WO2018021027A1 - Electric track travel route selection system, electric track travel route selection method - Google Patents

Electric track travel route selection system, electric track travel route selection method Download PDF

Info

Publication number
WO2018021027A1
WO2018021027A1 PCT/JP2017/025392 JP2017025392W WO2018021027A1 WO 2018021027 A1 WO2018021027 A1 WO 2018021027A1 JP 2017025392 W JP2017025392 W JP 2017025392W WO 2018021027 A1 WO2018021027 A1 WO 2018021027A1
Authority
WO
WIPO (PCT)
Prior art keywords
route
information
area
travel
weight
Prior art date
Application number
PCT/JP2017/025392
Other languages
French (fr)
Japanese (ja)
Inventor
井上 喜博
真和 山口
Original Assignee
ダイムラー・アクチェンゲゼルシャフト
三菱ふそうトラック・バス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイムラー・アクチェンゲゼルシャフト, 三菱ふそうトラック・バス株式会社 filed Critical ダイムラー・アクチェンゲゼルシャフト
Publication of WO2018021027A1 publication Critical patent/WO2018021027A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B29/00Maps; Plans; Charts; Diagrams, e.g. route diagram
    • G09B29/10Map spot or coordinate position indicators; Map reading aids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to a traveling route selection system for an electric truck and a traveling route selection method for an electric truck, and more particularly to a technology for selecting a traveling route related to collection and delivery of collection and delivery by an electric truck.
  • Patent Document 2 discloses a vehicle allocation and delivery planning method that enables an efficient visit even when the required time to the visit destination varies due to various factors such as traffic accidents, traffic restrictions, and traffic jams.
  • the present invention has been made to solve such problems, and an object of the present invention is to provide an electric truck traveling route selection system and an electric truck traveling route selection method capable of further improving power consumption. There is to do.
  • An electric truck traveling route selection system is an electric truck traveling route selection system using a motor driven by electric power supplied from a battery as a driving source, and the electric truck transportation start point information and Map information acquisition means for acquiring map information including transport route information from the transportation start point to the baggage landing point, initial weight information of the initial load loaded at the transport start point, and the baggage landing point Transport weight information acquisition means for acquiring transport weight information including the boarding / mounting weight information of the packages loaded and unloaded at the vehicle, and fluctuations for estimating fluctuation information of the total loaded weight that fluctuates during transport based on the transport weight information An information estimation unit; and an optimum route selection unit that selects an optimum route based on basic information including the map information and the variation information.
  • the optimum route selecting means includes the regenerative electric energy of the motor and the electric truck based on the total loaded weight estimated for each traveling section of each transportation route. It is also possible to calculate the travel power consumption amount and compare the calculation results to select the optimum route. Thereby, the optimal route can be selected with higher accuracy by using numerical data that can be easily calculated.
  • the optimum route selection unit may be configured such that when the transportation route information includes a downhill road with a predetermined slope or more, the total load weight is relatively heavy.
  • the optimum route may be selected so as to travel on a downhill road.
  • the optimum route selecting unit when the transportation route information includes an upslope with a predetermined gradient or more, the optimum route selecting unit includes the upslope with a relatively light total weight.
  • the optimum route may be selected so as to travel on the road. Thereby, the selection of the optimal route in consideration of the regenerative power amount and the travel power consumption amount is realized, and the optimal route can be selected with higher accuracy.
  • the optimum route selecting means classifies the traveling area in the map information according to road conditions, and selects any of the classified areas based on the total loaded weight.
  • the optimum route may be selected so as to travel in the travel area. Thereby, the optimal route can be selected with higher accuracy while preventing the transportation route from becoming complicated.
  • the optimum route selecting unit may be configured such that when the traveling area in the map information is classified into a lowland area and a highland area according to altitude, the total load weight is relatively low.
  • the optimum route may be selected so that the vehicle travels in the lowland area in a heavy state and travels in the highland area in a state where the total weight of the load is relatively light.
  • numerical data such as the regenerative power amount of the motor and the traveling power consumption amount of the electric truck are taken into consideration, and the optimum route can be selected with higher accuracy.
  • the optimum route selecting unit classifies the traveling area in the map information into an uphill area and a non-uphill area depending on the number of uphill roads having a predetermined slope or more.
  • the optimal route may be selected so that the non-uphill road area travels in a state in which the total loaded weight is relatively heavy, and the uphill road area travels in a state in which the total loaded weight is relatively light.
  • numerical data such as the regenerative power amount of the motor and the traveling power consumption amount of the electric truck are taken into consideration, and the optimum route can be selected with higher accuracy.
  • the optimum route selecting means classifies the traveling area in the map information into a downhill area and a non-downhill area depending on the number of downhill roads having a predetermined slope or more.
  • the optimum route may be selected such that the vehicle travels in the downhill area with a relatively heavy total weight and the vehicle travels in the non-downhill area with a relatively light total weight.
  • numerical data such as the regenerative power amount of the motor and the traveling power consumption amount of the electric truck are taken into consideration, and the optimum route can be selected with higher accuracy.
  • An electric truck traveling route selection method is an electric truck traveling route selection method using a motor driven by electric power supplied from a battery as a drive source, and the electric truck transportation start point information and Map information acquisition step for acquiring map information including transport route information from the transport start point to the load / unload point, initial weight information of the initial load loaded at the transport start point, and the load / unload point
  • a transportation weight information acquisition step for acquiring transportation weight information including the loading / unloading weight information of the cargo loaded and unloaded at the vehicle, and a variation for estimating fluctuation information of the total loaded weight that varies during transportation based on the transportation weight information
  • An information estimation step, and an optimum route selection step for selecting an optimum route based on basic information including the map information and the variation information.
  • the regenerative electric energy of the motor and the electric truck are based on the total loaded weight estimated for each traveling section of each transportation route. It is also possible to calculate the travel power consumption amount and compare the calculation results to select the optimum route. Thereby, the optimal route can be selected with higher accuracy by using numerical data that can be easily calculated.
  • the optimum route selection step when the transportation route information includes downhill roads with a predetermined gradient or more, the total load weight is relatively heavy.
  • the optimum route may be selected so as to travel on a slope. Thereby, the selection of the optimal route in consideration of the regenerative power amount and the travel power consumption amount is realized, and the optimal route can be selected with higher accuracy.
  • the optimum route selection step when the transport route information includes an uphill road having a predetermined gradient or more, the uphill road with a relatively light total weight is loaded.
  • the optimum route may be selected so as to travel on the road. Thereby, the selection of the optimal route in consideration of the regenerative power amount and the travel power consumption amount is realized, and the optimal route can be selected with higher accuracy.
  • the traveling area in the map information is classified into areas according to road conditions, and any of the classified areas is classified based on the total loaded weight.
  • the optimum route may be selected so as to travel in the travel area. Thereby, the optimal route can be selected with higher accuracy while preventing the transportation route from becoming complicated.
  • the optimum route selecting step when the traveling area in the map information is classified into a lowland area and a highland area according to altitude, the total load weight is relatively low.
  • the optimum route may be selected so that the vehicle travels in the lowland area in a heavy state and travels in the highland area in a state where the total weight of the load is relatively light.
  • numerical data such as the regenerative power amount of the motor and the traveling power consumption amount of the electric truck are taken into consideration, and the optimum route can be selected with higher accuracy.
  • the traveling area in the map information is classified into an uphill area and a non-uphill area depending on the number of uphill roads having a predetermined slope or more.
  • the optimal route may be selected so that the non-uphill road area travels in a state in which the total loaded weight is relatively heavy, and the uphill road area travels in a state in which the total loaded weight is relatively light.
  • the traveling area in the map information is classified into a downhill area and a non-downhill area depending on the number of downhill roads having a predetermined slope or more.
  • the optimum route may be selected such that the vehicle travels in the downhill area with a relatively heavy total weight and the vehicle travels in the non-downhill area with a relatively light total weight.
  • FIG. 1 is a block diagram showing the relationship between an electric truck equipped with a travel route selection system and a data server according to an embodiment of the present invention, and various configurations will be described based on the drawing.
  • An electric truck 1 shown in FIG. 1 is one type of electric vehicle that uses a motor driven by electric power supplied from a battery as a drive source, and is a vehicle including a container and a carrier that can transport a large amount of luggage. .
  • the electric truck 1 includes an electric motor that can also operate as a generator, such as a permanent magnet synchronous motor.
  • the output shaft of the motor is connected to a differential device via a propeller shaft, and the right and left drive wheels are connected to the differential device via a drive shaft. With such a connection configuration, the electric truck 1 can travel by rotating the drive wheels using the motor as a drive source.
  • various components are omitted in FIG. .
  • the electric truck 1 includes a vehicle ECU 2, a communication unit 3, and a navigation device 4.
  • the vehicle ECU 2 is a control circuit for integrated control of the entire vehicle. Therefore, the vehicle ECU 2 is connected to the above-described components of the electric truck 1, various sensors, and various electronic devices.
  • FIG. 1 shows a connection configuration in which the communication unit 3 and the navigation device 4 are connected to the vehicle ECU 2 in order to explain the present invention.
  • the vehicle ECU 2 includes a map information acquisition unit 11, a transport weight information acquisition unit 12, a fluctuation information estimation unit 13, and an optimum route selection unit 14.
  • the travel route selection system of the present invention is configured by the map information acquisition unit 11, the transport weight information acquisition unit 12, the fluctuation information estimation unit 13, and the optimum route selection unit 14, and the vehicle ECU 2 performs the travel route selection system.
  • the vehicle ECU 2 itself corresponds to the travel route selection system.
  • the travel route selection system of the present invention includes the map information acquisition unit 11, the transport weight information acquisition unit 12, the fluctuation information estimation unit 13, and the optimum route selection unit 14, the mode is not limited.
  • the calculation control unit 32 includes a map information acquisition unit 11, a transport weight information acquisition unit 12, a fluctuation information estimation unit 13, and an optimum route selection unit 14, and communication of the vehicle 1.
  • the unit 3 may receive the optimum route selected by the optimum route selection unit 14 in the data server 30 and display it on the navigation device 4.
  • the communication unit 3 may be provided inside the navigation device 4. In such a case, information acquired by the communication unit 3 in the following description is stored in the data server 30 in advance, or is acquired from the outside by the communication unit 31 in the data server 30.
  • the travel route selection system of the present invention can be installed in a vehicle and can acquire a map information acquisition unit 11 and a transportation weight information acquisition in an arithmetic processing unit (not shown) in a navigation device that can communicate with a wireless communication network.
  • variation information estimation part 13, and the optimal route selection part 14 may be sufficient.
  • the vehicle ECU 2 includes a map information acquisition unit 11, a transport weight information acquisition unit 12 ⁇ , a fluctuation information estimation unit 13, and an optimum route selection unit 14. This will be described as an embodiment of the present invention.
  • each of the map information acquisition unit 11, the transport weight information acquisition unit 12, the fluctuation information estimation unit 13, and the optimum route selection unit 14 is provided with a program for realizing various functions to be described later. It is assumed as a control circuit. Note that the map information acquisition unit 11, the transport weight information acquisition unit 12, the fluctuation information estimation unit 13, and the optimum route selection unit 14 are not individual control circuits but are included in one control circuit constituting the vehicle ECU 2. It is a part of one program and does not have to have a shape like a part.
  • the map information acquisition unit 11 acquires map information recorded outside the electric truck 1 via the communication unit 3.
  • the map information includes the transportation start point information of the electric truck 1 (for example, each sales office of the transportation company that is the owner of the electric truck 1), and the baggage loading / unloading point (for example, the cargo loading / unloading point).
  • the map information includes not only the above information but also route information other than the transportation route (that is, general information on the road displayed on the navigation device 4), gradient information, signal information, road surface information, and real time or prediction.
  • the map information acquisition part 11 may acquire the said information from the memory of the navigation apparatus 4 about information with low update frequency, such as route information and gradient information. Thereby, the amount of data transmitted / received to / from the outside of the vehicle is reduced, and the load on the vehicle ECU 2 can be reduced.
  • the transport weight information acquisition unit 12 acquires transport weight information recorded outside the electric truck 1 via the communication unit 3.
  • the transportation weight information includes the initial weight information of the initial load loaded at the transportation start point of the electric truck 1 and the loading / unloading information of the luggage loaded / unloaded at each loading / unloading point. It is out.
  • the initial weight information includes not only the weight of the load actually loaded at the transportation start point, but also the weight of the load remaining in the container of the electric truck 1 or the like. That is, the initial weight information is the total weight of the loaded cargo immediately before the electric truck 1 departs from the transportation start point.
  • the fluctuation information estimation unit 13 estimates fluctuation information of the total load weight that fluctuates during transportation based on the transportation weight information acquired by the transportation weight information acquisition unit 12.
  • a method for estimating fluctuation information of the total load weight that fluctuates during transportation is not particularly limited, and a known technique can be applied.
  • the fluctuation information estimation unit 13 may extract all of the transportation routes that pass through the transportation start point and each loading / unloading point.
  • the fluctuation information estimation unit 13 may extract a travel route that can be executed in consideration of temporal conditions such as delivery and collection / delivery as a transport route. Thereafter, the fluctuation information estimation unit 13 estimates the fluctuation information of the total loaded weight by adding information on the total loaded weight for each estimated transportation route.
  • the optimal route selection unit 14 is an electric truck 1 that can further improve power consumption based on the basic information including the map information acquired by the map information acquisition unit 11 and the fluctuation information estimated by the fluctuation information estimation unit 13. Select the best route to travel on.
  • the basic information includes various information such as travel performance data including power consumption information for the past total load weight (hereinafter also referred to as load amount) as other information other than the map information and the fluctuation information. May be.
  • the other information may be information stored in a memory (not shown) in the electric truck 1 or information stored outside the vehicle and acquired via the communication unit 3. It may be.
  • the optimum route selection unit 14 calculates the regenerative power amount of the motor and the travel power consumption amount of the electric truck 1 based on the total loaded weight estimated for each travel section of each transport route, and the calculation result To select the optimal route.
  • the optimum route selection unit 14 is configured to travel on the downhill road with a relatively heavy total weight. An optimal route may be selected.
  • the transport route information includes an uphill road having a predetermined gradient or more
  • the optimum route selection unit 14 may select the optimum route so that the uphill road travels with a relatively light total weight. .
  • the state where the total load weight is relatively heavy is, for example, 50% or more of the maximum load capacity
  • the state where the total load weight is relatively light is, for example, less than 50% of the maximum load capacity.
  • the downhill road having a predetermined gradient or higher is, for example, a 2% or higher downhill road
  • the uphill road having a predetermined gradient or higher is, for example, a 2% or higher uphill road.
  • the communication unit 3 is connected to the data server 30 through the wireless communication network 20 so as to be in electrical communication. Then, in such a communication state, the communication unit 3 transmits various types of information of the electric truck 1 (for example, information on the actual power consumption such as real-time traffic jam information) to the data server 30, and the map information, Transport weight information and various other information (for example, electricity cost information for past loading capacity) are received. Further, the communication unit 3 may perform inter-vehicle communication with other vehicles (not shown), road-vehicle communication with VICS (registered trademark), or share various information with other vehicles. Good.
  • VICS registered trademark
  • the navigation device 4 stores map information including road curves and slopes in advance in its own storage area, and sequentially receives GPS information via an antenna while the electric truck 1 is running, Identify your vehicle position. Further, the navigation device 4 provides route guidance to the driver of the electric truck 1 while displaying the optimum route selected by the optimum route selection unit 14.
  • the wireless communication network 20 is a network that is generally known and provided by various communication companies, and connects communication devices that exist in remote locations. Note that the wireless communication network 20 may be either a public communication network or a dedicated communication network.
  • the data server 30 is installed in a place different from the electric truck 1 and is connected to the electric truck 1 and other vehicles via the wireless communication network 20 so as to be able to perform electric communication. As illustrated in FIG. 1, the data server 30 includes a communication unit 31, an operation control unit 32, and a data recording unit 33.
  • the communication unit 31 is connected to the communication unit 3 of the electric truck 1 through the wireless communication network 20 so as to be in electrical communication. Then, in such a communication state, the communication unit 31 receives various types of information on the electric truck 1 (for example, information on the actual power consumption such as real-time traffic jam information) from the electric truck 1, and maps information, transport weight information, And other various information are transmitted to the electric truck 1.
  • information on the electric truck 1 for example, information on the actual power consumption such as real-time traffic jam information
  • the arithmetic control unit 32 is a control circuit for performing integrated control of the data server 30. Specifically, the arithmetic control unit 32 controls the communication unit 31 and stores various types of information received via the communication unit 31 in the data recording unit 33, or extracts various types of stored information for each vehicle. Control to send to.
  • the arithmetic control unit 32 controls the communication unit 31 and stores various types of information received via the communication unit 31 in the data recording unit 33, or extracts various types of stored information for each vehicle. Control to send to.
  • the electric truck 1 is provided with the travel route selection system of the present invention including the map information acquisition unit 11, the transport weight information acquisition unit 12, the fluctuation information estimation unit 13, and the optimum route selection unit 14. However, you may provide the said travel route selection system in the calculation control part 32.
  • the calculation control unit 32 includes the map information acquisition unit 11, the transport weight information acquisition unit 12, the fluctuation information estimation unit 13, and the optimum route selection unit 1. 4 and the electric truck 1 may be notified of the optimum route to be selected.
  • the data recording unit 33 is composed of a general hard disk or semiconductor memory. Further, the data recording unit 33 can easily store, retrieve, and rewrite various types of information under the control of the arithmetic control unit 32.
  • FIG. 2 is a flowchart showing a control routine relating to the optimum route selection executed by the vehicle ECU 2 of the present embodiment.
  • FIG. 3 is a route conceptual diagram relating to the optimum route selection executed by the vehicle ECU 2 of the present embodiment.
  • the map information acquisition unit 11 of the vehicle ECU 2 acquires the map information recorded in the data recording unit 33 of the data server 30 via the communication unit 3 (step S1: map information acquisition step).
  • the map information acquisition unit 11 may acquire a part of the map information from the navigation device 4.
  • the map information acquisition unit 11 acquires various information on the uphill road 40, the downhill road 50, the downhill road 60, and the uphill road 70 shown in FIG.
  • the transport weight information acquisition unit 12 of the vehicle ECU 2 acquires the transport weight information recorded in the data recording unit 33 of the data server 30 via the communication unit 3 (step S2: transport weight information acquisition step).
  • the transportation weight information acquisition unit 12 relates to the loading amount (100 kg) at the transportation start point O, the loading amount at the highland A (20 kg), and the loading amount at the lowland B (80 kg) shown in FIG. Get transport weight information.
  • the fluctuation information estimation unit 13 of the vehicle ECU 2 estimates the fluctuation information of the loading amount that fluctuates during transportation based on the transportation weight information acquired by the transportation weight information acquisition unit 12 (step S3: fluctuation information estimation step). ). More specifically, the fluctuation information estimation unit 13 is a first route that reaches the lowland B from the transportation start point O via the highland A, and a first route that reaches the highland A from the transportation start point O via the lowland B. Two routes are extracted. Thereafter, the fluctuation information estimation unit 13 adds information on the loading amount at the transportation start point O, the highland A, and the lowland B for each of the first route and the second route.
  • the loading amount is 100 kg at the transportation start point O, the loading amount is 80 kg in the highland A, and then the loading amount is 0 kg in the lowland B.
  • the loading amount is 100 kg at the transportation start point O, the loading amount is 20 kg in the lowland B, and then the loading amount is 0 kg in the highland A.
  • the optimum route selection unit 14 of the vehicle ECU 2 calculates the regenerative power amount of the motor and the travel power consumption amount of the electric truck 1 based on the total loaded weight estimated for each travel route of each transport route. Thereafter, the optimum route selection unit 14 considers the calculation result as an element of basic information and selects an optimum route (step S4: optimum route selection step).
  • the optimal route selection unit 14 calculates the traveling power consumption (Elos100) of the uphill road 40 and the regenerative electric energy (Egin80) of the downhill road 50 in the first route shown in FIG. Moreover, the optimal route selection part 14 calculates the regenerative electric energy (Egin100) of the descent road 60 and the traveling power consumption (Elos20) of the uphill road 70 in the 2nd route shown in FIG. Then, the optimum route selection unit 14 compares the calculation result in the first route (Elos100 + Egin80) with the calculation result in the second route (Egin100 + Elos20), and optimizes the transportation route that can travel with better power consumption with higher accuracy. Can be selected as a route.
  • Selecting a transportation route that takes into account the amount of regenerative power and travel power consumption means that, as described above, if the transportation route information includes downhill roads with a predetermined slope or higher, the total weight of the load is relatively heavy. If the route is selected to travel on the downhill road and the transport route information includes an uphill road with a predetermined slope or more, the route is selected to travel on the uphill road with a relatively light total weight. Will be.
  • the vehicle ECU 2 supplies information related to the optimum route to the navigation device 4, and travel guidance by the navigation device 4 is started.
  • the basic information including various information related to the transportation route and the variation information of the total load weight of the load is included. Since the optimum route is selected on the basis of this, it becomes possible to visualize the transportation cost with higher accuracy and to select the transportation route that can substantially improve the electricity cost as compared with the conventional method. In other words, according to the electric truck traveling route selection system and the electric truck traveling route selection method according to the present embodiment, the electric cost can be further improved and the transportation cost can be reduced.
  • the regenerative power amount of the motor and the travel power consumption amount of the electric truck 1 are calculated based on the total loaded weight estimated for each travel section of each transportation route, and the calculation results are compared. Since the optimum route is selected, the optimum route can be selected with higher accuracy by using numerical data that can be easily calculated.
  • the optimum route is selected so that the total weight is relatively heavy, or the transport route information has a predetermined slope or higher. If the optimal route is selected so that it travels on the uphill road in a state where the total weight of the load is relatively light, Selection will be realized, and it is possible to select an optimum route that can substantially reduce power consumption with higher accuracy.
  • the structure of the electric truck 1, the structure of the wireless communication network 20, and the data server 30 in the second embodiment are the same as the form shown in FIG. 1 in the first embodiment.
  • the second embodiment differs from the first embodiment in the optimum route selection method in the optimum route selection unit 14. Therefore, description of the electric truck 1, the wireless communication network 20, and the data server 30 in the second embodiment is omitted, and the optimum route selection method in the optimum route selection unit 14 according to the second embodiment is described with reference to FIG. This will be described below.
  • the optimal route selection unit 14 further improves the power consumption based on the basic information including the map information acquired by the map information acquisition unit 11 and the variation information estimated by the variation information estimation unit 13.
  • the optimum route on which the electric truck 1 can travel is selected. More specifically, the optimum route selection unit 14 classifies the traveling area in the map information according to the road condition, and selects the optimum route so as to travel in one of the classified traveling areas based on the total loaded weight. To do.
  • the optimum route selection unit 14 travels in the lowland area with a relatively heavy total weight, and the total load weight is The optimum route is selected so as to travel in the highland area in a relatively light state.
  • the travel area in the map information is classified into an uphill road area and a non-uphill road area depending on the number of uphill roads having a predetermined slope or more, the optimum route selection unit 14 performs the non-hill climbing in a state in which the total loaded weight is relatively heavy.
  • An optimum route is selected so that the vehicle travels on the road area and travels on the uphill road area with a relatively light total weight. Further, when the traveling area in the map information is classified into a downhill road area and a non-downhill road area depending on the number of downhill roads having a predetermined slope or more, the optimum route selection unit 14 sets the downhill road in a state in which the total loaded weight is relatively heavy. The optimum route is selected so that the vehicle travels in the area and travels in the non-downhill area with a relatively light total weight.
  • the state in which the total load weight is relatively heavy the state in which the total load weight is relatively light, the downhill road with a predetermined gradient or higher, and the uphill road with a predetermined gradient or higher are the same as the contents defined in the first embodiment. is there.
  • FIG. 4 is a flowchart showing a control routine related to the optimum route selection executed by the vehicle ECU 2 of the present embodiment.
  • 5 to 10 are route conceptual diagrams related to the optimum route selection executed by the vehicle ECU 2 of the present embodiment.
  • FIGS. 5 to 7 are conceptual diagrams of routes based on delivery
  • FIGS. 8 to 10 are conceptual diagrams of routes based on collection.
  • the map information acquisition unit 11 of the vehicle ECU 2 acquires the map information recorded in the data recording unit 33 of the data server 30 via the communication unit 3 (step S11: map information acquisition step).
  • the map information acquisition unit 11 may acquire a part of the map information from the navigation device 4.
  • the map information acquisition unit 11 transports the route information from the transportation start point O shown in FIGS. 5 to 10 to each loading / unloading point (12 circle areas blacked out in the figure). , And various information such as transport route information connecting the respective loading / unloading points.
  • the transport weight information acquisition unit 12 of the vehicle ECU 2 acquires the transport weight information recorded in the data recording unit 33 of the data server 30 via the communication unit 3 (step S12: transport weight information acquisition step). Specifically, when delivery is premised, the transportation weight information acquisition unit 12 performs the loading amount (110 kg) at the transportation start point O and the loading amount (10 kg) at each loading / unloading point shown in FIGS. ) To obtain transport weight information. On the other hand, when premised on the collection, the transportation weight information acquisition unit 12 relates to the loading amount (0 kg) at the transportation start point O and the loading amount (10 kg) at each loading / unloading point shown in FIGS. Get transport weight information.
  • the fluctuation information estimation unit 13 of the vehicle ECU 2 estimates the fluctuation information of the loading amount that fluctuates during transportation based on the transportation weight information acquired by the transportation weight information acquisition unit 12 (step S13: fluctuation information estimation step). ). More specifically, the fluctuation information estimation unit 13 extracts a plurality of transportation routes that pass from the transportation start point O through all of the luggage loading / unloading points. Here, the fluctuation information estimation unit 13 may extract a travel route that can be executed in consideration of temporal conditions such as delivery and collection / delivery as a transport route. After that, the fluctuation information estimation unit 13 adds information on the loading amount at the transportation start point O and each loading / unloading point for each transportation route.
  • the loading amount is 110 kg at the transportation start point O, and the loading amount decreases by 10 kg every time it passes through each loading / unloading point. ing.
  • the loading amount is 0 kg at the transportation start point O, and the loading amount increases by 10 kg every time it passes through each loading / unloading point. ing. 5 to 10 show one of the optimum routes finally determined.
  • the optimum route selection unit 14 of the vehicle ECU 2 classifies the travel areas in the map information according to the road conditions. Thereafter, the optimum route selection unit 14 selects an optimum route so as to travel in any of the classified travel areas based on the total loaded weight (step S14: optimum route selection step).
  • the load amount is relatively heavy (the load amount is indicated by 110 kg to 60 kg, and the delivery is completed by less than half. State)
  • travels in the lowland area C moves from the lowland area C to the highland area D with a load of 60 kg, and the load is relatively light (loading is indicated by 50 kg to 0 kg, delivery is more than half In the finished state)
  • the optimum route is selected so as to travel in the highland area D.
  • the load amount is relatively heavy (the load amount is indicated by 110 kg to 60 kg, and the delivery is completed by less than half.
  • the load is relatively light (loading is 50 kg to 0 kg)
  • the optimal route is selected so that the vehicle travels in the uphill road area F in a state where the delivery has been completed by more than half.
  • the load amount is relatively heavy (the load amount is indicated by 110 kg to 60 kg, and the delivery is completed by less than half.
  • the load amount is indicated by 110 kg to 60 kg, and the delivery is completed by less than half.
  • the load is relatively light (load is 50 kg to 0 kg)
  • the optimum route is selected so as to travel in the non-downhill area H in the state where the delivery has been completed by more than half.
  • the load amount is relatively light (the load amount is indicated by 0 kg to 60 kg, and the pickup is half. It travels in the highland area D in the state where only the following is completed), moves from the highland area D to the lowland area C with the loading capacity of 60kg, and the loading capacity is relatively heavy (loading capacity is shown as 70kg to 110kg)
  • the optimal route is selected so that the vehicle travels in the lowland area C in a state where the collection is over halfway.
  • the load amount is relatively light (the load amount is indicated by 0 kg to 60 kg, and the collection is completed by less than half.
  • Drive uphill road area F move uphill road area F to non-hill road area E with a load capacity of 60 kg, load capacity is relatively heavy (load capacity is 70 kg to 110 kg)
  • the optimum route is selected so that the vehicle travels in the non-climbing road area E in the state where the collection has been completed by more than half.
  • the load amount is relatively light (the load amount is indicated by 0 kg to 60 kg, and the collection is completed by less than half.
  • the load amount is indicated by 0 kg to 60 kg, and the collection is completed by less than half.
  • the load is 60 kg
  • the vehicle moves from the non-downhill area H to the downhill area G, and the load is relatively heavy (the load is 70 kg to 110 kg).
  • the optimal route is selected so that the vehicle travels on the downhill area G in the state where the collection is completed by half or more).
  • the vehicle ECU 2 supplies information related to the optimum route to the navigation device 4, and travel guidance by the navigation device 4 is started.
  • the electric truck traveling route selection system and the electric truck traveling route selection method according to the present embodiment are also based on basic information including various information related to the transportation route and variation information of the total load weight of the load. Since the optimum route is selected, it becomes possible to visualize the transportation cost and to select a transportation route that can substantially improve the electricity cost compared with the conventional route. That is, the power consumption can be further improved and the transportation cost can be reduced.
  • the travel area in the map information is classified into areas according to road conditions, and the optimal route is selected to travel in any travel area after classification based on the total loaded weight.
  • the optimal route can be selected with higher accuracy while preventing the route from becoming complicated.
  • the regenerative electric energy of the motor and the electric truck 1 are classified by classifying the traveling area into a highland area and a lowland area, an uphill area and a non-uphill area, or a downhill area and a non-downhill area.
  • the numerical data of the travel power consumption is taken into consideration, so that the optimum route can be selected with higher accuracy.
  • the optimum route can be selected with higher accuracy by classifying the travel area into three or more. May be.
  • Electric truck 2 Vehicle ECU (travel route selection system) 3 Communication Unit 4 Navigation Device 11 Map Information Acquisition Unit (Map Information Acquisition Unit) 12 Transport weight information acquisition unit (Transport weight information acquisition means) 13 Fluctuation information estimation unit (fluctuation information estimation means) 14 Optimal route selection section (optimum route selection means) DESCRIPTION OF SYMBOLS 20 Wireless communication network 30 Data server 31 Communication part 32 Operation control part 33 Data recording part 40 Uphill road 50 Downhill road 60 Downhill road 70 Uphill road

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Educational Technology (AREA)
  • Educational Administration (AREA)
  • Mathematical Physics (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Navigation (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Instructional Devices (AREA)

Abstract

[Problem] To provide an electric track travel route selection system that can improve power efficiency. [Solution] This system is provided with: a map information acquisition means (11) which acquires map information, which includes electric track transport starting point information and transport route information from the transport starting point to a cargo loading/unloading point; a transport weight information acquisition means (12) which acquires transport weight information, which includes initial weight information about the initial load loaded at the transport starting point, and loading/unloading weight information about the cargo loaded/unloaded at the cargo loading/unloading point; a change information estimating means (13) which, on the basis of the transport weight information, estimates change information about the gross weight of the load, which changes during transport; and an optimal route selection means (14) which selects an optimal route on the basis of basic information, which includes the map information and the change information.

Description

電気トラックの走行ルート選定システム、電気トラックの走行ルート選定方法Electric truck travel route selection system, electric truck travel route selection method
 本発明は、電気トラックの走行ルート選定システム及び電気トラックの走行ルート選定方法に係り、詳しくは、電気トラックによる集荷及び配送の集配に関する走行ルート選定の技術に関する。 The present invention relates to a traveling route selection system for an electric truck and a traveling route selection method for an electric truck, and more particularly to a technology for selecting a traveling route related to collection and delivery of collection and delivery by an electric truck.
 従来から、多くの自動車にカーナビゲーションシステムが搭載され、当該カーナビゲーションシステム内の地図情報で目的地を設定し、自動車の現在地から目的地までの最適な走行ルートによる走行案内が行われている。特に、電気自動車の技術分野においては、走行距離の長距離化や低電費化の観点から、車両に搭載されるバッテリの消費量を最小に抑える走行ルートを選定することが重要となっている。例えば特許文献1では、選定された最適な走行ルートに対して最適な運転モードで走行できるように、過度の加速度指令に対して自動的な加速度制限を行い、航続距離を延ばすことができる電気自動車の走行ルート選定システムが開示されている。 Conventionally, many automobiles are equipped with a car navigation system, and a destination is set by map information in the car navigation system, and driving guidance is carried out by an optimum driving route from the current position of the car to the destination. In particular, in the technical field of electric vehicles, it is important to select a travel route that minimizes the consumption of the battery mounted on the vehicle from the viewpoint of increasing the travel distance and reducing power consumption. For example, in Patent Document 1, an electric vehicle capable of automatically limiting an acceleration to an excessive acceleration command and extending a cruising distance so that the selected driving route can be driven in an optimal driving mode. A travel route selection system is disclosed.
 ところで、近年の物流業界においては、渋滞、排気ガス、騒音、及び省エネルギ等の問題を抱えつつも、物流コストの削減及び省労働力を図ることが要求されている。特に、運送に要するコストを可視化及び低減することは、経営上の重要な課題となっている。このため、物流業界においても、最適な配送ルート(すなわち、走行ルート)を選定するシステムへの要求が高くなっている。例えば特許文献2では、交通事故、交通規制、渋滞の様々な要因によって訪問先までの所要時間に変動が生じる場合でも、効率的に訪問することができる配車配送計画方法が開示されている。 By the way, in the recent logistics industry, it is required to reduce logistics costs and save labor while having problems such as traffic congestion, exhaust gas, noise, and energy saving. In particular, visualization and reduction of the cost required for transportation is an important management issue. For this reason, there is a high demand for a system for selecting an optimal delivery route (that is, a travel route) in the physical distribution industry. For example, Patent Document 2 discloses a vehicle allocation and delivery planning method that enables an efficient visit even when the required time to the visit destination varies due to various factors such as traffic accidents, traffic restrictions, and traffic jams.
特開平08-178683号公報Japanese Patent Laid-Open No. 08-178683 特開2001-14296号公報JP 2001-14296 A
 今後の物流業界においては、物流コスト及び環境負荷の更なる低減の観点から、電気自動車のうち多数の荷物の搬送に適した電気トラックの普及が予測される。従って、物流事業者が当該電気トラックを採用する場合、輸送コストを可視化し、電費をより向上させることができる集荷や配送の集配ルート選定システムを構築することが求められることになる。しかしながら、交通事故、交通規制、及び渋滞等の道路状況情報のみでは、電費の向上を十分に図ることができない。 In the future logistics industry, from the viewpoint of further reducing logistics costs and environmental impact, it is expected that electric trucks suitable for transporting a large number of luggage among electric vehicles will be popularized. Therefore, when a logistics company adopts the electric truck, it is required to construct a collection / delivery route selection system for collection and delivery that can visualize the transportation cost and further improve the electric cost. However, it is not possible to sufficiently improve the electricity cost only by road condition information such as traffic accidents, traffic regulations, and traffic jams.
 本発明はこのような問題を解決するためになされたもので、その目的とするところは、電費をより向上させることができる電気トラックの走行ルート選定システム、及び電気トラックの走行ルート選定方法を提供することにある。 The present invention has been made to solve such problems, and an object of the present invention is to provide an electric truck traveling route selection system and an electric truck traveling route selection method capable of further improving power consumption. There is to do.
 本適用例に係る電気トラックの走行ルート選定システムは、バッテリから供給される電力により駆動されるモータを駆動源とする電気トラックの走行ルート選定システムであって、前記電気トラックの輸送開始地点情報及び前記輸送開始地点から荷物搭降載地点までの輸送ルート情報を含む地図情報を取得する地図情報取得手段と、前記輸送開始地点で積載される初期積載物の初期重量情報及び前記荷物搭降載地点で搭降載される荷物の搭降載重量情報を含む輸送重量情報を取得する輸送重量情報取得手段と、前記輸送重量情報に基づき、輸送中に変動する積載総重量の変動情報を推定する変動情報推定手段と、前記地図情報及び前記変動情報を含む基礎的情報に基づき、最適ルートを選定する最適ルート選定手段と、を有する。 An electric truck traveling route selection system according to this application example is an electric truck traveling route selection system using a motor driven by electric power supplied from a battery as a driving source, and the electric truck transportation start point information and Map information acquisition means for acquiring map information including transport route information from the transportation start point to the baggage landing point, initial weight information of the initial load loaded at the transport start point, and the baggage landing point Transport weight information acquisition means for acquiring transport weight information including the boarding / mounting weight information of the packages loaded and unloaded at the vehicle, and fluctuations for estimating fluctuation information of the total loaded weight that fluctuates during transport based on the transport weight information An information estimation unit; and an optimum route selection unit that selects an optimum route based on basic information including the map information and the variation information.
 本適用例に係る電気トラックの走行ルート選定システムにおいては、前記最適ルート選定手段は、各輸送ルートの走行区間毎において推定される前記積載総重量に基づき、前記モータの回生電力量及び前記電気トラックの走行消費電力量を算出し、算出結果を比較して前記最適ルートを選定してもよい。これにより、容易に算出可能な数値データを利用して、最適ルートの選定をより高精度に行うことができる。 In the electric truck traveling route selection system according to this application example, the optimum route selecting means includes the regenerative electric energy of the motor and the electric truck based on the total loaded weight estimated for each traveling section of each transportation route. It is also possible to calculate the travel power consumption amount and compare the calculation results to select the optimum route. Thereby, the optimal route can be selected with higher accuracy by using numerical data that can be easily calculated.
 本適用例に係る電気トラックの走行ルート選定システムおいては、前記最適ルート選定手段は、前記輸送ルート情報に所定勾配以上の降坂路が含まれる場合、前記積載総重量が比較的重い状態で前記降坂路を走行するように前記最適ルートを選定してもよい。これにより、回生電力量及び走行消費電力量を考慮した最適ルートの選定が実現されることになり、最適ルートの選定をより高精度に行うことができる。 In the electric truck travel route selection system according to this application example, the optimum route selection unit may be configured such that when the transportation route information includes a downhill road with a predetermined slope or more, the total load weight is relatively heavy. The optimum route may be selected so as to travel on a downhill road. Thereby, the selection of the optimal route in consideration of the regenerative power amount and the travel power consumption amount is realized, and the optimal route can be selected with higher accuracy.
 本適用例に係る電気トラックの走行ルート選定システムにおいては、前記最適ルート選定手段は、前記輸送ルート情報に所定勾配以上の登坂路が含まれる場合、前記積載総重量が比較的軽い状態で前記登坂路を走行するように前記最適ルートを選定してもよい。これにより、回生電力量及び走行消費電力量を考慮した最適ルートの選定が実現されることになり、最適ルートの選定をより高精度に行うことができる。 In the electric truck traveling route selection system according to this application example, when the transportation route information includes an upslope with a predetermined gradient or more, the optimum route selecting unit includes the upslope with a relatively light total weight. The optimum route may be selected so as to travel on the road. Thereby, the selection of the optimal route in consideration of the regenerative power amount and the travel power consumption amount is realized, and the optimal route can be selected with higher accuracy.
 本適用例に係る電気トラックの走行ルート選定システムにおいては、前記最適ルート選定手段は、前記地図情報における走行エリアを道路状況に応じてエリア分類し、前記積載総重量に基づき、分類後のいずれかの走行エリアを走行するように前記最適ルートを選定してもよい。これにより、輸送ルートの複雑化を防止しつつ、最適ルートの選定をより高精度に行うことができる。 In the electric truck traveling route selection system according to this application example, the optimum route selecting means classifies the traveling area in the map information according to road conditions, and selects any of the classified areas based on the total loaded weight. The optimum route may be selected so as to travel in the travel area. Thereby, the optimal route can be selected with higher accuracy while preventing the transportation route from becoming complicated.
 本適用例に係る電気トラックの走行ルート選定システムにおいては、前記最適ルート選定手段は、前記地図情報における走行エリアを標高の高低によって低地エリア及び高地エリアに分類する場合、前記積載総重量が比較的重い状態で前記低地エリアを走行し、前記積載総重量が比較的軽い状態で前記高地エリアを走行するように前記最適ルートを選定してもよい。これにより、モータの回生電力量及び電気トラックの走行消費電力量という数値データが考慮されることになり、最適ルートの選定をより高精度に行うことができる。 In the electric truck traveling route selection system according to this application example, the optimum route selecting unit may be configured such that when the traveling area in the map information is classified into a lowland area and a highland area according to altitude, the total load weight is relatively low. The optimum route may be selected so that the vehicle travels in the lowland area in a heavy state and travels in the highland area in a state where the total weight of the load is relatively light. As a result, numerical data such as the regenerative power amount of the motor and the traveling power consumption amount of the electric truck are taken into consideration, and the optimum route can be selected with higher accuracy.
 本適用例に係る電気トラックの走行ルート選定システムにおいては、前記最適ルート選定手段は、前記地図情報における走行エリアを所定勾配以上の登坂路の多少によって登坂路エリア及び非登坂路エリアに分類する場合、前記積載総重量が比較的重い状態で前記非登坂路エリアを走行し、前記積載総重量が比較的軽い状態で前記登坂路エリアを走行するように前記最適ルートを選定してもよい。これにより、モータの回生電力量及び電気トラックの走行消費電力量という数値データが考慮されることになり、最適ルートの選定をより高精度に行うことができる。 In the electric truck traveling route selection system according to this application example, the optimum route selecting unit classifies the traveling area in the map information into an uphill area and a non-uphill area depending on the number of uphill roads having a predetermined slope or more. The optimal route may be selected so that the non-uphill road area travels in a state in which the total loaded weight is relatively heavy, and the uphill road area travels in a state in which the total loaded weight is relatively light. As a result, numerical data such as the regenerative power amount of the motor and the traveling power consumption amount of the electric truck are taken into consideration, and the optimum route can be selected with higher accuracy.
 本適用例に係る電気トラックの走行ルート選定システムにおいては、前記最適ルート選定手段は、前記地図情報における走行エリアを所定勾配以上の降坂路の多少によって降坂路エリア及び非降坂路エリアに分類する場合、前記積載総重量が比較的重い状態で前記降坂路エリアを走行し、前記積載総重量が比較的軽い状態で前記非降坂路エリアを走行するように前記最適ルートを選定してもよい。これにより、モータの回生電力量及び電気トラックの走行消費電力量という数値データが考慮されることになり、最適ルートの選定をより高精度に行うことができる。 In the electric truck traveling route selection system according to this application example, the optimum route selecting means classifies the traveling area in the map information into a downhill area and a non-downhill area depending on the number of downhill roads having a predetermined slope or more. The optimum route may be selected such that the vehicle travels in the downhill area with a relatively heavy total weight and the vehicle travels in the non-downhill area with a relatively light total weight. As a result, numerical data such as the regenerative power amount of the motor and the traveling power consumption amount of the electric truck are taken into consideration, and the optimum route can be selected with higher accuracy.
 本適用例に係る電気トラックの走行ルート選定方法は、バッテリから供給される電力により駆動されるモータを駆動源とする電気トラックの走行ルート選定方法であって、前記電気トラックの輸送開始地点情報及び前記輸送開始地点から荷物搭降載地点までの輸送ルート情報を含む地図情報を取得する地図情報取得ステップと、前記輸送開始地点で積載される初期積載物の初期重量情報及び前記荷物搭降載地点で搭降載される荷物の搭降載重量情報を含む輸送重量情報を取得する輸送重量情報取得ステップと、前記輸送重量情報に基づき、輸送中に変動する積載総重量の変動情報を推定する変動情報推定ステップと、前記地図情報及び前記変動情報を含む基礎的情報に基づき、最適ルートを選定する最適ルート選定ステップと、を有する。 An electric truck traveling route selection method according to this application example is an electric truck traveling route selection method using a motor driven by electric power supplied from a battery as a drive source, and the electric truck transportation start point information and Map information acquisition step for acquiring map information including transport route information from the transport start point to the load / unload point, initial weight information of the initial load loaded at the transport start point, and the load / unload point A transportation weight information acquisition step for acquiring transportation weight information including the loading / unloading weight information of the cargo loaded and unloaded at the vehicle, and a variation for estimating fluctuation information of the total loaded weight that varies during transportation based on the transportation weight information An information estimation step, and an optimum route selection step for selecting an optimum route based on basic information including the map information and the variation information.
 本適用例に係る電気トラックの走行ルート選定方法においては、前記最適ルート選定ステップでは、各輸送ルートの走行区間毎において推定される前記積載総重量に基づき、前記モータの回生電力量及び前記電気トラックの走行消費電力量を算出し、算出結果を比較して前記最適ルートを選定してもよい。これにより、容易に算出可能な数値データを利用して、最適ルートの選定をより高精度に行うことができる。 In the traveling route selecting method for an electric truck according to this application example, in the optimum route selecting step, the regenerative electric energy of the motor and the electric truck are based on the total loaded weight estimated for each traveling section of each transportation route. It is also possible to calculate the travel power consumption amount and compare the calculation results to select the optimum route. Thereby, the optimal route can be selected with higher accuracy by using numerical data that can be easily calculated.
 本適用例に係る電気トラックの走行ルート選定方法においては、前記最適ルート選定ステップでは、前記輸送ルート情報に所定勾配以上の降坂路が含まれる場合、前記積載総重量が比較的重い状態で前記降坂路を走行するように前記最適ルートを選定してもよい。これにより、回生電力量及び走行消費電力量を考慮した最適ルートの選定が実現されることになり、最適ルートの選定をより高精度に行うことができる。 In the electric truck traveling route selection method according to this application example, in the optimum route selection step, when the transportation route information includes downhill roads with a predetermined gradient or more, the total load weight is relatively heavy. The optimum route may be selected so as to travel on a slope. Thereby, the selection of the optimal route in consideration of the regenerative power amount and the travel power consumption amount is realized, and the optimal route can be selected with higher accuracy.
 本適用例に係る電気トラックの走行ルート選定方法においては、前記最適ルート選定ステップでは、前記輸送ルート情報に所定勾配以上の登坂路が含まれる場合、前記積載総重量が比較的軽い状態で前記登坂路を走行するように前記最適ルートを選定してもよい。これにより、回生電力量及び走行消費電力量を考慮した最適ルートの選定が実現されることになり、最適ルートの選定をより高精度に行うことができる。 In the electric truck travel route selection method according to this application example, in the optimum route selection step, when the transport route information includes an uphill road having a predetermined gradient or more, the uphill road with a relatively light total weight is loaded. The optimum route may be selected so as to travel on the road. Thereby, the selection of the optimal route in consideration of the regenerative power amount and the travel power consumption amount is realized, and the optimal route can be selected with higher accuracy.
 本適用例に係る電気トラックの走行ルート選定方法においては、前記最適ルート選定ステップでは、前記地図情報における走行エリアを道路状況に応じてエリア分類し、前記積載総重量に基づき、分類後のいずれかの走行エリアを走行するように前記最適ルートを選定してもよい。これにより、輸送ルートの複雑化を防止しつつ、最適ルートの選定をより高精度に行うことができる。 In the electric truck traveling route selection method according to this application example, in the optimum route selecting step, the traveling area in the map information is classified into areas according to road conditions, and any of the classified areas is classified based on the total loaded weight. The optimum route may be selected so as to travel in the travel area. Thereby, the optimal route can be selected with higher accuracy while preventing the transportation route from becoming complicated.
 本適用例に係る電気トラックの走行ルート選定方法においては、前記最適ルート選定ステップでは、前記地図情報における走行エリアを標高の高低によって低地エリア及び高地エリアに分類する場合、前記積載総重量が比較的重い状態で前記低地エリアを走行し、前記積載総重量が比較的軽い状態で前記高地エリアを走行するように前記最適ルートを選定してもよい。これにより、モータの回生電力量及び電気トラックの走行消費電力量という数値データが考慮されることになり、最適ルートの選定をより高精度に行うことができる。 In the electric truck traveling route selection method according to this application example, in the optimum route selecting step, when the traveling area in the map information is classified into a lowland area and a highland area according to altitude, the total load weight is relatively low. The optimum route may be selected so that the vehicle travels in the lowland area in a heavy state and travels in the highland area in a state where the total weight of the load is relatively light. As a result, numerical data such as the regenerative power amount of the motor and the traveling power consumption amount of the electric truck are taken into consideration, and the optimum route can be selected with higher accuracy.
 本適用例に係る電気トラックの走行ルート選定方法においては、前記最適ルート選定ステップでは、前記地図情報における走行エリアを所定勾配以上の登坂路の多少によって登坂路エリア及び非登坂路エリアに分類する場合、前記積載総重量が比較的重い状態で前記非登坂路エリアを走行し、前記積載総重量が比較的軽い状態で前記登坂路エリアを走行するように前記最適ルートを選定してもよい。これにより、モータの回生電力量及び電気トラックの走行消費電力量という数値データが考慮されることになり、最適ルートの選定をより高精度に行うことができる。 In the electric truck traveling route selection method according to this application example, in the optimum route selecting step, the traveling area in the map information is classified into an uphill area and a non-uphill area depending on the number of uphill roads having a predetermined slope or more. The optimal route may be selected so that the non-uphill road area travels in a state in which the total loaded weight is relatively heavy, and the uphill road area travels in a state in which the total loaded weight is relatively light. As a result, numerical data such as the regenerative power amount of the motor and the traveling power consumption amount of the electric truck are taken into consideration, and the optimum route can be selected with higher accuracy.
 本適用例に係る電気トラックの走行ルート選定方法においては、前記最適ルート選定ステップでは、前記地図情報における走行エリアを所定勾配以上の降坂路の多少によって降坂路エリア及び非降坂路エリアに分類する場合、前記積載総重量が比較的重い状態で前記降坂路エリアを走行し、前記積載総重量が比較的軽い状態で前記非降坂路エリアを走行するように前記最適ルートを選定してもよい。これにより、モータの回生電力量及び電気トラックの走行消費電力量という数値データが考慮されることになり、最適ルートの選定をより高精度に行うことができる。 In the electric truck traveling route selection method according to this application example, in the optimum route selecting step, the traveling area in the map information is classified into a downhill area and a non-downhill area depending on the number of downhill roads having a predetermined slope or more. The optimum route may be selected such that the vehicle travels in the downhill area with a relatively heavy total weight and the vehicle travels in the non-downhill area with a relatively light total weight. As a result, numerical data such as the regenerative power amount of the motor and the traveling power consumption amount of the electric truck are taken into consideration, and the optimum route can be selected with higher accuracy.
 上記手段を用いる本発明によれば、電費をより向上させることができる電気トラックの走行ルート選定システム、及び電気トラックの走行ルート選定方法を提供することができる。 According to the present invention using the above means, it is possible to provide an electric truck traveling route selection system and an electric truck traveling route selection method capable of further improving the electric power consumption.
本発明の実施形態における走行ルート選定システムを備える電気トラックとデータサーバとの関係を示す構成図である。It is a block diagram which shows the relationship between an electric truck provided with the driving | running route selection system in embodiment of this invention, and a data server. 本発明の第一実施形態の車両ECUにより実行される最適ルート選定に係る制御ルーチンを示すフローチャートである。It is a flowchart which shows the control routine which concerns on the optimal route selection performed by vehicle ECU of 1st embodiment of this invention. 本発明の第一実施形態の車両ECUにより実行される最適ルート選定に係るルート概念図である。It is a route conceptual diagram concerning optimal route selection performed by vehicle ECU of a first embodiment of the present invention. 本発明の第二実施形態の車両ECUにより実行される最適ルート選定に係る制御ルーチンを示すフローチャートである。It is a flowchart which shows the control routine which concerns on the optimal route selection performed by vehicle ECU of 2nd embodiment of this invention. 本発明の第二実施形態の車両ECUにより実行される最適ルート選定に係るルート概念図である。It is a route conceptual diagram concerning optimal route selection performed by vehicle ECU of a second embodiment of the present invention. 本発明の第二実施形態の車両ECUにより実行される最適ルート選定に係るルート概念図である。It is a route conceptual diagram concerning optimal route selection performed by vehicle ECU of a second embodiment of the present invention. 本発明の第二実施形態の車両ECUにより実行される最適ルート選定に係るルート概念図である。It is a route conceptual diagram concerning optimal route selection performed by vehicle ECU of a second embodiment of the present invention. 本発明の第二実施形態の車両ECUにより実行される最適ルート選定に係るルート概念図である。It is a route conceptual diagram concerning optimal route selection performed by vehicle ECU of a second embodiment of the present invention. 本発明の第二実施形態の車両ECUにより実行される最適ルート選定に係るルート概念図である。It is a route conceptual diagram concerning optimal route selection performed by vehicle ECU of a second embodiment of the present invention. 本発明の第二実施形態の車両ECUにより実行される最適ルート選定に係るルート概念図である。It is a route conceptual diagram concerning optimal route selection performed by vehicle ECU of a second embodiment of the present invention.
<第一実施形態>
 以下、本発明の第一実施形態を図面に基づき説明する。
<First embodiment>
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
 図1は本発明の一実施形態における走行ルート選定システムを備える電気トラックとデータサーバとの関係を示す構成図であり、同図に基づいて各種の構成を説明する。 FIG. 1 is a block diagram showing the relationship between an electric truck equipped with a travel route selection system and a data server according to an embodiment of the present invention, and various configurations will be described based on the drawing.
 図1に示す電気トラック1は、バッテリから供給される電力により駆動されるモータを駆動源とする電気自動車の一種類であり、多くの荷物を輸送することができるコンテナや荷台を備える車両である。電気トラック1は、当該モータとして例えば永久磁石同期電動機のように発電機としても作動可能な電動機を備えている。また、電気トラック1においては、当該モータの出力軸はプロペラシャフトを介して差動装置が連結され、当該差動装置には駆動軸を介して左右の駆動輪が連結されている。このような接続構成により、電気トラック1は、モータを駆動源として駆動輪を回転させ、走行することができる。なお、上述した電気トラック1の構造は一般的なものであることから、本発明の構成及び説明の便宜上のために、各種の構成部品は図1において省略するとともに、その詳細な説明も省略する。 An electric truck 1 shown in FIG. 1 is one type of electric vehicle that uses a motor driven by electric power supplied from a battery as a drive source, and is a vehicle including a container and a carrier that can transport a large amount of luggage. . The electric truck 1 includes an electric motor that can also operate as a generator, such as a permanent magnet synchronous motor. In the electric truck 1, the output shaft of the motor is connected to a differential device via a propeller shaft, and the right and left drive wheels are connected to the differential device via a drive shaft. With such a connection configuration, the electric truck 1 can travel by rotating the drive wheels using the motor as a drive source. In addition, since the structure of the electric track 1 described above is general, for convenience of the configuration and description of the present invention, various components are omitted in FIG. .
 また、図1に示すように、電気トラック1は、車両ECU2、通信部3、及びナビゲーション装置4を有している。車両ECU2は、車両全体を統合制御するための制御回路である。そのため、車両ECU2には、上述した電気トラック1の構成部品、各種センサ、及び各種電子機器が接続されている。特に、図1においては、本発明を説明するために、車両ECU2に対して通信部3及びナビゲーション装置4が接続された接続構成が示されている。 Further, as shown in FIG. 1, the electric truck 1 includes a vehicle ECU 2, a communication unit 3, and a navigation device 4. The vehicle ECU 2 is a control circuit for integrated control of the entire vehicle. Therefore, the vehicle ECU 2 is connected to the above-described components of the electric truck 1, various sensors, and various electronic devices. In particular, FIG. 1 shows a connection configuration in which the communication unit 3 and the navigation device 4 are connected to the vehicle ECU 2 in order to explain the present invention.
 更に、車両ECU2は、地図情報取得部11、輸送重量情報取得部12 、変動情報推
定部13、及び最適ルート選定部14を有している。ここで、地図情報取得部11、輸送重量情報取得部12 、変動情報推定部13、及び最適ルート選定部14から本発明の走
行ルート選定システムが構成されており、車両ECU2が当該走行ルート選定システムを備えているか、或いは車両ECU2自体が当該走行ルート選定システムに該当することになる。
Further, the vehicle ECU 2 includes a map information acquisition unit 11, a transport weight information acquisition unit 12, a fluctuation information estimation unit 13, and an optimum route selection unit 14. Here, the travel route selection system of the present invention is configured by the map information acquisition unit 11, the transport weight information acquisition unit 12, the fluctuation information estimation unit 13, and the optimum route selection unit 14, and the vehicle ECU 2 performs the travel route selection system. Or the vehicle ECU 2 itself corresponds to the travel route selection system.
 ここで、本発明の走行ルート選定システムは、地図情報取得部11、輸送重量情報取得部12、変動情報推定部13、及び最適ルート選定部14を備える限り、その態様は限定されない。図示はされないが、例えば、データサーバ30上において、演算制御部32が地図情報取得部11、輸送重量情報取得部12、変動情報推定部13、及び最適ルート選定部14を備え、車両1の通信部3は、データサーバ30において最適ルート選定部14が選定する最適ルートを受信し、ナビゲーション装置4に表示してもよい。ここで、通信部3はナビゲーション装置4内部に設けられるものであってもよい。このような場合、以下の説明において通信部3が取得する情報は、データサーバ30内に予め保存されているか、又は、データサーバ30内の通信部31により外部から取得される。 Here, as long as the travel route selection system of the present invention includes the map information acquisition unit 11, the transport weight information acquisition unit 12, the fluctuation information estimation unit 13, and the optimum route selection unit 14, the mode is not limited. Although not shown, for example, on the data server 30, the calculation control unit 32 includes a map information acquisition unit 11, a transport weight information acquisition unit 12, a fluctuation information estimation unit 13, and an optimum route selection unit 14, and communication of the vehicle 1. The unit 3 may receive the optimum route selected by the optimum route selection unit 14 in the data server 30 and display it on the navigation device 4. Here, the communication unit 3 may be provided inside the navigation device 4. In such a case, information acquired by the communication unit 3 in the following description is stored in the data server 30 in advance, or is acquired from the outside by the communication unit 31 in the data server 30.
 また、例えば、本発明の走行ルート選定システムは、車両に搭載可能であり無線通信網と通信可能なナビゲーション装置内の演算処理部(図示せず)内に地図情報取得部11、輸送重量情報取得部12、変動情報推定部13、及び最適ルート選定部14を備える形態であってもよい。 Further, for example, the travel route selection system of the present invention can be installed in a vehicle and can acquire a map information acquisition unit 11 and a transportation weight information acquisition in an arithmetic processing unit (not shown) in a navigation device that can communicate with a wireless communication network. The form provided with the part 12, the fluctuation | variation information estimation part 13, and the optimal route selection part 14 may be sufficient.
 以下においては、図1に示すように、車両ECU2が、地図情報取得部11、輸送重量情報取得部12 、変動情報推定部13、及び最適ルート選定部14を有している場合の形態を、本発明の一実施形態として説明する。 In the following, as shown in FIG. 1, the vehicle ECU 2 includes a map information acquisition unit 11, a transport weight information acquisition unit 12 取得, a fluctuation information estimation unit 13, and an optimum route selection unit 14. This will be described as an embodiment of the present invention.
 なお、本実施形態において、地図情報取得部11、輸送重量情報取得部12 、変動情報推定部13、及び最適ルート選定部14のそれぞれは、後述する各種機能を実現するためのプログラムを備える個別の制御回路として想定されている。なお、地図情報取得部11、輸送重量情報取得部12 、変動情報推定部13、及び最適ルート選定部14は、個別の制御回路ではなく、車両ECU2を構成する1つの制御回路に内蔵された1つのプログラムの一部であって、部品のような形状を備えるものでなくてもよい。 In the present embodiment, each of the map information acquisition unit 11, the transport weight information acquisition unit 12, the fluctuation information estimation unit 13, and the optimum route selection unit 14 is provided with a program for realizing various functions to be described later. It is assumed as a control circuit. Note that the map information acquisition unit 11, the transport weight information acquisition unit 12, the fluctuation information estimation unit 13, and the optimum route selection unit 14 are not individual control circuits but are included in one control circuit constituting the vehicle ECU 2. It is a part of one program and does not have to have a shape like a part.
 地図情報取得部11は、通信部3を介して、電気トラック1の外部に記録された地図情報を取得する。ここで、当該地図情報は、電気トラック1の輸送開始地点情報(例えば、電気トラック1の所有者である輸送会社の各営業所)、当該輸送開始地点から荷物搭降載地点(例えば、荷物の配送先、荷物の集荷先、又は荷物の配送及び集荷を同時に行う場所)までの輸送ルート情報、及び当該荷物搭降載地点同士を結ぶ経路の輸送ルート情報を含んでいる。また、当該地図情報は、上記情報のみならず、輸送ルート以外の経路情報(すなわち、ナビゲーション装置4に表示される道路の一般的な情報)、勾配情報、信号情報、路面情報、並びにリアルタイム又は予測される渋滞情報、事故情報、及び工事情報等の各種の情報も含んでいてもよい。なお、地図情報取得部11は、経路情報及び勾配情報等の更新頻度の低い情報については、ナビゲーション装置4のメモリから当該情報を取得してもよい。これにより、車両外部に対するデータの送受信量が低減されることになり、車両ECU2の負荷を低減することができる。 The map information acquisition unit 11 acquires map information recorded outside the electric truck 1 via the communication unit 3. Here, the map information includes the transportation start point information of the electric truck 1 (for example, each sales office of the transportation company that is the owner of the electric truck 1), and the baggage loading / unloading point (for example, the cargo loading / unloading point). The delivery route information to the delivery destination, the collection destination of the package, or the place where the package is delivered and collected at the same time, and the transportation route information of the route connecting the package loading / unloading points. The map information includes not only the above information but also route information other than the transportation route (that is, general information on the road displayed on the navigation device 4), gradient information, signal information, road surface information, and real time or prediction. Various kinds of information such as traffic jam information, accident information, and construction information may be included. In addition, the map information acquisition part 11 may acquire the said information from the memory of the navigation apparatus 4 about information with low update frequency, such as route information and gradient information. Thereby, the amount of data transmitted / received to / from the outside of the vehicle is reduced, and the load on the vehicle ECU 2 can be reduced.
 輸送重量情報取得部12は、通信部3を介して、電気トラック1の外部に記録された輸送重量情報を取得する。ここで、輸送重量情報とは、電気トラック1の輸送開始地点で積載される初期積載物の初期重量情報、及び荷物搭降載地点のそれぞれで搭降載される荷物の搭降載情報を含んでいる。また、初期重量情報とは、輸送開始地点で実際に搭載される荷物の重量のみならず、電気トラック1のコンテナ等に残存している荷物の重量が含まれる。すなわち、初期重量情報とは、電気トラック1が輸送開始地点から出発する直前における、積載されている荷物の総重量のことである。 The transport weight information acquisition unit 12 acquires transport weight information recorded outside the electric truck 1 via the communication unit 3. Here, the transportation weight information includes the initial weight information of the initial load loaded at the transportation start point of the electric truck 1 and the loading / unloading information of the luggage loaded / unloaded at each loading / unloading point. It is out. The initial weight information includes not only the weight of the load actually loaded at the transportation start point, but also the weight of the load remaining in the container of the electric truck 1 or the like. That is, the initial weight information is the total weight of the loaded cargo immediately before the electric truck 1 departs from the transportation start point.
 変動情報推定部13は、輸送重量情報取得部12が取得した輸送重量情報に基づき、輸送中に変動する積載総重量の変動情報を推定する。輸送中に変動する積載総重量の変動情報を推定する方法は特に限定されず公知の技術を適用することができる。例えば、変動情報推定部13は、輸送開始地点及び各荷物搭降載地点を経由する輸送ルートを全て想定して抽出してもよい。またここで、変動情報推定部13は、配送や集配などの時間的条件を考慮して実行可能となる走行ルートを輸送ルートとして抽出してもよい。その後、変動情報推定部13は、当該推定された輸送ルート毎に積載総重量の情報を付加することにより、積載総重量の変動情報を推定する。 The fluctuation information estimation unit 13 estimates fluctuation information of the total load weight that fluctuates during transportation based on the transportation weight information acquired by the transportation weight information acquisition unit 12. A method for estimating fluctuation information of the total load weight that fluctuates during transportation is not particularly limited, and a known technique can be applied. For example, the fluctuation information estimation unit 13 may extract all of the transportation routes that pass through the transportation start point and each loading / unloading point. Here, the fluctuation information estimation unit 13 may extract a travel route that can be executed in consideration of temporal conditions such as delivery and collection / delivery as a transport route. Thereafter, the fluctuation information estimation unit 13 estimates the fluctuation information of the total loaded weight by adding information on the total loaded weight for each estimated transportation route.
 最適ルート選定部14は、地図情報取得部11によって取得された地図情報、及び変動情報推定部13によって推定された変動情報を含む基礎的情報に基づき、電費をより向上させることができる電気トラック1の走行すべき最適ルートを選定する。ここで、当該基礎的情報には、地図情報及び変動情報以外のその他情報として、過去の積載総重量(以下、積載量とも称する)に対する電費情報を含む走行実績データ等の種々の情報を含んでいてもよい。なお、当該その他の情報は、電気トラック1内のメモリ(図示せず)に保存された情報であってもよく、車外に保存された情報であって通信部3を経由して取得された情報であってもよい。 The optimal route selection unit 14 is an electric truck 1 that can further improve power consumption based on the basic information including the map information acquired by the map information acquisition unit 11 and the fluctuation information estimated by the fluctuation information estimation unit 13. Select the best route to travel on. Here, the basic information includes various information such as travel performance data including power consumption information for the past total load weight (hereinafter also referred to as load amount) as other information other than the map information and the fluctuation information. May be. The other information may be information stored in a memory (not shown) in the electric truck 1 or information stored outside the vehicle and acquired via the communication unit 3. It may be.
 本実施形態において、最適ルート選定部14は、各輸送ルートの走行区間毎において推定される積載総重量に基づき、モータの回生電力量及び電気トラック1の走行消費電力量を算出し、当該算出結果を比較して最適ルートを選定する。より具体的な最適ルートの選定として、輸送ルート情報に所定勾配以上の降坂路が含まれる場合に、最適ルート選定部14は、積載総重量が比較的重い状態で当該降坂路を走行するように最適ルートを選定してもよい。一方、輸送ルート情報に所定勾配以上の登坂路が含まれる場合に、最適ルート選定部14は、積載総重量が比較的軽い状態で当該登坂路を走行するように最適ルートを選定してもよい。 In the present embodiment, the optimum route selection unit 14 calculates the regenerative power amount of the motor and the travel power consumption amount of the electric truck 1 based on the total loaded weight estimated for each travel section of each transport route, and the calculation result To select the optimal route. As a more specific selection of the optimum route, when the downhill road having a predetermined gradient or more is included in the transport route information, the optimum route selection unit 14 is configured to travel on the downhill road with a relatively heavy total weight. An optimal route may be selected. On the other hand, when the transport route information includes an uphill road having a predetermined gradient or more, the optimum route selection unit 14 may select the optimum route so that the uphill road travels with a relatively light total weight. .
 ここで、積載総重量が比較的重い状態とは、例えば最大積載量の50%以上であり、積載総重量が比較的軽い状態とは、例えば最大積載量の50%未満である。また、所定勾配以上の降坂路とは、例えば2%以上の降坂路であり、所定勾配以上の登坂路とは、例えば2%以上の登坂路である。なお、これらの数値は、電気トラック1の大きさ、積載量を含む重量、及び形状に応じて適宜決定されることになる。 Here, the state where the total load weight is relatively heavy is, for example, 50% or more of the maximum load capacity, and the state where the total load weight is relatively light is, for example, less than 50% of the maximum load capacity. Further, the downhill road having a predetermined gradient or higher is, for example, a 2% or higher downhill road, and the uphill road having a predetermined gradient or higher is, for example, a 2% or higher uphill road. These numerical values are appropriately determined according to the size of the electric truck 1, the weight including the loading capacity, and the shape.
 通信部3は、無線通信網20を介してデータサーバ30と電気通信可能な状態に接続される。そして、通信部3は、このような通信状態において、電気トラック1の各種の情報(例えば、リアルタイムの渋滞情報等、電費実績の情報)をデータサーバ30に送信し、データサーバ30から地図情報、輸送重量情報、及びその他各種情報(例えば、過去の積載量に対する電費情報)を受信する。また、通信部3は、他の車両(図示せず)との車車間通信や、VICS(登録商標)との路車通信を行ってもよく、他の車両と各種の情報を共有してもよい。 The communication unit 3 is connected to the data server 30 through the wireless communication network 20 so as to be in electrical communication. Then, in such a communication state, the communication unit 3 transmits various types of information of the electric truck 1 (for example, information on the actual power consumption such as real-time traffic jam information) to the data server 30, and the map information, Transport weight information and various other information (for example, electricity cost information for past loading capacity) are received. Further, the communication unit 3 may perform inter-vehicle communication with other vehicles (not shown), road-vehicle communication with VICS (registered trademark), or share various information with other vehicles. Good.
 ナビゲーション装置4は、自己の記憶領域に予め道路のカーブや勾配等を含めた地図情報を記憶しており、電気トラック1の走行中にはアンテナを介してGPS情報を逐次受信して地図上の自車位置を特定する。また、ナビゲーション装置4は、最適ルート選定部14によって選定された最適ルートを表示しつつ、電気トラック1の運転者に対してルート案内を行う。 The navigation device 4 stores map information including road curves and slopes in advance in its own storage area, and sequentially receives GPS information via an antenna while the electric truck 1 is running, Identify your vehicle position. Further, the navigation device 4 provides route guidance to the driver of the electric truck 1 while displaying the optimum route selected by the optimum route selection unit 14.
 無線通信網20は、一般的に公知であって各種の通信会社から提供されているネットワークのことであり、離れた場所に存在する通信機器同士を接続するものである。なお、無線通信網20は、公衆通信網又は専用通信網のいずれであってもよい。 The wireless communication network 20 is a network that is generally known and provided by various communication companies, and connects communication devices that exist in remote locations. Note that the wireless communication network 20 may be either a public communication network or a dedicated communication network.
 データサーバ30は、電気トラック1とは異なる場所に設置されており、無線通信網20を介して電気トラック1及び他の車両と電気通信可能に接続されている。また、図1に示すように、データサーバ30は、通信部31、演算制御部32、及びデータ記録部33を有している。 The data server 30 is installed in a place different from the electric truck 1 and is connected to the electric truck 1 and other vehicles via the wireless communication network 20 so as to be able to perform electric communication. As illustrated in FIG. 1, the data server 30 includes a communication unit 31, an operation control unit 32, and a data recording unit 33.
 通信部31は、無線通信網20を介して電気トラック1の通信部3と電気通信可能な状態に接続される。そして、通信部31は、このような通信状態において、電気トラック1の各種の情報(例えば、リアルタイムの渋滞情報等、電費実績の情報)を電気トラック1から受信し、地図情報、輸送重量情報、及びその他各種情報を電気トラック1に対して送信する。 The communication unit 31 is connected to the communication unit 3 of the electric truck 1 through the wireless communication network 20 so as to be in electrical communication. Then, in such a communication state, the communication unit 31 receives various types of information on the electric truck 1 (for example, information on the actual power consumption such as real-time traffic jam information) from the electric truck 1, and maps information, transport weight information, And other various information are transmitted to the electric truck 1.
 演算制御部32は、データサーバ30を統合制御するための制御回路である。具体的に演算制御部32は、通信部31の制御を行い、通信部31を介して受信する各種の情報をデータ記録部33に保存し、或いは保存されている各種の情報を取り出して各車両に送信するための制御を行う。また、図1においては、電気トラック1のみに、地図情報取得部11、輸送重量情報取得部12 、変動情報推定部13、及び最適ルート選定部14から
なる本発明の走行ルート選定システムが設けられているが、当該走行ルート選定システムを演算制御部32に設けてもよい。すなわち、前述のように、演算制御部32が地図情報取得部11、輸送重量情報取得部12 、変動情報推定部13、及び最適ルート選定部1
4を有し、選定される最適ルートを電気トラック1に通知してもよい。
The arithmetic control unit 32 is a control circuit for performing integrated control of the data server 30. Specifically, the arithmetic control unit 32 controls the communication unit 31 and stores various types of information received via the communication unit 31 in the data recording unit 33, or extracts various types of stored information for each vehicle. Control to send to. In FIG. 1, only the electric truck 1 is provided with the travel route selection system of the present invention including the map information acquisition unit 11, the transport weight information acquisition unit 12, the fluctuation information estimation unit 13, and the optimum route selection unit 14. However, you may provide the said travel route selection system in the calculation control part 32. FIG. That is, as described above, the calculation control unit 32 includes the map information acquisition unit 11, the transport weight information acquisition unit 12, the fluctuation information estimation unit 13, and the optimum route selection unit 1.
4 and the electric truck 1 may be notified of the optimum route to be selected.
 データ記録部33は、一般的なハードディスク又は半導体メモリから構成されている。また、データ記録部33は、演算制御部32による制御によって、各種の情報の保存、取り出し、及び書き替えを容易に行うことができる。 The data recording unit 33 is composed of a general hard disk or semiconductor memory. Further, the data recording unit 33 can easily store, retrieve, and rewrite various types of information under the control of the arithmetic control unit 32.
 次に、図2及び図3を参照しつつ、本発明の走行ルート選定システム(車両ECU2)による最適ルートの選定方法を具体的に説明する。ここで、図2は、本実施形態の車両ECU2により実行される最適ルート選定に係る制御ルーチンを示すフローチャートである。また、図3は、本実施形態の車両ECU2により実行される最適ルート選定に係るルート概念図である。 Next, a method for selecting an optimum route by the travel route selection system (vehicle ECU 2) of the present invention will be specifically described with reference to FIGS. Here, FIG. 2 is a flowchart showing a control routine relating to the optimum route selection executed by the vehicle ECU 2 of the present embodiment. FIG. 3 is a route conceptual diagram relating to the optimum route selection executed by the vehicle ECU 2 of the present embodiment.
 先ず、車両ECU2の地図情報取得部11が、通信部3を介して、データサーバ30のデータ記録部33に記録された地図情報を取得する(ステップS1:地図情報取得ステップ)。この際、地図情報取得部11は、ナビゲーション装置4から地図情報の一部を取得してもよい。具体的に、地図情報取得部11は、図3に示される登坂路40、降坂路50、降坂路60及び登坂路70における各種情報を取得する。 First, the map information acquisition unit 11 of the vehicle ECU 2 acquires the map information recorded in the data recording unit 33 of the data server 30 via the communication unit 3 (step S1: map information acquisition step). At this time, the map information acquisition unit 11 may acquire a part of the map information from the navigation device 4. Specifically, the map information acquisition unit 11 acquires various information on the uphill road 40, the downhill road 50, the downhill road 60, and the uphill road 70 shown in FIG.
 次に、車両ECU2の輸送重量情報取得部12が、通信部3を介して、データサーバ30のデータ記録部33に記録された輸送重量情報を取得する(ステップS2:輸送重量情報取得ステップ)。具体的に、輸送重量情報取得部12は、図3において示す、輸送開始地点Oにおける積載量(100kg)、高地Aにおける降載量(20kg)、及び低地Bにおける降載量(80kg)に係る輸送重量情報を取得する。 Next, the transport weight information acquisition unit 12 of the vehicle ECU 2 acquires the transport weight information recorded in the data recording unit 33 of the data server 30 via the communication unit 3 (step S2: transport weight information acquisition step). Specifically, the transportation weight information acquisition unit 12 relates to the loading amount (100 kg) at the transportation start point O, the loading amount at the highland A (20 kg), and the loading amount at the lowland B (80 kg) shown in FIG. Get transport weight information.
 次に、車両ECU2の変動情報推定部13が、輸送重量情報取得部12よって取得された輸送重量情報に基づき、輸送中に変動する積載量の変動情報を推定する(ステップS3:変動情報推定ステップ)。より具体的に、変動情報推定部13は、輸送開始地点Oから高地Aを経由して低地Bに到達する第1ルート、及び輸送開始地点Oから低地Bを経由して高地Aに到達する第2ルートを抽出する。その後、変動情報推定部13は、第1ルート及び第2ルート毎に、輸送開始地点O、高地A及び低地Bにおける積載量の情報を付加する。すなわち、第1ルートにおいては、輸送開始地点Oにおいて積載量が100kgであり、高地Aにおいて積載量が80kgとなり、その後に低地Bにおいて積載量が0kgになると推定される。一方、第2ルートにおいては、輸送開始地点Oにおいて積載量が100kgであり、低地Bにおいて積載量が20kgとなり、その後に高地Aにおいて積載量0kgになると推定される。 Next, the fluctuation information estimation unit 13 of the vehicle ECU 2 estimates the fluctuation information of the loading amount that fluctuates during transportation based on the transportation weight information acquired by the transportation weight information acquisition unit 12 (step S3: fluctuation information estimation step). ). More specifically, the fluctuation information estimation unit 13 is a first route that reaches the lowland B from the transportation start point O via the highland A, and a first route that reaches the highland A from the transportation start point O via the lowland B. Two routes are extracted. Thereafter, the fluctuation information estimation unit 13 adds information on the loading amount at the transportation start point O, the highland A, and the lowland B for each of the first route and the second route. That is, in the first route, it is estimated that the loading amount is 100 kg at the transportation start point O, the loading amount is 80 kg in the highland A, and then the loading amount is 0 kg in the lowland B. On the other hand, in the second route, it is estimated that the loading amount is 100 kg at the transportation start point O, the loading amount is 20 kg in the lowland B, and then the loading amount is 0 kg in the highland A.
 次に、車両ECU2の最適ルート選定部14が、各輸送ルートの走行区間毎において推定される積載総重量に基づき、モータの回生電力量及び電気トラック1の走行消費電力量を算出する。その後、最適ルート選定部14が、当該算出結果を基礎的情報の要素として考慮し、最適ルートを選定する(ステップS4:最適ルート選定ステップ)。 Next, the optimum route selection unit 14 of the vehicle ECU 2 calculates the regenerative power amount of the motor and the travel power consumption amount of the electric truck 1 based on the total loaded weight estimated for each travel route of each transport route. Thereafter, the optimum route selection unit 14 considers the calculation result as an element of basic information and selects an optimum route (step S4: optimum route selection step).
 具体的な最適ルート選定ステップとして、最適ルート選定部14は、図3に示す第1ルートにおける登坂路40の走行消費電力量(Elos100)及び降坂路50の回生電力量(Egin80)を算出する。また、最適ルート選定部14は、図3に示す第2ルートにおける降坂路60の回生電力量(Egin100)及び登坂路70の走行消費電力量(Elos20)を算出する。そして、最適ルート選定部14は、第1ルートにおける算出結果(Elos100+Egin80)と、第2ルートにおける算出結果(Egin100+Elos20)と、を比較して、よりよい電費で走行できる輸送ルートをより高い精度で最適ルートとして選定することができる。 As a specific optimal route selection step, the optimal route selection unit 14 calculates the traveling power consumption (Elos100) of the uphill road 40 and the regenerative electric energy (Egin80) of the downhill road 50 in the first route shown in FIG. Moreover, the optimal route selection part 14 calculates the regenerative electric energy (Egin100) of the descent road 60 and the traveling power consumption (Elos20) of the uphill road 70 in the 2nd route shown in FIG. Then, the optimum route selection unit 14 compares the calculation result in the first route (Elos100 + Egin80) with the calculation result in the second route (Egin100 + Elos20), and optimizes the transportation route that can travel with better power consumption with higher accuracy. Can be selected as a route.
 このような回生電力量及び走行消費電力量を考慮した輸送ルートを選定することは、上述したように、輸送ルート情報に所定勾配以上の降坂路が含まれる場合、積載総重量が比較的重い状態で当該降坂路を走行するようにルートが選定され、輸送ルート情報に所定勾配以上の登坂路が含まれる場合、積載総重量が比較的軽い状態で当該登坂路を走行するようにルートが選定されることになる。 Selecting a transportation route that takes into account the amount of regenerative power and travel power consumption means that, as described above, if the transportation route information includes downhill roads with a predetermined slope or higher, the total weight of the load is relatively heavy. If the route is selected to travel on the downhill road and the transport route information includes an uphill road with a predetermined slope or more, the route is selected to travel on the uphill road with a relatively light total weight. Will be.
 その後、車両ECU2により、当該最適ルートに関する情報がナビゲーション装置4に供給され、ナビゲーション装置4による走行案内が開始されることになる。 Thereafter, the vehicle ECU 2 supplies information related to the optimum route to the navigation device 4, and travel guidance by the navigation device 4 is started.
 以上のことから本実施形態に係る電気トラックの走行ルート選定システム及び電気トラックの走行ルート選定方法によれば、輸送ルートに係る種々の情報及び荷物の積載総重量の変動情報を含む基礎的情報に基づき最適ルートを選定するため、より高い精度での輸送コストの可視化、及び従来に比してより実質的に電費を向上することができる輸送ルートの選定が可能になる。換言すれば、本実施形態に係る電気トラックの走行ルート選定システム及び電気トラックの走行ルート選定方法によれば、電費をより向上させることができるとともに、輸送コストの低減を図ることができる。 From the above, according to the electric truck traveling route selection system and the electric truck traveling route selection method according to the present embodiment, the basic information including various information related to the transportation route and the variation information of the total load weight of the load is included. Since the optimum route is selected on the basis of this, it becomes possible to visualize the transportation cost with higher accuracy and to select the transportation route that can substantially improve the electricity cost as compared with the conventional method. In other words, according to the electric truck traveling route selection system and the electric truck traveling route selection method according to the present embodiment, the electric cost can be further improved and the transportation cost can be reduced.
 特に、本実施形態においては、各輸送ルートの走行区間毎において推定される積載総重量に基づき、モータの回生電力量及び電気トラック1の走行消費電力量を算出し、当該算出結果を比較して最適ルートを選定するため、容易に算出可能な数値データを利用して、最適ルートの選定をより高精度に行うことができる。 In particular, in the present embodiment, the regenerative power amount of the motor and the travel power consumption amount of the electric truck 1 are calculated based on the total loaded weight estimated for each travel section of each transportation route, and the calculation results are compared. Since the optimum route is selected, the optimum route can be selected with higher accuracy by using numerical data that can be easily calculated.
 また、輸送ルート情報に所定勾配以上の降坂路が含まれる場合に、積載総重量が比較的重い状態で当該降坂路を走行するように最適ルートを選定したり、或いは輸送ルート情報に所定勾配以上の登坂路が含まれる場合に、積載総重量が比較的軽い状態で当該登坂路を走行するように最適ルートを選定したりすることで、回生電力量及び走行消費電力量を考慮した最適ルートの選定が実現されることになり、実質的に電費を低減することができる最適ルートの選定をより高精度に行うことができる。 In addition, when the transport route information includes downhill roads with a predetermined slope or higher, the optimum route is selected so that the total weight is relatively heavy, or the transport route information has a predetermined slope or higher. If the optimal route is selected so that it travels on the uphill road in a state where the total weight of the load is relatively light, Selection will be realized, and it is possible to select an optimum route that can substantially reduce power consumption with higher accuracy.
 なお、上記実施形態に係る説明においては、荷物搭降載地点である高地A及び低地Bにおいては、荷物を降ろすことのみ(すなわち、配送)が想定されていたが、荷物を積むこと(すなわち、集荷)が想定されてもよく、各地点で荷物の配送及び集荷が同時に行われる場合(すなわち、集配)も想定することができる。また、荷物搭降載地点が高地A及び低地Bの2箇所みであったが、3箇所以上であっても、同様の最適ルート選定がなされる。 In the description according to the above embodiment, in the highland A and the lowland B, which are the loading and unloading points, it was assumed that only the baggage was dropped (that is, delivery), but the baggage was loaded (that is, (Collection) may be envisaged, and it is also possible to envisage a case where delivery and collection of packages are simultaneously performed at each point (ie, collection and delivery). In addition, although there are only two places for loading and unloading, the highland A and the lowland B, the same optimum route selection is made even if there are three or more places.
<第二実施形態>
 以下、本発明の第二実施形態を図面に基づき説明する。
<Second embodiment>
Hereinafter, a second embodiment of the present invention will be described with reference to the drawings.
 第二実施形態における電気トラック1の構造、無線通信網20、及びデータサーバ30の構造は、第一実施形態における図1に示された形態と同一である。但し、第二実施形態においては、第一実施形態と比較して、最適ルート選定部14における最適ルート選定方法が異なっている。そこで、第二実施形態における電気トラック1、無線通信網20、及びデータサーバ30の説明は省略し、図1を参照して、第二実施形態に係る最適ルート選定部14における最適ルート選定方法を以下に説明する。 The structure of the electric truck 1, the structure of the wireless communication network 20, and the data server 30 in the second embodiment are the same as the form shown in FIG. 1 in the first embodiment. However, the second embodiment differs from the first embodiment in the optimum route selection method in the optimum route selection unit 14. Therefore, description of the electric truck 1, the wireless communication network 20, and the data server 30 in the second embodiment is omitted, and the optimum route selection method in the optimum route selection unit 14 according to the second embodiment is described with reference to FIG. This will be described below.
 第二実施形態に係る最適ルート選定部14は、地図情報取得部11によって取得された地図情報、及び変動情報推定部13によって推定された変動情報を含む基礎的情報に基づき、電費をより向上させることができる電気トラック1の走行すべき最適ルートを選定する。より具体的に、最適ルート選定部14は、地図情報における走行エリアを道路状況に応じてエリア分類し、積載総重量に基づき、分類後のいずれかの走行エリアを走行するように最適ルートを選定する。 The optimal route selection unit 14 according to the second embodiment further improves the power consumption based on the basic information including the map information acquired by the map information acquisition unit 11 and the variation information estimated by the variation information estimation unit 13. The optimum route on which the electric truck 1 can travel is selected. More specifically, the optimum route selection unit 14 classifies the traveling area in the map information according to the road condition, and selects the optimum route so as to travel in one of the classified traveling areas based on the total loaded weight. To do.
 例えば、地図情報における走行エリアが標高の高低によって低地エリア及び高地エリアに分類される場合、最適ルート選定部14は、積載総重量が比較的重い状態で当該低地エリアを走行し、積載総重量が比較的軽い状態で当該高地エリアを走行するように最適ルートを選定する。また、地図情報における走行エリアが所定勾配以上の登坂路の多少によって登坂路エリア及び非登坂路エリアに分類される場合、最適ルート選定部14は、積載総重量が比較的重い状態で当該非登坂路エリアを走行し、積載総重量が比較的軽い状態で当該登坂路エリアを走行するように最適ルートを選定する。更に、地図情報における走行エリアが所定勾配以上の降坂路の多少によって降坂路エリア及び非降坂路エリアに分類される場合、最適ルート選定部14は、積載総重量が比較的重い状態で当該降坂路エリアを走行し、積載総重量が比較的軽い状態で当該非降坂路エリアを走行するように最適ルートを選定する。 For example, when the travel area in the map information is classified into a lowland area and a highland area according to the height of the altitude, the optimum route selection unit 14 travels in the lowland area with a relatively heavy total weight, and the total load weight is The optimum route is selected so as to travel in the highland area in a relatively light state. In addition, when the travel area in the map information is classified into an uphill road area and a non-uphill road area depending on the number of uphill roads having a predetermined slope or more, the optimum route selection unit 14 performs the non-hill climbing in a state in which the total loaded weight is relatively heavy. An optimum route is selected so that the vehicle travels on the road area and travels on the uphill road area with a relatively light total weight. Further, when the traveling area in the map information is classified into a downhill road area and a non-downhill road area depending on the number of downhill roads having a predetermined slope or more, the optimum route selection unit 14 sets the downhill road in a state in which the total loaded weight is relatively heavy. The optimum route is selected so that the vehicle travels in the area and travels in the non-downhill area with a relatively light total weight.
 ここで、積載総重量が比較的重い状態、積載総重量が比較的軽い状態、所定勾配以上の降坂路、所定勾配以上の登坂路とは、第一実施形態にて定義された内容と同一である。 Here, the state in which the total load weight is relatively heavy, the state in which the total load weight is relatively light, the downhill road with a predetermined gradient or higher, and the uphill road with a predetermined gradient or higher are the same as the contents defined in the first embodiment. is there.
 次に、図4乃至図10を参照しつつ、本発明の走行ルート選定システム(車両ECU2)による最適ルートの選定方法を具体的に説明する。ここで、図4は、本実施形態の車両ECU2により実行される最適ルート選定に係る制御ルーチンを示すフローチャートである。また、図5乃至図10は、本実施形態の車両ECU2により実行される最適ルート選定に係るルート概念図である。特に、図5乃至図7は配送を前提としたルート概念図であり、図8乃至図10は集荷を前提としたルート概念図である。 Next, a method for selecting an optimum route by the travel route selection system (vehicle ECU 2) of the present invention will be specifically described with reference to FIGS. Here, FIG. 4 is a flowchart showing a control routine related to the optimum route selection executed by the vehicle ECU 2 of the present embodiment. 5 to 10 are route conceptual diagrams related to the optimum route selection executed by the vehicle ECU 2 of the present embodiment. In particular, FIGS. 5 to 7 are conceptual diagrams of routes based on delivery, and FIGS. 8 to 10 are conceptual diagrams of routes based on collection.
 先ず、車両ECU2の地図情報取得部11が、通信部3を介して、データサーバ30のデータ記録部33に記録された地図情報を取得する(ステップS11:地図情報取得ステップ)。この際、地図情報取得部11は、ナビゲーション装置4から地図情報の一部を取得してもよい。具体的に、地図情報取得部11は、図5乃至図10に示された輸送開始地点Oから各荷物搭降載地点(図中において黒く塗りつぶされた12個の円領域)までの輸送ルート情報、及び各荷物搭降載地点同士を結ぶ輸送ルート情報等の各種情報を取得する。 First, the map information acquisition unit 11 of the vehicle ECU 2 acquires the map information recorded in the data recording unit 33 of the data server 30 via the communication unit 3 (step S11: map information acquisition step). At this time, the map information acquisition unit 11 may acquire a part of the map information from the navigation device 4. Specifically, the map information acquisition unit 11 transports the route information from the transportation start point O shown in FIGS. 5 to 10 to each loading / unloading point (12 circle areas blacked out in the figure). , And various information such as transport route information connecting the respective loading / unloading points.
 次に、車両ECU2の輸送重量情報取得部12が、通信部3を介して、データサーバ30のデータ記録部33に記録された輸送重量情報を取得する(ステップS12:輸送重量情報取得ステップ)。具体的に、配送を前提とする場合、輸送重量情報取得部12は、図5乃至図7において示す、輸送開始地点Oにおける積載量(110kg)、各荷物搭降載地点における降載量(10kg)に係る輸送重量情報を取得する。一方、集荷を前提とする場合、輸送重量情報取得部12は、図8乃至図10において示す、輸送開始地点Oにおける積載量(0kg)、各荷物搭降載地点における搭載量(10kg)に係る輸送重量情報を取得する。 Next, the transport weight information acquisition unit 12 of the vehicle ECU 2 acquires the transport weight information recorded in the data recording unit 33 of the data server 30 via the communication unit 3 (step S12: transport weight information acquisition step). Specifically, when delivery is premised, the transportation weight information acquisition unit 12 performs the loading amount (110 kg) at the transportation start point O and the loading amount (10 kg) at each loading / unloading point shown in FIGS. ) To obtain transport weight information. On the other hand, when premised on the collection, the transportation weight information acquisition unit 12 relates to the loading amount (0 kg) at the transportation start point O and the loading amount (10 kg) at each loading / unloading point shown in FIGS. Get transport weight information.
 次に、車両ECU2の変動情報推定部13が、輸送重量情報取得部12よって取得された輸送重量情報に基づき、輸送中に変動する積載量の変動情報を推定する(ステップS13:変動情報推定ステップ)。より具体的に、変動情報推定部13は、輸送開始地点Oから各荷物搭降載地点の全てを経由する複数の輸送ルートを抽出する。ここで、変動情報推定部13は、配送や集配などの時間的条件を考慮して実行可能となる走行ルートを輸送ルートとして抽出してもよい。その後、変動情報推定部13は、輸送ルート毎に、輸送開始地点O、各荷物搭降載地点における積載量の情報を付加する。 Next, the fluctuation information estimation unit 13 of the vehicle ECU 2 estimates the fluctuation information of the loading amount that fluctuates during transportation based on the transportation weight information acquired by the transportation weight information acquisition unit 12 (step S13: fluctuation information estimation step). ). More specifically, the fluctuation information estimation unit 13 extracts a plurality of transportation routes that pass from the transportation start point O through all of the luggage loading / unloading points. Here, the fluctuation information estimation unit 13 may extract a travel route that can be executed in consideration of temporal conditions such as delivery and collection / delivery as a transport route. After that, the fluctuation information estimation unit 13 adds information on the loading amount at the transportation start point O and each loading / unloading point for each transportation route.
 なお、図5乃至図7においては、配送を前提とするため、輸送開始地点Oにおいて積載量が110kgであり、各荷物搭降載地点を経由するごとに10kgずつ積載量が減少するようになっている。一方、図8乃至図10においては、集荷を前提とするため、輸送開始地点Oにおいて積載量が0kgであり、各荷物搭降載地点を経由するごとに10kgずつ積載量が増加するようになっている。また、図5乃至図10においては、最終的に決定される最適ルートの1つを図示している。 5 to 7, since the delivery is premised, the loading amount is 110 kg at the transportation start point O, and the loading amount decreases by 10 kg every time it passes through each loading / unloading point. ing. On the other hand, in FIGS. 8 to 10, since the collection is premised, the loading amount is 0 kg at the transportation start point O, and the loading amount increases by 10 kg every time it passes through each loading / unloading point. ing. 5 to 10 show one of the optimum routes finally determined.
 次に、車両ECU2の最適ルート選定部14が、地図情報における走行エリアを道路状況に応じてエリア分類する。その後、最適ルート選定部14が、積載総重量に基づき、分類後のいずれかの走行エリアを走行するように最適ルートを選定する(ステップS14:最適ルート選定ステップ)。 Next, the optimum route selection unit 14 of the vehicle ECU 2 classifies the travel areas in the map information according to the road conditions. Thereafter, the optimum route selection unit 14 selects an optimum route so as to travel in any of the classified travel areas based on the total loaded weight (step S14: optimum route selection step).
 例えば、図5のように、走行エリアを低地エリアCと高地エリアDに分類する場合、積載量が比較的重い状態(積載量が110kg~60kgで示される、配送が半分以下しか終了していない状態)で低地エリアCを走行し、積載量が60kgの状態で低地エリアCから高地エリアDに移動し、積載量が比較的軽い状態(積載量が50kg~0kgで示される、配送が半分以上終了した状態)で高地エリアDを走行するように最適ルートを選定する。 For example, as shown in FIG. 5, when the traveling area is classified into the lowland area C and the highland area D, the load amount is relatively heavy (the load amount is indicated by 110 kg to 60 kg, and the delivery is completed by less than half. State), travels in the lowland area C, moves from the lowland area C to the highland area D with a load of 60 kg, and the load is relatively light (loading is indicated by 50 kg to 0 kg, delivery is more than half In the finished state), the optimum route is selected so as to travel in the highland area D.
 また、図6のように、走行エリアを非登坂路エリアEと登坂路エリアFに分類する場合、積載量が比較的重い状態(積載量が110kg~60kgで示される、配送が半分以下しか終了していない状態)で非登坂路エリアEを走行し、積載量が60kgの状態で非登坂路エリアEから登坂路エリアFに移動し、積載量が比較的軽い状態(積載量が50kg~0kgで示される、配送が半分以上終了した状態)で登坂路エリアFを走行するように最適ルートを選定する。 In addition, as shown in FIG. 6, when the traveling area is classified into the non-uphill area E and the uphill area F, the load amount is relatively heavy (the load amount is indicated by 110 kg to 60 kg, and the delivery is completed by less than half. In the non-climbing road area E, and moving from the non-climbing road area E to the uphill road area F with a load of 60 kg, the load is relatively light (loading is 50 kg to 0 kg) The optimal route is selected so that the vehicle travels in the uphill road area F in a state where the delivery has been completed by more than half.
 更に、図7のように、走行エリアを降坂路エリアGと非降坂路エリアHに分類する場合、積載量が比較的重い状態(積載量が110kg~60kgで示される、配送が半分以下しか終了していない状態)で降坂路エリアGを走行し、積載量が60kgの状態で降坂路エリアGから非降坂路エリアHに移動し、積載量が比較的軽い状態(積載量が50kg~0kgで示される、配送が半分以上終了した状態)で非降坂路エリアHを走行するように最適ルートを選定する。 Furthermore, as shown in FIG. 7, when the traveling area is classified into the downhill area G and the non-downhill area H, the load amount is relatively heavy (the load amount is indicated by 110 kg to 60 kg, and the delivery is completed by less than half. Drive downhill area G in a state where the load is 60 kg and move from downhill area G to non-downhill area H with a load of 60 kg, the load is relatively light (load is 50 kg to 0 kg) The optimum route is selected so as to travel in the non-downhill area H in the state where the delivery has been completed by more than half.
 一方で集荷の場合には、図8のように、走行エリアを低地エリアCと高地エリアDに分類する場合、積載量が比較的軽い状態(積載量が0kg~60kgで示される、集荷が半分以下しか終了していない状態)で高地エリアDを走行し、積載量が60kgの状態で高地エリアDから低地エリアCに移動し、積載量が比較的重い状態(積載量が70kg~110kgで示される、集荷が半分以上終了した状態)で低地エリアCを走行するように最適ルートを選定する。 On the other hand, in the case of pickup, when the traveling area is classified into the lowland area C and the highland area D as shown in FIG. 8, the load amount is relatively light (the load amount is indicated by 0 kg to 60 kg, and the pickup is half. It travels in the highland area D in the state where only the following is completed), moves from the highland area D to the lowland area C with the loading capacity of 60kg, and the loading capacity is relatively heavy (loading capacity is shown as 70kg to 110kg) The optimal route is selected so that the vehicle travels in the lowland area C in a state where the collection is over halfway.
 また、図9のように、走行エリアを非登坂路エリアEと登坂路エリアFに分類する場合、積載量が比較的軽い状態(積載量が0kg~60kgで示される、集荷が半分以下しか終了していない状態)で登坂路エリアFを走行し、積載量が60kgの状態で登坂路エリアFから非登坂路エリアEに移動し、積載量が比較的重い状態(積載量が70kg~110kgで示される、集荷が半分以上終了した状態)で非登坂路エリアEを走行するように最適ルートを選定する。 In addition, as shown in FIG. 9, when the traveling area is classified into the non-uphill area E and the uphill area F, the load amount is relatively light (the load amount is indicated by 0 kg to 60 kg, and the collection is completed by less than half. Drive uphill road area F, move uphill road area F to non-hill road area E with a load capacity of 60 kg, load capacity is relatively heavy (load capacity is 70 kg to 110 kg) The optimum route is selected so that the vehicle travels in the non-climbing road area E in the state where the collection has been completed by more than half.
 更に、図10のように、走行エリアを降坂路エリアGと非降坂路エリアHに分類する場合、積載量が比較的軽い状態(積載量が0kg~60kgで示される、集荷が半分以下しか終了していない状態)で非降坂路エリアHを走行し、積載量が60kgの状態で非降坂路エリアHから降坂路エリアGに移動し、積載量が比較的重い状態(積載量が70kg~110kgで示される、集荷が半分以上終了した状態)で降坂路エリアGを走行するように最適ルートを選定する。 Furthermore, as shown in FIG. 10, when the traveling area is classified into the downhill area G and the non-downhill area H, the load amount is relatively light (the load amount is indicated by 0 kg to 60 kg, and the collection is completed by less than half. In the non-downhill area H, and the load is 60 kg, the vehicle moves from the non-downhill area H to the downhill area G, and the load is relatively heavy (the load is 70 kg to 110 kg). The optimal route is selected so that the vehicle travels on the downhill area G in the state where the collection is completed by half or more).
 その後、車両ECU2により、当該最適ルートに関する情報がナビゲーション装置4に供給され、ナビゲーション装置4による走行案内が開始されることになる。 Thereafter, the vehicle ECU 2 supplies information related to the optimum route to the navigation device 4, and travel guidance by the navigation device 4 is started.
 以上のことから本実施形態に係る電気トラックの走行ルート選定システム及び電気トラックの走行ルート選定方法によっても、輸送ルートに係る種々の情報及び荷物の積載総重量の変動情報を含む基礎的情報に基づき最適ルートを選定するため、輸送コストの可視化、及び従来に比してより実質的に電費を向上することができる輸送ルートの選定が可能になる。すなわち、電費をより向上させることができるとともに、輸送コストの低減を図ることができる。 Based on the above, the electric truck traveling route selection system and the electric truck traveling route selection method according to the present embodiment are also based on basic information including various information related to the transportation route and variation information of the total load weight of the load. Since the optimum route is selected, it becomes possible to visualize the transportation cost and to select a transportation route that can substantially improve the electricity cost compared with the conventional route. That is, the power consumption can be further improved and the transportation cost can be reduced.
 特に、本実施形態においては、地図情報における走行エリアを道路状況に応じてエリア分類し、積載総重量に基づき、分類後のいずれかの走行エリアを走行するように最適ルートを選定するため、輸送ルートの複雑化を防止しつつ、最適ルートの選定をより高精度に行うことができる。 In particular, in the present embodiment, the travel area in the map information is classified into areas according to road conditions, and the optimal route is selected to travel in any travel area after classification based on the total loaded weight. The optimal route can be selected with higher accuracy while preventing the route from becoming complicated.
 また、本実施形態においては、走行エリアを高地エリア及び低地エリア、登坂路エリア及び非登坂路エリア、又は降坂路エリア及び非降坂路エリアに分類することにより、モータの回生電力量及び電気トラック1の走行消費電力量という数値データが考慮されることになり、最適ルートの選定をより高精度に行うことができる。 In the present embodiment, the regenerative electric energy of the motor and the electric truck 1 are classified by classifying the traveling area into a highland area and a lowland area, an uphill area and a non-uphill area, or a downhill area and a non-downhill area. Thus, the numerical data of the travel power consumption is taken into consideration, so that the optimum route can be selected with higher accuracy.
 なお、上記実施形態に係る説明においては、2つのエリアに分類することのみが説明されていたが、走行エリアを3つ以上に分類することで、最適ルートの選定をより高精度に行うようにしてもよい。 In the above description of the embodiment, only the classification into two areas has been described. However, the optimum route can be selected with higher accuracy by classifying the travel area into three or more. May be.
 1  電気トラック
 2  車両ECU(走行ルート選定システム)
 3  通信部
 4  ナビゲーション装置
 11  地図情報取得部(地図情報取得手段)
 12  輸送重量情報取得部(輸送重量情報取得手段)
 13  変動情報推定部(変動情報推定手段)
 14  最適ルート選定部(最適ルート選定手段)
 20  無線通信網
 30  データサーバ
 31  通信部
 32  演算制御部
 33  データ記録部
 40  登坂路
 50  降坂路
 60  降坂路
 70  登坂路
1 Electric truck 2 Vehicle ECU (travel route selection system)
3 Communication Unit 4 Navigation Device 11 Map Information Acquisition Unit (Map Information Acquisition Unit)
12 Transport weight information acquisition unit (Transport weight information acquisition means)
13 Fluctuation information estimation unit (fluctuation information estimation means)
14 Optimal route selection section (optimum route selection means)
DESCRIPTION OF SYMBOLS 20 Wireless communication network 30 Data server 31 Communication part 32 Operation control part 33 Data recording part 40 Uphill road 50 Downhill road 60 Downhill road 70 Uphill road

Claims (16)

  1.  バッテリから供給される電力により駆動されるモータを駆動源とする電気トラックの走行ルート選定システムであって、
     前記電気トラックの輸送開始地点情報及び前記輸送開始地点から荷物搭降載地点までの輸送ルート情報を含む地図情報を取得する地図情報取得手段と、
     前記輸送開始地点で積載される初期積載物の初期重量情報及び前記荷物搭降載地点で搭降載される荷物の搭降載重量情報を含む輸送重量情報を取得する輸送重量情報取得手段と、
     前記輸送重量情報に基づき、輸送中に変動する輸送中に変動する積載総重量の変動情報を推定する変動情報推定手段と、
     前記地図情報及び前記変動情報を含む基礎的情報に基づき、最適ルートを選定する最適ルート選定手段と、を有する電気トラックの走行ルート選定システム。
    An electric truck travel route selection system using a motor driven by electric power supplied from a battery as a drive source,
    Map information acquisition means for acquiring map information including transport start point information of the electric truck and transport route information from the transport start point to a load / unload point;
    Transport weight information acquisition means for acquiring transport weight information including initial weight information of an initial load loaded at the transport start point and load / unload weight information of a load / unloading load at the load / unload point;
    Based on the transport weight information, fluctuation information estimation means for estimating fluctuation information of the total weight of the load that fluctuates during transportation that fluctuates during transportation;
    An electric truck travel route selection system comprising: an optimum route selection means for selecting an optimum route based on basic information including the map information and the variation information.
  2.  前記最適ルート選定手段は、各輸送ルートの走行区間毎において推定される前記積載総重量に基づき、前記モータの回生電力量及び前記電気トラックの走行消費電力量を算出し、算出結果を比較して前記最適ルートを選定する請求項1に記載の電気トラックの走行ルート選定システム。 The optimum route selection means calculates the regenerative power amount of the motor and the travel power consumption amount of the electric truck based on the total load weight estimated for each travel section of each transport route, and compares the calculation results. The electric truck travel route selection system according to claim 1, wherein the optimum route is selected.
  3.  前記最適ルート選定手段は、前記輸送ルート情報に所定勾配以上の降坂路が含まれる場合、前記積載総重量が比較的重い状態で前記降坂路を走行するように前記最適ルートを選定する請求項1又は2に記載の電気トラックの走行ルート選定システム。 The optimal route selection means selects the optimal route so as to travel on the downhill road in a state where the total weight of the load is relatively heavy when the transport route information includes a downhill road having a predetermined gradient or more. Or the driving | running route selection system of the electric truck of 2.
  4.  前記最適ルート選定手段は、前記輸送ルート情報に所定勾配以上の登坂路が含まれる場合、前記積載総重量が比較的軽い状態で前記登坂路を走行するように前記最適ルートを選定する請求項1乃至3のいずれか1項に記載の電気トラックの走行ルート選定システム。 The optimal route selection means selects the optimal route so that when the transport route information includes an uphill road having a predetermined gradient or more, the road is traveled on the uphill road with a relatively light total weight. The traveling route selection system of the electric truck of any one of thru | or 3.
  5.  前記最適ルート選定手段は、前記地図情報における走行エリアを道路状況に応じてエリア分類し、前記積載総重量に基づき、分類後のいずれかの走行エリアを走行するように前記最適ルートを選定する請求項1に記載の電気トラックの走行ルート選定システム。 The optimum route selecting means classifies a traveling area in the map information according to road conditions, and selects the optimum route so as to travel in one of the classified traveling areas based on the total loaded weight. Item 2. A route selection system for an electric truck according to Item 1.
  6.  前記最適ルート選定手段は、前記地図情報における走行エリアを標高の高低によって低地エリア及び高地エリアに分類する場合、前記積載総重量が比較的重い状態で前記低地エリアを走行し、前記積載総重量が比較的軽い状態で前記高地エリアを走行するように前記最適ルートを選定する請求項5に記載の電気トラックの走行ルート選定システム。 The optimum route selection means, when classifying the traveling area in the map information into a lowland area and a highland area according to the altitude, travels in the lowland area with a relatively heavy total weight, the total gross weight is 6. The electric truck travel route selection system according to claim 5, wherein the optimum route is selected so as to travel in the highland area in a relatively light state.
  7.  前記最適ルート選定手段は、前記地図情報における走行エリアを所定勾配以上の登坂路の多少によって登坂路エリア及び非登坂路エリアに分類する場合、前記積載総重量が比較的重い状態で前記非登坂路エリアを走行し、前記積載総重量が比較的軽い状態で前記登坂路エリアを走行するように前記最適ルートを選定する請求項5又は6に記載の電気トラックの走行ルート選定システム。 When the optimum route selection means classifies the traveling area in the map information into an uphill road area and a non-uphill road area depending on the number of uphill roads having a predetermined slope or more, the non-uphill road is in a relatively heavy total weight state. The traveling route selection system for an electric truck according to claim 5 or 6, wherein the optimum route is selected so as to travel in the area and travel in the uphill road area in a state where the total weight of the load is relatively light.
  8.  前記最適ルート選定手段は、前記地図情報における走行エリアを所定勾配以上の降坂路の多少によって降坂路エリア及び非降坂路エリアに分類する場合、前記積載総重量が比較的重い状態で前記降坂路エリアを走行し、前記積載総重量が比較的軽い状態で前記非降坂路エリアを走行するように前記最適ルートを選定する請求項5乃至7のいずれか1項に記載の電気トラックの走行ルート選定システム。 When the optimum route selection means classifies the traveling area in the map information into a downhill road area and a non-downhill road area depending on the number of downhill roads having a predetermined gradient or more, the downhill area in a state where the total loaded weight is relatively heavy. The route selection system for an electric truck according to any one of claims 5 to 7, wherein the optimum route is selected so as to travel in the non-downhill area with the total weight of the load being relatively light. .
  9.  バッテリから供給される電力により駆動されるモータを駆動源とする電気トラックの走行ルート選定方法であって、
     前記電気トラックの輸送開始地点情報及び前記輸送開始地点から荷物搭降載地点までの輸送ルート情報を含む地図情報を取得する地図情報取得ステップと、
     前記輸送開始地点で積載される初期積載物の初期重量情報及び前記荷物搭降載地点で搭降載される荷物の搭降載重量情報を含む輸送重量情報を取得する輸送重量情報取得ステップと、
     前記輸送重量情報に基づき、輸送中に変動する積載総重量の変動情報を推定する変動情報推定ステップと、
     前記地図情報及び前記変動情報を含む基礎的情報に基づき、最適ルートを選定する最適ルート選定ステップと、を有する電気トラックの走行ルート選定方法。
    A method for selecting a traveling route of an electric truck using a motor driven by electric power supplied from a battery as a drive source,
    Map information acquisition step for acquiring map information including transport start point information of the electric truck and transport route information from the transport start point to a baggage landing point;
    Transport weight information acquisition step for acquiring transport weight information including initial weight information of an initial load loaded at the transport start point and load / unload weight information of the load / unloading at the load / unloading point;
    Based on the transport weight information, a fluctuation information estimation step for estimating fluctuation information of the total load weight that fluctuates during transportation;
    An electric truck travel route selection method comprising: an optimum route selection step of selecting an optimum route based on basic information including the map information and the variation information.
  10.  前記最適ルート選定ステップにおいて、各輸送ルートの走行区間毎において推定される前記積載総重量に基づき、前記モータの回生電力量及び前記電気トラックの走行消費電力量を算出し、算出結果を比較して前記最適ルートを選定する請求項9に記載の電気トラックの走行ルート選定方法。 In the optimum route selection step, the regenerative power amount of the motor and the travel power consumption amount of the electric truck are calculated based on the total load weight estimated for each travel section of each transport route, and the calculation results are compared. The method for selecting a traveling route for an electric truck according to claim 9, wherein the optimum route is selected.
  11.  前記最適ルート選定ステップにおいて、前記輸送ルート情報に所定勾配以上の降坂路が含まれる場合、前記積載総重量が比較的重い状態で前記降坂路を走行するように前記最適ルートを選定する請求項9又は10に記載の電気トラックの走行ルート選定方法。 The optimal route is selected so that when the transport route information includes a downhill road having a predetermined gradient or more in the optimal route selection step, the optimal route is selected so as to travel on the downhill road with a relatively heavy total weight. Or the traveling route selection method of the electric truck of 10.
  12.  前記最適ルート選定ステップにおいて、前記輸送ルート情報に所定勾配以上の登坂路が含まれる場合、前記積載総重量が比較的軽い状態で前記登坂路を走行するように前記最適ルートを選定する請求項9乃至11のいずれか1項に記載の電気トラックの走行ルート選定方法。 10. The optimum route selection step, wherein, when the transport route information includes an uphill road having a predetermined gradient or more, the optimum route is selected so as to travel on the uphill road with a relatively light total weight. 12. A method for selecting a traveling route for an electric truck according to any one of claims 11 to 11.
  13.  前記最適ルート選定ステップにおいて、前記地図情報における走行エリアを道路状況に応じてエリア分類し、前記積載総重量に基づき、分類後のいずれかの走行エリアを走行するように前記最適ルートを選定する請求項9に記載の電気トラックの走行ルート選定方法。 In the optimal route selection step, the travel area in the map information is classified into areas according to road conditions, and the optimal route is selected so as to travel in any travel area after classification based on the total loaded weight. Item 10. A method for selecting a traveling route for an electric truck according to Item 9.
  14.  前記最適ルート選定ステップにおいて、前記地図情報における走行エリアを標高の高低によって低地エリア及び高地エリアに分類する場合、前記積載総重量が比較的重い状態で前記低地エリアを走行し、前記積載総重量が比較的軽い状態で前記高地エリアを走行するように前記最適ルートを選定する請求項13に記載の電気トラックの走行ルート選定方法。 In the optimum route selection step, when the traveling area in the map information is classified into a lowland area and a highland area according to altitude, the traveling total weight is relatively heavy and the traveling area is relatively heavy. The method for selecting a travel route for an electric truck according to claim 13, wherein the optimum route is selected so as to travel in the highland area in a relatively light state.
  15.  前記最適ルート選定ステップにおいて、前記地図情報における走行エリアを所定勾配以上の登坂路の多少によって登坂路エリア及び非登坂路エリアに分類する場合、前記積載総重量が比較的重い状態で前記非登坂路エリアを走行し、前記積載総重量が比較的軽い状態で前記登坂路エリアを走行するように前記最適ルートを選定する請求項13又は14に記載の電気トラックの走行ルート選定方法。 In the optimum route selection step, when the traveling area in the map information is classified into an uphill road area and a non-uphill road area depending on the number of uphill roads having a predetermined slope or more, the non-uphill road with a relatively heavy total load weight The method for selecting a travel route for an electric truck according to claim 13 or 14, wherein the optimum route is selected so as to travel in an area and travel in the uphill area in a state where the total weight of the load is relatively light.
  16.  前記最適ルート選定ステップにおいて、前記地図情報における走行エリアを所定勾配以上の降坂路の多少によって降坂路エリア及び非降坂路エリアに分類する場合、前記積載総重量が比較的重い状態で前記降坂路エリアを走行し、前記積載総重量が比較的軽い状態で前記非降坂路エリアを走行するように前記最適ルートを選定する請求項13乃至15のいずれか1項に記載の電気トラックの走行ルート選定方法。 In the optimum route selection step, when the traveling area in the map information is classified into a descending slope area and a non-descending slope area depending on the number of descending slope roads having a predetermined slope or more, the descending slope area in a state where the total loaded weight is relatively heavy. 16. The method for selecting a traveling route for an electric truck according to any one of claims 13 to 15, wherein the optimum route is selected so as to travel in the non-downhill area with the total weight of the load being relatively light. .
PCT/JP2017/025392 2016-07-29 2017-07-12 Electric track travel route selection system, electric track travel route selection method WO2018021027A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016149747A JP6898714B2 (en) 2016-07-29 2016-07-29 Electric truck travel route selection system, electric truck travel route selection method
JP2016-149747 2016-07-29

Publications (1)

Publication Number Publication Date
WO2018021027A1 true WO2018021027A1 (en) 2018-02-01

Family

ID=61016601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025392 WO2018021027A1 (en) 2016-07-29 2017-07-12 Electric track travel route selection system, electric track travel route selection method

Country Status (2)

Country Link
JP (1) JP6898714B2 (en)
WO (1) WO2018021027A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020003832A1 (en) * 2018-06-27 2020-01-02 パナソニック株式会社 Information provision method and information provision system
US20220180316A1 (en) * 2020-12-04 2022-06-09 Ford Global Technologies, Llc Method for estimating energy requirments in a vehicle with a varying payload

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020241002A1 (en) * 2019-05-30 2020-12-03 パナソニックIpマネジメント株式会社 Operation assistance method, operation assistance system, and electric vehicle
JP7314787B2 (en) * 2019-12-12 2023-07-26 いすゞ自動車株式会社 Driving support device
JP7407395B2 (en) 2020-03-19 2024-01-04 パナソニックIpマネジメント株式会社 Information processing device, information processing system, and information processing method
JP2022021896A (en) * 2020-07-22 2022-02-03 パナソニックIpマネジメント株式会社 Route determination device, route determination method, and program
WO2023139796A1 (en) * 2022-01-24 2023-07-27 本田技研工業株式会社 Path-planning device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011185604A (en) * 2010-03-04 2011-09-22 Denso Corp Car navigation system
JP2013033403A (en) * 2011-08-02 2013-02-14 Denso Corp Power charge/discharge system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000028381A (en) * 1998-07-14 2000-01-28 Fujitsu Ten Ltd Navigation apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011185604A (en) * 2010-03-04 2011-09-22 Denso Corp Car navigation system
JP2013033403A (en) * 2011-08-02 2013-02-14 Denso Corp Power charge/discharge system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020003832A1 (en) * 2018-06-27 2020-01-02 パナソニック株式会社 Information provision method and information provision system
CN112020726A (en) * 2018-06-27 2020-12-01 松下电器产业株式会社 Information providing method and information providing system
JPWO2020003832A1 (en) * 2018-06-27 2021-08-12 パナソニック株式会社 Information provision method and information provision system
JP7413260B2 (en) 2018-06-27 2024-01-15 パナソニックホールディングス株式会社 Information provision method
US20220180316A1 (en) * 2020-12-04 2022-06-09 Ford Global Technologies, Llc Method for estimating energy requirments in a vehicle with a varying payload

Also Published As

Publication number Publication date
JP6898714B2 (en) 2021-07-07
JP2018017672A (en) 2018-02-01

Similar Documents

Publication Publication Date Title
JP6502294B2 (en) Electric truck travel route selection system, electric truck travel route selection method
WO2018021027A1 (en) Electric track travel route selection system, electric track travel route selection method
US9919715B2 (en) Vehicle mode scheduling with learned user preferences
US20190107406A1 (en) Systems and methods for trip planning under uncertainty
JP5535694B2 (en) Charge management apparatus and method
JP6936827B2 (en) Electric truck travel route selection system, electric truck travel route selection method
US20220063440A1 (en) Charging systems and methods for electric vehicles
US20220351104A1 (en) Capacity management for a fleet routing service
JP2019211875A (en) Vehicle candidate display program, vehicle candidate display method, and vehicle candidate display system
JP7103261B2 (en) Vehicle dispatching device and vehicle dispatching method
CN104376713A (en) Method for achieving network map function of vehicle freighting system
CN112087479B (en) Transport equipment sharing system
CN104040604B (en) Central side system and vehicle side system
EP3533675A1 (en) Electric vacuum pump control apparatus and electric vacuum pump control method
JP2018025401A (en) Travel route selection system for electric truck, and travel route selection method for electric truck
US11016712B2 (en) Systems and methods for generating a customized display in a vehicle
JP2019211872A (en) Required time calculation program, required time calculation method and required time calculation system
US11796330B2 (en) System and method for providing value recommendations to ride-hailing drivers
US20200355516A1 (en) Information providing device and information providing program
CN105405289A (en) Center side system and vehicle side system
CN112912908A (en) Service vehicle, method of selecting service vehicle, and computer-readable storage medium
US20240177606A1 (en) Information management device
WO2021124746A1 (en) Vehicle travel route selection system and travel route selection method
WO2022018937A1 (en) Route determination device, route determination method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834035

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17834035

Country of ref document: EP

Kind code of ref document: A1