WO2018019131A1 - 报文转发方法及装置 - Google Patents

报文转发方法及装置 Download PDF

Info

Publication number
WO2018019131A1
WO2018019131A1 PCT/CN2017/092806 CN2017092806W WO2018019131A1 WO 2018019131 A1 WO2018019131 A1 WO 2018019131A1 CN 2017092806 W CN2017092806 W CN 2017092806W WO 2018019131 A1 WO2018019131 A1 WO 2018019131A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
path
segment
target
mrt
Prior art date
Application number
PCT/CN2017/092806
Other languages
English (en)
French (fr)
Inventor
彭少富
韩杰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP17833434.8A priority Critical patent/EP3493487A4/en
Priority to US16/320,016 priority patent/US20190273678A1/en
Publication of WO2018019131A1 publication Critical patent/WO2018019131A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/48Routing tree calculation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/34Source routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/22Alternate routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/50Routing or path finding of packets in data switching networks using label swapping, e.g. multi-protocol label switch [MPLS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/74Address processing for routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/12Shortest path evaluation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/24Multipath
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/28Routing or path finding of packets in data switching networks using route fault recovery

Definitions

  • the present application relates to, but is not limited to, the field of communications, and in particular, to a packet forwarding method and apparatus.
  • MRT Maximum Redundant Trees
  • FRR Fast Re-Route
  • LDP Label Distribution Protocol
  • IP-tunnel network protocol-tunnel
  • the LDP forwarding mechanism distinguishes between the default topology forwarding behavior and the MRT forwarding behavior through different labels, so that the forwarding plane can support MRT-FRR without any upgrade.
  • the IP-tunnel forwarding mechanism needs to waste the dedicated MRT loopback address to support forwarding. It also enables the forwarding plane to support MRT-FRR without any upgrade. In contrast, the LDP forwarding mechanism is more reasonable. Therefore, the default maximum redundancy tree configuration file (default MRT profile) of the MRT architecture uses the LDP forwarding mechanism. Currently, other MRT profiles are not defined.
  • the segmentation routing technology will enable a node to specify its forwarding path for the message instead of forwarding it according to the general shortest path. By adding a segment list (Segment List)-related information to the message. There is no need to maintain state information for each path on the intermediate node. Segmented routing mainly extends the IGP (Interior Gateway Protocol) to support advertising and learning segment IDs. Generally, in the network where the segmentation route is deployed, the LDP and the Resource ReSerVation Protocol-Traffic Extension (RSVP-TE) are no longer needed. In the segmented routing network, the known FRR technology has a Topology Independent Loop Free Alternate (TI-LFA), but the protection rules defined by TI-LFA are very complicated and immature.
  • IGP Interior Gateway Protocol
  • RSVP-TE Resource ReSerVation Protocol-Traffic Extension
  • the embodiment of the invention provides a packet forwarding method and device, so as to implement the combination of the segment routing network and the MRT function.
  • a packet forwarding method including: a first node receives a packet to be forwarded, where a destination address of the packet is a second node; and the first node is in advance Finding, by the generated path, a target path corresponding to the packet, where the pre-generated path includes a first path, a second path, and a third path, where the first path and the second path are based on a maximum
  • the second tree path is generated by the redundancy tree MRT algorithm, and the third path is a path that is generated according to the shortest path first SPF algorithm and reaches the second node; when the target path is the first
  • the first node searches for a target segment list corresponding to the target path in a pre-generated segment list, where the pre-generated segment list includes a first segment list and a second a segment list, the first segment list including the first path, the second segment list including the second path; the first node searching in the target path for forwarding to the second Next hop node points, and according to
  • the pre-generated segment list includes at least one of: an adjacency segment list, and a segment list including a node segment; wherein, when the advance When the last segment in the generated segment list is an adjacency segment, the remote node of the adjacency segment is MRT Egress; when the last segment in the pre-generated segment list When the segment is a node segment, the node segment is an MRT Egress.
  • the method further includes: the first node determining, according to the MRT algorithm, a protection path for protecting the third path from the first path and the second path.
  • the searching, by the first node, the target path corresponding to the packet in the pre-generated path includes: the first node determining, in the third path, the second node Whether the link is faulty; when the judgment result is that there is no fault, the first node determines that the third path is the target path; and/or, in the judgment result, is faulty The first node determines that the protection path is the target path.
  • the method before the receiving, by the first node, the packet to be forwarded, the method further includes at least one of the following: the first node generates a first topology according to the MRT algorithm, and obtains a first topology. Determining the first path in the first topology; the first node generates a second topology according to the MRT algorithm, and determines the second path from the second topology; The SPF algorithm generates a third topology from which the third path is determined.
  • the first node generates the first topology and the second topology according to the MRT algorithm, and generates the third topology according to the SPF algorithm, including: the first node Determining an MRT Island in which the first node is located, wherein the MRT Island is shortest through opening on the first node and other nodes in the same domain area or level as the first node
  • the first node and the The other nodes are mutually negotiated; the first node generates the first topology and the second topology based on the MRT Island running the MRT algorithm, and running the SPF algorithm generation base based on the area or level The third topology.
  • the MRT profile specifies a tunnel forwarding mechanism that uses a multi-layer outgoing label stack formed based on a segment list.
  • the method further includes: the first node allocates SRGB (Segment Routing Global Block) for the third topology, and places the SRGB at the first node. All domains or levels are flooded; the first node receives SRGB of the third topology on other nodes, records SRGB of the third topology on the other nodes, and will be on the other nodes The SRGB of the third topology continues to be advertised to nodes other than the other nodes.
  • SRGB Segment Routing Global Block
  • the method further includes: when the target path is the third path, the first node allocates a next hop node of the third path to a destination prefix segment index prefix-sid
  • the SR tag is encapsulated into the packet, and the encapsulated packet is sent to the next hop node that is found in the third path and forwarded to the second node.
  • the forwarding, by the first node, the packet to the next hop node according to the target segment list includes: the first node determining a next hop label that includes the target segment list The segmentation route SR of the forwarding unit HHLFE is out of the label stack; the first node encapsulates the SR outbound label stack of the NHLFE containing the target segment list into the packet, and sends the encapsulated packet to the packet The next hop node.
  • the first node encapsulates the SR outgoing label stack of the NHLFE that includes the target segment list into the packet, and includes: when the packet type of the packet is an Internet Protocol IP address. And the first node is configured to press the SR outgoing label stack of the NHLFE on the IP header of the IP packet; and/or, when the packet type of the packet is a fragment routing SR label report. The first node replaces the ingress label of the SR label message with the SR out label stack of the NHLFE.
  • the determining, by the first node, the segmentation route SR outbound label stack of the NHLFE that includes the target segment list includes: when the target segment list is an adjacency segment list, determining the target segment
  • the index SID of each link in the list from the second adjacency segment, the SID of each link and the MRT Egress of the target path are SR tags assigned to the destination prefix segment prefix-sid in the path sequence.
  • the corresponding SR outgoing label of each segment starting from a node segment, the SR outgoing label corresponding to each segment and the SR label assigned to the destination prefix-sid of the target path are sequentially formed from the top of the stack to the top of the stack.
  • the label stack formed as the SR out label stack of the NHLFE;
  • the target segment list is a segment list including a node segment and an adjacency segment, determining In the target segment list, the corresponding SR outgoing label of each segment starting from the first segment, the SR outgoing label corresponding to each segment and the MRT Egress of the target path being the SR label assigned to the destination prefix-sid in the path sequence Forming a label stack from the top of the stack to the bottom of the stack, and forming the label stack as the SR out label stack of the NHLFE. If the first segment is an adjacency segment, the first segment has no corresponding SR out of the label.
  • the method includes at least one of: the first node passes by Determining, by the MRT Egress of the target path, an SR tag allocated for the destination prefix-sid: determining, by the MRT Egress, the SRGB allocated to the third topology and the SID of the route to the second node in the third topology; Determining an SR tag assigned by the MRT Egress of the target path as a destination prefix-sid based on the SID of the MRT Egress allocated to the third topology and the SID of the route to the second node in the third topology;
  • the first segment of the target segment list is a node segment
  • the first node determines an outbound label corresponding to the first node segment in the target segment list by determining the third topology to the
  • the next hop of the first node segment in the target segment list is the SRGB of the third topology allocation and the node SID of the first node segment in the third topology; based on the third topology
  • the first node determines, by using the following manner, that the node segment other than the first segment in the target segment list corresponds to Outbound label: determining that the node where the last segment of the other node segments in the target segment list is located is the SRGB of the third topology and the node SID of the other node segment in the third topology; The node where the previous segment of the other node segment in the target segment list is located is the SRGB assigned to the third topology and the node SID of the other node segment in the third topology determines the target segment list except the first one a node corresponding to the node segment other than the segment; wherein the node where the previous segment is located refers to: the node represented by the node segment when the last segment is a node segment; or, when The node represented by the remote node of the adjacency segment when the previous segment is an adjacency
  • the method further includes: after stripping the label stack of the target segment list, the MRT Egress of the target path continues to send the packet to the second node based on a lower layer label or an IP header. Forwarding, where the MRT Egress is sent to the control plane of the second node when the MRT Egress is the same node as the second node.
  • a packet forwarding device is further provided, where the device is applied to a first node, and includes: a receiving module, configured to receive a packet to be forwarded, where The destination address of the packet is a second node.
  • the first search module is configured to search for a target path corresponding to the packet in a pre-generated path, where the pre-generated path includes a first path and a second path.
  • a path and a third path the first path and the second path are generated according to a maximum redundancy tree MRT algorithm, and the third path is generated according to a shortest path first SPF algorithm.
  • the second search module is configured to: when the target path is the first path or the second path, search for a target path corresponding to the target path in the pre-generated segment list a target segment list, wherein the pre-generated segment list includes a first segment list and a second segment list, the first segment list includes the first path, and the second segment list includes the second path a forwarding module, configured to search for a next hop node for forwarding to the second node in the target path, and forward the packet to the next hop node according to the target segment list
  • a storage medium is also provided.
  • the storage medium is arranged to store program code for performing the various steps described above.
  • the MRT function is introduced in the segment routing network, thereby realizing the combination of the segment routing network and the MRT function.
  • FIG. 1 is a flowchart of a packet forwarding method according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of an MRT Profile option according to an embodiment of the present invention.
  • FIG. 3 is a network topology diagram according to Embodiment 1 of the present invention.
  • FIG. 5 is a network topology diagram according to Embodiment 3 of the present invention.
  • FIG. 6 is a structural block diagram of a message forwarding apparatus according to an embodiment of the present invention.
  • FIG. 1 is a flowchart of a packet forwarding method according to an embodiment of the present invention. As shown in FIG. 1, the process includes the following steps:
  • Step S102 the first node receives the packet to be forwarded, where the destination address of the packet is the second node;
  • Step S104 The first node searches for a target path corresponding to the packet in the pre-generated path, where the pre-generated path includes a first path, a second path, and a third path, where the first path and the second path are The second node path is generated according to the maximum redundancy tree MRT algorithm, and the third path is a path that is generated according to the shortest path first SPF algorithm and reaches the second node;
  • step S106 when the target path is the first path or the second path, the first node searches the pre-generated segment list for the target segment list corresponding to the target path, where the pre-generated segment list includes the a first list and a second list, the first list includes a first path, and the second list includes a second path;
  • Step S108 The first node searches for a next hop node for forwarding to the second node in the target path, and forwards the packet to the next hop node according to the target segment list.
  • the first node may be any node in the MRT Island
  • the second node may be any node in the SR Domain
  • the second node may be in the MRT Island or outside the MRT Island.
  • the first node when forwarding the packet to the next hop node, the first node may perform forwarding according to a predetermined forwarding mechanism, where the predetermined forwarding mechanism may be a tunnel forwarding mechanism of the multi-layer label stack formed based on the segment list.
  • the predetermined forwarding mechanism may be a tunnel forwarding mechanism of the multi-layer label stack formed based on the segment list.
  • the MRT function is introduced in the segment routing network, thereby realizing the combination of the segment routing network and the MRT function.
  • the foregoing segment list may be a pure adjacency segment list or a segment list including a node segment.
  • the last segment in the segment list is the MRT Egress of the corresponding path, that is, when the last segment is an adjacency segment, the remote node of the adjacency segment is MRT Egress;
  • the node segment is an MRT Egress.
  • the method further includes: the first node determining, according to the MRT algorithm, a protection path for protecting the third path from the first path and the second path.
  • the first path may be determined as a protection path, or the second path may be determined as a protection path, and which path is determined as a protection path, and determined according to actual conditions.
  • the searching, by the first node, the target path corresponding to the packet in the pre-generated path includes: determining, by the first node, whether a link for reaching the second node in the third path is faulty; When the judgment result is that there is no failure, the first node determines that the third path is the target path; and/or, when the determination result is that the fault occurs, the first node determines that the protection path is the target path.
  • the packet can be forwarded according to the default path. After the link is faulty, the protection path is used to forward the packet.
  • the method before the first node receives the packet to be forwarded, the method further includes at least one of the following: the first node generates the first topology according to the MRT algorithm, and determines the first topology from the first topology. a path; the first node generates a second topology according to the MRT algorithm, and determines a second path from the second topology; the first node generates a third topology according to the SPF algorithm, and determines a third path from the third topology.
  • the first topology and the second topology may be an MRT-red (MRT-red) topology, and one is an MRT-blue (MRT-blue) topology; and the third topology may be an MT- Default (MT-default) topology.
  • MRT-red MRT-red
  • MRT-blue MRT-blue
  • MT-default MT-Default
  • the first node generates the foregoing first topology and the second topology according to the MRT algorithm
  • the third topology is generated according to the SPF algorithm
  • the first node determines the MRT Island where the first node is located
  • the MRT Island is configured to enable the segmentation route SR and the maximum by opening the shortest path first OSPF or the intermediate system to the intermediate system ISIS instance at the first node and other nodes at the same domain area or the same level as the first node.
  • the redundancy tree configuration file MRT profile is formed by the first node and other nodes in the area or level where the first node is located; the first node generates the first topology and the second topology based on the MRT Island running the MRT algorithm, and The third topology is generated by running the SPF algorithm based on the area or level; the first node is in the MRT Island, and the second node is in the SR Domain.
  • the second node may be in the MRT Island or outside the MRT Island.
  • the foregoing MRT profile specifies the predetermined forwarding mechanism, that is, the tunnel forwarding mechanism of the multi-layer outgoing label stack formed based on the segment list.
  • the method further includes: the first node allocating SRGB for the third topology, and flooding the SRGB in all domain or level levels where the first node is located; the first node receiving the first node
  • the three-topological segmentation routing global block SRGB records the SRGB of the third topology on the other nodes and continues to advertise the SRGB of the third topology on the other nodes to nodes other than the other nodes.
  • each node may generate one SRGB for the third topology, and the SRGB generated by the different nodes is independent.
  • the method further includes: when the target path is the third path, the first node encapsulates the SR tag allocated by the next hop node of the third path into the target prefix segment index prefix-sid onto the packet. And sending the encapsulated message to the next hop node found in the third path for forwarding to the second node.
  • the main problem is that the path does not fail, that is, the default path is still used for packet forwarding, and the label encapsulation operation is performed in this case.
  • the forwarding, by the first node, the packet to the next hop node according to the target segment list includes: determining, by the first node, a Next Hop Label Forwarding Entry, where the target segment list is included.
  • the segmentation route SR outbound label stack is abbreviated as NHLFE.
  • the first node encapsulates the SR outbound label stack of the NHLFE containing the target segment list into the packet, and sends the encapsulated packet to the next hop node.
  • the main purpose is the label encapsulation operation performed in the case where the path is faulty and the protection path is used for packet forwarding.
  • the first node encapsulates the SR outbound label stack of the NHLFE that includes the target segment list into the packet, and includes: when the packet type of the packet is an Internet Protocol IP packet, the first node The SR outbound label stack of the NHLFE is pressed on the IP header of the IP packet; and/or, when the packet type of the packet is a fragmented route SR label packet, the first node adds the label of the SR label packet. Replace with the SR out label stack of NHLFE.
  • the first node determines that the segment route SR of the NHLFE that includes the target segment list is out of the label stack, and when the target segment list is an adjacency segment list, determining the second adjacency in the target segment list.
  • Index of each link starting at segment The SID, in which the SID of each link and the MRT Egress of the target path are the SR tags assigned to the destination prefix index prefix-sid in sequence, form the label stack from the top of the stack to the bottom of the stack, and the label stack is used as the NHLFE.
  • the SR out label stack when the target segment list is a node segment list, determining the SR out label corresponding to each segment from the first node segment in the target segment list, and outputting the corresponding SR out label in the path sequence
  • the SR label allocated by the MRT Egress of the target path for the purpose of the prefix-sid constitutes a label stack from the top of the stack to the bottom of the stack, and the formed label stack is used as the SR outbound label stack of the NHLFE; when the target segment list contains the node In the segment list of the segment and the adjacency segment, the corresponding SR outbound label of each segment starting from the first segment in the target segment list is determined, and the corresponding SR outbound label of each segment and the MRT Egress of the target path are used as the destination prefix in the path sequence.
  • the SR tag assigned by the sid constitutes a label stack from the top of the stack to the bottom of the stack, and the formed label stack is used as the SR outbound label stack of the NHLFE, if the first segment is adjacency. Segment, the first segment does not have a corresponding SR out label.
  • the method includes at least one of the following: the first node determines, by using the following manner, that the MRT Egress of the target path is an SR tag allocated for the destination prefix-sid: determining that the MRT Egress is the SRGB and the third topology assigned.
  • the SID of the route to the second node in the three topologies; the SID assigned to the third topology based on the MRT Egress and the SID of the route to the second node in the third topology, the MRT Egress of the target path is determined as the SR tag assigned to the destination prefix-sid
  • the first node determines the outbound label corresponding to the first node segment in the target segment list by determining the first one in the third topology to the target segment list.
  • the next hop of the node segment is the SRGB of the third topology and the node SID of the first node segment in the third topology; based on the next hop of the first node segment in the third topology to the target segment list is The S3 of the three-topology allocation and the node SID of the first node segment in the third topology determine the corresponding outgoing label of the first node segment in the target segment list;
  • the segment list is a segment list including a node segment
  • the first node determines the outbound label corresponding to the node segment other than the first segment in the target segment list by determining the previous one of the other node segments in the target segment list.
  • the node where the segment is located is the SRGB of the third topology and the node SID of the other node segment in the third topology; the node where the previous segment of the other node segments in the target segment list is located is the SRGB and other nodes assigned to the third topology.
  • Segment The node SID in the third topology determines an outbound label corresponding to the node segment other than the first segment in the target segment list; wherein, the node in which the previous segment is located refers to: when the last segment is a node segment, The node represented by the above node segment; when the previous segment is an adjacency segment, the node represented by the remote node of the adjacency segment.
  • the method further includes: after the stripping of the label stack of the target segment list, the MRT Egress of the target path continues to forward the packet to the second node based on the lower layer label or the IP header, where the MRT Egress and the MRT Egress are When the second node is the same node, the packet is sent to the control plane of the second node.
  • each transit node in the target path sequentially pops up the top of the packet. a label, and sending a message after the top label is dropped to a next hop corresponding to the top label; and/or, when the target segment list is a node segment list, each transit node segment in the target segment list
  • the pop-up message is sent to the top-level label of the node segment itself, and the next layer label is switched to the outgoing label corresponding to the next hop of the next node segment, and then sent to the corresponding next hop.
  • an MRT profile is added to the MRT architecture, and the segment routing and forwarding mechanism is used to distinguish the default topology forwarding behavior and the MRT topology forwarding behavior by using a segment routing and forwarding mechanism.
  • the first step is to define a new MRT profile MRT Profile.
  • MRT SR-tunnel refers to the forwarding behavior of the multi-layer label stack formed by the segment list.
  • SR-tunnel refers to the forwarding behavior of the multi-layer label stack formed by the segment list. For example, if multiple nodes included in the MRT path are regarded as a segment list, the behavior of forwarding the message along the MRT path is actually the node along the segment list. Segmented route forwarding behavior.
  • the segment list is generally an adjacency segment list. Can also be included with the node segment Segment list, at this time the message will not be forwarded strictly according to the MRT path.
  • the MRT is enabled in the corresponding IGP instance on each node in the IGP area/level (which may be only a part of the node) and the new MRT profile is supported, and the corresponding MRT Island is generated for the new MRT profile.
  • the corresponding MT-IDs are recorded as MT-red and MT-blue, respectively.
  • the source node S in the MRT Island calculates the SPF primary next hop and the MRT-blue or MRT-red path for the prefix in the MRT Island or outside the MRT Island, that is, the (MT-default, prefix) will include the SPF master.
  • the next hop, (MT-blue, prefix) will contain the MRT-blue path
  • (MT-red, prefix) will contain the MRT-red path.
  • determining whether the above MRT-blue path or the MRT-red path protects the above SPF main next hop by the MRT algorithm.
  • the corresponding forwarding equivalence class to the next hop label forwarding unit (Forwarding Equivalence Class to NHLFE, FTN) entry is generated, and the NHLFE includes the SPF main next hop and the corresponding SR out
  • the label also includes the MRT-red path or the MRT-blue path selected to protect the SPF primary next hop.
  • the MRT path is represented by a segment list.
  • a corresponding Incoming Label Map (ILM) entry is also generated, and the SR entry label is based on (MT-default, prefix) corresponding prefix-sid and S node SRGB.
  • the NHLFE is the same as the above FTN entry. If the prefix is an S node local or direct prefix, there is no NHLFE information.
  • IP or SR label unicast traffic can be forwarded along the MRT path as follows:
  • the MRT ingress node forwards the SR tag packet based on the corresponding IMM entry of the (MT-default, prefix), or forwards the IP packet based on the FTN entry to switch the IP packet to the MRT backup path included in the NHLFE, such as MRT-red.
  • the top-level SR of the SR-label packet is exchanged into the SR-label assigned to the destination of the last segment in the segment list. (If the last segment is a Node Segment, the corresponding node is the Node. If the last segment is an Adjacency Segment, the corresponding node is the node represented by the Remote Node-id) and then press the SR out of the label stack corresponding to the segment list. Send to the first segment, or directly push the IP packet to the SR outbound label stack corresponding to the segment list and send it to the first segment.
  • the MRT transit node forwards the packet based on the corresponding ILM entry of the (MT-default, prefix), and continues to exchange the SR incoming label into the SR outbound label corresponding to the next segment and sends it to the next segment.
  • the MRT egress node forwards the packet based on the corresponding ILM entry of the (MT-default, prefix). It first pops up the SR tag corresponding to itself as the last segment, and then allocates the SR tag based on the next layer for the destination prefix. Forwarding, at this time, it will continue to be forwarded to the next hop node after the SR outbound label corresponding to the next hop node of the default topology, or continue to pop the SR incoming label and then forwarded based on the packet IP header.
  • the MRT backup path on the MRT ingress node is similar to the MRT-blue path, and is not mentioned here.
  • FIG. 2 is a schematic diagram of an MRT profile option according to an embodiment of the present invention.
  • the MRT profile shown in FIG. 2 is substantially the same as the default MRT profile defined in RFC 7812. The difference is that the MRT Forwarding Mechanism option is an MRT SR-tunnel Option.
  • FIG. 3 is a network topology diagram according to the first embodiment of the present invention.
  • the Open Shortest Path First (Open Shortest Path First) is run in the network. It is abbreviated as OSPF. All the nodes are in the same area.
  • the segment routing function is enabled in the corresponding OSPF instance and the MRT profile defined in this patent is enabled.
  • S acts as the source node to establish an MRT path to the prefix of destination node D (such as a loopback route of D), and then protects the SPF primary path based on this MRT path. Including the following steps:
  • Step S301 After the SR is enabled in the OSPF instance on each node of the S, A, B, and D, and the MRT profile defined in the embodiment of the present invention, they form an MRT Island in the area.
  • the MT-default topology in the area is obtained based on the SPF algorithm, and the MT-red and MT-blue topologies are obtained based on the MRT algorithm.
  • the MT-default path to the destination node D is S-D
  • the MT-red path is also S-D
  • the MT-blue path is S-A-B-D.
  • Each node generates a corresponding prefix entry based on the topology. For example, on the S node, the MT-default next hop of the loopback1 route from the MT-default topology to the destination node D is D, and the MT given in the MT-blue topology is selected.
  • the -blue path protects the MT-default next hop D, then the corresponding MRT-FRR path is segment list ⁇ A, B, D ⁇ .
  • the Node-SID of the D-node in the MT-default topology is SID_D
  • the SRGB of D is SRGB_D
  • other nodes are similar.
  • the Adjacency-SID of the link S-A is SID_SA
  • the Adjacency-SID of the link A-B is SID_AB
  • the Adjacency-SID of the link B-D is SID_BD.
  • the outgoing label corresponding to the MT-default next hop D is SRGB_D[SID_D-loopback1], and the MRT-FRR segment list is represented by adjacency segment list ⁇ adj-SA, adj-AB, adj-BD ⁇ , corresponding to The input tag stack is ⁇ SID_SA, SID_AB, SID_BD ⁇ from the top of the stack to the bottom of the stack; if the node segment list ⁇ A, B, D ⁇ is used, the corresponding inbound label stack is from the top of the stack to the bottom of the stack is ⁇ SRGB_S[SID_A] , SRGB_A[SID_B], SRGB_B[SID_D] ⁇ .
  • the next hop is D, and the outgoing label is SRGB_D[SID_D-loopback1]
  • SID_SA top-level label, need to find ILM to be forwarded to forward information
  • the entry tag is SRGB_S[SID_D-loopback1]
  • the next hop is D, and the outgoing label is SRGB_D[SID_D-loopback1]
  • SID_SA top-level label, need to find ILM to be forwarded to forward information
  • the entry tag is SID_SA
  • NHLFE Bomb off the label and forward it along the link S-A
  • the entry tag is SRGB_S[SID_A]
  • NHLFE The next hop is A, and the outgoing label is SRGB_A[SID_A]
  • a node A node:
  • the entry label is SID_AB
  • NHLFE Bomb off the label and forward along the link A-B
  • the entry tag is SRGB_A[SID_A]
  • NHLFE None. Indicates that the SR-LSP has been terminated.
  • the entry tag is SRGB_A[SID_B]
  • NHLFE The next hop is B, and the outgoing label is SRGB_B[SID_B]
  • the entry tag is SID_BD
  • NHLFE Pops off the label and forwards it along the link B-D
  • the entry tag is SRGB_B[SID_B]
  • NHLFE None. Indicates that the SR-LSP has been terminated.
  • the entry tag is SRGB_B[SID_D]
  • NHLFE The next hop is D, and the outgoing label is SRGB_D[SID_D]
  • the entry tag is SRGB_D[SID_D]
  • NHLFE None. Indicates that the SR-LSP has been terminated.
  • the entry tag is SRGB_D[SID_D-loopback1]
  • NHLFE None. Indicates that the SR-LSP has been terminated.
  • Step S302 For the packet sent to the destination D-loopback1, when the link SD fails, the S node will switch the traffic to the MRT-blue path prepared in advance as the MRT ingress node, that is, start to send the packet along the MT. -blue path SABD forwarding.
  • the S forwards the inbound label SRGB_S[SID_D-loopback1] to the label stack from the top of the stack to the ILM for (MT-default, D-loopback1) entry.
  • the bottom of the stack is ⁇ SID_AB, SID_BD, SRGB_D[SID_D-loopback1] ⁇ (when using adjacency segment list) or ⁇ SRGB_A[SID_A], SRGB_A[SID_B], SRGB_B[SID_D], SRGB_D[SID_D-loopback1] ⁇ (using node segment List)), then sent to the next hop A; if S receives an IP packet, it is based on FTN for (MT-default, D-loopback1) entry forwarding, directly on the IP header on the label stack from From the top of the stack to the bottom of the stack are ⁇ SID_AB, SID_BD, SRGB_D[SID_D-loopback1] ⁇ (when using adjacency segment list) or ⁇ SRGB_A[SID_A], SRGB_A[SID_B], SRGB_B[SID_D], SRGB_D[SID_D-l
  • Step S303 after receiving the packet, the node A sends the packet to the B along the link A-B after the top label SID_AB is played.
  • Step S304 After receiving the packet, the Node B sends the packet to the D along the link B-D after the top label SID_BD is played.
  • the top label SRGB_B[SID_B] is played off, and the next layer label SRGB_B[SID_D] is switched to SRGB_D[SID_D] and then sent to D.
  • Step S305 After receiving the packet, the D node bounces off the top label SRGB_D[SID_D-loopback1], and then forwards the packet based on the IP header. Since the IP header is D-loopback1, the packet is sent to the control plane.
  • the forwarding is continued based on the IP header. Since the IP header is D-loopback1, the packet is sent to the control plane.
  • FIG. 4 is a network topology diagram according to the second embodiment of the present invention.
  • the network runs OSPF, and includes two areas, all nodes are
  • the segment routing function is enabled in the corresponding OSPF instance, where the MRT profiles defined in the embodiment of the present invention are enabled by S, A, B, and C in area1.
  • S acts as the source node to establish an MRT path to the prefix of destination node D (such as a loopback route of D), and then protects the SPF primary path based on this MRT path. Including the following steps:
  • step S401 the SR is enabled in the OSPF instance of all the nodes in area1 and area2. Each node is assigned SRGB.
  • step S402 if the MRT profile defined in this patent is enabled in the OSPF instance on each node of S, A, B, and C in area1, they form an MRT Island in area1.
  • the MT-default topology in the area is obtained based on the SPF algorithm, and the MT-red and MT-blue topologies are obtained based on the MRT algorithm.
  • the MT-default path to the destination node B is S-C-B
  • the MT-red path is also S-C-B
  • the MT-blue path is S-A-B.
  • Each node generates a corresponding prefix entry based on the topology. For example, on the S node, the MT-default next hop in the MT-default topology to the prefix D-loopback0 is C (assuming that the ABR1 in the area1 is the announcement node of the prefix D-loopback0. Then, use the MT-default path to the destination node ABR1 to determine the next hop).
  • prefix D-loopback0 For prefix D-loopback0, suppose we use the Tunnel Endpoint Selection method (refer to RFC7812) to select the remote node as A, assuming S is the GADAG root in MRT Island, and S ⁇ A ⁇ B ⁇ C ⁇ S, then The MRT-blue path to node A is SA, which can be used to protect the MT-default next hop C above. Then the corresponding MRT-FRR path is adjacency segment list ⁇ S-A ⁇ or node segment list ⁇ A ⁇ .
  • the outgoing label corresponding to the MT-default next hop C is SRGB_C[SID_D-loopback0], and the incoming label stack corresponding to the MRT-FRR segment list is ⁇ SRGB_S[SID_A] ⁇ .
  • the next hop is C, and the outgoing label is SRGB_C[SID_D-loopback0]
  • the entry tag is SRGB_S[SID_D-loopback0]
  • the next hop is C, and the outgoing label is SRGB_C[SID_D-loopback0]
  • the entry tag is SRGB_S[SID_A]
  • next hop is A
  • outgoing label is SRGB_A[SID_A]
  • a node A node:
  • the entry tag is SRGB_A[SID_A]
  • NHLFE None. Indicates that the SR-LSP has been terminated.
  • the entry tag is SRGB_A[SID_D-loopback0]
  • next hop is ABR3, and the outgoing label is SRGB_ABR3[SID_D-loopback0]
  • the entry tag is SRGB_ABR3[SID_D-loopback0]
  • next hop is ABR2
  • outgoing label is SRGB_ABR2[SID_D-loopback0]
  • the entry tag is SRGB_ABR2[SID_D-loopback0]
  • next hop is ABR2
  • outgoing label is SRGB_D[SID_D-loopback0]
  • the entry tag is SRGB_D[SID_D-loopback0]
  • NHLFE None. Indicates that the SR-LSP has been terminated.
  • Step S403 For the packet sent to the destination D-loopback0, when the link SC fails, the S node will switch the traffic to the MRT-blue path prepared in advance as the MRT ingress node, that is, start to send the packet along the MT. -blue path SA forwarding.
  • the S receives the MT-default SR tag packet, it is forwarded based on the ILM for (MT-default, D-loopback0) entry, and the inbound tag SRGB_S[SID_D-loopback0] is switched out from the top of the stack to the tag stack.
  • the bottom of the stack is ⁇ SRGB_A[SID_A], SRGB_A[SID_D-loopback0] ⁇ , and then sent to the next hop A; if S receives an IP packet, it is based on the FTN for(MT-default, D-loopback0) table.
  • Item forwarding directly on the IP header on the label stack from the top of the stack to the bottom of the stack is ⁇ SRGB_A[SID_A], SRGB_A[SID_D-loopback0] ⁇ , and then sent to the next hop A.
  • Step S404 after receiving the message, the node A bounces off the top label SRGB_A[SID_A], and continues to exchange the next layer label SRGB_A[SID_D-loopback0] into SRGB_ABR3[SID_D-loopback0] and then sends it to ABR3.
  • Step S405 after receiving the message, the ABR3 node exchanges the top label SRGB_ABR3[SID_D-loopback0] into SRGB_ABR2[SID_D-loopback0] and sends it to ABR2.
  • Step S406 after receiving the message, the ABR2 node exchanges the top label SRGB_ABR2[SID_D-loopback0] into SRGB_D[SID_D-loopback0] and sends it to D.
  • Step S407 After receiving the packet, the D node bounces the top label and then forwards the packet based on the IP header. Since the IP header is D-loopback0, the packet is sent to the control plane.
  • the packet when the packet is forwarded along the MRT path, it is actually forwarded along the corresponding segment list in the default topology. After leaving the MRT Island, it will be forwarded along the shortest path in the default topology. Conforms to the forwarding rules defined in RFC7812.
  • FIG. 5 is a network topology diagram according to Embodiment 3 of the present invention.
  • OSPF is running in a network, and two areas are included. All nodes have segment routing functions enabled in the corresponding OSPF instance, where area1 is S, A, B, and C enable the MRT profile defined in the embodiment of the present invention, and B, E, D, and F in area2 also enable the MRT profile defined in this patent.
  • S acts as the source node to establish an MRT path to the prefix of destination node D (such as a loopback route of D), and then protects the SPF primary path based on this MRT path. Including the following steps:
  • step S501 the SR is enabled in the OSPF instance of all the nodes in area1 and area2. Each node is assigned SRGB.
  • step S502 if the MRT profile defined in this patent is enabled in the OSPF instance on each node of S, A, B, and C in area1, they form an MRT Island in area1.
  • the MT-default topology in the area is obtained based on the SPF algorithm, and the MT-red and MT-blue topologies are obtained based on the MRT algorithm.
  • the MT-default path to the destination node B is S-C-B
  • the MT-red path is also S-C-B
  • the MT-blue path is S-A-B.
  • Each node generates a corresponding prefix entry based on the topology. For example, on the S node, the MT-default next hop in the MT-default topology to the prefix D-loopback0 is C (assuming that the ABR1 in the area1 is the announcement node of the prefix D-loopback0. Then, use the MT-default path to the destination node ABR1 to determine the next hop).
  • prefix D-loopback0 For prefix D-loopback0, suppose we use the Tunnel Endpoint Selection method (refer to RFC7812) to select the remote node as B, assuming S is the GADAG root in MRT Island, and S ⁇ A ⁇ B ⁇ C ⁇ S, then The MRT-blue path to Node B is SAB, which can be used to protect the MT-default next hop C above. Then the corresponding MRT-FRR path is segment list ⁇ A, B ⁇ .
  • the outbound label corresponding to the MT-default next hop C is SRGB_C[SID_D-loopback0]
  • the inbound label stack corresponding to the MRT-FRR segment list is ⁇ SRGB_S[SID_A], SRGB_A[SID_B] ⁇ from the top of the stack to the bottom of the stack.
  • step S503 the MRT profile defined in this patent is also enabled in the OSPF instance on each of the B, E, D, and F nodes in the area2, and then an MRT Island is formed in the area2, and the corresponding MT-default topology is generated. And MT-red and MT-blue topologies. The entries in each topology to the prefix D-loopback 2 are calculated and are not described here.
  • the next hop is C, and the outgoing label is SRGB_C[SID_D-loopback0]
  • the entry tag is SRGB_S[SID_D-loopback0]
  • the next hop is C, and the outgoing label is SRGB_C[SID_D-loopback0]
  • the entry tag is SRGB_S[SID_A]
  • next hop is A
  • outgoing label is SRGB_A[SID_A]
  • a node A node:
  • the entry tag is SRGB_A[SID_A]
  • NHLFE None. Indicates that the SR-LSP has been terminated.
  • the entry tag is SRGB_A[SID_B]
  • next hop is B, and the outgoing label is SRGB_B[SID_B]
  • the entry tag is SRGB_B[SID_B]
  • NHLFE None. Indicates that the SR-LSP has been terminated.
  • the entry tag is SRGB_B[SID_D-loopback0]
  • the next hop is F, and the outgoing label is SRGB_F[SID_D-loopback0]
  • the entry tag is SRGB_F[SID_D-loopback0]
  • the next hop is D, and the outgoing label is SRGB_D[SID_D-loopback0]
  • the entry tag is SRGB_D[SID_D-loopback0]
  • NHLFE None. Indicates that the SR-LSP has been terminated.
  • Step S504 For the packet sent to the destination D-loopback0, when the link SC fails, the S node will switch the traffic to the MRT-blue path prepared in advance as the MRT ingress node, that is, start to send the packet along the MT. -blue path SAB forwarding.
  • the S receives the MT-default SR tag packet, it is forwarded based on the ILM for (MT-default, D-loopback0) entry, and the inbound tag SRGB_S[SID_D-loopback0] is switched out from the top of the stack to the tag stack.
  • the bottom of the stack is ⁇ SRGB_A[SID_A], SRGB_A[SID_B], SRGB_B[SID_D-loopback0] ⁇ , and then sent to the next hop A; if S receives an IP packet, it is based on FTN for(MT-default, D-loopback0) table entry forwarding, directly on the IP header on the label stack from the top of the stack to the bottom of the stack is ⁇ SRGB_A[SID_A], SRGB_A[SID_B], SRGB_B[SID_D-loopback0] ⁇ , and then sent to the next hop A .
  • Step S505 after receiving the message, the node A bounces off the top label SRGB_A[SID_A], and continues to exchange the next layer label SRGB_A[SID_B] into SRGB_B[SID_B] and sends it to B.
  • Step S506 after receiving the message, the Node B bounces off the top label SRGB_B[SID_B], and continues to exchange the next layer label SRGB_B[SID_D-loopback0] into SRGB_F[SID_D-loopback0] Afterwards, send it to F.
  • Step S507 after receiving the message, the F node exchanges the top label SRGB_F[SID_D-loopback0] into SRGB_D[SID_D-loopback0] and sends it to D.
  • Step S508 After receiving the packet, the D node bounces the top label and continues forwarding based on the IP header. Since the IP header is D-loopback 0, the packet is sent to the control plane.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the embodiment of the present invention may be embodied in the form of a software product stored in a storage medium (such as a ROM/RAM, a magnetic disk, an optical disk), and includes a plurality of instructions for making a A terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) performs the methods described in various embodiments of the present invention.
  • a message forwarding device is further provided, which is used to implement the foregoing embodiments and implementation manners, and has not been described again.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the devices described in the following embodiments may be implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 6 is a structural block diagram of a message forwarding apparatus according to an embodiment of the present invention.
  • the apparatus may be applied to a first node.
  • the apparatus includes a receiving module 62, a first searching module 64, and a second searching module. 66 and forwarding module 68, the device is described below:
  • the receiving module 62 is configured to receive a packet to be forwarded, where the destination address of the packet is a second node, and the first searching module 64 is connected to the receiving module 62, and is configured to search for the foregoing path in the pre-generated path.
  • a target path corresponding to the message where the pre-generated path includes a first path, a second path, and a third path, where the first path and the second path are based on maximum redundancy
  • the second tree path is generated by the remainder tree MRT algorithm, and the third path is a path that is generated according to the shortest path first SPF algorithm and reaches the second node.
  • the second searching module 66 is connected to the first searching module 64 and configured.
  • the target segment list corresponding to the target path is searched in the pre-generated segment list, where the pre-generated segment list includes the first segment list and the second segment list.
  • the first segment list includes a first path
  • the second segment list includes a second path.
  • the forwarding module 68 is coupled to the second searching module 66, and configured to search for the forwarding to the second node in the target path.
  • One hop node and forwards the message to the next hop node according to the above target segment list.
  • the forwarding may be performed according to a predetermined forwarding mechanism, which may be a tunnel forwarding mechanism of the multi-layer label stack formed based on the segment list.
  • the pre-generated segment list includes at least one of the following: an adjacency segment list, and a segment list including a node segment; wherein, when the last segment in the pre-generated segment list is an adjacency segment, the adjacency The remote node of the segment is MRT Egress; when the last segment in the pre-generated segment list is a node segment, the node segment is MRT Egress.
  • the apparatus further includes a first processing module configured to determine a protection path for protecting the third path from the first path and the second path according to an MRT algorithm.
  • the foregoing first searching module 64 may search for a target path corresponding to the foregoing message in a pre-generated path by: determining whether a link for reaching the second node in the third path is present. The fault is determined; when the judgment result is that there is no fault, the third path is determined to be the target path; and/or, when the judgment result is that the fault occurs, the protection path is determined as the target path.
  • the apparatus further includes a second processing module, configured to: before receiving the message to be forwarded, perform at least one of: generating a first topology according to the MRT algorithm, from the first topology Determining the first path; generating a second topology according to the MRT algorithm, determining a second path from the second topology; generating a third topology according to the SPF algorithm, and determining a third path from the third topology.
  • a second processing module configured to: before receiving the message to be forwarded, perform at least one of: generating a first topology according to the MRT algorithm, from the first topology Determining the first path; generating a second topology according to the MRT algorithm, determining a second path from the second topology; generating a third topology according to the SPF algorithm, and determining a third path from the third topology.
  • the foregoing second processing module may generate the first topology and the second topology by using the following manner, and generate the third topology: determining the first node.
  • the segment routing SR and the maximum redundancy tree configuration file MRT profile are formed by the first node and other nodes in the area or level where the first node is located; the first node generates the MRT algorithm based on the MRT Island.
  • the first topology and the second topology, and the third topology is generated by running the SPF algorithm based on the area or level.
  • the foregoing MRT profile specifies the predetermined forwarding mechanism, that is, the tunnel forwarding mechanism of the multi-layer outgoing label stack formed based on the segment list.
  • the apparatus further includes a third processing module configured to allocate SRGB for the third topology, and flood the SRGB in all domain or level levels where the first node is located; receive the other nodes
  • the segmentation routing global block SRGB of the third topology records the SRGB of the third topology on the other nodes and continues to advertise the SRGB of the third topology on the other nodes to nodes other than the other nodes.
  • the apparatus further includes a fourth processing module, configured to: when the target path is the third path, the next hop node of the third path is the SR label encapsulation allocated by the destination prefix segment index prefix-sid Go to the packet, and send the encapsulated packet to the next hop node that is found in the third path and forwarded to the second node.
  • a fourth processing module configured to: when the target path is the third path, the next hop node of the third path is the SR label encapsulation allocated by the destination prefix segment index prefix-sid Go to the packet, and send the encapsulated packet to the next hop node that is found in the third path and forwarded to the second node.
  • the forwarding module 68 may forward the packet to the next hop node by determining a segment routing SR outbound label stack of the next hop label forwarding unit HHLFE that includes the target segment list; The SR outgoing label stack of the NHLFE of the target segment list is encapsulated into the foregoing packet, and the encapsulated packet is sent to the next hop node.
  • the forwarding module 68 may encapsulate the SR outgoing label stack of the NHLFE including the target segment list into the foregoing packet: when the packet type of the packet is an Internet Protocol IP packet, The SR outgoing label stack of the NHLFE is pressed on the IP header of the IP packet; and/or, when the packet type of the packet is a fragmented routing SR label packet, the inbound label of the SR label packet is replaced.
  • the SR outbound label stack of the NHLFE when the packet type of the packet is an Internet Protocol IP packet, The SR outgoing label stack of the NHLFE is pressed on the IP header of the IP packet; and/or, when the packet type of the packet is a fragmented routing SR label packet, the inbound label of the SR label packet is replaced.
  • the SR outbound label stack of the NHLFE when the packet type of the packet is an Internet Protocol IP packet, The SR outgoing label stack of the NHLFE is pressed on the IP header of the IP packet; and/or, when the packet type of the packet
  • the forwarding module 68 may determine the segment route SR out label stack of the NHLFE that includes the target segment list by: when the target segment list is In the adjacency segment list, the index SID of each link from the second adjacency segment in the target segment list is determined, and the SID of each link and the MRT Egress of the target path are in the path sequence as the destination prefix segment index prefix-
  • the SR tag assigned by the sid constitutes a label stack from the top of the stack to the bottom of the stack, and the above-mentioned label stack is used as the SR outbound label stack of the NHLFE; when the target segment list is a node segment list, the target segment list is determined from the first
  • the corresponding SR outgoing label of each segment starting from a node segment, the SR outgoing label corresponding to each segment and the SR label assigned to the destination prefix-sid of the target path are sequentially formed from the top of the stack to the top of the stack.
  • the label stack formed by the stack is used as the SR out label stack of the NHLFE; when the target segment list is a segment list including a node segment and an adjacency segment, determining the target segment list from the first one
  • the SR outbound label corresponding to each segment at the beginning of the segment, in the order of the path, the corresponding SR outbound label of each segment and the MRT Egress of the target path are used for the purpose of prefix-sid
  • the assigned SR tags in turn form a label stack from the top of the stack to the bottom of the stack, and the formed label stack is used as the SR outbound label stack of the NHLFE. If the first segment is an adjacency segment, the first segment does not have a corresponding SR out of the label.
  • the forwarding module 68 may determine, by using the following manner, that the MRT Egress of the target path is an SR tag allocated for the destination prefix-sid: determining that the MRT Egress is the S3 allocated by the third topology and the third topology to the second node.
  • the SID of the route; the SID allocated to the third topology based on the MRT Egress and the SID of the route to the second node in the third topology, the MRT Egress of the target path is determined as the SR tag allocated for the destination prefix-sid; when the target segment list is When the first segment is a node segment, the forwarding module 68 may determine an outgoing label corresponding to the first node segment in the target segment list by determining the first node segment in the third topology to the target segment list.
  • the next hop is the SRGB of the third topology and the node SID of the first node segment in the third topology; the next hop based on the first node segment in the third topology to the target segment list is the third
  • the SRGB of the topology allocation and the node SID of the first node segment in the third topology determine the corresponding outgoing label of the first node segment in the target segment list;
  • the forwarding module 68 may determine an outbound tag corresponding to the node segment other than the first segment in the target segment list by determining other nodes in the target segment list.
  • the node where the last segment of the segment is located is the SRGB assigned to the third topology.
  • Node SID in the third topology with other node segments SRGB and other nodesegment assigned to the third topology based on the node where the previous segment of the other nodesegment in the target segment list is located in the target segment list in the third topology
  • the outbound label corresponding to the node segment other than the first segment; wherein the node where the previous segment is located refers to: the node represented by the node segment when the previous segment is a node segment; when the previous one When the segment is an adjacency segment, the node represented by the remote node of the adjacency segment.
  • the MRT Egress of the target path may continue to forward the packet to the second node based on the lower layer label or the IP header, where the MRT Egress and the second node are The same node sends the packet to the control plane of the second node.
  • a message forwarding device is further provided, and the device may be applied to other nodes than the first node, including: a message receiving module, configured to receive a message, where the message is The destination address is the second node; the packet forwarding module is configured to forward the packet, and the packet is forwarded or sent to the control plane based on the top label or the top IP of the packet.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • Embodiments of the present invention also provide a storage medium.
  • the above storage medium may be arranged to store program code for performing the above steps.
  • the foregoing storage medium may include, but is not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • the processor executes the above steps in accordance with the program code already stored in the storage medium.
  • the method described in the embodiment of the present invention fills the gap between the segmentation route and the MRT technology, and provides valuable exploration for the future network evolution.
  • the modules or steps of the above embodiments of the present invention may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices, which may be implemented by computing devices.
  • the executed program code is implemented such that they can be stored in a storage device by a computing device, and in some cases, the steps shown or described can be performed in a different order than here, or they can be
  • Each of the integrated circuit modules is fabricated separately, or a plurality of modules or steps thereof are fabricated into a single integrated circuit module.
  • embodiments of the invention are not limited to any specific combination of hardware and software.
  • the MRT function is introduced in the segment routing network, thereby realizing the combination of the segment routing network and the MRT function.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

一种报文转发方法及装置,该方法包括:第一节点接收待转发的报文,其中,该报文的目的地址为第二节点;第一节点在预先生成的路径中查找与该报文对应的目标路径,其中,该预先生成的路径包括第一路径、第二路径和第三路径,上述第一路径与第二路径是根据MRT算法生成得到的到达第二节点路径,所述第三路径是根据SPF算法生成得到的到达第二节点的路径;当所述目标路径为第一路径或第二路径时,该第一节点在预先生成的段列表中查找与上述目标路径对应的目标段列表;第一节点在目标路径中查找用于转发到第二节点的下一跳节点,并根据上述目标段列表将报文转发到下一跳节点。

Description

报文转发方法及装置 技术领域
本申请涉及但不限于通信领域,尤指一种报文转发方法及装置。
背景技术
最大冗余树(Maximally Redundant Trees,简称为MRT)快速重路由(FastRe-Route,简称为FRR)是一种较新的FRR技术,该技术中使用两个最大限度不同的转发拓扑,对单点的链路或节点故障能提供100%的保护。MRT架构定义了两种转发机制,即标签分发协议(Label Distribution Protocol,简称为LDP)转发机制和网络协议-隧道(IP-tunnel)转发机制。LDP转发机制通过不同的标签来区分是默认拓扑转发行为还是MRT转发行为,使得转发平面不作任何升级即可支持MRT-FRR。IP-tunnel转发机制则需要浪费专用的MRT loopback地址来支持转发,同样也使得转发平面不作任何升级即可支持MRT-FRR。相比而言,LDP转发机制更加合理,所以MRT架构的默认最大冗余树配置文件(default MRT Profile)中采用的就是LDP转发机制,目前尚未定义其它MRT Profiles。
分段路由技术将使得一个节点可以为报文指定其转发路径,而不是按一般的最短路径转发,通过在报文中附加由段标识(Segment ID)组成的段列表(Segment List)相关的信息,不需要在中间节点上为维护每路径的状态信息。分段路由主要扩展IGP(Interior Gateway Protocol,内部网关协议)以支持通告和学习Segment ID。一般在部署了分段路由的网络中,就不再需要部署LDP与基于流量工程扩展的资源预留协议(Resource ReSerVation Protocol-Traffic Extension,简称为RSVP-TE)了。在分段路由网络中,已知的FRR技术有拓扑无关的无环替换路径(Topology Independent Loop Free Alternate,简称为TI-LFA),但是TI-LFA定义的保护规则十分复杂并且还不成熟。
发明概述
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供了一种报文转发方法及装置,以实现分段路由网络与MRT功能结合。
根据本发明的一个实施例,提供了一种报文转发方法,包括:第一节点接收待转发的报文,其中,所述报文的目的地址为第二节点;所述第一节点在预先生成的路径中查找与所述报文对应的目标路径,其中,所述预先生成的路径包括第一路径、第二路径和第三路径,所述第一路径与所述第二路径是根据最大冗余树MRT算法生成得到的到达所述第二节点路径,所述第三路径是根据最短路径优先SPF算法生成得到的到达所述第二节点的路径;当所述目标路径为所述第一路径或所述第二路径时,所述第一节点在预先生成的段列表中查找与所述目标路径对应的目标段列表,其中,所述预先生成的段列表包括第一段列表和第二段列表,所述第一段列表包括所述第一路径,所述第二段列表包括所述第二路径;所述第一节点在所述目标路径中查找用于转发到所述第二节点的下一跳节点,并根据所述目标段列表将所述报文转发到所述下一跳节点。
在一实施方式中,所述预先生成的段列表包括以下至少之一:adjacency segment list(邻接段列表)、包含有node segment(节点段)的segment list(段列表);其中,当所述预先生成的段列表中最后一个segment(段)为adjacency segment(邻接段)时,所述adjacency segment的remote node(远端节点)为MRT Egress(出口);当所述预先生成的段列表中最后一个segment为node segment时,所述node segment为MRT Egress。
在一实施方式中,所述方法还包括:所述第一节点按照所述MRT算法从所述第一路径和所述第二路径中确定用于保护所述第三路径的保护路径。
在一实施方式中,所述第一节点在预先生成的路径中查找与所述报文对应的目标路径包括:所述第一节点判断所述第三路径中的用于到达所述第二节点的链路是否出现故障;在判断结果为没有出现故障时,所述第一节点确定所述第三路径为所述目标路径;和/或,在判断结果为出现故障 时,所述第一节点确定所述保护路径为所述目标路径。
在一实施方式中,所述第一节点在接收待转发的所述报文之前,所述方法还包括以下至少之一:所述第一节点根据所述MRT算法生成得到第一拓扑,从所述第一拓扑中确定所述第一路径;所述第一节点根据所述MRT算法生成得到第二拓扑,从所述第二拓扑中确定所述第二路径;所述第一节点根据所述SPF算法生成得到第三拓扑,从所述第三拓扑中确定所述第三路径。
在一实施方式中,所述第一节点根据所述MRT算法生成得到所述第一拓扑和所述第二拓扑,以及根据所述SPF算法生成得到所述第三拓扑包括:所述第一节点确定所述第一节点所在的MRT Island(岛),其中,所述MRT Island是通过在所述第一节点以及与所述第一节点处于同一域area或同一层次level的其他节点上的开放最短路径优先OSPF或者中间系统到中间系统ISIS实例下使能分段路由SR以及最大冗余树配置文件MRT profile后,在所述第一节点所在的area或level内由所述第一节点和所述其他节点相互协商形成的;所述第一节点基于所述MRT Island运行所述MRT算法生成所述第一拓扑和所述第二拓扑,以及,基于所述area或level运行所述SPF算法生成所述第三拓扑。
在一实施方式中,所述MRT profile中指定采用基于段列表形成的多层出标签栈的隧道转发机制。
在一实施方式中,所述方法还包括:所述第一节点为所述第三拓扑分配SRGB(Segment Routing Global Block,分段路由全局块),并将所述SRGB在所述第一节点所在的所有域area或层次level内泛洪;所述第一节点接收其他节点上的所述第三拓扑的SRGB,记录所述其他节点上的所述第三拓扑的SRGB以及将所述其他节点上的所述第三拓扑的SRGB继续通告给除所述其他节点之外的节点。
在一实施方式中,所述方法还包括:当所述目标路径为所述第三路径时,所述第一节点将所述第三路径的下一跳节点为目的前缀段索引prefix-sid分配的SR标签封装到所述报文上,并将封装后的报文发送到在所述第三路径中查找到的用于转发到所述第二节点的下一跳节点。
在一实施方式中,所述第一节点根据所述目标段列表将所述报文转发到所述下一跳节点包括:所述第一节点确定包含了所述目标段列表的下一跳标签转发单元HHLFE的分段路由SR出标签栈;所述第一节点将包含了所述目标段列表的NHLFE的SR出标签栈封装到所述报文上,并将封装后的报文发送到所述下一跳节点。
在一实施方式中,所述第一节点将包含了所述目标段列表的所述NHLFE的SR出标签栈封装到所述报文上包括:当所述报文的报文类型为互联网协议IP报文时,所述第一节点在所述IP报文的IP头上压上所述NHLFE的SR出标签栈;和/或,当所述报文的报文类型为分段路由SR标签报文时,所述第一节点将所述SR标签报文的入标签替换成所述NHLFE的SR出标签栈。
在一实施方式中,所述第一节点确定包含了所述目标段列表的所述NHLFE的分段路由SR出标签栈包括:当所述目标段列表为adjacency segment list时,确定所述目标段列表中从第二个adjacency segment开始的每段链路的索引SID,按路径顺序将所述每段链路的SID以及所述目标路径的MRT Egress为目的前缀段索引prefix-sid分配的SR标签依次组成从栈顶到栈底的标签栈,将组成的所述标签栈作为所述NHLFE的SR出标签栈;当所述目标段列表为node segment list时,确定所述目标段列表中从第一个node segment开始的每段对应的SR出标签,按路径顺序将所述每段对应的SR出标签以及所述目标路径的MRT Egress为目的prefix-sid分配的SR标签依次组成从栈顶到栈底的标签栈,将组成的所述标签栈作为所述NHLFE的SR出标签栈;当所述目标段列表为包含有node segment和adjacency segment的segment list时,确定所述目标段列表中从第一个segment开始的每段对应的SR出标签,按路径顺序将所述每段对应的SR出标签以及所述目标路径的MRT Egress为目的prefix-sid分配的SR标签依次组成从栈顶到栈底的标签栈,将组成的所述标签栈作为所述NHLFE的SR出标签栈,若所述第一个segment为adjacency segment,则所述第一个segment没有对应的SR出标签。
在一实施方式中,所述方法包括以下至少之一:所述第一节点通过如 下方式确定所述目标路径的MRT Egress为目的prefix-sid分配的SR标签:确定所述MRT Egress为第三拓扑分配的SRGB和所述第三拓扑内至所述第二节点的路由的SID;基于所述MRT Egress为所述第三拓扑分配的SRGB和所述第三拓扑内至所述第二节点的路由的SID确定所述目标路径的MRT Egress为目的prefix-sid分配的SR标签;当所述目标段列表的第一个segment为node segment时,所述第一节点通过如下方式确定所述目标段列表中第一个node segment对应的出标签:确定所述第三拓扑中至所述目标段列表中的第一个node segment的下一跳为所述第三拓扑分配的SRGB和所述第一个node segment在所述第三拓扑中的节点SID;基于所述第三拓扑中至所述目标段列表中的第一个node segment的下一跳为所述第三拓扑分配的SRGB和所述第一个node segment在所述第三拓扑中的节点SID确定所述目标段列表中第一个node segment的对应的出标签;当所述目标段列表为包含有node segment的segment list时,所述第一节点通过如下方式确定所述目标段列表中除第一个segment之外的其他node segment对应的出标签:确定所述目标段列表中其他node segment的上一个segment所在的节点为所述第三拓扑分配的SRGB和所述其他node segment在所述第三拓扑中的节点SID;基于所述目标段列表中其他node segment的上一个segment所在的节点为所述第三拓扑分配的SRGB和所述其他node segment在所述第三拓扑中的节点SID确定所述目标段列表中除第一个segment之外的其他node segment对应的出标签;其中,所述上一个segment所在的节点是指:当所述上一个segment为node segment时,所述node segment所表示的节点;或者,当所述上一个segment为adjacency segment时,所述adjacency segment的remote node所表示的节点。
在一实施方式中,所述方法还包括:所述目标路径的MRT Egress在剥完所述目标段列表的标签栈后,继续基于下层标签或IP头将所述报文向所述第二节点转发,其中,当所述MRT Egress与所述第二节点为同一节点时,将所述报文上送至所述第二节点的控制平面。
根据本发明的一个实施例,还提供了一种报文转发装置,所述装置应用于第一节点中,包括:接收模块,设置为接收待转发的报文,其中,所 述报文的目的地址为第二节点;第一查找模块,设置为在预先生成的路径中查找与所述报文对应的目标路径,其中,所述预先生成的路径包括第一路径、第二路径和第三路径,所述第一路径与所述第二路径是根据最大冗余树MRT算法生成得到的到达所述第二节点路径,所述第三路径是根据最短路径优先SPF算法生成得到的到达所述第二节点的路径;第二查找模块,设置为当所述目标路径为所述第一路径或所述第二路径时,在预先生成的段列表中查找与所述目标路径对应的目标段列表,其中,所述预先生成的段列表包括第一段列表和第二段列表,所述第一段列表包括所述第一路径,所述第二段列表包括所述第二路径;转发模块,设置为在所述目标路径中查找用于转发到所述第二节点的下一跳节点,并根据所述目标段列表将所述报文转发到所述下一跳节点。
根据本发明的又一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行上述各步骤的程序代码。
通过本发明实施例,在分段路由网络中引入MRT功能,从而实现了分段路由网络与MRT功能结合。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1是根据本发明实施例的报文转发方法的流程图;
图2是根据本发明实施方式的MRT Profile选项示意图;
图3是根据本发明实施例一的网络拓扑图;
图4是根据本发明实施例二的网络拓扑图;
图5是根据本发明实施例三的网络拓扑图;
图6是根据本发明实施例的报文转发装置的结构框图。
详述
下文中将参考附图并结合实施例来详细说明本申请。需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用 于区别类似的对象,而不必用于描述特定的顺序或先后次序。
在本实施例中提供了一种报文转发方法,图1是根据本发明实施例的报文转发方法的流程图,如图1所示,该流程包括如下步骤:
步骤S102,第一节点接收待转发的报文,其中,该报文的目的地址为第二节点;
步骤S104,第一节点在预先生成的路径中查找与该报文对应的目标路径,其中,该预先生成的路径包括第一路径、第二路径和第三路径,上述第一路径与第二路径是根据最大冗余树MRT算法生成得到的到达第二节点路径,所述第三路径是根据最短路径优先SPF算法生成得到的到达第二节点的路径;
步骤S106,当所述目标路径为第一路径或第二路径时,该第一节点在预先生成的段列表中查找与上述目标路径对应的目标段列表,其中,该预先生成的段列表包括第一段列表和第二段列表,该第一段列表包括第一路径,该第二段列表包括第二路径;
步骤S108,第一节点在目标路径中查找用于转发到第二节点的下一跳节点,并根据上述目标段列表将报文转发到下一跳节点。
其中,上述的第一节点可以是MRT Island内的任何节点,上述第二节点可以是SR Domain(域)内的任何节点,该第二节点可能处于所述MRT Island内或MRT Island外。
在上述实施例中,第一节点在将报文转发到下一跳节点时,可以根据预定转发机制进行转发,该预定转发机制可以是基于段列表形成的多层出标签栈的隧道转发机制。
通过上述步骤,在分段路由网络中引入MRT功能,从而实现了分段路由网络与MRT功能结合。
在一实施例中,上述的各段列表可以是纯粹的adjacency segment list,也可以是包含有node segment的segment list。其中,当上述段列表中最后一个segment为相应所述路径的MRT Egress,即当所述最后一个segment为adjacency segment时,adjacency segment的remote node为MRT Egress;当 所述最后一个segment为node segment时,所述node segment为MRT Egress。
在一实施例中,上述方法还包括:第一节点按照MRT算法从第一路径和所述第二路径中确定用于保护第三路径的保护路径。在本实施例中,在确定保护路径时,可以确定第一路径为保护路径,也可以确定第二路径为保护路径,确定哪个路径作为保护路径,根据实际情况进行确定。
在一实施例中,上述第一节点在预先生成的路径中查找与上述报文对应的目标路径包括:第一节点判断第三路径中的用于到达第二节点的链路是否出现故障;在判断结果为没有出现故障时,第一节点确定上述第三路径为目标路径;和/或,在判断结果为出现故障时,第一节点确定上述保护路径为目标路径。在本实施例中,当链路没有故障时,可以继续按照默认的路径进行报文转发,当链路出现故障后,使用保护路径进行报文转发。
在一实施例中,上述第一节点在接收待转发的上述报文之前,上述方法还包括以下至少之一:第一节点根据MRT算法生成得到第一拓扑,从该第一拓扑中确定第一路径;第一节点根据MRT算法生成得到第二拓扑,从该第二拓扑中确定第二路径;第一节点根据SPF算法生成得到第三拓扑,从该第三拓扑中确定第三路径。在本实施例中,上述的第一拓扑和第二拓扑可以一个是MRT-red(MRT-红色)拓扑,一个是MRT-blue(MRT-蓝色)拓扑;上述的第三拓扑可以是MT-default(MT-默认)拓扑。
在一实施例中,上述第一节点根据MRT算法生成得到上述第一拓扑和第二拓扑,以及根据SPF算法生成得到上述第三拓扑包括:第一节点确定上述第一节点所在的MRT Island,其中,该MRT Island是通过在第一节点以及与第一节点处于同一域area或同一层次level的其他节点上的开放最短路径优先OSPF或者中间系统到中间系统ISIS实例下使能分段路由SR以及最大冗余树配置文件MRT profile后,在第一节点所在的area或level内由第一节点和其他节点相互协商形成的;第一节点基于MRT Island运行MRT算法生成第一拓扑和第二拓扑,以及,基于area或level运行SPF算法生成第三拓扑;第一节点处于MRT Island内,第二节点处于SR Domain内。第二节点可能处于MRT Island内,也可能处于MRT Island外。
在一实施例中,上述MRT profile中指定采用上述预定转发机制,即,采用基于段列表形成的多层出标签栈的隧道转发机制。
在一实施例中,上述方法还包括:第一节点为第三拓扑分配SRGB,并将该SRGB在第一节点所在的所有域area或层次level内泛洪;第一节点接收其他节点上的第三拓扑的分段路由全局块SRGB,记录该其他节点上的第三拓扑的SRGB以及将其他节点上的第三拓扑的SRGB继续通告给除其他节点之外的节点。在本实施例中,各节点都可以为第三拓扑生成一个SRGB,且不同的节点生成的SRGB是独立的。
在一实施例中,上述方法还包括:当目标路径为第三路径时,第一节点将上述第三路径的下一跳节点为目的前缀段索引prefix-sid分配的SR标签封装到报文上,并将封装后的报文发送到在第三路径中查找到的用于转发到第二节点的下一跳节点。在本实施例中,主要针对的是路径未发生故障的情况,即仍旧采用默认的路径进行报文转发,在该情况下所进行的标签封装操作。
在一实施例中,上述第一节点根据目标段列表将报文转发到上述下一跳节点包括:第一节点确定包含了上述目标段列表的下一跳标签转发单元(Next Hop Label Forwarding Entry,简称为NHLFE)的分段路由SR出标签栈;该第一节点将包含了上述目标段列表的NHLFE的SR出标签栈封装到报文上,并将封装后的报文发送到下一跳节点。在本实施例中,主要针对的是路径出现故障时,采用保护路径进行报文转发,在该情况下进行的标签封装操作。
在一实施例中,上述第一节点将包含了目标段列表的NHLFE的SR出标签栈封装到上述报文上包括:当上述报文的报文类型为互联网协议IP报文时,第一节点在IP报文的IP头上压上NHLFE的SR出标签栈;和/或,当上述报文的报文类型为分段路由SR标签报文时,第一节点将SR标签报文的入标签替换成NHLFE的SR出标签栈。
在一实施例中,上述第一节点确定包含了目标段列表的NHLFE的分段路由SR出标签栈包括:当上述目标段列表为adjacency segment list时,确定上述目标段列表中从第二个adjacency segment开始的每段链路的索引 SID,按路径顺序将每段链路的SID以及目标路径的MRT Egress为目的前缀段索引prefix-sid分配的SR标签依次组成从栈顶到栈底的标签栈,将组成的该标签栈作为NHLFE的SR出标签栈;当目标段列表为node segment list时,确定目标段列表中从第一个node segment开始的每段对应的SR出标签,按路径顺序将所述每段对应的SR出标签以及目标路径的MRT Egress为目的prefix-sid分配的SR标签依次组成从栈顶到栈底的标签栈,将组成的标签栈作为所述NHLFE的SR出标签栈;当目标段列表为包含有node segment和adjacency segment的segment list时,确定目标段列表中从第一个segment开始的每段对应的SR出标签,按路径顺序将每段对应的SR出标签以及目标路径的MRT Egress为目的prefix-sid分配的SR标签依次组成从栈顶到栈底的标签栈,将组成的标签栈作为所述NHLFE的SR出标签栈,若上述第一个segment为adjacency segment,则上述第一个segment没有对应的SR出标签。
在一实施例中,上述方法包括以下至少之一:第一节点通过如下方式确定所述目标路径的MRT Egress为目的prefix-sid分配的SR标签:确定MRT Egress为第三拓扑分配的SRGB和第三拓扑内至第二节点的路由的SID;基于MRT Egress为第三拓扑分配的SRGB和第三拓扑内至第二节点的路由的SID确定目标路径的MRT Egress为目的prefix-sid分配的SR标签;当目标段列表的第一个segment为node segment时,第一节点通过如下方式确定目标段列表中第一个node segment对应的出标签:确定第三拓扑中至目标段列表中的第一个node segment的下一跳为第三拓扑分配的SRGB和第一个node segment在第三拓扑中的节点SID;基于第三拓扑中至目标段列表中的第一个node segment的下一跳为第三拓扑分配的SRGB和所述第一个node segment在所述第三拓扑中的节点SID确定目标段列表中第一个node segment的对应的出标签;当目标段列表为包含有node segment的segment list时,第一节点通过如下方式确定目标段列表中除第一个segment之外的其他node segment对应的出标签:确定目标段列表中其他node segment的上一个segment所在的节点为第三拓扑分配的SRGB和其他node segment在第三拓扑中的节点SID;基于该目标段列表中其他node segment的上一个segment所在的节点为第三拓扑分配的SRGB和其他node segment 在第三拓扑中的节点SID确定目标段列表中除第一个segment之外的其他node segment对应的出标签;其中,上述上一个segment所在的节点是指:当上一个segment为node segment时,上述node segment所表示的节点;当上一个segment为adjacency segment时,上述adjacency segment的remote node所表示的节点。
在一实施例中,上述方法还包括:目标路径的MRT Egress在剥完目标段列表的标签栈后,继续基于下层标签或IP头将报文向第二节点转发,其中,当该MRT Egress与第二节点为同一节点时,将报文上送至第二节点的控制平面。
下面对目标路径中的transit节点的报文转发操作进行说明:在一实施例中,当上述目标段列表为adjacency segment list时,该目标路径中的每个transit节点依次弹掉报文的顶层标签,并将弹掉了顶层标签后的报文发送给与所述顶层标签对应的下一跳;和/或,当目标段列表为node segment list时,目标段列表中的每个transit node segment,弹掉报文的至该node segment自身的顶层标签,并继续将下一层标签交换成至下一个node segment的下一跳对应的出标签后发送给相应的下一跳。
下面结合实施例对本申请进行说明:
在本发明实施例中为MRT架构新增一种MRT Profile,使用分段路由转发机制,通过分段路由转发机制来区分默认拓扑转发行为和MRT拓扑转发行为。
本发明实施例中所述的基于分段路由转发机制的MRT-FRR方法包括以下步骤:
第一步,定义新的MRT配置文件MRT Profile,与默认的MRT配置文件default MRT Profile相比,差异主要体现在该新的MRT Profile中使用的是MRT SR-tunnel转发机制,其中,SR-tunnel是指基于segment list形成的多层出标签栈的转发行为,比如将MRT路径中包含的多个节点看成是一个segment list,则报文沿MRT路径转发的行为实际上就是沿segment list指定节点的分段路由转发行为。为了让报文严格按照MRT路径转发,该segment list一般为adjacency segment list。也可以为包含node segment的 segment list,此时报文将不严格按照MRT路径转发。
第二步,在IGP area/level内各节点(可以是仅部分节点)上相应IGP实例下使能MRT并且支持上述新的MRT Profile,针对上述新的MRT Profile生成相应的MRT Island。基于该MRT Island运行MRT算法生成相应的MRT-red拓扑与MRT-blue拓扑,相应的MT-ID分别记为MT-red和MT-blue。另外我们将基于SPF算法生成的默认拓扑对应的MT-ID记为MT-default。
第三步,MRT Island内的源节点S为MRT Island内或MRT Island外的prefix计算SPF主下一跳以及MRT-blue或MRT-red路径,即(MT-default,prefix)中将包含SPF主下一跳,(MT-blue,prefix)中将包含MRT-blue路径,(MT-red,prefix)中将包含MRT-red路径。并且通过MRT算法确定到底是上述MRT-blue路径还是MRT-red路径保护上述SPF主下一跳。
根据(MT-default,prefix)将生成相应的转发等价类至下一跳标签转发单元(Forwarding Equivalence Class to NHLFE,简称为FTN)表项,NHLFE包含上述SPF主下一跳及相应的SR出标签,也包含上述选中用于保护SPF主下一跳的MRT-red路径或MRT-blue路径,MRT路径采用segment list形式表示。根据(MT-default,prefix)也生成相应的入标签映射(Incoming Label Map,简称为ILM)表项,其SR入标签基于(MT-default,prefix)相应的prefix-sid与S节点的SRGB来计算,NHLFE与上述FTN表项相同。如果prefix为S节点本地或直连prefix,则没有NHLFE信息。
第四步,故障发生时,可以按照如下方法沿MRT路径转发IP或SR标签单播流量:
MRT ingress节点基于(MT-default,prefix)相应的ILM表项指导SR标签报文转发,或基于FTN表项指导IP报文转发,将流量切换至NHLFE中包含的MRT备份路径,比如MRT-red路径,则将SR标签报文的顶层SR入标签交换成segment list中最后一个segment相应的节点为目的prefix分配的SR标签后(最后一个segment若为Node Segment,则其相应的节点就为该Node;最后一个segment若为Adjacency Segment,则其相应的节点为Remote Node-id所表示的节点)再压上segment list所对应的SR出标签栈后 发往第一个segment,或将IP报文直接压上segment list所对应的SR出标签栈后发往第一个segment。
MRT transit节点基于(MT-default,prefix)相应的ILM表项指导报文转发,继续将SR入标签交换成对应下一个segment的SR出标签后发往下一个segment。
MRT egress节点基于(MT-default,prefix)相应的ILM表项指导报文转发,它将首先弹掉以自身作为最后一个segment对应的SR标签,然后再基于下一层为目的prefix分配的SR标签转发,此时将继续交换成默认拓扑下一跳节点对应的SR出标签后向该下一跳节点转发,或者继续弹掉SR入标签后基于报文IP头转发。
上述MRT ingress节点上MRT备份路径为MRT-blue路径时是类似的,不再赘述。
下面结合附图对技术方案的实施作进一步的详细描述:
本实施方式中,首先对本申请中使用的MRT Profile进行说明:
图2是根据本发明实施方式的MRT Profile选项示意图,如图2所示的MRT Profile,其与RFC7812中定义的default MRT Profile基本相同,区别是MRT Forwarding Mechanism选项为MRT SR-tunnel Option。
实施例一
本实施例将描述目的prefix处于MRT Island内的MRT路径转发流程,图3是根据本发明实施例一的网络拓扑图,如图3所示,网络中运行开放最短路径优先(Open shortest Path First,简称为OSPF),所有节点均处于同一area内,均在相应的OSPF实例下使能分段路由功能以及使能本专利所定义的MRT Profile。S作为源节点建立至目的节点D的prefix(比如D的某个loopback路由)的MRT路径,然后基于此MRT路径保护SPF主路径。包括如下步骤:
步骤S301,S、A、B、D各节点上的OSPF实例下使能SR以及本发明实施例中所定义的MRT Profile,则它们在area内形成一个MRT Island。
各节点上将基于SPF算法得到area内的MT-default拓扑,以及基于MRT算法得到MT-red和MT-blue拓扑。比如S节点上,至目的节点D的MT-default路径为S-D,MT-red路径也为S-D,而MT-blue路径为S-A-B-D。
各节点上基于拓扑生成相应的prefix表项,比如S节点上,MT-default拓扑内至目的节点D的loopback1路由的MT-default下一跳为D,并且选中MT-blue拓扑中给出的MT-blue路径来保护MT-default下一跳D,那么相应的MRT-FRR路径为segment list{A,B,D}。
假设D节点在MT-default拓扑内的Node-SID为SID_D,D的SRGB为SRGB_D,其它节点类似。假设链路S-A的Adjacency-SID为SID_SA,链路A-B的Adjacency-SID为SID_AB,链路B-D的Adjacency-SID为SID_BD。
则上述MT-default下一跳D对应的出标签为SRGB_D[SID_D-loopback1],上述MRT-FRR segment list如果采用adjacency segment list{adj-S-A,adj-A-B,adj-B-D}表示,则对应的入标签栈从栈顶至栈底为{SID_SA,SID_AB,SID_BD};如果采用node segment list{A,B,D}表示,则对应的入标签栈从栈顶至栈底为{SRGB_S[SID_A],SRGB_A[SID_B],SRGB_B[SID_D]}。
下面对节点上的表项进行举例说明:
S节点:
FTN for(MT-default,D-loopback1)
主NHLFE:下一跳为D,出标签为SRGB_D[SID_D-loopback1]
备NHLFE:(根据adjacency segment list计算)
SID_SA,顶层标签,需查找ILM换成出向转发信息
SID_AB
SID_BD
底层标签SRGB_D[SID_D-loopback1]
或备NHLFE:(根据node segment list计算)
SRGB_S[SID_A],顶层标签,需查找ILM换成出向转发信息
SRGB_A[SID_B]
SRGB_B[SID_D]
底层标签SRGB_D[SID_D-loopback1]
ILM for(MT-default,SID_D-loopback1)
入标签为SRGB_S[SID_D-loopback1]
主NHLFE:下一跳为D,出标签为SRGB_D[SID_D-loopback1]
备NHLFE:(若根据adjacency segment list计算)
SID_SA,顶层标签,需查找ILM换成出向转发信息
SID_AB
SID_BD
底层标签SRGB_D[SID_D-loopback1]
或备NHLFE:(若根据node segment list计算)
SRGB_S[SID_A],顶层标签,需查找ILM换成出向转发信息
SRGB_A[SID_B]
SRGB_B[SID_D]
底层标签SRGB_D[SID_D-loopback1]
ILM for(MT-default,SID_SA)
入标签为SID_SA
NHLFE:弹掉标签,沿链路S-A转发
ILM for(MT-default,SID_A)
入标签为SRGB_S[SID_A]
NHLFE:下一跳为A,出标签为SRGB_A[SID_A]
A节点:
ILM for(MT-default,SID_AB)
入标签为SID_AB
NHLFE:弹掉标签,沿链路A-B转发
ILM for(MT-default,SID_A)
入标签为SRGB_A[SID_A]
NHLFE:无。表示SR-LSP已经终结。
ILM for(MT-default,SID_B)
入标签为SRGB_A[SID_B]
NHLFE:下一跳为B,出标签为SRGB_B[SID_B]
B点:
ILM for(MT-default,SID_BD)
入标签为SID_BD
NHLFE:弹掉标签,沿链路B-D转发
ILM for(MT-default,SID_B)
入标签为SRGB_B[SID_B]
NHLFE:无。表示SR-LSP已经终结。
ILM for(MT-default,SID_D
入标签为SRGB_B[SID_D]
NHLFE:下一跳为D,出标签为SRGB_D[SID_D]
D节点:
ILM for(MT-default,SID_D)
入标签为SRGB_D[SID_D]
NHLFE:无。表示SR-LSP已经终结。
ILM for(MT-default,D-loopback1)
入标签为SRGB_D[SID_D-loopback1]
NHLFE:无。表示SR-LSP已经终结。
步骤S302,对于发往目的地D-loopback1的报文,当链路S-D出现故障时,S节点将作为MRT ingress节点将流量切换至事先准备好的MRT-blue路径,即开始将报文沿MT-blue路径S-A-B-D转发。
如果S收到的是MT-default SR标签报文,则它基于ILM for(MT-default,D-loopback1)表项转发,将入标签SRGB_S[SID_D-loopback1]交换成出标签栈从栈顶至栈底为{SID_AB,SID_BD,SRGB_D[SID_D-loopback1]}(使用adjacency segment list时)或{SRGB_A[SID_A],SRGB_A[SID_B],SRGB_B[SID_D],SRGB_D[SID_D-loopback1]}(使用node segment list时),然后发往下一跳A;如果S收到的是IP报文,则它基于FTN for(MT-default,D-loopback1)表项转发,直接在IP头上压上标签栈从栈顶至栈底为{SID_AB,SID_BD,SRGB_D[SID_D-loopback1]}(使用adjacency segment list时)或{SRGB_A[SID_A],SRGB_A[SID_B],SRGB_B[SID_D],SRGB_D[SID_D-loopback1]}(使用node segment list时),然后发往下一跳A。
步骤S303,A节点收到报文后,弹掉顶层标签SID_AB后将报文沿链路A-B发给B。
或弹掉顶层标签SRGB_A[SID_A],继续将下一层标签SRGB_A[SID_B]交换成SRGB_B[SID_B]后发给B。
步骤S304,B节点收到报文后,弹掉顶层标签SID_BD后将报文沿链路B-D发给D。
或弹掉顶层标签SRGB_B[SID_B],继续将下一层标签SRGB_B[SID_D]交换成SRGB_D[SID_D]后发给D。
步骤S305,D节点收到报文后,弹掉顶层标签SRGB_D[SID_D-loopback1]后,基于IP头继续转发,由于IP头为D-loopback1,则报文上送控制平面。
或连续弹掉顶层标签SRGB_D[SID_D]与SRGB_D[SID_D-loopback1]后,基于IP头继续转发,由于IP头为D-loopback1,则报文上送控制平面。
根据上述实施例,可知报文在沿MRT路径转发时,实际上是沿默认拓 扑内相应的segment list转发。
实施例二
本实施例将描述目的prefix处于MRT Island外的MRT路径转发流程,图4是根据本发明实施例二的网络拓扑图,如图4所示,网络中运行OSPF,包含两个area,所有节点均在相应的OSPF实例下使能分段路由功能,其中area1中的S、A、B、C使能本发明实施例中所定义的MRT Profile。S作为源节点建立至目的节点D的prefix(比如D的某个loopback路由)的MRT路径,然后基于此MRT路径保护SPF主路径。包括如下步骤:
步骤S401,area1与area2内所有节点的OSPF实例下均使能SR。各节点分配SRGB。
步骤S402,area1内的S、A、B、C各节点上的OSPF实例下使能本专利所定义的MRT Profile,则它们在area1内形成一个MRT Island。
各节点上将基于SPF算法得到area内的MT-default拓扑,以及基于MRT算法得到MT-red和MT-blue拓扑。比如S节点上,至目的节点B的MT-default路径为S-C-B,MT-red路径也为S-C-B,而MT-blue路径为S-A-B。
各节点上基于拓扑生成相应的prefix表项,比如S节点上,MT-default拓扑内至prefix D-loopback0的MT-default下一跳为C(假设在area1内ABR1作为prefix D-loopback0的通告节点,则使用至目的节点ABR1的MT-default路径来确定下一跳)。对于prefix D-loopback0,假设我们使用Tunnel Endpoint Selection方法(参考RFC7812)选择的远端节点为A,假设MRT Island中S作为GADAG root,且S<<A<<B<<C<<S,则至节点A的MRT-blue路径为S-A,它可用来保护上述MT-default下一跳C。那么相应的MRT-FRR路径为adjacency segment list{S-A}或node segment list{A}。
上述MT-default下一跳C对应的出标签为SRGB_C[SID_D-loopback0],上述MRT-FRR segment list对应的入标签栈为{SRGB_S[SID_A]}。同样, 我们选择几个有代表性的节点上的表项罗列如下,为简洁起见,我们仅描述MRT-FRR路径使用node segment list表示时的表项内容:
S节点:
FTN for(MT-default,D-loopback0)
主NHLFE:
下一跳为C,出标签为SRGB_C[SID_D-loopback0]
备NHLFE:
SRGB_S[SID_A],顶层标签,需查找ILM换成出向转发信息
底层标签SRGB_A[SID_D-loopback0]
ILM for(MT-default,SID_D-loopback0)
入标签为SRGB_S[SID_D-loopback0]
主NHLFE:
下一跳为C,出标签为SRGB_C[SID_D-loopback0]
备NHLFE:
SRGB_S[SID_A],顶层标签,需查找ILM换成出向转发信息
底层标签SRGB_A[SID_D-loopback0]
ILM for(MT-default,SID_A)
入标签为SRGB_S[SID_A]
NHLFE:
下一跳为A,出标签为SRGB_A[SID_A]
A节点:
ILM for(MT-default,SID_A)
入标签为SRGB_A[SID_A]
NHLFE:无。表示SR-LSP已经终结。
ILM for(MT-default,SID_D-loopback0)
入标签为SRGB_A[SID_D-loopback0]
NHLFE:
下一跳为ABR3,出标签为SRGB_ABR3[SID_D-loopback0]
ABR3点:
ILM for(MT-default,SID_D-loopback0)
入标签为SRGB_ABR3[SID_D-loopback0]
NHLFE:
下一跳为ABR2,出标签为SRGB_ABR2[SID_D-loopback0]
ABR2点:
ILM for(MT-default,SID_D-loopback0)
入标签为SRGB_ABR2[SID_D-loopback0]
NHLFE:
下一跳为ABR2,出标签为SRGB_D[SID_D-loopback0]
D节点:
ILM for(MT-default,D-loopback0)
入标签为SRGB_D[SID_D-loopback0]
NHLFE:无。表示SR-LSP已经终结。
步骤S403,对于发往目的地D-loopback0的报文,当链路S-C出现故障时,S节点将作为MRT ingress节点将流量切换至事先准备好的MRT-blue路径,即开始将报文沿MT-blue路径S-A转发。
如果S收到的是MT-default SR标签报文,则它基于ILM for(MT-default,D-loopback0)表项转发,将入标签SRGB_S[SID_D-loopback0]交换成出标签栈从栈顶至栈底为{SRGB_A[SID_A],SRGB_A[SID_D-loopback0]},然后发往下一跳A;如果S收到的是IP报文,则它基于FTN for(MT-default,D-loopback0)表项转发,直接在IP头上压上标签栈从栈顶至栈底为{SRGB_A[SID_A],SRGB_A[SID_D-loopback0]},然后发往下一跳A。
步骤S404,A节点收到报文后,弹掉顶层标签SRGB_A[SID_A],继续将下一层标签SRGB_A[SID_D-loopback0]交换成SRGB_ABR3[SID_D-loopback0]后发给ABR3。
步骤S405,ABR3节点收到报文后,将顶层标签SRGB_ABR3[SID_D-loopback0]交换成SRGB_ABR2[SID_D-loopback0]后发给ABR2。
步骤S406,ABR2节点收到报文后,将顶层标签SRGB_ABR2[SID_D-loopback0]交换成SRGB_D[SID_D-loopback0]后发给D。
步骤S407,D节点收到报文后,弹掉顶层标签后,基于IP头继续转发,由于IP头为D-loopback0,则报文上送控制平面。
根据上述实施例,可知报文在沿MRT路径转发时,实际上是沿默认拓扑内相应的segment list转发,离开MRT Island后,将沿默认拓扑内的最短路径转发。符合RFC7812定义的转发规则。
实施例三
本实施例将描述目的prefix处于MRT Island外的MRT路径转发流程,特别是如何基于SR-tunnel实现RFC7812定义的rainbow跨域转发规则。图5是根据本发明实施例三的网络拓扑图,如图5所示,网络中运行OSPF,包含两个area,所有节点均在相应的OSPF实例下使能分段路由功能,其中area1中的S、A、B、C使能本发明实施例中所定义的MRT Profile,area2中的B、E、D、F也同样使能本专利所定义的MRT Profile。S作为源节点建立至目的节点D的prefix(比如D的某个loopback路由)的MRT路径,然后基于此MRT路径保护SPF主路径。包括如下步骤:
步骤S501,area1与area2内所有节点的OSPF实例下均使能SR。各节点分配SRGB。
步骤S502,area1内的S、A、B、C各节点上的OSPF实例下使能本专利所定义的MRT Profile,则它们在area1内形成一个MRT Island。
各节点上将基于SPF算法得到area内的MT-default拓扑,以及基于MRT算法得到MT-red和MT-blue拓扑。比如S节点上,至目的节点B的MT-default路径为S-C-B,MT-red路径也为S-C-B,而MT-blue路径为S-A-B。
各节点上基于拓扑生成相应的prefix表项,比如S节点上,MT-default拓扑内至prefix D-loopback0的MT-default下一跳为C(假设在area1内ABR1作为prefix D-loopback0的通告节点,则使用至目的节点ABR1的MT-default路径来确定下一跳)。对于prefix D-loopback0,假设我们使用Tunnel Endpoint Selection方法(参考RFC7812)选择的远端节点为B,假设MRT Island中S作为GADAG root,且S<<A<<B<<C<<S,则至节点B的MRT-blue路径为S-A-B,它可用来保护上述MT-default下一跳C。那么相应的MRT-FRR路径为segment list{A,B}。
上述MT-default下一跳C对应的出标签为SRGB_C[SID_D-loopback0],上述MRT-FRR segment list对应的入标签栈从栈顶至栈底为{SRGB_S[SID_A],SRGB_A[SID_B]}。
步骤S503,area2中的B、E、D、F各节点上的OSPF实例下也使能本专利所定义的MRT Profile,则它们在area2内也形成一个MRT Island,生成相应的MT-default拓扑,以及MT-red和MT-blue拓扑。并计算各各拓扑内至prefix D-loopback2的表项,不再赘述。
综上,对节点上的表项进行举例说明,为简洁起见,仅描述MRT-FRR路径使用node segment list表示时的表项内容:
S节点:
FTN for(MT-default,D-loopback0)
主NHLFE:
下一跳为C,出标签为SRGB_C[SID_D-loopback0]
备NHLFE:
SRGB_S[SID_A],顶层标签,需查找ILM换成出向转发信息
SRGB_A[SID_B]
底层标签SRGB_B[SID_D-loopback0]
ILM for(MT-default,SID_D-loopback0)
入标签为SRGB_S[SID_D-loopback0]
主NHLFE:
下一跳为C,出标签为SRGB_C[SID_D-loopback0]
备NHLFE:
SRGB_S[SID_A],顶层标签,需查找ILM换成出向转发信息
SRGB_A[SID_B]
底层标签SRGB_B[SID_D-loopback0]
ILM for(MT-default,SID_A)
入标签为SRGB_S[SID_A]
NHLFE:
下一跳为A,出标签为SRGB_A[SID_A]
A节点:
ILM for(MT-default,SID_A)
入标签为SRGB_A[SID_A]
NHLFE:无。表示SR-LSP已经终结。
ILM for(MT-default,SID_B)
入标签为SRGB_A[SID_B]
NHLFE:
下一跳为B,出标签为SRGB_B[SID_B]
B点:
ILM for(MT-default,SID_B)
入标签为SRGB_B[SID_B]
NHLFE:无。表示SR-LSP已经终结。
ILM for(MT-default,SID_D-loopback0)
入标签为SRGB_B[SID_D-loopback0]
NHLFE:
下一跳为F,出标签为SRGB_F[SID_D-loopback0]
F点:
ILM for(MT-default,SID_D-loopback0)
入标签为SRGB_F[SID_D-loopback0]
NHLFE:
下一跳为D,出标签为SRGB_D[SID_D-loopback0]
D节点:
ILM for(MT-default,D-loopback0)
入标签为SRGB_D[SID_D-loopback0]
NHLFE:无。表示SR-LSP已经终结。
步骤S504,对于发往目的地D-loopback0的报文,当链路S-C出现故障时,S节点将作为MRT ingress节点将流量切换至事先准备好的MRT-blue路径,即开始将报文沿MT-blue路径S-A-B转发。
如果S收到的是MT-default SR标签报文,则它基于ILM for(MT-default,D-loopback0)表项转发,将入标签SRGB_S[SID_D-loopback0]交换成出标签栈从栈顶至栈底为{SRGB_A[SID_A],SRGB_A[SID_B],SRGB_B[SID_D-loopback0]},然后发往下一跳A;如果S收到的是IP报文,则它基于FTN for(MT-default,D-loopback0)表项转发,直接在IP头上压上标签栈从栈顶至栈底为{SRGB_A[SID_A],SRGB_A[SID_B],SRGB_B[SID_D-loopback0]},然后发往下一跳A。
步骤S505,A节点收到报文后,弹掉顶层标签SRGB_A[SID_A],继续将下一层标签SRGB_A[SID_B]交换成SRGB_B[SID_B]后发给B。
步骤S506,B节点收到报文后,弹掉顶层标签SRGB_B[SID_B],继续将下一层标签SRGB_B[SID_D-loopback0]交换成SRGB_F[SID_D-loopback0] 后发给F。
步骤S507,F节点收到报文后,将顶层标签SRGB_F[SID_D-loopback0]交换成SRGB_D[SID_D-loopback0]后发给D。
步骤S508,D节点收到报文后,弹掉顶层标签,基于IP头继续转发,由于IP头为D-loopback0,则报文上送控制平面。
根据上述实施例,可知报文在沿MRT路径转发时,在area1中的MRT Island内实际上是沿相应segment list转发,而离开area1进入area2后,将沿默认拓扑内的SR-LSP转发。符合RFC7812定义的转发规则。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明实施例的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
在本实施例中还提供了一种报文转发装置,该装置用于实现上述实施例及实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置可以以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图6是根据本发明实施例的报文转发装置的结构框图,该装置可以应用于第一节点中,如图6所示,该装置包括接收模块62、第一查找模块64、第二查找模块66和转发模块68,下面对该装置进行说明:
接收模块62,设置为接收待转发的报文,其中,该报文的目的地址为第二节点;第一查找模块64,连接至上述接收模块62,设置为在预先生成的路径中查找与上述报文对应的目标路径,其中,该预先生成的路径包括第一路径、第二路径和第三路径,上述第一路径与第二路径是根据最大冗 余树MRT算法生成得到的到达第二节点路径,上述第三路径是根据最短路径优先SPF算法生成得到的到达第二节点的路径;第二查找模块66,连接至上述第一查找模块64,设置为当上述目标路径为第一路径或第二路径时,在预先生成的段列表中查找与目标路径对应的目标段列表,其中,该预先生成的段列表包括第一段列表和第二段列表,第一段列表包括第一路径,第二段列表包括第二路径;转发模块68,连接至上述第二查找模块66,设置为在上述目标路径中查找用于转发到上述第二节点的下一跳节点,并根据上述目标段列表将报文转发到下一跳节点。在本实施例中,在将报文转发到下一跳节点时,可以根据预定转发机制进行转发,该预定转发机制可以是基于段列表形成的多层出标签栈的隧道转发机制。
在一实施例中,上述预先生成的段列表包括以下至少之一:adjacency segment list、包含有node segment的segment list;其中,当预先生成的段列表中最后一个segment为adjacency segment时,所述adjacency segment的remote node为MRT Egress;当上述预先生成的段列表中最后一个segment为node segment时,该node segment为MRT Egress。
在一实施例中,上述装置还包括第一处理模块,设置为按照MRT算法从第一路径和第二路径中确定用于保护第三路径的保护路径。
在一实施例中,上述第一查找模块64可以通过如下方式在预先生成的路径中查找与上述报文对应的目标路径包括:判断第三路径中的用于到达第二节点的链路是否出现故障;在判断结果为没有出现故障时,确定第三路径为目标路径;和/或,在判断结果为出现故障时,确定保护路径为目标路径。
在一实施例中,上述装置还包括第二处理模块,设置为在接收待转发的所述报文之前,执行以下操作至少之一:根据上述MRT算法生成得到第一拓扑,从该第一拓扑中确定上述第一路径;根据上述MRT算法生成得到第二拓扑,从该第二拓扑中确定第二路径;根据SPF算法生成得到第三拓扑,从该第三拓扑中确定第三路径。
在一实施例中,上述第二处理模块可以通过如下方式生成得到所述第一拓扑和所述第二拓扑,以及生成得到所述第三拓扑:确定上述第一节点 所在的MRT Island,其中,该MRT Island是通过在第一节点以及与第一节点处于同一域area或同一层次level的其他节点上的开放最短路径优先OSPF或者中间系统到中间系统ISIS实例下使能分段路由SR以及最大冗余树配置文件MRT profile后,在第一节点所在的area或level内由所述第一节点和其他节点相互协商形成的;该第一节点基于MRT Island运行MRT算法生成第一拓扑和所述第二拓扑,以及,基于area或level运行SPF算法生成第三拓扑。
在一实施例中,上述MRT profile中指定采用上述预定转发机制,即,采用基于段列表形成的多层出标签栈的隧道转发机制。
在一实施例中,上述装置还包括第三处理模块,设置为为第三拓扑分配SRGB,并将该SRGB在第一节点所在的所有域area或层次level内泛洪;接收其他节点上的所述第三拓扑的分段路由全局块SRGB,记录其他节点上的第三拓扑的SRGB以及将其他节点上的所述第三拓扑的SRGB继续通告给除其他节点之外的节点。
在一实施例中,上述装置还包括第四处理模块,设置为当目标路径为所述第三路径时,将第三路径的下一跳节点为目的前缀段索引prefix-sid分配的SR标签封装到所述报文上,并将封装后的报文发送到在第三路径中查找到的用于转发到第二节点的下一跳节点。
在一实施例中,上述转发模块68可以通过如下方式将报文转发到下一跳节点:确定包含了目标段列表的下一跳标签转发单元HHLFE的分段路由SR出标签栈;将包含了上述目标段列表的NHLFE的SR出标签栈封装到上述报文上,并将封装后的报文发送到上述下一跳节点。
在一实施例中,上述转发模块68可以通过如下方式将包含了目标段列表的NHLFE的SR出标签栈封装到上述报文上:当上述报文的报文类型为互联网协议IP报文时,在该IP报文的IP头上压上NHLFE的SR出标签栈;和/或,当上述报文的报文类型为分段路由SR标签报文时,将该SR标签报文的入标签替换成NHLFE的SR出标签栈。
在一实施例中,上述转发模块68可以通过如下方式确定包含了目标段列表的所述NHLFE的分段路由SR出标签栈:当上述目标段列表为 adjacency segment list时,确定上述目标段列表中从第二个adjacency segment开始的每段链路的索引SID,按路径顺序将每段链路的SID以及目标路径的MRT Egress为目的前缀段索引prefix-sid分配的SR标签依次组成从栈顶到栈底的标签栈,将组成的上述标签栈作为NHLFE的SR出标签栈;当上述目标段列表为node segment list时,确定上述目标段列表中从第一个node segment开始的每段对应的SR出标签,按路径顺序将所述每段对应的SR出标签以及所述目标路径的MRT Egress为目的prefix-sid分配的SR标签依次组成从栈顶到栈底的标签栈,将组成的上述标签栈作为所述NHLFE的SR出标签栈;当上述目标段列表为包含有node segment和adjacency segment的segment list时,确定上述目标段列表中从第一个segment开始的每段对应的SR出标签,按路径顺序将每段对应的SR出标签以及目标路径的MRT Egress为目的prefix-sid分配的SR标签依次组成从栈顶到栈底的标签栈,将组成的所述标签栈作为所述NHLFE的SR出标签栈,若第一个segment为adjacency segment,则第一个segment没有对应的SR出标签。
在一实施例中,上述转发模块68可以通过如下方式确定目标路径的MRT Egress为目的prefix-sid分配的SR标签:确定MRT Egress为第三拓扑分配的SRGB和第三拓扑内至第二节点的路由的SID;基于该MRT Egress为第三拓扑分配的SRGB和第三拓扑内至第二节点的路由的SID确定上述目标路径的MRT Egress为目的prefix-sid分配的SR标签;当上述目标段列表的第一个segment为node segment时,上述转发模块68可以通过如下方式确定目标段列表中第一个node segment对应的出标签:确定第三拓扑中至目标段列表中的第一个node segment的下一跳为所述第三拓扑分配的SRGB和第一个node segment在第三拓扑中的节点SID;基于第三拓扑中至目标段列表中的第一个node segment的下一跳为第三拓扑分配的SRGB和第一个node segment在所述第三拓扑中的节点SID确定目标段列表中第一个node segment的对应的出标签;当上述目标段列表为包含有node segment的segment list时,上述转发模块68可以通过如下方式确定目标段列表中除第一个segment之外的其他node segment对应的出标签:确定上述目标段列表中其他node segment的上一个segment所在的节点为第三拓扑分配的SRGB 和其他node segment在第三拓扑中的节点SID;基于目标段列表中其他nodesegment的上一个segment所在的节点为第三拓扑分配的SRGB和其他nodesegment在第三拓扑中的节点SID确定目标段列表中除第一个segment之外的其他node segment对应的出标签;其中,上述上一个segment所在的节点是指:当上述上一个segment为node segment时,该node segment所表示的节点;当上述上一个segment为adjacency segment时,该adjacency segment的remote node所表示的节点。
在一实施例中,上述目标路径的MRT Egress在剥完目标段列表的标签栈后,可以继续基于下层标签或IP头将报文向第二节点转发,其中,当MRT Egress与第二节点为同一节点时,将报文上送至第二节点的控制平面。
在一实施例中,还提供了一种报文转发装置,该装置可以应用于除第一节点之外的其它节点中,包括:报文接收模块,设置为接收报文,其中,该报文的目的地址为第二节点;报文转发模块,设置为转发报文,基于报文的顶层标签或顶层IP向下一跳转发或者上送控制平面。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
本发明的实施例还提供了一种存储介质。在本实施例中,上述存储介质可以被设置为存储用于执行上述各步骤的程序代码。
在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
在本实施例中,处理器根据存储介质中已存储的程序代码执行上述各步骤。
本实施例中的示例可以参考上述实施例及实施方式中所描述的示例,本实施例在此不再赘述。
采用本发明实施例中所述方法,填补了分段路由与MRT技术结合的缺口,为未来网络的演进提供了有价值的探索。
上述的本发明实施例的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明实施例不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
工业实用性
通过本发明实施例,在分段路由网络中引入MRT功能,从而实现了分段路由网络与MRT功能结合。

Claims (15)

  1. 一种报文转发方法,包括:
    第一节点接收待转发的报文,其中,所述报文的目的地址为第二节点;
    所述第一节点在预先生成的路径中查找与所述报文对应的目标路径,其中,所述预先生成的路径包括第一路径、第二路径和第三路径,所述第一路径与所述第二路径是根据最大冗余树MRT算法生成得到的到达所述第二节点路径,所述第三路径是根据最短路径优先SPF算法生成得到的到达所述第二节点的路径;
    当所述目标路径为所述第一路径或所述第二路径时,所述第一节点在预先生成的段列表中查找与所述目标路径对应的目标段列表,其中,所述预先生成的段列表包括第一段列表和第二段列表,所述第一段列表包括所述第一路径,所述第二段列表包括所述第二路径;
    所述第一节点在所述目标路径中查找用于转发到所述第二节点的下一跳节点,并根据所述目标段列表将所述报文转发到所述下一跳节点。
  2. 根据权利要求1所述的方法,其中,所述预先生成的段列表包括以下至少之一:
    adjacency segment list、包含有node segment的segment list;
    其中,当所述预先生成的段列表中最后一个segment为adjacency segment时,所述adjacency segment的remote node为MRT Egress;当所述预先生成的段列表中最后一个segment为node segment时,所述node segment为MRT Egress。
  3. 根据权利要求1所述的方法,所述方法还包括:
    所述第一节点按照所述MRT算法从所述第一路径和所述第二路径中确定用于保护所述第三路径的保护路径。
  4. 根据权利要求3所述的方法,其中,所述第一节点在预先生成的路径中查找与所述报文对应的目标路径包括:
    所述第一节点判断所述第三路径中的用于到达所述第二节点的链路是 否出现故障;
    在判断结果为没有出现故障时,所述第一节点确定所述第三路径为所述目标路径;
    在判断结果为出现故障时,所述第一节点确定所述保护路径为所述目标路径。
  5. 根据权利要求1所述的方法,其中,所述第一节点在接收待转发的所述报文之前,所述方法还包括以下至少之一:
    所述第一节点根据所述MRT算法生成得到第一拓扑,从所述第一拓扑中确定所述第一路径;
    所述第一节点根据所述MRT算法生成得到第二拓扑,从所述第二拓扑中确定所述第二路径;
    所述第一节点根据所述SPF算法生成得到第三拓扑,从所述第三拓扑中确定所述第三路径。
  6. 根据权利要求5所述的方法,其中,所述第一节点根据所述MRT算法生成得到所述第一拓扑和所述第二拓扑,以及根据所述SPF算法生成得到所述第三拓扑包括:
    所述第一节点确定所述第一节点所在的MRT Island,其中,所述MRT Island是通过在所述第一节点以及与所述第一节点处于同一域area或同一层次level的其他节点上的开放最短路径优先OSPF或者中间系统到中间系统ISIS实例下使能分段路由SR以及最大冗余树配置文件MRT profile后,在所述第一节点所在的area或level内由所述第一节点和所述其他节点相互协商形成的;
    所述第一节点基于所述MRT Island运行所述MRT算法生成所述第一拓扑和所述第二拓扑,以及,基于所述area或level运行所述SPF算法生成所述第三拓扑。
  7. 根据权利要求6所述的方法,其中,所述MRT profile中指定采用基于段列表形成的多层出标签栈的隧道转发机制。
  8. 根据权利要求5所述的方法,所述方法还包括:
    所述第一节点为所述第三拓扑分配分段路由全局块SRGB,并将所述SRGB在所述第一节点所在的所有域area或层次level内泛洪;
    所述第一节点接收其他节点上的所述第三拓扑的SRGB,记录所述其他节点上的所述第三拓扑的SRGB以及将所述其他节点上的所述第三拓扑的SRGB继续通告给除所述其他节点之外的节点。
  9. 根据权利要求1所述的方法,所述方法还包括:
    当所述目标路径为所述第三路径时,所述第一节点将所述第三路径的下一跳节点为目的前缀段索引prefix-sid分配的SR标签封装到所述报文上,并将封装后的报文发送到在所述第三路径中查找到的用于转发到所述第二节点的下一跳节点。
  10. 根据权利要求1或2所述的方法,其中,所述第一节点根据所述目标段列表将所述报文转发到所述下一跳节点包括:
    所述第一节点确定包含了所述目标段列表的下一跳标签转发单元HHLFE的分段路由SR出标签栈;
    所述第一节点将包含了所述目标段列表的NHLFE的SR出标签栈封装到所述报文上,并将封装后的报文发送到所述下一跳节点。
  11. 根据权利要求10所述的方法,其中,所述第一节点将包含了所述目标段列表的所述NHLFE的SR出标签栈封装到所述报文上包括如下方式至少之一:
    当所述报文的报文类型为互联网协议IP报文时,所述第一节点在所述IP报文的IP头上压上所述NHLFE的SR出标签栈;
    当所述报文的报文类型为分段路由SR标签报文时,所述第一节点将所述SR标签报文的入标签替换成所述NHLFE的SR出标签栈。
  12. 根据权利要求10所述的方法,其中,所述第一节点确定包含了所述目标段列表的所述NHLFE的分段路由SR出标签栈包括:
    当所述目标段列表为adjacency segment list时,确定所述目标段列表中从第二个adjacency segment开始的每段链路的索引SID,按路径顺序将所述每段链路的SID以及所述目标路径的MRT Egress为目的前缀段索引 prefix-sid分配的SR标签依次组成从栈顶到栈底的标签栈,将组成的所述标签栈作为所述NHLFE的SR出标签栈;
    当所述目标段列表为node segment list时,确定所述目标段列表中从第一个node segment开始的每段对应的SR出标签,按路径顺序将所述每段对应的SR出标签以及所述目标路径的MRT Egress为目的prefix-sid分配的SR标签依次组成从栈顶到栈底的标签栈,将组成的所述标签栈作为所述NHLFE的SR出标签栈;
    当所述目标段列表为包含有node segment和adjacency segment的segment list时,确定所述目标段列表中从第一个segment开始的每段对应的SR出标签,按路径顺序将所述每段对应的SR出标签以及所述目标路径的MRT Egress为目的prefix-sid分配的SR标签依次组成从栈顶到栈底的标签栈,将组成的所述标签栈作为所述NHLFE的SR出标签栈,若所述第一个segment为adjacency segment,则所述第一个segment没有对应的SR出标签。
  13. 根据权利要求12所述的方法,其中,包括以下至少之一:
    所述第一节点通过如下方式确定所述目标路径的MRT Egress为目的prefix-sid分配的SR标签:确定所述MRT Egress为第三拓扑分配的SRGB和所述第三拓扑内至所述第二节点的路由的SID;基于所述MRT Egress为所述第三拓扑分配的SRGB和所述第三拓扑内至所述第二节点的路由的SID确定所述目标路径的MRT Egress为目的prefix-sid分配的SR标签;
    当所述目标段列表的第一个segment为node segment时,所述第一节点通过如下方式确定所述目标段列表中第一个node segment对应的出标签:确定所述第三拓扑中至所述目标段列表中的第一个node segment的下一跳为所述第三拓扑分配的SRGB和所述第一个node segment在所述第三拓扑中的节点SID;基于所述第三拓扑中至所述目标段列表中的第一个node segment的下一跳为所述第三拓扑分配的SRGB和所述第一个node segment在所述第三拓扑中的节点SID确定所述目标段列表中第一个node segment的对应的出标签;
    当所述目标段列表为包含有node segment的segment list时,所述第一节点通过如下方式确定所述目标段列表中除第一个segment之外的其他node  segment对应的出标签:确定所述目标段列表中其他node segment的上一个segment所在的节点为所述第三拓扑分配的SRGB和所述其他node segment在所述第三拓扑中的节点SID;基于所述目标段列表中其他node segment的上一个segment所在的节点为所述第三拓扑分配的SRGB和所述其他node segment在所述第三拓扑中的节点SID确定所述目标段列表中除第一个segment之外的其他node segment对应的出标签;其中,所述上一个segment所在的节点是指:当所述上一个segment为node segment时,所述node segment所表示的节点;或者,当所述上一个segment为adjacency segment时,所述adjacency segment的remote node所表示的节点。
  14. 根据权利要求1或2所述的方法,所述方法还包括:
    所述目标路径的MRT Egress在剥完所述目标段列表的标签栈后,继续基于下层标签或IP头将所述报文向所述第二节点转发,其中,当所述MRTEgress与所述第二节点为同一节点时,将所述报文上送至所述第二节点的控制平面。
  15. 一种报文转发装置,应用于第一节点中,包括:
    接收模块,设置为接收待转发的报文,其中,所述报文的目的地址为第二节点;
    第一查找模块,设置为在预先生成的路径中查找与所述报文对应的目标路径,其中,所述预先生成的路径包括第一路径、第二路径和第三路径,所述第一路径与所述第二路径是根据最大冗余树MRT算法生成得到的到达所述第二节点路径,所述第三路径是根据最短路径优先SPF算法生成得到的到达所述第二节点的路径;
    第二查找模块,设置为当所述目标路径为所述第一路径或所述第二路径时,在预先生成的段列表中查找与所述目标路径对应的目标段列表,其中,所述预先生成的段列表包括第一段列表和第二段列表,所述第一段列表包括所述第一路径,所述第二段列表包括所述第二路径;
    转发模块,设置为在所述目标路径中查找用于转发到所述第二节点的下一跳节点,并根据所述目标段列表将所述报文转发到所述下一跳节点。
PCT/CN2017/092806 2016-07-27 2017-07-13 报文转发方法及装置 WO2018019131A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17833434.8A EP3493487A4 (en) 2016-07-27 2017-07-13 MESSAGE FORWARDING METHOD AND DEVICE
US16/320,016 US20190273678A1 (en) 2016-07-27 2017-07-13 Method and device for forwarding packet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610604543.3 2016-07-27
CN201610604543.3A CN107666436B (zh) 2016-07-27 2016-07-27 报文转发方法及装置

Publications (1)

Publication Number Publication Date
WO2018019131A1 true WO2018019131A1 (zh) 2018-02-01

Family

ID=61016848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/092806 WO2018019131A1 (zh) 2016-07-27 2017-07-13 报文转发方法及装置

Country Status (4)

Country Link
US (1) US20190273678A1 (zh)
EP (1) EP3493487A4 (zh)
CN (1) CN107666436B (zh)
WO (1) WO2018019131A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111970196A (zh) * 2020-06-30 2020-11-20 新华三技术有限公司 一种建立备份路径、切换备份路径的方法和路由设备
EP3800839A4 (en) * 2018-06-22 2021-08-11 Huawei Technologies Co., Ltd. DATA TRANSFER METHOD, DEVICE AND COMPUTER STORAGE MEDIUM
CN113542114A (zh) * 2020-04-20 2021-10-22 华为技术有限公司 路由配置方法和路由配置装置
CN114124781A (zh) * 2021-11-23 2022-03-01 中国联合网络通信集团有限公司 SRv6中报文的转发方法、系统、电子设备及存储介质

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108429673B (zh) * 2018-03-21 2019-11-05 常熟理工学院 一种快速的未来数据网络实现方法
CN111510387B (zh) * 2019-01-30 2021-12-14 华为技术有限公司 数据转发方法及相关装置
CN109889441B (zh) * 2019-03-21 2021-05-14 新华三技术有限公司 一种数据转发方法及装置
US11050679B1 (en) * 2019-06-28 2021-06-29 Juniper Networks, Inc. Defining non-forwarding adjacencies in bipartite networks, such as Clos newtorks, having a level 2 backbone and level 1 nodes
US11496391B1 (en) * 2019-06-28 2022-11-08 Juniper Networks, Inc. Defining non-forwarding adjacencies in bipartite networks, such as Clos networks, having a level 2 backbone and level 1 nodes
CN116436850A (zh) * 2019-07-01 2023-07-14 华为技术有限公司 一种报文转发方法、报文处理方法及装置
WO2021021172A1 (en) * 2019-07-31 2021-02-04 Huawei Technologies Co., Ltd. Transporting mtnc-id over srv6-header for 5g transport
CN110535772B (zh) * 2019-08-27 2020-06-16 南京中兴软件有限责任公司 分段路由流量工程策略的发送及接收方法、装置和网元
CN112565076A (zh) * 2019-09-10 2021-03-26 中国电信股份有限公司 基于isis协议的关键路径信息转发方法、装置和系统
CN113285876B (zh) * 2020-02-19 2024-04-23 中兴通讯股份有限公司 路由方法、路由装置及计算机可读存储介质
CN115134283A (zh) * 2021-03-08 2022-09-30 北京华为数字技术有限公司 一种环网保护方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103781141A (zh) * 2013-10-24 2014-05-07 深圳市金溢科技有限公司 车载自组织网络的单播路由转发方法、芯片及通信系统
US8861340B1 (en) * 2012-03-12 2014-10-14 Juniper Networks, Inc. Fast reroute using maximally redundant trees
US20150023156A1 (en) * 2013-07-19 2015-01-22 Telefonaktiebolaget L M Ericsson (Publ) Extended remote lfa fast reroute

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8854953B2 (en) * 2011-09-27 2014-10-07 Telefonaktiebolaget L M Ericsson (Publ) Optimizing endpoint selection of MRT-FRR detour paths
US9100328B1 (en) * 2012-03-12 2015-08-04 Juniper Networks, Inc. Forwarding mechanisms for fast reroute using maximally redundant trees
US9049233B2 (en) * 2012-10-05 2015-06-02 Cisco Technology, Inc. MPLS segment-routing
US9319312B2 (en) * 2013-05-17 2016-04-19 Cisco Technology, Inc. Segment routing mapping server for LDP/SR interoperability
US9516118B2 (en) * 2014-05-12 2016-12-06 Telefonaktiebolaget L M Ericsson (Publ) Scalable segment identifier allocation in segment routing
CN105282028A (zh) * 2014-06-05 2016-01-27 中兴通讯股份有限公司 一种报文传输方法、节点及路径管理服务器
CN105634940B (zh) * 2014-10-27 2020-06-16 中兴通讯股份有限公司 Sr信息获取方法及建立段路由网络的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8861340B1 (en) * 2012-03-12 2014-10-14 Juniper Networks, Inc. Fast reroute using maximally redundant trees
US20150023156A1 (en) * 2013-07-19 2015-01-22 Telefonaktiebolaget L M Ericsson (Publ) Extended remote lfa fast reroute
CN103781141A (zh) * 2013-10-24 2014-05-07 深圳市金溢科技有限公司 车载自组织网络的单播路由转发方法、芯片及通信系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3493487A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3800839A4 (en) * 2018-06-22 2021-08-11 Huawei Technologies Co., Ltd. DATA TRANSFER METHOD, DEVICE AND COMPUTER STORAGE MEDIUM
CN113542114A (zh) * 2020-04-20 2021-10-22 华为技术有限公司 路由配置方法和路由配置装置
CN111970196A (zh) * 2020-06-30 2020-11-20 新华三技术有限公司 一种建立备份路径、切换备份路径的方法和路由设备
CN111970196B (zh) * 2020-06-30 2022-10-21 新华三技术有限公司 一种建立备份路径、切换备份路径的方法和路由设备
CN114124781A (zh) * 2021-11-23 2022-03-01 中国联合网络通信集团有限公司 SRv6中报文的转发方法、系统、电子设备及存储介质

Also Published As

Publication number Publication date
EP3493487A1 (en) 2019-06-05
CN107666436B (zh) 2019-05-17
CN107666436A (zh) 2018-02-06
US20190273678A1 (en) 2019-09-05
EP3493487A4 (en) 2020-01-22

Similar Documents

Publication Publication Date Title
WO2018019131A1 (zh) 报文转发方法及装置
US10992574B2 (en) Packet forwarding method and device
US20230353490A1 (en) Method and Apparatus for Processing Transmission Path Fault, and System
WO2018033060A1 (zh) 报文转发方法及装置
KR102589957B1 (ko) 전송 경로 장애 처리 방법 및 장치, 그리고 시스템
EP2761827B1 (en) Incremental deployment of mrt based ipfrr
US9444677B2 (en) Scalable edge node protection using IPv6 segment routing extension header
US9525619B2 (en) Scalable edge node protection using segment routing
US9143395B2 (en) Scalable BGP protection from edge node failure using context labels in data packets identifying backup router mirror table
WO2018082652A1 (zh) 信息传输方法、装置及系统及装置
WO2021135624A1 (zh) 基于虚电路的数据报文处理方法、转发表项的构建方法
US20120124238A1 (en) Prioritization of routing information updates
CN116827855A (zh) 一种通告网络设备处理能力的方法、设备和系统
US20210281507A1 (en) Parameter notification and obtaining methods and devices, and storage medium
CN111224870B (zh) 一种SR-MPLS Anycast场景下的故障修复方法、设备和存储介质
CN117640512A (zh) 通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17833434

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017833434

Country of ref document: EP

Effective date: 20190227