WO2018020704A1 - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
WO2018020704A1
WO2018020704A1 PCT/JP2017/000407 JP2017000407W WO2018020704A1 WO 2018020704 A1 WO2018020704 A1 WO 2018020704A1 JP 2017000407 W JP2017000407 W JP 2017000407W WO 2018020704 A1 WO2018020704 A1 WO 2018020704A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
control unit
control device
control
Prior art date
Application number
PCT/JP2017/000407
Other languages
French (fr)
Japanese (ja)
Inventor
井上 裕介
Original Assignee
デンソートリム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンソートリム株式会社 filed Critical デンソートリム株式会社
Priority to JP2017525642A priority Critical patent/JP6255140B1/en
Publication of WO2018020704A1 publication Critical patent/WO2018020704A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D43/00Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/06Other installations having capacitive energy storage
    • F02P3/08Layout of circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac

Definitions

  • the disclosure in this specification relates to a control device for an internal combustion engine.
  • Patent Document 1 discloses an ignition device for an internal combustion engine and its control.
  • control for the ignition device is executed by a control device called a microcomputer, it is necessary to perform the calculation within a limited time depending on the rotational speed of the internal combustion engine.
  • a power conversion device for converting a power supply voltage is provided for an internal combustion engine device.
  • an ignition device that requires a high voltage or a fuel injection device that requires a high voltage requires a power converter.
  • the control device performs control for the power conversion device in addition to the original control for the internal combustion engine.
  • the resources of the control device are insufficient due to the control for the internal combustion engine (hereinafter also referred to as internal combustion engine control) and the control for the power conversion device (hereinafter also referred to as power conversion control). There are things to do.
  • One disclosed object is to provide a control device for an internal combustion engine in which both internal combustion engine control and power conversion control are compatible.
  • the control device for an internal combustion engine disclosed herein includes a converter circuit (14) that converts the voltage of a power source into a high voltage by switching of a switching element, and a capacitor (34) that is charged by the converter circuit and supplies power to an internal combustion engine device. And a control device (17) for controlling the converter circuit.
  • the control device changes the duty ratio between the ON time and the OFF time of the internal combustion engine controller (160, 171-174) that executes control for the internal combustion engine and the switching element, and controls the duty ratio with high accuracy.
  • a reservation control unit (175) that reserves a part of the process of the internal combustion engine control unit to be executed later, and a part of the process after the low-accuracy period
  • the capacitor is charged from the converter circuit and discharged to the equipment of the internal combustion engine. Charging by the converter circuit is controlled by the control device.
  • the control device has an internal combustion engine control unit and controls the internal combustion engine.
  • the control device has a duty control unit and controls charging. Charging is performed by changing the duty ratio between the ON time and the OFF time of the switching element. In addition, the charging is performed by switching to a low precision period in which the duty ratio is adjusted to a low precision lower than the high precision after a high precision period in which the duty ratio is adjusted with high precision. For this reason, charging suitable for the capacitor is possible.
  • the control device executes both processing as an internal combustion engine control unit and processing as a duty control unit.
  • the control device has a reservation control unit.
  • the reservation control unit reserves a part of the processing of the internal combustion engine control unit to be executed later. That is, the control device controls the duty ratio with high accuracy without executing some processing. Therefore, the resource of the control device is used to control the duty ratio with high accuracy.
  • the control device has a post-execution control unit. The post-execution control unit executes the reserved partial processing after the low accuracy period. Thereby, the control for the internal combustion engine and the power conversion control for controlling the duty ratio for charging the capacitor can be executed by effectively using the resources of the control device.
  • FIG. 1 is a block diagram of an internal combustion engine system according to a first embodiment. It is a flowchart which shows a charging process. It is a graph which shows the relationship between OFF time and the frequency
  • FIG. 1 shows an internal combustion engine system 1 as an example.
  • the internal combustion engine system 1 has an internal combustion engine (ENG) 2 as a power source.
  • the internal combustion engine 2 is a spark ignition type internal combustion engine.
  • the internal combustion engine 2 is a so-called gasoline engine that uses gasoline as fuel.
  • the internal combustion engine system 1 includes a generator (ACG) 3 driven by the internal combustion engine 2.
  • the generator 3 is an AC generator.
  • the internal combustion engine system 1 provides a generator system that supplies power by a generator 3.
  • the internal combustion engine system 1 may provide a power system such as a ground traveling vehicle, a ship, an aircraft, and a work machine.
  • the internal combustion engine system 1 is mounted on a relatively small vehicle. An example of such a vehicle is a motorcycle.
  • the internal combustion engine system 1 is configured as a power supply device for supplying electric power to an electric load mounted on a vehicle and driving it.
  • the internal combustion engine system 1 includes an internal combustion engine load drive device for driving an electric load.
  • the electrical load may include main electrical equipment for operating the internal combustion engine 2 and additional electrical equipment.
  • the main electrical equipment may include, for example, a starter motor, an ignition device, and / or a fuel supply device.
  • the internal combustion engine system 1 includes an internal combustion engine ignition device for supplying electric power to the ignition device.
  • Additional electrical equipment may include, for example, headlamps, turn signals, and / or meters. Some of these electrical devices temporarily require a large amount of power that exceeds the power that can be supplied by the power supply voltage.
  • the load driving device for an internal combustion engine has a power conversion function in order to supply temporary high power.
  • the internal combustion engine system 1 is also configured as a power source for vehicle travel.
  • the internal combustion engine 2 is connected to a vehicle propulsion mechanism via a transmission or the like. Therefore, when the rotational speed of the internal combustion engine 2 increases or decreases, the speed, sound, and the like change, and the vehicle user senses the change. A vehicle user may feel uncomfortable if the change in the rotational speed unintended by the vehicle user is abrupt and / or large.
  • the internal combustion engine system 1 has a power supply circuit (REC-REG) 4.
  • the power supply circuit 4 may include a rectifier circuit (REC) and a voltage adjustment circuit (REG).
  • the rectifier circuit rectifies AC power output from the generator 3 and outputs DC power.
  • the voltage adjustment circuit adjusts the voltage output from the generator 3 to a predetermined adjustment voltage.
  • the internal combustion engine system 1 has a battery 5 that is charged by electric power output from the power supply circuit 4.
  • the battery 5 supplies electric power to the electric device.
  • the battery 5 supplies electric power to main electric devices such as a starter motor for starting the internal combustion engine 2.
  • the battery 5 also supplies power to additional electrical equipment such as a headlamp.
  • the internal combustion engine system 1 has an ignition device 10.
  • the ignition device 10 generates a spark for operating the internal combustion engine 2 by the electric power supplied from the generator 3, the power supply circuit 4 and the battery 5.
  • the ignition device 10 includes an ignition circuit 6, an ignition coil 7, and a spark plug 8.
  • the ignition circuit 6 energizes the ignition coil 7 and interrupts the energization.
  • the ignition circuit 6 provides a control device for an internal combustion engine.
  • the ignition coil 7 generates a high voltage necessary for the spark plug 8 to generate a spark.
  • the ignition circuit 6 controls the intermittent timing of energization to the ignition coil 7 so that a spark is generated in the spark plug 8 at a predetermined ignition timing.
  • the ignition circuit 6 includes a power conversion function for adjusting the energization power to the ignition coil 7.
  • the ignition circuit 6 has a boosting function for supplying large power to the ignition coil 7.
  • the ignition coil 7 generates a high voltage using an electromagnetically coupled primary coil and secondary coil. Therefore, the ignition coil 7 and the ignition device 10 including the ignition coil 7 are inductive electric loads.
  • the ignition circuit 6 provides an inductive load driving circuit or an inductive load power circuit for operating the inductive electric load by supplying electric power to the inductive electric load.
  • the ignition coil 7 intermittently generates a high voltage. Therefore, the ignition coil 7 and the ignition device 10 including the ignition coil 7 are also referred to as intermittently driven electric loads.
  • the ignition circuit 6 provides an intermittent load driving circuit or an intermittent load power supply circuit that intermittently outputs large power.
  • the ignition circuit 6 has a power supply terminal 11.
  • the ignition circuit 6 receives power via the power supply terminal 11.
  • the power supply terminal 11 is connected to the power supply circuit 4 and the battery 5.
  • the ignition circuit 6 includes a diode 12 that receives power from the power supply terminal 11.
  • the ignition circuit 6 receives the power supply voltage VB via the power supply terminal 11 and the diode 12.
  • the ignition circuit 6 has a DC-DC converter circuit 14 (hereinafter referred to as a converter circuit 14).
  • the converter circuit 14 converts the power supply voltage VB input from the power supply terminal 11.
  • Converter circuit 14 is also called a booster circuit.
  • the converter circuit 14 provides a power conversion device.
  • the converter circuit 14 includes a transformer 31 that is an insulating transformer.
  • the transformer 31 is an inductive element.
  • the transformer 31 includes a primary coil fed from the power supply terminal 11 and a secondary coil connected to a load circuit described later.
  • the transformer 31 inputs a power supply voltage to the primary coil, and output power from the secondary coil charges a capacitor 34 described later.
  • the converter circuit 14 has a switching element 32.
  • the switching element 32 is arranged in series in a closed circuit passing through the power supply terminal 11 and the primary coil so that the current Itp flowing to the primary coil of the transformer 31 is intermittent.
  • the switching element 32 is provided on the ground side of the primary coil of the transformer 31.
  • the switching element 32 is provided by an FET.
  • the switching element 32 can be provided by various elements such as a power transistor and an IGBT.
  • the converter circuit 14 includes a rectifying element 33 and a capacitor 34.
  • the rectifying element 33 is arranged in a closed circuit including the secondary coil of the transformer 31.
  • the rectifying element 33 is provided by a diode.
  • the capacitor 34 is arranged in a closed circuit including the secondary coil of the transformer 31.
  • the capacitor 34 is charged with electric power supplied from the converter circuit 14.
  • the capacitor 34 is also an element constituting a part of the CDI circuit 15 described later.
  • the converter circuit 14 converts the voltage of the power source into a high voltage by switching of the switching element 32.
  • the capacitor 34 is charged by the converter circuit 14 and supplies power to the ignition coil 7 that is a device of the internal combustion engine 2.
  • the switching element 32 is controlled to be repeatedly turned on and off by the control device 17 described later.
  • the switching element 32 is switched from the off state to the on state in one driving cycle, and is switched from the on state to the off state after the on time Ton, and is controlled to maintain the off state during the off time Toff.
  • the Further, the switching element 32 is controlled to repeat a plurality of driving cycles. Such control is called switching drive or switching control.
  • the switching element 32 is switching-driven so as to charge the capacitor 34 to a predetermined voltage level in a period between the ignition timings. For example, the switching element 32 repeats on / off according to a preset switching sequence. A high voltage is induced on the secondary side of the transformer 31 by the switching of the switching element 32. The high voltage is rectified by the rectifying element 33 and the capacitor 34 is charged.
  • the converter circuit 14 gradually charges the capacitor 34 when the switching element 32 is driven to be switched. As a result, the capacitor 34 is gradually charged, and the voltage of the capacitor 34 gradually increases.
  • the ignition circuit 6 has a CDI circuit 15.
  • CDI means Capacitor Discharge Ignition.
  • the CDI circuit 15 is a load circuit supplied with power from the converter circuit 14.
  • the CDI circuit 15 supplies the primary current supplied to the ignition coil 7 by discharging from the capacitor 34.
  • the CDI circuit 15 supplies large energy to the primary coil of the ignition coil 7. As a result, a high voltage is stably generated at the secondary side output of the ignition coil 7. As a result, a strong spark can be stably generated in the spark plug 8.
  • the CDI circuit 15 has a thyristor 41.
  • the thyristor 41 provides a switching circuit for opening and closing a discharge circuit including the capacitor 34 and the ignition coil 7, that is, a closed circuit.
  • the CDI circuit 15 provides a discharge circuit that discharges the electric charge charged in the capacitor 34 to the ignition coil 7 that is a device of the internal combustion engine.
  • the primary current is supplied from the capacitor 34 to the ignition coil 7 by firing the thyristor 41. As the thyristor 41 is extinguished, the primary current is cut off.
  • the CDI circuit 15 supplies the electric charge of the capacitor 34 to the ignition coil 7 at the ignition timing.
  • the capacitor 34 described above is also a part of the CDI circuit 15. Capacitor 34 and converter circuit 14 may be viewed as part of CDI circuit 15.
  • the ignition circuit 6 has a control device (CNTL) 17.
  • the control device 17 drives the switching element 32 by supplying the switching signal SQ to the switching element 32.
  • the ignition circuit 6 has a clock circuit 18.
  • the clock circuit 18 supplies a timing signal for the control device 17 to execute arithmetic processing.
  • the control device 17 is an electronic control device (Electronic Control Unit).
  • the control device has at least one arithmetic processing unit (CPU) and at least one memory device (MMR) as a storage medium for storing programs and data.
  • the control device 17 is provided by a microcomputer provided with a computer-readable storage medium.
  • the storage medium is a non-transitional tangible storage medium that stores a computer-readable program in a non-temporary manner.
  • the storage medium can be provided by a semiconductor memory or a magnetic disk.
  • the control device 17 can be provided by a computer or a set of computer resources linked by a data communication device.
  • the program is executed by the control device 17 to cause the control device 17 to function as the device described in this specification, and to cause the control device 17 to perform the method described in this specification.
  • the calculation speed of the control device 17 varies depending on various factors such as the capability of the calculation processing device, the memory read / write speed, and the memory capacity. One or more of these elements are called resources.
  • the control device 17 provides various elements. At least some of these elements can be referred to as blocks for performing functions. In another aspect, at least some of these elements can be referred to as modules or sections that are interpreted as configurations.
  • the means and / or functions provided by the control device can be provided by software recorded in a substantial memory device and a computer that executes the software, software only, hardware only, or a combination thereof. For example, if the controller 17 is provided by an electronic circuit that is hardware, it can be provided by a digital circuit including a number of logic circuits, or an analog circuit.
  • the control device 17 has a first output terminal OUT1 that outputs a switching signal SQ for switching and driving the switching element 32.
  • the signal output to the first output terminal OUT1 has a predetermined duty ratio Dt.
  • the control device 17 has a second output terminal OUT2 that outputs an ignition signal Ig for firing the thyristor 41.
  • the control device 17 is also a boost control device that operates the converter circuit 14 so as to charge the capacitor 34.
  • the control device 17 outputs a switching signal SQ for the switching element 32.
  • the switching signal SQ is set to match the charging characteristics of the capacitor 34.
  • the cycle of the switching signal SQ is set to be shorter as the charging of the capacitor 34 progresses.
  • the on time Ton of the switching signal SQ can be set according to the power supply voltage VB.
  • the duty ratio Dt of the switching signal SQ can be set to increase as the charging of the capacitor 34 progresses.
  • the duty ratio Dt can be set so that the OFF time gradually decreases in a series of charging sequences including a plurality of switching operations.
  • the switching signal SQ is set so that the capacitor 34 can be charged to a predetermined voltage level during one ignition and the next ignition, in other words, during the period between the discharge of the capacitor 34 and the next discharge.
  • the switching signal SQ corresponds to a series of charging sequences for gradually charging the capacitor 34 by the converter circuit 14 in another stepwise manner.
  • a series of charging sequences includes a plurality of driving cycles. In one driving cycle, the switching element 32 is switched from the off state to the on state, and after being kept on for the on time Ton, is switched from the on state to the off state, and remains off for the off time Toff. .
  • the control device 17 starts a series of charging sequences when one ignition is completed.
  • the control device 17 ends the series of charging sequences before the next ignition is required.
  • the control device 17 is a charge control device that executes a series of charging sequences for charging the capacitor 34 to a predetermined voltage level.
  • a series of charge sequences may be characterized by the number of drive cycles, for example.
  • a series of charging sequences may be characterized by, for example, an on time Ton.
  • a series of charging sequences may be characterized, for example, by an off time Toff.
  • a series of charging sequences may be characterized by a duty ratio Dt in the driving cycle, for example.
  • the series of charging sequences may be characterized by a combination of at least two of the number of times, the on time Ton, the off time Toff, and the duty ratio Dt.
  • the sequence of charging sequences is characterized by an on time Ton and an off time Toff.
  • the control device 17 gradually changes the duty ratio Dt of the switching signal SQ in a series of charging sequences.
  • the duty ratio Dt is set so that the capacitor 34 can be charged appropriately. For example, a small duty ratio Dt is set at the beginning of a series of charging sequences, and a large duty ratio Dt is set at a later stage.
  • the duty ratio Dt can be changed by changing the off time Toff while keeping the on time Ton constant.
  • the duty ratio Dt may be changed by changing the on-time Ton while keeping the off-time Toff constant.
  • the duty ratio Dt may be changed by changing both the on time Ton and the off time Toff.
  • control device 17 ignites the thyristor 41 to generate an ignition spark in the spark plug 8.
  • the control device 17 is also an ignition control device.
  • the control device 17 inputs a reference signal Pin for controlling the ignition timing.
  • the internal combustion engine system 1 includes a rotation angle detector 13.
  • the rotation angle detector 13 detects the rotation angle of the internal combustion engine 2.
  • the rotation angle detector 13 outputs a signal indicating the rotation angle of the internal combustion engine 2, that is, the rotation position.
  • the rotation angle detector 13 outputs a reference signal Pin at a position that serves as a reference for rotation of the internal combustion engine 2.
  • the rotation angle detector 13 outputs a pre-pulse and a post-pulse.
  • the previous pulse indicates the most advanced position.
  • the rear pulse indicates a reference position. In some cases, ignition is performed further later than the reference position.
  • the rotation angle detector 13 is provided by, for example, a signal rotor 21 that rotates together with the internal combustion engine 2 and a pulse pickup 22.
  • the ignition device 10 includes a signal processing circuit (SIGP) 16 for processing a signal output from the rotation angle detector 13.
  • the control device 17 includes an input terminal IN for inputting the reference signal Pin from the rotation angle detector 13 and the signal processing circuit 16.
  • the configuration for causing the converter circuit 14 to oscillate by using a switching signal generated by the control device 17 for ignition control using the clock circuit 18 can be referred to as separately excited oscillation.
  • the configuration in which the oscillation circuit is configured to oscillate the converter circuit 14 can be called self-excited oscillation.
  • a self-excited oscillation circuit that switches energization to the primary coil in response to the secondary side voltage of the converter circuit 14 can be used.
  • the switching frequency and / or the duty ratio may vary depending on the element constant of the oscillation circuit, for example, the RC time constant.
  • the energization time and the duty ratio vary depending on the temperature characteristics of the element. As a result, the temperature characteristics of the element may greatly affect the charging efficiency of the CDI circuit 15 by the converter circuit 14.
  • the control device 17 constitutes a separately-excited oscillation type power conversion circuit.
  • the control device 17 is a microcomputer and uses a clock circuit 18.
  • the clock circuit 18 generates a clock signal having a predetermined period. Therefore, it is possible to output a rectangular pulse wave whose output changes at an accurate interval and an accurate timing.
  • the control device 17 executes high-precision control and low-precision control with a resolution that depends on the clock signal supplied from the clock circuit 18. For this reason, it is possible to suppress an adverse effect due to inevitable temperature characteristics in the self-excited oscillation circuit.
  • a period of a series of charging sequences is given a name such as a charging period, a switching period, or a DC-DC converter period.
  • the duration of the series of charging sequences is called the converter time DCtime.
  • the switching number SWnum of the switching element 32 in that period is referred to as switching number, SQ number, ON-OFF number, and the like.
  • the converter circuit 14 provides a power conversion device.
  • the ignition coil 7 provides equipment for the internal combustion engine.
  • Internal combustion engine control is provided by ignition control ignited by the CDI circuit 15.
  • Power conversion control is provided by duty control to efficiently charge the capacitor 34 to a high voltage.
  • the power conversion control is also called PWM (Pulse Width Modulation) control because the switching signal SQ is subjected to pulse width modulation.
  • the control device 17 controls the CDI circuit 15 that provides a discharge circuit by the internal combustion engine controller, and controls both the converter circuit 14 and the CDI circuit 15 that is a discharge circuit.
  • the control device 17 executes the charging process 150 during a period between one ignition and the next ignition.
  • the charging process 150 provides power conversion control.
  • step 151 the control device 17 determines whether or not the converter time DCtime is less than a predetermined threshold time Tht.
  • the threshold time Tht defines an upper limit period of a series of charging sequences. In other words, the maximum time for which the switching element 32 is switched is defined. If converter time DCtime is less than predetermined threshold time Tht, the routine proceeds to step 152. After converter time DCtime reaches predetermined threshold time Tht, the process proceeds to step 157.
  • step 152 the control device 17 determines whether or not the switching number SWnum of the switching element 32 is less than a predetermined threshold number Thn.
  • the threshold number Thn defines an upper limit number in a series of charging sequences. In other words, the maximum number of times that the switching element 32 is switched is defined. If the switching count SWnum is less than the predetermined threshold time Thn, the process proceeds to step 153. After the switching number SWnum reaches a predetermined threshold number Thn, the process proceeds to step 155.
  • step 153 the control device 17 sets the ON time Ton and the OFF time Toff of the switching element 32.
  • an initial ON time Ton and an OFF time Toff in a series of charging sequences for charging the capacitor 34 are set.
  • a relatively long ON time Ton and a relatively long OFF time Toff are set.
  • step 154 the control device 17 controls the ON time Ton and the OFF time Toff with high accuracy. That is, the output of the output terminal OUT1 is controlled so that the time set in step 153 is accurately realized.
  • the maximum accuracy that can be provided by the controller 17 is provided. That is, in the initial stage of a series of charging sequences, a highly accurate control is provided by placing a high computational load on the resources of the control device 17 that can be received. In other words, highly accurate control that can be performed by the control device 17 is provided.
  • the ON time Ton and the OFF time Toff are controlled with a predetermined accuracy. For example, the determination is performed every ON time Ton and OFF time Toff so that the maximum error of the first time T1 (0.5 ⁇ s (microseconds)) is obtained.
  • step 155 the control device 17 sets an ON time Ton and an OFF time Toff.
  • an ON time Ton and an OFF time Toff in the latter period are set in a series of charging sequences for charging the capacitor 34. For example, a relatively short ON time Ton and a relatively short OFF time Toff are set.
  • step 156 the control device 17 controls the ON time Ton and the OFF time Toff with low accuracy. That is, the output of the output terminal OUT1 is controlled so as to realize the time set in step 155.
  • a low precision that does not press the arithmetic processing of the control device 17 is given. That is, in the latter part of the series of charging sequences, low precision control is provided by placing a low computational load on the resource of the control device 17 so that other arithmetic processing can be executed. In other words, low-accuracy control that can be realized without the time restriction on the arithmetic processing for the other control by the control device 17 is provided.
  • the ON time Ton and the OFF time Toff are controlled with lower accuracy than in step 154. For example, the determination is performed every ON time Ton and OFF time Toff so as to be the maximum error of the second time T2.
  • the second time T2 is longer than the first time T1.
  • the second time T2 is longer than 10 times the first time T1.
  • step 157 switching of the switching element 32 is stopped. For this reason, a series of charging processes are completed.
  • the charging process 150 changes the duty ratio between the ON time and OFF time of the switching element. In addition, the charging process 150 switches to the low accuracy period in which the duty ratio is controlled to be lower than the high accuracy after the high accuracy period in which the duty ratio is controlled with high accuracy.
  • the charging process 150 provides a duty control unit that charges the capacitor 34 from the converter circuit 14.
  • the control device 17 has a duty control unit and controls charging. Charging is performed by changing the duty ratio between the ON time and OFF time of the switching element 32. In addition, the charging is performed by switching to a low precision period in which the duty ratio is adjusted to a low precision lower than the high precision after a high precision period in which the duty ratio is adjusted with high precision. For this reason, charging suitable for the capacitor 34 is possible.
  • FIG. 3 shows an example of the OFF time Toff for charging the capacitor 34.
  • the OFF time Toff decreases exponentially.
  • One or both of the ON time Ton and the OFF time Toff can be stored in the memory and set by the map. That is, at least one of the ON time Ton and the OFF time Toff is stored in the memory of the control device 17.
  • FIG. 4 shows an example of the operation of the converter circuit 14.
  • a switching signal SQ an input current Itp, and an output current Its are shown.
  • an ON time Ton and an OFF time Toff are set.
  • the switching signal SQ changes to SQ1, SQ2, SQ3,... As the capacitor 34 is charged.
  • the switching signal SQ is set so that at least the OFF time Toff becomes shorter as time elapses.
  • the switching signal SQ is set so as to change from the OFF state to the ON state after the charging current Its becomes zero.
  • the charging current Its is zero before time t12.
  • the charging current Its is zero before the times t13 and t14.
  • the high-precision control in step 154 and the low-precision control in step 156 are set so that the switching signal SQ changes from the OFF state to the ON state. Yes.
  • the ON time Ton is desirably set to an upper limit value, for example, 8 ⁇ s (microseconds). If the ON time Ton is too short, the charging efficiency of the capacitor 34 may be reduced.
  • the ON time Ton is desirably set to a lower limit of 4 ⁇ s (microseconds), for example.
  • the ON time Ton is preferably selected from a lower limit value and an upper limit value.
  • the ON time Ton is, for example, 6.5 ⁇ s (microseconds).
  • the maximum error of the ON time Ton is 0.5 ⁇ s (microseconds) or less. It is desirable to be.
  • the pre-pulse processing 160 illustrated in FIG. When the previous pulse signal is input from the rotation angle detector 13, the control device 17 executes the previous pulse processing 160.
  • the pre-pulse processing 160 provides a pre-pulse control unit that consumes the charge of the capacitor 34 based on the pre-pulse.
  • step 161 the control device 17 executes a process to be executed by the previous pulse interrupt. For example, in step 161, processing that should be based on the generation time of the previous pulse is executed. Specifically, processing related to the determination of the ignition pulse, that is, the position of the previous pulse for calculating the advance amount or the retard amount from the reference position is executed. In addition, about the setting of an ignition angle, a patent document can be used by reference.
  • step 162 the control device 17 determines whether or not calculation ignition is necessary. The determination in step 162 is also a determination of whether or not ignition angle control is necessary. If it is determined in step 162 that the calculated ignition is necessary, the process proceeds to step 163. If it is determined in step 162 that the calculated ignition is not necessary, the process is terminated.
  • step 163 the control device 17 executes a calculation ignition process.
  • the calculation ignition process is one of the processes to be executed by the previous pulse interrupt.
  • processing for measuring the time from the previous pulse and generating the ignition signal Ig is executed.
  • the ignition signal Ig is generated by timer processing from the generation timing of the previous pulse.
  • an ignition signal is generated by a later pulse.
  • the timing up to the ignition signal Ig can be obtained by calculation.
  • the control for generating the ignition signal Ig on the basis of the previous pulse is called arithmetic ignition.
  • Step 163 is also a previous pulse control unit.
  • Step 163 provides an arithmetic ignition control unit that calculates the ignition timing based on the previous pulse.
  • the post-pulse processing 170 illustrated in FIG. When a subsequent pulse signal is input from the rotation angle detector 13, the control device 17 executes a post-pulse process 170.
  • the post-pulse processing 170 provides a post-pulse control unit that consumes the charge of the capacitor 34 based on the post-pulse.
  • step 171 the control device 17 executes a process to be executed by a post-pulse interrupt. Specifically, processing related to the rotational speed, rotational position, etc. calculated from the post-pulse is executed.
  • step 172 the control device 17 determines whether or not it is after step 163. That is, it is determined whether or not a post-pulse is detected after the calculation ignition process is started in step 163. The determination in step 172 is executed as a determination at the current ignition timing. If it is determined in step 172 that step 163 is not executed in the current ignition, the process proceeds to step 173. In step 172, if it is after step 162 is executed in the current ignition, the process proceeds to step 175. In this case, the calculated ignition is executed after the previous pulse. Computed ignition may be performed after a post-pulse.
  • the process of step 172 is also a process of evaluating the state of the charging process 150.
  • the charging process 150 is started after the calculation ignition process is executed.
  • a highly accurate process is executed. Even if the timing of the calculation ignition is after the post-pulse, the calculation load is concentrated because the charging process 150 is started after the post-pulse. That is, the determination in step 172 is also a determination as to whether or not the charging process 150 is being executed. In other words, the determination in step 172 is also a determination as to whether or not the duty drive control for causing the converter circuit 14 to oscillate is performed.
  • the charging process 150 performs high-accuracy control at an early stage and performs low-accuracy control at a later stage. For this reason, the determination in step 172 is also a determination of whether or not the charging process 150 is highly accurate.
  • Step 172 provides a determination unit that determines whether or not the processing by the previous pulse control unit has been started or has been executed based on the preceding previous pulse in response to the subsequent pulse. .
  • step 173 the control device 17 executes a fixed ignition process. If it is determined in step 172 that the calculated ignition has not been executed, fixed ignition is necessary. Therefore, the control device 17 executes a fixed ignition process.
  • the fixed ignition process is one of processes that should be executed by a post-pulse interrupt.
  • the ignition signal Ig is generated based on the post-pulse. As a result, ignition with a post-pulse is realized.
  • Step 173 is also a post-pulse control unit. Step 163 provides a fixed ignition controller that ignites in response to a post-pulse.
  • step 174 the control device 17 executes a plurality of partial processes that should have been executed in synchronization with the post-pulse.
  • These partial processes are processes to be executed when the crankshaft of the internal combustion engine 2 is at a predetermined reference position, and are therefore referred to as crank synchronization processes. For example, processing of a rotation speed signal to be executed in response to the post pulse is executed.
  • Step 174 provides a non-reservation control unit that executes a part of the process immediately without performing a part of the process when the process of the internal combustion engine control unit occurs during the low accuracy period.
  • the whole of the pre-pulse process 160 and the whole of the post-pulse process 170 provide an internal combustion engine control unit that executes control for the internal combustion engine 2.
  • the entire pre-pulse processing 160 and steps 171 to 174 of the post-pulse processing 170 execute ignition control for the internal combustion engine 2.
  • step 175 the control device 17 sets a flag to be executed later without executing at least one of a plurality of processes to be executed in synchronization with the subsequent pulse. In other words, the process is reserved.
  • Step 175 is a process for reserving at least a part of the crank synchronization process at a later time. In this embodiment, all processing called crank synchronization processing is executed at a later time. Processing for setting post-execution is called reservation processing, postponement processing, post-transmission processing, and the like.
  • step 175 When going through step 175, it is after step 163 is executed. For this reason, ignition has been performed. For this reason, the charging process 150 is also started.
  • the charging process 150 is performed with high accuracy in the initial stage. Therefore, the control device 17 is under a high calculation load for the charging process 150. In this case, it is desirable to prioritize the charging process 150 and postpone the other processes. This is because, since the voltage fluctuation of the capacitor 34 is large at the beginning of charging, it is efficient to control the ON time and OFF time with high accuracy.
  • Step 175 provides a reservation control unit for reserving a part of the process of the internal combustion engine control unit to be executed later when the process of the internal combustion engine control unit occurs during the high accuracy period. If the determination unit provided in step 172 is positively determined, the reservation control unit provided in step 175 reserves a partial process to be executed later. When the ignition control unit provided in step 163 ignites, the reservation control unit provided in step 175 reserves a part of the processing to be executed later.
  • the post-execution process 180 shown in FIG. The control device 17 executes a post-execution process 180 when the calculation load on the control device 17 decreases.
  • the control device 17 executes a post-execution process 180 when the charging process 150 has low accuracy.
  • the post-execution process 180 provides a post-execution control unit that executes some processes after the low-accuracy period.
  • step 181 the control device 17 determines whether or not post-execution is set. If it is determined in step 181 that post-execution is set, the process proceeds to step 182. If it is determined in step 181 that post-execution is not set, the process is terminated.
  • step 182 the control device 17 later executes a partial process that is at least one of a plurality of processes to be executed in synchronization with the post-pulse and not executed for the post-execution. That is, some processes are executed with a delay. Here, all processing called crank synchronization processing is executed.
  • Step 183 the set state for subsequent execution is cleared.
  • Step 183 provides a release unit for releasing the reservation after partial processing is executed after the low-accuracy period.
  • FIG. 8 shows the operation when fixed ignition is executed.
  • the horizontal axis is indicated by the rotation angle ANG of the internal combustion engine.
  • the switching signal SQ is schematically shown with a constant ON time Ton.
  • the front pulse and the rear pulse are detected at the falling timing.
  • the previous pulse is detected.
  • the pre-pulse interrupt process PR1 shown in steps 161 and 162 is executed.
  • a post-pulse is detected at time t22.
  • post-pulse interruption and fixed ignition processing PR2 shown in steps 171 to 173 is executed, and fixed ignition IgF is executed.
  • a crank synchronization process PR3 shown in step 174 is executed.
  • the charging process 150 is started.
  • the high-precision period DC1 and the low-precision period DC2 are included in the series of charging sequences.
  • the charging process 150 shifts to a low-accuracy process from time t23.
  • the process PR3 and the charging process 150 can be executed without conflict.
  • the ON time Ton and the OFF time Toff are long. For this reason, the process PR3 and the switching for the charging process 150 do not compete.
  • the ON time Ton and the OFF time Toff are simulated to illustrate that the switching is performed, and the width is an example.
  • FIG. 9 shows the operation when the calculated ignition is executed.
  • FIG. 9 corresponds to FIG.
  • step 175 reserves a part of the processing of the internal combustion engine control unit to be executed later. That is, the control device 17 controls the duty ratio with high accuracy without executing some processing. Therefore, the resource of the control device 17 is used to control the duty ratio with high accuracy.
  • the charging process 150 enters the low accuracy period DC2.
  • the post-execution condition is satisfied. That is, the calculation load of the control device 17 is reduced.
  • process PR6 shown in steps 181 to 183 is executed.
  • the post-execution control unit provided by step 182 executes some of the reserved processes after the low-accuracy period. That is, in the process PR6, the crank synchronization process that was not executed before is executed. As a result, it is possible to complete the processing required during ignition without increasing the calculation load of the control device 17 in the high-accuracy period DC1 in the charging processing 150.
  • the high accuracy period DC1 is set so as to give a margin including an error.
  • the high-accuracy period DC1 is an element that may cause a decrease in charging efficiency of the capacitor 34.
  • the high accuracy period DC1 is obtained from the maximum rotational speed of the internal combustion engine 2 and the time that requires strict control to charge the capacitor 34.
  • the time from the beginning of the low accuracy period DC2 to the subsequent reference signal Pin is 1 ms (milliseconds).
  • the high accuracy period DC1 is set to about 4 ms (milliseconds).
  • the maximum rotation speed of the internal combustion engine 2 is set to 12000 rpm (the number of rotations per minute), one cycle is 5 ms (milliseconds). (Milliseconds).
  • control device 17 When the control device 17 has a high processing capability, the control device 17 obtains surplus processing capability by controlling the duty ratio with low accuracy. The reserved partial processing can be executed by the surplus capacity. From another viewpoint, it is possible to make the charging process 150 and the ignition process compatible by using the control device 17 having a low processing capacity.
  • an internal combustion engine control device in which ignition control for internal combustion engine control and charging processing 150 as power conversion control are compatible.
  • the internal combustion engine control for changing the ignition timing of the CDI circuit 15 for the internal combustion engine 2 and the power conversion control for changing the duty of the converter circuit 14 for the capacitor 34 are compatible.
  • An internal combustion engine controller is provided.
  • the internal combustion engine control in which the ignition control for the internal combustion engine control that must be executed at predetermined intervals and the high-accuracy power conversion control of the converter circuit 14 are achieved by effectively using the resources of the control device 17.
  • An apparatus is provided. Therefore, from one viewpoint, it is possible to use an inexpensive control device having only a low processing capacity. From another viewpoint, it is possible to use surplus arithmetic processing capacity for other control.
  • the disclosure herein is not limited to the illustrated embodiments.
  • the disclosure encompasses the illustrated embodiments and variations by those skilled in the art based thereon.
  • the disclosure is not limited to the combinations of parts and / or elements shown in the embodiments.
  • the disclosure can be implemented in various combinations.
  • the disclosure may have additional parts that can be added to the embodiments.
  • the disclosure includes those in which parts and / or elements of the embodiments are omitted.
  • the disclosure encompasses the replacement or combination of parts and / or elements between one embodiment and another.
  • the technical scope disclosed is not limited to the description of the embodiments. Some technical scope disclosed is shown by the description of the scope of claims, and should be understood to include all modifications within the meaning and scope equivalent to the description of the scope of claims.
  • an ignition coil is used as an electric load driven intermittently.
  • a fuel injection valve may be used.
  • an electric load driven intermittently an inductive load may be used, or a capacitive load may be used.
  • the inductive load for example, a high voltage electromagnetic coil for driving the injection valve is used.
  • a piezoelectric element is used as a capacitive load. The piezo element generates a mechanical displacement according to the accumulated electric charge. The piezo element is used, for example, in a fuel injection valve that interrupts fuel injection.
  • the converter circuit 14 is provided by a chopper circuit including the transformer 31.
  • various booster circuits can be used.
  • a chopper circuit including a reactor coil may be used as the converter circuit 14.
  • the post-execution process 180 is executed when the charging process 150 enters the low-accuracy period DC2. Instead, the post-execution process 180 may be executed after the charging process 150 is completely stopped.
  • the power conversion control that is, the control of the switching element 32 of the converter circuit 14 is switched to two stages of the high accuracy period DC1 and the low accuracy period DC2.
  • the accuracy may be a plurality of steps such as three steps, or may be stepless.
  • the low accuracy period DC2 may coincide with a saturation period in which the duty ratio is constant.
  • the fixed ignition IgF is executed in response to the post-pulse.
  • the most retarded ignition may be performed after the post-pulse.
  • the most advanced ignition may be performed before the previous pulse.
  • the internal combustion engine 2 includes the signal rotor 21.
  • the signal rotor may be included in the rotor of the generator (ACG).
  • the signal processing circuit 16 is provided.
  • the signal processing circuit may be omitted.
  • a Hall sensor including a sensor element and an accompanying circuit can be used instead of the pulse pickup.

Abstract

A control device having an internal combustion engine control unit for executing control of an internal combustion engine, and a duty control unit for charging a capacitor from a converter circuit. The duty control unit changes the duty ratio for the ON time and the OFF time of a switching element. After a high-precision period in which the duty ratio is controlled with a high precision, the duty control unit switches to a low-precision period in which the duty ratio is controlled with a low precision that is lower than the high precision. The control device has: a reservation control unit that, when processes of the internal combustion engine control unit are generated during the high-precision period, reserves a portion of the processes of the internal combustion control unit so as to be executed later; and a post-execution control unit that executes the portion of the processes during or after the low-precision period. Thus, it is possible to provide a control device for an internal combustion engine that achieves internal combustion engine control and power conversion control.

Description

内燃機関用制御装置Control device for internal combustion engine 関連出願の相互参照Cross-reference of related applications
 この出願は、2016年7月26日に出願された日本特許出願2016-146420号を基礎出願とするものであり、基礎出願の開示内容は参照によってこの出願に組み込まれている。 This application is based on Japanese Patent Application No. 2016-146420 filed on July 26, 2016, and the disclosure of the basic application is incorporated into this application by reference.
 この明細書における開示は、内燃機関用制御装置に関する。 The disclosure in this specification relates to a control device for an internal combustion engine.
 特許文献1は、内燃機関のための点火装置およびその制御を開示する。このような点火装置のための制御をマイクロコンピュータとよばれる制御装置によって実行する場合、内燃機関の回転数によって限られた時間の中で、その演算を行う必要がある。さらに、内燃機関の機器のために、電源電圧を変換するための電力変換装置を有する場合がある。例えば、高電圧を必要とする点火装置、または高電圧を必要とする燃料噴射装置が、電力変換装置を必要とする。この場合、制御装置は、内燃機関のための本来の制御に加えて、電力変換装置のための制御を実行している。 Patent Document 1 discloses an ignition device for an internal combustion engine and its control. When such control for the ignition device is executed by a control device called a microcomputer, it is necessary to perform the calculation within a limited time depending on the rotational speed of the internal combustion engine. Furthermore, there is a case where a power conversion device for converting a power supply voltage is provided for an internal combustion engine device. For example, an ignition device that requires a high voltage or a fuel injection device that requires a high voltage requires a power converter. In this case, the control device performs control for the power conversion device in addition to the original control for the internal combustion engine.
特開2015-175361号公報Japanese Patent Laying-Open No. 2015-175361
 従来技術の構成では、内燃機関のための制御(以下、内燃機関制御ともいう)と、電力変換装置のための制御(以下、電力変換制御ともいう)とのために、制御装置のリソーセスが不足することがある。 In the configuration of the prior art, the resources of the control device are insufficient due to the control for the internal combustion engine (hereinafter also referred to as internal combustion engine control) and the control for the power conversion device (hereinafter also referred to as power conversion control). There are things to do.
 上述の観点において、または言及されていない他の観点において、内燃機関用制御装置にはさらなる改良が求められている。 In the above-mentioned viewpoints or other viewpoints not mentioned, further improvements are required for the control device for the internal combustion engine.
 開示されるひとつの目的は、内燃機関制御と電力変換制御とが両立された内燃機関用制御装置を提供することである。 One disclosed object is to provide a control device for an internal combustion engine in which both internal combustion engine control and power conversion control are compatible.
 ここに開示された内燃機関用制御装置は、スイッチング素子のスイッチングによって電源の電圧を高電圧へ変換するコンバータ回路(14)と、コンバータ回路により充電され、内燃機関の機器に給電するコンデンサ(34)と、コンバータ回路を制御する制御装置(17)とを備える。制御装置は、内燃機関のための制御を実行する内燃機関制御部(160、171-174)と、スイッチング素子のON時間とOFF時間とのデューティ比を変化させるとともに、デューティ比を高精度に制御する高精度期間(DC1)の後に、デューティ比を高精度より低い低精度に制御する低精度期間(DC2)に切換えて、コンバータ回路からコンデンサを充電するデューティ制御部(150)と、高精度期間に内燃機関制御部の処理が発生すると、内燃機関制御部の処理の一部である一部処理を、後に実行するように予約する予約制御部(175)と、一部処理を低精度期間以降に実行する後実行制御部(180)とを有する。 The control device for an internal combustion engine disclosed herein includes a converter circuit (14) that converts the voltage of a power source into a high voltage by switching of a switching element, and a capacitor (34) that is charged by the converter circuit and supplies power to an internal combustion engine device. And a control device (17) for controlling the converter circuit. The control device changes the duty ratio between the ON time and the OFF time of the internal combustion engine controller (160, 171-174) that executes control for the internal combustion engine and the switching element, and controls the duty ratio with high accuracy. A duty control unit (150) for charging the capacitor from the converter circuit by switching to a low precision period (DC2) for controlling the duty ratio to a low precision lower than the high precision after the high precision period (DC1) to be performed; When a process of the internal combustion engine control unit occurs, a reservation control unit (175) that reserves a part of the process of the internal combustion engine control unit to be executed later, and a part of the process after the low-accuracy period And a post-execution control unit (180).
 開示される内燃機関用制御装置によると、コンデンサは、コンバータ回路から充電され、内燃機関の機器に放電する。コンバータ回路による充電が制御装置によって制御される。制御装置は、内燃機関制御部を有しており、内燃機関を制御する。制御装置は、ディーティ制御部を有しており、充電を制御する。充電は、スイッチング素子のON時間とOFF時間とのデューティ比を変化させて実行される。しかも、充電は、デューティ比を高精度に調節する高精度期間の後に、デューティ比を高精度より低い低精度に調節する低精度期間に切換えて実行される。このため、コンデンサに適合した充電が可能である。制御装置は、内燃機関制御部としての処理と、デューティ制御部としての処理との両方を実行する。制御装置は、予約制御部を有する。予約制御部は、高精度期間に内燃機関制御部の処理が発生すると、内燃機関制御部の処理の一部の処理を、後に実行するように予約する。つまり、制御装置は、一部の処理を実行することなく、デューティ比を高精度に制御する。よって、制御装置のリソーセスは、デューティ比を高精度に制御するために利用される。制御装置は、後実行制御部を有する。後実行制御部は、予約された一部処理を、低精度期間以降に実行する。これにより、内燃機関のための制御と、コンデンサを充電するためのデューティ比を制御する電力変換制御とを、制御装置のリソーセスを有効に利用して実行することができる。 According to the disclosed control device for an internal combustion engine, the capacitor is charged from the converter circuit and discharged to the equipment of the internal combustion engine. Charging by the converter circuit is controlled by the control device. The control device has an internal combustion engine control unit and controls the internal combustion engine. The control device has a duty control unit and controls charging. Charging is performed by changing the duty ratio between the ON time and the OFF time of the switching element. In addition, the charging is performed by switching to a low precision period in which the duty ratio is adjusted to a low precision lower than the high precision after a high precision period in which the duty ratio is adjusted with high precision. For this reason, charging suitable for the capacitor is possible. The control device executes both processing as an internal combustion engine control unit and processing as a duty control unit. The control device has a reservation control unit. When the processing of the internal combustion engine control unit occurs during the high accuracy period, the reservation control unit reserves a part of the processing of the internal combustion engine control unit to be executed later. That is, the control device controls the duty ratio with high accuracy without executing some processing. Therefore, the resource of the control device is used to control the duty ratio with high accuracy. The control device has a post-execution control unit. The post-execution control unit executes the reserved partial processing after the low accuracy period. Thereby, the control for the internal combustion engine and the power conversion control for controlling the duty ratio for charging the capacitor can be executed by effectively using the resources of the control device.
 この明細書における開示された複数の態様は、それぞれの目的を達成するために、互いに異なる技術的手段を採用する。請求の範囲およびこの項に記載した括弧内の符号は、後述する実施形態の部分との対応関係を例示的に示すものであって、技術的範囲を限定することを意図するものではない。この明細書に開示される目的、特徴、および効果は、後続の詳細な説明、および添付の図面を参照することによってより明確になる。 The plurality of modes disclosed in this specification adopt different technical means to achieve each purpose. The reference numerals in parentheses described in the claims and this section exemplify the correspondence with the embodiments described later, and are not intended to limit the technical scope. The objects, features, and advantages disclosed in this specification will become more apparent with reference to the following detailed description and accompanying drawings.
第1実施形態に係る内燃機関システムのブロック図である。1 is a block diagram of an internal combustion engine system according to a first embodiment. 充電処理を示すフローチャートである。It is a flowchart which shows a charging process. OFF時間とスイッチング回数との関係を示すグラフである。It is a graph which shows the relationship between OFF time and the frequency | count of switching. ON時間とOFF時間における作動の一例を示す波形図である。It is a wave form diagram which shows an example of the action | operation in ON time and OFF time. 内燃機関の割込処理を示すフローチャートである。It is a flowchart which shows the interruption process of an internal combustion engine. 内燃機関の割込処理を示すフローチャートである。It is a flowchart which shows the interruption process of an internal combustion engine. 予約処理を示すフローチャートである。It is a flowchart which shows a reservation process. 充電処理と割込処理とにおける作動の一例を示す波形図である。It is a wave form diagram which shows an example of the action | operation in a charging process and an interruption process. 充電処理と割込処理とにおける作動の一例を示す波形図である。It is a wave form diagram which shows an example of the action | operation in a charging process and an interruption process.
 図面を参照しながら、複数の実施形態を説明する。複数の実施形態において、機能的におよび/または構造的に対応する部分および/または関連付けられる部分には同一の参照符号、または百以上の位が異なる参照符号が付される場合がある。対応する部分および/または関連付けられる部分については、他の実施形態の説明を参照することができる。 A plurality of embodiments will be described with reference to the drawings. In embodiments, functionally and / or structurally corresponding parts and / or associated parts may be assigned the same reference signs or reference signs that differ by more than a hundred. For the corresponding parts and / or associated parts, the description of other embodiments can be referred to.
 第1実施形態
 図1は、一実施例としての内燃機関システム1を示す。内燃機関システム1は、動力源としての内燃機関(ENG)2を有する。内燃機関2は、火花点火式の内燃機関である。内燃機関2は、ガソリンを燃料とする、いわゆるガソリンエンジンである。内燃機関システム1は、内燃機関2によって駆動される発電機(ACG)3を有する。発電機3は、交流発電機である。内燃機関システム1は、発電機3によって電力を供給する発電機システムを提供する。同時に、内燃機関システム1は、地上走行車両、船舶、航空機、作業機械などの動力システムを提供してもよい。この実施形態では、内燃機関システム1は、比較的小型の乗り物に搭載されている。このような乗り物の一例は、二輪車である。
First Embodiment FIG. 1 shows an internal combustion engine system 1 as an example. The internal combustion engine system 1 has an internal combustion engine (ENG) 2 as a power source. The internal combustion engine 2 is a spark ignition type internal combustion engine. The internal combustion engine 2 is a so-called gasoline engine that uses gasoline as fuel. The internal combustion engine system 1 includes a generator (ACG) 3 driven by the internal combustion engine 2. The generator 3 is an AC generator. The internal combustion engine system 1 provides a generator system that supplies power by a generator 3. At the same time, the internal combustion engine system 1 may provide a power system such as a ground traveling vehicle, a ship, an aircraft, and a work machine. In this embodiment, the internal combustion engine system 1 is mounted on a relatively small vehicle. An example of such a vehicle is a motorcycle.
 内燃機関システム1は、乗り物に搭載された電気負荷に電力を供給し、駆動するための電源装置として構成されている。内燃機関システム1は、電気負荷を駆動するための内燃機関用負荷駆動装置を含む。電気負荷は、内燃機関2を作動させるための主要な電気機器と、付加的な電気機器とを含む場合がある。主要な電気機器は、例えば、始動電動機、点火装置、および/または燃料供給装置を含む場合がある。内燃機関システム1は、点火装置に電力を供給するための内燃機関用点火装置を含む。付加的な電気機器は、例えば、前照灯、方向指示灯、および/またはメータを含む場合がある。これら電気機器の一部には、電源電圧によって供給可能な電力を上回る大電力を一時的に必要とする機器がある。内燃機関用負荷駆動装置は、一時的な大電力を供給するために電力変換機能を有している。 The internal combustion engine system 1 is configured as a power supply device for supplying electric power to an electric load mounted on a vehicle and driving it. The internal combustion engine system 1 includes an internal combustion engine load drive device for driving an electric load. The electrical load may include main electrical equipment for operating the internal combustion engine 2 and additional electrical equipment. The main electrical equipment may include, for example, a starter motor, an ignition device, and / or a fuel supply device. The internal combustion engine system 1 includes an internal combustion engine ignition device for supplying electric power to the ignition device. Additional electrical equipment may include, for example, headlamps, turn signals, and / or meters. Some of these electrical devices temporarily require a large amount of power that exceeds the power that can be supplied by the power supply voltage. The load driving device for an internal combustion engine has a power conversion function in order to supply temporary high power.
 内燃機関システム1は、乗り物の走行用動力源としても構成されている。内燃機関2は、変速機などを介して乗り物の推進機構に連結されている。よって、内燃機関2の回転数が増減すると、速度、音などが変化し、乗り物の利用者は、その変化を感知する。乗り物の利用者が意図しない回転数の変化が急激である場合、および/または大きい場合、乗り物の利用者は、不快を感じることもある。 The internal combustion engine system 1 is also configured as a power source for vehicle travel. The internal combustion engine 2 is connected to a vehicle propulsion mechanism via a transmission or the like. Therefore, when the rotational speed of the internal combustion engine 2 increases or decreases, the speed, sound, and the like change, and the vehicle user senses the change. A vehicle user may feel uncomfortable if the change in the rotational speed unintended by the vehicle user is abrupt and / or large.
 内燃機関システム1は、電源回路(REC-REG)4を有する。電源回路4は、整流回路(REC)と、電圧調整回路(REG)とを有する場合がある。整流回路は、発電機3から出力される交流電力を整流し、直流電力を出力する。電圧調整回路は、発電機3から出力される電圧を所定の調整電圧に調整する。 The internal combustion engine system 1 has a power supply circuit (REC-REG) 4. The power supply circuit 4 may include a rectifier circuit (REC) and a voltage adjustment circuit (REG). The rectifier circuit rectifies AC power output from the generator 3 and outputs DC power. The voltage adjustment circuit adjusts the voltage output from the generator 3 to a predetermined adjustment voltage.
 内燃機関システム1は、電源回路4から出力された電力によって充電されるバッテリ5を有する。バッテリ5は、電気機器に電力を供給する。バッテリ5は、内燃機関2を始動するための始動電動機など、主要な電気機器に電力を供給する。また、バッテリ5は、前照灯など付加的な電気機器にも電力を供給する。 The internal combustion engine system 1 has a battery 5 that is charged by electric power output from the power supply circuit 4. The battery 5 supplies electric power to the electric device. The battery 5 supplies electric power to main electric devices such as a starter motor for starting the internal combustion engine 2. The battery 5 also supplies power to additional electrical equipment such as a headlamp.
 内燃機関システム1は、点火装置10を有する。点火装置10は、発電機3、電源回路4およびバッテリ5から供給される電力によって、内燃機関2を作動させるための火花を生成する。点火装置10は、点火回路6、点火コイル7、および点火プラグ8を有する。点火回路6は、点火コイル7へ通電するとともに、その通電を断続する。点火回路6は、内燃機関用制御装置を提供する。点火コイル7は、点火プラグ8が火花を発生するために必要な高電圧を発生する。点火回路6は、所定の点火タイミングにおいて点火プラグ8に火花が発生するように、点火コイル7への通電の断続タイミングを制御する。さらに、点火回路6は、点火コイル7への通電電力を調整するための電力変換機能を含む。点火回路6は、大電力を点火コイル7に供給するための昇圧機能を有する。 The internal combustion engine system 1 has an ignition device 10. The ignition device 10 generates a spark for operating the internal combustion engine 2 by the electric power supplied from the generator 3, the power supply circuit 4 and the battery 5. The ignition device 10 includes an ignition circuit 6, an ignition coil 7, and a spark plug 8. The ignition circuit 6 energizes the ignition coil 7 and interrupts the energization. The ignition circuit 6 provides a control device for an internal combustion engine. The ignition coil 7 generates a high voltage necessary for the spark plug 8 to generate a spark. The ignition circuit 6 controls the intermittent timing of energization to the ignition coil 7 so that a spark is generated in the spark plug 8 at a predetermined ignition timing. Furthermore, the ignition circuit 6 includes a power conversion function for adjusting the energization power to the ignition coil 7. The ignition circuit 6 has a boosting function for supplying large power to the ignition coil 7.
 点火コイル7は、電磁的に結合した一次コイルと二次コイルとを利用して高電圧を発生する。よって、点火コイル7、およびそれを含む点火装置10は、誘導性の電気負荷である。点火回路6は、誘導性の電気負荷に電力を供給することにより、誘導性の電気負荷を作動させる誘導性負荷駆動回路、または誘導性負荷用電源回路を提供している。点火コイル7は、間欠的に高電圧を発生させる。よって、点火コイル7、およびそれを含む点火装置10は、間欠的に駆動される電気負荷とも呼ばれる。点火回路6は、間欠的に大電力を出力する間欠負荷駆動回路、または間欠負荷用電源回路を提供している。 The ignition coil 7 generates a high voltage using an electromagnetically coupled primary coil and secondary coil. Therefore, the ignition coil 7 and the ignition device 10 including the ignition coil 7 are inductive electric loads. The ignition circuit 6 provides an inductive load driving circuit or an inductive load power circuit for operating the inductive electric load by supplying electric power to the inductive electric load. The ignition coil 7 intermittently generates a high voltage. Therefore, the ignition coil 7 and the ignition device 10 including the ignition coil 7 are also referred to as intermittently driven electric loads. The ignition circuit 6 provides an intermittent load driving circuit or an intermittent load power supply circuit that intermittently outputs large power.
 点火回路6は、電源端子11を有する。点火回路6は、電源端子11を経由して電力を受け入れる。電源端子11は、電源回路4、およびバッテリ5に接続されている。点火回路6は、電源端子11から電力を受け入れるダイオード12を有する。点火回路6は、電源端子11およびダイオード12を経由して電源電圧VBを入力している。 The ignition circuit 6 has a power supply terminal 11. The ignition circuit 6 receives power via the power supply terminal 11. The power supply terminal 11 is connected to the power supply circuit 4 and the battery 5. The ignition circuit 6 includes a diode 12 that receives power from the power supply terminal 11. The ignition circuit 6 receives the power supply voltage VB via the power supply terminal 11 and the diode 12.
 点火回路6は、DC-DCコンバータ回路14(以下、コンバータ回路14と呼ぶ)を有する。コンバータ回路14は、電源端子11から入力される電源電圧VBを変換する。コンバータ回路14は、昇圧回路とも呼ばれる。コンバータ回路14は、電力変換装置を提供する。 The ignition circuit 6 has a DC-DC converter circuit 14 (hereinafter referred to as a converter circuit 14). The converter circuit 14 converts the power supply voltage VB input from the power supply terminal 11. Converter circuit 14 is also called a booster circuit. The converter circuit 14 provides a power conversion device.
 コンバータ回路14は、絶縁型トランスであるトランス31を有する。トランス31は、誘導性素子である。トランス31は、電源端子11から給電される一次コイル、および後述の負荷回路に接続される二次コイルを含む。トランス31は、一次コイルに電源電圧を入力し、二次コイルからの出力電力が後述のコンデンサ34を充電する。 The converter circuit 14 includes a transformer 31 that is an insulating transformer. The transformer 31 is an inductive element. The transformer 31 includes a primary coil fed from the power supply terminal 11 and a secondary coil connected to a load circuit described later. The transformer 31 inputs a power supply voltage to the primary coil, and output power from the secondary coil charges a capacitor 34 described later.
 コンバータ回路14は、スイッチング素子32を有する。スイッチング素子32は、トランス31の一次コイルへ流れる電流Itpを断続するように、電源端子11と一次コイルとを通る閉回路に直列に配置されている。スイッチング素子32は、トランス31の一次コイルの接地側に設けられている。スイッチング素子32は、FETによって提供されている。スイッチング素子32は、電力用トランジスタ、IGBTなど、多様な素子によって提供することができる。 The converter circuit 14 has a switching element 32. The switching element 32 is arranged in series in a closed circuit passing through the power supply terminal 11 and the primary coil so that the current Itp flowing to the primary coil of the transformer 31 is intermittent. The switching element 32 is provided on the ground side of the primary coil of the transformer 31. The switching element 32 is provided by an FET. The switching element 32 can be provided by various elements such as a power transistor and an IGBT.
 コンバータ回路14は、整流素子33と、コンデンサ34とを有する。整流素子33は、トランス31の二次コイルを含む閉回路に配置されている。整流素子33は、ダイオードによって提供されている。コンデンサ34は、トランス31の二次コイルを含む閉回路に配置されている。コンデンサ34は、コンバータ回路14から供給される電力によって充電される。コンデンサ34は、後述のCDI回路15の一部を構成する素子でもある。コンバータ回路14は、スイッチング素子32のスイッチングによって電源の電圧を高電圧へ変換する。コンデンサ34は、コンバータ回路14により充電され、内燃機関2の機器である点火コイル7に給電する。 The converter circuit 14 includes a rectifying element 33 and a capacitor 34. The rectifying element 33 is arranged in a closed circuit including the secondary coil of the transformer 31. The rectifying element 33 is provided by a diode. The capacitor 34 is arranged in a closed circuit including the secondary coil of the transformer 31. The capacitor 34 is charged with electric power supplied from the converter circuit 14. The capacitor 34 is also an element constituting a part of the CDI circuit 15 described later. The converter circuit 14 converts the voltage of the power source into a high voltage by switching of the switching element 32. The capacitor 34 is charged by the converter circuit 14 and supplies power to the ignition coil 7 that is a device of the internal combustion engine 2.
 スイッチング素子32は、後述の制御装置17によって、オンオフを繰り返すように制御される。スイッチング素子32は、1回の駆動サイクルにおいて、オフ状態からオン状態へ切り替えられ、オン時間Tonの後にオン状態からオフ状態へ切り替えられ、オフ時間Toffの間にわたってオフ状態を維持するように制御される。さらに、スイッチング素子32は、複数の駆動サイクルを繰り返すように制御される。このような制御は、スイッチング駆動またはスイッチング制御と呼ばれる。 The switching element 32 is controlled to be repeatedly turned on and off by the control device 17 described later. The switching element 32 is switched from the off state to the on state in one driving cycle, and is switched from the on state to the off state after the on time Ton, and is controlled to maintain the off state during the off time Toff. The Further, the switching element 32 is controlled to repeat a plurality of driving cycles. Such control is called switching drive or switching control.
 スイッチング素子32は、点火タイミングと点火タイミングとの間の期間においてコンデンサ34を所定の電圧水準まで充電するようにスイッチング駆動される。例えば、スイッチング素子32は、予め設定されたスイッチングシーケンスに従ってオンオフを繰り返す。スイッチング素子32のスイッチングによってトランス31の二次側には高電圧が誘起される。高電圧は、整流素子33によって整流され、コンデンサ34に充電される。 The switching element 32 is switching-driven so as to charge the capacitor 34 to a predetermined voltage level in a period between the ignition timings. For example, the switching element 32 repeats on / off according to a preset switching sequence. A high voltage is induced on the secondary side of the transformer 31 by the switching of the switching element 32. The high voltage is rectified by the rectifying element 33 and the capacitor 34 is charged.
 このように、コンバータ回路14は、スイッチング素子32がスイッチング駆動されることによってコンデンサ34を徐々に充電する。この結果、コンデンサ34は徐々に充電され、コンデンサ34の電圧は徐々に上昇する。 Thus, the converter circuit 14 gradually charges the capacitor 34 when the switching element 32 is driven to be switched. As a result, the capacitor 34 is gradually charged, and the voltage of the capacitor 34 gradually increases.
 点火回路6は、CDI回路15を有する。CDIは、Capacitor Discharge Ignitionを意味している。CDI回路15は、コンバータ回路14から給電される負荷回路である。CDI回路15は、点火コイル7へ供給される一次電流をコンデンサ34からの放電によって供給する。CDI回路15は、点火コイル7の一次コイルに大きいエネルギーを供給する。これにより、点火コイル7の二次側出力に高い電圧が安定的に発生する。この結果、点火プラグ8に強力な火花を安定的に発生させることができる。 The ignition circuit 6 has a CDI circuit 15. CDI means Capacitor Discharge Ignition. The CDI circuit 15 is a load circuit supplied with power from the converter circuit 14. The CDI circuit 15 supplies the primary current supplied to the ignition coil 7 by discharging from the capacitor 34. The CDI circuit 15 supplies large energy to the primary coil of the ignition coil 7. As a result, a high voltage is stably generated at the secondary side output of the ignition coil 7. As a result, a strong spark can be stably generated in the spark plug 8.
 CDI回路15は、サイリスタ41を有する。サイリスタ41は、コンデンサ34と点火コイル7とを含む放電回路、すなわち閉回路を開閉するためのスイッチング素子を提供する。CDI回路15は、コンデンサ34に充電された電荷を、内燃機関の機器である点火コイル7へ放電する放電回路を提供している。サイリスタ41が点弧されることにより、コンデンサ34から点火コイル7へ一次電流が供給される。サイリスタ41が消弧されることにより、一次電流が遮断される。CDI回路15は、コンデンサ34の電荷を点火タイミングにおいて点火コイル7へ供給する。上述のコンデンサ34は、CDI回路15の一部でもある。コンデンサ34およびコンバータ回路14を、CDI回路15の一部と見てもよい。 The CDI circuit 15 has a thyristor 41. The thyristor 41 provides a switching circuit for opening and closing a discharge circuit including the capacitor 34 and the ignition coil 7, that is, a closed circuit. The CDI circuit 15 provides a discharge circuit that discharges the electric charge charged in the capacitor 34 to the ignition coil 7 that is a device of the internal combustion engine. The primary current is supplied from the capacitor 34 to the ignition coil 7 by firing the thyristor 41. As the thyristor 41 is extinguished, the primary current is cut off. The CDI circuit 15 supplies the electric charge of the capacitor 34 to the ignition coil 7 at the ignition timing. The capacitor 34 described above is also a part of the CDI circuit 15. Capacitor 34 and converter circuit 14 may be viewed as part of CDI circuit 15.
 点火回路6は、制御装置(CNTL)17を有する。制御装置17は、スイッチング信号SQをスイッチング素子32に供給することにより、スイッチング素子32を駆動する。さらに、点火回路6は、クロック回路18を有する。クロック回路18は、制御装置17が演算処理を実行するためのタイミング信号を供給する。 The ignition circuit 6 has a control device (CNTL) 17. The control device 17 drives the switching element 32 by supplying the switching signal SQ to the switching element 32. Further, the ignition circuit 6 has a clock circuit 18. The clock circuit 18 supplies a timing signal for the control device 17 to execute arithmetic processing.
 制御装置17は、電子制御装置(Electronic Control Unit)である。制御装置は、少なくともひとつの演算処理装置(CPU)と、プログラムおよびデータを記憶する記憶媒体としての少なくともひとつのメモリ装置(MMR)とを有する。制御装置17は、コンピュータによって読み取り可能な記憶媒体を備えるマイクロコンピュータによって提供される。記憶媒体は、コンピュータによって読み取り可能なプログラムを非一時的に格納する非遷移的実体的記憶媒体である。記憶媒体は、半導体メモリまたは磁気ディスクなどによって提供されうる。制御装置17は、ひとつのコンピュータ、またはデータ通信装置によってリンクされた一組のコンピュータ資源によって提供されうる。プログラムは、制御装置17によって実行されることによって、制御装置17をこの明細書に記載される装置として機能させ、この明細書に記載される方法を実行するように制御装置17を機能させる。制御装置17の演算速度は、演算処理装置の能力、メモリの読み書き速度、メモリ容量など種々の要素によって変化する。これら要素のひとつまたは複数がリソーセスと呼ばれる。 The control device 17 is an electronic control device (Electronic Control Unit). The control device has at least one arithmetic processing unit (CPU) and at least one memory device (MMR) as a storage medium for storing programs and data. The control device 17 is provided by a microcomputer provided with a computer-readable storage medium. The storage medium is a non-transitional tangible storage medium that stores a computer-readable program in a non-temporary manner. The storage medium can be provided by a semiconductor memory or a magnetic disk. The control device 17 can be provided by a computer or a set of computer resources linked by a data communication device. The program is executed by the control device 17 to cause the control device 17 to function as the device described in this specification, and to cause the control device 17 to perform the method described in this specification. The calculation speed of the control device 17 varies depending on various factors such as the capability of the calculation processing device, the memory read / write speed, and the memory capacity. One or more of these elements are called resources.
 制御装置17は、多様な要素を提供する。それらの要素の少なくとも一部は、機能を実行するためのブロックと呼ぶことができる。別の観点では、それらの要素の少なくとも一部は、構成として解釈されるモジュール、またはセクションと呼ぶことができる。制御装置が提供する手段および/または機能は、実体的なメモリ装置に記録されたソフトウェアおよびそれを実行するコンピュータ、ソフトウェアのみ、ハードウェアのみ、あるいはそれらの組合せによって提供することができる。例えば、制御装置17がハードウェアである電子回路によって提供される場合、それは多数の論理回路を含むデジタル回路、またはアナログ回路によって提供することができる。 The control device 17 provides various elements. At least some of these elements can be referred to as blocks for performing functions. In another aspect, at least some of these elements can be referred to as modules or sections that are interpreted as configurations. The means and / or functions provided by the control device can be provided by software recorded in a substantial memory device and a computer that executes the software, software only, hardware only, or a combination thereof. For example, if the controller 17 is provided by an electronic circuit that is hardware, it can be provided by a digital circuit including a number of logic circuits, or an analog circuit.
 制御装置17は、スイッチング素子32をスイッチング駆動するためのスイッチング信号SQを出力する第1出力端子OUT1を有する。第1出力端子OUT1に出力される信号は、所定のデューティ比Dtを有する。制御装置17は、サイリスタ41を点弧するための点火信号Igを出力する第2出力端子OUT2を有する。 The control device 17 has a first output terminal OUT1 that outputs a switching signal SQ for switching and driving the switching element 32. The signal output to the first output terminal OUT1 has a predetermined duty ratio Dt. The control device 17 has a second output terminal OUT2 that outputs an ignition signal Ig for firing the thyristor 41.
 制御装置17は、コンデンサ34を充電するようにコンバータ回路14を操作する昇圧制御装置でもある。制御装置17は、スイッチング素子32のためのスイッチング信号SQを出力する。スイッチング信号SQは、コンデンサ34の充電特性に適合するように設定されている。 The control device 17 is also a boost control device that operates the converter circuit 14 so as to charge the capacitor 34. The control device 17 outputs a switching signal SQ for the switching element 32. The switching signal SQ is set to match the charging characteristics of the capacitor 34.
 例えば、スイッチング信号SQの周期は、コンデンサ34の充電が進展するにつれて短くなるように設定されている。スイッチング信号SQのオン時間Tonは、電源電圧VBに応じて、設定することができる。スイッチング信号SQのデューティ比Dtは、コンデンサ34の充電が進展するにつれて大きくなるように設定することができる。デューティ比Dtは、複数のスイッチングを含む一連の充電シーケンスにおいてOFF時間が徐々に短くなるように設定することができる。デューティ比Dtは、オン時間Tonと、オフ時間Toffとに基づいて、Dt=Ton/(Ton+Toff)として表わすことができる。 For example, the cycle of the switching signal SQ is set to be shorter as the charging of the capacitor 34 progresses. The on time Ton of the switching signal SQ can be set according to the power supply voltage VB. The duty ratio Dt of the switching signal SQ can be set to increase as the charging of the capacitor 34 progresses. The duty ratio Dt can be set so that the OFF time gradually decreases in a series of charging sequences including a plurality of switching operations. The duty ratio Dt can be expressed as Dt = Ton / (Ton + Toff) based on the on time Ton and the off time Toff.
 スイッチング信号SQは、1回の点火と次の点火との間、換言するとコンデンサ34の放電と次の放電との間の期間において、コンデンサ34を所定の電圧水準まで充電できるように設定されている。スイッチング信号SQは、コンバータ回路14によってコンデンサ34を徐々に、別の観点ではステップ状に充電するための一連の充電シーケンスに対応している。一連の充電シーケンスは、複数の駆動サイクルを含む。一回の駆動サイクルにおいて、スイッチング素子32は、オフ状態からオン状態に切り替えられ、オン時間Tonにわたってオン状態を維持した後に、オン状態からオフ状態に切り替えられ、オフ時間Toffにわたってオフ状態を維持する。 The switching signal SQ is set so that the capacitor 34 can be charged to a predetermined voltage level during one ignition and the next ignition, in other words, during the period between the discharge of the capacitor 34 and the next discharge. . The switching signal SQ corresponds to a series of charging sequences for gradually charging the capacitor 34 by the converter circuit 14 in another stepwise manner. A series of charging sequences includes a plurality of driving cycles. In one driving cycle, the switching element 32 is switched from the off state to the on state, and after being kept on for the on time Ton, is switched from the on state to the off state, and remains off for the off time Toff. .
 制御装置17は、ひとつの点火が終了すると、一連の充電シーケンスを開始する。制御装置17は、次の点火が必要となる前に、一連の充電シーケンスを終了する。制御装置17は、コンデンサ34を所定の電圧水準まで充電するための一連の充電シーケンスを実行する充電制御装置である。 The control device 17 starts a series of charging sequences when one ignition is completed. The control device 17 ends the series of charging sequences before the next ignition is required. The control device 17 is a charge control device that executes a series of charging sequences for charging the capacitor 34 to a predetermined voltage level.
 一連の充電シーケンスは、例えば、駆動サイクルの回数で特徴づけられる場合がある。一連の充電シーケンスは、例えば、オン時間Tonで特徴づけられる場合がある。一連の充電シーケンスは、例えば、オフ時間Toffで特徴づけられる場合がある。一連の充電シーケンスは、例えば、駆動サイクルにおけるデューティ比Dtによって特徴づけられる場合がある。一連の充電シーケンスは、回数、オン時間Ton、オフ時間Toff、およびデューティ比Dtのうちの少なくとも2つの組み合わせによって特徴づけられる場合がある。この実施形態では、一連の充電シーケンスは、オン時間Ton、およびオフ時間Toffによって特徴づけられている。 A series of charge sequences may be characterized by the number of drive cycles, for example. A series of charging sequences may be characterized by, for example, an on time Ton. A series of charging sequences may be characterized, for example, by an off time Toff. A series of charging sequences may be characterized by a duty ratio Dt in the driving cycle, for example. The series of charging sequences may be characterized by a combination of at least two of the number of times, the on time Ton, the off time Toff, and the duty ratio Dt. In this embodiment, the sequence of charging sequences is characterized by an on time Ton and an off time Toff.
 制御装置17は、一連の充電シーケンスの中において、スイッチング信号SQのデューティ比Dtを徐々に変化させる。デューティ比Dtは、コンデンサ34を適切に充電できるように設定される。例えば、一連の充電シーケンスの初期においては、小さいデューティ比Dtが設定され、後期においては大きいデューティ比Dtが設定される。デューティ比Dtは、オン時間Tonを一定として、オフ時間Toffを変化させることによって変化させることができる。デューティ比Dtは、オフ時間Toffを一定として、オン時間Tonを変化させることによって変化させてもよい。デューティ比Dtは、オン時間Tonとオフ時間Toffとの両方を変化させることによって変化させてもよい。 The control device 17 gradually changes the duty ratio Dt of the switching signal SQ in a series of charging sequences. The duty ratio Dt is set so that the capacitor 34 can be charged appropriately. For example, a small duty ratio Dt is set at the beginning of a series of charging sequences, and a large duty ratio Dt is set at a later stage. The duty ratio Dt can be changed by changing the off time Toff while keeping the on time Ton constant. The duty ratio Dt may be changed by changing the on-time Ton while keeping the off-time Toff constant. The duty ratio Dt may be changed by changing both the on time Ton and the off time Toff.
 制御装置17は、点火タイミングが到来すると、サイリスタ41を点弧することによって点火プラグ8に点火火花を発生させる。制御装置17は、点火制御装置でもある。制御装置17は、点火タイミングを制御するための基準信号Pinを入力する。 When the ignition timing comes, the control device 17 ignites the thyristor 41 to generate an ignition spark in the spark plug 8. The control device 17 is also an ignition control device. The control device 17 inputs a reference signal Pin for controlling the ignition timing.
 内燃機関システム1は、回転角度検出器13を備える。回転角度検出器13は、内燃機関2の回転角度を検出する。回転角度検出器13は、内燃機関2の回転角度すなわち回転位置を示す信号を出力する。回転角度検出器13は、内燃機関2の回転の基準となる位置において基準信号Pinを出力する。回転角度検出器13は、前パルスと後パルスとを出力する。前パルスは、最も進角した位置を示す。後パルスは、基準位置を示す。この基準位置より更に遅れて点火が行われる場合もある。回転角度検出器13は、例えば、内燃機関2と共に回転するシグナルロータ21と、パルスピックアップ22とで提供される。 The internal combustion engine system 1 includes a rotation angle detector 13. The rotation angle detector 13 detects the rotation angle of the internal combustion engine 2. The rotation angle detector 13 outputs a signal indicating the rotation angle of the internal combustion engine 2, that is, the rotation position. The rotation angle detector 13 outputs a reference signal Pin at a position that serves as a reference for rotation of the internal combustion engine 2. The rotation angle detector 13 outputs a pre-pulse and a post-pulse. The previous pulse indicates the most advanced position. The rear pulse indicates a reference position. In some cases, ignition is performed further later than the reference position. The rotation angle detector 13 is provided by, for example, a signal rotor 21 that rotates together with the internal combustion engine 2 and a pulse pickup 22.
 点火装置10は、回転角度検出器13の出力する信号を処理するための信号処理回路(SIGP)16を備える。制御装置17は、回転角度検出器13、および信号処理回路16から、基準信号Pinを入力するための入力端子INを備える。 The ignition device 10 includes a signal processing circuit (SIGP) 16 for processing a signal output from the rotation angle detector 13. The control device 17 includes an input terminal IN for inputting the reference signal Pin from the rotation angle detector 13 and the signal processing circuit 16.
 クロック回路18を利用する点火制御のための制御装置17が発生するスイッチング信号を利用することによってコンバータ回路14を発振させる構成は、他励発振と呼ぶことができる。これに対して、発振回路を構成してコンバータ回路14を発振させる構成は、自励発振と呼ぶことができる。例えば、コンバータ回路14の二次側電圧に応答して一次コイルへの通電をスイッチングする自励発振回路を利用することができる。自励発振回路が利用される場合、発振回路の素子定数、例えばRC時定数に依存してスイッチング周波数、および/またはデューティ比が変動することがある。例えば、素子の温度特性に依存して、通電時間、およびデューティ比が変動する。この結果、素子の温度特性が、コンバータ回路14によるCDI回路15の充電効率に大きく影響することがある。 The configuration for causing the converter circuit 14 to oscillate by using a switching signal generated by the control device 17 for ignition control using the clock circuit 18 can be referred to as separately excited oscillation. On the other hand, the configuration in which the oscillation circuit is configured to oscillate the converter circuit 14 can be called self-excited oscillation. For example, a self-excited oscillation circuit that switches energization to the primary coil in response to the secondary side voltage of the converter circuit 14 can be used. When a self-excited oscillation circuit is used, the switching frequency and / or the duty ratio may vary depending on the element constant of the oscillation circuit, for example, the RC time constant. For example, the energization time and the duty ratio vary depending on the temperature characteristics of the element. As a result, the temperature characteristics of the element may greatly affect the charging efficiency of the CDI circuit 15 by the converter circuit 14.
 制御装置17は、他励発振型の電力変換回路を構成する。制御装置17は、マイクロコンピュータであり、クロック回路18を利用している。クロック回路18は、所定の周期のクロック信号を発生する。よって、正確な間隔と、正確なタイミングにおいて出力が変化する矩形パルス波を出力することができる。制御装置17は、クロック回路18から供給されるクロック信号に依存する分解能で高精度の制御と低精度の制御とを実行する。このため、自励発振回路において不可避の温度特性による悪影響を抑制することができる。 The control device 17 constitutes a separately-excited oscillation type power conversion circuit. The control device 17 is a microcomputer and uses a clock circuit 18. The clock circuit 18 generates a clock signal having a predetermined period. Therefore, it is possible to output a rectangular pulse wave whose output changes at an accurate interval and an accurate timing. The control device 17 executes high-precision control and low-precision control with a resolution that depends on the clock signal supplied from the clock circuit 18. For this reason, it is possible to suppress an adverse effect due to inevitable temperature characteristics in the self-excited oscillation circuit.
 以下の説明において、一連の充電シーケンスの期間は、充電期間、スイッチング期間、またはDC-DCコンバータ期間などの呼び名が与えられる。一連の充電シーケンスの期間は、コンバータ時間DCtimeと呼ばれる。また、その期間におけるスイッチング素子32のスイッチング回数SWnumは、スイッチング回数、SQ回数、ON-OFF回数などと呼ばれる。 In the following description, a period of a series of charging sequences is given a name such as a charging period, a switching period, or a DC-DC converter period. The duration of the series of charging sequences is called the converter time DCtime. In addition, the switching number SWnum of the switching element 32 in that period is referred to as switching number, SQ number, ON-OFF number, and the like.
 この実施形態では、コンバータ回路14により電力変換装置が提供される。一方で、点火コイル7により内燃機関のための機器が提供される。内燃機関制御は、CDI回路15によって点火する点火制御によって提供される。電力変換制御は、コンデンサ34を高電圧に、しかも効率的に充電するためのデューティ制御によって提供される。電力変換制御は、スイッチング信号SQをパルス幅変調するから、PWM(Pulse Width Modulation)制御とも呼ばれる。制御装置17は、内燃機関制御部により放電回路を提供するCDI回路15を制御し、コンバータ回路14と放電回路であるCDI回路15との両方を制御する。 In this embodiment, the converter circuit 14 provides a power conversion device. On the other hand, the ignition coil 7 provides equipment for the internal combustion engine. Internal combustion engine control is provided by ignition control ignited by the CDI circuit 15. Power conversion control is provided by duty control to efficiently charge the capacitor 34 to a high voltage. The power conversion control is also called PWM (Pulse Width Modulation) control because the switching signal SQ is subjected to pulse width modulation. The control device 17 controls the CDI circuit 15 that provides a discharge circuit by the internal combustion engine controller, and controls both the converter circuit 14 and the CDI circuit 15 that is a discharge circuit.
 図2に図示される充電処理150は、制御装置17によって実行される。制御装置17は、ひとつの点火と、次の点火との間の期間に充電処理150を実行する。充電処理150により電力変換制御が提供される。 The charging process 150 illustrated in FIG. The control device 17 executes the charging process 150 during a period between one ignition and the next ignition. The charging process 150 provides power conversion control.
 ステップ151では、制御装置17は、コンバータ時間DCtimeが、所定のしきい値時間Tht未満か否かを判定する。しきい値時間Thtは、一連の充電シーケンスの上限期間を既定する。言い換えると、スイッチング素子32がスイッチングされる最大時間を既定する。コンバータ時間DCtimeが、所定のしきい値時間Tht未満であれば、ステップ152へ進む。コンバータ時間DCtimeが、所定のしきい値時間Thtに到達した後は、ステップ157へ進む。 In step 151, the control device 17 determines whether or not the converter time DCtime is less than a predetermined threshold time Tht. The threshold time Tht defines an upper limit period of a series of charging sequences. In other words, the maximum time for which the switching element 32 is switched is defined. If converter time DCtime is less than predetermined threshold time Tht, the routine proceeds to step 152. After converter time DCtime reaches predetermined threshold time Tht, the process proceeds to step 157.
 ステップ152では、制御装置17は、スイッチング素子32のスイッチング回数SWnumが、所定のしきい値回数Thn未満か否かを判定する。しきい値回数Thnは、一連の充電シーケンスにおける上限回数を既定する。言い換えると、スイッチング素子32がスイッチングされる最大回数を既定する。スイッチング回数SWnumが、所定のしきい値時間Thn未満であれば、ステップ153へ進む。スイッチング回数SWnumが、所定のしきい値回数Thnに到達した後は、ステップ155へ進む。 In step 152, the control device 17 determines whether or not the switching number SWnum of the switching element 32 is less than a predetermined threshold number Thn. The threshold number Thn defines an upper limit number in a series of charging sequences. In other words, the maximum number of times that the switching element 32 is switched is defined. If the switching count SWnum is less than the predetermined threshold time Thn, the process proceeds to step 153. After the switching number SWnum reaches a predetermined threshold number Thn, the process proceeds to step 155.
 ステップ153では、制御装置17は、スイッチング素子32のON時間Tonと、OFF時間Toffとを設定する。ここでは、コンデンサ34を充電するための一連の充電シーケンスの中のうち初期におけるON時間Tonと、OFF時間Toffとが設定される。例えば、比較的長いON時間Tonと、比較的長いOFF時間Toffとが設定される。 In step 153, the control device 17 sets the ON time Ton and the OFF time Toff of the switching element 32. Here, an initial ON time Ton and an OFF time Toff in a series of charging sequences for charging the capacitor 34 are set. For example, a relatively long ON time Ton and a relatively long OFF time Toff are set.
 ステップ154では、制御装置17は、高い精度をもって、ON時間Tonと、OFF時間Toffとを制御する。すなわち、ステップ153で設定された時間を正確に実現するように、出力端子OUT1の出力が制御される。例えば、制御装置17で与えることのできる最大の精度が与えられる。すなわち、一連の充電シーケンスの中のうち初期においては、制御装置17のリソーセスに、それが受け止めうる高い演算負荷をかけて、高い精度の制御が提供される。言い換えると、制御装置17が発揮しうる高い精度の制御が提供される。具体的には、所定の精度でON時間Tonと、OFF時間Toffとが制御される。例えば、第1の時間T1(0.5μs(マイクロ秒))の最大誤差となるようON時間Ton、OFF時間Toff毎に判定を実施する。 In step 154, the control device 17 controls the ON time Ton and the OFF time Toff with high accuracy. That is, the output of the output terminal OUT1 is controlled so that the time set in step 153 is accurately realized. For example, the maximum accuracy that can be provided by the controller 17 is provided. That is, in the initial stage of a series of charging sequences, a highly accurate control is provided by placing a high computational load on the resources of the control device 17 that can be received. In other words, highly accurate control that can be performed by the control device 17 is provided. Specifically, the ON time Ton and the OFF time Toff are controlled with a predetermined accuracy. For example, the determination is performed every ON time Ton and OFF time Toff so that the maximum error of the first time T1 (0.5 μs (microseconds)) is obtained.
 ステップ155では、制御装置17は、ON時間Tonと、OFF時間Toffとを設定する。ここでは、コンデンサ34を充電するための一連の充電シーケンスの中のうち後期におけるON時間Tonと、OFF時間Toffとが設定される。例えば、比較的短いON時間Tonと、比較的短いOFF時間Toffとが設定される。 In step 155, the control device 17 sets an ON time Ton and an OFF time Toff. Here, an ON time Ton and an OFF time Toff in the latter period are set in a series of charging sequences for charging the capacitor 34. For example, a relatively short ON time Ton and a relatively short OFF time Toff are set.
 ステップ156では、制御装置17は、低い精度をもって、ON時間Tonと、OFF時間Toffとを制御する。すなわち、ステップ155で設定された時間を実現するように、出力端子OUT1の出力が制御される。例えば、制御装置17の演算処理を圧迫しない程度の低い精度が与えられる。すなわち、一連の充電シーケンスの中のうち後期においては、制御装置17のリソーセスに、他の演算処理を実行できる程度の低い演算負荷をかけて、低い精度の制御が提供される。言い換えると、制御装置17が他の制御のための演算処理に時間的な制約をおよぼさずに実現可能な低い精度の制御が提供される。具体的には、ステップ154より低い精度でON時間Tonと、OFF時間Toffとが制御される。例えば、第2の時間T2の最大誤差となるようにON時間Ton、OFF時間Toff毎に判定を実施する。第2の時間T2は、第1の時間T1より長い。第2の時間T2は、第1の時間T1の10倍より長い。 In step 156, the control device 17 controls the ON time Ton and the OFF time Toff with low accuracy. That is, the output of the output terminal OUT1 is controlled so as to realize the time set in step 155. For example, a low precision that does not press the arithmetic processing of the control device 17 is given. That is, in the latter part of the series of charging sequences, low precision control is provided by placing a low computational load on the resource of the control device 17 so that other arithmetic processing can be executed. In other words, low-accuracy control that can be realized without the time restriction on the arithmetic processing for the other control by the control device 17 is provided. Specifically, the ON time Ton and the OFF time Toff are controlled with lower accuracy than in step 154. For example, the determination is performed every ON time Ton and OFF time Toff so as to be the maximum error of the second time T2. The second time T2 is longer than the first time T1. The second time T2 is longer than 10 times the first time T1.
 ステップ157では、スイッチング素子32のスイッチングが停止される。このため、一連の充電処理が終了する。 In step 157, switching of the switching element 32 is stopped. For this reason, a series of charging processes are completed.
 充電処理150は、スイッチング素子のON時間とOFF時間とのデューティ比を変化させる。しかも、充電処理150は、デューティ比を高精度に制御する高精度期間の後に、デューティ比を高精度より低い低精度に制御する低精度期間に切換える。充電処理150は、コンバータ回路14からコンデンサ34を充電するデューティ制御部を提供している。制御装置17は、ディーティ制御部を有しており、充電を制御する。充電は、スイッチング素子32のON時間とOFF時間とのデューティ比を変化させて実行される。しかも、充電は、デューティ比を高精度に調節する高精度期間の後に、デューティ比を高精度より低い低精度に調節する低精度期間に切換えて実行される。このため、コンデンサ34に適合した充電が可能である。 The charging process 150 changes the duty ratio between the ON time and OFF time of the switching element. In addition, the charging process 150 switches to the low accuracy period in which the duty ratio is controlled to be lower than the high accuracy after the high accuracy period in which the duty ratio is controlled with high accuracy. The charging process 150 provides a duty control unit that charges the capacitor 34 from the converter circuit 14. The control device 17 has a duty control unit and controls charging. Charging is performed by changing the duty ratio between the ON time and OFF time of the switching element 32. In addition, the charging is performed by switching to a low precision period in which the duty ratio is adjusted to a low precision lower than the high precision after a high precision period in which the duty ratio is adjusted with high precision. For this reason, charging suitable for the capacitor 34 is possible.
 図3において、コンデンサ34を充電するためのOFF時間Toffの一例が示されている。OFF時間Toffは、指数関数的に小さくなってゆく。ON時間Ton、およびOFF時間Toffのいずれかひとつ、または両方は、マップによってメモリに記憶され、設定することができる。すなわち、ON時間Ton、およびOFF時間Toffの少なくともひとつは、制御装置17のメモリに記憶されている。 FIG. 3 shows an example of the OFF time Toff for charging the capacitor 34. The OFF time Toff decreases exponentially. One or both of the ON time Ton and the OFF time Toff can be stored in the memory and set by the map. That is, at least one of the ON time Ton and the OFF time Toff is stored in the memory of the control device 17.
 図4は、コンバータ回路14の作動の一例を示す。図中には、スイッチング信号SQと、入力電流Itpと、出力電流Itsとが示されている。時刻t11において、一連の充電シーケンスが開始されると、ON時間Ton、およびOFF時間Toffが設定される。スイッチング信号SQは、コンデンサ34の充電が進行するにつれて、SQ1、SQ2、SQ3・・・と変化する。スイッチング信号SQは、時間が経過すると、少なくともOFF時間Toffが短くなるように設定されている。 FIG. 4 shows an example of the operation of the converter circuit 14. In the figure, a switching signal SQ, an input current Itp, and an output current Its are shown. When a series of charging sequences is started at time t11, an ON time Ton and an OFF time Toff are set. The switching signal SQ changes to SQ1, SQ2, SQ3,... As the capacitor 34 is charged. The switching signal SQ is set so that at least the OFF time Toff becomes shorter as time elapses.
 スイッチング信号SQは、充電電流Itsがゼロになってから、OFF状態からON状態へと変化するように設定されている。例えば、時刻t12の前に充電電流Itsはゼロである。同様に、時刻t13、t14の前に、充電電流Itsはゼロである。このように充電電流Itsがゼロになってから、スイッチング信号SQがOFF状態からON状態へと変化するように、上述のステップ154の高精度制御と、ステップ156の低精度制御とが設定されている。 The switching signal SQ is set so as to change from the OFF state to the ON state after the charging current Its becomes zero. For example, the charging current Its is zero before time t12. Similarly, the charging current Its is zero before the times t13 and t14. Thus, after the charging current Its becomes zero, the high-precision control in step 154 and the low-precision control in step 156 are set so that the switching signal SQ changes from the OFF state to the ON state. Yes.
 ON時間Tonは、長すぎるとトランス31の一次コイルまたは二次コイルに望ましくない発熱を生じる可能性がある。ON時間Tonは、例えば、8μs(マイクロ秒)を上限値とすることが望ましい。ON時間Tonは、短すぎるとコンデンサ34の充電効率を低下させる可能性がある。ON時間Tonは、例えば、4μs(マイクロ秒)を下限値とすることが望ましい。ON時間Tonは、下限値と上限値との間から選択されることが望ましい。ON時間Tonは、例えば、6.5μs(マイクロ秒)である。さらに、回路を構成する素子の特性のばらつき、および、使用中の温度上昇によって顕在化する素子の特性の温度特性を考慮すると、ON時間Tonの最大誤差は、0.5μs(マイクロ秒)以下であることが望ましい。 If the ON time Ton is too long, undesirable heat generation may occur in the primary coil or secondary coil of the transformer 31. The ON time Ton is desirably set to an upper limit value, for example, 8 μs (microseconds). If the ON time Ton is too short, the charging efficiency of the capacitor 34 may be reduced. The ON time Ton is desirably set to a lower limit of 4 μs (microseconds), for example. The ON time Ton is preferably selected from a lower limit value and an upper limit value. The ON time Ton is, for example, 6.5 μs (microseconds). Furthermore, considering the variation in the characteristics of the elements constituting the circuit and the temperature characteristics of the characteristics of the elements that are manifested by the temperature rise during use, the maximum error of the ON time Ton is 0.5 μs (microseconds) or less. It is desirable to be.
 図5に図示される前パルス処理160は、制御装置17によって実行される。制御装置17は、回転角度検出器13から前のパルス信号が入力されると前パルス処理160を実行する。前パルス処理160は、前パルスに基づいてコンデンサ34の電荷を消費する前パルス制御部を提供する。 The pre-pulse processing 160 illustrated in FIG. When the previous pulse signal is input from the rotation angle detector 13, the control device 17 executes the previous pulse processing 160. The pre-pulse processing 160 provides a pre-pulse control unit that consumes the charge of the capacitor 34 based on the pre-pulse.
 ステップ161では、制御装置17は、前パルス割込で実行するべき処理を実行する。例えば、ステップ161では、前パルスの発生時間を基準とするべき処理を実行する。具体的には、点火角度、すなわち基準位置からの進角量または遅角量の計算のための前パルスの位置確定などに関連する処理が実行される。なお、点火角度の設定については、特許文献を参照により援用することができる。 In step 161, the control device 17 executes a process to be executed by the previous pulse interrupt. For example, in step 161, processing that should be based on the generation time of the previous pulse is executed. Specifically, processing related to the determination of the ignition pulse, that is, the position of the previous pulse for calculating the advance amount or the retard amount from the reference position is executed. In addition, about the setting of an ignition angle, a patent document can be used by reference.
 ステップ162では、制御装置17は、演算点火が必要か否かを判定する。ステップ162の判定は、点火角度制御が必要か否かの判定でもある。ステップ162において演算点火が必要であると判定されると、ステップ163へ進む。ステップ162において演算点火が不要であると判定されると、処理を終了する。 In step 162, the control device 17 determines whether or not calculation ignition is necessary. The determination in step 162 is also a determination of whether or not ignition angle control is necessary. If it is determined in step 162 that the calculated ignition is necessary, the process proceeds to step 163. If it is determined in step 162 that the calculated ignition is not necessary, the process is terminated.
 ステップ163では、制御装置17は、演算点火処理を実行する。演算点火処理は、前パルス割込で実行するべき処理のひとつである。ステップ163では、前パルスからの時間を計測し、点火信号Igを発生するための処理が実行される。具体的には、前パルスの発生タイミングからのタイマ処理によって、点火信号Igを発生させる。多くの場合、後パルスまでに点火信号が発生する。これにより、後パルスよりも進角した点火が実現される。この点火信号Igまでの時期は演算によって求めることができる。このため、前パルスを基準として点火信号Igを発生させる制御は演算点火と呼ばれる。ステップ163は、前パルス制御部でもある。ステップ163は、前パルスに基いて点火タイミングを演算する演算点火制御部を提供する。 In step 163, the control device 17 executes a calculation ignition process. The calculation ignition process is one of the processes to be executed by the previous pulse interrupt. In step 163, processing for measuring the time from the previous pulse and generating the ignition signal Ig is executed. Specifically, the ignition signal Ig is generated by timer processing from the generation timing of the previous pulse. In many cases, an ignition signal is generated by a later pulse. As a result, ignition that is more advanced than the rear pulse is realized. The timing up to the ignition signal Ig can be obtained by calculation. For this reason, the control for generating the ignition signal Ig on the basis of the previous pulse is called arithmetic ignition. Step 163 is also a previous pulse control unit. Step 163 provides an arithmetic ignition control unit that calculates the ignition timing based on the previous pulse.
 図6に図示される後パルス処理170は、制御装置17によって実行される。制御装置17は、回転角度検出器13から後のパルス信号が入力されると後パルス処理170を実行する。後パルス処理170は、後パルスに基いてコンデンサ34の電荷を消費する後パルス制御部を提供する。 The post-pulse processing 170 illustrated in FIG. When a subsequent pulse signal is input from the rotation angle detector 13, the control device 17 executes a post-pulse process 170. The post-pulse processing 170 provides a post-pulse control unit that consumes the charge of the capacitor 34 based on the post-pulse.
 ステップ171では、制御装置17は、後パルス割込で実行するべき処理を実行する。具体的には、後パルスから計算される回転速度、回転位置などに関連する処理が実行される。 In step 171, the control device 17 executes a process to be executed by a post-pulse interrupt. Specifically, processing related to the rotational speed, rotational position, etc. calculated from the post-pulse is executed.
 ステップ172では、制御装置17は、ステップ163の後であるか否かを判定する。すなわち、ステップ163によって演算点火処理が実行を開始された後に、後パルスが検出されたか否かを判定する。ステップ172の判定は、今回の点火時期における判定として実行される。ステップ172において、今回の点火ではステップ163が実行されていないと判定された場合、ステップ173へ進む。ステップ172において、今回の点火においてステップ162が実行された後である場合、ステップ175へ進む。この場合、前パルスの後に、演算点火が実行される。演算点火は後パルスの後に実行されることもある。 In step 172, the control device 17 determines whether or not it is after step 163. That is, it is determined whether or not a post-pulse is detected after the calculation ignition process is started in step 163. The determination in step 172 is executed as a determination at the current ignition timing. If it is determined in step 172 that step 163 is not executed in the current ignition, the process proceeds to step 173. In step 172, if it is after step 162 is executed in the current ignition, the process proceeds to step 175. In this case, the calculated ignition is executed after the previous pulse. Computed ignition may be performed after a post-pulse.
 ステップ172の処理は、充電処理150の状態を評価する処理でもある。演算点火処理が実行された後である場合、多くの場合、充電処理150が開始されている。しかも、充電処理150の初期であるから、高精度の処理が実行されている。演算点火の時期が、後パルスの後であっても、後パルスの後には充電処理150が開始されるから演算負荷が集中する。すなわち、ステップ172の判定は、充電処理150が実行されているか否かの判定でもある。言い換えると、ステップ172の判定は、コンバータ回路14を発振させるためのデューティ駆動制御をしているか否かの判定でもある。充電処理150は、初期に高精度制御を行い、後期に低精度制御を行う。このため、ステップ172の判定は、充電処理150が高精度であるか否かの判定でもある。ステップ172は、後パルスに応答して、先行する前パルスに基づいて前パルス制御部による処理が実行開始済みであるか否か、または実行済であるか否かを判定する判定部を提供する。 The process of step 172 is also a process of evaluating the state of the charging process 150. In many cases, the charging process 150 is started after the calculation ignition process is executed. In addition, since it is the initial stage of the charging process 150, a highly accurate process is executed. Even if the timing of the calculation ignition is after the post-pulse, the calculation load is concentrated because the charging process 150 is started after the post-pulse. That is, the determination in step 172 is also a determination as to whether or not the charging process 150 is being executed. In other words, the determination in step 172 is also a determination as to whether or not the duty drive control for causing the converter circuit 14 to oscillate is performed. The charging process 150 performs high-accuracy control at an early stage and performs low-accuracy control at a later stage. For this reason, the determination in step 172 is also a determination of whether or not the charging process 150 is highly accurate. Step 172 provides a determination unit that determines whether or not the processing by the previous pulse control unit has been started or has been executed based on the preceding previous pulse in response to the subsequent pulse. .
 ステップ173では、制御装置17は、固定点火処理を実行する。ステップ172において演算点火が実行されていないと判定された場合、固定点火が必要である。よって、制御装置17は、固定点火処理を実行する。固定点火処理は、後パルス割込で実行するべき処理のひとつである。ステップ173では、後パルスに基いて点火信号Igを発生させる。これにより、後パルスでの点火が実現される。ステップ173は、後パルス制御部でもある。ステップ163は、後パルスに応答して点火する固定点火制御部を提供する。 In step 173, the control device 17 executes a fixed ignition process. If it is determined in step 172 that the calculated ignition has not been executed, fixed ignition is necessary. Therefore, the control device 17 executes a fixed ignition process. The fixed ignition process is one of processes that should be executed by a post-pulse interrupt. In step 173, the ignition signal Ig is generated based on the post-pulse. As a result, ignition with a post-pulse is realized. Step 173 is also a post-pulse control unit. Step 163 provides a fixed ignition controller that ignites in response to a post-pulse.
 ステップ174では、制御装置17は、後パルスに同期して実行するべきであった複数の一部処理を実行する。これらの一部処理は、内燃機関2のクランク軸が所定の基準位置にあるときに実行するべき処理であるから、クランク同期処理と呼ばれる。例えば、後パルスに応答して実行するべき回転速度信号の処理などが実行される。ステップ174は、低精度期間に内燃機関制御部の処理が発生すると、一部処理を、後に実行することなく、即座に実行する非予約制御部を提供する。 In step 174, the control device 17 executes a plurality of partial processes that should have been executed in synchronization with the post-pulse. These partial processes are processes to be executed when the crankshaft of the internal combustion engine 2 is at a predetermined reference position, and are therefore referred to as crank synchronization processes. For example, processing of a rotation speed signal to be executed in response to the post pulse is executed. Step 174 provides a non-reservation control unit that executes a part of the process immediately without performing a part of the process when the process of the internal combustion engine control unit occurs during the low accuracy period.
 前パルス処理160の全体と、後パルス処理170の全体とは、内燃機関2のための制御を実行する内燃機関制御部を提供する。特に、前パルス処理160の全体と、後パルス処理170のステップ171-174は、内燃機関2のための点火制御を実行している。 The whole of the pre-pulse process 160 and the whole of the post-pulse process 170 provide an internal combustion engine control unit that executes control for the internal combustion engine 2. In particular, the entire pre-pulse processing 160 and steps 171 to 174 of the post-pulse processing 170 execute ignition control for the internal combustion engine 2.
 ステップ175では、制御装置17は、後パルスに同期して実行するべき複数の処理の少なくともひとつを実行することなく、後で実行するためのフラグをセットする。いわば、処理の予約を行う。ステップ175は、少なくとも一部のクランク同期処理を、後の時刻に予約する処理である。この実施形態では、クランク同期処理と呼ばれるすべての処理が、後の時刻での実行とされる。後実行をセットする処理は、予約処理、先延ばし処理、先送り処理などと呼ばれる。 In step 175, the control device 17 sets a flag to be executed later without executing at least one of a plurality of processes to be executed in synchronization with the subsequent pulse. In other words, the process is reserved. Step 175 is a process for reserving at least a part of the crank synchronization process at a later time. In this embodiment, all processing called crank synchronization processing is executed at a later time. Processing for setting post-execution is called reservation processing, postponement processing, post-transmission processing, and the like.
 ステップ175を経由する場合、ステップ163が実行された後である。このため、点火は、実行済である。このため、充電処理150も開始されている。充電処理150は初期において高精度に実行されている。よって、制御装置17は、充電処理150のために高い演算負荷の下にある。この場合、充電処理150を優先し、他の処理は先送りすることが望ましい。充電初期にコンデンサ34の電圧変動が大きいから、高い精度でON時間およびOFF時間を制御することが効率的だからである。 When going through step 175, it is after step 163 is executed. For this reason, ignition has been performed. For this reason, the charging process 150 is also started. The charging process 150 is performed with high accuracy in the initial stage. Therefore, the control device 17 is under a high calculation load for the charging process 150. In this case, it is desirable to prioritize the charging process 150 and postpone the other processes. This is because, since the voltage fluctuation of the capacitor 34 is large at the beginning of charging, it is efficient to control the ON time and OFF time with high accuracy.
 ステップ175は、高精度期間に内燃機関制御部の処理が発生すると、内燃機関制御部の処理の一部である一部処理を、後に実行するように予約する予約制御部を提供する。ステップ175が提供する予約制御部は、ステップ172が提供する判定部が肯定的に判定されると、一部処理を、後に実行するように予約する。ステップ175が提供する予約制御部は、ステップ163が提供する演算点火制御部により点火されると、一部処理を、後に実行するように予約する。 Step 175 provides a reservation control unit for reserving a part of the process of the internal combustion engine control unit to be executed later when the process of the internal combustion engine control unit occurs during the high accuracy period. If the determination unit provided in step 172 is positively determined, the reservation control unit provided in step 175 reserves a partial process to be executed later. When the ignition control unit provided in step 163 ignites, the reservation control unit provided in step 175 reserves a part of the processing to be executed later.
 図7に図示される後実行処理180は、制御装置17によって実行される。制御装置17は、制御装置17の演算負荷が低くなると後実行処理180を実行する。制御装置17は、充電処理150が低い精度になると後実行処理180を実行する。後実行処理180は、一部処理を低精度期間以降に実行する後実行制御部を提供する。 7 is executed by the control device 17. The post-execution process 180 shown in FIG. The control device 17 executes a post-execution process 180 when the calculation load on the control device 17 decreases. The control device 17 executes a post-execution process 180 when the charging process 150 has low accuracy. The post-execution process 180 provides a post-execution control unit that executes some processes after the low-accuracy period.
 ステップ181では、制御装置17は、後実行がセットされているか否かを判定する。ステップ181において後実行がセットされていると判定されるとステップ182へ進む。ステップ181において後実行がセットされていないと判定されると処理を終了する。 In step 181, the control device 17 determines whether or not post-execution is set. If it is determined in step 181 that post-execution is set, the process proceeds to step 182. If it is determined in step 181 that post-execution is not set, the process is terminated.
 ステップ182では、制御装置17は、後パルスに同期して実行するべき複数の処理の少なくともひとつであって、後実行のために実行されなかった一部処理を、後に実行する。すなわち、一部処理は、遅れて実行される。ここでは、クランク同期処理と呼ばれるすべての処理が、実行される。 In step 182, the control device 17 later executes a partial process that is at least one of a plurality of processes to be executed in synchronization with the post-pulse and not executed for the post-execution. That is, some processes are executed with a delay. Here, all processing called crank synchronization processing is executed.
 ステップ183では、後実行のためのセット状態がクリアされる。ステップ183は、一部処理を低精度期間以降に実行した後に、予約を解除する解除部を提供する。 In step 183, the set state for subsequent execution is cleared. Step 183 provides a release unit for releasing the reservation after partial processing is executed after the low-accuracy period.
 図8は固定点火が実行される場合の作動を示す。横軸は、内燃機関の回転角度ANGによって示されている。図中には、スイッチング信号SQがON時間Tonを一定に図示して模式的に示されている。前パルスおよび後パルスは立ち下がりのタイミングにおいて検出されている。 FIG. 8 shows the operation when fixed ignition is executed. The horizontal axis is indicated by the rotation angle ANG of the internal combustion engine. In the figure, the switching signal SQ is schematically shown with a constant ON time Ton. The front pulse and the rear pulse are detected at the falling timing.
 時刻t21において、前パルスが検出される。時刻t21では、ステップ161、162に示す前パルス割込の処理PR1が実行される。やがて、時刻t22において、後パルスが検出される。時刻t22の後に、ステップ171-173に示す後パルス割込および固定点火の処理PR2が実行され、固定点火IgFが実行される。また、処理PR2の後には、ステップ174に示すクランク同期処理PR3が実行される。固定点火IgFの後に、充電処理150が開始される。 At time t21, the previous pulse is detected. At time t21, the pre-pulse interrupt process PR1 shown in steps 161 and 162 is executed. Eventually, a post-pulse is detected at time t22. After time t22, post-pulse interruption and fixed ignition processing PR2 shown in steps 171 to 173 is executed, and fixed ignition IgF is executed. Further, after the process PR2, a crank synchronization process PR3 shown in step 174 is executed. After the fixed ignition IgF, the charging process 150 is started.
 一連の充電シーケンスの中には、高精度期間DC1と、低精度期間DC2とが含まれている。充電処理150は、時刻t23から低精度の処理に移行する。処理PR3と充電処理150とは競合することなく実行可能である。特に、充電処理150の最初は、ON時間Ton、およびOFF時間Toffが長い。このため、処理PR3と充電処理150のためのスイッチングとが競合しない。なお、ON時間Ton、およびOFF時間Toffは、スイッチングされていることを図示するために模試化されており、幅は例示である。 The high-precision period DC1 and the low-precision period DC2 are included in the series of charging sequences. The charging process 150 shifts to a low-accuracy process from time t23. The process PR3 and the charging process 150 can be executed without conflict. In particular, at the beginning of the charging process 150, the ON time Ton and the OFF time Toff are long. For this reason, the process PR3 and the switching for the charging process 150 do not compete. The ON time Ton and the OFF time Toff are simulated to illustrate that the switching is performed, and the width is an example.
 図9は演算点火が実行される場合の作動を示す。図9は図8に対応する。 FIG. 9 shows the operation when the calculated ignition is executed. FIG. 9 corresponds to FIG.
 時刻t31では、ステップ161-163に示す処理PR4が実行される。これにより、演算点火IgAが実行される。 At time t31, the process PR4 shown in steps 161-163 is executed. Thereby, the calculated ignition IgA is executed.
 やがて、時刻t32において、後パルスが検出される。時刻t32の後に、ステップ171-175に示す処理PR5が実行される。ステップ175が提供する予約制御部は、高精度期間DC1に内燃機関制御部の処理が発生すると、内燃機関制御部の処理の一部処理を、後に実行するように予約する。つまり、制御装置17は、一部の処理を実行することなく、デューティ比を高精度に制御する。よって、制御装置17のリソーセスは、デューティ比を高精度に制御するために利用される。 Eventually, a post-pulse is detected at time t32. After time t32, the process PR5 shown in steps 171-175 is executed. When the processing of the internal combustion engine control unit occurs during the high-accuracy period DC1, the reservation control unit provided in step 175 reserves a part of the processing of the internal combustion engine control unit to be executed later. That is, the control device 17 controls the duty ratio with high accuracy without executing some processing. Therefore, the resource of the control device 17 is used to control the duty ratio with high accuracy.
 時刻t33において、充電処理150が低精度期間DC2に入る。時刻t33において、後実行の条件が満たされている。すなわち、制御装置17の演算負荷が低下している。時刻t33の後に、ステップ181-183に示す処理PR6が実行される。ステップ182が提供する後実行制御部は、予約された一部の処理を、低精度期間以降に実行する。すなわち、処理PR6では、前に実行されなかったクランク同期処理が実行される。これにより、充電処理150における高精度期間DC1において制御装置17の演算負荷を増加させることなく、点火間に必要な処理を完了することができる。 At time t33, the charging process 150 enters the low accuracy period DC2. At time t33, the post-execution condition is satisfied. That is, the calculation load of the control device 17 is reduced. After time t33, process PR6 shown in steps 181 to 183 is executed. The post-execution control unit provided by step 182 executes some of the reserved processes after the low-accuracy period. That is, in the process PR6, the crank synchronization process that was not executed before is executed. As a result, it is possible to complete the processing required during ignition without increasing the calculation load of the control device 17 in the high-accuracy period DC1 in the charging processing 150.
 図8および図9において、高精度期間DC1は、長すぎると、低精度期間DC2で実施するべき制御を、次の基準信号Pinが入力されるまでの期間に実施することができない場合がある。高精度期間DC1は、短すぎると、高精度期間DC1で実施するべき制御、つまりON時間TonからOFF時間Toffへの正確な制御ができなくなる場合がある。このような欠点を考慮して、高精度期間DC1は、誤差を含めた余裕を与えるように設定される。言い換えると、高精度期間DC1は、コンデンサ34の充電効率の低下を招くおそれがある要素である。高精度期間DC1は、内燃機関2の最高回転速度と、コンデンサ34を充電するために厳密な制御を要する時間とから求められる。低精度期間DC2の始期から、その後の基準信号Pinまでの時間は、1ms(ミリ秒)あれば十分である。例えば、高精度期間DC1は、4ms(ミリ秒)程度に設定される。内燃機関2の最高回転速度を12000rpm(毎分回転数)とする場合、1周期は5ms(ミリ秒)であるから、低精度期間DC2を1ms(ミリ秒)とすると、高精度期間DC1は4ms(ミリ秒)となる。 8 and 9, if the high accuracy period DC1 is too long, the control to be performed in the low accuracy period DC2 may not be performed in the period until the next reference signal Pin is input. If the high-accuracy period DC1 is too short, there is a case where control to be performed in the high-accuracy period DC1, that is, accurate control from the ON time Ton to the OFF time Toff may not be performed. Considering such drawbacks, the high accuracy period DC1 is set so as to give a margin including an error. In other words, the high-accuracy period DC1 is an element that may cause a decrease in charging efficiency of the capacitor 34. The high accuracy period DC1 is obtained from the maximum rotational speed of the internal combustion engine 2 and the time that requires strict control to charge the capacitor 34. It is sufficient that the time from the beginning of the low accuracy period DC2 to the subsequent reference signal Pin is 1 ms (milliseconds). For example, the high accuracy period DC1 is set to about 4 ms (milliseconds). When the maximum rotation speed of the internal combustion engine 2 is set to 12000 rpm (the number of rotations per minute), one cycle is 5 ms (milliseconds). (Milliseconds).
 制御装置17が高い処理能力を有している場合、制御装置17は、デューティ比を低精度に制御することで、余剰の処理能力を得る。この余剰の能力によって、予約されている一部処理を実行することができる。別の観点では、低い処理能力を有する制御装置17を利用して、充電処理150と点火処理とを両立することができる。内燃機関制御のための点火制御と電力変換制御である充電処理150とが両立された内燃機関制御装置が提供される。 When the control device 17 has a high processing capability, the control device 17 obtains surplus processing capability by controlling the duty ratio with low accuracy. The reserved partial processing can be executed by the surplus capacity. From another viewpoint, it is possible to make the charging process 150 and the ignition process compatible by using the control device 17 having a low processing capacity. There is provided an internal combustion engine control device in which ignition control for internal combustion engine control and charging processing 150 as power conversion control are compatible.
 以上に述べた実施形態によると、内燃機関2のためにCDI回路15の点火タイミングを変化させる内燃機関制御と、コンデンサ34のためにコンバータ回路14のデューティを変化させる電力変換制御とが両立された内燃機関制御装置が提供される。しかも、制御装置17のリソーセスを有効に利用して、所定間隔で実行しなければならない内燃機関制御のための点火制御と、コンバータ回路14の高精度な電力変換制御とが両立された内燃機関制御装置が提供される。よって、ひとつの観点では、低い演算処理能力しか持たない安価な制御装置を利用可能である。別の観点では、余剰に生じる演算処理能力を他の制御に利用可能となる。 According to the embodiment described above, the internal combustion engine control for changing the ignition timing of the CDI circuit 15 for the internal combustion engine 2 and the power conversion control for changing the duty of the converter circuit 14 for the capacitor 34 are compatible. An internal combustion engine controller is provided. Moreover, the internal combustion engine control in which the ignition control for the internal combustion engine control that must be executed at predetermined intervals and the high-accuracy power conversion control of the converter circuit 14 are achieved by effectively using the resources of the control device 17. An apparatus is provided. Therefore, from one viewpoint, it is possible to use an inexpensive control device having only a low processing capacity. From another viewpoint, it is possible to use surplus arithmetic processing capacity for other control.
 他の実施形態
 この明細書における開示は、例示された実施形態に制限されない。開示は、例示された実施形態と、それらに基づく当業者による変形態様を包含する。例えば、開示は、実施形態において示された部品および/または要素の組み合わせに限定されない。開示は、多様な組み合わせによって実施可能である。開示は、実施形態に追加可能な追加的な部分をもつことができる。開示は、実施形態の部品および/または要素が省略されたものを包含する。開示は、ひとつの実施形態と他の実施形態との間における部品および/または要素の置き換え、または組み合わせを包含する。開示される技術的範囲は、実施形態の記載に限定されない。開示されるいくつかの技術的範囲は、請求の範囲の記載によって示され、さらに請求の範囲の記載と均等の意味及び範囲内での全ての変更を含むものと解されるべきである。
Other Embodiments The disclosure herein is not limited to the illustrated embodiments. The disclosure encompasses the illustrated embodiments and variations by those skilled in the art based thereon. For example, the disclosure is not limited to the combinations of parts and / or elements shown in the embodiments. The disclosure can be implemented in various combinations. The disclosure may have additional parts that can be added to the embodiments. The disclosure includes those in which parts and / or elements of the embodiments are omitted. The disclosure encompasses the replacement or combination of parts and / or elements between one embodiment and another. The technical scope disclosed is not limited to the description of the embodiments. Some technical scope disclosed is shown by the description of the scope of claims, and should be understood to include all modifications within the meaning and scope equivalent to the description of the scope of claims.
 上記実施形態では、間欠的に駆動される電気負荷として、点火コイルが用いられている。これに代えて、燃料噴射弁が用いられてもよい。間欠的に駆動される電気負荷として、誘導性の負荷が用いられてもよいし、容量性の負荷が用いられてもよい。誘導性の負荷として、例えば、噴射弁を駆動するための高電圧電磁コイルが利用される。また、容量性の負荷として、ピエゾ素子が利用される。ピエゾ素子は、蓄積される電荷に応じて機械的な変位を生成する。ピエゾ素子は、例えば、燃料噴射を断続する燃料噴射弁に用いられる。 In the above embodiment, an ignition coil is used as an electric load driven intermittently. Instead of this, a fuel injection valve may be used. As the electric load driven intermittently, an inductive load may be used, or a capacitive load may be used. As the inductive load, for example, a high voltage electromagnetic coil for driving the injection valve is used. In addition, a piezoelectric element is used as a capacitive load. The piezo element generates a mechanical displacement according to the accumulated electric charge. The piezo element is used, for example, in a fuel injection valve that interrupts fuel injection.
 上記実施形態では、コンバータ回路14は、トランス31を含むチョッパ回路によって提供されている。これに代えて、多様な昇圧回路を利用することができる。コンバータ回路14は、例えば、リアクトルコイルを含むチョッパ回路が用いられてもよい。 In the above embodiment, the converter circuit 14 is provided by a chopper circuit including the transformer 31. Instead, various booster circuits can be used. For example, a chopper circuit including a reactor coil may be used as the converter circuit 14.
 上記実施形態では、充電処理150が低精度期間DC2になると、後実行処理180が実行される。これに代えて、充電処理150が完全に停止してから、後実行処理180が実行されてもよい。 In the above embodiment, the post-execution process 180 is executed when the charging process 150 enters the low-accuracy period DC2. Instead, the post-execution process 180 may be executed after the charging process 150 is completely stopped.
 上記実施形態では、電力変換制御、すなわちコンバータ回路14のスイッチング素子32の制御を、高精度期間DC1と低精度期間DC2との2段階に切り換えている。しかし、精度は、3段等の複数段階でもよく、無段階でもよい。また、低精度期間DC2は、デューティ比を一定にする飽和期間に一致してもよい。 In the above-described embodiment, the power conversion control, that is, the control of the switching element 32 of the converter circuit 14 is switched to two stages of the high accuracy period DC1 and the low accuracy period DC2. However, the accuracy may be a plurality of steps such as three steps, or may be stepless. The low accuracy period DC2 may coincide with a saturation period in which the duty ratio is constant.
 上記実施形態では、後パルスに応答して固定点火IgFが実行されている。これに代えて、後パルスより後に最遅角の点火が実行される場合もある。また、前パルスの前に最進角の点火が実行されてもよい。 In the above embodiment, the fixed ignition IgF is executed in response to the post-pulse. Alternatively, the most retarded ignition may be performed after the post-pulse. Further, the most advanced ignition may be performed before the previous pulse.
 上記実施形態では、内燃機関2はシグナルロータ21を備える。これに代えて、シグナルロータは発電機(ACG)のロータに含まれていても良い。また、上記実施形態では、信号処理回路16を備える。これに代えて信号処理回路を備えない構成でもよい。例えば、パルスピックアップに代えて、センサ素子と付随回路とを備えるホールセンサを用いることができる。

 
In the above embodiment, the internal combustion engine 2 includes the signal rotor 21. Alternatively, the signal rotor may be included in the rotor of the generator (ACG). In the above embodiment, the signal processing circuit 16 is provided. Alternatively, the signal processing circuit may be omitted. For example, a Hall sensor including a sensor element and an accompanying circuit can be used instead of the pulse pickup.

Claims (10)

  1.  スイッチング素子のスイッチングによって電源の電圧を高電圧へ変換するコンバータ回路(14)と、
     前記コンバータ回路により充電され、内燃機関の機器に給電するコンデンサ(34)と、
     前記コンバータ回路を制御する制御装置(17)とを備え、
     前記制御装置は、
     前記内燃機関のための制御を実行する内燃機関制御部(160、171-174)と、
     前記スイッチング素子のON時間とOFF時間とのデューティ比を変化させるとともに、前記デューティ比を高精度に制御する高精度期間(DC1)の後に、前記デューティ比を前記高精度より低い低精度に制御する低精度期間(DC2)に切換えて、前記コンバータ回路から前記コンデンサを充電するデューティ制御部(150)と、
     前記高精度期間に前記内燃機関制御部の処理が発生すると、前記内燃機関制御部の処理の一部である一部処理を、後に実行するように予約する予約制御部(175)と、
     前記一部処理を前記低精度期間以降に実行する後実行制御部(180)とを有する内燃機関用制御装置。
    A converter circuit (14) for converting the voltage of the power source into a high voltage by switching of the switching element;
    A capacitor (34) charged by the converter circuit and supplying power to the internal combustion engine equipment;
    A control device (17) for controlling the converter circuit,
    The controller is
    An internal combustion engine control section (160, 171-174) for executing control for the internal combustion engine;
    The duty ratio between the ON time and the OFF time of the switching element is changed, and the duty ratio is controlled to a low precision lower than the high precision after the high precision period (DC1) for controlling the duty ratio with a high precision. A duty control unit (150) for switching to the low precision period (DC2) and charging the capacitor from the converter circuit;
    A reservation control unit (175) for reserving a part of the processing of the internal combustion engine control unit to be executed later when processing of the internal combustion engine control unit occurs during the high-accuracy period;
    A control device for an internal combustion engine, comprising: a post-execution control unit (180) that executes the partial processing after the low-accuracy period.
  2.  さらに、前記コンデンサに充電された電荷を、前記内燃機関の前記機器へ放電する放電回路(15)を備え、
     前記制御装置は、前記内燃機関制御部により前記放電回路を制御し、前記コンバータ回路と前記放電回路との両方を制御する請求項1に記載の内燃機関用制御装置。
    And a discharge circuit (15) for discharging the electric charge charged in the capacitor to the device of the internal combustion engine,
    2. The control device for an internal combustion engine according to claim 1, wherein the control device controls the discharge circuit by the internal combustion engine control unit and controls both the converter circuit and the discharge circuit. 3.
  3.  前記コンバータ回路は、
     一次コイルに電源電圧を入力し、二次コイルが前記コンデンサを充電するトランス(31)を備え、
     前記スイッチング素子は、前記トランスの前記一次コイルの接地側に設けられ、前記一次コイルへ流れる電流(Itp)を断続するスイッチング素子である請求項1または請求項2に記載の内燃機関用制御装置。
    The converter circuit is
    A power supply voltage is input to the primary coil, and the secondary coil includes a transformer (31) that charges the capacitor.
    3. The control device for an internal combustion engine according to claim 1, wherein the switching element is a switching element that is provided on a ground side of the primary coil of the transformer and interrupts a current (Itp) flowing through the primary coil.
  4.  前記制御装置は、前記内燃機関の回転の基準となる位置において前パルスと後パルスとを出力する回転角度検出器(13)から信号を受ける入力端子(IN)を備え、
     前記内燃機関制御部は、
     前記前パルスに基いて前記コンデンサの電荷を消費する前パルス制御部(163)と、
     前記後パルスに基いて前記コンデンサの電荷を消費する後パルス制御部(173)と、
     前記後パルスに応答して、先行する前記前パルスに基づいて前記前パルス制御部による処理が実行済みであるか否かを判定する判定部(172)とを備え、
     前記予約制御部は、前記判定部が肯定的に判定されると、前記一部処理を、後に実行するように予約する請求項1から請求項3のいずれかに記載の内燃機関用制御装置。
    The control device includes an input terminal (IN) that receives a signal from a rotation angle detector (13) that outputs a front pulse and a rear pulse at a position serving as a reference for rotation of the internal combustion engine,
    The internal combustion engine controller is
    A pre-pulse control unit (163) for consuming the charge of the capacitor based on the pre-pulse;
    A post-pulse control unit (173) for consuming the charge of the capacitor based on the post-pulse;
    A determination unit (172) that determines whether or not the processing by the previous pulse control unit has been executed based on the preceding previous pulse in response to the subsequent pulse;
    The control apparatus for an internal combustion engine according to any one of claims 1 to 3, wherein the reservation control unit reserves the partial processing to be executed later when the determination unit is positively determined.
  5.  前記機器は、点火コイル(17)であり、
     前記前パルス制御部は、前記前パルスに基いて点火タイミングを演算する演算点火制御部(163)であり、
     前記後パルス制御部は、前記後パルスに応答して点火する固定点火制御部であり、
     前記予約制御部は、前記演算点火制御部により点火されると、前記一部処理を、後に実行するように予約する請求項4に記載の内燃機関用制御装置。
    The device is an ignition coil (17);
    The pre-pulse control unit is a calculation ignition control unit (163) that calculates an ignition timing based on the pre-pulse,
    The post-pulse control unit is a fixed ignition control unit that ignites in response to the post-pulse,
    The control device for an internal combustion engine according to claim 4, wherein the reservation control unit reserves the partial processing to be executed later when ignited by the arithmetic ignition control unit.
  6.  前記機器は、点火コイル(17)であり、前記コンデンサおよび前記コンバータ回路は、前記コンデンサの電荷を点火タイミングにおいて前記点火コイルへ供給するCDI回路の一部である請求項1から請求項4のいずれかに記載の内燃機関用制御装置。 The said apparatus is an ignition coil (17), and the said capacitor | condenser and the said converter circuit are a part of CDI circuit which supplies the electric charge of the said capacitor | condenser to the said ignition coil in an ignition timing. A control device for an internal combustion engine according to claim 1.
  7.  前記デューティ制御部は、複数の前記スイッチングを含む一連の充電シーケンスにおいて前記OFF時間が徐々に短くなるように前記デューティ比を制御する請求項1から請求項6のいずれかに記載の内燃機関用制御装置。 The internal combustion engine control according to any one of claims 1 to 6, wherein the duty control unit controls the duty ratio so that the OFF time is gradually shortened in a series of charging sequences including a plurality of the switching operations. apparatus.
  8.  前記後実行制御部(180)は、前記一部処理を前記低精度期間以降に実行した後に、前記予約を解除する解除部(183)を有する請求項1から請求項7のいずれかに記載の内燃機関用制御装置。 The said post-execution control part (180) has the cancellation | release part (183) which cancels | releases the said reservation, after performing the said partial process after the said low precision period. Control device for internal combustion engine.
  9.  さらに、所定の周期のクロック信号を発生するクロック回路(18)を有し、
     前記制御装置は、前記クロック回路から供給されるクロック信号に依存する分解能で前記高精度の制御と前記低精度の制御とを実行するマイクロコンピュータである請求項1から請求項8のいずれかに記載の内燃機関用制御装置。
    And a clock circuit (18) for generating a clock signal having a predetermined period,
    The said control apparatus is a microcomputer which performs the said high precision control and the said low precision control with the resolution depending on the clock signal supplied from the said clock circuit. Control device for internal combustion engine.
  10.  前記制御装置は、前記低精度期間に前記内燃機関制御部の処理が発生すると、前記一部処理を、後に実行することなく、即座に実行する非予約制御部(174)を備える請求項1から請求項9のいずれかに記載の内燃機関用制御装置。

     
    The said control apparatus is provided with the non-reservation control part (174) which performs the said partial process immediately, without performing later, if the process of the said internal combustion engine control part generate | occur | produces in the said low precision period. The control device for an internal combustion engine according to claim 9.

PCT/JP2017/000407 2016-07-26 2017-01-10 Control device for internal combustion engine WO2018020704A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017525642A JP6255140B1 (en) 2016-07-26 2017-01-10 Control device for internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-146420 2016-07-26
JP2016146420 2016-07-26

Publications (1)

Publication Number Publication Date
WO2018020704A1 true WO2018020704A1 (en) 2018-02-01

Family

ID=61017354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000407 WO2018020704A1 (en) 2016-07-26 2017-01-10 Control device for internal combustion engine

Country Status (1)

Country Link
WO (1) WO2018020704A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05180047A (en) * 1991-10-31 1993-07-20 Nippondenso Co Ltd Alternator output voltage control device
JP2003243739A (en) * 2002-02-15 2003-08-29 Nippon Soken Inc Piezo actuator control device and fuel injection control system using the same
JP2013036471A (en) * 2012-10-19 2013-02-21 Toyota Motor Corp Control device for vehicle
JP2015200277A (en) * 2014-04-10 2015-11-12 株式会社日本自動車部品総合研究所 Internal combustion engine control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05180047A (en) * 1991-10-31 1993-07-20 Nippondenso Co Ltd Alternator output voltage control device
JP2003243739A (en) * 2002-02-15 2003-08-29 Nippon Soken Inc Piezo actuator control device and fuel injection control system using the same
JP2013036471A (en) * 2012-10-19 2013-02-21 Toyota Motor Corp Control device for vehicle
JP2015200277A (en) * 2014-04-10 2015-11-12 株式会社日本自動車部品総合研究所 Internal combustion engine control device

Similar Documents

Publication Publication Date Title
JP4640282B2 (en) Ignition control device for internal combustion engine
EP2479420A2 (en) Internal combustion engine ignition system
JP4803008B2 (en) Ignition control device for internal combustion engine
EP2658079B1 (en) Power supply degradation determination apparatus
JP5595447B2 (en) Control device and control method for vehicle alternator
US7557547B2 (en) Self exited oscillation converter providing a stable output voltage from a wide range of input voltages
JP4450613B2 (en) Control device for vehicle alternator
JP5430672B2 (en) Control device for vehicle alternator
JP6255140B1 (en) Control device for internal combustion engine
JP6128249B1 (en) LOAD DRIVE DEVICE FOR INTERNAL COMBUSTION ENGINE AND IGNITION DEVICE FOR INTERNAL COMBUSTION ENGINE
JP5957373B2 (en) Charge / discharge device
WO2018020704A1 (en) Control device for internal combustion engine
JP2016137803A (en) Power supply device for automobile and method for controlling power supply device for automobile
JP6011483B2 (en) Ignition device
US9219438B2 (en) Method for operating a separately excited electric machine in a motor vehicle
JP6068199B2 (en) Smoothing capacitor discharge controller
JP2008106723A (en) Ignition control device of internal combustion engine
JP6513479B2 (en) Power supply and control method of power supply
CN108258783B (en) Power supply control system and power supply control method
KR20120121828A (en) Rapid charger for battery of pulse type having energy recovery capability and the method of controlling the charger
WO2008102378A2 (en) A device and method for efficient power utilization
RU2513035C1 (en) Method for control of asynchronous motor
US20150188469A1 (en) Method and system for controlling the progressive charging of an alternator of a motor vehicle, and motor vehicle alternator comprising such a system
JP5784178B1 (en) Power conversion unit and ripple suppression control method during power conversion
JP2020129868A (en) Boosting device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017525642

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17833716

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17833716

Country of ref document: EP

Kind code of ref document: A1