装置。 The charge / discharge control device according to claim 6, wherein the control means periodically checks whether or not the output of the DC power generation device is continuing to be suppressed every predetermined time.
  8.  前記変換装置から、前記直流発電装置の出力の抑制指示に関する情報を取得する情報取得手段をさらに備え、
     前記制御手段は、前記情報取得手段により取得された前記抑制指示に関する情報に基づいて、前記直流発電装置の出力が抑制中であるか否かを判定する、請求項6または7に記載の充放電制御装置。
    The apparatus further comprises information acquisition means for acquiring information related to an instruction to suppress the output of the DC power generator from the converter.
    The charging / discharging according to claim 6 or 7, wherein the control unit determines whether or not the output of the DC power generation device is being suppressed based on information on the suppression instruction acquired by the information acquisition unit. Control device.
  9.  前記変換装置に入力される前記直流電力の向きおよび大きさの少なくとも一方を取得する電力情報取得手段をさらに備え、
     前記制御手段は、
      前記蓄電装置への充電量を所定量増やしたときの、前記電力情報取得手段により取得された前記直流電力の向きおよび大きさの少なくとも一方の変化に基づいて、前記直流発電装置の出力が抑制中であるか否かを判定する、請求項6から8のいずれか一項に記載の充放電制御装置。
    Further comprising power information acquisition means for acquiring at least one of the direction and magnitude of the DC power input to the converter,
    The control means includes
    Based on a change in at least one of the direction and magnitude of the DC power acquired by the power information acquisition means when the amount of charge to the power storage device is increased by a predetermined amount, the output of the DC power generation device is being suppressed. The charge / discharge control apparatus according to any one of claims 6 to 8, wherein it is determined whether or not.
  10.  前記直流発電装置は、太陽光発電設備であり、
     前記変換装置は、太陽光発電パワーコンディショナである、請求項6から9のいずれか一項に記載の充放電制御装置。
    The DC power generator is a photovoltaic power generation facility,
    The charge / discharge control device according to any one of claims 6 to 9, wherein the conversion device is a photovoltaic power conditioner.
  11.  蓄電装置に接続される充放電制御装置の制御方法であって、
     直流発電装置が直流電力線を介して変換装置に接続しており、
     前記変換装置は、前記直流電力線と交流電力線とを接続しており、かつ、直流電力を交流電力に変換し、
     前記交流電力線は、電力系統に接続しており、前記変換装置を介して前記直流発電装置に接続しており、
     前記直流発電装置と前記変換装置の間の前記直流電力線に、接続され、
     前記充放電制御装置が、
     前記直流発電装置の出力が抑制中であることが検出された場合に、前記蓄電装置の充電電流を、前記蓄電装置の充電電力または前記直流発電装置の出力電力が最大となるように制御する、制御方法。
    A control method of a charge / discharge control device connected to a power storage device,
    The DC power generator is connected to the converter via a DC power line,
    The conversion device connects the DC power line and the AC power line, and converts DC power into AC power,
    The AC power line is connected to a power system, is connected to the DC power generation device via the conversion device,
    Connected to the DC power line between the DC generator and the converter,
    The charge / discharge control device comprises:
    When it is detected that the output of the DC power generation device is being suppressed, the charging current of the power storage device is controlled so that the charging power of the power storage device or the output power of the DC power generation device is maximized. Control method.
  12.  前記充放電制御装置が、
     前記直流発電装置の出力が抑制継続中であるか否かを所定時間毎に定期的に確認する、請求項11に記載の制御方法。
    The charge / discharge control device comprises:
    The control method according to claim 11, wherein whether or not the output of the DC power generation device is being continuously suppressed is periodically checked at predetermined time intervals.
  13.  前記充放電制御装置が、
     前記変換装置から、前記直流発電装置の出力の抑制指示に関する情報を取得し、
     取得された前記抑制指示に関する情報に基づいて、前記直流発電装置の出力が抑制中であるか否かを判定する、請求項11または12に記載の制御方法。
    The charge / discharge control device comprises:
    From the converter, obtain information on the instruction to suppress the output of the DC power generator,
    The control method according to claim 11 or 12, wherein it is determined whether or not the output of the DC power generation device is being suppressed based on the acquired information regarding the suppression instruction.
  14.  前記充放電制御装置が、
     前記変換装置に入力される前記直流電力の向きおよび大きさの少なくとも一方を取得し、
     前記蓄電装置への充電量を所定量増やしたときの、取得された前記直流電力の向きおよび大きさの少なくとも一方の変化に基づいて、前記直流発電装置の出力が抑制中であるか否かを判定する、請求項11から13のいずれか一項に記載の制御方法。
    The charge / discharge control device comprises:
    Obtaining at least one of the direction and magnitude of the DC power input to the converter,
    Whether or not the output of the DC power generation device is being suppressed based on a change in at least one of the direction and magnitude of the acquired DC power when the amount of charge to the power storage device is increased by a predetermined amount. The control method according to claim 11, wherein the determination is performed.
  15.  前記直流発電装置は、太陽光発電設備であり、
     前記変換装置は、太陽光発電パワーコンディショナである、請求項11から14のいずれか一項に記載の制御方法。
    The DC power generator is a photovoltaic power generation facility,
    The control method according to any one of claims 11 to 14, wherein the conversion device is a photovoltaic power conditioner.
  16.  蓄電装置に接続される充放電制御装置を実現するコンピュータのプログラムを記録したコンピュータ読み取り可能な記録媒体であって、
     直流発電装置が直流電力線を介して変換装置に接続しており、
     前記変換装置は、前記直流電力線と交流電力線とを接続しており、かつ、直流電力を交流電力に変換し、
     前記交流電力線は、電力系統に接続しており、前記変換装置を介して前記直流発電装置に接続しており、
     前記直流発電装置と前記変換装置の間の前記直流電力線に、接続され、
     コンピュータに、
     前記直流発電装置の出力が抑制中であることが検出された場合に、前記蓄電装置の充電電流を、前記蓄電装置の充電電力または前記直流発電装置の出力電力が最大となるように制御する手順を実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体。
    A computer-readable recording medium recording a computer program for realizing a charge / discharge control device connected to a power storage device,
    The DC power generator is connected to the converter via a DC power line,
    The conversion device connects the DC power line and the AC power line, and converts DC power into AC power,
    The AC power line is connected to a power system, is connected to the DC power generation device via the conversion device,
    Connected to the DC power line between the DC generator and the converter,
    On the computer,
    A procedure for controlling the charging current of the power storage device so that the charging power of the power storage device or the output power of the DC power generation device is maximized when it is detected that the output of the DC power generation device is being suppressed. The computer-readable recording medium which recorded the program for performing this.
  17.  請求項16に記載のプログラムを記録したコンピュータ読み取り可能な記録媒体において、
     前記直流発電装置の出力が抑制継続中であるか否かを所定時間毎に定期的に確認する手順をコンピュータに実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体。
    A computer-readable recording medium in which the program according to claim 16 is recorded.
    A computer-readable recording medium having recorded thereon a program for causing a computer to execute a procedure for periodically checking whether or not the output of the DC power generation device is continuing to be suppressed every predetermined time.
  18.  請求項16または17に記載のプログラムを記録したコンピュータ読み取り可能な記録媒体において、
     前記変換装置から、前記直流発電装置の出力の抑制指示に関する情報を取得する手順、 取得された前記抑制指示に関する情報に基づいて、前記直流発電装置の出力が抑制中であるか否かを判定する手順をコンピュータに実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体。
    A computer-readable recording medium on which the program according to claim 16 or 17 is recorded,
    A procedure for obtaining information relating to an instruction for suppressing the output of the DC power generator from the converter, and determining whether or not the output of the DC power generator is being suppressed based on the obtained information relating to the instruction for suppression. A computer-readable recording medium on which a program for causing a computer to execute a procedure is recorded.
  19.  請求項16から18のいずれか一項に記載のプログラムを記録したコンピュータ読み取り可能な記録媒体において、
     前記変換装置に入力される前記直流電力の向きおよび大きさの少なくとも一方を取得する手順、
     前記蓄電装置への充電量を所定量増やしたときの、取得された前記直流電力の向きおよび大きさの少なくとも一方の変化に基づいて、前記直流発電装置の出力が抑制中であるか否かを判定する手順をコンピュータに実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体。
    A computer-readable recording medium recording the program according to any one of claims 16 to 18,
    A procedure for obtaining at least one of the direction and the magnitude of the DC power input to the converter;
    Whether or not the output of the DC power generation device is being suppressed based on a change in at least one of the direction and magnitude of the acquired DC power when the amount of charge to the power storage device is increased by a predetermined amount. A computer-readable recording medium having recorded thereon a program for causing a computer to execute a determination procedure.
  20.  請求項16から19のいずれか一項に記載のプログラムを記録したコンピュータ読み取り可能な記録媒体において、
     前記直流発電装置は、太陽光発電設備であり、
     前記変換装置は、太陽光発電パワーコンディショナであるプログラムを記録したコンピュータ読み取り可能な記録媒体。
    A computer-readable recording medium in which the program according to any one of claims 16 to 19 is recorded.
    The DC power generator is a photovoltaic power generation facility,
    The said converter is a computer-readable recording medium which recorded the program which is a photovoltaic power conditioner.
PCT/JP2017/026215 2016-07-26 2017-07-20 Electricity storage system, charging and discharging control device and control method, and recording medium having program recorded thereon WO2018021130A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-146771 2016-07-26
JP2016146771A JP2019193317A (en) 2016-07-26 2016-07-26 Power storage system, charge/discharge control device, control method thereof, and program

Publications (1)

Publication Number Publication Date
WO2018021130A1 true WO2018021130A1 (en) 2018-02-01

Family

ID=61016332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026215 WO2018021130A1 (en) 2016-07-26 2017-07-20 Electricity storage system, charging and discharging control device and control method, and recording medium having program recorded thereon

Country Status (2)

Country Link
JP (1) JP2019193317A (en)
WO (1) WO2018021130A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108879921A (en) * 2018-08-31 2018-11-23 黄根池 A kind of accumulator charging/discharging system of recyclable electric energy

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6699574B2 (en) * 2017-02-01 2020-05-27 オムロン株式会社 Battery control device
JP7529200B2 (en) 2021-04-05 2024-08-06 サーキュラー蓄電ソリューション株式会社 Energy storage system, expansion function unit with storage battery, and expansion function unit
JP7529199B2 (en) 2021-04-05 2024-08-06 サーキュラー蓄電ソリューション株式会社 Energy storage system, expansion function unit with storage battery, and expansion function unit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06133472A (en) * 1992-10-19 1994-05-13 Canon Inc Sunlight power generating system
JPH06266456A (en) * 1993-03-16 1994-09-22 Kansai Electric Power Co Inc:The Photovoltaic power generating equipment capable of jointly using battery
JP2012139019A (en) * 2010-12-27 2012-07-19 Noritz Corp Power conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06133472A (en) * 1992-10-19 1994-05-13 Canon Inc Sunlight power generating system
JPH06266456A (en) * 1993-03-16 1994-09-22 Kansai Electric Power Co Inc:The Photovoltaic power generating equipment capable of jointly using battery
JP2012139019A (en) * 2010-12-27 2012-07-19 Noritz Corp Power conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108879921A (en) * 2018-08-31 2018-11-23 黄根池 A kind of accumulator charging/discharging system of recyclable electric energy

Also Published As

Publication number Publication date
JP2019193317A (en) 2019-10-31

Similar Documents

Publication Publication Date Title
Ranaweera et al. Distributed control scheme for residential battery energy storage units coupled with PV systems
Alramlawi et al. Optimal operation of hybrid PV-battery system considering grid scheduled blackouts and battery lifetime
Wu et al. Optimal switching renewable energy system for demand side management
WO2018021130A1 (en) Electricity storage system, charging and discharging control device and control method, and recording medium having program recorded thereon
Magnor et al. Optimization of PV battery systems using genetic algorithms
EP3422516B1 (en) Power supply and demand prediction system, power supply and demand prediction method and power supply and demand prediction program
US20130207466A1 (en) Home energy management apparatus and method for interworking with new renewable energy
AU2018278210B2 (en) Maximum power point tracking hybrid control of an energy storage system
WO2011122681A1 (en) System-stabilizing system, power supply system, method for controlling central management device, and program for central management device
US20160268804A1 (en) Power management system
JP2017055629A (en) Peak power estimation device, power management system, and peak power estimation method
JP6701922B2 (en) Storage controller
CN103078535A (en) Methods and systems for operating a power conversion system
Mansur et al. Performance analysis of self-consumed solar PV system for a fully DC residential house
JP6363412B2 (en) Power conditioner and power control method
WO2020162461A1 (en) Power control system and power control method
Dayalan et al. Energy management of a microgrid using demand response strategy including renewable uncertainties
JP2017175785A (en) Power storage system, charge/discharge controller, control method therefor, and program
Mohammadi et al. On the behavior of responsive loads in the presence of DFACTS devices
WO2017163747A1 (en) Power storage system, charge/discharge control device, control method therefor, and program
CN115207923A (en) Data processing method and equipment of power supply system
JP6459811B2 (en) Power supply system, charge / discharge control device, and charge / discharge control method
Wolfs et al. A Fourier series based approach to the periodic optimisation of finely dispersed battery storage
Korada et al. Adaptive power management algorithm for multi-source DC microgrid system
KR20210081092A (en) Intelligent operation methods and apparatuses of energy storage system linked with heterogeneous distributed resource

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834138

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17834138

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP