WO2018021017A1 - Rotary connector - Google Patents

Rotary connector Download PDF

Info

Publication number
WO2018021017A1
WO2018021017A1 PCT/JP2017/025286 JP2017025286W WO2018021017A1 WO 2018021017 A1 WO2018021017 A1 WO 2018021017A1 JP 2017025286 W JP2017025286 W JP 2017025286W WO 2018021017 A1 WO2018021017 A1 WO 2018021017A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating body
communication
unit
radio wave
optical communication
Prior art date
Application number
PCT/JP2017/025286
Other languages
French (fr)
Japanese (ja)
Inventor
貴夫 今井
Original Assignee
株式会社東海理化電機製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東海理化電機製作所 filed Critical 株式会社東海理化電機製作所
Publication of WO2018021017A1 publication Critical patent/WO2018021017A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/023Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for transmission of signals between vehicle parts or subsystems
    • B60R16/027Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for transmission of signals between vehicle parts or subsystems between relatively movable parts of the vehicle, e.g. between steering wheel and column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D1/00Steering controls, i.e. means for initiating a change of direction of the vehicle
    • B62D1/02Steering controls, i.e. means for initiating a change of direction of the vehicle vehicle-mounted
    • B62D1/04Hand wheels
    • B62D1/10Hubs; Connecting hubs to steering columns, e.g. adjustable
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C23/00Non-electrical signal transmission systems, e.g. optical systems
    • G08C23/04Non-electrical signal transmission systems, e.g. optical systems using light waves, e.g. infrared
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems

Definitions

  • the present invention relates to a rotary connector that ensures communication between a fixed body and a rotating body.
  • a steering roll connector is widely known as a rotating connector that ensures energization between two relatively rotating parts.
  • the steering roll connector of Patent Document 1 transmits communication data from a rotating body to a fixed body in a non-contact manner through optical communication.
  • a rotating connector includes a light emitting element provided on one of a fixed body and a rotating body, and a light receiving element provided on the other of the fixed body and the rotating body, and the light emitting element
  • An optical communication unit capable of optical communication with the light receiving element, a transmitter provided on one of the fixed body and the rotating body, and a receiver provided on the other of the fixed body and the rotating body.
  • An angle determination unit that determines a rotation angle of the rotating body, and a determination result of the angle determination unit in a rotary connector including a radio wave communication unit capable of radio wave communication between the transmitter and the receiver And a switching control unit that switches the optical communication and the radio wave communication according to the rotation angle of the rotating body.
  • the optical communication unit and the radio wave communication unit are provided in the rotary connector, and which one to use is selected according to the rotation angle of the rotating body. For this reason, it is only necessary to be able to perform optical communication only within a predetermined angular range of the rotating body. Thereby, it is not necessary to arrange a plurality of light emitting elements or light receiving elements all around the axis of the rotating body. Therefore, it is possible to simplify the device configuration by reducing the number of parts related to optical communication.
  • the set of the light emitting element and the light receiving element is arranged to face the set of the transmitter and the receiver with the axis of the rotating body in between. According to this configuration, since the optical communication unit and the radio wave communication unit can be arranged at positions separated from each other, it is possible to ensure stable communication feasibility for both.
  • the optical communication unit includes a single light emitting element and a single light receiving element
  • the radio wave communication unit includes a single transmitter and a single receiver.
  • the switching control unit selects the optical communication unit when the rotating body is positioned at or near the neutral position, and the rotating body rotates to a rotation angle that is not at or near the neutral position. It is sometimes preferable to select the radio wave communication unit. According to this configuration, when the rotating body is located at or near the neutral position, even if high-speed communication is necessary, it is possible to cope with this by selecting optical communication. In addition, when the rotating body is not located at or near the neutral position, radio wave communication is selected that is not high-speed but has few positional restrictions. Therefore, it is possible to perform communication without problems even in this region.
  • the radio wave communication unit performs radio communication through a UHF band radio wave. According to this configuration, the UHF radio wave reaches far, which is advantageous for ensuring the establishment of radio communication.
  • the rotary connector further includes a wireless power feeding unit that wirelessly supplies power from one of the fixed body and the rotating body to the other.
  • a wireless power feeding unit that wirelessly supplies power from one of the fixed body and the rotating body to the other.
  • power can be supplied to various devices provided on the rotating body side in a non-contact manner via the wireless power feeding unit.
  • the switching control unit stops the wireless power feeding unit when the radio wave communication unit is selected as communication between the fixed body and the rotating body. According to this configuration, when performing radio wave communication, the wireless power feeding unit is stopped, so that the power radio waves of the wireless power feeding unit do not affect radio wave communication.
  • the side view which shows the structure of the rotation connector of one Embodiment.
  • the top view which shows the arrangement pattern of an optical communication part and a radio wave communication part.
  • the electrical block diagram of a rotation connector The flowchart performed in the case of the selection process of optical communication and radio wave communication.
  • the communication sequence figure which shows the drive pattern of a light emitting element.
  • the rotary connector 1 is attached to a vehicle body 2 on the fixed side and a steering shaft 3 on the rotating side in the vehicle.
  • the rotary connector 1 performs communication between the vehicle body 2 and the steering shaft 3 in a non-contact manner, and ensures communication between the two members even when the steering shaft 3 is rotated.
  • the vehicle includes a steering wheel 3a attached to the steering shaft 3, a detection unit 4 provided on the steering wheel 3a and capable of detecting various operations on the steering wheel 3a, and a controller 5 provided on the vehicle body 2.
  • the detection unit 4 detects an operation on the steering wheel 3a and generates an output signal Sout corresponding to the operation.
  • the rotary connector 1 receives the output signal Sout from the detection unit 4 and transmits the output signal Sout to the controller 5.
  • the controller 5 includes an ECU (Electronic Control Unit) that manages the operation of the rotary connector 1, and determines the detection state of the detection unit 4 based on the output signal Sout.
  • ECU Electronic Control Unit
  • the detection unit 4 may include a switch or a sensor, for example, and may supply an on / off signal detected by the switch or sensor as the output signal Sout.
  • the sensor may include an image sensor, and the detection unit 4 may supply a data signal detected by the sensor as the output signal Sout.
  • the rotary connector 1 includes a fixed body 8 attached and fixed to the vehicle body 2 and a rotating body 9 that rotates with respect to the fixed body 8.
  • both the fixed body 8 and the rotating body 9 have a substantially disk shape and are disposed on the same axis (axis L1).
  • the axis L1 is the rotational axis of the steering shaft 3.
  • the fixed body 8 includes a substrate 12 on which electrical components on the fixed body 8 side are mounted.
  • the steering shaft 3 is rotatably inserted through insertion holes (not shown) formed at the centers of the fixed body 8 and the substrate 12.
  • the rotating body 9 includes a substrate 13 on which electrical components on the rotating body 9 side are mounted.
  • the rotating body 9 and the substrate 13 are fixed on the same axis with respect to the steering shaft 3.
  • the vehicle includes an angle detection unit 18 that detects an angle when the rotating body 9 rotates.
  • the angle detection unit 18 includes, for example, an optical sensor or a magnetic sensor, and can detect the angle of the rotating body 9 in the range of 0 ° to 360 °.
  • the angle detector 18 supplies the detected angle detection signal S ⁇ to the controller 5 and the IC of the rotating body 9.
  • the vehicle includes a wireless power feeding unit 19 that wirelessly supplies power from one of the fixed body 8 and the rotating body 9 to the other.
  • the wireless power feeding unit 19 includes a wireless power feeding coil 20 provided on the fixed body 8 side and a wireless power feeding coil 21 provided on the rotating body 9 side.
  • the wireless power supply coil 20 on the fixed body 8 side has a shape in which the winding is wound a plurality of times around the axis L ⁇ b> 1 of the steering shaft 3.
  • the wireless power supply coil 21 on the rotating body 9 side has a shape in which a winding is wound a plurality of times, and is disposed so as to face the wireless power supply coil 20 on the fixed body 8 side.
  • the wireless power feeding unit 19 supplies power to various devices (such as a steering heater) provided on the steering wheel 3a in a non-contact manner, for example.
  • the rotary connector 1 includes an optical communication unit 25 that outputs a signal to be communicated between the fixed body 8 and the rotating body 9 to the other side according to the presence or absence of light.
  • the optical communication unit 25 of the present example transmits the output signal Sout of the detection unit 4 of the steering wheel 3a as communication data Sd1 from the rotating body 9 side to the fixed body 8 side through optical communication.
  • the communication data Sd1 constructs binarized information composed of data groups of “0” and “1” by a combination of “present” and “absent” of light.
  • the optical communication part 25 transmits the multiplexed signal which put together the signal output from the some detection part 4 by the time division as communication data Sd1.
  • communication data Sd1 can be communicated at high speed (high-speed communication).
  • the optical communication unit 25 includes a light emitting element 26 that projects light in optical communication and a light receiving element 27 that receives light from the light emitting element 26.
  • the optical communication unit 25 includes a single light emitting element 26 and a single light receiving element 27.
  • the light emitting element 26 is made of an LED, for example, and is attached to the back surface of the substrate 13.
  • the light receiving element 27 is attached to the surface of the substrate 12 and is disposed so as to face the light emitting element 26 when the rotating body 9 rotates.
  • the light emitting element 26 is arranged so as to face the light receiving element 27 when the steering wheel 3a is in the neutral position. Then, when the steering wheel 3a is turned left and right from the neutral position, the light emitting element 26 moves away from the light receiving element 27. For this reason, the range in which the light from the light emitting element 26 sufficiently reaches the light receiving element 27 is set as the driving range E for optical communication.
  • the drive range E is set to the rotation range of the steering wheel 3a in which the controller 5 can determine the communication data Sd1 based on the light of the light emitting element 26.
  • the drive range E is defined as “ ⁇ ” when the steering wheel 3a is rotated leftward from the neutral position, and “+” when the steering wheel 3a is rotated rightward from the neutral position. A range of + 60 ° is preferable.
  • the rotary connector 1 includes a radio wave communication unit 30 that outputs a signal communicating between the fixed body 8 and the rotary body 9 to the other side through radio waves.
  • the radio wave communication unit 30 in this example wirelessly transmits the output signal Sout of the detection unit 4 of the steering wheel 3a from the rotating body 9 side to the fixed body 8 side as communication data Sd2 through radio wave communication.
  • radio wave communication for example, radio waves in the UHF (Ultra High Frequency) band are preferably used.
  • the communication data Sd2 can be communicated to the other party at a low speed (low speed communication).
  • the radio wave communication unit 30 includes a transmitter 31 that transmits radio waves in radio wave communication and a receiver 32 that receives radio waves from the transmitter 31.
  • the radio wave communication unit 30 of this example includes a single transmitter 31 and a single receiver 32.
  • the set of the light emitting element 26 and the light receiving element 27 is arranged to face the set of the transmitter 31 and the receiver 32 with the axis L1 of the rotating body 9 therebetween.
  • the transmitter 31 can transmit a UHF radio wave to the receiver 32 that is arranged to face the rotating body 9 in the direction of the axis L1.
  • the transmitter 31 is disposed so as to face the receiver 32 in the direction of the axis L1 of the rotating body 9 when the steering wheel 3a is in the neutral position.
  • the rotary connector 1 includes a rotating body control unit 35 that controls the operation of the wireless power feeding coil 21, the light emitting element 26, and the transmitter 31.
  • the rotating body control unit 35 is preferably an IC provided on the rotating body 9 and mounted on the substrate 13, for example.
  • the rotating body control unit 35 includes a light projection processing unit 36 that controls the operation of the light emitting element 26, a transmission processing unit 37 that controls the operation of the transmitter 31, and a power supply processing unit 38 that controls the operation of the wireless power feeding coil 21. Is provided.
  • the light projection processing unit 36 switches the process of driving the light emitting element 26 or the process of not driving (lighting / extinguishing light) to emit light according to the binarized information of the communication data Sd1. Pattern light is generated, and the light receiving element 27 receives the light of the light emission pattern.
  • the transmission processing unit 37 transmits the communication data Sd1 from the transmitter 31 using UHF radio waves.
  • the controller 5 of the fixed body 8 includes a light reception processing unit 39 that controls the operation of the light receiving element 27, a reception processing unit 40 that controls the operation of the receiver 32, and a power supply processing unit 41 that controls the operation of the wireless power feeding coil 20. Is provided.
  • the light reception processing unit 39 determines the data content of the communication data Sd1 based on the light reception signal Sr supplied from the light receiving element 27, and executes an operation according to the communication data Sd1.
  • the reception processing unit 40 determines the data content of the UHF band communication data Sd2 supplied from the receiver 32, and executes an operation corresponding to the communication data Sd2.
  • the power supply processing unit 41 causes the wireless power supply coil 20 to transmit power radio waves and causes the wireless power supply coil 21 to receive the power radio waves.
  • the power supply processing unit 38 supplies power radio waves received by the wireless power supply coil 21 to various devices of the rotating body 9 as power supply power.
  • the rotary connector 1 has a communication selection function for selecting communication between the fixed body 8 and the rotating body 9 for communication data Sd (Sd1, Sd2) by optical communication or radio wave communication.
  • a communication selection function for selecting communication between the fixed body 8 and the rotating body 9 for communication data Sd (Sd1, Sd2) by optical communication or radio wave communication.
  • the rotary connector 1 includes an angle determination unit 44 that determines the rotation angle ⁇ of the rotating body 9.
  • the angle determination unit 44 is provided in the rotating body 9 (IC of the substrate 13), and determines the rotation angle ⁇ (rotational position) of the rotating body 9 based on the angle detection signal S ⁇ supplied from the angle detection unit 18. It is preferable that the angle determination unit 44 can detect the rotation angle ⁇ of the rotating body 9 with a resolution of several degrees, for example.
  • the rotary connector 1 includes a switching control unit 45 that switches between optical communication and radio wave communication according to the rotation angle ⁇ based on the determination result of the angle determination unit 44.
  • the switching control unit 45 is provided on the rotating body 9 (IC of the substrate 13).
  • the switching control unit 45 selects the optical communication unit 25 when the rotating body 9 (steering wheel 3a) is positioned at or near the neutral position, and the rotating body 9 (steering wheel 3a) is not rotated at or near the neutral position.
  • the radio wave communication unit 30 is selected when rotating to the angle ⁇ .
  • the switching control unit 45 selects the optical communication unit 25 when the rotating body 9 rotates in the driving range E, that is, when the rotation angle ⁇ of the rotating body 9 is in the driving range E, and the rotating body 9 When rotating beyond the drive range E, that is, when the rotation angle ⁇ of the rotating body 9 is not in the drive range E, the radio wave communication unit 30 is selected.
  • step 100 the angle determination unit 44 determines the rotation angle of the rotating body 9 (steering wheel 3 a), that is, the steering angle of the steering wheel 3 a based on the angle detection signal S ⁇ of the angle detection unit 18. judge.
  • step 101 the switching control unit 45 determines whether or not the rotation angle ⁇ of the rotating body 9 is within the drive range E (for example, ⁇ 60 ° to + 60 °). At this time, if the rotation angle ⁇ of the rotating body 9 is within the driving range E, the optical communication is selected as the communication between the fixed body 8 and the rotating body 9, and the process proceeds to step 102. On the other hand, if the rotation angle ⁇ of the rotating body 9 is not within the driving range E, radio wave communication is selected as the communication between the fixed body 8 and the rotating body 9, and the process proceeds to step 104.
  • the drive range E for example, ⁇ 60 ° to + 60 °.
  • step 102 the switching control unit 45 enables optical communication (optical communication unit 25) as communication between the fixed body 8 and the rotating body 9. Thereby, when performing the wireless communication in the rotation connector 1, it is performed by optical communication.
  • optical communication optical communication unit 25
  • the light projection processing unit 36 when performing data communication through optical communication, the light projection processing unit 36 turns on the light emitting element 26 and outputs a binary value of “0” when outputting binary information of “1”, for example.
  • the light emitting element 26 is extinguished when the activation information is output.
  • the light projection processing unit 36 constructs the communication data Sd1 of the binarized information by turning on / off the light emitting element 26 and transmits it to the fixed body 8 side.
  • step 103 the switching control unit 45 determines whether or not there is a response to the optical communication in a situation where the optical communication is enabled. At this time, if there is a response to the optical communication, the process returns to step 102 to continue the state in which the optical communication is enabled. On the other hand, if there is no optical communication response, the process proceeds to step 104.
  • step 104 the switching control unit 45 temporarily stops the operation of the wireless power feeding unit 19. This is to prevent the electric power radio wave of the wireless power feeding unit 19 from affecting the communication of the radio wave communication unit 30.
  • step 105 the switching control unit 45 enables radio wave communication (radio wave communication unit 30) as communication between the fixed body 8 and the rotating body 9. Thereby, when performing data communication in the rotation connector 1, communication data Sd2 is transmitted by radio wave communication.
  • radio wave communication radio wave communication unit 30
  • the detection of the switch state (operation on the switch) and the acquisition of image data by the detection unit 4 tend to be performed near the neutral position of the steering wheel 3a. Therefore, at this time, data transmission is performed at high speed using optical communication.
  • the detection unit 4 is operated less frequently. For this reason, when the steering wheel 3a is largely rotated from the neutral position, data communication is possible by radio wave communication, so that communication is performed not by high-speed communication but by radio wave communication with few rotational position restrictions.
  • the rotary connector 1 is provided with the optical communication unit 25 and the radio wave communication unit 30, and which one to use is selected according to the rotation angle ⁇ of the rotating body 9 (steering wheel 3a).
  • the light emitting element 26 and the light receiving element 27 may be provided only in that range.
  • the set of the light emitting element 26 and the light receiving element 27 is disposed so as to face the set of the transmitter 31 and the receiver 32 with the axis L1 of the rotating body 9 therebetween. Therefore, since the optical communication unit 25 and the radio wave communication unit 30 can be arranged at positions separated from each other, both can ensure stable communication establishment.
  • the optical communication unit 25 includes a single light emitting element 26 and a single light receiving element 27.
  • the radio wave communication unit 30 includes a single transmitter 31 and a single receiver 32. Therefore, both the optical communication unit 25 and the radio wave communication unit 30 may have a simple configuration with a small number of parts.
  • the switching control unit 45 selects the optical communication unit 25 when the rotating body 9 is positioned at or near the neutral position, and the radio wave communication unit 30 when the rotating body 9 assumes a rotation angle ⁇ that is not at or near the neutral position. Select. Therefore, when the rotating body 9 is located at or near the neutral position, it is possible to cope with high-speed communication by selecting optical communication. Further, when the rotating body 9 is not positioned at or near the neutral position, radio wave communication is selected that is not high-speed communication but has few positional restrictions. Therefore, communication can be performed without any problem in this region.
  • the radio wave communication unit 30 performs radio communication through UHF radio waves. As a result, UHF radio waves reach far, which is advantageous for ensuring the establishment of radio communication.
  • the rotary connector 1 includes a wireless power feeding unit 19 that wirelessly supplies power from the fixed body 8 side to the rotating body 9 side. Therefore, power can be supplied to the various devices provided in the rotating body 9 in a non-contact manner via the wireless power feeding unit 19.
  • the switching control unit 45 stops the wireless power feeding unit 19 when the radio wave communication unit 30 is selected as communication between the fixed body 8 and the rotating body 9. Therefore, when performing radio wave communication, the wireless power feeding unit 19 is stopped, so that the power radio wave of the wireless power feeding unit 19 does not affect the radio wave communication.
  • the embodiment is not limited to the configuration described so far, and may be modified as follows.
  • the communication data Sd1 is transmitted by optical communication and the communication is switched to radio wave communication
  • the continuation of the data may be transmitted by the communication data Sd2.
  • the rotation angle ⁇ for selecting the optical communication unit 25 or the radio wave communication unit 30 can be appropriately changed to a pattern other than the embodiment.
  • the radio communication unit 30 may be selected when the rotation angle ⁇ is at or near the neutral position, and the optical communication unit 25 may be selected at other locations.
  • the drive range E for optical communication is not limited to ⁇ 60 ° to + 60 °, and may be changed to other values.
  • the binarization information may be, for example, “0” when the light is turned on and “1” when the light is turned off.
  • the number of the light emitting elements 26 and the light receiving elements 27 is not limited to one, but may be plural. -The light emitting element 26 can apply members other than LED.
  • the light emitting element 26 and the light receiving element 27 are not limited to be provided on the substrates 12 and 13, and may be disposed on the fixed body 8 and the rotating body 9.
  • the optical communication and radio wave communication paths are not limited to data lines, but may be control lines or power lines, for example.
  • the communication data Sd1 and Sd2 may be signals that transmit different types of data.
  • the communication data Sd is not limited to a multiplexed signal, and may be data constructed only from the output of one detection unit 4.
  • the frequency of the radio wave used in the radio communication unit 30 is not limited to the UHF band, and can be changed to another frequency such as an LF (Low Frequency) band.
  • the optical communication unit 25 and the radio wave communication unit 30 are not limited to being arranged at positions facing each other across the axis L1, and the arrangement positions may be changed as appropriate. -Not only using detection parts, such as an angle detection part 18 and a steering angle sensor, but what is necessary is just a member which can detect the amount of rotations of rotation object 9.
  • the light emitting element 26 may be provided on the fixed body 8 and the light receiving element 27 may be provided on the rotating body 9.
  • the wireless power feeding unit 19 may supply power from the rotating body 9 side to the fixed body 8 side in a non-contact manner.
  • the wireless power feeding unit 19 can be omitted.
  • the rotation connector 1 is not limited to being applied to a vehicle, You may use it for another apparatus and apparatus.
  • Each of the controller 5 and the rotating body control unit 35 may include one or more processors and one or more memories storing instructions executed by the one or more processors. The instructions may be read and executed from one or more memories by one or more processors to allow execution of the operations described herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Optical Communication System (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Steering Controls (AREA)

Abstract

A rotary connector (1) is provided with an optical communication unit (25) and a radio communication unit (30). The optical communication unit (25) comprises: a light emitting element (26) disposed on one of a fixed body (8) and a rotating body (9); and a light receiving element (27) disposed on the other of the fixed body (8) and the rotating body (9). Optical communication is possible between the light emitting element (26) and the light receiving element (27). The radio communication unit (30) comprises: a transmitter (31) disposed on one of the fixed body (8) and the rotating body (9); and a receiver (32) disposed on the other of the fixed body (8) and the rotating body (9). Radio communication is possible between the transmitter (31) and the receiver (32). The rotary connector (1) is further provided with: an angle determination unit (44) for determining a rotation angle of the rotating body (9); and a switching control unit (45) for switching between optical communication and radio communication in response to the rotation angle of the rotating body (9) on the basis of the angle determination unit (44) determination results.

Description

回転コネクタRotating connector
 本発明は、固定体と回動体との間の通信を確保する回転コネクタに関する。 The present invention relates to a rotary connector that ensures communication between a fixed body and a rotating body.
 従来、相対的に回転する2部品間の通電を確保する回転コネクタとして、ステアリングロールコネクタが広く知られている。特許文献1のステアリングロールコネクタは、光通信を通じて非接触で通信データを回動体から固定体に送信している。 Conventionally, a steering roll connector is widely known as a rotating connector that ensures energization between two relatively rotating parts. The steering roll connector of Patent Document 1 transmits communication data from a rotating body to a fixed body in a non-contact manner through optical communication.
特開2009-47547号公報JP 2009-47547 A
 回動体の回転位置によらず常に光通信を成立させておくためには、複数の発光素子又は複数の受光素子を回動体の軸回りに沿って配置しておく必要がある。しかし、多数の素子が必要となり、装置簡素化に支障を来す。よって、回転コネクタにおいて、光通信を採用しつつも装置構成を簡素化したいニーズがあった。 In order to always establish optical communication regardless of the rotational position of the rotating body, it is necessary to arrange a plurality of light emitting elements or light receiving elements along the axis of the rotating body. However, many elements are required, which hinders simplification of the apparatus. Therefore, there is a need to simplify the apparatus configuration while adopting optical communication in the rotary connector.
 本発明の目的は、光通信に係る部品を減らして装置構成を簡素化することができる回転コネクタを提供することにある。
 本発明の一側面に従った回転コネクタは、固定体及び回動体の一方に設けられた発光素子と、前記固定体及び回動体の他方に設けられた受光素子と、を含み、前記発光素子と前記受光素子との間で光通信が可能な光通信部と、前記固定体及び回動体の一方に設けられた送信器と、前記固定体及び回動体の他方に設けられた受信器とを含み、前記送信器と前記受信器との間で電波通信が可能な電波通信部と、を備えた回転コネクタにおいて、前記回動体の回転角を判定する角度判定部と、前記角度判定部の判定結果を基に、前記光通信及び前記電波通信を前記回動体の回転角に応じて切り替える切替制御部と、を備える。
The objective of this invention is providing the rotation connector which can reduce the components which concern on optical communication, and can simplify an apparatus structure.
A rotating connector according to an aspect of the present invention includes a light emitting element provided on one of a fixed body and a rotating body, and a light receiving element provided on the other of the fixed body and the rotating body, and the light emitting element An optical communication unit capable of optical communication with the light receiving element, a transmitter provided on one of the fixed body and the rotating body, and a receiver provided on the other of the fixed body and the rotating body. An angle determination unit that determines a rotation angle of the rotating body, and a determination result of the angle determination unit in a rotary connector including a radio wave communication unit capable of radio wave communication between the transmitter and the receiver And a switching control unit that switches the optical communication and the radio wave communication according to the rotation angle of the rotating body.
 本構成によれば、回転コネクタに光通信部及び電波通信部が設けられ、回動体の回転角に応じて、どちらを使用するのかが選択される。このため、回動体の所定角範囲でのみ光通信が実施可能であればよいので、その部分にのみ発光素子及び受光素子を設ければよい。これにより、回動体の軸回りに沿って一帯に発光素子又は受光素子を複数配置せずに済む。よって、光通信に係る部品を減らして装置構成を簡素化することが可能となる。 According to this configuration, the optical communication unit and the radio wave communication unit are provided in the rotary connector, and which one to use is selected according to the rotation angle of the rotating body. For this reason, it is only necessary to be able to perform optical communication only within a predetermined angular range of the rotating body. Thereby, it is not necessary to arrange a plurality of light emitting elements or light receiving elements all around the axis of the rotating body. Therefore, it is possible to simplify the device configuration by reducing the number of parts related to optical communication.
 前記回転コネクタにおいて、前記発光素子及び前記受光素子の組は、前記送信器及び前記受信器の組に前記回動体の軸を間にして対向するように配置されていることが好ましい。この構成によれば、光通信部及び電波通信部を互いに離れた位置に配置することが可能となるので、両者とも安定した通信成立性を確保することが可能となる。 In the rotary connector, it is preferable that the set of the light emitting element and the light receiving element is arranged to face the set of the transmitter and the receiver with the axis of the rotating body in between. According to this configuration, since the optical communication unit and the radio wave communication unit can be arranged at positions separated from each other, it is possible to ensure stable communication feasibility for both.
 前記回転コネクタにおいて、前記光通信部は、単一の前記発光素子及び単一の受光素子を含み、前記電波通信部は、単一の前記送信器及び単一の前記受信器を含むことが好ましい。この構成によれば、光通信部及び電波通信部ともに部品点数が少ない簡素な構成で済む。 In the rotary connector, it is preferable that the optical communication unit includes a single light emitting element and a single light receiving element, and the radio wave communication unit includes a single transmitter and a single receiver. . According to this configuration, both the optical communication unit and the radio wave communication unit may have a simple configuration with a small number of parts.
 前記回転コネクタにおいて、前記切替制御部は、前記回動体が中立位置又はその付近に位置するときに前記光通信部を選択し、前記回動体が前記中立位置又はその付近ではない回転角まで回転するときに前記電波通信部を選択することが好ましい。この構成によれば、回動体が中立位置又はその付近に位置するとき、高速通信が必要であっても、光通信が選択されることにより、これに対応することが可能となる。また、回動体が中立位置又はその付近に位置しないとき、通信が高速ではないが位置の制約が少ない電波通信が選択されるので、この領域においても問題なく通信を行うことが可能となる。 In the rotary connector, the switching control unit selects the optical communication unit when the rotating body is positioned at or near the neutral position, and the rotating body rotates to a rotation angle that is not at or near the neutral position. It is sometimes preferable to select the radio wave communication unit. According to this configuration, when the rotating body is located at or near the neutral position, even if high-speed communication is necessary, it is possible to cope with this by selecting optical communication. In addition, when the rotating body is not located at or near the neutral position, radio wave communication is selected that is not high-speed but has few positional restrictions. Therefore, it is possible to perform communication without problems even in this region.
 前記回転コネクタにおいて、前記電波通信部は、UHF帯の電波を通じて無線通信することが好ましい。この構成によれば、UHF電波は遠くまで届くので、電波通信の通信成立性を確保するのに有利となる。 In the rotary connector, it is preferable that the radio wave communication unit performs radio communication through a UHF band radio wave. According to this configuration, the UHF radio wave reaches far, which is advantageous for ensuring the establishment of radio communication.
 前記回転コネクタは、前記固定体及び前記回動体の一方から他方へ無線により電力を供給する無線給電部をさらに備えることが好ましい。この構成によれば、例えば回動体側に設けられた各種機器に、無線給電部を介して非接触により電力を供給することが可能となる。 It is preferable that the rotary connector further includes a wireless power feeding unit that wirelessly supplies power from one of the fixed body and the rotating body to the other. According to this configuration, for example, power can be supplied to various devices provided on the rotating body side in a non-contact manner via the wireless power feeding unit.
 前記回転コネクタにおいて、前記切替制御部は、前記固定体と前記回動体との間の通信として前記電波通信部を選択したとき、前記無線給電部を停止させることが好ましい。この構成によれば、電波通信を行うときには、無線給電部を停止するので、無線給電部の電力電波が、電波通信に影響を及ぼしてしまうことがない。 In the rotary connector, it is preferable that the switching control unit stops the wireless power feeding unit when the radio wave communication unit is selected as communication between the fixed body and the rotating body. According to this configuration, when performing radio wave communication, the wireless power feeding unit is stopped, so that the power radio waves of the wireless power feeding unit do not affect radio wave communication.
 本発明のいくつかの側面に従う回転コネクタによれば、光通信に係る部品を減らして装置構成を簡素化することができる。本発明の他の形態及び利点は本発明の技術的思想の例を示している図面と共に以下の記載から明らかとなる。 According to the rotary connector according to some aspects of the present invention, it is possible to simplify the device configuration by reducing the parts related to optical communication. Other aspects and advantages of the present invention will become apparent from the following description taken in conjunction with the drawings, which illustrate examples of the technical spirit of the present invention.
一実施形態の回転コネクタの構成を示す側面図。The side view which shows the structure of the rotation connector of one Embodiment. 光通信部及び電波通信部の配置パターンを示す平面図。The top view which shows the arrangement pattern of an optical communication part and a radio wave communication part. 回転コネクタの電気構成図。The electrical block diagram of a rotation connector. 光通信及び電波通信の選択処理の際に実行されるフローチャート。The flowchart performed in the case of the selection process of optical communication and radio wave communication. 発光素子の駆動パターンを示す通信シーケンス図。The communication sequence figure which shows the drive pattern of a light emitting element.
 以下、本発明を具体化した一実施形態の回転コネクタを図1~図5を参照して説明する。
 図1に示すように、回転コネクタ1は、車両において、固定側となる車体2と、回動側となるステアリングシャフト3とに取り付けられている。回転コネクタ1は、車体2とステアリングシャフト3との間の通信を非接触で行って、これら2者間の通信をステアリングシャフト3が回動されても確保する。車両は、ステアリングシャフト3に取り付けられたステアリングホイール3aと、ステアリングホイール3aに設けられ且つステアリングホイール3aに対する種々の操作を検出可能な検知部4と、車体2に設けられたコントローラ5と、を含む。検知部4は、ステアリングホイール3aに対する操作を検出し、その操作に応じた出力信号Soutを生成する。回転コネクタ1は、検知部4からの出力信号Soutを受け取り、その出力信号Soutをコントローラ5に送信する。コントローラ5は、回転コネクタ1の作動を管理するECU(Electronic Control Unit)からなり、出力信号Soutを基に検知部4の検知状態を判断する。
Hereinafter, a rotary connector according to an embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 1, the rotary connector 1 is attached to a vehicle body 2 on the fixed side and a steering shaft 3 on the rotating side in the vehicle. The rotary connector 1 performs communication between the vehicle body 2 and the steering shaft 3 in a non-contact manner, and ensures communication between the two members even when the steering shaft 3 is rotated. The vehicle includes a steering wheel 3a attached to the steering shaft 3, a detection unit 4 provided on the steering wheel 3a and capable of detecting various operations on the steering wheel 3a, and a controller 5 provided on the vehicle body 2. . The detection unit 4 detects an operation on the steering wheel 3a and generates an output signal Sout corresponding to the operation. The rotary connector 1 receives the output signal Sout from the detection unit 4 and transmits the output signal Sout to the controller 5. The controller 5 includes an ECU (Electronic Control Unit) that manages the operation of the rotary connector 1, and determines the detection state of the detection unit 4 based on the output signal Sout.
 検知部4は、例えばスイッチやセンサを含み、出力信号Soutとしてスイッチまたはセンサにより検出されたオンオフ信号を供給してもよい。センサは、画像センサを含んでもよく、検知部4は、出力信号Soutとしてセンサにより検出されたデータ信号を供給してもよい。 The detection unit 4 may include a switch or a sensor, for example, and may supply an on / off signal detected by the switch or sensor as the output signal Sout. The sensor may include an image sensor, and the detection unit 4 may supply a data signal detected by the sensor as the output signal Sout.
 回転コネクタ1は、車体2に取り付け固定される固定体8と、固定体8に対して回動する回動体9とを備える。例えば、固定体8及び回動体9は、ともに略円板形状を有し、同一軸心(軸L1)上に配置されている。軸L1は、ステアリングシャフト3の回動軸心である。 The rotary connector 1 includes a fixed body 8 attached and fixed to the vehicle body 2 and a rotating body 9 that rotates with respect to the fixed body 8. For example, both the fixed body 8 and the rotating body 9 have a substantially disk shape and are disposed on the same axis (axis L1). The axis L1 is the rotational axis of the steering shaft 3.
 固定体8は、固定体8側の電装品が実装される基板12を備える。ステアリングシャフト3は、固定体8及び基板12の各々の中心に形成された挿通孔(図示略)に回動可能に挿通されている。回動体9は、回動体9側の電装品が実装される基板13を備える。回動体9及び基板13は、ステアリングシャフト3に対し、同一軸心上に固定されている。ステアリングシャフト3が回動操作されたとき、回動体9は、固定体8に支持されるとともにステアリングシャフト3と軸L1回り(図1の矢印R方向)に一体回動する。 The fixed body 8 includes a substrate 12 on which electrical components on the fixed body 8 side are mounted. The steering shaft 3 is rotatably inserted through insertion holes (not shown) formed at the centers of the fixed body 8 and the substrate 12. The rotating body 9 includes a substrate 13 on which electrical components on the rotating body 9 side are mounted. The rotating body 9 and the substrate 13 are fixed on the same axis with respect to the steering shaft 3. When the steering shaft 3 is rotated, the rotating body 9 is supported by the fixed body 8 and rotates integrally with the steering shaft 3 around the axis L1 (in the direction of arrow R in FIG. 1).
 車両は、回動体9が回動したときの角度を検出する角度検出部18を備える。角度検出部18は、例えば光センサや磁気センサからなり、回動体9の角度を0°~360°の範囲で検出可能である。角度検出部18は、検出した角度検出信号Sθをコントローラ5や回動体9のIC等に供給する。 The vehicle includes an angle detection unit 18 that detects an angle when the rotating body 9 rotates. The angle detection unit 18 includes, for example, an optical sensor or a magnetic sensor, and can detect the angle of the rotating body 9 in the range of 0 ° to 360 °. The angle detector 18 supplies the detected angle detection signal Sθ to the controller 5 and the IC of the rotating body 9.
 車両は、固定体8及び回動体9の一方から他方へ無線により電力を供給する無線給電部19を備える。無線給電部19は、固定体8側に設けられた無線給電コイル20と、回動体9側に設けられた無線給電コイル21とを備える。固定体8側の無線給電コイル20は、巻線をステアリングシャフト3の軸L1回りに複数回巻回した形状を有している。また、回動体9側の無線給電コイル21は、巻線を複数回巻回した形状を有し、固定体8側の無線給電コイル20と対向するように配置されている。無線給電部19は、例えばステアリングホイール3aに設けられた各種機器(ステアリングヒータ等)に非接触により電力を供給する。 The vehicle includes a wireless power feeding unit 19 that wirelessly supplies power from one of the fixed body 8 and the rotating body 9 to the other. The wireless power feeding unit 19 includes a wireless power feeding coil 20 provided on the fixed body 8 side and a wireless power feeding coil 21 provided on the rotating body 9 side. The wireless power supply coil 20 on the fixed body 8 side has a shape in which the winding is wound a plurality of times around the axis L <b> 1 of the steering shaft 3. The wireless power supply coil 21 on the rotating body 9 side has a shape in which a winding is wound a plurality of times, and is disposed so as to face the wireless power supply coil 20 on the fixed body 8 side. The wireless power feeding unit 19 supplies power to various devices (such as a steering heater) provided on the steering wheel 3a in a non-contact manner, for example.
 回転コネクタ1は、固定体8及び回動体9の間で通信する信号を、光の有無に応じて相手側に出力する光通信部25を備える。本例の光通信部25は、ステアリングホイール3aの検知部4の出力信号Soutを、通信データSd1として回動体9側から固定体8側に光通信を通じて送信する。通信データSd1は、光の「有り」及び「無し」の組み合わせにより、「0」及び「1」のデータ群からなる2値化情報を構築する。また、光通信部25は、通信データSd1として、複数の検知部4から出力される信号を時分割によりまとめた多重信号を送信することが好ましい。光通信は、通信データSd1を高速で通信すること(高速通信)が可能である。 The rotary connector 1 includes an optical communication unit 25 that outputs a signal to be communicated between the fixed body 8 and the rotating body 9 to the other side according to the presence or absence of light. The optical communication unit 25 of the present example transmits the output signal Sout of the detection unit 4 of the steering wheel 3a as communication data Sd1 from the rotating body 9 side to the fixed body 8 side through optical communication. The communication data Sd1 constructs binarized information composed of data groups of “0” and “1” by a combination of “present” and “absent” of light. Moreover, it is preferable that the optical communication part 25 transmits the multiplexed signal which put together the signal output from the some detection part 4 by the time division as communication data Sd1. In optical communication, communication data Sd1 can be communicated at high speed (high-speed communication).
 図1及び図2に示すように、光通信部25は、光通信において光を投光する発光素子26と、発光素子26からの光を受光する受光素子27とを備える。本例の場合、光通信部25は、単一の発光素子26及び単一の受光素子27を備える。発光素子26は、例えばLEDからなり、基板13の裏面に取り付けられている。受光素子27は、基板12の表面に取り付けられるとともに、回動体9の回転時に発光素子26と対向可能となるように配置されている。 1 and 2, the optical communication unit 25 includes a light emitting element 26 that projects light in optical communication and a light receiving element 27 that receives light from the light emitting element 26. In the case of this example, the optical communication unit 25 includes a single light emitting element 26 and a single light receiving element 27. The light emitting element 26 is made of an LED, for example, and is attached to the back surface of the substrate 13. The light receiving element 27 is attached to the surface of the substrate 12 and is disposed so as to face the light emitting element 26 when the rotating body 9 rotates.
 図2に示すように、発光素子26は、ステアリングホイール3aが中立位置をとったときに受光素子27と対向するように配置されている。そして、ステアリングホイール3aが中立位置から左右に回動操作されると、発光素子26は受光素子27から離れていく。このため、発光素子26の光が受光素子27に十分に届く範囲が、光通信の駆動範囲Eとして設定される。つまり、駆動範囲Eは、コントローラ5が発光素子26の光に基づいて通信データSd1を判別可能なステアリングホイール3aの回転範囲に設定される。例えば、駆動範囲Eは、ステアリングホイール3aが中立位置から左方向に回動されるときを「-」とし、中立位置から右方向に回動されるときを「+」とすると、-60°~+60°の範囲であることが好ましい。 As shown in FIG. 2, the light emitting element 26 is arranged so as to face the light receiving element 27 when the steering wheel 3a is in the neutral position. Then, when the steering wheel 3a is turned left and right from the neutral position, the light emitting element 26 moves away from the light receiving element 27. For this reason, the range in which the light from the light emitting element 26 sufficiently reaches the light receiving element 27 is set as the driving range E for optical communication. In other words, the drive range E is set to the rotation range of the steering wheel 3a in which the controller 5 can determine the communication data Sd1 based on the light of the light emitting element 26. For example, the drive range E is defined as “−” when the steering wheel 3a is rotated leftward from the neutral position, and “+” when the steering wheel 3a is rotated rightward from the neutral position. A range of + 60 ° is preferable.
 回転コネクタ1は、固定体8及び回動体9の間で通信する信号を、電波を通じて相手側に出力する電波通信部30を備える。本例の電波通信部30は、ステアリングホイール3aの検知部4の出力信号Soutを、電波通信を通じて、通信データSd2として回動体9側から固定体8側に無線送信する。電波通信は、例えばUHF(Ultra High Frequency)帯の電波が使用されることが好ましい。電波通信は、通信データSd2を低速で相手側に通信すること(低速通信)が可能である。 The rotary connector 1 includes a radio wave communication unit 30 that outputs a signal communicating between the fixed body 8 and the rotary body 9 to the other side through radio waves. The radio wave communication unit 30 in this example wirelessly transmits the output signal Sout of the detection unit 4 of the steering wheel 3a from the rotating body 9 side to the fixed body 8 side as communication data Sd2 through radio wave communication. For radio wave communication, for example, radio waves in the UHF (Ultra High Frequency) band are preferably used. In the radio wave communication, the communication data Sd2 can be communicated to the other party at a low speed (low speed communication).
 電波通信部30は、電波通信において電波を送信する送信器31と、送信器31の電波を受信する受信器32とを備える。本例の電波通信部30は、単一の送信器31及び単一の受信器32を備える。発光素子26及び受光素子27の組は、送信器31及び受信器32の組に回動体9の軸L1を間にして対向するように配置されている。送信器31は、回動体9の軸L1方向において対向して配置された受信器32に対し、UHF電波を送信可能である。送信器31は、ステアリングホイール3aが中立位置をとったときに回動体9の軸L1方向において受信器32と対向するように配置されている。 The radio wave communication unit 30 includes a transmitter 31 that transmits radio waves in radio wave communication and a receiver 32 that receives radio waves from the transmitter 31. The radio wave communication unit 30 of this example includes a single transmitter 31 and a single receiver 32. The set of the light emitting element 26 and the light receiving element 27 is arranged to face the set of the transmitter 31 and the receiver 32 with the axis L1 of the rotating body 9 therebetween. The transmitter 31 can transmit a UHF radio wave to the receiver 32 that is arranged to face the rotating body 9 in the direction of the axis L1. The transmitter 31 is disposed so as to face the receiver 32 in the direction of the axis L1 of the rotating body 9 when the steering wheel 3a is in the neutral position.
 図3に示すように、回転コネクタ1は、無線給電コイル21、発光素子26及び送信器31の作動を制御する回動体制御部35を備える。回動体制御部35は、回動体9に設けられ、例えば基板13に実装されたICであることが好ましい。回動体制御部35は、発光素子26の作動を制御する投光処理部36と、送信器31の作動を制御する送信処理部37と、無線給電コイル21の作動を制御する給電処理部38とを備える。 As shown in FIG. 3, the rotary connector 1 includes a rotating body control unit 35 that controls the operation of the wireless power feeding coil 21, the light emitting element 26, and the transmitter 31. The rotating body control unit 35 is preferably an IC provided on the rotating body 9 and mounted on the substrate 13, for example. The rotating body control unit 35 includes a light projection processing unit 36 that controls the operation of the light emitting element 26, a transmission processing unit 37 that controls the operation of the transmitter 31, and a power supply processing unit 38 that controls the operation of the wireless power feeding coil 21. Is provided.
 投光処理部36は、発光素子26を駆動させるという処理か、又は駆動させないという処理(光の点灯/消灯)を切り替えることにより、発光素子26から通信データSd1の2値化情報に準じた発光パターンの光を生成させ、この発光パターンの光を受光素子27に受光させる。送信処理部37は、送信器31から通信データSd1をUHF電波で送信させる。 The light projection processing unit 36 switches the process of driving the light emitting element 26 or the process of not driving (lighting / extinguishing light) to emit light according to the binarized information of the communication data Sd1. Pattern light is generated, and the light receiving element 27 receives the light of the light emission pattern. The transmission processing unit 37 transmits the communication data Sd1 from the transmitter 31 using UHF radio waves.
 固定体8のコントローラ5は、受光素子27の作動を制御する受光処理部39と、受信器32の作動を制御する受信処理部40と、無線給電コイル20の作動を制御する給電処理部41とを備える。受光処理部39は、受光素子27から供給される受光信号Srを基に通信データSd1のデータ内容を判断し、この通信データSd1に応じた作動を実行する。受信処理部40は、受信器32から供給されるUHF帯の通信データSd2のデータ内容を判断し、この通信データSd2に応じた作動を実行する。給電処理部41は、無線給電コイル20によって電力電波を送信させ、この電力電波を無線給電コイル21によって受信させる。給電処理部38は、無線給電コイル21で受信した電力電波を、電源電力として回動体9の各種機器に供給する。 The controller 5 of the fixed body 8 includes a light reception processing unit 39 that controls the operation of the light receiving element 27, a reception processing unit 40 that controls the operation of the receiver 32, and a power supply processing unit 41 that controls the operation of the wireless power feeding coil 20. Is provided. The light reception processing unit 39 determines the data content of the communication data Sd1 based on the light reception signal Sr supplied from the light receiving element 27, and executes an operation according to the communication data Sd1. The reception processing unit 40 determines the data content of the UHF band communication data Sd2 supplied from the receiver 32, and executes an operation corresponding to the communication data Sd2. The power supply processing unit 41 causes the wireless power supply coil 20 to transmit power radio waves and causes the wireless power supply coil 21 to receive the power radio waves. The power supply processing unit 38 supplies power radio waves received by the wireless power supply coil 21 to various devices of the rotating body 9 as power supply power.
 回転コネクタ1は、固定体8及び回動体9の間の通信データSd(Sd1,Sd2)の通信を、光通信及び電波通信のどちらで実施するのかを選択する通信選択機能を備える。ところで、例えば通信データSdの通信を光通信のみで行おうとすると、回動体9の回転角θによらず光通信を確立させるために、回動体9の軸L1回りに複数の発光素子又は複数の受光素子を配置する必要がある。この場合、部品点数が増加してしまう。よって、発光素子26及び受光素子27の個数を極力少なく抑えつつ、回動体9がどの回転角θをとっていても通信データSdの通信を成立させられるようにしたのが、本例の技術である。 The rotary connector 1 has a communication selection function for selecting communication between the fixed body 8 and the rotating body 9 for communication data Sd (Sd1, Sd2) by optical communication or radio wave communication. By the way, for example, if communication of the communication data Sd is to be performed only by optical communication, in order to establish optical communication regardless of the rotation angle θ of the rotating body 9, a plurality of light emitting elements or a plurality of elements are arranged around the axis L <b> 1 of the rotating body 9. It is necessary to arrange a light receiving element. In this case, the number of parts increases. Therefore, the technology of this example is such that the communication data Sd can be established regardless of the rotation angle θ of the rotating body 9 while keeping the number of the light emitting elements 26 and the light receiving elements 27 as small as possible. is there.
 回転コネクタ1は、回動体9の回転角θを判定する角度判定部44を備える。角度判定部44は、回動体9(基板13のIC)に設けられ、角度検出部18から供給される角度検出信号Sθを基に回動体9の回転角θ(回転位置)を判定する。角度判定部44は、例えば数度の分解能で回動体9の回転角θを検出できることが好ましい。 The rotary connector 1 includes an angle determination unit 44 that determines the rotation angle θ of the rotating body 9. The angle determination unit 44 is provided in the rotating body 9 (IC of the substrate 13), and determines the rotation angle θ (rotational position) of the rotating body 9 based on the angle detection signal Sθ supplied from the angle detection unit 18. It is preferable that the angle determination unit 44 can detect the rotation angle θ of the rotating body 9 with a resolution of several degrees, for example.
 回転コネクタ1は、角度判定部44の判定結果を基に光通信及び電波通信を回転角θに応じて切り替える切替制御部45を備える。切替制御部45は、回動体9(基板13のIC)に設けられている。切替制御部45は、回動体9(ステアリングホイール3a)が中立位置又はその付近に位置するときに光通信部25を選択し、回動体9(ステアリングホイール3a)が中立位置又はその付近ではない回転角θまで回転するときに電波通信部30を選択する。言い換えると、切替制御部45は、回動体9が駆動範囲Eで回転するとき、つまり、回動体9の回転角θが駆動範囲Eにあるときに光通信部25を選択し、回動体9が駆動範囲Eを超えて回転するとき、つまり、回動体9の回転角θが駆動範囲Eに無いときに電波通信部30を選択する。 The rotary connector 1 includes a switching control unit 45 that switches between optical communication and radio wave communication according to the rotation angle θ based on the determination result of the angle determination unit 44. The switching control unit 45 is provided on the rotating body 9 (IC of the substrate 13). The switching control unit 45 selects the optical communication unit 25 when the rotating body 9 (steering wheel 3a) is positioned at or near the neutral position, and the rotating body 9 (steering wheel 3a) is not rotated at or near the neutral position. The radio wave communication unit 30 is selected when rotating to the angle θ. In other words, the switching control unit 45 selects the optical communication unit 25 when the rotating body 9 rotates in the driving range E, that is, when the rotation angle θ of the rotating body 9 is in the driving range E, and the rotating body 9 When rotating beyond the drive range E, that is, when the rotation angle θ of the rotating body 9 is not in the drive range E, the radio wave communication unit 30 is selected.
 次に、図4及び図5を用いて、回転コネクタ1の作用及び効果を説明する。
 図4に示すように、ステップ100において、角度判定部44は、角度検出部18の角度検出信号Sθを基に、回動体9(ステアリングホイール3a)の回転角、すなわちステアリングホイール3aの操舵角を判定する。
Next, the operation and effect of the rotary connector 1 will be described with reference to FIGS. 4 and 5.
As shown in FIG. 4, in step 100, the angle determination unit 44 determines the rotation angle of the rotating body 9 (steering wheel 3 a), that is, the steering angle of the steering wheel 3 a based on the angle detection signal Sθ of the angle detection unit 18. judge.
 ステップ101において、切替制御部45は、回動体9の回転角θが駆動範囲E(例えば-60°~+60°)であるか否かを判定する。このとき、回動体9の回転角θが駆動範囲E内であれば、固定体8と回動体9との間の通信として光通信を選択して、ステップ102に移行する。一方、回動体9の回転角θが駆動範囲E内でなければ、固定体8と回動体9との間の通信として電波通信を選択して、ステップ104に移行する。 In step 101, the switching control unit 45 determines whether or not the rotation angle θ of the rotating body 9 is within the drive range E (for example, −60 ° to + 60 °). At this time, if the rotation angle θ of the rotating body 9 is within the driving range E, the optical communication is selected as the communication between the fixed body 8 and the rotating body 9, and the process proceeds to step 102. On the other hand, if the rotation angle θ of the rotating body 9 is not within the driving range E, radio wave communication is selected as the communication between the fixed body 8 and the rotating body 9, and the process proceeds to step 104.
 ステップ102において、切替制御部45は、固定体8と回動体9との間の通信として光通信(光通信部25)を有効にする。これにより、回転コネクタ1において無線通信を行う際には、光通信により実行される。 In step 102, the switching control unit 45 enables optical communication (optical communication unit 25) as communication between the fixed body 8 and the rotating body 9. Thereby, when performing the wireless communication in the rotation connector 1, it is performed by optical communication.
 図5に示すように、投光処理部36は、光通信を通じてデータ通信を行うにあたり、例えば「1」の2値化情報を出力するとき、発光素子26を点灯させ、「0」の2値化情報を出力するとき、発光素子26を消灯させる。このように、投光処理部36は、発光素子26の点灯/消灯により2値化情報の通信データSd1を構築して、固定体8側に送信する。 As shown in FIG. 5, when performing data communication through optical communication, the light projection processing unit 36 turns on the light emitting element 26 and outputs a binary value of “0” when outputting binary information of “1”, for example. The light emitting element 26 is extinguished when the activation information is output. In this way, the light projection processing unit 36 constructs the communication data Sd1 of the binarized information by turning on / off the light emitting element 26 and transmits it to the fixed body 8 side.
 図4に戻り、ステップ103において、切替制御部45は、光通信が有効にされた状況下において光通信の応答があったか否かを判定する。このとき、光通信の応答があれば、ステップ102に戻り、光通信が有効とされた状態を継続する。一方、光通信の応答がなければ、ステップ104に移行する。 Returning to FIG. 4, in step 103, the switching control unit 45 determines whether or not there is a response to the optical communication in a situation where the optical communication is enabled. At this time, if there is a response to the optical communication, the process returns to step 102 to continue the state in which the optical communication is enabled. On the other hand, if there is no optical communication response, the process proceeds to step 104.
 ステップ104において、切替制御部45は、無線給電部19の作動を一時停止する。これは、無線給電部19の電力電波が、電波通信部30の通信に影響を及ぼさないようにするためである。 In step 104, the switching control unit 45 temporarily stops the operation of the wireless power feeding unit 19. This is to prevent the electric power radio wave of the wireless power feeding unit 19 from affecting the communication of the radio wave communication unit 30.
 ステップ105において、切替制御部45は、固定体8と回動体9との間の通信として電波通信(電波通信部30)を有効にする。これにより、回転コネクタ1においてデータ通信を行う際には、通信データSd2が電波通信によって送信される。 In step 105, the switching control unit 45 enables radio wave communication (radio wave communication unit 30) as communication between the fixed body 8 and the rotating body 9. Thereby, when performing data communication in the rotation connector 1, communication data Sd2 is transmitted by radio wave communication.
 さて、検知部4でスイッチ状態(スイッチに対する操作)を検知したり画像データを取得したりするのは、ステアリングホイール3aが中立位置付近で行われる傾向にある。よって、このときは、光通信を使用して高速にデータ送信を行う。一方、ステアリングホイール3aが中立位置から大きく回動操作されているときには、検知部4が操作される頻度は少ない。このため、ステアリングホイール3aが中立位置から大きく回動操作されたときには、電波通信によりデータ通信可能とすることで、高速通信ではなく、回転位置の制約が少ない電波通信で通信を行う。 Now, the detection of the switch state (operation on the switch) and the acquisition of image data by the detection unit 4 tend to be performed near the neutral position of the steering wheel 3a. Therefore, at this time, data transmission is performed at high speed using optical communication. On the other hand, when the steering wheel 3a is largely rotated from the neutral position, the detection unit 4 is operated less frequently. For this reason, when the steering wheel 3a is largely rotated from the neutral position, data communication is possible by radio wave communication, so that communication is performed not by high-speed communication but by radio wave communication with few rotational position restrictions.
 このように、本例の場合、回転コネクタ1に光通信部25及び電波通信部30が設けられ、回動体9(ステアリングホイール3a)の回転角θに応じて、どちらを使用するのかが選択される。このため、回動体9の所定角範囲でのみ光通信が実施可能であればよいので、その範囲にのみ発光素子26及び受光素子27を設ければよい。これにより、回動体9の軸L1回りに沿って一帯に発光素子26又は受光素子27を複数配置せずに済む。よって、光通信に係る部品を減らして装置構成を簡素化することができる。 Thus, in the case of this example, the rotary connector 1 is provided with the optical communication unit 25 and the radio wave communication unit 30, and which one to use is selected according to the rotation angle θ of the rotating body 9 (steering wheel 3a). The For this reason, it is only necessary to be able to perform optical communication only within a predetermined angular range of the rotating body 9, and therefore, the light emitting element 26 and the light receiving element 27 may be provided only in that range. Thereby, it is not necessary to arrange a plurality of light emitting elements 26 or light receiving elements 27 around the axis L <b> 1 of the rotating body 9. Therefore, it is possible to simplify the device configuration by reducing the number of parts related to optical communication.
 発光素子26及び受光素子27の組は、送信器31及び受信器32の組に回動体9の軸L1を間にして対向するように配置されている。よって、光通信部25及び電波通信部30を互いに離れた位置に配置することが可能となるので、両者とも安定した通信成立性を確保することができる。 The set of the light emitting element 26 and the light receiving element 27 is disposed so as to face the set of the transmitter 31 and the receiver 32 with the axis L1 of the rotating body 9 therebetween. Therefore, since the optical communication unit 25 and the radio wave communication unit 30 can be arranged at positions separated from each other, both can ensure stable communication establishment.
 光通信部25は、単一の発光素子26及び単一の受光素子27を備える。電波通信部30は、単一の送信器31及び単一の受信器32を備える。よって、光通信部25及び電波通信部30ともに部品点数が少ない簡素な構成で済む。 The optical communication unit 25 includes a single light emitting element 26 and a single light receiving element 27. The radio wave communication unit 30 includes a single transmitter 31 and a single receiver 32. Therefore, both the optical communication unit 25 and the radio wave communication unit 30 may have a simple configuration with a small number of parts.
 切替制御部45は、回動体9が中立位置又はその付近に位置するとき、光通信部25を選択し、回動体9が中立位置又はその付近ではない回転角θをとるとき、電波通信部30を選択する。よって、回動体9が中立位置又はその付近に位置するとき、光通信が選択されることにより、高速通信に対応することができる。また、回動体9が中立位置又はその付近に位置しないとき、通信が高速ではないが位置の制約が少ない電波通信が選択されるので、この領域においても問題なく通信を行うことができる。 The switching control unit 45 selects the optical communication unit 25 when the rotating body 9 is positioned at or near the neutral position, and the radio wave communication unit 30 when the rotating body 9 assumes a rotation angle θ that is not at or near the neutral position. Select. Therefore, when the rotating body 9 is located at or near the neutral position, it is possible to cope with high-speed communication by selecting optical communication. Further, when the rotating body 9 is not positioned at or near the neutral position, radio wave communication is selected that is not high-speed communication but has few positional restrictions. Therefore, communication can be performed without any problem in this region.
 電波通信部30は、UHF帯の電波を通じて無線通信する。これにより、UHF電波は遠くまで届くので、電波通信の通信成立性を確保するのに有利となる。
 回転コネクタ1は、固定体8側から回動体9側へ無線により電力を供給する無線給電部19を備える。よって、回動体9に設けられた各種機器に、無線給電部19を介して非接触により電力を供給することができる。
The radio wave communication unit 30 performs radio communication through UHF radio waves. As a result, UHF radio waves reach far, which is advantageous for ensuring the establishment of radio communication.
The rotary connector 1 includes a wireless power feeding unit 19 that wirelessly supplies power from the fixed body 8 side to the rotating body 9 side. Therefore, power can be supplied to the various devices provided in the rotating body 9 in a non-contact manner via the wireless power feeding unit 19.
 切替制御部45は、固定体8と回動体9との間の通信として電波通信部30を選択したとき、無線給電部19を停止させる。よって、電波通信を行うときには、無線給電部19を停止するので、無線給電部19の電力電波が、電波通信に影響を及ぼしてしまうことがない。 The switching control unit 45 stops the wireless power feeding unit 19 when the radio wave communication unit 30 is selected as communication between the fixed body 8 and the rotating body 9. Therefore, when performing radio wave communication, the wireless power feeding unit 19 is stopped, so that the power radio wave of the wireless power feeding unit 19 does not affect the radio wave communication.
 なお、実施形態はこれまでに述べた構成に限らず、以下の態様に変更してもよい。
 ・光通信で通信データSd1を送信している場合に通信が電波通信に切り替わったときは、データの続きを通信データSd2によって送信するようにしてもよい。
Note that the embodiment is not limited to the configuration described so far, and may be modified as follows.
When the communication data Sd1 is transmitted by optical communication and the communication is switched to radio wave communication, the continuation of the data may be transmitted by the communication data Sd2.
 ・光通信部25又は電波通信部30をどの回転角θで選択するのは、実施形態以外のパターンに適宜変更できる。例えば、回転角θが中立位置又はその付近のときに電波通信部30を選択し、それ以外の箇所で光通信部25を選択してもよい。 The rotation angle θ for selecting the optical communication unit 25 or the radio wave communication unit 30 can be appropriately changed to a pattern other than the embodiment. For example, the radio communication unit 30 may be selected when the rotation angle θ is at or near the neutral position, and the optical communication unit 25 may be selected at other locations.
 ・光通信の駆動範囲Eは、-60°~+60°に限定されず、他の値に変更してもよい。
 ・2値化情報は、例えば光が点灯されているときを「0」とし、光が消灯されているときを「1」としてもよい。
The drive range E for optical communication is not limited to −60 ° to + 60 °, and may be changed to other values.
The binarization information may be, for example, “0” when the light is turned on and “1” when the light is turned off.
 ・発光素子26及び受光素子27の数は、それぞれ1つに限らず、複数としてもよい。
 ・発光素子26は、LED以外の他の部材を適用可能である。
 ・発光素子26及び受光素子27は、基板12,13上に設けられることに限らず、固定体8や回動体9に配置されていればよい。
The number of the light emitting elements 26 and the light receiving elements 27 is not limited to one, but may be plural.
-The light emitting element 26 can apply members other than LED.
The light emitting element 26 and the light receiving element 27 are not limited to be provided on the substrates 12 and 13, and may be disposed on the fixed body 8 and the rotating body 9.
 ・光通信や電波通信の経路は、データ線を実現することに限らず、例えば制御線やパワー線であってもよい。
 ・通信データSd1,Sd2は、それぞれ異なる種類のデータを送信する信号であってもよい。
The optical communication and radio wave communication paths are not limited to data lines, but may be control lines or power lines, for example.
The communication data Sd1 and Sd2 may be signals that transmit different types of data.
 ・通信データSdは、多重信号に限定されず、1つの検知部4の出力のみから構築されるデータでもよい。
 ・電波通信部30で用いる電波の周波数は、UHF帯に限定されず、例えばLF(Low Frequency)帯など、他の周波数に変更可能である。
The communication data Sd is not limited to a multiplexed signal, and may be data constructed only from the output of one detection unit 4.
The frequency of the radio wave used in the radio communication unit 30 is not limited to the UHF band, and can be changed to another frequency such as an LF (Low Frequency) band.
 ・光通信部25及び電波通信部30は、軸L1を挟んで対向する位置に配置されることに限らず、その配置位置を適宜変更してもよい。
 ・角度検出部18、ステアリングアングルセンサ等の検出部を用いることに限らず、回動体9の回転量を検出できる部材であればよい。
The optical communication unit 25 and the radio wave communication unit 30 are not limited to being arranged at positions facing each other across the axis L1, and the arrangement positions may be changed as appropriate.
-Not only using detection parts, such as an angle detection part 18 and a steering angle sensor, but what is necessary is just a member which can detect the amount of rotations of rotation object 9.
 ・発光素子26を固定体8に設け、受光素子27を回動体9に設けてもよい。
 ・無線給電部19は、回動体9側から固定体8側に非接触で電力を供給するものでもよい。
The light emitting element 26 may be provided on the fixed body 8 and the light receiving element 27 may be provided on the rotating body 9.
The wireless power feeding unit 19 may supply power from the rotating body 9 side to the fixed body 8 side in a non-contact manner.
 ・無線給電部19は、省略することも可能である。
 ・回転コネクタ1は、車両に適用されることに限定されず、他の機器や装置に使用してもよい。
The wireless power feeding unit 19 can be omitted.
-The rotation connector 1 is not limited to being applied to a vehicle, You may use it for another apparatus and apparatus.
 コントローラ5及び回動体制御部35の各々は、1つ以上のプロセッサと、当該1つ以上のプロセッサによって実行される命令を格納した1つ以上のメモリと、を含むことができる。命令は、1つ以上のプロセッサによって1つ以上のメモリから読出しおよび実行されて、本明細書に記載の動作の実行を可能にすることができる。 Each of the controller 5 and the rotating body control unit 35 may include one or more processors and one or more memories storing instructions executed by the one or more processors. The instructions may be read and executed from one or more memories by one or more processors to allow execution of the operations described herein.
 本発明の主題は、上記した特定の実施例および変更例の全ての特徴よりも少ない特徴に存在する可能性がある。本発明の範囲は、請求の範囲および等価物の全範囲と共に確定されるべきである。 The subject matter of the present invention may exist in fewer features than all the features of the specific embodiments and modifications described above. The scope of the invention should be determined along with the full scope of the claims and equivalents.

Claims (7)

  1.  固定体及び回動体の一方に設けられた発光素子と、前記固定体及び回動体の他方に設けられた受光素子と、を含み、前記発光素子と前記受光素子との間で光通信が可能な光通信部と、
     前記固定体及び回動体の一方に設けられた送信器と、前記固定体及び回動体の他方に設けられた受信器とを含み、前記送信器と前記受信器との間で電波通信が可能な電波通信部と、を備えた回転コネクタにおいて、
     前記回動体の回転角を判定する角度判定部と、
     前記角度判定部の判定結果を基に、前記光通信及び前記電波通信を前記回動体の回転角に応じて切り替える切替制御部と、を備えたことを特徴とする回転コネクタ。
    Including a light emitting element provided on one of the fixed body and the rotating body and a light receiving element provided on the other of the fixed body and the rotating body, and capable of optical communication between the light emitting element and the light receiving element. An optical communication unit;
    Including a transmitter provided on one of the fixed body and the rotating body and a receiver provided on the other of the fixed body and the rotating body, and capable of radio wave communication between the transmitter and the receiver. In a rotary connector equipped with a radio wave communication unit,
    An angle determination unit for determining a rotation angle of the rotating body;
    A rotation connector comprising: a switching control unit that switches the optical communication and the radio wave communication according to a rotation angle of the rotating body based on a determination result of the angle determination unit.
  2.  前記発光素子及び前記受光素子の組は、前記送信器及び前記受信器の組に前記回動体の軸を間にして対向するように配置されている、請求項1に記載の回転コネクタ。 The rotary connector according to claim 1, wherein the set of the light emitting element and the light receiving element is disposed so as to face the set of the transmitter and the receiver with an axis of the rotating body in between.
  3.  前記光通信部は、単一の前記発光素子及び単一の受光素子を含み、
     前記電波通信部は、単一の前記送信器及び単一の前記受信器を含む、請求項1又は2に記載の回転コネクタ。
    The optical communication unit includes a single light emitting element and a single light receiving element,
    The rotary connector according to claim 1, wherein the radio wave communication unit includes a single transmitter and a single receiver.
  4.  前記切替制御部は、前記回動体が中立位置又はその付近に位置するときに前記光通信部を選択し、前記回動体が前記中立位置又はその付近ではない回転角まで回転するときに前記電波通信部を選択する、請求項1~3のうちいずれか一項に記載の回転コネクタ。 The switching control unit selects the optical communication unit when the rotating body is positioned at or near the neutral position, and the radio wave communication when the rotating body rotates to a rotation angle that is not at or near the neutral position. The rotary connector according to any one of claims 1 to 3, wherein a part is selected.
  5.  前記電波通信部は、UHF帯の電波を通じて無線通信する、請求項1~4のうちいずれか一項に記載の回転コネクタ。 The rotary connector according to any one of claims 1 to 4, wherein the radio wave communication unit performs radio communication through radio waves in a UHF band.
  6.  前記固定体及び前記回動体の一方から他方へ無線により電力を供給する無線給電部をさらに備える請求項1~5のうちいずれか一項に記載の回転コネクタ。 The rotary connector according to any one of claims 1 to 5, further comprising a wireless power feeding unit that wirelessly supplies power from one of the fixed body and the rotating body to the other.
  7.  前記切替制御部は、前記固定体と前記回動体との間の通信として前記電波通信部を選択したとき、前記無線給電部を停止させる、請求項6に記載の回転コネクタ。 The rotary connector according to claim 6, wherein the switching control unit stops the wireless power feeding unit when the radio wave communication unit is selected as communication between the fixed body and the rotating body.
PCT/JP2017/025286 2016-07-26 2017-07-11 Rotary connector WO2018021017A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-146482 2016-07-26
JP2016146482A JP2018016142A (en) 2016-07-26 2016-07-26 Rotary connector

Publications (1)

Publication Number Publication Date
WO2018021017A1 true WO2018021017A1 (en) 2018-02-01

Family

ID=61016791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025286 WO2018021017A1 (en) 2016-07-26 2017-07-11 Rotary connector

Country Status (2)

Country Link
JP (1) JP2018016142A (en)
WO (1) WO2018021017A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019209812A (en) * 2018-06-04 2019-12-12 トヨタ自動車株式会社 Vehicle handle device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0213143A (en) * 1988-06-30 1990-01-17 Hokuriyou Denko Kk Optical data transmission equipment
JP2000082998A (en) * 1992-01-14 2000-03-21 Toshiba Corp Data transmission device
JP2009147942A (en) * 2007-12-17 2009-07-02 Siemens Ag Device and method for transmitting light signals

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0213143A (en) * 1988-06-30 1990-01-17 Hokuriyou Denko Kk Optical data transmission equipment
JP2000082998A (en) * 1992-01-14 2000-03-21 Toshiba Corp Data transmission device
JP2009147942A (en) * 2007-12-17 2009-07-02 Siemens Ag Device and method for transmitting light signals

Also Published As

Publication number Publication date
JP2018016142A (en) 2018-02-01

Similar Documents

Publication Publication Date Title
CN109641524B (en) Steering angle display device
WO2018021017A1 (en) Rotary connector
JP2010120495A (en) Receiver system for vehicles
JP6684671B2 (en) Rotating connector
JP2017197102A (en) Tire air pressure monitoring system and monitoring device
WO2018012190A1 (en) Rotational connector
JP2009147942A (en) Device and method for transmitting light signals
JP2009147942A6 (en) Optical signal transmission apparatus and method
JP2007028472A (en) Antenna device
US20130345915A1 (en) Emergency steering system and controlling method of the same
JP2006270765A (en) Wireless lan system
JP2005012509A (en) Remote control system, remote control transmitter used therefor, and electronic device
WO2018016185A1 (en) Rotary connector
JP5491710B2 (en) DVOR (Doppler VHF omnidirectionalRadioRange) system, monitor device, and DVOR device monitoring method
JPWO2017154446A1 (en) Input device
JP2008062906A (en) Signal transmission device of steering device
WO2017150530A1 (en) Roll connector
JP6690583B2 (en) Monitoring device, tire pressure monitoring system and control program
JP2021068198A (en) Wireless remote control device
JP2007148504A (en) Tire air pressure detector
JP6421559B2 (en) transceiver
JP7291891B2 (en) Equipment control system and operating device
JP7504576B2 (en) Wireless power supply system and control method for wireless power supply system
JP2018006597A (en) Rotary connector
JP6869383B2 (en) Communications system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834025

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17834025

Country of ref document: EP

Kind code of ref document: A1