WO2018020976A1 - Solid lubricant, grease composition, lubricant composition for plastic working, method for producing solid lubricant and method for processing metal material - Google Patents

Solid lubricant, grease composition, lubricant composition for plastic working, method for producing solid lubricant and method for processing metal material Download PDF

Info

Publication number
WO2018020976A1
WO2018020976A1 PCT/JP2017/024803 JP2017024803W WO2018020976A1 WO 2018020976 A1 WO2018020976 A1 WO 2018020976A1 JP 2017024803 W JP2017024803 W JP 2017024803W WO 2018020976 A1 WO2018020976 A1 WO 2018020976A1
Authority
WO
WIPO (PCT)
Prior art keywords
lubricant
solid lubricant
composition
layered
plastic working
Prior art date
Application number
PCT/JP2017/024803
Other languages
French (fr)
Japanese (ja)
Inventor
宏仁 森
俊樹 後藤
Original Assignee
大塚化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大塚化学株式会社 filed Critical 大塚化学株式会社
Priority to JP2018529471A priority Critical patent/JPWO2018020976A1/en
Publication of WO2018020976A1 publication Critical patent/WO2018020976A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M103/00Lubricating compositions characterised by the base-material being an inorganic material
    • C10M103/06Metal compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/10Metal oxides, hydroxides, carbonates or bicarbonates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/26Carboxylic acids; Salts thereof
    • C10M129/28Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M129/38Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having 8 or more carbon atoms
    • C10M129/40Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having 8 or more carbon atoms monocarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • C10M159/02Natural products
    • C10M159/06Waxes, e.g. ozocerite, ceresine, petrolatum, slack-wax

Definitions

  • the present invention relates to a solid lubricant, a grease composition and a plastic working lubricant composition using the same, a method for producing a solid lubricant, and a method for processing a metal material.
  • a grease composition is used in order to improve the lubrication between the friction surfaces made of a metal material, a resin material, etc., and to make the operation smooth.
  • a grease composition containing a solid lubricant such as molybdenum disulfide, tungsten disulfide, and graphite has been conventionally used.
  • a lubricant for solving such problems, a lubricant composition containing a large amount of a solid lubricant such as molybdenum disulfide, tungsten disulfide, or graphite is used.
  • solid lubricants such as molybdenum disulfide, tungsten disulfide, and graphite are black powders, contamination of the work environment becomes a problem, and non-black solid lubricants are required.
  • Patent Document 1 discloses an organic modified clay mineral in which a cationic organic compound is supported between layers of a layered clay mineral.
  • titanate compounds are known as white powders, but Patent Documents 2 and 3 disclose a method of using them as friction modifiers for friction materials.
  • the titanic acid compound can be used in Patent Document 4 as a layered titanic acid that has been delaminated and used for paints, resin fillers, cosmetics, pigments, etc., and performance such as heat resistance and slidability is required. It can be used in the following fields.
  • the coefficient of friction of boron nitride and the compound of Patent Document 1 is high, and the solid lubricity is not sufficient. Since the titanate compounds disclosed in Patent Documents 2 and 3 are friction modifiers that are required to have a high friction coefficient and are stable, the friction coefficient is high.
  • the delaminated layered titanic acid of Patent Document 4 has a problem that it aggregates when it is taken out as a powder, and a specific method of using it as a solid lubricant is not disclosed.
  • An object of the present invention is to provide a solid lubricant composed of a layered titanate compound having a low friction coefficient, a grease composition and a plastic working lubricant composition using the same, a method for producing the solid lubricant, and processing of a metal material It is to provide a method.
  • the present invention provides the following solid lubricant, grease composition, plastic working lubricant composition, solid lubricant manufacturing method and metal material processing method.
  • a solid lubricant comprising a layered titanate compound having a layered structure formed by a chain of TiO 6 octahedrons, a cationic organic compound between layers, and an interlayer distance of 10 to 70 mm.
  • the precursor of the layered titanate compound is a lipid docrosite type lithium potassium titanate represented by the general formula K 0.5 to 0.7 Li 0.27 Ti 1.73 O 3.85 to 3.95
  • the solid lubricant according to Item 1 which is a lipidocrosite-type magnesium potassium titanate represented by the general formula K 0.2 to 0.7 Mg 0.4 Ti 1.6 O 3.7 to 3.95. .
  • Item 3 The solid lubricant according to Item 1 or 2, wherein the content of the cationic organic compound is 10 to 99% by mass in 100% by mass of the whole layered titanate compound.
  • Item 4 The solid lubricant according to any one of Items 1 to 3, wherein the cationic organic compound is at least one selected from organic ammonium salts, organic phosphonium salts, and organic sulfonium salts.
  • Item 5 A grease composition containing the solid lubricant, base oil, and thickener according to any one of Items 1 to 4.
  • the base oil is mineral oil, gas liquefied oil, diester synthetic oil, aromatic ester synthetic oil, polyol ester synthetic oil, ester synthetic oil, polyglycol synthetic oil, phenyl ether synthetic oil, synthetic Item 6.
  • the thickener is an alkali metal soap, alkaline earth metal soap, alkali metal composite soap, alkaline earth composite metal soap, alkali metal sulfonate, alkaline earth metal sulfonate, aluminum soap, aluminum composite soap, terephthalate Item 7.
  • Item 8 A plastic working lubricant composition comprising the solid lubricant according to any one of Items 1 to 4.
  • Item 9 The plastic working lubricant composition according to Item 8, further comprising a binder component.
  • Item 10 The lubricant composition for plastic processing according to Item 9, wherein the binder component is at least one selected from a water-soluble inorganic salt, a water-soluble organic salt, and an organic polymer.
  • the binder component is at least one selected from a water-soluble inorganic salt, a water-soluble organic salt, and an organic polymer.
  • Item 11 The plastic working lubricant composition according to any one of Items 8 to 10, further comprising a lubricant component.
  • Item 12 The lubricant composition for plastic working according to Item 11, wherein the lubricant component is at least one selected from soaps, metal soaps, and waxes.
  • Item 13 is a method for producing the solid lubricant according to any one of Items 1 to 4, wherein the layered titanate is produced by subjecting the layered titanate to an acid treatment, A method for producing a solid lubricant, comprising a step of allowing basic compounds or salts thereof to act.
  • Item 14 A method for processing a metal material, wherein the solid lubricant according to any one of Items 1 to 4 is interposed at a friction interface between a workpiece and a processing tool.
  • Item 15 A method for processing a metal material, in which plastic working is performed by interposing the lubricant composition for plastic processing according to any one of Items 8 to 12 at a friction interface between a workpiece and a processing tool.
  • the solid lubricant of the present invention has a low coefficient of friction and can be suitably used as a grease composition, a plastic working lubricant composition, or the like.
  • FIG. 1 is a scanning electron micrograph showing the disk surface after a friction test in Example 1 of the present invention.
  • the solid lubricant of the present invention comprises a layered titanate compound having a layered structure formed by a chain of TiO 6 octahedrons, having a cationic organic compound between layers, and having an interlayer distance of 10 to 70 mm. .
  • the layer of the layered titanate compound is electrically neutral in nature, but is negatively charged by replacing part of the tetravalent Ti site with hydrogen ions or hydronium ions. This is compensated by a cationic organic compound, hydrogen ion, hydronium ion or metal ion between the layers.
  • a part or layer of the Ti seat contains a monovalent to trivalent metal ion within the range where the layered titanate compound of the present invention has the excellent performance and is kept electrically neutral. It may be.
  • the monovalent to trivalent metal ions are not substantially contained.
  • “substantially not contained” means that the content of monovalent to trivalent metal ions is 3% by mass or less in terms of oxide in 100% by mass of the whole layered titanate compound.
  • Examples of the cationic organic compound include at least one organic compound selected from organic ammonium salts, organic phosphonium salts, and organic sulfonium salts. Among these, organic ammonium salts are preferable.
  • the organic compound has a hydrocarbon group and a cationic group.
  • the “cationic group” means a primary amine, a secondary amine, a tertiary amine, a quaternary ammonium salt, etc. described later, a hydrogen ion or a hydronium ion present in a layered titanate described later. Is a cationic group produced by the reaction.
  • the “hydrocarbon group” is a concept including an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group, and may be any of linear, branched, and cyclic forms. May be. Further, some carbon atoms constituting the hydrocarbon group may be substituted with other atoms (for example, O, S, etc.), and further, other bonds (for example, ester bonds, An ether bond).
  • the aliphatic hydrocarbon group is preferably an aliphatic hydrocarbon group having 1 to 40 (preferably 10 to 20) carbon atoms, and more specifically, an alkyl group having 1 to 40 (preferably 10 to 20) carbon atoms. Groups and the like.
  • Examples of the alicyclic hydrocarbon group include cycloalkyl groups having 3 to 40 (preferably 6 to 20) carbon atoms.
  • the aromatic hydrocarbon group is preferably an aromatic hydrocarbon group having 6 to 40 (preferably 6 to 20) carbon atoms, more specifically an aryl having 6 to 40 (preferably 6 to 20) carbon atoms.
  • linear alkyl groups having 1 to 40 (preferably 10 to 20) carbon atoms are preferable, and octadecyl, hexadecyl, dodecyl and the like are particularly preferable.
  • the alkyl group is easily oriented in the vertical direction with respect to the titanate compound layer, and the titanate compound layer can be expanded to the desired interlayer distance and further maintained. Since it becomes easy, it is preferable.
  • the content of the cationic organic compound is preferably 10 to 99% by mass, more preferably 20 to 90% by mass, and more preferably 30 to 85% by mass in 100% by mass of the whole layered titanate compound. More preferred is 40 to 80% by mass.
  • the interlayer distance of the layered titanate compound of the present invention is 10 to 70 mm, preferably 20 to 60 mm, and more preferably 30 to 60 mm.
  • the interlayer distance can be controlled by the kind and amount of the cationic organic compound. By setting the interlayer distance within this range, excellent solid lubricity (low friction coefficient) can be exhibited. If the interlayer distance is too large, delamination occurs, and when dried to a powder, it re-stacks and agglomerates. For this reason, it becomes difficult to maintain the interlayer distance. If the interlayer distance is narrow, excellent solid lubricity cannot be obtained.
  • the interlayer distance can be measured by, for example, X-ray diffraction.
  • the interlayer distance can be calculated from (2 ⁇ ).
  • is the value obtained by dividing the diffraction angle (2 ⁇ ) of the primary peak by 2
  • is the wavelength of the CuK ⁇ ray. 1.5418 ⁇
  • the layered titanic acid compound of the present invention is powdery particles such as a spherical shape, a granular shape, a plate shape, a columnar shape, a block shape, an indefinite shape, and a shape having a plurality of convex portions (amoeba shape).
  • the particle size is not particularly limited, but the average particle diameter is preferably 1 to 50 ⁇ m, more preferably 1 to 30 ⁇ m, and even more preferably 3 to 25 ⁇ m.
  • the average particle diameter means a particle diameter at a cumulative reference cumulative 50% (volume reference cumulative 50% particle diameter) in a particle size distribution obtained by a laser diffraction / scattering method, that is, D 50 (median diameter).
  • the volume-based cumulative 50% particle diameter (D 50 ) is obtained by calculating the particle size distribution on a volume basis, and counting the number of particles from the smallest particle size in the cumulative curve with the total volume being 100%. % Of the particle diameter.
  • the layered titanate compound of the present invention can be produced using a layered titanate such as a lipidocrocite-type titanate.
  • the layered titanate is a crystal having a layered structure formed by a chain of TiO 6 octahedrons and having metal ions between the layers. This layer is inherently electrically neutral, but is negatively charged by substituting a part of the tetravalent Ti site with a 1 to 3 valent metal ion. The metal ions between the layers are compensated.
  • lipidocrosite type titanate examples include a lipidocrosite type lithium potassium titanate represented by the general formula K 0.5 to 0.7 Li 0.27 Ti 1.73 O 3.85 to 3.95 , formula K 0.2 ⁇ 0.7 Mg 0.4 Ti 1.6 O 3.7 ⁇ may be mentioned lepidocrocite type titanate magnesium potassium represented by 3.95, for example, Patent documents 2 and 3 can be produced by the method disclosed in 3.
  • the layered titanic acid compound of the present invention comprises a step (I) of producing a layered titanic acid by acid treatment of the layered titanate, and a basic compound or a salt thereof in the layered titanic acid obtained in the step (I). It can be produced by a method including the step (II) that acts.
  • the layer titanate is acid-treated to replace the metal ions substituting a part of the Ti site of the layer titanate and the metal ions between the layers with hydrogen ions or hydronium ions.
  • layered titanic acid can be obtained.
  • the layered titanic acid herein includes hydrated titanic acid in which water molecules exist between the layers.
  • the acid used for the acid treatment in the step (I) is not particularly limited, and may be a mineral acid such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, boric acid, or an organic acid.
  • the acid treatment can be performed, for example, by adding an acid to an aqueous slurry of layered titanate and stirring.
  • the exchange rate of metal ions can be controlled by appropriately adjusting the type and concentration of acid and the slurry concentration of layered titanate according to the type of layered titanate. From the viewpoint of the interlayer distance of the layered titanic acid compound to be obtained, it is preferably 70 to 100%.
  • step (II) a basic compound or a salt thereof is allowed to act on the layered titanic acid obtained in the step (I), and then dried, and a solvent such as water or an aqueous medium is removed.
  • the layered titanic acid compound of the present invention can be produced.
  • the basic compounds or salts thereof used in the step (II) can be used without particular limitation as long as they have an interlayer swelling action of layered titanate and can be controlled to a target interlayer distance.
  • At least one selected from primary to tertiary organic amines, organic ammonium salts, organic phosphonium salts, and organic sulfonium salts can be used. Among them, primary to tertiary organic amines and organic ammonium salts are preferable.
  • Octadecylamine, hexadecylamine, hexadecylpyridinium chloride, benzalkonium chloride, and trimethylstearylammonium chloride are particularly preferred.
  • the basic compound or the salt thereof is directly added to a suspension obtained by dispersing the layered titanic acid in water or an aqueous medium, or A basic compound or a salt thereof diluted with water or an aqueous medium is added and stirred.
  • the addition amount of basic compounds or salts thereof is preferably 0.05 to 2.0 equivalents of basic compounds or salts thereof, more preferably 0, relative to the exchangeable ion capacity of layered titanic acid. .2 to 1.3 equivalents. If it is 0.05 or less, it is impossible to increase the interlayer distance, and if it is 2.0 or more, it is not economically advantageous.
  • the exchangeable ion capacity is a metal ion content replaceable, for example, when the layered titanate is represented by the general formula A x M y ⁇ z Ti 2- (y + z) O 4, the valence of A A value represented by mx + ny when the number is m and the valence of M is n.
  • step (II) react with hydrogen ions or hydronium ions between layers to form a cationic organic compound.
  • the solid lubricant of the present invention has a cationic organic compound between the layers of the layered titanate compound, so that the hydrocarbon group of the organic compound acts as a lubricating component and further appropriately controls the interlayer distance. It is considered that the coefficient of friction is reduced by cleavage.
  • the solid lubricant of the present invention has excellent solid lubricity, for example, a sliding portion between resin members, a sliding portion between metal members, or a sliding between a resin member and a metal member in a gear, a bearing, or the like.
  • the grease composition of the present invention contains the solid lubricant, the base oil and the thickener of the present invention.
  • a sliding part between resin members, a sliding part between metal members, or a resin It can be used for the sliding part of a member and a metal member.
  • the resin of the resin member lubricated using the grease composition of the present invention include polyethylene (PE) resin, polypropylene (PP) resin, ABS resin, polyacetal (POM), polyamide (PA) resin, and polycarbonate (PC).
  • Resin phenol resin, polyethylene terephthalate (PET) resin, polybutylene terephthalate (PBT) resin, polyphenylene sulfide (PPS) resin, polyether sulfone (PES) resin, polyimide (PI resin), polyether ether ketone (PEEK) resin, etc. Is mentioned.
  • the content of the solid lubricant of the present invention in the grease composition is preferably in the range of 0.1 to 50% by mass with respect to 100% by mass of the total amount of the grease composition, and preferably 1 to 20% by mass. A range is more preferable. If it is less than this range, lubricity may be insufficient. When it exceeds this range, there is a tendency that the grease composition is cured and the torque increases accordingly.
  • each component other than the solid lubricant of the present invention will be described below.
  • the base oil is not particularly limited as long as it is a known base oil used in a grease composition, and includes, for example, vacuum distillation, solvent removal, solvent extraction, hydrocracking, solvent dewaxing, sulfuric acid washing, clay refining, Mineral oil refined from crude oil by appropriately combining treatments such as hydrorefining; gas liquefied oil (GTL oil) synthesized from natural gas by the Fischer-Tropsch method; dibutyl sebacate, di-2-ethylhexyl sebacate, Diester synthetic oils such as dioctyl adipate, diisodecyl adipate, ditridecyl adipate, ditridecyl glutarate, methyl acetyl cinnolate; Oil: Trimethylolpropane caprylate, trimethylolpropa Polyol ester synthetic oils such as pelargonate, pentaerythritol-2-ethylhexanoate, pent
  • Ester synthetic oils Polyglycol synthetic oils such as polyethylene glycol, polypropylene glycol, polyethylene glycol monoether, polypropylene glycol monoether, etc .; monoalkyl triphenyl ether, alkyl diphenyl ether, dialkyl diphenyl ether, pentaphenyl ether, tetraphenyl ether, mono Synthetic oils such as alkyl tetraphenyl ether and dialkyl tetraphenyl ether; normal paraffin, isopa Synthetic hydrocarbon oils such as fin, polybutene, polyisobutylene, 1-decene oligomer, 1-decene co-oligomer and other poly- ⁇ -olefins or their hydrides; dimethylpolysiloxane, diphenylpolysiloxane, alkyl-modified And silicone synthetic oils such as polysiloxane; fluorine synthetic oils such as perfluoropolyether; and the like.
  • the content of the base oil is preferably 50% by mass or more, and more preferably 70% by mass or more with respect to 100% by mass of the total amount of the grease composition.
  • the content of the base oil is less than 50% by mass, the fluidity of the grease composition is lowered and the torque tends to increase.
  • 99 mass% or less is preferable with respect to 100 mass% of total amounts of a grease composition, and, as for content of a base oil, 95 mass% or less is more preferable.
  • the content of the base oil exceeds 99% by mass, excessive oil separation is caused, and there is a tendency for leakage from the use location, scattering, and the like.
  • the thickener is not particularly limited as long as it is a known thickener used in grease compositions.
  • alkali metal soap lithium soap, sodium soap, etc.
  • alkaline earth metal soap calcium soap, etc.
  • Alkali metal composite soap alkaline earth composite metal soap, alkali metal sulfonate, alkaline earth metal sulfonate, aluminum soap, aluminum composite soap, terephthalate metal salt, silica gel, clay, fluororesin, urea compound (aromatic diurea, Aliphatic diurea, alicyclic diurea, triurea, tetraurea, etc.).
  • alkali metal soap is preferable from the viewpoint of heat resistance, and lithium soap is more preferable.
  • the type of lithium soap is not particularly limited, and lithium soap synthesized from a higher fatty acid having 10 to 28 carbon atoms and / or a higher hydroxy fatty acid having 10 or more hydroxyl groups and having 10 or more hydroxyl groups can be used.
  • the higher fatty acid include lauric acid, palmitic acid, stearic acid, linoleic acid, arachidic acid, myristic acid, pentadecanoic acid, heptadecanoic acid, oleic acid, arachidonic acid, and behenic acid.
  • Examples of the higher hydroxy fatty acid include 12-hydroxystearic acid, 12-hydroxylauric acid, and 16-hydroxypalmitic acid.
  • Specific examples of the lithium soap include lithium laurate, lithium stearate, and lithium 12-hydroxystearate.
  • the content of the thickener is preferably 2% by mass or more, and more preferably 5% by mass or more with respect to 100% by mass of the total amount of the grease composition.
  • the content of the thickener is less than 2% by mass, the grease composition is too soft and tends to scatter and leak and cause excessive oil separation.
  • the content of the thickener is preferably 60% by mass or less, and more preferably 30% by mass or less, with respect to 100% by mass of the total amount of the grease composition.
  • the content of the thickener exceeds 60% by mass, the grease composition becomes hard and tends to increase the torque at the point of use, and to cause seizure resistance and wear resistance to decrease due to a decrease in fluidity. There is.
  • the grease composition of the present invention is a solid lubricant other than the solid lubricant of the present invention, an antioxidant, an extreme pressure agent, a rust inhibitor, a corrosion inhibitor, and other components as long as the effects of the present invention are not impaired. Viscosity index improvers, oily agents and the like may be contained.
  • Examples of the solid lubricant other than the solid lubricant of the present invention include organic modified clay minerals, molybdenum disulfide, tungsten disulfide, graphite, fluorinated graphite, hexagonal boron nitride (h-BN), mica described in Patent Document 1. , Talc, calcium carbonate, basic magnesium carbonate, basic zinc carbonate, calcium hydroxide, magnesium hydroxide, magnesium oxide, calcium phosphate, zinc phosphate, aluminum dihydrogen tripolyphosphate, polytetrafluoroethylene (PTFE), melamine cyanurate And amino acid compounds.
  • organic modified clay minerals molybdenum disulfide, tungsten disulfide, graphite, fluorinated graphite, hexagonal boron nitride (h-BN), mica described in Patent Document 1.
  • Talc calcium carbonate, basic magnesium carbonate, basic zinc carbonate, calcium hydroxide, magnesium hydroxide, magnesium oxide, calcium phosphate, zinc phosphate, aluminum dihydr
  • Antioxidants include phenols such as 2,6-di-t-butyl-4-methylphenol and 4,4′-methylenebis (2,6-di-t-butylphenol), alkyldiphenylamines (the alkyl group is Having 4 to 20 carbon atoms), amine-based antioxidants such as triphenylamine, phenyl- ⁇ -naphthylamine, phenothiazine, alkylated phenyl- ⁇ -naphthylamine, phenothiazine, alkylated phenothiazine, phenolic amine-based antioxidants, Examples thereof include phosphite amine antioxidants, sulfur amine antioxidants, and dialkyl dithiophosphates.
  • Extreme pressure agents include sulfurized olefin, sulfurized ester, sulfite, thiocarbonate, chlorinated fatty acid, phosphate ester, phosphite ester, molybdenum dithiocarbamate (MoDTC), molybdenum dithiophosphate (MoDTP), zinc dithiophosphate (ZnDTP) ), Etc., organic molybdenum extreme pressure agents, phosphorus extreme pressure agents, chlorine extreme pressure agents and the like.
  • MoDTC molybdenum dithiocarbamate
  • MoDTP molybdenum dithiophosphate
  • ZnDTP zinc dithiophosphate
  • Etc. organic molybdenum extreme pressure agents, phosphorus extreme pressure agents, chlorine extreme pressure agents and the like.
  • rust preventives examples include alkyl sulfonates, fatty acid amines, oxidized paraffins, and polyoxyethylene alkyl ethers.
  • Corrosion inhibitors include benzotriazole, benzimidazole, thiadiazole and the like.
  • viscosity index improver examples include polymethacrylate, ethylene-propylene copolymer, polyisobutylene, polyalkylstyrene, styrene-isoprene copolymer hydride, and the like.
  • oil-based agent examples include fatty acids, higher alcohols, polyhydric alcohols, polyhydric alcohol esters, aliphatic esters, aliphatic amines, fatty acid monoglycerides and the like.
  • the content of other components is preferably 0.1 to 10% by mass and more preferably 0.25 to 5% by mass with respect to 100% by mass of the total amount of the grease composition.
  • the solid lubricant of the present invention is used as a plastic working lubricant for a metal material
  • the solid lubricant of the present invention is also used as a plastic working lubricant composition in which a binder component, a lubricant component, etc. are blended.
  • the content of the solid lubricant of the present invention in the plastic working lubricant composition is preferably in the range of 5 to 95% by mass with respect to 100% by mass of the total amount of the lubricant composition. More preferably, it is in the range of mass%. If it is less than this range, lubricity may be insufficient. If it exceeds this range, it may be difficult to keep the solid lubricant of the present invention in the film.
  • Binder component The binder component is used as a coating component for introducing and holding the solid lubricant composition of the present invention at the friction interface between the workpiece and the processing tool.
  • Binder components include water-soluble inorganic salts such as sulfate, silicate, borate, molybdate, vanadate, tungstate; malate, succinate, citrate, tartrate, etc.
  • Water-soluble organic salts; organic polymers such as vinyl resins, acrylic resins, amide resins, epoxy resins, phenol resins, urethane resins and polymaleic acid resins are exemplified.
  • the binder component is preferably in the range of 5/95 to 95/5, more preferably in the range of 15/85 to 90/10 in terms of mass ratio (solid lubricant of the present invention) / (binder component). preferable.
  • Lubricant components include soaps (sodium stearate, potassium stearate, sodium oleate, etc.), metal soaps (calcium stearate, magnesium stearate, aluminum stearate, barium stearate, lithium stearate, zinc stearate, palmitic acid) And at least one selected from waxes (polyethylene wax, polypropylene wax, carnauba wax, beeswax, paraffin wax, microcrystalline wax, etc.).
  • the lubricant component is preferably in the range of 25/75 to 100/0 in terms of mass ratio (solid lubricant of the present invention) / (lubricant component).
  • the plastic working lubricant composition of the present invention includes, as other components, solid lubricants other than the solid lubricant of the present invention, extreme pressure agents, corrosion inhibitors, viscosity modifiers, oils, surfactants, A molecular dispersant may be contained.
  • Examples of the solid lubricant other than the solid lubricant of the present invention include organic modified clay minerals, molybdenum disulfide, tungsten disulfide, graphite, fluorinated graphite, hexagonal boron nitride (h-BN), mica described in Patent Document 1. , Talc, calcium carbonate, basic magnesium carbonate, basic zinc carbonate, calcium hydroxide, magnesium hydroxide, magnesium oxide, calcium phosphate, zinc phosphate, aluminum dihydrogen tripolyphosphate, polytetrafluoroethylene (PTFE), melamine cyanurate And amino acid compounds.
  • organic modified clay minerals molybdenum disulfide, tungsten disulfide, graphite, fluorinated graphite, hexagonal boron nitride (h-BN), mica described in Patent Document 1.
  • Talc calcium carbonate, basic magnesium carbonate, basic zinc carbonate, calcium hydroxide, magnesium hydroxide, magnesium oxide, calcium phosphate, zinc phosphate, aluminum dihydr
  • Extreme pressure agents include sulfurized olefin, sulfurized ester, sulfite, thiocarbonate, chlorinated fatty acid, phosphate ester, phosphite ester, molybdenum dithiocarbamate (MoDTC), molybdenum dithiophosphate (MoDTP), zinc dithiophosphate (ZnDTP) ) And the like, organic molybdenum extreme pressure agents, phosphorus extreme pressure agents, and chlorine extreme pressure agents.
  • MoDTC molybdenum dithiocarbamate
  • MoDTP molybdenum dithiophosphate
  • ZnDTP zinc dithiophosphate
  • corrosion inhibitors include phosphites, zirconium compounds, tungstates, vanadates, tungstates, silicates, borates, carbonates, amines, benzotriazoles, chelate compounds, and the like.
  • viscosity modifier examples include hydroxyethyl cellulose, carboxymethyl cellulose, polyacrylic amide, sodium polyacrylate, polyvinyl pyrrolidone, polyvinyl alcohol, smectite clay mineral, finely divided silica, bentonite, kaolin and the like.
  • oils examples include vegetable oils, mineral oils, and synthetic oils.
  • surfactants and polymer dispersants include nonionic surfactants, anionic surfactants, amphoteric surfactants, cationic surfactants, and water-soluble polymer dispersants.
  • liquid medium of the plastic working lubricant composition of the present invention examples include alcohols such as ethanol and methanol, and water such as deionized water and pure water.
  • the plastic working lubricant of the present invention can be added to a liquid medium for use.
  • the liquid medium may contain a liquid medium other than alcohols and water (for example, acetone, ethers). In this case, the liquid medium may be 10% by mass or less based on the total mass of the liquid medium. Is preferred.
  • the average particle diameter, interlayer distance, and thermal decomposition weight loss in Examples and Comparative Examples were measured as follows.
  • Average particle size Measurement was performed with a laser diffraction particle size distribution analyzer (SALD-2100, manufactured by Shimadzu Corporation).
  • the temperature was raised from room temperature to 900 ° C. at an air atmosphere (air flow rate 200 ml / min) and a temperature increase rate of 10 ° C./min using a differential thermothermal gravimetric simultaneous measurement apparatus (EXSTAR TG / DTA6300, manufactured by SII Nano Technologies).
  • the sample amount was about 10 mg.
  • the mass% decreased by raising the temperature from room temperature to 900 ° C. was defined as the organic content.
  • the obtained white powder was lithium potassium titanate (K 0.6 Li 0.27 Ti 1.73 O 3.9 ), which is a layered titanate, and had an average particle diameter of 3 ⁇ m.
  • the interlayer distance was 7.8 mm. The results are shown in Table 1.
  • Example 1 65 g of the layered titanate prepared in Comparative Example 1 was dispersed in 5 kg of deionized water, and 150 g of 35% hydrochloric acid was added. After stirring for 1.5 hours, it was separated and washed with water. This operation was repeated three times to obtain layered titanic acid in which K ions and Li ions were exchanged with hydrogen ions or hydronium ions.
  • Example 2 52 g of octadecylamine was dissolved in 2 kg of ethanol, and 50 g of layered titanic acid produced in the same manner as in Example 1 was added thereto with stirring. Stirring was continued at 25 ° C. for 12 hours, and then filtered out. After thoroughly washing with ethanol, it was dried in air at 110 ° C. for 12 hours. A layered titanic acid compound of the present invention having an average particle size of 4 ⁇ m was obtained. The interlayer distance was 34.0 mm by XRD analysis, and it was confirmed that octadecylamine was inserted between the layers. The organic content was 51% by mass due to thermal decomposition loss. The results are shown in Table 2.
  • Example 3 65 g of the layered titanate prepared in Comparative Example 1 was dispersed in 1 kg of deionized water, and 25.2 g of 95% sulfuric acid was added. After stirring for 1 hour, it was separated and washed with water. Layered titanic acid obtained by exchanging K ions and Li ions with hydrogen ions or hydronium ions was used. 50 g of this layered titanic acid was dispersed in 2 kg of deionized water, and 139 g of hexadecylpyridinium chloride was added while heating to 70 ° C. and stirring. Stirring was continued for 1 hour and then filtered out. After thoroughly washing with warm water of 70 ° C., it was dried in air at 110 ° C.
  • Example 4 50 g of layered titanic acid synthesized in the same manner as in Example 3 was dispersed in 2 kg of deionized water, and 66 g of benzalkonium chloride was added while heating to 70 ° C. and stirring. Stirring was continued for 1 hour and then filtered out. After thoroughly washing with warm water of 70 ° C., the film was dried in air at 110 ° C. for 12 hours. A layered titanic acid compound of the present invention having an average particle size of 5 ⁇ m was obtained. The interlayer distance was 22.7 mm by XRD analysis, and it was confirmed that benzalkonium chloride was inserted between the layers. The organic content was 36% by mass due to thermal decomposition weight loss. The results are shown in Table 2.
  • Example 5 27.64 g of potassium carbonate, 4.91 g of lithium carbonate, and 69.23 g of titanium dioxide were pulverized and mixed by a dry method, and this raw material was calcined at 1000 ° C. for 4 hours.
  • the baked sample was immersed in 10 kg of pure water, stirred for 20 hours, separated, washed and dried at 110 ° C. 79.2 L of 10.9% aqueous slurry of the obtained layered titanate was prepared, 4.7 kg of 10% aqueous sulfuric acid solution was added and stirred for 2 hours, and the pH of the slurry was adjusted to 7.0. What was separated and washed with water was dried at 110 ° C. and then calcined at 600 ° C.
  • the obtained white powder was lithium potassium titanate (K 0.6 Li 0.27 Ti 1.73 O 3.9 ), which is a layered titanate, and had an average particle diameter of 20 ⁇ m. According to XRD analysis, the interlayer distance was 7.8 mm.
  • Example 6 27.64 g of potassium carbonate, 11.66 g of magnesium hydroxide, and 63.91 g of titanium dioxide were pulverized and mixed by a dry method, and this raw material was calcined at 1050 ° C. for 4 hours.
  • the baked sample was immersed in 10 kg of pure water, stirred for 20 hours, separated, washed and dried at 110 ° C.
  • 80 L of 2% aqueous slurry of the obtained layered titanate was prepared, and 189 g of 76% sulfuric acid aqueous solution was added and stirred for 2 hours to adjust the pH of the slurry to 7.5. What was separated and washed with water was dried at 110 ° C. and then calcined at 600 ° C. for 12 hours.
  • the obtained white powder was magnesium potassium titanate (K 0.6 Mg 0.4 Ti 1.6 O 3.9 ), which is a layered titanate, and had an average particle diameter of 5 ⁇ m. The interlayer distance was 7.8 mm.
  • Comparative Example 2 50 g of layered titanic acid synthesized in the same manner as in Example 1 was dispersed in 2 kg of deionized water, and 17.4 g of ethylamine was added while stirring at 25 ° C. Immediately after the addition, the interlaminar distance swelled so that it could not be measured, and the single layer peeled off rapidly during stirring. Therefore, for Comparative Example 2, the following average friction coefficient is not measured.
  • the distance between the layers of this dispersion, which was dried, pulverized and powdered, was 9.9 mm.
  • the friction coefficient between metals when each powder was used was measured with a pin-on-disk friction tester (TRB manufactured by Antpearl).
  • TRB pin-on-disk friction tester
  • This testing machine places a weight on the pin shaft, applies a load to the contact part with the disk, rotates the disk, and measures the friction force at this time with a strain gauge provided on the pin side shaft.
  • the friction coefficient obtained by dividing the friction force by the load is output as data. All data is collected via a personal computer.
  • the disk is made of JIS SKH51, thickness is 5 mm, diameter is 20 mm, the pin is made of JIS SUJ2, and the radius of curvature of the tip is 3.175 mm.
  • the measurement of the friction coefficient was performed for 10 minutes under the conditions of a peripheral speed of 15.7 mm / s (contact radius between the disc and the ball was 3 mm), a load of 1 N, an ambient temperature of 25 ° C., and a relative humidity of 38%.
  • about 1g of test powder was supplied to the contact part with the cartridge case. The measurement results are shown in Tables 1 and 2.
  • the solid lubricants composed of the layered titanate compounds of Examples 1 to 6 have a lower coefficient of friction than the solid lubricants of Comparative Examples 1, 3, and 4.
  • the solid lubricants of Examples 1, 2, 5 and 6 have the same or lower friction coefficient as graphite, which is a black solid lubricant.
  • Example 1 the result of observing the disk surface after the friction test with a scanning electron microscope is shown in FIG. It was observed that a tribo film was formed on the friction surface. Further, when this tribo film was subjected to elemental analysis using an energy dispersive X-ray analyzer, Ti was detected.
  • Example 7 5% by mass of the layered titanic acid compound prepared in Example 1, 85% by mass of refined mineral oil, and 10% by mass of lithium soap were mixed, and the mixture was stirred for 5 minutes with a rotation / revolution stirrer (AR-250, manufactured by Shinkey Corp.). A grease composition was prepared by mixing.
  • L value Lightness (L value) measurement with a color difference meter of grease composition>
  • the grease composition prepared in Example 7 and Comparative Examples 7 and 8 was applied to an aluminum plate with a thickness of 2 mm, and a glass plate with a thickness of 1 mm was placed thereon, and a color difference meter (Konica Minolta) was placed thereon.
  • L value (brightness) was measured using CR-300. The results are shown in Table 3.
  • the L value is a numerical value from 0 to 100. A larger number indicates a brighter color, and a smaller number indicates a darker color.
  • the grease composition (Example 7) containing the solid lubricant of Example 1 has a higher fusion load than the grease composition (Comparative Example 8) not containing the solid lubricant.
  • the same fusion load as that of the grease composition (Comparative Example 7) containing molybdenum disulfide was shown.
  • Comparative Example 7 containing molybdenum disulfide has a low L value and a dark color
  • Example 7 containing the solid lubricant of the present invention has a high L value and a bright color. I understand.
  • the solid lubricant of the present invention can improve the lubricity between metal members, and is also useful as a lubricant composition for plastic working. It turns out that it is a thing.
  • Example 8 ⁇ Manufacture of lubricant composition for plastic working> (Example 8) After dissolving 1 g of polyvinylpyrrolidone K90 (manufactured by Wako Pure Chemical Industries, Ltd.) in 90 g of ethanol at room temperature, 9 g of the layered titanate compound prepared in Example 1 was blended, and 2 roll mills (EXAKT) 2 The lubricant composition for plastic working was prepared by passing through a number of times.
  • polyvinylpyrrolidone K90 manufactured by Wako Pure Chemical Industries, Ltd.
  • a lubricant composition for plastic working was prepared by dissolving 1 g of polyvinylpyrrolidone K90 (manufactured by Wako Pure Chemical Industries, Ltd.) in 99 g of ethanol at room temperature.
  • ⁇ Drawing test> For the drawing test, a hydraulic drawing test machine modified from a 100 kN universal tester was used. Both the punch and die are made of SKD11. The punch has a cylindrical shape with a diameter of 29.2 mm, the corner of the tip has a radius of curvature of 3 mm, the die has a donut shape, an outer diameter of 66 mm, an inner diameter of 30 mm, and the R portion has a radius of curvature of 3 mm. The clearance is 0.4 mm.
  • the workpiece is a stainless steel plate (SUS304 BA), which has a diameter of 60 mm and a thickness of 0.3 mm. Therefore, the aperture ratio is 2.1.
  • the test is performed under the conditions of a punch indentation speed of 0.5 mm / sec and a wrinkle pressing surface pressure of 4 MPa.
  • the lubricant composition for plastic working is uniformly applied to the flange portion, R portion, and straight portion of the die every processing. did.
  • the processing force was measured with a load meter installed in the punch unit to evaluate the workability. Since the smaller the maximum processing force during the test, the lower the load, the higher the workability and the higher the productivity. Also, a frictional force can be obtained by subtracting the deformation resistance force of the material depending on the material from the processing force. Table 4 shows the results of the maximum working force and the maximum friction force of each test.
  • the plastic working lubricant composition (Example 8) blended with the solid lubricant of Example 1 is the plastic working lubricant composition blended with molybdenum disulfide (Comparative Example 9), graphite.
  • the maximum working force and the maximum frictional force are lower than those of the plastic working lubricant composition (Comparative Example 10) containing no and the plastic working lubricant composition containing no solid lubricant (Comparative Example 11). It was a result. That is, it can be seen that if the lubricant composition for plastic working containing the solid lubricant of Example 1 is used, it can be molded at a low load, and the workability and productivity are high.

Abstract

Provided are: a solid lubricant which is formed from a layered titanic acid compound and has a low friction coefficient; a grease composition and a lubricant composition for plastic working, each of which uses this solid lubricant; a method for producing a solid lubricant; and a method for processing a metal material. A solid lubricant formed from a layered titanic acid compound which has a layered structure formed of continuous chains of TiO6 octahedrons, while having a cationic organic compound between layers, and which has an interlayer distance of 10 to 70 Å.

Description

固体潤滑剤、グリース組成物、及び塑性加工用潤滑剤組成物、並びに固体潤滑剤の製造方法及び金属材料の加工方法Solid lubricant, grease composition, plastic processing lubricant composition, solid lubricant manufacturing method, and metal material processing method
 本発明は、固体潤滑剤、それを用いたグリース組成物及び塑性加工用潤滑剤組成物、並びに固体潤滑剤の製造方法及び金属材料の加工方法に関する。 The present invention relates to a solid lubricant, a grease composition and a plastic working lubricant composition using the same, a method for producing a solid lubricant, and a method for processing a metal material.
 機械の摺動部においては、金属材料や樹脂材料等からなる摩擦面の間の潤滑を良好にし、作動を円滑にするためにグリース組成物が用いられる。しかし、高荷重、高速域などの過酷な条件では、油膜切れが起こり、潤滑性能が低下することで摩擦面が摩耗し、最終的には焼き付きを起こしてしまうという問題がある。このような問題を解決するために、二硫化モリブデン、二硫化タングステン、グラファイト等の固体潤滑剤を含有したグリース組成物が従来使用されている。 In the sliding part of the machine, a grease composition is used in order to improve the lubrication between the friction surfaces made of a metal material, a resin material, etc., and to make the operation smooth. However, under severe conditions such as a high load and a high speed region, there is a problem that the oil film is cut and the lubrication performance is deteriorated so that the friction surface is worn and finally seizure occurs. In order to solve such a problem, a grease composition containing a solid lubricant such as molybdenum disulfide, tungsten disulfide, and graphite has been conventionally used.
 また、金属材料は、鍛造、圧延等により塑性加工を行う場合、被加工材である金属材料と金型等の工具が摩擦界面で激しく擦れあうため、潤滑剤の使用が不可欠である。近年の塑性加工においては、材料損失のある切削加工を可能な限り減らし、複雑な形状且つ高い寸法精度で、より平滑な表面の加工品を経済的に製造するために、潤滑剤への要求が高まっている。そのため、加工時の面圧、表面積が増して、加工の難易度は上昇し、従来の塑性加工潤滑剤では対応が困難な加工が増加している。このような問題を解決する潤滑剤として、二硫化モリブデン、二硫化タングステン、グラファイト等の固体潤滑剤を多量に含有した潤滑剤組成物が使用されている。 Also, when plastic working is performed on metal materials by forging, rolling, etc., the use of a lubricant is indispensable because the metal material, which is a workpiece, and a tool such as a die rub against each other at the friction interface. In recent plastic working, there is a demand for lubricants in order to reduce the machining with material loss as much as possible, and to economically manufacture workpieces with complex shapes and high dimensional accuracy, and with smoother surfaces. It is growing. For this reason, the surface pressure and surface area during processing increase, the processing difficulty increases, and processing that is difficult to cope with with the conventional plastic processing lubricant is increasing. As a lubricant for solving such problems, a lubricant composition containing a large amount of a solid lubricant such as molybdenum disulfide, tungsten disulfide, or graphite is used.
 しかし、二硫化モリブデン、二硫化タングステン、グラファイト等の固体潤滑剤は、黒色系の粉末であることから作業環境の汚染が問題となり、非黒色系の固体潤滑剤が求められている。 However, since solid lubricants such as molybdenum disulfide, tungsten disulfide, and graphite are black powders, contamination of the work environment becomes a problem, and non-black solid lubricants are required.
 白色系粉末で、耐熱性が高い固体潤滑剤としては、窒化ホウ素が知られている。また、白色系粉末の固体潤滑剤として、特許文献1に、層状粘土鉱物の層間に陽イオン性の有機化合物を担持した有機変性粘土鉱物が開示されている。 Boron nitride is known as a solid lubricant with white powder and high heat resistance. Moreover, as a solid lubricant of a white powder, Patent Document 1 discloses an organic modified clay mineral in which a cationic organic compound is supported between layers of a layered clay mineral.
 一方で、チタン酸塩化合物は白色系粉末として知られているが、特許文献2及び3に、摩擦材の摩擦調整材として使用方法が開示されている。また、チタン酸化合物は、特許文献4に、層間剥離した層状チタン酸が、塗料や樹脂の充填剤、化粧料、顔料等に使用することができ、耐熱性、摺動性等の性能を必要とする分野に使用できることが開示されている。 On the other hand, titanate compounds are known as white powders, but Patent Documents 2 and 3 disclose a method of using them as friction modifiers for friction materials. In addition, the titanic acid compound can be used in Patent Document 4 as a layered titanic acid that has been delaminated and used for paints, resin fillers, cosmetics, pigments, etc., and performance such as heat resistance and slidability is required. It can be used in the following fields.
国際公開第2012/086564号パンフレットInternational Publication No. 2012/086564 Pamphlet 国際公開第2002/010069号パンフレットInternational Publication No. 2002/010069 Pamphlet 国際公開第2003/037797号パンフレットInternational Publication No. 2003/037797 Pamphlet 国際公開第2003/016218号パンフレットInternational Publication No. 2003/016218 Pamphlet
 しかし、窒化ホウ素や特許文献1の化合物の摩擦係数は高く、固体潤滑性は十分なものではない。特許文献2及び3等で開示されているチタン酸塩化合物は、摩擦係数が高く安定していることが求められる摩擦調整材であることから、摩擦係数が高い。特許文献4の層間剥離した層状チタン酸は粉体として取り出そうとすると凝集するという問題があり、また固体潤滑剤としての具体的な使用方法は開示されていない。 However, the coefficient of friction of boron nitride and the compound of Patent Document 1 is high, and the solid lubricity is not sufficient. Since the titanate compounds disclosed in Patent Documents 2 and 3 are friction modifiers that are required to have a high friction coefficient and are stable, the friction coefficient is high. The delaminated layered titanic acid of Patent Document 4 has a problem that it aggregates when it is taken out as a powder, and a specific method of using it as a solid lubricant is not disclosed.
 本発明の目的は、摩擦係数が低い、層状チタン酸化合物からなる固体潤滑剤、及びそれを用いたグリース組成物及び塑性加工用潤滑剤組成物、並びに固体潤滑剤の製造方法及び金属材料の加工方法を提供することにある。 An object of the present invention is to provide a solid lubricant composed of a layered titanate compound having a low friction coefficient, a grease composition and a plastic working lubricant composition using the same, a method for producing the solid lubricant, and processing of a metal material It is to provide a method.
 本発明は、以下の固体潤滑剤、グリース組成物、及び塑性加工用潤滑剤組成物、並びに固体潤滑剤の製造方法及び金属材料の加工方法を提供する。 The present invention provides the following solid lubricant, grease composition, plastic working lubricant composition, solid lubricant manufacturing method and metal material processing method.
 項1 TiO八面体の連鎖により形成される層状構造を有し、層間に陽イオン性の有機化合物を有し、層間距離が10~70Åである層状チタン酸化合物からなる固体潤滑剤。 Item 1 A solid lubricant comprising a layered titanate compound having a layered structure formed by a chain of TiO 6 octahedrons, a cationic organic compound between layers, and an interlayer distance of 10 to 70 mm.
 項2 前記層状チタン酸化合物の前駆体が、一般式K0.5~0.7Li0.27Ti1.733.85~3.95で表されるレピドクロサイト型チタン酸リチウムカリウム又は一般式K0.2~0.7Mg0.4Ti1.63.7~3.95で表されるレピドクロサイト型チタン酸マグネシウムカリウムである、項1に記載の固体潤滑剤。 Item 2 The precursor of the layered titanate compound is a lipid docrosite type lithium potassium titanate represented by the general formula K 0.5 to 0.7 Li 0.27 Ti 1.73 O 3.85 to 3.95 Alternatively, the solid lubricant according to Item 1, which is a lipidocrosite-type magnesium potassium titanate represented by the general formula K 0.2 to 0.7 Mg 0.4 Ti 1.6 O 3.7 to 3.95. .
 項3 前記陽イオン性の有機化合物の含有量が、層状チタン酸化合物全体100質量%中において10~99質量%である、項1又は2に記載の固体潤滑剤。 Item 3. The solid lubricant according to Item 1 or 2, wherein the content of the cationic organic compound is 10 to 99% by mass in 100% by mass of the whole layered titanate compound.
 項4 前記陽イオン性の有機化合物が、有機アンモニウム塩類、有機ホスホニウム塩類、有機スルホニウム塩類から選ばれる少なくとも1種である、項1~3のいずれか一項に記載の固体潤滑剤。 Item 4. The solid lubricant according to any one of Items 1 to 3, wherein the cationic organic compound is at least one selected from organic ammonium salts, organic phosphonium salts, and organic sulfonium salts.
 項5 項1~4のいずれか一項に記載の固体潤滑剤、基油及び増ちょう剤を含有する、グリース組成物。 Item 5. A grease composition containing the solid lubricant, base oil, and thickener according to any one of Items 1 to 4.
 項6 前記基油が、鉱物油、ガス液化油、ジエステル系合成油、芳香族エステル系合成油、ポリオールエステル系合成油、エステル系合成油、ポリグリコール系合成油、フェニルエーテル系合成油、合成炭化水素油、シリコーン系合成油、フッ素系合成油から選ばれる少なくとも1種である、項5に記載のグリース組成物。 Item 6 The base oil is mineral oil, gas liquefied oil, diester synthetic oil, aromatic ester synthetic oil, polyol ester synthetic oil, ester synthetic oil, polyglycol synthetic oil, phenyl ether synthetic oil, synthetic Item 6. The grease composition according to Item 5, which is at least one selected from hydrocarbon oils, silicone-based synthetic oils, and fluorine-based synthetic oils.
 項7 前記増ちょう剤が、アルカリ金属石けん、アルカリ土類金属石けん、アルカリ金属複合石けん、アルカリ土類複合金属石けん、アルカリ金属スルフォネート、アルカリ土類金属スルフォネート、アルミニウム石けん、アルミニウム複合石けん、テレフタラメート金属塩、シリカゲル、クレイ、フッ素樹脂、ウレア化合物から選ばれる少なくとも1種である、項5又は6に記載のグリース組成物。 Item 7: The thickener is an alkali metal soap, alkaline earth metal soap, alkali metal composite soap, alkaline earth composite metal soap, alkali metal sulfonate, alkaline earth metal sulfonate, aluminum soap, aluminum composite soap, terephthalate Item 7. The grease composition according to Item 5 or 6, which is at least one selected from metal salts, silica gel, clay, fluororesin, and urea compounds.
 項8 項1~4のいずれか一項に記載の固体潤滑剤を含有する、塑性加工用潤滑剤組成物。 Item 8. A plastic working lubricant composition comprising the solid lubricant according to any one of Items 1 to 4.
 項9 バインダー成分をさらに含有する、項8に記載の塑性加工用潤滑剤組成物。 Item 9. The plastic working lubricant composition according to Item 8, further comprising a binder component.
 項10 前記バインダー成分が、水溶性無機塩、水溶性有機塩、及び有機高分子から選ばれる少なくとも1種である、項9に記載の塑性加工用潤滑剤組成物。 Item 10. The lubricant composition for plastic processing according to Item 9, wherein the binder component is at least one selected from a water-soluble inorganic salt, a water-soluble organic salt, and an organic polymer.
 項11 滑剤成分をさらに含有する、項8~10のいずれか一項に記載の塑性加工用潤滑剤組成物。 Item 11. The plastic working lubricant composition according to any one of Items 8 to 10, further comprising a lubricant component.
 項12 前記滑剤成分が、石けん類、金属石けん類、及びワックス類から選ばれる少なくとも1種である、項11に記載の塑性加工用潤滑剤組成物。 Item 12. The lubricant composition for plastic working according to Item 11, wherein the lubricant component is at least one selected from soaps, metal soaps, and waxes.
 項13 項1~4のいずれか一項に記載の固体潤滑剤を製造する方法であって、層状チタン酸塩を酸処理して層状チタン酸を製造する工程と、得られた層状チタン酸に塩基性化合物類又はその塩を作用させる工程とを備える、固体潤滑剤の製造方法。 Item 13 is a method for producing the solid lubricant according to any one of Items 1 to 4, wherein the layered titanate is produced by subjecting the layered titanate to an acid treatment, A method for producing a solid lubricant, comprising a step of allowing basic compounds or salts thereof to act.
 項14 被加工材と加工工具の摩擦界面に、項1~4のいずれか一項に記載の固体潤滑剤を介在させて加工する、金属材料の加工方法。 Item 14. A method for processing a metal material, wherein the solid lubricant according to any one of Items 1 to 4 is interposed at a friction interface between a workpiece and a processing tool.
 項15 被加工材と加工工具の摩擦界面に、項8~12のいずれか一項に記載の塑性加工用潤滑剤組成物を介在させて塑性加工する、金属材料の加工方法。 Item 15. A method for processing a metal material, in which plastic working is performed by interposing the lubricant composition for plastic processing according to any one of Items 8 to 12 at a friction interface between a workpiece and a processing tool.
 本発明の固体潤滑剤は、摩擦係数が低く、グリース組成物、塑性加工用潤滑剤組成物等として好適に用いることができる。 The solid lubricant of the present invention has a low coefficient of friction and can be suitably used as a grease composition, a plastic working lubricant composition, or the like.
図1は、本発明の実施例1における摩擦試験後のディスク表面を示す走査型電子顕微鏡写真である。FIG. 1 is a scanning electron micrograph showing the disk surface after a friction test in Example 1 of the present invention.
 以下、本発明を実施した好ましい形態の一例について説明する。但し、以下の実施形態は単なる例示である。本発明は、下記の実施形態に何ら限定されない。 Hereinafter, an example of a preferable embodiment in which the present invention is implemented will be described. However, the following embodiments are merely examples. The present invention is not limited to the following embodiments.
 <固体潤滑剤>
 本発明の固体潤滑剤は、TiO八面体の連鎖により形成される層状構造を有し、層間に陽イオン性の有機化合物を有し、層間距離が10~70Åである層状チタン酸化合物からなる。
<Solid lubricant>
The solid lubricant of the present invention comprises a layered titanate compound having a layered structure formed by a chain of TiO 6 octahedrons, having a cationic organic compound between layers, and having an interlayer distance of 10 to 70 mm. .
 層状チタン酸化合物の層は、本来電気的に中性であるが、4価のTi席の一部を水素イオン又はヒドロニウムイオンで置換されることで負に帯電している。これを層間の陽イオン性の有機化合物、水素イオン、ヒドロニウムイオン又は金属イオンが補償する形になっている。なお、Ti席の一部又は層間には、本発明の優れた性能を有し、本発明の層状チタン酸化合物が電気的中性に保たれる範囲において、1~3価の金属イオンが含まれていてもよい。しかしながら、1~3価の金属イオンは、実質的に含まれていないことが好ましい。ここで「実質的に含まれていない」とは、層状チタン酸化合物全体100質量%中において、1~3価の金属イオン含有量が酸化物換算で3質量%以下のことをいう。 The layer of the layered titanate compound is electrically neutral in nature, but is negatively charged by replacing part of the tetravalent Ti site with hydrogen ions or hydronium ions. This is compensated by a cationic organic compound, hydrogen ion, hydronium ion or metal ion between the layers. In addition, a part or layer of the Ti seat contains a monovalent to trivalent metal ion within the range where the layered titanate compound of the present invention has the excellent performance and is kept electrically neutral. It may be. However, it is preferable that the monovalent to trivalent metal ions are not substantially contained. Here, “substantially not contained” means that the content of monovalent to trivalent metal ions is 3% by mass or less in terms of oxide in 100% by mass of the whole layered titanate compound.
 前記陽イオン性の有機化合物としては、有機アンモニウム塩類、有機ホスホニウム塩類、有機スルホニウム塩類から選ばれる少なくとも1種の有機化合物を挙げることができる。これらの中でも、有機アンモニウム塩類が好ましい。上記の有機化合物は、炭化水素基及び陽イオン性基を有している。 Examples of the cationic organic compound include at least one organic compound selected from organic ammonium salts, organic phosphonium salts, and organic sulfonium salts. Among these, organic ammonium salts are preferable. The organic compound has a hydrocarbon group and a cationic group.
 本発明において「陽イオン性基」とは、後述する1級アミン、2級アミン、3級アミン、4級アンモニウム塩等と、後述する層状チタン酸塩中に存在する水素イオン又はヒドロニウムイオンとが反応することにより生成する陽イオン性基である。 In the present invention, the “cationic group” means a primary amine, a secondary amine, a tertiary amine, a quaternary ammonium salt, etc. described later, a hydrogen ion or a hydronium ion present in a layered titanate described later. Is a cationic group produced by the reaction.
 本発明において「炭化水素基」とは、脂肪族炭化水素基、脂環式炭化水素基及び芳香族炭化水素基を包含する概念であり、直鎖状、分岐状及び環状のいずれの形態であってもよい。また、炭化水素基を構成する一部の炭素原子が他の原子(例えば、O、S等)で置換されていてもよく、更にはC-C鎖間に他の結合(例えば、エステル結合、エーテル結合)を含んでいてもよい。 In the present invention, the “hydrocarbon group” is a concept including an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group, and may be any of linear, branched, and cyclic forms. May be. Further, some carbon atoms constituting the hydrocarbon group may be substituted with other atoms (for example, O, S, etc.), and further, other bonds (for example, ester bonds, An ether bond).
 前記脂肪族炭化水素基としては、炭素数1~40(好ましくは10~20)の脂肪族炭化水素基が好ましく、より具体的には、炭素数1~40(好ましくは10~20)のアルキル基等が挙げられる。前記脂環式炭化水素基としては、炭素数3~40(好ましくは6~20)のシクロアルキル基が挙げられる。さらに前記芳香族炭化水素基としては、炭素数6~40(好ましくは6~20)の芳香族炭化水素基が好ましく、より具体的には炭素数6~40(好ましくは6~20)のアリール基、炭素数7~40(好ましくは7~20)のアラルキル基が挙げられる。これらの中でも直鎖状の炭素数1~40(好ましくは10~20)のアルキル基が好ましく、オクタデシル基、ヘキサデシル基、ドデシル基等が特に好ましい。分岐のない、長鎖のアルキル基であると、チタン酸化合物の層に対してアルキル基が垂直方向に配向しやすく、目的とする層間距離に、チタン酸化合物の層を広げ、更にその維持が容易となるため好ましい。 The aliphatic hydrocarbon group is preferably an aliphatic hydrocarbon group having 1 to 40 (preferably 10 to 20) carbon atoms, and more specifically, an alkyl group having 1 to 40 (preferably 10 to 20) carbon atoms. Groups and the like. Examples of the alicyclic hydrocarbon group include cycloalkyl groups having 3 to 40 (preferably 6 to 20) carbon atoms. Further, the aromatic hydrocarbon group is preferably an aromatic hydrocarbon group having 6 to 40 (preferably 6 to 20) carbon atoms, more specifically an aryl having 6 to 40 (preferably 6 to 20) carbon atoms. And an aralkyl group having 7 to 40 (preferably 7 to 20) carbon atoms. Among these, linear alkyl groups having 1 to 40 (preferably 10 to 20) carbon atoms are preferable, and octadecyl, hexadecyl, dodecyl and the like are particularly preferable. When the long-chain alkyl group is not branched, the alkyl group is easily oriented in the vertical direction with respect to the titanate compound layer, and the titanate compound layer can be expanded to the desired interlayer distance and further maintained. Since it becomes easy, it is preferable.
 前記陽イオン性の有機化合物の含有量は、層状チタン酸化合物全体100質量%中において10~99質量%であること好ましく、20~90質量%であることがより好ましく、30~85質量%であることが更に好ましく、40~80質量%であることが特に好ましい。 The content of the cationic organic compound is preferably 10 to 99% by mass, more preferably 20 to 90% by mass, and more preferably 30 to 85% by mass in 100% by mass of the whole layered titanate compound. More preferred is 40 to 80% by mass.
 本発明の層状チタン酸化合物の層間距離は、10~70Åであり、好ましくは20~60Åであり、さらに好ましくは30~60Åである。前記層間距離は、陽イオン性の有機化合物の種類、量により制御することができる。層間距離をこの範囲にすることで、優れた固体潤滑性(低い摩擦係数)を発現させることができる。層間距離を広くしすぎると、層間剥離が生じ、乾燥して粉体にした際、再積層して凝集が生じる。このため、層間距離を維持することが困難となる。層間距離が狭いと、優れた固体潤滑性が得られない。 The interlayer distance of the layered titanate compound of the present invention is 10 to 70 mm, preferably 20 to 60 mm, and more preferably 30 to 60 mm. The interlayer distance can be controlled by the kind and amount of the cationic organic compound. By setting the interlayer distance within this range, excellent solid lubricity (low friction coefficient) can be exhibited. If the interlayer distance is too large, delamination occurs, and when dried to a powder, it re-stacks and agglomerates. For this reason, it becomes difficult to maintain the interlayer distance. If the interlayer distance is narrow, excellent solid lubricity cannot be obtained.
 前記層間距離は、例えば、X線回折により測定することができる。X線回折パターンにおいて、低角度領域(概ね2θ=20°以下)に等間隔に現れる数本のピークはチタン酸の層構造に由来し、その最も低角度側に現れる第一次ピークの回折角(2θ)から層間距離を算出することができる。具体的には、ブラッグの式「d=nλ/2sinθ」(dは層間距離(Å)、θは第一次ピークの回折角(2θ)を2で割った値、λはCuKα線の波長で1.5418Å、nは正の整数(第一次ピークの場合はn=1)を用いて算出することができる。 The interlayer distance can be measured by, for example, X-ray diffraction. In the X-ray diffraction pattern, several peaks appearing at regular intervals in a low angle region (approximately 2θ = 20 ° or less) are derived from the titanic acid layer structure, and the diffraction angle of the primary peak appearing on the lowest angle side thereof. The interlayer distance can be calculated from (2θ). Specifically, Bragg's equation “d = nλ / 2sinθ” (d is the interlayer distance (Å), θ is the value obtained by dividing the diffraction angle (2θ) of the primary peak by 2, and λ is the wavelength of the CuKα ray. 1.5418Å, n can be calculated using a positive integer (n = 1 in the case of the primary peak).
 本発明の層状チタン酸化合物は、球状、粒状、板状、柱状、ブロック状、不定形状、複数の凸部を有する形状(アメーバ形状)等の粉末状の粒子である。粒子サイズは特に制限されないが、平均粒子径が1~50μmであることが好ましく、1~30μmであることがより好ましく、3~25μmであることがさらに好ましい。本発明において平均粒子径は、レーザー回折・散乱法によって求めた粒度分布における積算基準累積50%時の粒子径(体積基準累積50%粒子径)、すなわちD50(メジアン径)を意味し、この体積基準累積50%粒子径(D50)は、体積基準で粒度分布を求め、全体積を100%とした累積曲線において、粒子サイズの小さいものから粒子数をカウントしていき、累積値が50%となる点の粒子径である。これらの各種粒子形態及び粒子サイズは、後述する層状チタン酸塩の形状により任意に制御することができる。 The layered titanic acid compound of the present invention is powdery particles such as a spherical shape, a granular shape, a plate shape, a columnar shape, a block shape, an indefinite shape, and a shape having a plurality of convex portions (amoeba shape). The particle size is not particularly limited, but the average particle diameter is preferably 1 to 50 μm, more preferably 1 to 30 μm, and even more preferably 3 to 25 μm. In the present invention, the average particle diameter means a particle diameter at a cumulative reference cumulative 50% (volume reference cumulative 50% particle diameter) in a particle size distribution obtained by a laser diffraction / scattering method, that is, D 50 (median diameter). The volume-based cumulative 50% particle diameter (D 50 ) is obtained by calculating the particle size distribution on a volume basis, and counting the number of particles from the smallest particle size in the cumulative curve with the total volume being 100%. % Of the particle diameter. These various particle forms and particle sizes can be arbitrarily controlled by the shape of the layered titanate described later.
 本発明の層状チタン酸化合物は、例えば、レピドクロサイト型チタン酸塩等の層状チタン酸塩を用いて製造することができる。前記層状チタン酸塩は、TiO八面体の連鎖により形成される層状構造を有し、その層間に金属イオンを有する結晶である。この層は本来電気的に中性であるが、4価のTi席の一部を1~3価の金属イオンで置換されることで負に帯電している。この層間の金属イオンが補償する形になっている。 The layered titanate compound of the present invention can be produced using a layered titanate such as a lipidocrocite-type titanate. The layered titanate is a crystal having a layered structure formed by a chain of TiO 6 octahedrons and having metal ions between the layers. This layer is inherently electrically neutral, but is negatively charged by substituting a part of the tetravalent Ti site with a 1 to 3 valent metal ion. The metal ions between the layers are compensated.
 前記レピドクロサイト型チタン酸塩としては、一般式K0.5~0.7Li0.27Ti1.733.85~3.95で表されるレピドクロサイト型チタン酸リチウムカリウム、一般式K0.2~0.7Mg0.4Ti1.63.7~3.95で表されるレピドクロサイト型チタン酸マグネシウムカリウム等を挙げることができ、例えば特許文献2及び3で開示された方法により製造することができる。 Examples of the lipidocrosite type titanate include a lipidocrosite type lithium potassium titanate represented by the general formula K 0.5 to 0.7 Li 0.27 Ti 1.73 O 3.85 to 3.95 , formula K 0.2 ~ 0.7 Mg 0.4 Ti 1.6 O 3.7 ~ may be mentioned lepidocrocite type titanate magnesium potassium represented by 3.95, for example, Patent documents 2 and 3 can be produced by the method disclosed in 3.
 本発明の層状チタン酸化合物は、層状チタン酸塩を酸処理して層状チタン酸を製造する工程(I)と、工程(I)で得られた層状チタン酸に塩基性化合物類又はその塩を作用する工程(II)を含む、方法により製造することができる。 The layered titanic acid compound of the present invention comprises a step (I) of producing a layered titanic acid by acid treatment of the layered titanate, and a basic compound or a salt thereof in the layered titanic acid obtained in the step (I). It can be produced by a method including the step (II) that acts.
 工程(I)は、層状チタン酸塩を酸処理することにより、層状チタン酸塩のTi席の一部を置換している金属イオン及び層間の金属イオンを水素イオン又はヒドロニウムイオンで置換することで、層状チタン酸とすることができる。ここでいう層状チタン酸とは、層間に水分子が存在する水和チタン酸も含むものである。 In the step (I), the layer titanate is acid-treated to replace the metal ions substituting a part of the Ti site of the layer titanate and the metal ions between the layers with hydrogen ions or hydronium ions. Thus, layered titanic acid can be obtained. The layered titanic acid herein includes hydrated titanic acid in which water molecules exist between the layers.
 工程(I)の酸処理に使用する酸は、特に限定されるものではなく、塩酸、硫酸、硝酸、リン酸、ホウ酸等の鉱酸、又は有機酸でもよい。酸処理は、例えば、層状チタン酸塩の水性スラリーに酸を添加して攪拌することにより行うことができる。金属イオンの交換率は、層状チタン酸塩の種類に応じ、酸の種類及び濃度、層状チタン酸塩のスラリー濃度を適宜調整することにより制御することができるが、金属イオンの交換率は、得られる層状チタン酸化合物の層間距離の観点から、70~100%にすることが好ましい。 The acid used for the acid treatment in the step (I) is not particularly limited, and may be a mineral acid such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, boric acid, or an organic acid. The acid treatment can be performed, for example, by adding an acid to an aqueous slurry of layered titanate and stirring. The exchange rate of metal ions can be controlled by appropriately adjusting the type and concentration of acid and the slurry concentration of layered titanate according to the type of layered titanate. From the viewpoint of the interlayer distance of the layered titanic acid compound to be obtained, it is preferably 70 to 100%.
 工程(II)は、工程(I)で得られた層状チタン酸に塩基性化合物類又はその塩を作用し、その後、乾燥し、水、水系媒体等の溶媒を除去することで、粉末状の本発明の層状チタン酸化合物を製造することができる。 In the step (II), a basic compound or a salt thereof is allowed to act on the layered titanic acid obtained in the step (I), and then dried, and a solvent such as water or an aqueous medium is removed. The layered titanic acid compound of the present invention can be produced.
 工程(II)で使用する塩基性化合物類又はその塩は、層状チタン酸の層間膨潤作用があり、目的とする層間距離に制御できるものであれば、特に制限することなく用いることができ、例えば、1~3級の有機アミン類、有機アンモニウム塩類、有機ホスホニウム塩類、有機スルホニウム塩類から選ばれる少なくとも1種を用いることができ、この中でも1~3級の有機アミン類、有機アンモニウム塩類が好ましく、オクタデシルアミン、ヘキサデシルアミン、ヘキサデシルピリジニウムクロライド、塩化ベンザルコニウム、トリメチルステアリルアンモニウムクロライドが特に好ましい。 The basic compounds or salts thereof used in the step (II) can be used without particular limitation as long as they have an interlayer swelling action of layered titanate and can be controlled to a target interlayer distance. At least one selected from primary to tertiary organic amines, organic ammonium salts, organic phosphonium salts, and organic sulfonium salts can be used. Among them, primary to tertiary organic amines and organic ammonium salts are preferable. Octadecylamine, hexadecylamine, hexadecylpyridinium chloride, benzalkonium chloride, and trimethylstearylammonium chloride are particularly preferred.
 工程(II)において、層状チタン酸に塩基性化合物類又はその塩を作用するには、層状チタン酸を水又は水系媒体に分散した懸濁液に、塩基性化合物類又はその塩を直接、又は塩基性化合物類又はその塩を水又は水系媒体で希釈したものを加えて攪拌する。塩基性化合物類又はその塩の添加量としては、層状チタン酸の交換可能イオン容量に対し、0.05~2.0当量の塩基性化合物類又はその塩とすることが好ましく、より好ましくは0.2~1.3当量である。0.05以下では層間距離の拡大が望めず、2.0以上では経済的に得策ではない。ここで、交換可能イオン容量とは、交換可能な金属イオン量であり、例えば層状チタン酸塩が一般式ATi2-(y+z)で表される場合、Aの価数をm、Mの価数をnとするときのmx+nyで表される値をいう。 In the step (II), in order to act the basic compound or a salt thereof on the layered titanic acid, the basic compound or the salt thereof is directly added to a suspension obtained by dispersing the layered titanic acid in water or an aqueous medium, or A basic compound or a salt thereof diluted with water or an aqueous medium is added and stirred. The addition amount of basic compounds or salts thereof is preferably 0.05 to 2.0 equivalents of basic compounds or salts thereof, more preferably 0, relative to the exchangeable ion capacity of layered titanic acid. .2 to 1.3 equivalents. If it is 0.05 or less, it is impossible to increase the interlayer distance, and if it is 2.0 or more, it is not economically advantageous. Herein, the exchangeable ion capacity is a metal ion content replaceable, for example, when the layered titanate is represented by the general formula A x M y □ z Ti 2- (y + z) O 4, the valence of A A value represented by mx + ny when the number is m and the valence of M is n.
 工程(II)において作用させた塩基性化合物類又はその塩が、層間の水素イオン又はヒドロニウムイオンと反応し、陽イオン性の有機化合物となる。 The basic compounds or salts thereof acted in step (II) react with hydrogen ions or hydronium ions between layers to form a cationic organic compound.
 本発明の固体潤滑剤は、層状チタン酸化合物の層間に陽イオン性の有機化合物を有することで、該有機化合物の炭化水素基が潤滑成分として作用し、さらに適度に層間距離を制御することで、へき開により摩擦係数が低減するものと考えられる。 The solid lubricant of the present invention has a cationic organic compound between the layers of the layered titanate compound, so that the hydrocarbon group of the organic compound acts as a lubricating component and further appropriately controls the interlayer distance. It is considered that the coefficient of friction is reduced by cleavage.
 本発明の固体潤滑剤は固体潤滑性が優れていることから、例えば歯車、軸受等における、樹脂部材同士の摺動部分、金属部材同士の摺動部分、または樹脂部材と金属部材との摺動部分等に用いるグリース組成物;金属材料の塑性加工用潤滑剤;金属材料の塑性加工用潤滑剤組成物;化粧品;潤滑性コーティング剤組成物;等における潤滑剤等として好適に用いることができる。 Since the solid lubricant of the present invention has excellent solid lubricity, for example, a sliding portion between resin members, a sliding portion between metal members, or a sliding between a resin member and a metal member in a gear, a bearing, or the like. Grease composition used for parts, etc .; Lubricant for plastic working of metal materials; Lubricant composition for plastic working of metal materials; Cosmetics; Lubricant coating agent compositions;
 <グリース組成物>
 本発明のグリース組成物は、本発明の固体潤滑剤、基油及び増ちょう剤を含有し、例えば歯車、軸受等における、樹脂部材同士の摺動部分、金属部材同士の摺動部分、または樹脂部材と金属部材との摺動部分等に用いることができる。本発明のグリース組成物を用いて潤滑する樹脂部材の樹脂としては、例えば、ポリエチレン(PE)樹脂、ポリプロピレン(PP)樹脂、ABS樹脂、ポリアセタール(POM)、ポリアミド(PA)樹脂、ポリカーボネート(PC)樹脂、フェノール樹脂、ポリエチレンテレフタレート(PET)樹脂、ポリブチレンテレフタレート(PBT)樹脂、ポリフェニレンサルファイド(PPS)樹脂、ポリエーテルスルフォン(PES)樹脂、ポリイミド(PI樹脂)、ポリエーテルエーテルケトン(PEEK)樹脂等が挙げられる。
<Grease composition>
The grease composition of the present invention contains the solid lubricant, the base oil and the thickener of the present invention. For example, in a gear, a bearing or the like, a sliding part between resin members, a sliding part between metal members, or a resin It can be used for the sliding part of a member and a metal member. Examples of the resin of the resin member lubricated using the grease composition of the present invention include polyethylene (PE) resin, polypropylene (PP) resin, ABS resin, polyacetal (POM), polyamide (PA) resin, and polycarbonate (PC). Resin, phenol resin, polyethylene terephthalate (PET) resin, polybutylene terephthalate (PBT) resin, polyphenylene sulfide (PPS) resin, polyether sulfone (PES) resin, polyimide (PI resin), polyether ether ketone (PEEK) resin, etc. Is mentioned.
 グリース組成物中の本発明の固体潤滑剤の含有量は、グリース組成物の合計量100質量%に対して、0.1~50質量%の範囲であることが好ましく、1~20質量%の範囲であることがより好ましい。この範囲より少ないと、潤滑性が不十分となる場合がある。この範囲より多くなると、グリース組成物の硬化や、それに伴いトルクが増大する傾向がある。 The content of the solid lubricant of the present invention in the grease composition is preferably in the range of 0.1 to 50% by mass with respect to 100% by mass of the total amount of the grease composition, and preferably 1 to 20% by mass. A range is more preferable. If it is less than this range, lubricity may be insufficient. When it exceeds this range, there is a tendency that the grease composition is cured and the torque increases accordingly.
 本発明のグリース組成物における、本発明の固体潤滑剤以外の各構成成分について以下に説明する。 In the grease composition of the present invention, each component other than the solid lubricant of the present invention will be described below.
 (基油)
 基油としては、グリース組成物に使用される公知の基油であれば特に限定されず、例えば、減圧蒸留、溶剤脱れき、溶剤抽出、水素化分解、溶剤脱ろう、硫酸洗浄、白土精製、水素化精製等の処理を、適宜組み合わせて原油から精製した鉱物油;天然ガスなどからフィッシャートロプッシュ法により合成されたガス液化油(GTL油);ジブチルセバケート、ジ-2-エチルヘキシルセバケート、ジオクチルアジペート、ジイソデシルアジペート、ジトリデシルアジペート、ジトリデシルグルタレート、メチルアセチルシノレート等のジエステル系合成油;トリオクチルトリメリテート、トリデシルトリメリテート、テトラオクチルピロメリテート等の芳香族エステル系合成油;トリメチロールプロパンカプリレート、トリメチロールプロパンペラルゴネート、ペンタエリスリトール-2-エチルヘキサノエート、ペンタエリスリトールベラルゴネート等のポリオールエステル系合成油;多価アルコールと二塩基酸および一塩基酸の混合脂肪酸とのオリゴエステルであるコンプレックスエステル油等のエステル系合成油;ポリエチレングリコール、ポリプロピレングリコール、ポリエチレングリコールモノエーテル、ポリプロピレングリコールモノエーテル等のポリグリコール系合成油;モノアルキルトリフェニルエーテル、アルキルジフェニルエーテル、ジアルキルジフェニルエーテル、ペンタフェニルエーテル、テトラフェニルエーテル、モノアルキルテトラフェニルエーテル、ジアルキルテトラフェニルエーテル等のフェニルエーテル系合成油;ノルマルパラフィン、イソパラフィン、ポリブテン、ポリイソブチレン、1-デセンオリゴマー、1-デセンとエチレンとのコオリゴマー等のポリ-α-オレフィンまたはこれらの水素化物などの合成炭化水素油;ジメチルポリシロキサン、ジフェニルポリシロキサン、アルキル変性ポリシロキサン等のシリコーン系合成油;パーフルオロポリエーテル等のフッ素系合成油;などが挙げられる。これらのなかでも、リチウム石けん含有グリース組成物でのちょう度収率や、各種添加剤との相性の観点からから、鉱物油、合成炭化水素油が好ましい。
(Base oil)
The base oil is not particularly limited as long as it is a known base oil used in a grease composition, and includes, for example, vacuum distillation, solvent removal, solvent extraction, hydrocracking, solvent dewaxing, sulfuric acid washing, clay refining, Mineral oil refined from crude oil by appropriately combining treatments such as hydrorefining; gas liquefied oil (GTL oil) synthesized from natural gas by the Fischer-Tropsch method; dibutyl sebacate, di-2-ethylhexyl sebacate, Diester synthetic oils such as dioctyl adipate, diisodecyl adipate, ditridecyl adipate, ditridecyl glutarate, methyl acetyl cinnolate; Oil: Trimethylolpropane caprylate, trimethylolpropa Polyol ester synthetic oils such as pelargonate, pentaerythritol-2-ethylhexanoate, pentaerythritol belargonate; complex ester oils that are oligoesters of polyhydric alcohols and dibasic acids and mixed fatty acids of monobasic acids, etc. Ester synthetic oils: Polyglycol synthetic oils such as polyethylene glycol, polypropylene glycol, polyethylene glycol monoether, polypropylene glycol monoether, etc .; monoalkyl triphenyl ether, alkyl diphenyl ether, dialkyl diphenyl ether, pentaphenyl ether, tetraphenyl ether, mono Synthetic oils such as alkyl tetraphenyl ether and dialkyl tetraphenyl ether; normal paraffin, isopa Synthetic hydrocarbon oils such as fin, polybutene, polyisobutylene, 1-decene oligomer, 1-decene co-oligomer and other poly-α-olefins or their hydrides; dimethylpolysiloxane, diphenylpolysiloxane, alkyl-modified And silicone synthetic oils such as polysiloxane; fluorine synthetic oils such as perfluoropolyether; and the like. Among these, mineral oils and synthetic hydrocarbon oils are preferable from the viewpoint of consistency with lithium soap-containing grease compositions and compatibility with various additives.
 基油の含有量は、グリース組成物の合計量100質量%に対して、50質量%以上が好ましく、70質量%以上がより好ましい。基油の含有量が50質量%未満の場合は、グリース組成物の流動性が低下し、トルクの増大を起こす傾向がある。また、基油の含有量は、グリース組成物の合計量100質量%に対して、99質量%以下が好ましく、95質量%以下がより好ましい。基油の含有量が99質量%を超える場合は、過剰な油分離を引き起こし、使用箇所からの漏洩、飛散などが起こる傾向がある。 The content of the base oil is preferably 50% by mass or more, and more preferably 70% by mass or more with respect to 100% by mass of the total amount of the grease composition. When the content of the base oil is less than 50% by mass, the fluidity of the grease composition is lowered and the torque tends to increase. Moreover, 99 mass% or less is preferable with respect to 100 mass% of total amounts of a grease composition, and, as for content of a base oil, 95 mass% or less is more preferable. When the content of the base oil exceeds 99% by mass, excessive oil separation is caused, and there is a tendency for leakage from the use location, scattering, and the like.
 (増ちょう剤)
 増ちょう剤としては、グリース組成物に使用される公知の増ちょう剤であれば特に限定されず、例えば、アルカリ金属石けん(リチウム石けん、ナトリウム石けん等)、アルカリ土類金属石けん(カルシウム石けん等)、アルカリ金属複合石けん、アルカリ土類複合金属石けん、アルカリ金属スルフォネート、アルカリ土類金属スルフォネート、アルミニウム石けん、アルミニウム複合石けん、テレフタラメート金属塩、シリカゲル、クレイ、フッ素樹脂、ウレア化合物(芳香族ジウレア、脂肪族ジウレア、脂環式ジウレア、トリウレア、テトラウレア等)などが挙げられる。これらのなかでも耐熱性の観点からアルカリ金属石けんが好ましく、リチウム石けんがより好ましい。
(Thickener)
The thickener is not particularly limited as long as it is a known thickener used in grease compositions. For example, alkali metal soap (lithium soap, sodium soap, etc.), alkaline earth metal soap (calcium soap, etc.) , Alkali metal composite soap, alkaline earth composite metal soap, alkali metal sulfonate, alkaline earth metal sulfonate, aluminum soap, aluminum composite soap, terephthalate metal salt, silica gel, clay, fluororesin, urea compound (aromatic diurea, Aliphatic diurea, alicyclic diurea, triurea, tetraurea, etc.). Among these, alkali metal soap is preferable from the viewpoint of heat resistance, and lithium soap is more preferable.
 リチウム石けんの種類としては特に限定されず、炭素数10~28の高級脂肪酸および/または1個以上の水酸基を有する炭素数10以上の高級ヒドロキシ脂肪酸とから合成されたリチウム石けんなどを用いることができる。前記高級脂肪酸としては、ラウリン酸、パルミチン酸、ステアリン酸、リノール酸、アラキジン酸、ミリスチン酸、ペンタデカン酸、ヘプタデカン酸、オレイン酸、アラキドン酸、ベヘン酸などが挙げられる。また、前記高級ヒドロキシ脂肪酸としては、12-ヒドロキシステアリン酸、12-ヒドロキシラウリン酸、16-ヒドロキシパルミチン酸などが挙げられる。具体的なリチウム石けんとしては、ラウリン酸リチウム、ステアリン酸リチウム、12-ヒドロキシステアリン酸リチウムなどが挙げられる。 The type of lithium soap is not particularly limited, and lithium soap synthesized from a higher fatty acid having 10 to 28 carbon atoms and / or a higher hydroxy fatty acid having 10 or more hydroxyl groups and having 10 or more hydroxyl groups can be used. . Examples of the higher fatty acid include lauric acid, palmitic acid, stearic acid, linoleic acid, arachidic acid, myristic acid, pentadecanoic acid, heptadecanoic acid, oleic acid, arachidonic acid, and behenic acid. Examples of the higher hydroxy fatty acid include 12-hydroxystearic acid, 12-hydroxylauric acid, and 16-hydroxypalmitic acid. Specific examples of the lithium soap include lithium laurate, lithium stearate, and lithium 12-hydroxystearate.
 増ちょう剤の含有量は、グリース組成物の合計量100質量%に対して、2質量%以上が好ましく、5質量%以上がより好ましい。増ちょう剤の含有量が2質量%未満の場合は、グリース組成物が軟質過ぎるため飛散、漏洩する傾向、過剰な油分離を引き起こす傾向がある。また、増ちょう剤の含有量は、グリース組成物の合計量100質量%に対して、60質量%以下が好ましく、30質量%以下がより好ましい。増ちょう剤の含有量が60質量%を超える場合は、グリース組成物が硬質となり、使用箇所のトルクが増大する傾向、流動性の低下により耐焼付き性や、耐摩耗性の低下が発生する傾向がある。 The content of the thickener is preferably 2% by mass or more, and more preferably 5% by mass or more with respect to 100% by mass of the total amount of the grease composition. When the content of the thickener is less than 2% by mass, the grease composition is too soft and tends to scatter and leak and cause excessive oil separation. Further, the content of the thickener is preferably 60% by mass or less, and more preferably 30% by mass or less, with respect to 100% by mass of the total amount of the grease composition. When the content of the thickener exceeds 60% by mass, the grease composition becomes hard and tends to increase the torque at the point of use, and to cause seizure resistance and wear resistance to decrease due to a decrease in fluidity. There is.
 (その他成分)
 本発明のグリース組成物は、本発明の効果を損なわない範囲で、その他成分として、本発明の固体潤滑剤以外の固体潤滑剤、酸化防止剤、極圧剤、防錆剤、腐食防止剤、粘度指数向上剤、油性剤等が含有されていてもよい。
(Other ingredients)
The grease composition of the present invention is a solid lubricant other than the solid lubricant of the present invention, an antioxidant, an extreme pressure agent, a rust inhibitor, a corrosion inhibitor, and other components as long as the effects of the present invention are not impaired. Viscosity index improvers, oily agents and the like may be contained.
 本発明の固体潤滑剤以外の固体潤滑剤としては、特許文献1に記載の有機変性粘土鉱物、二硫化モリブデン、二硫化タングステン、グラファイト、フッ化黒鉛、六方晶窒化ホウ素(h-BN)、雲母、タルク、炭酸カルシウム、塩基性炭酸マグネシウム、塩基性炭酸亜鉛、水酸化カルシウム、水酸化マグネシウム、酸化マグネシウム、リン酸カルシウム、リン酸亜鉛、トリポリリン酸二水素アルミニウム、ポリテトラフルオロエチレン(PTFE)、メラミンシアヌレート、アミノ酸化合物などが挙げられる。 Examples of the solid lubricant other than the solid lubricant of the present invention include organic modified clay minerals, molybdenum disulfide, tungsten disulfide, graphite, fluorinated graphite, hexagonal boron nitride (h-BN), mica described in Patent Document 1. , Talc, calcium carbonate, basic magnesium carbonate, basic zinc carbonate, calcium hydroxide, magnesium hydroxide, magnesium oxide, calcium phosphate, zinc phosphate, aluminum dihydrogen tripolyphosphate, polytetrafluoroethylene (PTFE), melamine cyanurate And amino acid compounds.
 酸化防止剤としては、2,6-ジ-t-ブチル-4-メチルフェノール、4,4’-メチレンビス(2,6-ジ-t-ブチルフェノール)などのフェノール系や、アルキルジフェニルアミン(アルキル基は炭素数4~20のもの)、トリフェニルアミン、フェニル-α-ナフチルアミン、フェノチアジン、アルキル化フェニル-α-ナフチルアミン、フェニチアジン、アルキル化フェノチアジンなどのアミン系酸化防止剤、フェノール系アミン系酸化防止剤、ホスファイト系アミン系酸化防止剤、硫黄系アミン系酸化防止剤、ジアルキルジチオリン酸塩などが挙げられる。 Antioxidants include phenols such as 2,6-di-t-butyl-4-methylphenol and 4,4′-methylenebis (2,6-di-t-butylphenol), alkyldiphenylamines (the alkyl group is Having 4 to 20 carbon atoms), amine-based antioxidants such as triphenylamine, phenyl-α-naphthylamine, phenothiazine, alkylated phenyl-α-naphthylamine, phenothiazine, alkylated phenothiazine, phenolic amine-based antioxidants, Examples thereof include phosphite amine antioxidants, sulfur amine antioxidants, and dialkyl dithiophosphates.
 極圧剤としては、硫化オレフィン、硫化エステル、サルファイト、チオカーボネート、塩素化脂肪酸、リン酸エステル、亜リン酸エステル、モリブデンジチオカーバメート(MoDTC)、モリブデンジチオホスフェート(MoDTP)、亜鉛ジチオホスフェート(ZnDTP)などの硫黄系極圧剤、有機モリブデン系極圧剤、リン系極圧剤、塩素系極圧剤などが挙げられる。 Extreme pressure agents include sulfurized olefin, sulfurized ester, sulfite, thiocarbonate, chlorinated fatty acid, phosphate ester, phosphite ester, molybdenum dithiocarbamate (MoDTC), molybdenum dithiophosphate (MoDTP), zinc dithiophosphate (ZnDTP) ), Etc., organic molybdenum extreme pressure agents, phosphorus extreme pressure agents, chlorine extreme pressure agents and the like.
 防錆剤としては、アルキルスルホン酸塩、脂肪酸アミン、酸化パラフィン、ポリオキシエチレンアルキルエーテルなどが挙げられる。 Examples of rust preventives include alkyl sulfonates, fatty acid amines, oxidized paraffins, and polyoxyethylene alkyl ethers.
 腐食防止剤としては、ベンゾトリアゾール、ベンゾイミダゾール、チアジアゾールなどが挙げられる。 Corrosion inhibitors include benzotriazole, benzimidazole, thiadiazole and the like.
 粘度指数向上剤としては、ポリメタクリレート、エチレン-プロピレン共重合体、ポリイソブチレン、ポリアルキルスチレン、スチレン-イソプレン共重合体水素化物などが挙げられる。 Examples of the viscosity index improver include polymethacrylate, ethylene-propylene copolymer, polyisobutylene, polyalkylstyrene, styrene-isoprene copolymer hydride, and the like.
 油性剤としては、脂肪酸、高級アルコール、多価アルコール、多価アルコールエステル、脂肪族エステル、脂肪族アミン、脂肪酸モノグリセライドなどが挙げられる。 Examples of the oil-based agent include fatty acids, higher alcohols, polyhydric alcohols, polyhydric alcohol esters, aliphatic esters, aliphatic amines, fatty acid monoglycerides and the like.
 その他成分の含有量は、グリース組成物の合計量100質量%に対して、0.1~10質量%が好ましく、0.25~5質量%がより好ましい。 The content of other components is preferably 0.1 to 10% by mass and more preferably 0.25 to 5% by mass with respect to 100% by mass of the total amount of the grease composition.
 <塑性加工用潤滑剤組成物>
 本発明の固体潤滑剤を、金属材料の塑性加工用潤滑剤として用いる場合、例えば、本発明の固体潤滑剤に、バインダー成分、滑剤成分等を配合した塑性加工用潤滑剤組成物としても用いることができる。塑性加工用潤滑剤組成物中の本発明の固体潤滑剤の含有量は、潤滑剤組成物の合計量100質量%に対して、5~95質量%の範囲であることが好ましく、5~40質量%の範囲であることがより好ましい。この範囲より少ないと、潤滑性が不十分となる場合がある。この範囲より多くなると、本発明の固体潤滑剤を皮膜中に保持することが困難となる場合がある。
<Lubricant composition for plastic working>
When the solid lubricant of the present invention is used as a plastic working lubricant for a metal material, for example, the solid lubricant of the present invention is also used as a plastic working lubricant composition in which a binder component, a lubricant component, etc. are blended. Can do. The content of the solid lubricant of the present invention in the plastic working lubricant composition is preferably in the range of 5 to 95% by mass with respect to 100% by mass of the total amount of the lubricant composition. More preferably, it is in the range of mass%. If it is less than this range, lubricity may be insufficient. If it exceeds this range, it may be difficult to keep the solid lubricant of the present invention in the film.
 (バインダー成分)
 バインダー成分は、本発明の固体潤滑剤組成物を、被加工材と加工工具の摩擦界面に導入保持するための皮膜成分として用いられる。バインダー成分としては、硫酸塩、ケイ酸塩、ホウ酸塩、モリブデン酸塩、バナジン酸塩、タングステン酸塩などの水溶性無機塩;リンゴ酸塩、コハク酸塩、クエン酸塩、酒石酸塩などの水溶性有機塩;ビニル系樹脂、アクリル系樹脂、アミド系樹脂、エポキシ系樹脂、フェノール系樹脂、ウレタン系樹脂およびポリマレイン酸系樹脂などの有機高分子が例示される。
(Binder component)
The binder component is used as a coating component for introducing and holding the solid lubricant composition of the present invention at the friction interface between the workpiece and the processing tool. Binder components include water-soluble inorganic salts such as sulfate, silicate, borate, molybdate, vanadate, tungstate; malate, succinate, citrate, tartrate, etc. Water-soluble organic salts; organic polymers such as vinyl resins, acrylic resins, amide resins, epoxy resins, phenol resins, urethane resins and polymaleic acid resins are exemplified.
 バインダー成分は、質量比(本発明の固体潤滑剤)/(バインダー成分)で、5/95~95/5の範囲であることが好ましく、15/85~90/10の範囲であることがより好ましい。 The binder component is preferably in the range of 5/95 to 95/5, more preferably in the range of 15/85 to 90/10 in terms of mass ratio (solid lubricant of the present invention) / (binder component). preferable.
 (滑剤成分)
 滑剤成分としては、石けん類(ステアリン酸ナトリウム、ステアリン酸カリウム、オレイン酸ナトリウム等)、金属石けん類(ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸アルミニウム、ステアリン酸バリウム、ステアリン酸リチウム、ステアリン酸亜鉛、パルミチン酸カルシウム等)、ワックス類(ポリエチレンワックス、ポリプロピレンワックス、カルナウバロウ、ミツロウ、パラフィンワックス、マイクロクリスタリンワックス等)などから選ばれる少なくとも1種を用いることができる。
(Lubricant component)
Lubricant components include soaps (sodium stearate, potassium stearate, sodium oleate, etc.), metal soaps (calcium stearate, magnesium stearate, aluminum stearate, barium stearate, lithium stearate, zinc stearate, palmitic acid) And at least one selected from waxes (polyethylene wax, polypropylene wax, carnauba wax, beeswax, paraffin wax, microcrystalline wax, etc.).
 滑剤成分は、質量比(本発明の固体潤滑剤)/(滑剤成分)で、25/75~100/0の範囲であることが好ましい。 The lubricant component is preferably in the range of 25/75 to 100/0 in terms of mass ratio (solid lubricant of the present invention) / (lubricant component).
 (その他の成分)
 本発明の塑性加工用潤滑剤組成物には、その他の成分として、本発明の固体潤滑剤以外の固体潤滑剤、極圧剤、腐食抑制剤、粘度調整剤、油類、界面活性剤、高分子分散剤が含有されていてもよい。
(Other ingredients)
The plastic working lubricant composition of the present invention includes, as other components, solid lubricants other than the solid lubricant of the present invention, extreme pressure agents, corrosion inhibitors, viscosity modifiers, oils, surfactants, A molecular dispersant may be contained.
 本発明の固体潤滑剤以外の固体潤滑剤としては、特許文献1に記載の有機変性粘土鉱物、二硫化モリブデン、二硫化タングステン、グラファイト、フッ化黒鉛、六方晶窒化ホウ素(h-BN)、雲母、タルク、炭酸カルシウム、塩基性炭酸マグネシウム、塩基性炭酸亜鉛、水酸化カルシウム、水酸化マグネシウム、酸化マグネシウム、リン酸カルシウム、リン酸亜鉛、トリポリリン酸二水素アルミニウム、ポリテトラフルオロエチレン(PTFE)、メラミンシアヌレート、アミノ酸化合物などが挙げられる。 Examples of the solid lubricant other than the solid lubricant of the present invention include organic modified clay minerals, molybdenum disulfide, tungsten disulfide, graphite, fluorinated graphite, hexagonal boron nitride (h-BN), mica described in Patent Document 1. , Talc, calcium carbonate, basic magnesium carbonate, basic zinc carbonate, calcium hydroxide, magnesium hydroxide, magnesium oxide, calcium phosphate, zinc phosphate, aluminum dihydrogen tripolyphosphate, polytetrafluoroethylene (PTFE), melamine cyanurate And amino acid compounds.
 極圧剤としては、硫化オレフィン、硫化エステル、サルファイト、チオカーボネート、塩素化脂肪酸、リン酸エステル、亜リン酸エステル、モリブデンジチオカーバメート(MoDTC)、モリブデンジチオホスフェート(MoDTP)、亜鉛ジチオホスフェート(ZnDTP)などの硫黄系極圧剤、有機モリブデン系極圧剤、リン系極圧剤及び塩素系極圧剤などが挙げられる。 Extreme pressure agents include sulfurized olefin, sulfurized ester, sulfite, thiocarbonate, chlorinated fatty acid, phosphate ester, phosphite ester, molybdenum dithiocarbamate (MoDTC), molybdenum dithiophosphate (MoDTP), zinc dithiophosphate (ZnDTP) ) And the like, organic molybdenum extreme pressure agents, phosphorus extreme pressure agents, and chlorine extreme pressure agents.
 腐食抑制剤としては、亜リン酸塩、ジルコニウム化合物、タングステン酸塩、バナジン酸塩、タングステン酸塩、ケイ酸塩、ホウ酸塩、炭酸塩、アミン類、ベンゾトリアゾール類、キレート化合物などが挙げられる。 Examples of corrosion inhibitors include phosphites, zirconium compounds, tungstates, vanadates, tungstates, silicates, borates, carbonates, amines, benzotriazoles, chelate compounds, and the like. .
 粘度調整剤としては、ヒドロキシエチルセルロース、カルボキシメチルセルロース、ポリアクリル酸アミド、ポリアクリル酸ナトリウム、ポリビニルピロリドン、ポリビニルアルコール、スメクタイト系粘土鉱物、微粉シリカ、ベントナイト、カオリンなどが挙げられる。 Examples of the viscosity modifier include hydroxyethyl cellulose, carboxymethyl cellulose, polyacrylic amide, sodium polyacrylate, polyvinyl pyrrolidone, polyvinyl alcohol, smectite clay mineral, finely divided silica, bentonite, kaolin and the like.
 油類としては、植物油、鉱物油、合成油などが挙げられる。 Examples of oils include vegetable oils, mineral oils, and synthetic oils.
 界面活性剤及び高分子分散剤としては、非イオン性界面活性剤、陰イオン性界面活性剤、両性界面活性剤、陽イオン性界面活性剤、水溶性高分子分散剤などが挙げられる。 Examples of surfactants and polymer dispersants include nonionic surfactants, anionic surfactants, amphoteric surfactants, cationic surfactants, and water-soluble polymer dispersants.
 (液体媒体)
 本発明の塑性加工用潤滑剤組成物の液体媒体としては、エタノール、メタノールなどのアルコール類や、脱イオン水、純水などの水が挙げられる。液体媒体に、本発明の塑性加工用潤滑剤を添加して用いることができる。なお、液体媒体としてアルコール類や水以外の他の液体媒体を含有していてもよく(例えばアセトン、エーテル類)、この場合には液体媒体の全質量を基準として10質量%以下とすることが好適である。
(Liquid medium)
Examples of the liquid medium of the plastic working lubricant composition of the present invention include alcohols such as ethanol and methanol, and water such as deionized water and pure water. The plastic working lubricant of the present invention can be added to a liquid medium for use. The liquid medium may contain a liquid medium other than alcohols and water (for example, acetone, ethers). In this case, the liquid medium may be 10% by mass or less based on the total mass of the liquid medium. Is preferred.
 以下、本発明について、具体的な実施例に基づいて、さらに詳細に説明する。本発明は、以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能である。なお、%は質量%である。 Hereinafter, the present invention will be described in more detail based on specific examples. The present invention is not limited to the following examples, and can be implemented with appropriate modifications without departing from the scope of the invention. In addition,% is the mass%.
 実施例及び比較例における平均粒子径、層間距離、及び熱分解減量は、以下のようにして測定した。 The average particle diameter, interlayer distance, and thermal decomposition weight loss in Examples and Comparative Examples were measured as follows.
 (平均粒子径)
 レーザー回折式粒度分布測定装置(島津製作所社製、SALD-2100)により測定した。
(Average particle size)
Measurement was performed with a laser diffraction particle size distribution analyzer (SALD-2100, manufactured by Shimadzu Corporation).
 (層間距離)
 X線回折装置(XRD、リガク社製、UltimaIV)を用いて測定した。測定条件は、ターゲット:Cu、管電圧:40kV、管電流:40mA、サンプリング幅:2θ=0.02°、スキャン速度2θ=30°/分とした。
(Interlayer distance)
It measured using the X-ray-diffraction apparatus (XRD, the Rigaku company make, Ultimate IV). The measurement conditions were: target: Cu, tube voltage: 40 kV, tube current: 40 mA, sampling width: 2θ = 0.02 °, scan speed 2θ = 30 ° / min.
 (熱分解減量)
 示差熱熱重量同時測定装置(エスアイアイ・ナノテクノロジーズ社製、EXSTAR6000 TG/DTA6300)により、空気雰囲気(空気流量200ml/分)、昇温速度10℃/分で室温から900℃まで昇温した。サンプル量は約10mgとした。室温から900℃まで昇温させて減少した質量%を有機分とした。
(Pyrolysis weight loss)
The temperature was raised from room temperature to 900 ° C. at an air atmosphere (air flow rate 200 ml / min) and a temperature increase rate of 10 ° C./min using a differential thermothermal gravimetric simultaneous measurement apparatus (EXSTAR TG / DTA6300, manufactured by SII Nano Technologies). The sample amount was about 10 mg. The mass% decreased by raising the temperature from room temperature to 900 ° C. was defined as the organic content.
 <固体潤滑剤の製造>
 (比較例1)
 炭酸カリウム27.64g、炭酸リチウム4.91g、二酸化チタン69.23gを乾式で粉砕混合し、この原料を850℃にて4時間焼成した。焼成後の試料を10kgの純水に浸して20時間攪拌後に分離、水洗したものを110℃で乾燥した。得られた層状チタン酸塩の10.9%水スラリー79.2Lを調製し、10%硫酸水溶液4.7kgを加えて2時間攪拌し、スラリーのpHを7.0に調整した。分離、水洗したものを110℃で乾燥した後、600℃で12時間焼成した。得られた白色粉末は、層状チタン酸塩であるチタン酸リチウムカリウム(K0.6Li0.27Ti1.733.9)であり、平均粒子径3μmであった。層間距離は7.8Åであった。結果を表1に示した。
<Manufacture of solid lubricant>
(Comparative Example 1)
27.64 g of potassium carbonate, 4.91 g of lithium carbonate, and 69.23 g of titanium dioxide were pulverized and mixed by a dry method, and this raw material was calcined at 850 ° C. for 4 hours. The baked sample was immersed in 10 kg of pure water, stirred for 20 hours, separated, washed and dried at 110 ° C. 79.2 L of 10.9% aqueous slurry of the obtained layered titanate was prepared, 4.7 kg of 10% aqueous sulfuric acid solution was added and stirred for 2 hours, and the pH of the slurry was adjusted to 7.0. What was separated and washed with water was dried at 110 ° C. and then calcined at 600 ° C. for 12 hours. The obtained white powder was lithium potassium titanate (K 0.6 Li 0.27 Ti 1.73 O 3.9 ), which is a layered titanate, and had an average particle diameter of 3 μm. The interlayer distance was 7.8 mm. The results are shown in Table 1.
 (実施例1)
 比較例1で製造した層状チタン酸塩65gを脱イオン水5kgに分散し、35%塩酸150gを添加した。1.5時間攪拌した後、分離、水洗した。この操作を3回繰り返し、KイオンとLiイオンを水素イオンまたはヒドロニウムイオンに交換した層状チタン酸とした。
Example 1
65 g of the layered titanate prepared in Comparative Example 1 was dispersed in 5 kg of deionized water, and 150 g of 35% hydrochloric acid was added. After stirring for 1.5 hours, it was separated and washed with water. This operation was repeated three times to obtain layered titanic acid in which K ions and Li ions were exchanged with hydrogen ions or hydronium ions.
 この層状チタン酸50gをさらに脱イオン水2kgに分散させ、70℃に加温し、攪拌しながら、オクタデシルアミン104gを添加した。1時間攪拌を続けた後、濾過して取り出した。70℃の温水で十分洗浄した後、空気中40℃で24時間乾燥した。平均粒子径5μmの本発明の層状チタン酸化合物を得た。XRD分析により層間距離は57.4Åであり、オクタデシルアミンが層間挿入されていることを確認した。熱分解減量により、有機分は73質量%であった。結果を表2に示した。 50 g of this layered titanic acid was further dispersed in 2 kg of deionized water, heated to 70 ° C., and 104 g of octadecylamine was added with stirring. Stirring was continued for 1 hour and then filtered out. After sufficiently washing with warm water of 70 ° C., the film was dried in air at 40 ° C. for 24 hours. A layered titanic acid compound of the present invention having an average particle size of 5 μm was obtained. The interlayer distance was 57.4 mm by XRD analysis, and it was confirmed that octadecylamine was inserted between the layers. The organic content was 73% by mass due to thermal decomposition loss. The results are shown in Table 2.
 (実施例2)
 オクタデシルアミン52gをエタノール2kgに溶解させ、そこに実施例1と同様に製造した層状チタン酸50gを攪拌しながら添加した。25℃で12時間攪拌を続けた後、濾過して取り出した。エタノールで十分洗浄した後、空気中110℃で12時間乾燥した。平均粒子径4μmの本発明の層状チタン酸化合物を得た。XRD分析により層間距離は34.0Åであり、オクタデシルアミンが層間挿入されていることを確認した。熱分解減量により、有機分は51質量%であった。結果を表2に示した。
(Example 2)
52 g of octadecylamine was dissolved in 2 kg of ethanol, and 50 g of layered titanic acid produced in the same manner as in Example 1 was added thereto with stirring. Stirring was continued at 25 ° C. for 12 hours, and then filtered out. After thoroughly washing with ethanol, it was dried in air at 110 ° C. for 12 hours. A layered titanic acid compound of the present invention having an average particle size of 4 μm was obtained. The interlayer distance was 34.0 mm by XRD analysis, and it was confirmed that octadecylamine was inserted between the layers. The organic content was 51% by mass due to thermal decomposition loss. The results are shown in Table 2.
 (実施例3)
 比較例1で製造した層状チタン酸塩65gを脱イオン水1kgに分散し、95%硫酸25.2gを添加した。1時間攪拌した後、分離、水洗した。KイオンとLiイオンを水素イオンまたはヒドロニウムイオンに交換した層状チタン酸とした。この層状チタン酸50gを脱イオン水2kgに分散させ、70℃に加温し攪拌しながら、ヘキサデシルピリジニウムクロライド139gを添加した。1時間攪拌を続けた後、濾過して取り出した。70℃の温水で十分洗浄した後、空気中110℃ で12時間乾燥した。平均粒子径4μmの本発明の層状チタン酸化合物を得た。XRD分析により層間距離は24.5Åであり、ヘキサデシルピリジニウムクロライドが層間挿入されていることを確認した。熱分解減量により、有機分は39質量%であった。結果を表2に示した。
(Example 3)
65 g of the layered titanate prepared in Comparative Example 1 was dispersed in 1 kg of deionized water, and 25.2 g of 95% sulfuric acid was added. After stirring for 1 hour, it was separated and washed with water. Layered titanic acid obtained by exchanging K ions and Li ions with hydrogen ions or hydronium ions was used. 50 g of this layered titanic acid was dispersed in 2 kg of deionized water, and 139 g of hexadecylpyridinium chloride was added while heating to 70 ° C. and stirring. Stirring was continued for 1 hour and then filtered out. After thoroughly washing with warm water of 70 ° C., it was dried in air at 110 ° C. for 12 hours. A layered titanic acid compound of the present invention having an average particle size of 4 μm was obtained. The interlayer distance was 24.5 mm by XRD analysis, and it was confirmed that hexadecylpyridinium chloride was inserted between the layers. The organic content was 39% by mass due to thermal decomposition loss. The results are shown in Table 2.
 (実施例4)
 実施例3と同様に合成した層状チタン酸50gを脱イオン水2kgに分散させ、70℃に加温し攪拌しながら、塩化ベンザルコニウム66gを添加した。1時間攪拌を続けた後、濾過して取り出した。70℃の温水で十分洗浄した後、空気中110℃で12時間乾燥した。平均粒子径5μmの本発明の層状チタン酸化合物を得た。XRD分析により層間距離は22.7Åであり、塩化ベンザルコニウムが層間挿入されていることを確認した。熱分解減量により、有機分は36質量%であった。結果を表2に示した。
(Example 4)
50 g of layered titanic acid synthesized in the same manner as in Example 3 was dispersed in 2 kg of deionized water, and 66 g of benzalkonium chloride was added while heating to 70 ° C. and stirring. Stirring was continued for 1 hour and then filtered out. After thoroughly washing with warm water of 70 ° C., the film was dried in air at 110 ° C. for 12 hours. A layered titanic acid compound of the present invention having an average particle size of 5 μm was obtained. The interlayer distance was 22.7 mm by XRD analysis, and it was confirmed that benzalkonium chloride was inserted between the layers. The organic content was 36% by mass due to thermal decomposition weight loss. The results are shown in Table 2.
 (実施例5)
 炭酸カリウム27.64g、炭酸リチウム4.91g、二酸化チタン69.23gを乾式で粉砕混合し、この原料を1000℃にて4時間焼成した。焼成後の試料を10kgの純水に浸して20時間攪拌後に分離、水洗したものを110℃で乾燥した。得られた層状チタン酸塩の10.9%水スラリー79.2Lを調製し、10%硫酸水溶液4.7kgを加えて2時間攪拌し、スラリーのpHを7.0に調整した。分離、水洗したものを110℃で乾燥した後、600℃で12時間焼成した。得られた白色粉末は、層状チタン酸塩であるチタン酸リチウムカリウム(K0.6Li0.27Ti1.733.9)であり、平均粒子径20μmであった。XRD分析により、層間距離は7.8Åであった。
(Example 5)
27.64 g of potassium carbonate, 4.91 g of lithium carbonate, and 69.23 g of titanium dioxide were pulverized and mixed by a dry method, and this raw material was calcined at 1000 ° C. for 4 hours. The baked sample was immersed in 10 kg of pure water, stirred for 20 hours, separated, washed and dried at 110 ° C. 79.2 L of 10.9% aqueous slurry of the obtained layered titanate was prepared, 4.7 kg of 10% aqueous sulfuric acid solution was added and stirred for 2 hours, and the pH of the slurry was adjusted to 7.0. What was separated and washed with water was dried at 110 ° C. and then calcined at 600 ° C. for 12 hours. The obtained white powder was lithium potassium titanate (K 0.6 Li 0.27 Ti 1.73 O 3.9 ), which is a layered titanate, and had an average particle diameter of 20 μm. According to XRD analysis, the interlayer distance was 7.8 mm.
 このチタン酸リチウムカリウム65gを脱イオン水5kgに分散し、35%塩酸150gを添加した。1.5時間攪拌した後、分離、水洗した。この操作を3回繰り返し、KイオンとLiイオンを水素イオンまたはヒドロニウムイオンに交換した層状チタン酸とした。 65 g of this lithium potassium titanate was dispersed in 5 kg of deionized water, and 150 g of 35% hydrochloric acid was added. After stirring for 1.5 hours, it was separated and washed with water. This operation was repeated three times to obtain layered titanic acid in which K ions and Li ions were exchanged with hydrogen ions or hydronium ions.
 この層状チタン酸50gをさらに脱イオン水2kgに分散させ、70℃に加温し、攪拌しながら、オクタデシルアミン104gを添加した。1時間攪拌を続けた後、濾過して取り出した。70℃の温水で十分洗浄した後、空気中40℃で24時間乾燥した。平均粒子径21μmの本発明の層状チタン酸化合物を得た。XRD分析により層間距離は58.0Åであり、オクタデシルアミンが層間挿入されていることを確認した。熱分解減量により、有機分は76質量%であった。結果を表2に示した。 50 g of this layered titanic acid was further dispersed in 2 kg of deionized water, heated to 70 ° C., and 104 g of octadecylamine was added with stirring. Stirring was continued for 1 hour and then filtered out. After sufficiently washing with warm water of 70 ° C., the film was dried in air at 40 ° C. for 24 hours. A layered titanic acid compound of the present invention having an average particle size of 21 μm was obtained. The interlayer distance was 58.0 mm by XRD analysis, and it was confirmed that octadecylamine was inserted between the layers. The organic content was 76% by mass due to thermal decomposition loss. The results are shown in Table 2.
 (実施例6)
 炭酸カリウム27.64g、水酸化マグネシウム11.66g、二酸化チタン63.91gを乾式で粉砕混合し、この原料を1050℃にて4時間焼成した。焼成後の試料を10kgの純水に浸して20時間攪拌後に分離、水洗したものを110℃で乾燥した。得られた層状チタン酸塩の2%水スラリー80Lを調製し、76%硫酸水溶液189gを加えて2時間攪拌し、スラリーのpHを7.5に調整した。分離、水洗したものを110℃で乾燥した後、600℃で12時間焼成した。得られた白色粉末は、層状チタン酸塩であるチタン酸マグネシウムカリウム(K0.6Mg0.4Ti1.63.9)であり、平均粒子径5μmであった。層間距離は7.8Åであった。
(Example 6)
27.64 g of potassium carbonate, 11.66 g of magnesium hydroxide, and 63.91 g of titanium dioxide were pulverized and mixed by a dry method, and this raw material was calcined at 1050 ° C. for 4 hours. The baked sample was immersed in 10 kg of pure water, stirred for 20 hours, separated, washed and dried at 110 ° C. 80 L of 2% aqueous slurry of the obtained layered titanate was prepared, and 189 g of 76% sulfuric acid aqueous solution was added and stirred for 2 hours to adjust the pH of the slurry to 7.5. What was separated and washed with water was dried at 110 ° C. and then calcined at 600 ° C. for 12 hours. The obtained white powder was magnesium potassium titanate (K 0.6 Mg 0.4 Ti 1.6 O 3.9 ), which is a layered titanate, and had an average particle diameter of 5 μm. The interlayer distance was 7.8 mm.
 このチタン酸マグネシウムカリウム65gを脱イオン水5kgに分散し、35%塩酸150gを添加した。1.5時間攪拌した後、分離、水洗した。この操作を3回繰り返し、KイオンとMgイオンを水素イオンまたはヒドロニウムイオンに交換した層状チタン酸とした。 65 g of this magnesium potassium titanate was dispersed in 5 kg of deionized water, and 150 g of 35% hydrochloric acid was added. After stirring for 1.5 hours, it was separated and washed with water. This operation was repeated three times to obtain layered titanic acid in which K ions and Mg ions were exchanged with hydrogen ions or hydronium ions.
 この層状チタン酸50gをさらに脱イオン水2kgに分散させ、70℃に加温し、攪拌しながら、オクタデシルアミン104gを添加した。1時間攪拌を続けた後、濾過して取り出した。70℃の温水で十分洗浄した後、空気中40℃で24時間乾燥した。平均粒子径5μmの本発明の層状チタン酸化合物を得た。XRD分析により層間距離は58.3Åであり、オクタデシルアミンが層間挿入されていることを確認した。熱分解減量により、有機分は77質量%であった。結果を表2に示した。 50 g of this layered titanic acid was further dispersed in 2 kg of deionized water, heated to 70 ° C., and 104 g of octadecylamine was added with stirring. Stirring was continued for 1 hour and then filtered out. After sufficiently washing with warm water of 70 ° C., the film was dried in air at 40 ° C. for 24 hours. A layered titanic acid compound of the present invention having an average particle size of 5 μm was obtained. The interlayer distance was 58.3 mm by XRD analysis, and it was confirmed that octadecylamine was inserted between the layers. The organic content was 77% by mass due to thermal decomposition loss. The results are shown in Table 2.
 (比較例2)
 実施例1と同様に合成した層状チタン酸50gを脱イオン水2kgに分散させ、25℃で攪拌しながら、エチルアミン17.4gを添加した。添加後すぐに層間距離が測定できないほど膨潤し、攪拌中に速やかに単層剥離するため、濾過して粉末として取り出すことは出来なかった。したがって、比較例2については、以下の平均摩擦係数の測定は行っていない。
(Comparative Example 2)
50 g of layered titanic acid synthesized in the same manner as in Example 1 was dispersed in 2 kg of deionized water, and 17.4 g of ethylamine was added while stirring at 25 ° C. Immediately after the addition, the interlaminar distance swelled so that it could not be measured, and the single layer peeled off rapidly during stirring. Therefore, for Comparative Example 2, the following average friction coefficient is not measured.
 なお、この分散液を乾燥し、粉砕して粉末化したものの層間距離は9.9Åであった。 Incidentally, the distance between the layers of this dispersion, which was dried, pulverized and powdered, was 9.9 mm.
 <固体潤滑剤の平均摩擦係数の測定>
 実施例1~6及び比較例1の層状チタン酸化合物を固体潤滑剤として用いた場合の平均摩擦係数を、以下のようにして測定した。また、比較例3として窒化ホウ素を、比較例4として有機化ベントナイトを、比較例5として黒鉛を、比較例6として二硫化モリブデンをそれぞれ用いた場合の平均摩擦係数についても測定した。窒化ホウ素、有機化ベントナイト、黒鉛、及び二硫化モリブデンの有機分、層間距離、及び平均粒子径を表1に示す。
<Measurement of average friction coefficient of solid lubricant>
The average coefficient of friction when the layered titanate compounds of Examples 1 to 6 and Comparative Example 1 were used as solid lubricants was measured as follows. In addition, the average friction coefficient was measured when boron nitride was used as Comparative Example 3, organic bentonite was used as Comparative Example 4, graphite was used as Comparative Example 5, and molybdenum disulfide was used as Comparative Example 6. Table 1 shows the organic content, interlayer distance, and average particle size of boron nitride, organic bentonite, graphite, and molybdenum disulfide.
 上記各粉体を用いたときの金属同士の摩擦係数を、ピンオンディスク型摩擦試験機(アントパール社製TRB)で測定した。本試験機はピンの軸上に錘を載せて、ディスクとの接触部に荷重を作用させ、ディスクを回転させて、ピン側の軸上に設けたひずみ計でこの時の摩擦力を測定し、摩擦力を荷重で除した摩擦係数をデータとして出力するものである。また、データの収集はすべてパソコンを介して行われる。ディスクはJIS SKH51製で、厚さ5mm、直径20mm、ピンはJIS SUJ2製で先端の曲率半径は3.175mmである。 The friction coefficient between metals when each powder was used was measured with a pin-on-disk friction tester (TRB manufactured by Antpearl). This testing machine places a weight on the pin shaft, applies a load to the contact part with the disk, rotates the disk, and measures the friction force at this time with a strain gauge provided on the pin side shaft. The friction coefficient obtained by dividing the friction force by the load is output as data. All data is collected via a personal computer. The disk is made of JIS SKH51, thickness is 5 mm, diameter is 20 mm, the pin is made of JIS SUJ2, and the radius of curvature of the tip is 3.175 mm.
 摩擦係数の測定は、周速15.7mm/s(ディスクとボールの接触半径は3mm)、荷重1N、雰囲気温度25℃、相対湿度38%の条件の下、10分間行った。なお、試験粉体は、薬匙にて約1gを接触部に供給した。測定結果を表1及び2に示す。 The measurement of the friction coefficient was performed for 10 minutes under the conditions of a peripheral speed of 15.7 mm / s (contact radius between the disc and the ball was 3 mm), a load of 1 N, an ambient temperature of 25 ° C., and a relative humidity of 38%. In addition, about 1g of test powder was supplied to the contact part with the cartridge case. The measurement results are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1及び2に示すように、実施例1~6の層状チタン酸化合物からなる固体潤滑剤は、比較例1、3及び4の固体潤滑剤に比べ、摩擦係数が低いことがわかる。また、実施例1、2、5及び6の固体潤滑剤は、黒色固体潤滑剤である黒鉛と同程度か、より低い摩擦係数であることがわかる。 As shown in Tables 1 and 2, it can be seen that the solid lubricants composed of the layered titanate compounds of Examples 1 to 6 have a lower coefficient of friction than the solid lubricants of Comparative Examples 1, 3, and 4. In addition, it can be seen that the solid lubricants of Examples 1, 2, 5 and 6 have the same or lower friction coefficient as graphite, which is a black solid lubricant.
 また、実施例1について、摩擦試験後のディスク表面を走査型電子顕微鏡で観察した結果を図1に示した。摩擦面にはトライボ膜が形成されていることが観察された。また、このトライボ膜をエネルギー分散型X線分析装置により元素分析を行ったところ、Tiが検出された。 Further, with respect to Example 1, the result of observing the disk surface after the friction test with a scanning electron microscope is shown in FIG. It was observed that a tribo film was formed on the friction surface. Further, when this tribo film was subjected to elemental analysis using an energy dispersive X-ray analyzer, Ti was detected.
 <グリース組成物の製造>
 (実施例7)
 実施例1で作製した層状チタン酸化合物を5質量%、精製鉱油を85質量%、リチウム石けんを10質量%配合し、自転公転式攪拌機(AR-250(株)シンキー製)にて5分間攪拌混合しグリース組成物を作製した。
<Manufacture of grease composition>
(Example 7)
5% by mass of the layered titanic acid compound prepared in Example 1, 85% by mass of refined mineral oil, and 10% by mass of lithium soap were mixed, and the mixture was stirred for 5 minutes with a rotation / revolution stirrer (AR-250, manufactured by Shinkey Corp.). A grease composition was prepared by mixing.
 (比較例7)
 二硫化モリブデンを5質量%、精製鉱油を85質量%、リチウム石けんを10質量%配合し、自転公転式攪拌機(AR-250(株)シンキー製)にて5分間攪拌混合しグリース組成物を作製した。
(Comparative Example 7)
5% by weight of molybdenum disulfide, 85% by weight of refined mineral oil, and 10% by weight of lithium soap are mixed and stirred for 5 minutes with a rotating and rotating stirrer (AR-250, manufactured by Shinky Corp.) to prepare a grease composition. did.
 (比較例8)
 精製鉱油を90質量%、リチウム石けんを10質量%配合し、自転公転式攪拌機(AR-250(株)シンキー製)にて5分間攪拌混合しグリース組成物を作製した。
(Comparative Example 8)
90% by mass of refined mineral oil and 10% by mass of lithium soap were blended, and the mixture was stirred and mixed for 5 minutes with a rotation / revolution stirrer (AR-250, manufactured by Sinky) to prepare a grease composition.
 <グリース組成物の四球試験による融着荷重測定>
 実施例7、比較例7及び8で作製したグリース組成物に対して、シェル式四球試験機を用いて、ASTM D2596に従い融着荷重を測定した。その結果を表3に示す。
<Fusion load measurement by four ball test of grease composition>
With respect to the grease compositions prepared in Example 7 and Comparative Examples 7 and 8, the fusion load was measured in accordance with ASTM D2596 using a shell type four-ball tester. The results are shown in Table 3.
 <グリース組成物の色彩色差計による明度(L値)測定>
 実施例7、比較例7及び8で作製したグリース組成物をアルミ板上に2mmの厚さで塗布し、その上に1mmの厚さのガラス板を載せ、その上から色彩色差計(コニカミノルタ製CR-300)を用いてL値(明度)を測定した。その結果を表3に示す。なお、L値は0~100の数値であり、数字が大きいほど明るい色を示し、数字が小さいほど暗い色を示す。
<Lightness (L value) measurement with a color difference meter of grease composition>
The grease composition prepared in Example 7 and Comparative Examples 7 and 8 was applied to an aluminum plate with a thickness of 2 mm, and a glass plate with a thickness of 1 mm was placed thereon, and a color difference meter (Konica Minolta) was placed thereon. L value (brightness) was measured using CR-300. The results are shown in Table 3. The L value is a numerical value from 0 to 100. A larger number indicates a brighter color, and a smaller number indicates a darker color.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3の結果から、実施例1の固体潤滑剤を配合したグリース組成物(実施例7)は、固体潤滑剤を配合していないグリース組成物(比較例8)に比べて高い融着荷重を示し、二硫化モリブデンを配合したグリース組成物(比較例7)と同等の融着荷重を示した。また、二硫化モリブデンを配合した比較例7はL値が低く、暗い色であるのに対して、本発明の固体潤滑剤を配合した実施例7はL値が高く、明るい色であることが分かる。 From the results of Table 3, the grease composition (Example 7) containing the solid lubricant of Example 1 has a higher fusion load than the grease composition (Comparative Example 8) not containing the solid lubricant. The same fusion load as that of the grease composition (Comparative Example 7) containing molybdenum disulfide was shown. Further, Comparative Example 7 containing molybdenum disulfide has a low L value and a dark color, whereas Example 7 containing the solid lubricant of the present invention has a high L value and a bright color. I understand.
 また、上記グリース組成物における評価結果から明らかなように、本発明の固体潤滑剤は、金属部材間での潤滑性を高めることができるものであり、塑性加工用潤滑剤組成物としても有用なものであることがわかる。 Further, as is apparent from the evaluation results of the grease composition, the solid lubricant of the present invention can improve the lubricity between metal members, and is also useful as a lubricant composition for plastic working. It turns out that it is a thing.
 <塑性加工用潤滑剤組成物の製造>
 (実施例8)
 ポリビニルピロリドン K90(和光純薬工業(株)製)1gをエタノール90gに室温で溶解させた後、実施例1で作成した層状チタン酸化合物を9g配合し、3本ロールミル(EXAKT社製)を2回通過させて、塑性加工用潤滑剤組成物を作成した。
<Manufacture of lubricant composition for plastic working>
(Example 8)
After dissolving 1 g of polyvinylpyrrolidone K90 (manufactured by Wako Pure Chemical Industries, Ltd.) in 90 g of ethanol at room temperature, 9 g of the layered titanate compound prepared in Example 1 was blended, and 2 roll mills (EXAKT) 2 The lubricant composition for plastic working was prepared by passing through a number of times.
 (比較例9)
 ポリビニルピロリドン K90(和光純薬工業(株)製)1gをエタノール90gに室温で溶解させた後、二硫化モリブデンを9g配合し、3本ロールミル(EXAKT社製)を2回通過させて、塑性加工用潤滑剤組成物を作成した。
(Comparative Example 9)
1 g of polyvinylpyrrolidone K90 (manufactured by Wako Pure Chemical Industries, Ltd.) is dissolved in 90 g of ethanol at room temperature, 9 g of molybdenum disulfide is blended, and a three-roll mill (manufactured by EXAKT) is passed twice for plastic working. A lubricant composition was prepared.
 (比較例10)
 ポリビニルピロリドン K90(和光純薬工業(株)製)1gをエタノール90gに室温で溶解させた後、グラファイトを9g配合し、3本ロールミル(EXAKT社製)を2回通過させて、塑性加工用潤滑剤組成物を作成した。
(Comparative Example 10)
1 g of polyvinylpyrrolidone K90 (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 90 g of ethanol at room temperature, then 9 g of graphite was blended, passed through a three-roll mill (manufactured by EXAKT) twice, and lubricated for plastic working An agent composition was prepared.
 (比較例11)
 ポリビニルピロリドン K90(和光純薬工業(株)製)1gをエタノール99gに室温で溶解させた塑性加工用潤滑剤組成物を作成した。
(Comparative Example 11)
A lubricant composition for plastic working was prepared by dissolving 1 g of polyvinylpyrrolidone K90 (manufactured by Wako Pure Chemical Industries, Ltd.) in 99 g of ethanol at room temperature.
 <絞り加工試験>
 絞り加工試験には100kN万能試験機を改造した油圧式絞り加工試験機を用いた。パンチ、ダイともに材質はSKD11であり、パンチは円筒形状で、直径29.2mm、先端の角部は曲率半径3mm、ダイはドーナツ形状で、外径66mm、内径30mm、R部は曲率半径3mm、クリアランスは0.4mmである。被加工材はステンレス鋼板(SUS304 BA)で、直径60mm、厚み0.3mmである。従って、絞り比は2.1である。試験は、パンチの押し込み速度0.5mm/秒、しわ押え面圧4MPaの条件で行い、塑性加工用潤滑剤組成物は、加工毎にダイのフランジ部、R部、ストレート部に一様に塗布した。加工力はパンチユニットに装備された荷重計で測定し、加工性を評価した。試験中の最大加工力が小さいほど、低荷重で成形できるため、加工性が高く生産性が高い。また、この加工力から材質に依存する材料の変形抵抗力を引くことにより、摩擦力を得ることができる。各試験の最大加工力、および最大摩擦力の結果を表4に示す。
<Drawing test>
For the drawing test, a hydraulic drawing test machine modified from a 100 kN universal tester was used. Both the punch and die are made of SKD11. The punch has a cylindrical shape with a diameter of 29.2 mm, the corner of the tip has a radius of curvature of 3 mm, the die has a donut shape, an outer diameter of 66 mm, an inner diameter of 30 mm, and the R portion has a radius of curvature of 3 mm. The clearance is 0.4 mm. The workpiece is a stainless steel plate (SUS304 BA), which has a diameter of 60 mm and a thickness of 0.3 mm. Therefore, the aperture ratio is 2.1. The test is performed under the conditions of a punch indentation speed of 0.5 mm / sec and a wrinkle pressing surface pressure of 4 MPa. The lubricant composition for plastic working is uniformly applied to the flange portion, R portion, and straight portion of the die every processing. did. The processing force was measured with a load meter installed in the punch unit to evaluate the workability. Since the smaller the maximum processing force during the test, the lower the load, the higher the workability and the higher the productivity. Also, a frictional force can be obtained by subtracting the deformation resistance force of the material depending on the material from the processing force. Table 4 shows the results of the maximum working force and the maximum friction force of each test.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4の結果から、実施例1の固体潤滑剤を配合した塑性加工用潤滑剤組成物(実施例8)は、二硫化モリブデンを配合した塑性加工用潤滑剤組成物(比較例9)、グラファイトを配合した塑性加工用潤滑剤組成物(比較例10)、固体潤滑剤を配合してない塑性加工用潤滑剤組成物(比較例11)に比べて、最大加工力、および最大摩擦力が低い結果であった。すなわち、実施例1の固体潤滑剤を配合した塑性加工用潤滑剤組成物を用いれば、低荷重で成形でき、加工性や生産性が高いことが分かる。 From the results of Table 4, the plastic working lubricant composition (Example 8) blended with the solid lubricant of Example 1 is the plastic working lubricant composition blended with molybdenum disulfide (Comparative Example 9), graphite. The maximum working force and the maximum frictional force are lower than those of the plastic working lubricant composition (Comparative Example 10) containing no and the plastic working lubricant composition containing no solid lubricant (Comparative Example 11). It was a result. That is, it can be seen that if the lubricant composition for plastic working containing the solid lubricant of Example 1 is used, it can be molded at a low load, and the workability and productivity are high.

Claims (15)

  1.  TiO八面体の連鎖により形成される層状構造を有し、層間に陽イオン性の有機化合物を有し、層間距離が10~70Åである層状チタン酸化合物からなる固体潤滑剤。 A solid lubricant comprising a layered titanate compound having a layered structure formed by a chain of TiO 6 octahedrons, a cationic organic compound between layers, and an interlayer distance of 10 to 70 mm.
  2.  前記層状チタン酸化合物の前駆体が、一般式K0.5~0.7Li0.27Ti1.733.85~3.95で表されるレピドクロサイト型チタン酸リチウムカリウム又は一般式K0.2~0.7Mg0.4Ti1.63.7~3.95で表されるレピドクロサイト型チタン酸マグネシウムカリウムである、請求項1に記載の固体潤滑剤。 The precursor of the layered titanate compound is a lipid potassium of a lepidoclosite type lithium titanate represented by the general formula K 0.5 to 0.7 Li 0.27 Ti 1.73 O 3.85 to 3.95 The solid lubricant according to claim 1, which is a lipidocrosite-type potassium magnesium titanate represented by the formula K 0.2 to 0.7 Mg 0.4 Ti 1.6 O 3.7 to 3.95 .
  3.  前記陽イオン性の有機化合物の含有量が、層状チタン酸化合物全体100質量%中において10~99質量%である、請求項1又は2に記載の固体潤滑剤。 3. The solid lubricant according to claim 1, wherein the content of the cationic organic compound is 10 to 99% by mass in 100% by mass of the whole layered titanate compound.
  4.  前記陽イオン性の有機化合物が、有機アンモニウム塩類、有機ホスホニウム塩類、有機スルホニウム塩類から選ばれる少なくとも1種である、請求項1~3のいずれか一項に記載の固体潤滑剤。 The solid lubricant according to any one of claims 1 to 3, wherein the cationic organic compound is at least one selected from organic ammonium salts, organic phosphonium salts, and organic sulfonium salts.
  5.  請求項1~4のいずれか一項に記載の固体潤滑剤、基油及び増ちょう剤を含有する、グリース組成物。 A grease composition comprising the solid lubricant according to any one of claims 1 to 4, a base oil, and a thickener.
  6.  前記基油が、鉱物油、ガス液化油、ジエステル系合成油、芳香族エステル系合成油、ポリオールエステル系合成油、エステル系合成油、ポリグリコール系合成油、フェニルエーテル系合成油、合成炭化水素油、シリコーン系合成油、フッ素系合成油から選ばれる少なくとも1種である、請求項5に記載のグリース組成物。 The base oil is mineral oil, gas liquefied oil, diester synthetic oil, aromatic ester synthetic oil, polyol ester synthetic oil, ester synthetic oil, polyglycol synthetic oil, phenyl ether synthetic oil, synthetic hydrocarbon The grease composition according to claim 5, wherein the grease composition is at least one selected from oil, silicone-based synthetic oil, and fluorine-based synthetic oil.
  7.  前記増ちょう剤が、アルカリ金属石けん、アルカリ土類金属石けん、アルカリ金属複合石けん、アルカリ土類複合金属石けん、アルカリ金属スルフォネート、アルカリ土類金属スルフォネート、アルミニウム石けん、アルミニウム複合石けん、テレフタラメート金属塩、シリカゲル、クレイ、フッ素樹脂、ウレア化合物から選ばれる少なくとも1種である、請求項5又は6に記載のグリース組成物。 The thickener is alkali metal soap, alkaline earth metal soap, alkali metal composite soap, alkaline earth composite metal soap, alkali metal sulfonate, alkaline earth metal sulfonate, aluminum soap, aluminum composite soap, terephthalate metal salt The grease composition according to claim 5 or 6, which is at least one selected from silica gel, clay, fluorine resin, and urea compound.
  8.  請求項1~4のいずれか一項に記載の固体潤滑剤を含有する、塑性加工用潤滑剤組成物。 A lubricant composition for plastic working, comprising the solid lubricant according to any one of claims 1 to 4.
  9.  バインダー成分をさらに含有する、請求項8に記載の塑性加工用潤滑剤組成物。 The lubricant composition for plastic working according to claim 8, further comprising a binder component.
  10.  前記バインダー成分が、水溶性無機塩、水溶性有機塩、及び有機高分子から選ばれる少なくとも1種である、請求項9に記載の塑性加工用潤滑剤組成物。 The lubricant composition for plastic working according to claim 9, wherein the binder component is at least one selected from a water-soluble inorganic salt, a water-soluble organic salt, and an organic polymer.
  11.  滑剤成分をさらに含有する、請求項8~10のいずれか一項に記載の塑性加工用潤滑剤組成物。 The lubricant composition for plastic working according to any one of claims 8 to 10, further comprising a lubricant component.
  12.  前記滑剤成分が、石けん類、金属石けん類、及びワックス類から選ばれる少なくとも1種である、請求項11に記載の塑性加工用潤滑剤組成物。 12. The lubricant composition for plastic working according to claim 11, wherein the lubricant component is at least one selected from soaps, metal soaps, and waxes.
  13.  請求項1~4のいずれか一項に記載の固体潤滑剤を製造する方法であって、
     層状チタン酸塩を酸処理して層状チタン酸を製造する工程と、
     得られた層状チタン酸に塩基性化合物類又はその塩を作用させる工程とを備える、固体潤滑剤の製造方法。
    A method for producing the solid lubricant according to any one of claims 1 to 4,
    A step of producing a layered titanic acid by acid treatment of the layered titanate;
    And a step of allowing a basic compound or a salt thereof to act on the obtained layered titanic acid.
  14.  被加工材と加工工具の摩擦界面に、請求項1~4のいずれか一項に記載の固体潤滑剤を介在させて加工する、金属材料の加工方法。 A method for processing a metal material, wherein the solid lubricant according to any one of claims 1 to 4 is interposed at a friction interface between a workpiece and a processing tool.
  15.  被加工材と加工工具の摩擦界面に、請求項8~12のいずれか一項に記載の塑性加工用潤滑剤組成物を介在させて塑性加工する、金属材料の加工方法。 A method for processing a metal material, wherein plastic working is performed by interposing the lubricant composition for plastic processing according to any one of claims 8 to 12 at a friction interface between a workpiece and a processing tool.
PCT/JP2017/024803 2016-07-28 2017-07-06 Solid lubricant, grease composition, lubricant composition for plastic working, method for producing solid lubricant and method for processing metal material WO2018020976A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018529471A JPWO2018020976A1 (en) 2016-07-28 2017-07-06 Solid lubricant, grease composition, lubricant composition for plastic working, method of producing solid lubricant and method of processing metallic material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-148501 2016-07-28
JP2016148501 2016-07-28
JP2017-052689 2017-03-17
JP2017052689 2017-03-17

Publications (1)

Publication Number Publication Date
WO2018020976A1 true WO2018020976A1 (en) 2018-02-01

Family

ID=61016162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024803 WO2018020976A1 (en) 2016-07-28 2017-07-06 Solid lubricant, grease composition, lubricant composition for plastic working, method for producing solid lubricant and method for processing metal material

Country Status (2)

Country Link
JP (1) JPWO2018020976A1 (en)
WO (1) WO2018020976A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021147441A (en) * 2020-03-17 2021-09-27 住鉱潤滑剤株式会社 Coating composition and dry lubrication film

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062168A (en) * 1992-06-19 1994-01-11 Parker Kosan Kk Rust preventive oil composition
JPH07503275A (en) * 1992-01-31 1995-04-06 ロード コーポレーション Atomic polarizable electrorheological materials
JP2003138145A (en) * 2001-08-20 2003-05-14 Otsuka Chem Co Ltd Resin composition
JP2006085108A (en) * 2004-09-17 2006-03-30 Brother Ind Ltd Electrophoresis display medium and its manufacturing method
JP2011522912A (en) * 2008-05-14 2011-08-04 ダウ・コーニング・コーポレイション How to reduce friction
JP2014047321A (en) * 2012-09-03 2014-03-17 Otsuka Chem Co Ltd Slide member for wet lubrication and resin composition for slide member
CN103789075A (en) * 2014-02-26 2014-05-14 北京科技大学 High-concentration composite nano TiO2/ZnO lubricating additive and preparation method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07503275A (en) * 1992-01-31 1995-04-06 ロード コーポレーション Atomic polarizable electrorheological materials
JPH062168A (en) * 1992-06-19 1994-01-11 Parker Kosan Kk Rust preventive oil composition
JP2003138145A (en) * 2001-08-20 2003-05-14 Otsuka Chem Co Ltd Resin composition
JP2006085108A (en) * 2004-09-17 2006-03-30 Brother Ind Ltd Electrophoresis display medium and its manufacturing method
JP2011522912A (en) * 2008-05-14 2011-08-04 ダウ・コーニング・コーポレイション How to reduce friction
JP2014047321A (en) * 2012-09-03 2014-03-17 Otsuka Chem Co Ltd Slide member for wet lubrication and resin composition for slide member
CN103789075A (en) * 2014-02-26 2014-05-14 北京科技大学 High-concentration composite nano TiO2/ZnO lubricating additive and preparation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021147441A (en) * 2020-03-17 2021-09-27 住鉱潤滑剤株式会社 Coating composition and dry lubrication film
JP7399761B2 (en) 2020-03-17 2023-12-18 住鉱潤滑剤株式会社 Paint composition and dry lubricant coating

Also Published As

Publication number Publication date
JPWO2018020976A1 (en) 2019-05-09

Similar Documents

Publication Publication Date Title
Shahnazar et al. Enhancing lubricant properties by nanoparticle additives
JP5668069B2 (en) Grease composition
US9902918B2 (en) Nano-tribology compositions and related methods including hard particles
Rawat et al. Effect of CuO and ZnO nano-additives on the tribological performance of paraffin oil–based lithium grease
EP3155080B1 (en) Nano-tribology compositions and related methods including hard particles
JP5873104B2 (en) Grease composition
Kumar et al. Tribological investigations of nano and micro-sized graphite particles as an additive in lithium-based grease
CA2936897C (en) Nano-tribology compositions and related methods including molecular nano-sheets
JP2007231207A (en) Lubricant composition
Saini et al. Potential exploration of nano-talc particles for enhancing the anti-wear and extreme pressure performance of oil
Ghalme et al. Effect of aluminium oxide (Al2O3) nanoparticles addition into lubricating oil on tribological performance
Kumar et al. Exploration of Talc nanoparticles to enhance the performance of Lithium grease
Ahmed et al. Tribological behavior of adding nano oxides materials to lithium grease: A review
WO2018020976A1 (en) Solid lubricant, grease composition, lubricant composition for plastic working, method for producing solid lubricant and method for processing metal material
Kumar et al. Dependency of lithium complex grease on the size of hBN particles for enhanced performance
JP6348374B2 (en) Grease composition
Chen et al. Tribological characteristics of combined layered phosphate and silicate additives in mineral oil
Shah et al. Wear and friction of greases containing organic and inorganic sulfur carriers
JP7294546B2 (en) Particle-containing grease composition
De Barros Bouchet et al. Lubrication of carbon coatings with MoS2 single sheet formed by MoDTC and ZDDP lubricants
Singh et al. Tribological Performance Evaluation of Greases on a Four-Ball Tester with Graphene Oxide Nanoparticles
Gupta et al. Combination of nano-particles of graphite and PTFE in the right amount for synergism as anti-wear and extreme pressure additive in oil
Liew et al. Tribological behaviour of palm oil mixed with fly ash microparticles as a bio-based lubricant for manufacturing processes
Dai Tribological Characterization of Roles of Nanoparticles in Lubrication
Garcia et al. Wear Mechanisms Arising Additives Based Ceramic Particles to Automotive Lubricants

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018529471

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17833985

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17833985

Country of ref document: EP

Kind code of ref document: A1