WO2018020905A1 - Magnetic resonance imaging device and control method thereof - Google Patents
Magnetic resonance imaging device and control method thereof Download PDFInfo
- Publication number
- WO2018020905A1 WO2018020905A1 PCT/JP2017/022632 JP2017022632W WO2018020905A1 WO 2018020905 A1 WO2018020905 A1 WO 2018020905A1 JP 2017022632 W JP2017022632 W JP 2017022632W WO 2018020905 A1 WO2018020905 A1 WO 2018020905A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pulse
- correction
- echo
- magnetic field
- gradient magnetic
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/055—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
Definitions
- the present invention measures a nuclear magnetic resonance signal (hereinafter referred to as an NMR signal) from hydrogen, phosphorus, etc. in a subject and images a nuclear density distribution, relaxation time distribution, etc. (hereinafter referred to as MRI). It is related with the measurement technique of a diffusion weighted image especially.
- an NMR signal nuclear magnetic resonance signal
- MRI nuclear density distribution, relaxation time distribution, etc.
- a diffusion weighted image is an image in which the diffusion motion of water molecules is reflected in the contrast of an image by applying a gradient magnetic field pulse called MPG: Motion Probing Gradient.
- Two MPG pulses are applied before and after the 180 ° RF pulse as the excitation RF pulse.
- the two MPG pulses have different polarities, but the applied amount (area) is the same. For this reason, for spins (stationary spins) whose spatial position has not moved, the phase changed by the MPG pulse applied first is returned by the MPG pulse applied later. On the other hand, the spin whose spatial position has moved in the direction of application of the MPG pulse does not match the amount of phase change produced by each MPG pulse.
- the echo signal attenuates due to the phase mismatch, and the portion of the moving spin, for example, blood flow, is expressed as a low signal on the image.
- Diffusion-weighted imaging is a technique for imaging diffusion motion using the contrast difference between stationary spins and moving spins.
- the extended enhancement imaging is intended to visualize the diffusion motion generated between the two MPG pulses, but there is a problem that the motion other than the diffusion motion is also reflected in the contrast of the image.
- the measurement target is a human body
- physiological movements such as pulsation and respiration become a problem. Since such physiological movement is generally not an observation target, it is recognized as degradation of diffusion weighted image quality.
- Patent Document 1 there is a method of measuring a phase error map generated in spin in real time and correcting an echo measured using this phase error map.
- a gradient magnetic field that scans a 2D or 3D space after applying an MPG pulse is applied, and a 2D or 3D phase error map is measured.
- an RF pulse and a gradient magnetic field for canceling the phase error are calculated, and irradiation and application are performed before the echo signal is measured.
- Non-Patent Document 1 a gradient magnetic field pulse is applied in the direction in the image plane after applying the MPG pulse, that is, the frequency encoding direction and the phase encoding direction, and the 0th and 1st order calculated from the obtained echo signal.
- the above method has the following problems.
- the time required for measurement is long because the phase error map is measured in 2D or 3D.
- measurement in 3D takes a long time. Since the correction using the obtained phase error map needs to be performed before the echo signal measurement, extending the measurement time of the phase error map leads to the extension of TE: Echo Time of the echo signal, resulting in the SNR of the image Decreases.
- the phase error map is measured in 2D, the measurement time is shorter than in 3D, but it cannot be corrected because the influence of motion cannot be observed for the axes that are not measured.
- the influence of movement in the Z-axis direction cannot be corrected.
- an RF pulse is used to correct a phase error obtained from a phase error map.
- the Fourier transform or the Bloch equation needs to be solved when the flip angle is large, and the processing cost is high.
- the time for applying the RF pulse that cancels the calculated phase error is also in the order of several tens of ms.
- the TE extension is preferably about 10 ms or less, depending on the measurement conditions and the MRI apparatus.
- Non-Patent Document 1 can be executed in a shorter processing time compared with the case of creating a phase error map in order to correct the influence of physiological movement during application of MPG with only gradient magnetic field pulses.
- the MPG pulse application axis is set in a direction parallel to the slice direction, and phase error correction is performed by navigator echoes in two directions orthogonal thereto, so that physiological movement in the slice direction is performed. The effect of remains uncorrected.
- the phase error due to physiological movement occurs not only in the two directions in the cross section but also in the slice direction, but the phase error in the slice direction has a large effect on the SNR of the image, and it is not possible to correct it after acquiring the echo signal. Can not.
- diffusion weighted imaging imaging is performed with different MPG pulse application axes, and it is impossible to find a regular relationship between the direction in which the phase error is likely to occur and the application axis of the MPG pulse. There is a limit to the method of Non-Patent Document 1 on the assumption that it is performed only in two directions within the cross section.
- the present invention has been made in view of the above problems, and in an MRI apparatus that performs imaging including application of an MPG pulse, an MRI apparatus capable of obtaining a high-quality diffusion-weighted image in real time while suppressing the extension of TE
- the purpose is to provide.
- the MRI apparatus of the present invention has a shift amount in the k space of the echo signal after application of the MPG pulse at least in the slice selective gradient magnetic field direction (until the measurement of the echo signal after application of the MPG pulse). (Hereinafter, referred to as a slice direction), means for measuring in an axial direction, means for calculating a gradient magnetic field pulse necessary for correcting the shift amount, and means for applying the correction gradient magnetic field pulse.
- the MRI apparatus of the present invention performs an operation using an imaging unit that collects echo signals, a sequence control unit that controls the imaging unit, and echo signals collected by the imaging unit according to a predetermined pulse sequence.
- the pulse sequence includes MPG pulse application between excitation RF pulse application and echo signal acquisition.
- the sequence control unit performs control to add a correction sequence including readout of navigation echoes and application of a correction gradient magnetic field at least in the slice direction between the MPG application and the echo signal collection, and the calculation unit includes the correction
- the application amount of the correction gradient magnetic field is calculated using the navigation echo, and the calculated correction gradient magnetic field application amount is passed to the sequence control unit.
- a correction pulse calculation unit is provided, and the sequence control unit applies the correction gradient magnetic field with the application amount of the correction gradient magnetic field received from the correction pulse calculation unit.
- the shift amount in the k space of the echo signal after the MPG application including the slice direction is calculated, and a gradient magnetic field for correcting the shift amount based on the value is applied, thereby providing a physiological Changes in image contrast due to global motion that occur in the imaging target due to motion can be suppressed, and a series of these processes can be performed in a shorter time than in the prior art.
- an extension of TE that is, a decrease in SNR can be suppressed, and an image that allows easy observation of local water molecule diffusion motion, which is the original observation target, can be provided.
- FIG. 1 is a block diagram showing the overall configuration of an embodiment of an MRI apparatus according to the present invention.
- the figure which shows an example of a general DWI pulse sequence.
- the figure which shows the structure of the sequencer of 1st embodiment, and a calculation part, and the outline
- the figure which shows an example of the DWI pulse sequence containing a correction sequence.
- the flowchart which shows a part of process of the calculating part of 1st embodiment.
- FIG. 5 is a diagram showing details of the correction sequence of FIG.
- FIG. 5 is a diagram showing details of the correction sequence of FIG.
- the MRI apparatus uses a NMR phenomenon to obtain a tomographic image of a subject, and as shown in FIG. 1, a static magnetic field generator 2, a gradient magnetic field generator 3, a transmitter 5, and a receiver 6 A signal processing unit 7 and a sequencer 4.
- the static magnetic field generation unit 2, the gradient magnetic field generation unit 3, the transmission unit 5, and the reception unit 6 are collectively referred to as an imaging unit.
- the static magnetic field generation unit 2 includes a permanent magnet type, normal conduction type or superconducting type static magnetic field generation source arranged around the subject 1.
- the vertical magnetic field type static magnetic field generation source generates a uniform static magnetic field in the direction of the body axis in a direction perpendicular to the body axis in the space around the subject 1 and the horizontal magnetic field type static magnetic field generation source.
- the gradient magnetic field generator 3 includes a gradient magnetic field coil 9 wound in the three-axis directions of X, Y, and Z, which is a coordinate system (stationary coordinate system) of the MRI apparatus, and a gradient magnetic field power supply 10 that drives each gradient magnetic field coil
- the gradient magnetic field is applied in the three axis directions of X, Y, and Z by driving the gradient magnetic field power supply 10 of each coil in accordance with a command from the sequencer 4 described later.
- a gradient magnetic field in an arbitrary direction can be formed by a combination of gradient magnetic fields in three axial directions.
- a slice direction gradient magnetic field pulse is applied in a direction orthogonal to the slice plane (imaging cross section) to set a slice plane for the subject 1, and in the remaining two directions orthogonal to the slice plane and orthogonal to each other
- a phase encoding direction gradient magnetic field pulse and a frequency encoding direction gradient magnetic field pulse are applied, and position information in each direction is encoded in the echo signal. Further, by applying a gradient magnetic field pulse in a predetermined direction, a primary phase change can be given to the spins constituting the tissue of the subject 1 along the application direction.
- the transmitter 5 irradiates the subject 1 with a high-frequency magnetic field pulse (referred to as an RF pulse) in order to cause nuclear magnetic resonance to occur in the nuclear spins of the atoms constituting the living tissue of the subject 1.
- a high-frequency magnetic field pulse (referred to as an RF pulse) in order to cause nuclear magnetic resonance to occur in the nuclear spins of the atoms constituting the living tissue of the subject 1.
- It comprises a modulator 12, a high frequency amplifier 13, and a high frequency coil (transmission coil) 14a on the transmission side.
- the high-frequency magnetic field pulse output from the high-frequency oscillator 11 is amplitude-modulated by the modulator 12 at a timing according to a command from the sequencer 4, and the amplitude-modulated high-frequency pulse is amplified by the high-frequency amplifier 13 and then placed close to the subject 1.
- the high-frequency coil 14a the subject 1 is irradiated with the RF pulse.
- the receiving unit 6 detects an echo signal (NMR signal) emitted by nuclear magnetic resonance of nuclear spins constituting the biological tissue of the subject 1, and includes a receiving-side high-frequency coil (receiving coil) 14b, a signal amplifier 15, a quadrature detector 16, and an A / D converter 17.
- NMR signal an echo signal
- the quadrature phase detector 16 divides the signal into two orthogonal signals at a timing according to a command from the sequencer 4, and each signal is converted into a digital quantity by the A / D converter 17 and sent to the signal processing unit 7.
- the signal processing unit 7 performs various data processing and display and storage of processing results.
- the signal processing unit 7 performs various operations and controls, an external storage device such as an optical disk 19 and a magnetic disk 18, and a ROM 21. And an internal storage medium such as a RAM 22 and a display 20.
- the digital signal processing device 8 executes processing such as signal processing and image reconstruction, and displays a tomographic image of the subject 1 as a result of the display 20 And recorded on the magnetic disk 18 or the like of the external storage device.
- Processing such as computation and control performed by the digital signal processing device 8 may be realized by a CPU and software mounted thereon, or a part thereof may be realized by hardware such as an ASIC or FPGA.
- the signal processing unit 7 is provided with an operation unit 25 for inputting various control information of the MRI apparatus and control information of processing performed by the signal processing unit 7.
- the operation unit 25 includes a trackball or mouse 23, a keyboard 24, and the like.
- the operation unit 25 is arranged in the vicinity of the display 20, and an operator controls various processes of the MRI apparatus interactively through the operation unit 25 while looking at the display 20.
- the sequencer 4 is a control means (sequence control unit) that repeatedly applies RF pulses and gradient magnetic field pulses in a predetermined pulse sequence, operates under the control of the digital signal processing device 8, and is necessary for collecting tomographic image data of the subject 1. These various commands are sent to the imaging unit (transmitting unit 5, gradient magnetic field generating unit 3, and receiving unit 6).
- the pulse sequence is a timing chart that determines the intensity and timing of application of an RF pulse or gradient magnetic field pulse, the timing of collecting NMR signals (echo signals), and the like, and there are various pulse sequences depending on the imaging method. These pulse sequences are stored in advance in the storage device of the signal processing unit 7 as a program, and are executed by the sequencer 4 reading a predetermined pulse sequence and imaging parameters.
- the MRI apparatus of the present embodiment executes a diffusion weighted imaging (DWI) pulse sequence using an MPG pulse as a pulse sequence.
- DWI diffusion weighted imaging
- FIG. 2 shows an example of a typical DWI pulse sequence.
- this DWI pulse sequence 200 first, an RF pulse 201 is irradiated, and a spin at a specific position determined by a slice selective gradient magnetic field (Gs) applied simultaneously is excited. Thereafter, the first MPG pulse 203 is applied.
- Gs slice selective gradient magnetic field
- the MPG pulse is applied to the axis (Gs) of the slice selective gradient magnetic field pulse, but it may be applied to another axis or a plurality of axes.
- an RF pulse 202 for inverting the spin phase is irradiated.
- a second MPG pulse 204 is applied.
- the second MPG pulse 204 has the same area (applied amount) as the first MPG pulse 203, and is applied after the inverted RF pulse 202. Therefore, the second MPG pulse 204 has a phase rotation opposite to that of the first MPG pulse 203. give.
- the phase rotation given by the first MPG pulse 203 is rewound by the second MPG pulse 204.
- the phase encode gradient magnetic field pulse 205 is applied, and the echo 207 is measured while the readout gradient magnetic field pulse 206 is applied.
- a contrast difference is generated between water molecules that are in a diffusing motion and stationary spins, and the diffusing motion is imaged.
- the figure shows the case of single shot imaging that measures only one echo, but there are also cases where multiple echoes are measured while repeating the application of phase encoding gradient magnetic field pulses and readout gradient magnetic field pulses (multi-shot imaging). is there.
- the MRI apparatus of the present embodiment when imaged using such a pulse sequence including an MPG pulse, performs movements such as pulsation and breathing of the subject that are different from the diffusion movement of water molecules (these diffusion movement and In order to suppress the change in the contrast of the image due to (otherwise referred to as global motion), it is characterized by having a global motion correction processing function. Specifically, an excess or deficiency of the gradient magnetic field application amount caused by the global motion when the first MPG pulse 203 is applied and when the second MPG pulse 204 is applied is detected and corrected in real time.
- the imaging unit generates a navigation echo (hereinafter referred to as a navigation echo) at least in the slice direction between the application of the MPG pulse of the DWI pulse sequence and the echo acquisition, and the phase calculated from the navigation echo Imaging by adding a sequence (correction sequence) that applies a gradient magnetic field (corrected gradient magnetic field pulse) corresponding to the error, and the digital signal processing device 8 (calculation unit) measures during execution of the sequence
- a navigation echo a navigation echo
- the digital signal processing device 8 calculation unit
- the MRI apparatus of this embodiment performs the above-described series of processing in real time. Therefore, a real-time system is adopted for the sequencer 4, the transmission unit 5, the reception unit 6, and the signal processing unit 7.
- the sequencer 4 and the signal processing unit 7 are equipped with an RTOS (Real-time operation system), and the transmission unit 5 and the reception unit 6 can be configured with FPGA (Field-Problemmable Gate-Array). it can.
- the digital signal processing device 8 includes a correction pulse calculation unit 81 for calculating a phase error.
- the correction pulse calculation unit 81 can be realized by software operating on the RTOS or dedicated hardware.
- the digital signal processing device 8 includes an image reconstruction unit that reconstructs an image using an echo signal and a calculation unit that performs a calculation for a diffusion weighted image, but the illustration is omitted here.
- Sequencer 4 calculates and executes a pulse sequence when a DWI pulse sequence and its imaging parameters are set via operation unit 25.
- a time shortest time that takes into account the time required for the correction sequence is set.
- the DWI pulse sequence is, for example, a DWI pulse sequence 200 including two MPG pulses 203 and 204 as shown in FIG.
- the sequencer 4 further includes a correction sequence 400 that is inserted into the DWI pulse sequence 200 and executed.
- the correction sequence 400 includes application of a navigation echo readout gradient magnetic field and a correction pulse.
- a navigation echo readout gradient magnetic field application process 301 is executed.
- the navigation echo readout gradient magnetic field is a readout gradient magnetic field applied to measure the movement of the subject 1 during application of the MPG pulse after application of the MPG pulse, and is applied at least in the slice direction after application of the MPG pulse.
- An echo signal (navigation echo) generated by the navigation echo readout gradient magnetic field application processing 301 is passed to the correction pulse calculation unit 81 of the digital signal processing device 8 via the reception unit 6.
- the correction pulse calculation unit 81 uses the navigation echo to calculate the excess / deficiency amount of the MPG pulse caused by the movement of the subject 1, and the gradient magnetic field application amount (correction pulse application amount) necessary to correct the same, The calculation result is notified to the sequencer 4 (correction pulse calculation processing 302).
- the sequencer 4 executes the correction pulse application process 303 which is the second half of the correction sequence 400 according to the correction pulse application amount calculated by the correction pulse calculation unit 81. That is, the correction gradient magnetic field pulse is applied coaxially with the navigation echo at the calculated correction pulse application amount. Thereafter, the rest of the DWI pulse sequence 200 is executed to collect echoes 207 for DWI.
- Fig. 4 shows an example of the DWI pulse sequence 200A added by the correction sequence executed by the sequencer 4.
- the same elements as those in FIG. 2 are denoted by the same reference numerals, and redundant description is omitted.
- a correction sequence 400 for correcting the excess / deficiency of MPG is inserted after the application of the second MPG pulse 204 and before the collection of the echo 207.
- the navigation echo readout gradient magnetic field is sequentially applied in the slice gradient magnetic field (Gs) direction, the phase encode gradient magnetic field (Gp) direction, and the readout gradient magnetic field (Gr) direction, and the navigation echo 401 of each axis is applied.
- a correction gradient magnetic field pulse 403 for phase error correction is applied after a predetermined time from the acquisition of the last navigation echo 401 (correction pulse application processing 303).
- a time 402 from acquisition of the navigation echo 401 to the correction gradient magnetic field pulse 403 is a time required for the correction pulse calculation processing 302, and the correction gradient magnetic field pulse 403 is applied with the application amount calculated in the correction pulse calculation processing 302. .
- phase encoding pulse 205 and the readout gradient magnetic field pulse 206 after the application of the correction gradient magnetic field pulse 403 to measure the echo 207 is the same as the pulse sequence 200 of FIG.
- the correction pulse calculation unit 81 uses the navigation echo read in the navigation echo reading gradient magnetic field application processing 301 to calculate the excess / deficiency amount of MPG pulse and the correction pulse application amount in the three directions Gs, Gp, and Gr.
- the method for calculating the excess / deficiency of the MPG pulse differs between the Gs direction and the Gp and Gr directions. The procedure for calculating the excess / deficiency of the MPG pulse in the Gs direction will be described with reference to the flowchart of FIG.
- phase data string Phase_scalar (x) is calculated using the real part and the imaginary part of the complex signal Navi (x). Since the phase obtained in this manner is around the main value, phase unwrapping processing is performed in processing 503. Specifically, the phase Phase_unwrapped (x) of Navi (x) is calculated according to the following equation (1).
- Phase_unwrapped (x) is a scalar phase data
- Phase [] is a function that returns the phase value of complex data
- Conjugate [] is a function that represents complex conjugate processing.
- a linear line is applied to Phase_unwrapped (x) by the least square method (formula (2)), and the slope (FirstOrderPhase) is calculated.
- N is the number of data of Navi Echo Navi_Echo (t) (when using Equation (2) for other directions, it is the number of data in that direction. The same applies hereinafter).
- the slope of the phase calculated in this way represents the excess / deficiency of the MPG pulse.
- the correction pulse application amount [s ⁇ T / m] in the Gs direction is calculated according to the following equation (3).
- Equation (3) Duration is the navigation echo sampling time [s]
- GcAmp is the navigation echo readout gradient magnetic field [T / m].
- the high-frequency coil (receiver coil) 14b is composed of a plurality of coils
- the navigation echo is measured for each coil.
- the slope of the phase is calculated according to Equation (2) for each navigation echo of each coil, and the average value is used to calculate the phase gradient according to Equation (3).
- the correction pulse application amount is determined.
- navigation echo Navi_Echo (t) obtained by applying a navigation echo readout gradient magnetic field in the Gp direction is read.
- the read navigation echo Navi_Echo (t) is Fourier transformed to obtain Navi (x).
- the phase difference between the navigation echo Navi (x) and the reference navigation echo Navi_std (x) is determined in the process 605. Calculate according to the following formula.
- Navi_subtracted (x) is complex data obtained by phase difference between the data of the navigation echo (Navi (x)) and the data of the reference navigation echo (Navi_std (x)).
- step 606 the phase of Navi_subtracted (x) is unwrapped using the above equation (1) to calculate the phase Phase_unwrapped (x).
- step 607 the phase gradient (that is, the phase difference gradient) is obtained from the above equation (2), and in step 608, the correction pulse application amount in the Gp direction is calculated according to the above equation (3).
- the difference between the processing in the Gp and Gr directions and the processing in the Gs direction is whether or not the reference navigation echo is used.
- the correction pulse application amount is determined so that the gradient of the phase of the navigation echo becomes zero. This is because the SNR is the highest when the gradient of the phase in the Gs direction is zero, and the SNR decreases when an echo including an error caused by the movement during the application of the MPG pulse is used as a reference.
- the correction pulse application amount is determined so as to coincide with the phase distribution of the reference navigation echo. Since the Gp and Gr directions are directions in the image plane, if the phase gradients in the Gp and Gr directions match between the multiple echo signals that make up the image, even if the phase gradient is absolute, This is because the absolute value of the image is not affected.
- the correction pulse calculation unit 81 notifies the sequencer 4 of the excess / deficiency amount of the MPG pulse in the three directions Gs, Gp, and Gr calculated as described above, that is, the correction pulse application amount.
- the sequencer 4 applies a gradient magnetic field pulse (FIG. 4: 403) according to the correction pulse application amount in each direction of Gs, Gp, and Gr calculated by the correction pulse calculation unit 81 (correction pulse application processing 303).
- the application amount of the gradient magnetic field pulse is determined by the product of the application time and the magnetic field strength.
- the sequencer 4 may fix the correction pulse application time and change the pulse intensity according to the correction pulse application amount. .
- the gradient magnetic field applied amount caused by the change in the global position of the subject 1 (global movement) when the first MPG pulse 203 and the second MPG pulse 204 are applied Overs and shorts can be compensated. Therefore, the echo signal to be measured thereafter becomes equivalent to the echo signal measured when the MPG pulse is applied without excess or deficiency, and a diffusion-weighted image with a good SNR can be obtained.
- the reduction in SNR is suppressed by performing the correction that makes the phase error in the slice direction that has the most influence on the SNR of the image and cannot be corrected after acquiring the echo signal zero,
- the target diffusion movement can be depicted with high contrast.
- by correcting the three directions including the slice direction it is possible to correct the phase error caused by global motion for all axes that cannot be measured simply by creating the 2D phase map and the technique described in Non-Patent Document 1. it can.
- the phase error correction process does not include application of an RF pulse, and is configured only by generation of a navigation echo using a readout gradient magnetic field pulse and application of a correction gradient magnetic field pulse,
- the correction processing time including the calculation time is short because only the echo signal of one axis is Fourier-transformed and the phase gradient is converted into the area of the gradient magnetic field. Thereby, the extension of TE can be significantly suppressed.
- the calculation cost of the RF pulse is unnecessary, and the processing cost is low.
- the MRI apparatus of the present embodiment can suppress the extension of TE, that is, the correction sequence can be applied to real-time imaging.
- Fig. 7 shows the detailed sequence of the navigation echo readout gradient magnetic field. If the sampling interval of the echo signal is 1.56 ⁇ s and the number of sampling points is 64, the sampling time per axis is about 100 ⁇ s. If the readout gradient magnetic field intensity is 9 mT / m and the maximum Slew Rate of the gradient magnetic field is 100 T / m / s, the time required to measure one-axis navigation echo will be the dephasing and rephasing of the readout gradient magnetic field. It can be kept in 700 ⁇ s or less including the pulse.
- the part where the echo signal is not sampled is overlapped with the previous MPG pulse 204 (that is, a part of the gradient magnetic field application waveform that generates the navigation echo is temporally compared with a part of the MPG pulse waveform.
- the time of the navigation echo readout gradient magnetic field application process 301 can be further shortened.
- the correction pulse calculation process 302 can be started without waiting for the end of the application of the readout gradient magnetic field after the echo signal has been sampled, the time can be shortened here, and the navigation echo readout gradient magnetic field application process 301 is performed. The substantial time required for this is 900 ⁇ s.
- the correction pulse calculation processing 302 although it depends on the performance of the digital signal processing device 8, it is sufficient if the time required for calculating the excess / deficiency amount of the MPG pulse and notifying the sequencer 4 is 3 ms. Therefore, in an MRI apparatus having a general performance, it is possible to perform the reading from the navigation echo to the application of the correction pulse in about 5 ms, and in the pulse sequence of FIG. 4, the TE extension can be suppressed to 10 ms.
- the first embodiment has been described with reference to the drawings, but this embodiment includes means (sequence control unit and correction pulse calculation unit) that performs global motion correction processing in real time at least in the slice gradient magnetic field direction.
- means sequence control unit and correction pulse calculation unit
- the other elements and procedures can be changed as appropriate.
- the pulse sequence is a DWI pulse sequence including an MPG pulse
- the pulse sequence is not limited to the pulse sequence shown in FIG.
- the application direction of the navigation echo and the correction pulse in the global motion correction processing may not be the Gs, Gp, Gr direction, but may be the X, Y, Z direction of the device, or correction is applied by applying in three or more directions. May be performed.
- the present embodiment also includes a case where a navigation echo is acquired only in the Gs direction and a correction pulse is applied.
- the reference navigation echo used for the phase correction in the Gp and Gr directions may be a data string prepared in advance instead of the first echo in the measurement.
- a data string is pre-scanned by applying an RF pulse and a read gradient magnetic field in the Gp and Gr directions to collect echoes, and in each of the Gp and Gr directions.
- the echo is used as a data string of the reference navigation echo.
- the MPG pulse may or may not be used.
- the phase gradient can be made uniform in the imaging plane, as in the case of using the first echo in the measurement.
- an echo acquired without using an MPG pulse is used as a reference, it is possible to perform correction so that the phase gradient itself caused by the MPG pulse is zero.
- ⁇ Second embodiment> In the first embodiment, real-time phase correction is performed for the three directions of Gs, Gp, and Gr. However, in this embodiment, real-time phase correction is performed only for the Gs direction, and correction pulses are used for the Gp and Gr directions. The echo signal is corrected afterwards using the calculated correction amount. Specifically, the phase correction amount is reflected on the k-space arrangement coordinates of the echo signal in the image reconstruction.
- the digital signal processing apparatus 8 includes a data correction unit 82 in addition to the correction pulse calculation unit 81.
- the process of this embodiment is demonstrated centering on a different point from 1st embodiment, using the drawing used in 1st embodiment suitably.
- the pulse sequence 200A as shown in FIG. 4 is executed, and the processes 501 to 505 in FIG. 5 are performed in the Gs direction.
- the processing from 605 to 607 shown in FIG. 6 is performed to calculate the phase gradient with respect to the reference navigation echo.
- the data correction unit 82 reads the inclination of the phase and calculates the correction value of the k-space arrangement coordinates of the echo signal 207.
- the correction value ⁇ k is calculated according to the following equation from the slope (FirstOrderPhase) of the primary straight line calculated by equation (2) in processing 607.
- the digital signal processing device 8 reads the echo signal 207 collected by the pulse sequence 200A and arranges it in the k space. At this time, the correction value ⁇ k calculated by the data correction unit 82 is added to the k-space arrangement coordinates of the echo signal. As a result, the k-space arrangement is substantially equal to the k-space arrangement of the echo signal 207 that has been subjected to phase correction in the Gp and Gr directions before acquisition. By reconstructing an image using the corrected k-space data, the influence of the phase error of the MPG pulse can be suppressed even in a cross section parallel to the slice plane.
- the data correction unit 82 phase-differs the zeroth-order offset calculated by the equation (6) from the echo signal Echo (t) used for image reconstruction according to the following equation (7).
- Equation (7)
- represents the amplitude of the echo signal Echo (t), which is a complex data string, and ⁇ (t) represents the phase of the echo signal Echo (t). I is an imaginary unit.
- correction for making the phase error due to the MPG pulse zero is also performed in the Gp and Gr directions, and thus a diffusion-weighted image with higher image quality (SNR / contrast) can be obtained.
- ⁇ Third embodiment> In the first embodiment, in calculating the excess / deficiency of the MPG pulse, processing in the Gs direction is performed without using the reference echo, and processing in the Gp and Gr directions is based on the echo measured in the first iteration, and In this embodiment, the processing for acquiring the reference echo group in the pulse sequence and the MPG pulse excess / deficiency calculation process using these reference echo group are added to the Gs. It is the feature that it applies also about a direction.
- FIG. 10 is a block diagram showing an overview of the processing of this embodiment.
- the MRI apparatus of this embodiment has a reference navigation echo read gradient magnetic field application process 901 added to the process of the sequencer 4.
- the correction pulse calculation process 902 in the digital signal processing device 8 is a process using the reference navigation echo and the navigation echo.
- a correction sequence 400 is added to the latter half of the TE, so that the first half of the TE has a space corresponding to the time of the correction sequence. Time occurs.
- the reference navigation echoes are collected using the idle time. Specifically, between the RF pulse 201 and the first MPG pulse 203, a process 901 (reference navi echo read gradient magnetic field application process) that sequentially reads and applies a gradient magnetic field in the three directions Gs, Gp, and Gr ) Is executed. The rest of the sequence is the same as in FIG. 4, and the navigation echo read gradient magnetic field application process 301 is executed.
- the digital signal processing device 8 (correction pulse calculation unit 81) is generated by the reference navigation echo readout gradient magnetic field application processing 901 and received by the reception unit 6, and the navigation echo readout gradient magnetic field application processing 301 executed in the second half of the pulse sequence.
- the excess / deficiency amount of the MPG pulse is calculated (process 902) using the echo signal obtained in the above.
- the processing 902 of the correction pulse calculation unit 81 will be described with reference to the flow of FIG. In FIG. 12, the same processes as those in FIG. 6 are denoted by the same reference numerals.
- step 1001 the reference navigation echo Base_Navi_Echo (t) acquired in step 901 is read.
- step 601 the reference navigation echo Base_Navi_Echo (t) and the navigation echo Navi_Echo (t) are Fourier transformed in the process 1002 and the process 602, respectively, and Base_Navi (x) and Navi (x) )
- step 605 the phase difference between the reference navigation echo Base_Navi_Echo (t) and the navigation echo Navi (x) is calculated.
- the phase gradient is calculated according to the equation (2) for each navigation echo of each coil, and the average value is used to calculate the equation ( 3) Determine the correction pulse application amount.
- the phase distribution given to the navigation echo depending on the shape and position of the high-frequency coil (reception coil) 14b is also removed by calculating the phase difference from the reference echo. It is possible to calculate an error caused only by movement during pulse application.
- the reference echo used in the first embodiment is an echo including an error caused by the movement during application of the MPG pulse, and is not used because it leads to a decrease in SNR in the Gs direction.
- an echo that does not include an error caused by a motion during the application of the MPG pulse is obtained as a reference by being acquired before the application of the MPG pulse, it can also be used for processing in the Gs direction. Therefore, in this embodiment, it is not necessary to distinguish the Gs direction from the Gr and Gp directions.
- the readout gradient magnetic field used for acquiring the reference navigation echo has the same shape as the readout gradient magnetic field for acquiring the navigation echo applied in the execution section of the correction sequence 400, and therefore the pulse is not extended. A sequence can be performed.
- the Gr and Gp directions can be corrected by using the slope of the phase calculated in the process 607 to correct the k-space arrangement coordinates of the echo signal 207 afterwards.
- the zero-order offset may be calculated together with the phase gradient in the process 607, and the phase of the echo signal may be corrected using the zeroth-order offset.
- the modified example described in the first embodiment can be adopted in this embodiment.
- 2 static magnetic field generation unit 3 gradient magnetic field generation unit (imaging unit), 4 sequencer (sequence control unit), 5 transmission unit (imaging unit), 6 reception unit (imaging unit), 7 signal processing unit, 8 digital signal processing device (Calculation unit), 81 Correction pulse calculation unit, 82 Data correction unit, 200 (200A, 200B) DWI pulse sequence, 400 correction sequence
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- High Energy & Nuclear Physics (AREA)
- Engineering & Computer Science (AREA)
- Heart & Thoracic Surgery (AREA)
- General Physics & Mathematics (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Biomedical Technology (AREA)
- Radiology & Medical Imaging (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
In this MRI device, which performs imaging involving applying an MPG pulse, extension of TE is suppressed to obtain high-quality diffusion weighted images in real time. To this end, in this magnetic resonance imaging device, which applies an MPG pulse after applying an excitation RF pulse and collects echo signals from a prescribed time after the excitation RF pulse, during the period after applying the MPG pulse up to collection of the echo signals, at least navigation echoes in the slice direction are acquired, a phase correction amount is calculated from the acquired navigation echoes, and, on the basis of the calculated phase correction amount, a corrective gradient magnetic field is applied which corrects the phase error included in the MPG pulse.
Description
本発明は、被検体中の水素や燐等からの核磁気共鳴信号(以下、NMR信号と呼ぶ)を測定し、核の密度分布や緩和時間分布等を画像化する磁気共鳴イメージング(以下、MRIと呼ぶ)装置に関し、特に、拡散強調画像の測定技術に関する。
The present invention measures a nuclear magnetic resonance signal (hereinafter referred to as an NMR signal) from hydrogen, phosphorus, etc. in a subject and images a nuclear density distribution, relaxation time distribution, etc. (hereinafter referred to as MRI). It is related with the measurement technique of a diffusion weighted image especially.
MRI装置で得られる画像の一つに、拡散強調画像(DWI:Diffusion Weighted Image)がある。拡散強調画像は、MPG:Motion Probing Gradientと呼ばれる強度の高い傾斜磁場パルスを印加することで、水分子の拡散運動を画像のコントラストに反映させた画像である。
One of the images obtained with an MRI apparatus is a diffusion weighted image (DWI). A diffusion weighted image is an image in which the diffusion motion of water molecules is reflected in the contrast of an image by applying a gradient magnetic field pulse called MPG: Motion Probing Gradient.
MPGパルスは、励起RFパルスとして180°RFパルスを用いる場合には、その前後に2つ印加される。2つのMPGパルスは、その極性は異なるが、印加量(面積)は等しい。このため、空間位置が移動していないスピン(静止スピン)については、最初に印加されるMPGパルスにより変化した位相は、後に印加されるMPGパルスにより戻される。一方、空間位置がMPGパルスの印加方向に移動したスピンは、各MPGパルスにより作られる位相の変化量が一致しないことから、後のMPG印加時点で位相がゼロにならず、周囲の静止スピンとの位相の不一致によりエコー信号が減衰し、移動スピンの部分、例えば血流などは画像上に低信号として表現されることになる。拡散強調イメージングは、この静止スピンと動きのあるスピンとのコントラスト差を利用して拡散運動を画像化する手法である。
Two MPG pulses are applied before and after the 180 ° RF pulse as the excitation RF pulse. The two MPG pulses have different polarities, but the applied amount (area) is the same. For this reason, for spins (stationary spins) whose spatial position has not moved, the phase changed by the MPG pulse applied first is returned by the MPG pulse applied later. On the other hand, the spin whose spatial position has moved in the direction of application of the MPG pulse does not match the amount of phase change produced by each MPG pulse. The echo signal attenuates due to the phase mismatch, and the portion of the moving spin, for example, blood flow, is expressed as a low signal on the image. Diffusion-weighted imaging is a technique for imaging diffusion motion using the contrast difference between stationary spins and moving spins.
このように拡張強調イメージングは、二つのMPGパルスの間に生じた拡散運動を可視化することを目的としているが、拡散運動以外の運動もまた画像のコントラストに反映されてしまうという問題がある。例えば測定対象が人体の場合は、拍動や呼吸といった生理的な動きが問題となる。このような生理的な動きは一般的に観察対象では無いため、拡散強調画質の劣化として認識される。
As described above, the extended enhancement imaging is intended to visualize the diffusion motion generated between the two MPG pulses, but there is a problem that the motion other than the diffusion motion is also reflected in the contrast of the image. For example, when the measurement target is a human body, physiological movements such as pulsation and respiration become a problem. Since such physiological movement is generally not an observation target, it is recognized as degradation of diffusion weighted image quality.
この問題を解決する1つの方法として、リアルタイムにスピンに生じた位相誤差のマップを測定し、この位相誤差マップを用いて計測されるエコーを補正する方法がある(特許文献1)。この方法では、MPGパルス印加後に2Dもしくは3Dの空間を走査する傾斜磁場を印加し、2Dもしくは3Dの位相誤差マップを測定する。測定した位相誤差マップを用いて、位相誤差をキャンセルするRFパルスと傾斜磁場を計算し、エコー信号を計測する前に照射及び印加する。
As one method for solving this problem, there is a method of measuring a phase error map generated in spin in real time and correcting an echo measured using this phase error map (Patent Document 1). In this method, a gradient magnetic field that scans a 2D or 3D space after applying an MPG pulse is applied, and a 2D or 3D phase error map is measured. Using the measured phase error map, an RF pulse and a gradient magnetic field for canceling the phase error are calculated, and irradiation and application are performed before the echo signal is measured.
この他に類似の方法として、MPGパルス印加後に画像面内の方向、すなわち周波数エンコード方向及び位相エンコード方向に読み出し傾斜磁場パルスを印加し、得られたエコー信号から算出される0次及び1次の位相誤差に応じて傾斜磁場パルスと補償B0パルスを印加することで0次及び1次の位相誤差を補償する手法が提案されている(非特許文献1)。
As another similar method, a gradient magnetic field pulse is applied in the direction in the image plane after applying the MPG pulse, that is, the frequency encoding direction and the phase encoding direction, and the 0th and 1st order calculated from the obtained echo signal. There has been proposed a method of compensating for the zeroth-order and first-order phase errors by applying a gradient magnetic field pulse and a compensation B0 pulse in accordance with the phase error (Non-Patent Document 1).
しかしながら、上述した方法には以下の問題がある。まず、特許文献1の方法では、位相誤差マップを2Dもしくは3Dで測定するため、測定に要する時間が長い。特に3Dでの測定には長い時間を要する。得られた位相誤差マップを用いた補正は、エコー信号計測までに行う必要があるため、位相誤差マップの計測時間の延長は、エコー信号のTE:Echo Timeの延長につながり、結果として画像のSNRが低下する。位相誤差マップを2Dで測定する場合は3Dに比べると計測時間は短くなるが、測定していない軸に関しては動きの影響を観察できないため補正できない。
However, the above method has the following problems. First, in the method of Patent Document 1, the time required for measurement is long because the phase error map is measured in 2D or 3D. In particular, measurement in 3D takes a long time. Since the correction using the obtained phase error map needs to be performed before the echo signal measurement, extending the measurement time of the phase error map leads to the extension of TE: Echo Time of the echo signal, resulting in the SNR of the image Decreases. When the phase error map is measured in 2D, the measurement time is shorter than in 3D, but it cannot be corrected because the influence of motion cannot be observed for the axes that are not measured.
具体的にはX-Y平面の位相誤差マップを測定する場合、Z軸方向の動きの影響を補正することができない。また、特許文献1の方法では、位相誤差マップから得られる位相誤差を補正するためにRFパルスを用いている。位相誤差をキャンセルするRFパルス及びそれに対応する傾斜磁場の計算にはフーリエ変換、もしくはフリップ角が大きい場合にはブロッホ方程式を解く必要があり処理コストが大きい。加えて、計算して得られた位相誤差をキャンセルするRFパルスを印加する時間も数十msのオーダーで要する。SNRの低下を考慮すると、計測条件やMRI装置にも依るがTEの延長は10ms程度以下が望ましい。
Specifically, when measuring the phase error map on the XY plane, the influence of movement in the Z-axis direction cannot be corrected. In the method of Patent Document 1, an RF pulse is used to correct a phase error obtained from a phase error map. In the calculation of the RF pulse for canceling the phase error and the gradient magnetic field corresponding thereto, the Fourier transform or the Bloch equation needs to be solved when the flip angle is large, and the processing cost is high. In addition, the time for applying the RF pulse that cancels the calculated phase error is also in the order of several tens of ms. Considering the decrease in SNR, the TE extension is preferably about 10 ms or less, depending on the measurement conditions and the MRI apparatus.
次に、非特許文献1の方法では、傾斜磁場パルスのみでMPG印加中の生理的な動きの影響を補正するため位相誤差マップを作成する場合に比べて短い処理時間で実行することができる。しかしながら、非特許文献1の方法では、MPGパルスの印加軸をスライス方向に平行な方向にして、それと直交する二方向についてナビゲーターエコーによる位相誤差補正を行っているので、スライス方向に対する生理的な動きの影響は補正されずに残る。一般に、生理的な動きに起因する位相誤差は断面内の二方向に限らずスライス方向にも生じるが、スライス方向の位相誤差は画像のSNRに与える影響が大きく、エコー信号取得後に補正することはできない。また拡散強調イメージングではMPGパルスの印加軸を種々に異ならせて撮像が行われ、位相誤差を生じやすい方向とMPGパルスの印加軸とに規則的な関係を見出すことはできないため、位相誤差補正を断面内の二方向においてのみ行うことを前提とした非特許文献1の方法には限界がある。
Next, the method of Non-Patent Document 1 can be executed in a shorter processing time compared with the case of creating a phase error map in order to correct the influence of physiological movement during application of MPG with only gradient magnetic field pulses. However, in the method of Non-Patent Document 1, the MPG pulse application axis is set in a direction parallel to the slice direction, and phase error correction is performed by navigator echoes in two directions orthogonal thereto, so that physiological movement in the slice direction is performed. The effect of remains uncorrected. In general, the phase error due to physiological movement occurs not only in the two directions in the cross section but also in the slice direction, but the phase error in the slice direction has a large effect on the SNR of the image, and it is not possible to correct it after acquiring the echo signal. Can not. Also, in diffusion weighted imaging, imaging is performed with different MPG pulse application axes, and it is impossible to find a regular relationship between the direction in which the phase error is likely to occur and the application axis of the MPG pulse. There is a limit to the method of Non-Patent Document 1 on the assumption that it is performed only in two directions within the cross section.
本発明は、上記問題点に鑑みてなされたものであり、MPGパルス印加を含む撮像を行うMRI装置において、TEの延長を抑えてリアルタイムで高画質な拡散強調画像を得ることが可能なMRI装置を提供することを目的とする。
The present invention has been made in view of the above problems, and in an MRI apparatus that performs imaging including application of an MPG pulse, an MRI apparatus capable of obtaining a high-quality diffusion-weighted image in real time while suppressing the extension of TE The purpose is to provide.
上述した問題点を解決するため、本発明のMRI装置は、MPGパルス印加後エコー信号計測までの間で、MPGパルス印加後のエコー信号のk空間におけるシフト量を、少なくともスライス選択傾斜磁場方向(以下、スライス方向という)を含む軸方向に計測する手段と、前記シフト量を補正するために必要な傾斜磁場パルスを計算する手段と、前記補正用傾斜磁場パルスを印加する手段とを備える。
In order to solve the above-described problems, the MRI apparatus of the present invention has a shift amount in the k space of the echo signal after application of the MPG pulse at least in the slice selective gradient magnetic field direction (until the measurement of the echo signal after application of the MPG pulse). (Hereinafter, referred to as a slice direction), means for measuring in an axial direction, means for calculating a gradient magnetic field pulse necessary for correcting the shift amount, and means for applying the correction gradient magnetic field pulse.
具体的には、本発明のMRI装置は、所定のパルスシーケンスに従って、エコー信号を収集する撮像部と、前記撮像部を制御するシーケンス制御部と、前記撮像部が収集したエコー信号を用いて演算を行う演算部と、を備え、前記パルスシーケンスは、励起RFパルス印加とエコー信号収集との間に、MPGパルス印加を含む。前記シーケンス制御部は、前記MPG印加後エコー信号収集までの間に、少なくともスライス方向について、ナビゲーションエコーの読み出し及び補正傾斜磁場印加を含む補正シーケンスを追加する制御を行い、前記演算部は、前記補正シーケンスにおける前記ナビゲーションエコーの読み出しと前記補正傾斜磁場の印加との間で、前記ナビゲーションエコーを用いて前記補正傾斜磁場の印加量を算出し、算出した補正傾斜磁場印加量を前記シーケンス制御部に渡す補正パルス算出部を備え、前記シーケンス制御部は、前記補正パルス算出部から受け取った前記補正傾斜磁場の印加量で前記補正傾斜磁場印加を行う。
Specifically, the MRI apparatus of the present invention performs an operation using an imaging unit that collects echo signals, a sequence control unit that controls the imaging unit, and echo signals collected by the imaging unit according to a predetermined pulse sequence. The pulse sequence includes MPG pulse application between excitation RF pulse application and echo signal acquisition. The sequence control unit performs control to add a correction sequence including readout of navigation echoes and application of a correction gradient magnetic field at least in the slice direction between the MPG application and the echo signal collection, and the calculation unit includes the correction Between the readout of the navigation echo and the application of the correction gradient magnetic field in a sequence, the application amount of the correction gradient magnetic field is calculated using the navigation echo, and the calculated correction gradient magnetic field application amount is passed to the sequence control unit. A correction pulse calculation unit is provided, and the sequence control unit applies the correction gradient magnetic field with the application amount of the correction gradient magnetic field received from the correction pulse calculation unit.
本発明によれば、スライス方向を含むMPG印加後のエコー信号のk空間におけるシフト量を算出し、その値に基づいて前記シフト量を補正するための傾斜磁場を印加することにより、生理的な運動に起因して撮像対象に生じる大域的な運動による画像コントラストの変化を抑制することができ、かつそれら一連の処理を従来技術よりも短時間に実施できる。これによりTEの延長すなわちSNRの低下が抑えられ、本来の観察対象である局所的な水分子の拡散運動を観察しやすい画像を提供できる。
According to the present invention, the shift amount in the k space of the echo signal after the MPG application including the slice direction is calculated, and a gradient magnetic field for correcting the shift amount based on the value is applied, thereby providing a physiological Changes in image contrast due to global motion that occur in the imaging target due to motion can be suppressed, and a series of these processes can be performed in a shorter time than in the prior art. As a result, an extension of TE, that is, a decrease in SNR can be suppressed, and an image that allows easy observation of local water molecule diffusion motion, which is the original observation target, can be provided.
以下、添付図面に従って本発明のMRI装置の好ましい実施形態について詳説する。なお、発明の実施形態を説明するための全図において、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。
Hereinafter, preferred embodiments of the MRI apparatus of the present invention will be described in detail with reference to the accompanying drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiments of the invention, and the repetitive description thereof is omitted.
最初に、本発明が適用されるMRI装置の一例の全体概要を図1に基づいて説明する。
MRI装置は、NMR現象を利用して被検体の断層画像を得るものであり、図1に示すように、静磁場発生部2と、傾斜磁場発生部3と、送信部5と、受信部6と、信号処理部7と、シーケンサ4とを備えている。本明細書では、静磁場発生部2、傾斜磁場発生部3、送信部5及び受信部6をまとめて撮像部という。 First, an overall outline of an example of an MRI apparatus to which the present invention is applied will be described with reference to FIG.
The MRI apparatus uses a NMR phenomenon to obtain a tomographic image of a subject, and as shown in FIG. 1, a staticmagnetic field generator 2, a gradient magnetic field generator 3, a transmitter 5, and a receiver 6 A signal processing unit 7 and a sequencer 4. In this specification, the static magnetic field generation unit 2, the gradient magnetic field generation unit 3, the transmission unit 5, and the reception unit 6 are collectively referred to as an imaging unit.
MRI装置は、NMR現象を利用して被検体の断層画像を得るものであり、図1に示すように、静磁場発生部2と、傾斜磁場発生部3と、送信部5と、受信部6と、信号処理部7と、シーケンサ4とを備えている。本明細書では、静磁場発生部2、傾斜磁場発生部3、送信部5及び受信部6をまとめて撮像部という。 First, an overall outline of an example of an MRI apparatus to which the present invention is applied will be described with reference to FIG.
The MRI apparatus uses a NMR phenomenon to obtain a tomographic image of a subject, and as shown in FIG. 1, a static
静磁場発生部2は、被検体1の周りに配置された、永久磁石方式、常電導方式あるいは超電導方式の静磁場発生源からなる。垂直磁場方式の静磁場発生源は、被検体1の周りの空間にその体軸と直交する方向に、水平磁場方式の静磁場発生源は、体軸方向に均一な静磁場を発生させる。
The static magnetic field generation unit 2 includes a permanent magnet type, normal conduction type or superconducting type static magnetic field generation source arranged around the subject 1. The vertical magnetic field type static magnetic field generation source generates a uniform static magnetic field in the direction of the body axis in a direction perpendicular to the body axis in the space around the subject 1 and the horizontal magnetic field type static magnetic field generation source.
傾斜磁場発生部3は、MRI装置の座標系(静止座標系)であるX、Y、Zの3軸方向に巻かれた傾斜磁場コイル9と、それぞれの傾斜磁場コイルを駆動する傾斜磁場電源10とから成り、後述のシ-ケンサ4からの命令に従ってそれぞれのコイルの傾斜磁場電源10を駆動することにより、X、Y、Zの3軸方向に傾斜磁場を印加する。3軸方向の傾斜磁場の組み合わせにより、任意の方向の傾斜磁場を形成することができる。撮影時には、スライス面(撮影断面)に直交する方向にスライス方向傾斜磁場パルスを印加して被検体1に対するスライス面を設定し、そのスライス面に直交して且つ互いに直交する残りの2つの方向に位相エンコード方向傾斜磁場パルスと周波数エンコード方向傾斜磁場パルスを印加して、エコー信号にそれぞれの方向の位置情報をエンコードする。また所定方向の傾斜磁場パルスを印加することで、被検体1の組織を構成するスピンにその印加方向に沿って1次の位相変化を与えることができる。
The gradient magnetic field generator 3 includes a gradient magnetic field coil 9 wound in the three-axis directions of X, Y, and Z, which is a coordinate system (stationary coordinate system) of the MRI apparatus, and a gradient magnetic field power supply 10 that drives each gradient magnetic field coil The gradient magnetic field is applied in the three axis directions of X, Y, and Z by driving the gradient magnetic field power supply 10 of each coil in accordance with a command from the sequencer 4 described later. A gradient magnetic field in an arbitrary direction can be formed by a combination of gradient magnetic fields in three axial directions. At the time of imaging, a slice direction gradient magnetic field pulse is applied in a direction orthogonal to the slice plane (imaging cross section) to set a slice plane for the subject 1, and in the remaining two directions orthogonal to the slice plane and orthogonal to each other A phase encoding direction gradient magnetic field pulse and a frequency encoding direction gradient magnetic field pulse are applied, and position information in each direction is encoded in the echo signal. Further, by applying a gradient magnetic field pulse in a predetermined direction, a primary phase change can be given to the spins constituting the tissue of the subject 1 along the application direction.
送信部5は、被検体1の生体組織を構成する原子の原子核スピンに核磁気共鳴を起こさせるために、被検体1に高周波磁場パルス(RFパルスという)を照射するもので、高周波発振器11と変調器12と高周波増幅器13と送信側の高周波コイル(送信コイル)14aとから成る。高周波発振器11から出力された高周波磁場パルスをシーケンサ4からの指令によるタイミングで変調器12により振幅変調し、この振幅変調された高周波パルスを高周波増幅器13で増幅した後に被検体1に近接して配置された高周波コイル14aに供給することにより、RFパルスが被検体1に照射される。
The transmitter 5 irradiates the subject 1 with a high-frequency magnetic field pulse (referred to as an RF pulse) in order to cause nuclear magnetic resonance to occur in the nuclear spins of the atoms constituting the living tissue of the subject 1. It comprises a modulator 12, a high frequency amplifier 13, and a high frequency coil (transmission coil) 14a on the transmission side. The high-frequency magnetic field pulse output from the high-frequency oscillator 11 is amplitude-modulated by the modulator 12 at a timing according to a command from the sequencer 4, and the amplitude-modulated high-frequency pulse is amplified by the high-frequency amplifier 13 and then placed close to the subject 1. By supplying the high-frequency coil 14a, the subject 1 is irradiated with the RF pulse.
受信部6は、被検体1の生体組織を構成する原子核スピンの核磁気共鳴により放出されるエコー信号(NMR信号)を検出するもので、受信側の高周波コイル(受信コイル)14bと、信号増幅器15と、直交位相検波器16と、A/D変換器17とから成る。送信側の高周波コイル14aから照射された電磁波によって誘起された被検体1の応答のNMR信号が被検体1に近接して配置された高周波コイル14bで検出され、信号増幅器15で増幅された後、シーケンサ4からの指令によるタイミングで直交位相検波器16により直交する二系統の信号に分割され、それぞれがA/D変換器17でディジタル量に変換されて、信号処理部7に送られる。
The receiving unit 6 detects an echo signal (NMR signal) emitted by nuclear magnetic resonance of nuclear spins constituting the biological tissue of the subject 1, and includes a receiving-side high-frequency coil (receiving coil) 14b, a signal amplifier 15, a quadrature detector 16, and an A / D converter 17. After the NMR signal of the response of the subject 1 induced by the electromagnetic wave irradiated from the high frequency coil 14a on the transmission side is detected by the high frequency coil 14b arranged close to the subject 1 and amplified by the signal amplifier 15, The quadrature phase detector 16 divides the signal into two orthogonal signals at a timing according to a command from the sequencer 4, and each signal is converted into a digital quantity by the A / D converter 17 and sent to the signal processing unit 7.
信号処理部7は、各種データ処理と処理結果の表示及び保存等を行うもので、種々の演算や制御を行うディジタル信号処理装置8と、光ディスク19、磁気ディスク18等の外部記憶装置と、ROM21、RAM22等の内部記憶媒体と、ディスプレイ20とを有する。受信部6からのデータがディジタル信号処理装置8に入力されると、ディジタル信号処理装置8が信号処理、画像再構成等の処理を実行し、その結果である被検体1の断層画像をディスプレイ20に表示すると共に、外部記憶装置の磁気ディスク18等に記録する。ディジタル信号処理装置8が行う演算や制御などの処理は、CPUとそれに実装されるソフトウェアで実現してもよいし、その一部はASICやFPGAなどのハードウェアで実現してもよい。
The signal processing unit 7 performs various data processing and display and storage of processing results. The signal processing unit 7 performs various operations and controls, an external storage device such as an optical disk 19 and a magnetic disk 18, and a ROM 21. And an internal storage medium such as a RAM 22 and a display 20. When data from the receiving unit 6 is input to the digital signal processing device 8, the digital signal processing device 8 executes processing such as signal processing and image reconstruction, and displays a tomographic image of the subject 1 as a result of the display 20 And recorded on the magnetic disk 18 or the like of the external storage device. Processing such as computation and control performed by the digital signal processing device 8 may be realized by a CPU and software mounted thereon, or a part thereof may be realized by hardware such as an ASIC or FPGA.
また信号処理部7には、MRI装置の各種制御情報や信号処理部7で行う処理の制御情報を入力するための操作部25が備えられる。操作部25は、トラックボール又はマウス23、キーボード24などを備える。操作部25は、ディスプレイ20に近接して配置され、操作者がディスプレイ20を見ながら操作部25を通してインタラクティブにMRI装置の各種処理を制御する。
Further, the signal processing unit 7 is provided with an operation unit 25 for inputting various control information of the MRI apparatus and control information of processing performed by the signal processing unit 7. The operation unit 25 includes a trackball or mouse 23, a keyboard 24, and the like. The operation unit 25 is arranged in the vicinity of the display 20, and an operator controls various processes of the MRI apparatus interactively through the operation unit 25 while looking at the display 20.
シーケンサ4は、RFパルスと傾斜磁場パルスを所定のパルスシーケンスで繰り返し印加する制御手段(シーケンス制御部)で、ディジタル信号処理装置8の制御で動作し、被検体1の断層画像のデータ収集に必要な種々の命令を撮像部(送信部5、傾斜磁場発生部3、および受信部6)に送る。パルスシーケンスは、RFパルスや傾斜磁場パルスの印加の強度やタイミング及びNMR信号(エコー信号)を収集するタイミングなどを定めたタイミングチャートであり、撮像方法によって種々のパルスシーケンスがある。これらパルスシーケンスはプログラムとして信号処理部7の記憶装置に予め格納されており、シーケンサ4が所定のパルスシーケンスと撮像パラメータとを読み込むことで実行される。本実施形態のMRI装置は、パルスシーケンスとしてMPGパルスを用いた拡散強調イメージング(DWI)パルスシーケンスを実行する。
The sequencer 4 is a control means (sequence control unit) that repeatedly applies RF pulses and gradient magnetic field pulses in a predetermined pulse sequence, operates under the control of the digital signal processing device 8, and is necessary for collecting tomographic image data of the subject 1. These various commands are sent to the imaging unit (transmitting unit 5, gradient magnetic field generating unit 3, and receiving unit 6). The pulse sequence is a timing chart that determines the intensity and timing of application of an RF pulse or gradient magnetic field pulse, the timing of collecting NMR signals (echo signals), and the like, and there are various pulse sequences depending on the imaging method. These pulse sequences are stored in advance in the storage device of the signal processing unit 7 as a program, and are executed by the sequencer 4 reading a predetermined pulse sequence and imaging parameters. The MRI apparatus of the present embodiment executes a diffusion weighted imaging (DWI) pulse sequence using an MPG pulse as a pulse sequence.
図2に一般的なDWIパルスシーケンスの一例を示す。このDWIパルスシーケンス200では、まずRFパルス201を照射し、同時に印加されるスライス選択傾斜磁場(Gs)で決まる特定の位置のスピンを励起する。その後、第一のMPGパルス203を印加する。
Figure 2 shows an example of a typical DWI pulse sequence. In this DWI pulse sequence 200, first, an RF pulse 201 is irradiated, and a spin at a specific position determined by a slice selective gradient magnetic field (Gs) applied simultaneously is excited. Thereafter, the first MPG pulse 203 is applied.
図2ではMPGパルスをスライス選択傾斜磁場パルスの軸(Gs)に印加しているが、他軸もしくは複数軸に印加することもある。第一のMPGパルス203を印加した後、スピンの位相を反転させるRFパルス202を照射する。その後、第二のMPGパルス204を印加する。第二のMPGパルス204は、第一のMPGパルス203と面積(印加量)が等しく、また反転RFパルス202の後に印加しているので第一のMPGパルス203とは逆の極性の位相回転を与える。
In FIG. 2, the MPG pulse is applied to the axis (Gs) of the slice selective gradient magnetic field pulse, but it may be applied to another axis or a plurality of axes. After applying the first MPG pulse 203, an RF pulse 202 for inverting the spin phase is irradiated. Thereafter, a second MPG pulse 204 is applied. The second MPG pulse 204 has the same area (applied amount) as the first MPG pulse 203, and is applied after the inverted RF pulse 202. Therefore, the second MPG pulse 204 has a phase rotation opposite to that of the first MPG pulse 203. give.
これにより、静止スピンについては第一のMPGパルス203によって与えられる位相回転が、第二のMPGパルス204によって巻き戻される。その後、位相エンコード傾斜磁場パルス205を印加し、読出し傾斜磁場パルス206を印加しながらエコー207を計測する。このようなパルスシーケンスにより、拡散運動する水分子と静止スピンとにコントラスト差を生じさせて拡散運動を画像化する。なお図では、一つのエコーのみを計測するシングルショット撮像の場合を示しているが、位相エンコード傾斜磁場パルスと読出し傾斜磁場パルスの印加を繰り返しながら複数のエコーを計測する場合(マルチショット撮像)もある。
Thereby, for the stationary spin, the phase rotation given by the first MPG pulse 203 is rewound by the second MPG pulse 204. Thereafter, the phase encode gradient magnetic field pulse 205 is applied, and the echo 207 is measured while the readout gradient magnetic field pulse 206 is applied. With such a pulse sequence, a contrast difference is generated between water molecules that are in a diffusing motion and stationary spins, and the diffusing motion is imaged. Note that the figure shows the case of single shot imaging that measures only one echo, but there are also cases where multiple echoes are measured while repeating the application of phase encoding gradient magnetic field pulses and readout gradient magnetic field pulses (multi-shot imaging). is there.
本実施形態のMRI装置は、このようなMPGパルスを含むパルスシーケンスを用いて撮像したときに、水分子の拡散運動とは別の被検体の拍動や呼吸などの動き(これら拡散運動と区別して大域的運動という)に起因する画像のコントラストの変化を抑制するために、大域的運動補正処理機能を備えることが特徴である。具体的には、第一のMPGパルス203印加時と第二のMPGパルス204印加時における大域的運動に起因して生じる傾斜磁場印加量の過不足量を検出してリアルタイムに補正する。
The MRI apparatus of the present embodiment, when imaged using such a pulse sequence including an MPG pulse, performs movements such as pulsation and breathing of the subject that are different from the diffusion movement of water molecules (these diffusion movement and In order to suppress the change in the contrast of the image due to (otherwise referred to as global motion), it is characterized by having a global motion correction processing function. Specifically, an excess or deficiency of the gradient magnetic field application amount caused by the global motion when the first MPG pulse 203 is applied and when the second MPG pulse 204 is applied is detected and corrected in real time.
以下、大域的運動補正処理機能の具体的な実施形態を説明する。
Hereinafter, specific embodiments of the global motion correction processing function will be described.
<第一実施形態>
本実施形態のMRI装置は、撮像部が、DWIパルスシーケンスのMPGパルス印加からエコー取得までの間に、少なくともスライス方向のナビゲーションエコー(以下、ナビエコーという)を発生させ、このナビエコーから計算された位相誤差に相当する印加量の傾斜磁場(補正傾斜磁場パルス)を印加するシーケンス(補正シーケンス)を追加して撮像すること、及び、ディジタル信号処理装置8(演算部)が、シーケンスの実行中に計測したナビエコーを用いて位相誤差或いはそれに相当する傾斜磁場印加量を算出し、シーケンス制御部(シーケンサ)に渡すこと、が特徴である。 <First embodiment>
In the MRI apparatus of the present embodiment, the imaging unit generates a navigation echo (hereinafter referred to as a navigation echo) at least in the slice direction between the application of the MPG pulse of the DWI pulse sequence and the echo acquisition, and the phase calculated from the navigation echo Imaging by adding a sequence (correction sequence) that applies a gradient magnetic field (corrected gradient magnetic field pulse) corresponding to the error, and the digital signal processing device 8 (calculation unit) measures during execution of the sequence A feature is that a phase error or a gradient magnetic field application amount corresponding to the calculated navigation error is calculated and passed to a sequence control unit (sequencer).
本実施形態のMRI装置は、撮像部が、DWIパルスシーケンスのMPGパルス印加からエコー取得までの間に、少なくともスライス方向のナビゲーションエコー(以下、ナビエコーという)を発生させ、このナビエコーから計算された位相誤差に相当する印加量の傾斜磁場(補正傾斜磁場パルス)を印加するシーケンス(補正シーケンス)を追加して撮像すること、及び、ディジタル信号処理装置8(演算部)が、シーケンスの実行中に計測したナビエコーを用いて位相誤差或いはそれに相当する傾斜磁場印加量を算出し、シーケンス制御部(シーケンサ)に渡すこと、が特徴である。 <First embodiment>
In the MRI apparatus of the present embodiment, the imaging unit generates a navigation echo (hereinafter referred to as a navigation echo) at least in the slice direction between the application of the MPG pulse of the DWI pulse sequence and the echo acquisition, and the phase calculated from the navigation echo Imaging by adding a sequence (correction sequence) that applies a gradient magnetic field (corrected gradient magnetic field pulse) corresponding to the error, and the digital signal processing device 8 (calculation unit) measures during execution of the sequence A feature is that a phase error or a gradient magnetic field application amount corresponding to the calculated navigation error is calculated and passed to a sequence control unit (sequencer).
本実施形態のMRI装置は、上述した一連の処理をリアルタイムに実施する。このため、シーケンサ4、送信部5、受信部6、信号処理部7にはリアルタイムシステムを採用する。例えば、シーケンサ4と信号処理部7(ディジタル信号処理装置8)にはRTOS(Real-time operation system)を搭載し、送信部5と受信部6はFPGA(Field Probrammable Gate Array)で構成することができる。
The MRI apparatus of this embodiment performs the above-described series of processing in real time. Therefore, a real-time system is adopted for the sequencer 4, the transmission unit 5, the reception unit 6, and the signal processing unit 7. For example, the sequencer 4 and the signal processing unit 7 (digital signal processing device 8) are equipped with an RTOS (Real-time operation system), and the transmission unit 5 and the reception unit 6 can be configured with FPGA (Field-Problemmable Gate-Array). it can.
またディジタル信号処理装置8は、図3に示すように、位相誤差を算出するための補正パルス算出部81を備える。補正パルス算出部81は、RTOS上で動作するソフトウェアや専用のハードウェアで実現することができる。なおディジタル信号処理装置8には、エコー信号を用いて画像を再構成する画像再構成部や、拡散強調画像のための演算を行う演算部が備えられるがここでは図示を省略している。
Further, as shown in FIG. 3, the digital signal processing device 8 includes a correction pulse calculation unit 81 for calculating a phase error. The correction pulse calculation unit 81 can be realized by software operating on the RTOS or dedicated hardware. The digital signal processing device 8 includes an image reconstruction unit that reconstructs an image using an echo signal and a calculation unit that performs a calculation for a diffusion weighted image, but the illustration is omitted here.
本実施形態における処理の概要を図3のブロック図を参照して説明する。
An overview of the processing in this embodiment will be described with reference to the block diagram of FIG.
シーケンサ4は、操作部25を介してDWIパルスシーケンスとその撮像パラメータが設定されると、パルスシーケンスを計算し、実行する。ここで撮像パラメータのうちTE(エコー時間)については、補正シーケンスに要する時間を考慮した時間(最短の時間)が設定される。DWIパルスシーケンスは、例えば、図2に示したように二つのMPGパルス203,204を含むDWIパルスシーケンス200である。
Sequencer 4 calculates and executes a pulse sequence when a DWI pulse sequence and its imaging parameters are set via operation unit 25. Here, regarding the TE (echo time) among the imaging parameters, a time (shortest time) that takes into account the time required for the correction sequence is set. The DWI pulse sequence is, for example, a DWI pulse sequence 200 including two MPG pulses 203 and 204 as shown in FIG.
シーケンサ4は、さらにDWIパルスシーケンス200に挿入して実行される補正シーケンス400を含む。補正シーケンス400は、ナビエコー読み出し傾斜磁場と補正パルスの印加を含み、最初にナビエコー読み出し傾斜磁場印加処理301が実行される。ナビエコー読み出し傾斜磁場は、MPGパルスを印加後にMPGパルス印加中の被検体1の動きを測るために印加される読み出し傾斜磁場であり、MPGパルス印加後に、少なくともスライス方向について印加される。ナビエコー読み出し傾斜磁場印加処理301により発生するエコー信号(ナビエコー)は受信部6を経てディジタル信号処理装置8の補正パルス算出部81に渡される。
The sequencer 4 further includes a correction sequence 400 that is inserted into the DWI pulse sequence 200 and executed. The correction sequence 400 includes application of a navigation echo readout gradient magnetic field and a correction pulse. First, a navigation echo readout gradient magnetic field application process 301 is executed. The navigation echo readout gradient magnetic field is a readout gradient magnetic field applied to measure the movement of the subject 1 during application of the MPG pulse after application of the MPG pulse, and is applied at least in the slice direction after application of the MPG pulse. An echo signal (navigation echo) generated by the navigation echo readout gradient magnetic field application processing 301 is passed to the correction pulse calculation unit 81 of the digital signal processing device 8 via the reception unit 6.
補正パルス算出部81は、ナビエコーを用いて、被検体1の動きにより生じるMPGパルスの過不足量と、それを補正するために必要な傾斜磁場印加量(補正パルス印加量)を算出し、その算出結果をシーケンサ4に通知する(補正パルス算出処理302)。
The correction pulse calculation unit 81 uses the navigation echo to calculate the excess / deficiency amount of the MPG pulse caused by the movement of the subject 1, and the gradient magnetic field application amount (correction pulse application amount) necessary to correct the same, The calculation result is notified to the sequencer 4 (correction pulse calculation processing 302).
シーケンサ4は、補正パルス算出部81が算出した補正パルス印加量に従い、補正シーケンス400の後半である補正パルス印加処理303を実行する。即ち、算出された補正パルス印加量でナビエコーと同軸に補正用傾斜磁場パルスを印加する。その後、DWIパルスシーケンス200の残り部分を実行し、DWIのためのエコー207を収集する。
The sequencer 4 executes the correction pulse application process 303 which is the second half of the correction sequence 400 according to the correction pulse application amount calculated by the correction pulse calculation unit 81. That is, the correction gradient magnetic field pulse is applied coaxially with the navigation echo at the calculated correction pulse application amount. Thereafter, the rest of the DWI pulse sequence 200 is executed to collect echoes 207 for DWI.
図4に、シーケンサ4が実行する、補正シーケンスが追加されたDWIパルスシーケンス200Aの一例を示す。図4において、図2と同じ要素は同じ符号で示し、重複する説明は省略する。このDWIパルスシーケンス200Aは、第二のMPGパルス204印加の後、エコー207の収集までに、MPG の過不足量を補正するための補正シーケンス400が挿入される。図4に示す例では、ナビエコー読み出し傾斜磁場をスライス傾斜磁場(Gs)方向、位相エンコード傾斜磁場(Gp)方向、読み出し傾斜磁場(Gr)方向のそれぞれに順番に印加し、各軸のナビエコー401を取得する(ナビエコー読み出し傾斜磁場印加処理301)。最後のナビエコー401を取得から所定時間後に位相誤差補正のための補正用傾斜磁場パルス403を印加する(補正パルス印加処理303)。ナビエコー401取得から補正用傾斜磁場パルス403までの時間402は、補正パルス算出処理302に要する時間であり、補正用傾斜磁場パルス403は、補正パルス算出処理302で算出された印加量で印加される。
Fig. 4 shows an example of the DWI pulse sequence 200A added by the correction sequence executed by the sequencer 4. In FIG. 4, the same elements as those in FIG. 2 are denoted by the same reference numerals, and redundant description is omitted. In the DWI pulse sequence 200A, a correction sequence 400 for correcting the excess / deficiency of MPG is inserted after the application of the second MPG pulse 204 and before the collection of the echo 207. In the example shown in FIG. 4, the navigation echo readout gradient magnetic field is sequentially applied in the slice gradient magnetic field (Gs) direction, the phase encode gradient magnetic field (Gp) direction, and the readout gradient magnetic field (Gr) direction, and the navigation echo 401 of each axis is applied. Obtained (navigation echo readout gradient magnetic field application processing 301). A correction gradient magnetic field pulse 403 for phase error correction is applied after a predetermined time from the acquisition of the last navigation echo 401 (correction pulse application processing 303). A time 402 from acquisition of the navigation echo 401 to the correction gradient magnetic field pulse 403 is a time required for the correction pulse calculation processing 302, and the correction gradient magnetic field pulse 403 is applied with the application amount calculated in the correction pulse calculation processing 302. .
補正用傾斜磁場パルス403の印加後に、位相エンコードパルス205及び読出し傾斜磁場パルス206を印加し、エコー207を計測することは図2のパルスシーケンス200と同様である。
The application of the phase encoding pulse 205 and the readout gradient magnetic field pulse 206 after the application of the correction gradient magnetic field pulse 403 to measure the echo 207 is the same as the pulse sequence 200 of FIG.
以下、補正パルス算出部81が行う補正パルス算出処理302の詳細について説明する。
Hereinafter, details of the correction pulse calculation processing 302 performed by the correction pulse calculation unit 81 will be described.
補正パルス算出部81は、ナビエコー読み出し傾斜磁場印加処理301で読み出したナビエコーを用いて、Gs、Gp、Grの3方向におけるMPGパルスの過不足量と補正パルス印加量を算出する。MPGパルスの過不足量の算出方法はGs方向とGp、Gr方向で異なる。Gs方向におけるMPGパルスの過不足量の算出の手順を図5のフローチャートを参照して説明する。
The correction pulse calculation unit 81 uses the navigation echo read in the navigation echo reading gradient magnetic field application processing 301 to calculate the excess / deficiency amount of MPG pulse and the correction pulse application amount in the three directions Gs, Gp, and Gr. The method for calculating the excess / deficiency of the MPG pulse differs between the Gs direction and the Gp and Gr directions. The procedure for calculating the excess / deficiency of the MPG pulse in the Gs direction will be described with reference to the flowchart of FIG.
まず処理501にて、Gs方向にナビエコー読み出し傾斜磁場を印加して得られたナビエコーNavi_Echo(t)を読み込む。処理502において読み込んだナビエコーNavi_Echo(t)をフーリエ変換し、複素データであるNavi (x)を得る。そして、複素信号Navi (x)の実部と虚部とを用いて、位相のデータ列Phase_scalar(x)を算出する。このように得られる位相は主値回りを生じているため、処理503で位相アンラップ処理を行う。具体的には、次式(1)に従い、Navi (x)の位相Phase_unwrapped(x)を算出する。
First, in processing 501, navigation echo Navi_Echo (t) obtained by applying a navigation echo readout gradient magnetic field in the Gs direction is read. The navigation echo Navi_Echo (t) read in the process 502 is Fourier transformed to obtain Navi 複 素 (x) which is complex data. Then, the phase data string Phase_scalar (x) is calculated using the real part and the imaginary part of the complex signal Navi (x). Since the phase obtained in this manner is around the main value, phase unwrapping processing is performed in processing 503. Specifically, the phase Phase_unwrapped (x) of Navi (x) is calculated according to the following equation (1).
式(1)において、Phase_unwrapped(x)はスカラーの位相データ、Phase[ ]は複素データの位相値を返却する関数、Conjugate[ ]は複素共役処理を表す関数である。
In Equation (1), Phase_unwrapped (x) is a scalar phase data, Phase [] is a function that returns the phase value of complex data, and Conjugate [] is a function that represents complex conjugate processing.
処理504において、Phase_unwrapped(x)に対して最小二乗法(式(2))により1次直線を当てはめ、その傾き(FirstOrderPhase)を算出する。
In process 504, a linear line is applied to Phase_unwrapped (x) by the least square method (formula (2)), and the slope (FirstOrderPhase) is calculated.
式(2)中、NはナビエコーNavi_Echo(t)のデータ数である(他の方向について式(2)を用いる場合は、当該方向のデータ数である。以下、同じ)。こうして算出された位相の傾きがMPGパルスの過不足量を表す。
In Equation (2), N is the number of data of Navi Echo Navi_Echo (t) (when using Equation (2) for other directions, it is the number of data in that direction. The same applies hereinafter). The slope of the phase calculated in this way represents the excess / deficiency of the MPG pulse.
処理505では、この位相の傾きを用いて、Gs方向における補正パルス印加量[s・T/m]を次式(3)に従い算出する。
In the process 505, using this phase gradient, the correction pulse application amount [s · T / m] in the Gs direction is calculated according to the following equation (3).
式(3)中、Durationはナビエコーのサンプリング時間[s]であり、GcAmpはナビエコー読み出し傾斜磁場[T/m]である。
In Equation (3), Duration is the navigation echo sampling time [s], and GcAmp is the navigation echo readout gradient magnetic field [T / m].
なお高周波コイル(受信コイル)14bが複数のコイルで構成されている場合、ナビエコーはコイル毎に計測される。この場合、各コイルの形状及び位置により得られるナビエコーの位相の分布が異なるため、各コイルのナビエコー毎に式(2)に従って位相の傾きを算出し、その平均値を用いて式(3)により補正パルス印加量を決定する。
If the high-frequency coil (receiver coil) 14b is composed of a plurality of coils, the navigation echo is measured for each coil. In this case, since the distribution of the phase of the navigation echo obtained by the shape and position of each coil differs, the slope of the phase is calculated according to Equation (2) for each navigation echo of each coil, and the average value is used to calculate the phase gradient according to Equation (3). The correction pulse application amount is determined.
次に、Gp、Gr方向におけるMPGパルスの過不足量の算出の手順を図6のフローチャートに従い説明する。Gp方向とGr方向における補正パルス印加量の算出手順は等しいため、ここではGp方向についてのみ説明する。また、Gp方向とGr方向の補正は、マルチショット計測もしくは加算数が2以上の場合、すなわち1枚の画像に必要なエコー信号を、図4で示すパルスシーケンスを単位として複数回の繰り返して得る場合にのみ行う。
Next, the procedure for calculating the excess / deficiency of MPG pulses in the Gp and Gr directions will be described with reference to the flowchart of FIG. Since the calculation procedure of the correction pulse application amount in the Gp direction and the Gr direction is the same, only the Gp direction will be described here. In addition, correction in the Gp direction and the Gr direction is obtained by performing multiple shot measurement or the number of additions is 2 or more, that is, obtaining an echo signal necessary for one image by repeating the pulse sequence shown in FIG. 4 a plurality of times. Only if you do.
まず、処理601にて、Gp方向にナビエコー読み出し傾斜磁場を印加して得られたナビエコーNavi_Echo(t)を読み込む。読み込んだナビエコーNavi_Echo(t)を処理602においてフーリエ変換し、Navi (x)を得る。分岐処理603にて、処理中のナビエコーNavi(x)が繰り返しの1番目のエコーであるかを判断する。Navi (x)が最初(1番目)の繰り返しで得たエコーである場合、処理604においてNavi (x)をRAM22に保存する。保存したNavi (x)は、以後の処理において基準ナビエコーNavi_std(x)として用いられる。一方、分岐処理603にて、処理中のナビエコーNavi(x)が1番目の繰り返しのエコーではないと判断した場合、処理605で当該ナビエコーNavi(x)と基準ナビエコーNavi_std(x)の位相差分を次式に従い計算する。
First, in process 601, navigation echo Navi_Echo (t) obtained by applying a navigation echo readout gradient magnetic field in the Gp direction is read. In step 602, the read navigation echo Navi_Echo (t) is Fourier transformed to obtain Navi (x). In the branch process 603, it is determined whether the navigation echo Navi (x) being processed is the first repeated echo. If Navi (x) is an echo obtained in the first (first) iteration, Navi (x) is stored in the RAM 22 in processing 604. The saved Navi (x) is used as the reference navigation echo Navi_std (x) in the subsequent processing. On the other hand, if it is determined in the branch process 603 that the navigation echo Navi (x) being processed is not the first repeated echo, the phase difference between the navigation echo Navi (x) and the reference navigation echo Navi_std (x) is determined in the process 605. Calculate according to the following formula.
式(4)中、Navi_subtracted(x)はナビエコー(Navi(x))のデータと基準ナビエコー(Navi_std(x))のデータを位相差分した複素データである。
In the equation (4), Navi_subtracted (x) is complex data obtained by phase difference between the data of the navigation echo (Navi (x)) and the data of the reference navigation echo (Navi_std (x)).
その後は、Gs方向の処理(503~505)と同様に、処理606で、Navi_subtracted(x)の位相を上述の式(1)を用いてアンラップ処理し、位相Phase_unwrapped(x)を算出する。また処理607で上述の式(2)から位相の傾き(つまり、位相差分の傾き)を求め、処理608にて上述の式(3)に従いGp方向における補正パルス印加量を算出する。
Thereafter, similarly to the processing in the Gs direction (503 to 505), in the processing 606, the phase of Navi_subtracted (x) is unwrapped using the above equation (1) to calculate the phase Phase_unwrapped (x). In step 607, the phase gradient (that is, the phase difference gradient) is obtained from the above equation (2), and in step 608, the correction pulse application amount in the Gp direction is calculated according to the above equation (3).
Gp、Gr方向における処理とGs方向における処理の違いは、基準ナビエコーを用いるか否かである。Gs方向の処理では、ナビエコーの位相の傾きがゼロになるように補正パルス印加量を定める。これは、Gs方向の位相の傾きがゼロとなるのが最もSNRの高くなる条件であり、MPGパルス印加中の動きによって生じた誤差を含んだエコーを基準にするとSNRが低下するためである。一方、Gp、Gr方向の処理では基準ナビエコーの位相分布と一致するよう補正パルス印加量を定めている。Gp、Gr方向は画像面内の方向であるため、画像を構成する複数のエコー信号間でGp、Gr方向の位相の傾きを一致させれば、絶対量として位相の傾きを持っていたとしても、画像の絶対値には影響しないからである。
The difference between the processing in the Gp and Gr directions and the processing in the Gs direction is whether or not the reference navigation echo is used. In the processing in the Gs direction, the correction pulse application amount is determined so that the gradient of the phase of the navigation echo becomes zero. This is because the SNR is the highest when the gradient of the phase in the Gs direction is zero, and the SNR decreases when an echo including an error caused by the movement during the application of the MPG pulse is used as a reference. On the other hand, in the processing in the Gp and Gr directions, the correction pulse application amount is determined so as to coincide with the phase distribution of the reference navigation echo. Since the Gp and Gr directions are directions in the image plane, if the phase gradients in the Gp and Gr directions match between the multiple echo signals that make up the image, even if the phase gradient is absolute, This is because the absolute value of the image is not affected.
補正パルス算出部81は、上述したように算出したGs、Gp、Grの3方向におけるMPGパルスの過不足量、即ち補正パルス印加量をシーケンサ4に通知する。
The correction pulse calculation unit 81 notifies the sequencer 4 of the excess / deficiency amount of the MPG pulse in the three directions Gs, Gp, and Gr calculated as described above, that is, the correction pulse application amount.
シーケンサ4は、補正パルス算出部81が算出したGs、Gp、Grの各方向における補正パルス印加量に従い傾斜磁場パルス(図4:403)を印加する(補正パルス印加処理303)。なお傾斜磁場パルスの印加量は、印加時間と磁場強度との積で決まる。式(3)のようにパルスの面積として補正パルス印加量を算出した場合、シーケンサ4は補正パルスの印加時間を固定しておき、補正パルス印加量に応じてパルスの強度を変化させればよい。補正パルスを印加することにより第一のMPGパルス203印加時と第二のMPGパルス204印加時における被検体1の大域的な位置の変化(大域的運動)に起因して生じる傾斜磁場印加量の過不足を補うことができる。従ってその後に計測するエコー信号は、過不足なくMPGパルスが印加されたときに計測されるエコー信号と同等となり、SNRのよい拡散強調画像を得ることができる。
The sequencer 4 applies a gradient magnetic field pulse (FIG. 4: 403) according to the correction pulse application amount in each direction of Gs, Gp, and Gr calculated by the correction pulse calculation unit 81 (correction pulse application processing 303). The application amount of the gradient magnetic field pulse is determined by the product of the application time and the magnetic field strength. When the correction pulse application amount is calculated as the pulse area as in Equation (3), the sequencer 4 may fix the correction pulse application time and change the pulse intensity according to the correction pulse application amount. . By applying a correction pulse, the gradient magnetic field applied amount caused by the change in the global position of the subject 1 (global movement) when the first MPG pulse 203 and the second MPG pulse 204 are applied Overs and shorts can be compensated. Therefore, the echo signal to be measured thereafter becomes equivalent to the echo signal measured when the MPG pulse is applied without excess or deficiency, and a diffusion-weighted image with a good SNR can be obtained.
本実施形態のMRI装置によれば、画像のSNRに最も影響があり且つエコー信号取得後には補正できないスライス方向の位相誤差をゼロとする補正を行うことでSNRの低下を抑制し、本来の観察対象である拡散運動を高コントラストで描出することができる。またスライス方向を含む3方向について補正を行うことで、非特許文献1に記載される技術や2D位相マップを作成するだけでは測定できない全て軸について大域的運動に起因する位相誤差を補正することができる。
According to the MRI apparatus of the present embodiment, the reduction in SNR is suppressed by performing the correction that makes the phase error in the slice direction that has the most influence on the SNR of the image and cannot be corrected after acquiring the echo signal zero, The target diffusion movement can be depicted with high contrast. In addition, by correcting the three directions including the slice direction, it is possible to correct the phase error caused by global motion for all axes that cannot be measured simply by creating the 2D phase map and the technique described in Non-Patent Document 1. it can.
また本実施形態によれば位相誤差補正のための処理(補正シーケンス)がRFパルスの印加を含まず、読出し傾斜磁場パルスを用いたナビエコーの発生と補正傾斜磁場パルスの印加だけで構成され、各軸1つのエコー信号をフーリエ変換し、その位相の傾きを傾斜磁場の面積に換算するだけであるため計算時間を含む補正処理時間が短い。これによりTEの延長を大幅に抑制することができる。またRFパルスの計算コストが不要であり、処理コストが低い。
Further, according to the present embodiment, the phase error correction process (correction sequence) does not include application of an RF pulse, and is configured only by generation of a navigation echo using a readout gradient magnetic field pulse and application of a correction gradient magnetic field pulse, The correction processing time including the calculation time is short because only the echo signal of one axis is Fourier-transformed and the phase gradient is converted into the area of the gradient magnetic field. Thereby, the extension of TE can be significantly suppressed. Moreover, the calculation cost of the RF pulse is unnecessary, and the processing cost is low.
以下、本実施形態のMRI装置が、TEの延長を抑制できること、即ち補正シーケンスがリアルタイム撮像に適用可能であることを具体的な例を用いて説明する。
Hereinafter, it will be described using a specific example that the MRI apparatus of the present embodiment can suppress the extension of TE, that is, the correction sequence can be applied to real-time imaging.
ナビエコー読み出し傾斜磁場の詳細シーケンスを図7に示す。エコー信号のサンプリング間隔を1.56μs、サンプリング点数を64とすると1軸当たりのサンプリング時間は約100μsである。読み出し傾斜磁場の強度を9mT/mとし、傾斜磁場の最大Slew Rateが100T/m/sのMRI装置であれば、1軸のナビエコーの計測に要する時間は、読み出し傾斜磁場のディフェイズ及びリフェイズパルスを含めて700μs以下に収めることができる。
Fig. 7 shows the detailed sequence of the navigation echo readout gradient magnetic field. If the sampling interval of the echo signal is 1.56 μs and the number of sampling points is 64, the sampling time per axis is about 100 μs. If the readout gradient magnetic field intensity is 9 mT / m and the maximum Slew Rate of the gradient magnetic field is 100 T / m / s, the time required to measure one-axis navigation echo will be the dephasing and rephasing of the readout gradient magnetic field. It can be kept in 700μs or less including the pulse.
図4のパルスシーケンス200Aように、3軸方向にナビエコー読み出し傾斜磁場を順番に印加する場合、図7に示すように傾斜磁場のプラトー部以外は他軸の傾斜磁場パルスを同時に印加してもよい(つまり、ナビエコーを発生させる2以上の傾斜磁場印加において、隣接する傾斜磁場の波形の一部を時間的に重複させてもよい)ため、3軸全ての読み出し傾斜磁場の印加時間は700+700+100=1500μsとなる。
When the navigation echo readout gradient magnetic field is sequentially applied in the three-axis direction as in the pulse sequence 200A of FIG. 4, the gradient magnetic field pulses of the other axes may be simultaneously applied except for the gradient magnetic field plateau portion as shown in FIG. (In other words, when two or more gradient magnetic fields are applied to generate navigation echo, some of the waveforms of adjacent gradient magnetic fields may overlap in time), so the application time of the readout gradient magnetic field for all three axes is 700 + 700 + 100 = 1500 µs It becomes.
さらに図8に示すように、エコー信号をサンプリングしていない部分を直前のMPGパルス204と重ねる(つまり、ナビエコーを発生させる傾斜磁場印加の波形の一部をMPGパルスの波形の一部と時間的に重複させる)ことで、更にナビエコー読み出し傾斜磁場印加処理301の時間を短縮することもできる。また、補正パルス算出処理302はエコー信号をサンプリングし終わった後、読み出し傾斜磁場の印加終了を待たずに始めることができるので、ここでも時間を短縮することができ、ナビエコー読み出し傾斜磁場印加処理301に掛かる実質的な時間は900μsとなる。
Further, as shown in FIG. 8, the part where the echo signal is not sampled is overlapped with the previous MPG pulse 204 (that is, a part of the gradient magnetic field application waveform that generates the navigation echo is temporally compared with a part of the MPG pulse waveform. The time of the navigation echo readout gradient magnetic field application process 301 can be further shortened. Further, since the correction pulse calculation process 302 can be started without waiting for the end of the application of the readout gradient magnetic field after the echo signal has been sampled, the time can be shortened here, and the navigation echo readout gradient magnetic field application process 301 is performed. The substantial time required for this is 900 μs.
一方、補正パルス算出処理302については、ディジタル信号処理装置8の性能にもよるが、MPGパルスの過不足量の算出とシーケンサ4への通知に要する時間は3msあれば十分可能である。従って、一般的な性能を持つMRI装置ではナビエコーの読み出しから補正パルスの印加までを5ms程度で行うことができ、図4のパルスシーケンスではTEの延長を10msに抑えることができる。
On the other hand, regarding the correction pulse calculation processing 302, although it depends on the performance of the digital signal processing device 8, it is sufficient if the time required for calculating the excess / deficiency amount of the MPG pulse and notifying the sequencer 4 is 3 ms. Therefore, in an MRI apparatus having a general performance, it is possible to perform the reading from the navigation echo to the application of the correction pulse in about 5 ms, and in the pulse sequence of FIG. 4, the TE extension can be suppressed to 10 ms.
以上、第一実施形態について図面を参照して説明したが、本実施形態は、少なくともスライス傾斜磁場方向について大域的運動補正処理をリアルタイムで行う手段(シーケンス制御部及び補正パルス算出部)を備えることが特徴であり、それ以外の要素や手順については適宜変更が可能である。
As described above, the first embodiment has been described with reference to the drawings, but this embodiment includes means (sequence control unit and correction pulse calculation unit) that performs global motion correction processing in real time at least in the slice gradient magnetic field direction. The other elements and procedures can be changed as appropriate.
例えば、パルスシーケンスはMPGパルスを含むDWIパルスシーケンスであれば、図2に示すパルスシーケンスに限らず適用することができる。また、大域的運動補正処理におけるナビエコー及び補正パルスの印加方向は、Gs、Gp、Gr方向でなくとも、装置のX、Y、Z方向としてもよいし、3軸以上の方向に印加して補正を行ってもよい。またGs方向のみでナビエコーを取得し補正パルスを印加する場合も本実施形態に含まれる。
For example, if the pulse sequence is a DWI pulse sequence including an MPG pulse, the pulse sequence is not limited to the pulse sequence shown in FIG. In addition, the application direction of the navigation echo and the correction pulse in the global motion correction processing may not be the Gs, Gp, Gr direction, but may be the X, Y, Z direction of the device, or correction is applied by applying in three or more directions. May be performed. The present embodiment also includes a case where a navigation echo is acquired only in the Gs direction and a correction pulse is applied.
また、Gp、Gr方向の位相補正に用いた基準ナビエコーを計測内の1番目のエコーではなく、あらかじめ用意したデータ列を用いてもよい。このようなデータ列は、例えば、図4に示すパルスシーケンスに先行して、RFパルスとGp、Gr方向の読出し傾斜磁場を印加してエコーを収集するプリスキャンを行い、Gp、Gr方向の各エコーを基準ナビエコーのデータ列とする。このようなプリスキャンでは、画像用の信号を取得する本スキャンに用いたパルスシーケンスと同じRFパルスを用い、RFパルスから各エコーを取得するタイミングを同じにすることが好ましい。MPGパルスについては用いてもよいし、用いなくてもよい。MPGパルスを用いた場合には、計測内の1番目のエコーを用いた場合と同様に、撮像面内で位相の傾きを揃えることができる。またMPGパルスを用いないで取得したエコーを基準にした場合には、MPGパルスに起因する位相の傾き自体をゼロにする補正を行うことができる。
In addition, the reference navigation echo used for the phase correction in the Gp and Gr directions may be a data string prepared in advance instead of the first echo in the measurement. For example, prior to the pulse sequence shown in FIG. 4, such a data string is pre-scanned by applying an RF pulse and a read gradient magnetic field in the Gp and Gr directions to collect echoes, and in each of the Gp and Gr directions. The echo is used as a data string of the reference navigation echo. In such a pre-scan, it is preferable to use the same RF pulse as the pulse sequence used in the main scan for acquiring an image signal, and to make the timing for acquiring each echo from the RF pulse the same. The MPG pulse may or may not be used. When the MPG pulse is used, the phase gradient can be made uniform in the imaging plane, as in the case of using the first echo in the measurement. In addition, when an echo acquired without using an MPG pulse is used as a reference, it is possible to perform correction so that the phase gradient itself caused by the MPG pulse is zero.
<第二実施形態>
第一実施形態では、Gs、Gp、Gr方向の3方向について、リアルタイムの位相補正を行ったが、本実施形態では、リアルタイムの位相補正はGs方向のみとし、Gp、Gr方向については、補正パルスを印加するのではなく、算出した補正量を用いて事後的にエコー信号を補正する。具体的には位相補正量を画像再構成におけるエコー信号のk空間配置座標に反映する。 <Second embodiment>
In the first embodiment, real-time phase correction is performed for the three directions of Gs, Gp, and Gr. However, in this embodiment, real-time phase correction is performed only for the Gs direction, and correction pulses are used for the Gp and Gr directions. The echo signal is corrected afterwards using the calculated correction amount. Specifically, the phase correction amount is reflected on the k-space arrangement coordinates of the echo signal in the image reconstruction.
第一実施形態では、Gs、Gp、Gr方向の3方向について、リアルタイムの位相補正を行ったが、本実施形態では、リアルタイムの位相補正はGs方向のみとし、Gp、Gr方向については、補正パルスを印加するのではなく、算出した補正量を用いて事後的にエコー信号を補正する。具体的には位相補正量を画像再構成におけるエコー信号のk空間配置座標に反映する。 <Second embodiment>
In the first embodiment, real-time phase correction is performed for the three directions of Gs, Gp, and Gr. However, in this embodiment, real-time phase correction is performed only for the Gs direction, and correction pulses are used for the Gp and Gr directions. The echo signal is corrected afterwards using the calculated correction amount. Specifically, the phase correction amount is reflected on the k-space arrangement coordinates of the echo signal in the image reconstruction.
本実施形態のMRI装置も基本的な構成は第一実施形態と同様である。ただし本実施形態では、図9に示すように、ディジタル信号処理装置8が、補正パルス算出部81に加え、データ補正部82を備える。以下、適宜第一実施形態で用いた図面を援用して、第一実施形態と異なる点を中心に本実施形態の処理を説明する。
The basic configuration of the MRI apparatus of this embodiment is the same as that of the first embodiment. However, in the present embodiment, as shown in FIG. 9, the digital signal processing apparatus 8 includes a data correction unit 82 in addition to the correction pulse calculation unit 81. Hereinafter, the process of this embodiment is demonstrated centering on a different point from 1st embodiment, using the drawing used in 1st embodiment suitably.
本実施形態でも、図4に示すようなパルスシーケンス200Aを実行し、Gs方向について、図5の処理501~505を行う。Gp、Gr方向については、図6に示す処理605~607までを行い、基準ナビエコーに対する位相の傾きを算出する。データ補正部82は、この位相の傾きを読み込み、エコー信号207のk空間配置座標の補正値を算出する。具体的には、処理607において式(2)で算出した1次直線の傾き(FirstOrderPhase)から次式に従い補正値Δkを算出する。
Also in this embodiment, the pulse sequence 200A as shown in FIG. 4 is executed, and the processes 501 to 505 in FIG. 5 are performed in the Gs direction. For the Gp and Gr directions, the processing from 605 to 607 shown in FIG. 6 is performed to calculate the phase gradient with respect to the reference navigation echo. The data correction unit 82 reads the inclination of the phase and calculates the correction value of the k-space arrangement coordinates of the echo signal 207. Specifically, the correction value Δk is calculated according to the following equation from the slope (FirstOrderPhase) of the primary straight line calculated by equation (2) in processing 607.
ディジタル信号処理装置8は、パルスシーケンス200Aにより収集したエコー信号207を読み込み、k空間に配置する。その際、データ補正部82で算出した補正値Δkをエコー信号のk空間配置座標に加算する。これにより、収集前にGp、Gr方向の位相補正がなされたエコー信号207のk空間配置と実質的に等しいk空間配置となる。補正後のk空間データを用いて画像再構成することにより、スライス面と平行な断面においても、MPGパルスの位相誤差の影響を抑制することができる。
The digital signal processing device 8 reads the echo signal 207 collected by the pulse sequence 200A and arranges it in the k space. At this time, the correction value Δk calculated by the data correction unit 82 is added to the k-space arrangement coordinates of the echo signal. As a result, the k-space arrangement is substantially equal to the k-space arrangement of the echo signal 207 that has been subjected to phase correction in the Gp and Gr directions before acquisition. By reconstructing an image using the corrected k-space data, the influence of the phase error of the MPG pulse can be suppressed even in a cross section parallel to the slice plane.
<第二実施形態の変形例>
第二実施形態では、Gp、Gr方向の位相アンラップ処理後の位相の傾きを求める処理(図6の処理607)において、Phase_unwrapped(x)に対して最小二乗法により1次直線を当てはめ、その傾きを算出したが、本変形例では、この処理607、及び、Gs方向の位相アンラップ後の位相の傾きを求める処理504において、0次のオフセットも求め、その値を画像再構成時にエコー信号から差し引く補正を行う。0次のオフセットは次式(6)から算出する。 <Modification of Second Embodiment>
In the second embodiment, in the process of calculating the phase gradient after the phase unwrapping process in the Gp and Gr directions (process 607 in FIG. 6), a linear line is applied to Phase_unwrapped (x) by the least square method, and the gradient is obtained. In this modification, in this processing 607 and processing 504 for obtaining the phase gradient after phase unwrapping in the Gs direction, a zero-order offset is also obtained, and the value is subtracted from the echo signal at the time of image reconstruction. Make corrections. The zero-order offset is calculated from the following equation (6).
第二実施形態では、Gp、Gr方向の位相アンラップ処理後の位相の傾きを求める処理(図6の処理607)において、Phase_unwrapped(x)に対して最小二乗法により1次直線を当てはめ、その傾きを算出したが、本変形例では、この処理607、及び、Gs方向の位相アンラップ後の位相の傾きを求める処理504において、0次のオフセットも求め、その値を画像再構成時にエコー信号から差し引く補正を行う。0次のオフセットは次式(6)から算出する。 <Modification of Second Embodiment>
In the second embodiment, in the process of calculating the phase gradient after the phase unwrapping process in the Gp and Gr directions (
データ補正部82は、式(6)で算出した0次のオフセットを、次式(7)に従い画像再構成に用いるエコー信号Echo(t)から位相差分する。
The data correction unit 82 phase-differs the zeroth-order offset calculated by the equation (6) from the echo signal Echo (t) used for image reconstruction according to the following equation (7).
式(7)中、|Echo(t) |は複素データ列であるエコー信号Echo(t)の振幅、θ(t)はエコー信号Echo(t)の位相を表す。またiは虚数単位である。
In Equation (7), | Echo (t) | represents the amplitude of the echo signal Echo (t), which is a complex data string, and θ (t) represents the phase of the echo signal Echo (t). I is an imaginary unit.
本変形例によれば、Gp、Gr方向についても、MPGパルスによる位相誤差をゼロとする補正がなされるので、さらに高画質(SNR/コントラスト)の拡散強調画像を得ることができる。
According to the present modification, correction for making the phase error due to the MPG pulse zero is also performed in the Gp and Gr directions, and thus a diffusion-weighted image with higher image quality (SNR / contrast) can be obtained.
<第三実施形態>
第一実施形態では、MPGパルスの過不足量の算出において、Gs方向の処理では基準エコーを用いずに処理を行い、Gp、Gr方向の処理では最初の繰り返しで計測したエコーを基準とし、それとの差分をなくす補正処理を行ったが、本実施形態は、パルスシーケンス内で基準エコー群を取得する処理を加えること、及び、これら基準エコー群を用いたMPGパルス過不足量の算出処理をGs方向についても適用することが特徴である。 <Third embodiment>
In the first embodiment, in calculating the excess / deficiency of the MPG pulse, processing in the Gs direction is performed without using the reference echo, and processing in the Gp and Gr directions is based on the echo measured in the first iteration, and In this embodiment, the processing for acquiring the reference echo group in the pulse sequence and the MPG pulse excess / deficiency calculation process using these reference echo group are added to the Gs. It is the feature that it applies also about a direction.
第一実施形態では、MPGパルスの過不足量の算出において、Gs方向の処理では基準エコーを用いずに処理を行い、Gp、Gr方向の処理では最初の繰り返しで計測したエコーを基準とし、それとの差分をなくす補正処理を行ったが、本実施形態は、パルスシーケンス内で基準エコー群を取得する処理を加えること、及び、これら基準エコー群を用いたMPGパルス過不足量の算出処理をGs方向についても適用することが特徴である。 <Third embodiment>
In the first embodiment, in calculating the excess / deficiency of the MPG pulse, processing in the Gs direction is performed without using the reference echo, and processing in the Gp and Gr directions is based on the echo measured in the first iteration, and In this embodiment, the processing for acquiring the reference echo group in the pulse sequence and the MPG pulse excess / deficiency calculation process using these reference echo group are added to the Gs. It is the feature that it applies also about a direction.
以下、第一実施形態と異なる部分について説明する。
Hereinafter, parts different from the first embodiment will be described.
図10は本実施形態の処理の概要を示すブロックである。本実施形態のMRI装置は、図3のブロック図との比較からわかるように、シーケンサ4の処理に、基準ナビエコー読み出し傾斜磁場印加処理901が追加されている。またディジタル信号処理装置8における補正パルス算出処理902は、基準ナビエコーとナビエコーを用いた処理となる。
FIG. 10 is a block diagram showing an overview of the processing of this embodiment. As can be seen from the comparison with the block diagram of FIG. 3, the MRI apparatus of this embodiment has a reference navigation echo read gradient magnetic field application process 901 added to the process of the sequencer 4. The correction pulse calculation process 902 in the digital signal processing device 8 is a process using the reference navigation echo and the navigation echo.
まず図11に示すパルスシーケンス200Bを参照して、シーケンサ4の処理を詳述する。本実施形態においても、基本的なパルスシーケンスとして図2に示すDWIパルスシーケンスを用いる場合を説明する。図11中、図2及び図4と同じ要素は同じ符号で示す。
First, the processing of the sequencer 4 will be described in detail with reference to the pulse sequence 200B shown in FIG. Also in this embodiment, the case where the DWI pulse sequence shown in FIG. 2 is used as a basic pulse sequence will be described. In FIG. 11, the same elements as those in FIGS. 2 and 4 are denoted by the same reference numerals.
エコー時間TEを反転RFパルス202までの前半と反転RF202からエコー207までの後半に分けると、TEの後半に補正シーケンス400を追加することにより、TEの前半には補正シーケンスの時間に相当する空き時間が発生する。本実施形態では、その空き時間を利用して基準ナビエコーを収集する。具体的には、RFパルス201と第一のMPGパルス203との間で、Gs、Gp、Grの3方向について順番に読出し傾斜磁場印加しナビエコーを発生させる処理901(基準ナビエコー読み出し傾斜磁場印加処理)を実行する。残りのシーケンスは図4と同じであり、ナビエコー読出し傾斜磁場印加処理301を実行する。
When the echo time TE is divided into the first half of the inverted RF pulse 202 and the latter half of the inverted RF 202 to the echo 207, a correction sequence 400 is added to the latter half of the TE, so that the first half of the TE has a space corresponding to the time of the correction sequence. Time occurs. In the present embodiment, the reference navigation echoes are collected using the idle time. Specifically, between the RF pulse 201 and the first MPG pulse 203, a process 901 (reference navi echo read gradient magnetic field application process) that sequentially reads and applies a gradient magnetic field in the three directions Gs, Gp, and Gr ) Is executed. The rest of the sequence is the same as in FIG. 4, and the navigation echo read gradient magnetic field application process 301 is executed.
ディジタル信号処理装置8(補正パルス算出部81)は、基準ナビエコー読み出し傾斜磁場印加処理901で発生し、受信部6で受信したエコー信号と、パルスシーケンスの後半で実行したナビエコー読出し傾斜磁場印加処理301で得られたエコー信号とを用いてMPGパルスの過不足量の算出(処理902)を行う。以下、図12のフローを参照して、補正パルス算出部81の処理902を説明する。図12中、図6と同じ処理は同じ符号で示す。
The digital signal processing device 8 (correction pulse calculation unit 81) is generated by the reference navigation echo readout gradient magnetic field application processing 901 and received by the reception unit 6, and the navigation echo readout gradient magnetic field application processing 301 executed in the second half of the pulse sequence. The excess / deficiency amount of the MPG pulse is calculated (process 902) using the echo signal obtained in the above. Hereinafter, the processing 902 of the correction pulse calculation unit 81 will be described with reference to the flow of FIG. In FIG. 12, the same processes as those in FIG. 6 are denoted by the same reference numerals.
まず、処理1001において処理901で取得した基準ナビエコーBase_Navi_Echo(t)を読み込む。続いて処理601にてナビエコーNavi_Echo(t)を読み込んだ後、処理1002と処理602にて、基準ナビエコーBase_Navi_Echo(t)とナビエコーNavi_Echo(t)をそれぞれフーリエ変換し、Base_Navi (x)とNavi (x)を得る。次いで処理605で基準ナビエコーBase_Navi_Echo(t)とナビエコーNavi(x)の位相差分を計算する。
First, in step 1001, the reference navigation echo Base_Navi_Echo (t) acquired in step 901 is read. Next, after the navigation echo Navi_Echo (t) is read in the process 601, the reference navigation echo Base_Navi_Echo (t) and the navigation echo Navi_Echo (t) are Fourier transformed in the process 1002 and the process 602, respectively, and Base_Navi (x) and Navi (x) ) Next, in step 605, the phase difference between the reference navigation echo Base_Navi_Echo (t) and the navigation echo Navi (x) is calculated.
式(8)で得られるNavi_subtracted(x)は、第一実施形態の式(4)の右辺と同じであり、続く処理は第一実施形態の処理606~608と同様である。すなわち、式(1)による位相アンラップ処理(606)、式(2)による位相の傾きの算出(607)、及び、式(3)による補正パルス印加量の算出(608)を行う。
Navi_subtracted (x) obtained by Expression (8) is the same as the right side of Expression (4) of the first embodiment, and the subsequent processing is the same as the processing 606 to 608 of the first embodiment. That is, phase unwrapping processing (606) according to equation (1), phase gradient calculation (607) according to equation (2), and correction pulse application amount calculation (608) according to equation (3) are performed.
本実施形態においても、受信コイル14bが複数ある場合には、第一実施形態と同様に、各コイルのナビエコー毎に式(2)に従って位相の傾きを算出し、その平均値を用いて式(3)により補正パルス印加量を決定する。
Also in this embodiment, when there are a plurality of receiving coils 14b, the phase gradient is calculated according to the equation (2) for each navigation echo of each coil, and the average value is used to calculate the equation ( 3) Determine the correction pulse application amount.
本実施形態によれば、第一実施形態と同様に、全方向について大域的運動に起因する位相誤差を補正することができる。また本実施形態では、MPGパルス印加前に取得する基準ナビエコーを用いるため、高周波コイル(受信コイル)14bの形状や位置によってナビエコーに与える位相分布も基準エコーとの位相差分の計算により取り除かれ、MPGパルス印加中の動きによってのみ生じた誤差を算出することができる。
According to this embodiment, similarly to the first embodiment, it is possible to correct the phase error due to the global motion in all directions. In this embodiment, since the reference navigation echo acquired before applying the MPG pulse is used, the phase distribution given to the navigation echo depending on the shape and position of the high-frequency coil (reception coil) 14b is also removed by calculating the phase difference from the reference echo. It is possible to calculate an error caused only by movement during pulse application.
第一実施形態において用いた基準エコーは、MPGパルス印加中の動きによって生じた誤差を含んだエコーであるため、Gs方向ではSNRの低下につながるため用いていない。本実施形態では、MPGパルス印加前に取得することでMPGパルス印加中の動きによって生じる誤差を含まないエコーを基準とするため、Gs方向の処理にも用いることができる。従って本実施形態では、Gs方向とGr、Gp方向の区別をする必要がない。
The reference echo used in the first embodiment is an echo including an error caused by the movement during application of the MPG pulse, and is not used because it leads to a decrease in SNR in the Gs direction. In the present embodiment, since an echo that does not include an error caused by a motion during the application of the MPG pulse is obtained as a reference by being acquired before the application of the MPG pulse, it can also be used for processing in the Gs direction. Therefore, in this embodiment, it is not necessary to distinguish the Gs direction from the Gr and Gp directions.
また、本実施形態によれば、基準ナビエコーを取得するために用いる読み出し傾斜磁場は、補正シーケンス400の実行区間で印加するナビエコー取得のための読み出し傾斜磁場と同じ形状のため、TEの延長なくパルスシーケンスを実施することができる。
In addition, according to the present embodiment, the readout gradient magnetic field used for acquiring the reference navigation echo has the same shape as the readout gradient magnetic field for acquiring the navigation echo applied in the execution section of the correction sequence 400, and therefore the pulse is not extended. A sequence can be performed.
なお本実施形態においても、第二実施形態と同様に、Gr、Gp方向については、処理607で算出した位相の傾きを用いて、事後的にエコー信号207のk空間配置座標を補正してもよいし、さらに第二実施形態の変形例のように、処理607で位相の傾きと共に0次のオフセットを算出し、それを用いてエコー信号の位相補正を行ってもよい。その他、矛盾がない限り第一実施形態で説明した変更例は本実施形態にも採用することができる。
In this embodiment as well, as in the second embodiment, the Gr and Gp directions can be corrected by using the slope of the phase calculated in the process 607 to correct the k-space arrangement coordinates of the echo signal 207 afterwards. Alternatively, as in the modification of the second embodiment, the zero-order offset may be calculated together with the phase gradient in the process 607, and the phase of the echo signal may be corrected using the zeroth-order offset. In addition, as long as there is no contradiction, the modified example described in the first embodiment can be adopted in this embodiment.
以上、本発明の実施形態とその変更例を説明したが、本発明は、上述した実施形態や参考にした図面に限定されず、種々の変更を行うことが可能である。また、各実施形態の説明のために示したフローチャートの処理手順は一例であり、省略できる処理もあるし、また必要に応じて別の処理を追加することも可能である。
As mentioned above, although embodiment of this invention and its modification example were demonstrated, this invention is not limited to embodiment mentioned above or drawing referred, It is possible to perform a various change. Moreover, the processing procedure of the flowchart shown for description of each embodiment is an example, there is a process which can be omitted, and it is also possible to add another process as needed.
2 静磁場発生部、3 傾斜磁場発生部(撮像部)、4 シーケンサ(シーケンス制御部)、5 送信部(撮像部)、6 受信部(撮像部)、7 信号処理部、8 ディジタル信号処理装置(演算部)、81 補正パルス算出部、82 データ補正部、200(200A、200B) DWIパルスシーケンス、400 補正シーケンス
2 static magnetic field generation unit, 3 gradient magnetic field generation unit (imaging unit), 4 sequencer (sequence control unit), 5 transmission unit (imaging unit), 6 reception unit (imaging unit), 7 signal processing unit, 8 digital signal processing device (Calculation unit), 81 Correction pulse calculation unit, 82 Data correction unit, 200 (200A, 200B) DWI pulse sequence, 400 correction sequence
Claims (15)
- 所定のパルスシーケンスに従って、エコー信号を収集する撮像部と、
前記撮像部を制御するシーケンス制御部と、
前記撮像部が収集したエコー信号を用いて演算を行う演算部と、を備え、
前記パルスシーケンスは、励起RFパルス印加とエコー信号収集との間に、MPGパルス印加を含み、
前記シーケンス制御部は、前記MPG印加後エコー信号収集までの間に、少なくともスライス方向について、ナビゲーションエコーの読み出し及び補正傾斜磁場印加を含む補正シーケンスを追加する制御を行い、
前記演算部は、前記補正シーケンスにおける前記ナビゲーションエコーの読み出しと前記補正傾斜磁場の印加との間で、前記ナビゲーションエコーを用いて前記補正傾斜磁場の印加量を算出し、算出した補正傾斜磁場印加量を前記シーケンス制御部に渡す補正パルス算出部を備え、
前記シーケンス制御部は、前記補正パルス算出部から受け取った前記補正傾斜磁場の印加量で前記補正傾斜磁場印加を行うことを特徴とする磁気共鳴イメージング装置。 An imaging unit that collects echo signals according to a predetermined pulse sequence;
A sequence control unit for controlling the imaging unit;
A calculation unit that performs calculation using echo signals collected by the imaging unit,
The pulse sequence includes MPG pulse application between excitation RF pulse application and echo signal acquisition,
The sequence control unit performs control to add a correction sequence including readout of a navigation echo and application of a correction gradient magnetic field at least in the slice direction before the echo signal collection after the MPG application,
The calculation unit calculates an application amount of the correction gradient magnetic field using the navigation echo between the readout of the navigation echo and application of the correction gradient magnetic field in the correction sequence, and calculates the calculated correction gradient magnetic field application amount A correction pulse calculation unit that passes the control signal to the sequence control unit,
The magnetic resonance imaging apparatus, wherein the sequence control unit applies the correction gradient magnetic field with an application amount of the correction gradient magnetic field received from the correction pulse calculation unit. - 請求項1に記載の磁気共鳴イメージング装置であって、
前記補正シーケンスは、2軸方向又は3軸方向のナビゲーションエコーの読み出しと各軸方向の補正傾斜磁場の印加とを含み、
前記補正パルス算出部は、前記2軸方向又は3軸方向のそれぞれについて、補正傾斜磁場の印加量を算出することを特徴とする磁気共鳴イメージング装置。 The magnetic resonance imaging apparatus according to claim 1,
The correction sequence includes reading of navigation echoes in two-axis directions or three-axis directions and applying a correction gradient magnetic field in each axis direction,
The magnetic resonance imaging apparatus, wherein the correction pulse calculation unit calculates an application amount of a correction gradient magnetic field in each of the two-axis direction or the three-axis direction. - 請求項2に記載の磁気共鳴イメージング装置であって、
前記2軸方向又は3軸方向のナビゲーションエコーは、スライス方向のナビゲーションエコー、及び、リードアウト方向及び位相エンコード方向の少なくとも一方のナビゲーションエコーであることを特徴とする磁気共鳴イメージング装置。 The magnetic resonance imaging apparatus according to claim 2,
The magnetic resonance imaging apparatus according to claim 2, wherein the navigation echo in the two-axis direction or the three-axis direction is a navigation echo in a slice direction and a navigation echo in at least one of a readout direction and a phase encoding direction. - 請求項3に記載の磁気共鳴イメージング装置であって、
前記補正パルス算出部は、前記リードアウト方向及び位相エンコード方向の少なくとも一方について、前記ナビゲーションエコーと基準となるナビゲーションエコーとの位相差分を用いて前記補正傾斜磁場の印加量を算出することを特徴とする磁気共鳴イメージング装置。 The magnetic resonance imaging apparatus according to claim 3,
The correction pulse calculation unit calculates an application amount of the correction gradient magnetic field using a phase difference between the navigation echo and a reference navigation echo for at least one of the readout direction and the phase encoding direction. Magnetic resonance imaging device. - 請求項4に記載の磁気共鳴イメージング装置であって、
前記パルスシーケンスは、RF印加から信号収集までを少なくとも2回繰り返すパルスシーケンスであって、
前記補正パルス算出部は、1回目の繰り返しで収集したナビゲーションエコーを前記基準となるナビゲーションエコーとして用いることを特徴とする磁気共鳴イメージング装置。 The magnetic resonance imaging apparatus according to claim 4,
The pulse sequence is a pulse sequence that repeats at least twice from RF application to signal acquisition,
The magnetic resonance imaging apparatus characterized in that the correction pulse calculation unit uses a navigation echo collected in the first iteration as the reference navigation echo. - 請求項1に記載の磁気共鳴イメージング装置であって、
前記補正パルス算出部は、前記ナビゲーションエコーの位相の傾きを算出し、当該傾きをゼロとする位相補正量を算出し、前記位相補正量から前記補正傾斜磁場の印加量を算出することを特徴とする磁気共鳴イメージング装置。 The magnetic resonance imaging apparatus according to claim 1,
The correction pulse calculation unit calculates a phase inclination of the navigation echo, calculates a phase correction amount with the inclination being zero, and calculates an application amount of the correction gradient magnetic field from the phase correction amount. Magnetic resonance imaging device. - 請求項1に記載の磁気共鳴イメージング装置であって、
前記補正シーケンスは、2軸方向又は3軸方向のナビゲーションエコーの収集を含み、 前記演算部は、前記2軸方向又は3軸方向のうちスライス方向を除く方向について、それぞれ、前記ナビゲーションエコーと基準エコーとの位相差分を用いて位相補正量を算出し、当該位相補正量を用いて、前記エコー信号のk空間座標への配置位置を補正することを特徴とする磁気共鳴イメージング装置。 The magnetic resonance imaging apparatus according to claim 1,
The correction sequence includes a collection of navigation echoes in two-axis directions or three-axis directions, and the calculation unit is configured to perform the navigation echo and the reference echo for directions other than the slice direction in the two-axis directions or the three-axis directions, respectively. A phase correction amount is calculated using the phase difference between and the position of the echo signal in the k-space coordinates is corrected using the phase correction amount. - 請求項7に記載の磁気共鳴イメージング装置であって、
前記演算部は、前記ナビゲーションエコーと基準エコーとの位相差分を用いて、位相のオフセット量及び傾きを算出し、当該オフセット量を用いて、前記エコー信号の位相を補正することを特徴とする磁気共鳴イメージング装置。 The magnetic resonance imaging apparatus according to claim 7,
The arithmetic unit calculates a phase offset amount and an inclination using a phase difference between the navigation echo and a reference echo, and corrects the phase of the echo signal using the offset amount. Resonance imaging device. - 請求項1に記載の磁気共鳴イメージング装置であって、
前記補正シーケンスは、ナビゲーションエコーを発生させる傾斜磁場印加を含み、当該傾斜磁場の波形の一部は、前記MPGパルスの波形の一部と時間的に重複していることを特徴とする磁気共鳴イメージング装置。 The magnetic resonance imaging apparatus according to claim 1,
The correction sequence includes application of a gradient magnetic field that generates a navigation echo, and a part of the waveform of the gradient magnetic field overlaps with a part of the waveform of the MPG pulse in time. apparatus. - 請求項1に記載の磁気共鳴イメージング装置であって、
前記補正シーケンスは、ナビゲーションエコーを発生させる2以上の傾斜磁場印加を含み、当該傾斜磁場の波形の一部は、隣接する傾斜磁場の波形の一部と時間的に重複していることを特徴とする磁気共鳴イメージング装置。 The magnetic resonance imaging apparatus according to claim 1,
The correction sequence includes two or more gradient magnetic field applications that generate navigation echoes, and a part of the waveform of the gradient magnetic field overlaps with a part of the waveform of the adjacent gradient magnetic field in time. Magnetic resonance imaging device. - 請求項1に記載の磁気共鳴イメージング装置であって、
前記パルスシーケンスにおける前記補正傾斜磁場の印加時間は固定されており、前記シーケンス制御部は、前記補正パルス算出部から受け取った印加量に対応して前記補正傾斜磁場の強度を変化させることを特徴とする磁気共鳴イメージング装置。 The magnetic resonance imaging apparatus according to claim 1,
The application time of the correction gradient magnetic field in the pulse sequence is fixed, and the sequence control unit changes the intensity of the correction gradient magnetic field according to the application amount received from the correction pulse calculation unit. Magnetic resonance imaging device. - 請求項1に記載の磁気共鳴イメージング装置であって、
前記シーケンス制御部は、前記励起RFパルス印加と前記MPGパルス印加との間に、基準ナビゲーションエコーの読み出しを追加する制御を行い、
前記補正パルス算出部は、前記スライス方向を含む1軸以上の方向について、前記ナビゲーションエコーと前記基準ナビゲーションエコーとの位相差分を用いて、前記補正傾斜磁場の印加量を算出することを特徴とする磁気共鳴イメージング装置。 The magnetic resonance imaging apparatus according to claim 1,
The sequence control unit performs control to add readout of a reference navigation echo between the excitation RF pulse application and the MPG pulse application,
The correction pulse calculation unit calculates an application amount of the correction gradient magnetic field by using a phase difference between the navigation echo and the reference navigation echo for one or more directions including the slice direction. Magnetic resonance imaging device. - 所定のパルスシーケンスに従って、エコー信号を収集する撮像部と、
前記撮像部を制御するシーケンス制御部と、
前記撮像部が収集したエコー信号を用いて演算を行う演算部と、を備え、
前記パルスシーケンスは、第一のRFパルス及び第二のRFパルスの印加と、前記第二のRFパルスに対し時間的に前後に位置する第一及び第二のMPGパルスの印加と、前記第一及び第二のMPGパルスの位相誤差を補正する補正シーケンスを含み、
前記補正シーケンスは、前記第一のRFパルスと前記第一のMPGパルスの間に実行される第一のナビゲーションエコーの読み出しと、前記第二のMPGパルスに続いて実行される第二のナビゲーションエコーの読み出しと、補正傾斜磁場の印加とを含み、
前記演算部は、前記第一のナビゲーションエコーと前記第二のナビゲーションエコーを用いて、前記補正傾斜磁場の印加量を算出し、前記シーケンス制御部に送り、
前記シーケンス制御部は、前記演算部から受け取った前記補正傾斜磁場の印加量で前記補正傾斜磁場印加を行った後、前記信号収集を行うことを特徴とする磁気共鳴イメージング装置。 An imaging unit that collects echo signals according to a predetermined pulse sequence;
A sequence control unit for controlling the imaging unit;
A calculation unit that performs calculation using echo signals collected by the imaging unit,
The pulse sequence includes the application of a first RF pulse and a second RF pulse, the application of first and second MPG pulses positioned before and after the second RF pulse, and the first And a correction sequence for correcting the phase error of the second MPG pulse,
The correction sequence includes reading a first navigation echo executed between the first RF pulse and the first MPG pulse, and a second navigation echo executed following the second MPG pulse. Reading and applying a correction gradient magnetic field,
The calculation unit calculates the application amount of the correction gradient magnetic field using the first navigation echo and the second navigation echo, and sends it to the sequence control unit,
The sequence control unit performs the signal acquisition after applying the correction gradient magnetic field with the application amount of the correction gradient magnetic field received from the arithmetic unit. - 励起RFパルス印加後にMPGパルスを印加し、励起RFパルスから所定時間後にエコー信号を収集する磁気共鳴イメージング装置の動作を制御する方法であって、
MPGパルス印加後にエコー信号収集までの間に、少なくともスライス方向のナビゲーションエコーを取得し、取得したナビゲーションエコーから位相補正量を算出し、算出した位相補正量に基き、MPGパルスに含まれる位相誤差を補正する補正傾斜磁場を印加する動作を行わせる磁気共鳴イメージング装置の制御方法。 A method for controlling the operation of a magnetic resonance imaging apparatus that applies an MPG pulse after applying an excitation RF pulse and collects an echo signal after a predetermined time from the excitation RF pulse,
Acquire the navigation echo at least in the slice direction after the MPG pulse is applied and before collecting the echo signal, calculate the phase correction amount from the acquired navigation echo, and calculate the phase error included in the MPG pulse based on the calculated phase correction amount. A control method of a magnetic resonance imaging apparatus that performs an operation of applying a correction gradient magnetic field to be corrected. - 請求項14記載の磁気共鳴イメージング装置の制御方法であって、
前記ナビゲーションエコーの取得は、同じ方向の複数のナビゲーションエコーの取得を含み、
前記位相補正量の算出処理は、同じ方向の複数のナビゲーションエコーのうち、最初に取得したナビゲーションエコーを基準ナビゲーションとし、当該基準ナビゲーションエコーとそれ以外のナビゲーションエコーとの位相差分を算出する処理と、当該位相差分について、傾きを算出する処理とを含むことを特徴とする磁気共鳴イメージング装置の制御方法。
A method for controlling a magnetic resonance imaging apparatus according to claim 14,
Acquiring the navigation echo includes acquiring a plurality of navigation echoes in the same direction;
The calculation process of the phase correction amount is a process of calculating a phase difference between the reference navigation echo and other navigation echoes, using the navigation echo acquired first among the plurality of navigation echoes in the same direction as the reference navigation, A control method for a magnetic resonance imaging apparatus, comprising: calculating a tilt for the phase difference.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-147287 | 2016-07-27 | ||
JP2016147287A JP6718764B2 (en) | 2016-07-27 | 2016-07-27 | Magnetic resonance imaging apparatus and control method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018020905A1 true WO2018020905A1 (en) | 2018-02-01 |
Family
ID=61015781
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/022632 WO2018020905A1 (en) | 2016-07-27 | 2017-06-20 | Magnetic resonance imaging device and control method thereof |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6718764B2 (en) |
WO (1) | WO2018020905A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112704484A (en) * | 2019-10-25 | 2021-04-27 | 通用电气精准医疗有限责任公司 | Magnetic resonance imaging method and system, non-transitory computer readable storage medium |
JP2021183031A (en) * | 2020-05-21 | 2021-12-02 | 株式会社日立製作所 | Magnetic resonance imaging apparatus |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09299345A (en) * | 1996-05-09 | 1997-11-25 | Ge Yokogawa Medical Syst Ltd | Diffusion intensifying imaging method and mri device |
JP2000512533A (en) * | 1997-04-17 | 2000-09-26 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Diffusion weighted MRI method |
JP2000296120A (en) * | 1999-04-13 | 2000-10-24 | Hitachi Medical Corp | Magnetic resonance image diagnostic system |
JP2002065637A (en) * | 2000-09-05 | 2002-03-05 | Hitachi Medical Corp | Magnetic resonance imaging system |
JP2004526491A (en) * | 2001-02-28 | 2004-09-02 | マックス−プランク−ゲゼルシャフト・ツア・フェルデルング・デア・ヴィッセンシャフテン・エー・ファオ | Method and apparatus for obtaining diffusion-weighted magnetic resonance imaging data |
-
2016
- 2016-07-27 JP JP2016147287A patent/JP6718764B2/en active Active
-
2017
- 2017-06-20 WO PCT/JP2017/022632 patent/WO2018020905A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09299345A (en) * | 1996-05-09 | 1997-11-25 | Ge Yokogawa Medical Syst Ltd | Diffusion intensifying imaging method and mri device |
JP2000512533A (en) * | 1997-04-17 | 2000-09-26 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Diffusion weighted MRI method |
JP2000296120A (en) * | 1999-04-13 | 2000-10-24 | Hitachi Medical Corp | Magnetic resonance image diagnostic system |
JP2002065637A (en) * | 2000-09-05 | 2002-03-05 | Hitachi Medical Corp | Magnetic resonance imaging system |
JP2004526491A (en) * | 2001-02-28 | 2004-09-02 | マックス−プランク−ゲゼルシャフト・ツア・フェルデルング・デア・ヴィッセンシャフテン・エー・ファオ | Method and apparatus for obtaining diffusion-weighted magnetic resonance imaging data |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112704484A (en) * | 2019-10-25 | 2021-04-27 | 通用电气精准医疗有限责任公司 | Magnetic resonance imaging method and system, non-transitory computer readable storage medium |
JP2021183031A (en) * | 2020-05-21 | 2021-12-02 | 株式会社日立製作所 | Magnetic resonance imaging apparatus |
JP7539255B2 (en) | 2020-05-21 | 2024-08-23 | 富士フイルムヘルスケア株式会社 | Magnetic Resonance Imaging |
Also Published As
Publication number | Publication date |
---|---|
JP2018015196A (en) | 2018-02-01 |
JP6718764B2 (en) | 2020-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5189203B2 (en) | Magnetic resonance equipment | |
CN102697501B (en) | Correct the method for the phase information in magnetic resonance image (MRI) and corresponding magnetic resonance equipment | |
US9341694B2 (en) | Method and magnetic resonance system for distortion correction in magnetic resonance imaging | |
US5928146A (en) | Inspection apparatus using nuclear magnetic resonance | |
US7372269B2 (en) | Magnetic resonance imaging method and apparatus | |
US20110089948A1 (en) | Magnetic resonance imaging apparatus | |
US10031205B2 (en) | Magnetic resonance imaging apparatus and magnetic resonance imaging method | |
US8587310B2 (en) | Magnetic resonance imaging device | |
US8594766B2 (en) | Magnetic resonance imaging apparatus and method | |
JP5718228B2 (en) | Magnetic resonance imaging apparatus and eddy current compensation method | |
US9476956B2 (en) | Magnetic resonance imaging apparatus with correction of magnetic field gradient waveform distortion | |
JP6410715B2 (en) | Magnetic resonance imaging apparatus and magnetic resonance imaging method | |
US9594140B2 (en) | Magnetic resonance imaging apparatus and method for calculating correction value as application amount of refocusing pulse for UTE sequence | |
JP6038654B2 (en) | Magnetic resonance imaging apparatus and vibration error magnetic field reduction method | |
US8148980B2 (en) | Magnetic resonance imaging system and method | |
WO2018020905A1 (en) | Magnetic resonance imaging device and control method thereof | |
US10162027B2 (en) | Magnetic resonance imaging apparatus and irradiation magnetic field distribution measurement method | |
US11965945B2 (en) | Magnetic resonance system and shimming method and imaging method thereof | |
JP5177379B2 (en) | Magnetic resonance imaging system | |
JP5650044B2 (en) | Magnetic resonance imaging system | |
JPWO2005023108A1 (en) | Magnetic resonance imaging system | |
JP5064685B2 (en) | Magnetic resonance imaging system | |
JP2012000389A (en) | Magnetic resonance imaging apparatus and magnetic resonance imaging method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17833915 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17833915 Country of ref document: EP Kind code of ref document: A1 |